/* * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "runtime/atomic.hpp" #include "services/mallocSiteTable.hpp" /* * Early os::malloc() calls come from initializations of static variables, long before entering any * VM code. Upon the arrival of the first os::malloc() call, malloc site hashtable has to be * initialized, along with the allocation site for the hashtable entries. * To ensure that malloc site hashtable can be initialized without triggering any additional os::malloc() * call, the hashtable bucket array and hashtable entry allocation site have to be static. * It is not a problem for hashtable bucket, since it is an array of pointer type, C runtime just * allocates a block memory and zero the memory for it. * But for hashtable entry allocation site object, things get tricky. C runtime not only allocates * memory for it, but also calls its constructor at some later time. If we initialize the allocation site * at the first os::malloc() call, the object will be reinitialized when its constructor is called * by C runtime. * To workaround above issue, we declare a static size_t array with the size of the CallsiteHashtableEntry, * the memory is used to instantiate CallsiteHashtableEntry for the hashtable entry allocation site. * Given it is a primitive type array, C runtime will do nothing other than assign the memory block for the variable, * which is exactly what we want. * The same trick is also applied to create NativeCallStack object for CallsiteHashtableEntry memory allocation. * * Note: C++ object usually aligns to particular alignment, depends on compiler implementation, we declare * the memory as size_t arrays, to ensure the memory is aligned to native machine word alignment. */ // Reserve enough memory for NativeCallStack and MallocSiteHashtableEntry objects size_t MallocSiteTable::_hash_entry_allocation_stack[CALC_OBJ_SIZE_IN_TYPE(NativeCallStack, size_t)]; size_t MallocSiteTable::_hash_entry_allocation_site[CALC_OBJ_SIZE_IN_TYPE(MallocSiteHashtableEntry, size_t)]; // Malloc site hashtable buckets MallocSiteHashtableEntry* MallocSiteTable::_table[MallocSiteTable::table_size]; // concurrent access counter volatile int MallocSiteTable::_access_count = 0; // Tracking hashtable contention NOT_PRODUCT(int MallocSiteTable::_peak_count = 0;) /* * Initialize malloc site table. * Hashtable entry is malloc'd, so it can cause infinite recursion. * To avoid above problem, we pre-initialize a hash entry for * this allocation site. * The method is called during C runtime static variable initialization * time, it is in single-threaded mode from JVM perspective. */ bool MallocSiteTable::initialize() { assert(sizeof(_hash_entry_allocation_stack) >= sizeof(NativeCallStack), "Sanity Check"); assert(sizeof(_hash_entry_allocation_site) >= sizeof(MallocSiteHashtableEntry), "Sanity Check"); assert((size_t)table_size <= MAX_MALLOCSITE_TABLE_SIZE, "Hashtable overflow"); // Fake the call stack for hashtable entry allocation assert(NMT_TrackingStackDepth > 1, "At least one tracking stack"); // Create pseudo call stack for hashtable entry allocation address pc[3]; if (NMT_TrackingStackDepth >= 3) { pc[2] = (address)MallocSiteTable::allocation_at; } if (NMT_TrackingStackDepth >= 2) { pc[1] = (address)MallocSiteTable::lookup_or_add; } pc[0] = (address)MallocSiteTable::new_entry; // Instantiate NativeCallStack object, have to use placement new operator. (see comments above) NativeCallStack* stack = ::new ((void*)_hash_entry_allocation_stack) NativeCallStack(pc, MIN2(((int)(sizeof(pc) / sizeof(address))), ((int)NMT_TrackingStackDepth))); // Instantiate hash entry for hashtable entry allocation callsite MallocSiteHashtableEntry* entry = ::new ((void*)_hash_entry_allocation_site) MallocSiteHashtableEntry(*stack, mtNMT); // Add the allocation site to hashtable. int index = hash_to_index(stack->hash()); _table[index] = entry; return true; } // Walks entries in the hashtable. // It stops walk if the walker returns false. bool MallocSiteTable::walk(MallocSiteWalker* walker) { MallocSiteHashtableEntry* head; for (int index = 0; index < table_size; index ++) { head = _table[index]; while (head != NULL) { if (!walker->do_malloc_site(head->peek())) { return false; } head = (MallocSiteHashtableEntry*)head->next(); } } return true; } /* * The hashtable does not have deletion policy on individual entry, * and each linked list node is inserted via compare-and-swap, * so each linked list is stable, the contention only happens * at the end of linked list. * This method should not return NULL under normal circumstance. * If NULL is returned, it indicates: * 1. Out of memory, it cannot allocate new hash entry. * 2. Overflow hash bucket. * Under any of above circumstances, caller should handle the situation. */ MallocSite* MallocSiteTable::lookup_or_add(const NativeCallStack& key, size_t* bucket_idx, size_t* pos_idx, MEMFLAGS flags) { assert(flags != mtNone, "Should have a real memory type"); unsigned int index = hash_to_index(key.hash()); *bucket_idx = (size_t)index; *pos_idx = 0; // First entry for this hash bucket if (_table[index] == NULL) { MallocSiteHashtableEntry* entry = new_entry(key, flags); // OOM check if (entry == NULL) return NULL; // swap in the head if (Atomic::cmpxchg(entry, &_table[index], (MallocSiteHashtableEntry*)NULL) == NULL) { return entry->data(); } delete entry; } MallocSiteHashtableEntry* head = _table[index]; while (head != NULL && (*pos_idx) <= MAX_BUCKET_LENGTH) { MallocSite* site = head->data(); if (site->flags() == flags && site->equals(key)) { return head->data(); } if (head->next() == NULL && (*pos_idx) < MAX_BUCKET_LENGTH) { MallocSiteHashtableEntry* entry = new_entry(key, flags); // OOM check if (entry == NULL) return NULL; if (head->atomic_insert(entry)) { (*pos_idx) ++; return entry->data(); } // contended, other thread won delete entry; } head = (MallocSiteHashtableEntry*)head->next(); (*pos_idx) ++; } return NULL; } // Access malloc site MallocSite* MallocSiteTable::malloc_site(size_t bucket_idx, size_t pos_idx) { assert(bucket_idx < table_size, "Invalid bucket index"); MallocSiteHashtableEntry* head = _table[bucket_idx]; for (size_t index = 0; index < pos_idx && head != NULL; index++, head = (MallocSiteHashtableEntry*)head->next()) {} assert(head != NULL, "Invalid position index"); return head->data(); } // Allocates MallocSiteHashtableEntry object. Special call stack // (pre-installed allocation site) has to be used to avoid infinite // recursion. MallocSiteHashtableEntry* MallocSiteTable::new_entry(const NativeCallStack& key, MEMFLAGS flags) { void* p = AllocateHeap(sizeof(MallocSiteHashtableEntry), mtNMT, *hash_entry_allocation_stack(), AllocFailStrategy::RETURN_NULL); return ::new (p) MallocSiteHashtableEntry(key, flags); } void MallocSiteTable::reset() { for (int index = 0; index < table_size; index ++) { MallocSiteHashtableEntry* head = _table[index]; _table[index] = NULL; delete_linked_list(head); } } void MallocSiteTable::delete_linked_list(MallocSiteHashtableEntry* head) { MallocSiteHashtableEntry* p; while (head != NULL) { p = head; head = (MallocSiteHashtableEntry*)head->next(); if (p != (MallocSiteHashtableEntry*)_hash_entry_allocation_site) { delete p; } } } void MallocSiteTable::shutdown() { AccessLock locker(&_access_count); locker.exclusiveLock(); reset(); } bool MallocSiteTable::walk_malloc_site(MallocSiteWalker* walker) { assert(walker != NULL, "NuLL walker"); AccessLock locker(&_access_count); if (locker.sharedLock()) { NOT_PRODUCT(_peak_count = MAX2(_peak_count, _access_count);) return walk(walker); } return false; } void MallocSiteTable::AccessLock::exclusiveLock() { jint target; jint val; assert(_lock_state != ExclusiveLock, "Can only call once"); assert(*_lock >= 0, "Can not content exclusive lock"); // make counter negative to block out shared locks do { val = *_lock; target = _MAGIC_ + *_lock; } while (Atomic::cmpxchg(target, _lock, val) != val); // wait for all readers to exit while (*_lock != _MAGIC_) { #ifdef _WINDOWS os::naked_short_sleep(1); #else os::naked_yield(); #endif } _lock_state = ExclusiveLock; } bool MallocSiteHashtableEntry::atomic_insert(MallocSiteHashtableEntry* entry) { return Atomic::cmpxchg(entry, &_next, (MallocSiteHashtableEntry*)NULL) == NULL; }