1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // no precompiled headers
  27 #include "jvm.h"
  28 #include "asm/assembler.inline.hpp"
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "nativeInst_ppc.hpp"
  38 #include "os_share_linux.hpp"
  39 #include "prims/jniFastGetField.hpp"
  40 #include "prims/jvm_misc.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <errno.h>
  62 # include <dlfcn.h>
  63 # include <stdlib.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <pthread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/utsname.h>
  71 # include <sys/socket.h>
  72 # include <sys/wait.h>
  73 # include <pwd.h>
  74 # include <poll.h>
  75 # include <ucontext.h>
  76 
  77 
  78 address os::current_stack_pointer() {
  79   intptr_t* csp;
  80 
  81   // inline assembly `mr regno(csp), R1_SP':
  82   __asm__ __volatile__ ("mr %0, 1":"=r"(csp):);
  83 
  84   return (address) csp;
  85 }
  86 
  87 char* os::non_memory_address_word() {
  88   // Must never look like an address returned by reserve_memory,
  89   // even in its subfields (as defined by the CPU immediate fields,
  90   // if the CPU splits constants across multiple instructions).
  91 
  92   return (char*) -1;
  93 }
  94 
  95 void os::initialize_thread(Thread *thread) { }
  96 
  97 // Frame information (pc, sp, fp) retrieved via ucontext
  98 // always looks like a C-frame according to the frame
  99 // conventions in frame_ppc64.hpp.
 100 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
 101   // On powerpc64, ucontext_t is not selfcontained but contains
 102   // a pointer to an optional substructure (mcontext_t.regs) containing the volatile
 103   // registers - NIP, among others.
 104   // This substructure may or may not be there depending where uc came from:
 105   // - if uc was handed over as the argument to a sigaction handler, a pointer to the
 106   //   substructure was provided by the kernel when calling the signal handler, and
 107   //   regs->nip can be accessed.
 108   // - if uc was filled by getcontext(), it is undefined - getcontext() does not fill
 109   //   it because the volatile registers are not needed to make setcontext() work.
 110   //   Hopefully it was zero'd out beforehand.
 111   guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_get_pc in sigaction context");
 112   return (address)uc->uc_mcontext.regs->nip;
 113 }
 114 
 115 // modify PC in ucontext.
 116 // Note: Only use this for an ucontext handed down to a signal handler. See comment
 117 // in ucontext_get_pc.
 118 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 119   guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_set_pc in sigaction context");
 120   uc->uc_mcontext.regs->nip = (unsigned long)pc;
 121 }
 122 
 123 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
 124   return (intptr_t*)uc->uc_mcontext.regs->gpr[1/*REG_SP*/];
 125 }
 126 
 127 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
 128   return NULL;
 129 }
 130 
 131 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 132                     intptr_t** ret_sp, intptr_t** ret_fp) {
 133 
 134   ExtendedPC  epc;
 135   const ucontext_t* uc = (const ucontext_t*)ucVoid;
 136 
 137   if (uc != NULL) {
 138     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 139     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 140     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 141   } else {
 142     // construct empty ExtendedPC for return value checking
 143     epc = ExtendedPC(NULL);
 144     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 145     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 146   }
 147 
 148   return epc;
 149 }
 150 
 151 frame os::fetch_frame_from_context(const void* ucVoid) {
 152   intptr_t* sp;
 153   intptr_t* fp;
 154   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 155   return frame(sp, epc.pc());
 156 }
 157 
 158 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 159   address pc = (address) os::Linux::ucontext_get_pc(uc);
 160   if (Interpreter::contains(pc)) {
 161     // Interpreter performs stack banging after the fixed frame header has
 162     // been generated while the compilers perform it before. To maintain
 163     // semantic consistency between interpreted and compiled frames, the
 164     // method returns the Java sender of the current frame.
 165     *fr = os::fetch_frame_from_context(uc);
 166     if (!fr->is_first_java_frame()) {
 167       assert(fr->safe_for_sender(thread), "Safety check");
 168       *fr = fr->java_sender();
 169     }
 170   } else {
 171     // More complex code with compiled code.
 172     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 173     CodeBlob* cb = CodeCache::find_blob(pc);
 174     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 175       // Not sure where the pc points to, fallback to default
 176       // stack overflow handling. In compiled code, we bang before
 177       // the frame is complete.
 178       return false;
 179     } else {
 180       intptr_t* fp = os::Linux::ucontext_get_fp(uc);
 181       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
 182       *fr = frame(sp, (address)*sp);
 183       if (!fr->is_java_frame()) {
 184         assert(fr->safe_for_sender(thread), "Safety check");
 185         assert(!fr->is_first_frame(), "Safety check");
 186         *fr = fr->java_sender();
 187       }
 188     }
 189   }
 190   assert(fr->is_java_frame(), "Safety check");
 191   return true;
 192 }
 193 
 194 frame os::get_sender_for_C_frame(frame* fr) {
 195   if (*fr->sp() == 0) {
 196     // fr is the last C frame
 197     return frame(NULL, NULL);
 198   }
 199   return frame(fr->sender_sp(), fr->sender_pc());
 200 }
 201 
 202 
 203 frame os::current_frame() {
 204   intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
 205   // hack.
 206   frame topframe(csp, (address)0x8);
 207   // Return sender of sender of current topframe which hopefully
 208   // both have pc != NULL.
 209   frame tmp = os::get_sender_for_C_frame(&topframe);
 210   return os::get_sender_for_C_frame(&tmp);
 211 }
 212 
 213 // Utility functions
 214 
 215 extern "C" JNIEXPORT int
 216 JVM_handle_linux_signal(int sig,
 217                         siginfo_t* info,
 218                         void* ucVoid,
 219                         int abort_if_unrecognized) {
 220   ucontext_t* uc = (ucontext_t*) ucVoid;
 221 
 222   Thread* t = Thread::current_or_null_safe();
 223 
 224   SignalHandlerMark shm(t);
 225 
 226   // Note: it's not uncommon that JNI code uses signal/sigset to install
 227   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 228   // or have a SIGILL handler when detecting CPU type). When that happens,
 229   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 230   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 231   // that do not require siginfo/ucontext first.
 232 
 233   if (sig == SIGPIPE) {
 234     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 235       return true;
 236     } else {
 237       // Ignoring SIGPIPE - see bugs 4229104
 238       return true;
 239     }
 240   }
 241 
 242   // Make the signal handler transaction-aware by checking the existence of a
 243   // second (transactional) context with MSR TS bits active. If the signal is
 244   // caught during a transaction, then just return to the HTM abort handler.
 245   // Please refer to Linux kernel document powerpc/transactional_memory.txt,
 246   // section "Signals".
 247   if (uc && uc->uc_link) {
 248     ucontext_t* second_uc = uc->uc_link;
 249 
 250     // MSR TS bits are 29 and 30 (Power ISA, v2.07B, Book III-S, pp. 857-858,
 251     // 3.2.1 "Machine State Register"), however note that ISA notation for bit
 252     // numbering is MSB 0, so for normal bit numbering (LSB 0) they come to be
 253     // bits 33 and 34. It's not related to endianness, just a notation matter.
 254     if (second_uc->uc_mcontext.regs->msr & 0x600000000) {
 255       if (TraceTraps) {
 256         tty->print_cr("caught signal in transaction, "
 257                         "ignoring to jump to abort handler");
 258       }
 259       // Return control to the HTM abort handler.
 260       return true;
 261     }
 262   }
 263 
 264   JavaThread* thread = NULL;
 265   VMThread* vmthread = NULL;
 266   if (os::Linux::signal_handlers_are_installed) {
 267     if (t != NULL) {
 268       if(t->is_Java_thread()) {
 269         thread = (JavaThread*)t;
 270       } else if(t->is_VM_thread()) {
 271         vmthread = (VMThread *)t;
 272       }
 273     }
 274   }
 275 
 276   // Moved SafeFetch32 handling outside thread!=NULL conditional block to make
 277   // it work if no associated JavaThread object exists.
 278   if (uc) {
 279     address const pc = os::Linux::ucontext_get_pc(uc);
 280     if (pc && StubRoutines::is_safefetch_fault(pc)) {
 281       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 282       return true;
 283     }
 284   }
 285 
 286   // decide if this trap can be handled by a stub
 287   address stub = NULL;
 288   address pc   = NULL;
 289 
 290   //%note os_trap_1
 291   if (info != NULL && uc != NULL && thread != NULL) {
 292     pc = (address) os::Linux::ucontext_get_pc(uc);
 293 
 294     // Handle ALL stack overflow variations here
 295     if (sig == SIGSEGV) {
 296       // Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see
 297       // comment below). Use get_stack_bang_address instead of si_addr.
 298       address addr = ((NativeInstruction*)pc)->get_stack_bang_address(uc);
 299 
 300       // Check if fault address is within thread stack.
 301       if (thread->on_local_stack(addr)) {
 302         // stack overflow
 303         if (thread->in_stack_yellow_reserved_zone(addr)) {
 304           if (thread->thread_state() == _thread_in_Java) {
 305             if (thread->in_stack_reserved_zone(addr)) {
 306               frame fr;
 307               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 308                 assert(fr.is_java_frame(), "Must be a Javac frame");
 309                 frame activation =
 310                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 311                 if (activation.sp() != NULL) {
 312                   thread->disable_stack_reserved_zone();
 313                   if (activation.is_interpreted_frame()) {
 314                     thread->set_reserved_stack_activation((address)activation.fp());
 315                   } else {
 316                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 317                   }
 318                   return 1;
 319                 }
 320               }
 321             }
 322             // Throw a stack overflow exception.
 323             // Guard pages will be reenabled while unwinding the stack.
 324             thread->disable_stack_yellow_reserved_zone();
 325             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 326           } else {
 327             // Thread was in the vm or native code. Return and try to finish.
 328             thread->disable_stack_yellow_reserved_zone();
 329             return 1;
 330           }
 331         } else if (thread->in_stack_red_zone(addr)) {
 332           // Fatal red zone violation.  Disable the guard pages and fall through
 333           // to handle_unexpected_exception way down below.
 334           thread->disable_stack_red_zone();
 335           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 336 
 337           // This is a likely cause, but hard to verify. Let's just print
 338           // it as a hint.
 339           tty->print_raw_cr("Please check if any of your loaded .so files has "
 340                             "enabled executable stack (see man page execstack(8))");
 341         } else {
 342           // Accessing stack address below sp may cause SEGV if current
 343           // thread has MAP_GROWSDOWN stack. This should only happen when
 344           // current thread was created by user code with MAP_GROWSDOWN flag
 345           // and then attached to VM. See notes in os_linux.cpp.
 346           if (thread->osthread()->expanding_stack() == 0) {
 347              thread->osthread()->set_expanding_stack();
 348              if (os::Linux::manually_expand_stack(thread, addr)) {
 349                thread->osthread()->clear_expanding_stack();
 350                return 1;
 351              }
 352              thread->osthread()->clear_expanding_stack();
 353           } else {
 354              fatal("recursive segv. expanding stack.");
 355           }
 356         }
 357       }
 358     }
 359 
 360     if (thread->thread_state() == _thread_in_Java) {
 361       // Java thread running in Java code => find exception handler if any
 362       // a fault inside compiled code, the interpreter, or a stub
 363 
 364       // A VM-related SIGILL may only occur if we are not in the zero page.
 365       // On AIX, we get a SIGILL if we jump to 0x0 or to somewhere else
 366       // in the zero page, because it is filled with 0x0. We ignore
 367       // explicit SIGILLs in the zero page.
 368       if (sig == SIGILL && (pc < (address) 0x200)) {
 369         if (TraceTraps) {
 370           tty->print_raw_cr("SIGILL happened inside zero page.");
 371         }
 372         goto report_and_die;
 373       }
 374 
 375       CodeBlob *cb = NULL;
 376       // Handle signal from NativeJump::patch_verified_entry().
 377       if (( TrapBasedNotEntrantChecks && sig == SIGTRAP && nativeInstruction_at(pc)->is_sigtrap_zombie_not_entrant()) ||
 378           (!TrapBasedNotEntrantChecks && sig == SIGILL  && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant())) {
 379         if (TraceTraps) {
 380           tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
 381         }
 382         stub = SharedRuntime::get_handle_wrong_method_stub();
 383       }
 384 
 385       else if (sig == SIGSEGV &&
 386                // A linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults
 387                // in 64bit mode (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6),
 388                // especially when we try to read from the safepoint polling page. So the check
 389                //   (address)info->si_addr == os::get_standard_polling_page()
 390                // doesn't work for us. We use:
 391                ((NativeInstruction*)pc)->is_safepoint_poll() &&
 392                CodeCache::contains((void*) pc) &&
 393                ((cb = CodeCache::find_blob(pc)) != NULL) &&
 394                cb->is_compiled()) {
 395         if (TraceTraps) {
 396           tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
 397         }
 398         stub = SharedRuntime::get_poll_stub(pc);
 399       }
 400 
 401       // SIGTRAP-based ic miss check in compiled code.
 402       else if (sig == SIGTRAP && TrapBasedICMissChecks &&
 403                nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
 404         if (TraceTraps) {
 405           tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
 406         }
 407         stub = SharedRuntime::get_ic_miss_stub();
 408       }
 409 
 410       // SIGTRAP-based implicit null check in compiled code.
 411       else if (sig == SIGTRAP && TrapBasedNullChecks &&
 412                nativeInstruction_at(pc)->is_sigtrap_null_check()) {
 413         if (TraceTraps) {
 414           tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
 415         }
 416         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 417       }
 418 
 419       // SIGSEGV-based implicit null check in compiled code.
 420       else if (sig == SIGSEGV && ImplicitNullChecks &&
 421                CodeCache::contains((void*) pc) &&
 422                !MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
 423         if (TraceTraps) {
 424           tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
 425         }
 426         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 427       }
 428 
 429 #ifdef COMPILER2
 430       // SIGTRAP-based implicit range check in compiled code.
 431       else if (sig == SIGTRAP && TrapBasedRangeChecks &&
 432                nativeInstruction_at(pc)->is_sigtrap_range_check()) {
 433         if (TraceTraps) {
 434           tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
 435         }
 436         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 437       }
 438 #endif
 439       else if (sig == SIGBUS) {
 440         // BugId 4454115: A read from a MappedByteBuffer can fault here if the
 441         // underlying file has been truncated. Do not crash the VM in such a case.
 442         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 443         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
 444         if (nm != NULL && nm->has_unsafe_access()) {
 445           address next_pc = pc + 4;
 446           next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
 447           os::Linux::ucontext_set_pc(uc, next_pc);
 448           return true;
 449         }
 450       }
 451     }
 452 
 453     else { // thread->thread_state() != _thread_in_Java
 454       if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
 455         // SIGILL must be caused by VM_Version::determine_features().
 456         *(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
 457                         // flushing of icache is not necessary.
 458         stub = pc + 4;  // continue with next instruction.
 459       }
 460       else if (thread->thread_state() == _thread_in_vm &&
 461                sig == SIGBUS && thread->doing_unsafe_access()) {
 462         address next_pc = pc + 4;
 463         next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
 464         os::Linux::ucontext_set_pc(uc, pc + 4);
 465         return true;
 466       }
 467     }
 468 
 469     // Check to see if we caught the safepoint code in the
 470     // process of write protecting the memory serialization page.
 471     // It write enables the page immediately after protecting it
 472     // so we can just return to retry the write.
 473     if ((sig == SIGSEGV) &&
 474         // Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see comment above).
 475         // Use is_memory_serialization instead of si_addr.
 476         ((NativeInstruction*)pc)->is_memory_serialization(thread, ucVoid)) {
 477       // Synchronization problem in the pseudo memory barrier code (bug id 6546278)
 478       // Block current thread until the memory serialize page permission restored.
 479       os::block_on_serialize_page_trap();
 480       return true;
 481     }
 482   }
 483 
 484   if (stub != NULL) {
 485     // Save all thread context in case we need to restore it.
 486     if (thread != NULL) thread->set_saved_exception_pc(pc);
 487     os::Linux::ucontext_set_pc(uc, stub);
 488     return true;
 489   }
 490 
 491   // signal-chaining
 492   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 493     return true;
 494   }
 495 
 496   if (!abort_if_unrecognized) {
 497     // caller wants another chance, so give it to him
 498     return false;
 499   }
 500 
 501   if (pc == NULL && uc != NULL) {
 502     pc = os::Linux::ucontext_get_pc(uc);
 503   }
 504 
 505 report_and_die:
 506   // unmask current signal
 507   sigset_t newset;
 508   sigemptyset(&newset);
 509   sigaddset(&newset, sig);
 510   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 511 
 512   VMError::report_and_die(t, sig, pc, info, ucVoid);
 513 
 514   ShouldNotReachHere();
 515   return false;
 516 }
 517 
 518 void os::Linux::init_thread_fpu_state(void) {
 519   // Disable FP exceptions.
 520   __asm__ __volatile__ ("mtfsfi 6,0");
 521 }
 522 
 523 int os::Linux::get_fpu_control_word(void) {
 524   // x86 has problems with FPU precision after pthread_cond_timedwait().
 525   // nothing to do on ppc64.
 526   return 0;
 527 }
 528 
 529 void os::Linux::set_fpu_control_word(int fpu_control) {
 530   // x86 has problems with FPU precision after pthread_cond_timedwait().
 531   // nothing to do on ppc64.
 532 }
 533 
 534 ////////////////////////////////////////////////////////////////////////////////
 535 // thread stack
 536 
 537 // Minimum usable stack sizes required to get to user code. Space for
 538 // HotSpot guard pages is added later.
 539 size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
 540 size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
 541 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 542 
 543 // Return default stack size for thr_type.
 544 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 545   // Default stack size (compiler thread needs larger stack).
 546   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1024 * K);
 547   return s;
 548 }
 549 
 550 /////////////////////////////////////////////////////////////////////////////
 551 // helper functions for fatal error handler
 552 
 553 void os::print_context(outputStream *st, const void *context) {
 554   if (context == NULL) return;
 555 
 556   const ucontext_t* uc = (const ucontext_t*)context;
 557 
 558   st->print_cr("Registers:");
 559   st->print("pc =" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->nip);
 560   st->print("lr =" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->link);
 561   st->print("ctr=" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->ctr);
 562   st->cr();
 563   for (int i = 0; i < 32; i++) {
 564     st->print("r%-2d=" INTPTR_FORMAT "  ", i, uc->uc_mcontext.regs->gpr[i]);
 565     if (i % 3 == 2) st->cr();
 566   }
 567   st->cr();
 568   st->cr();
 569 
 570   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 571   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 572   print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
 573   st->cr();
 574 
 575   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 576   // point to garbage if entry point in an nmethod is corrupted. Leave
 577   // this at the end, and hope for the best.
 578   address pc = os::Linux::ucontext_get_pc(uc);
 579   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
 580   print_hex_dump(st, pc - 64, pc + 64, /*instrsize=*/4);
 581   st->cr();
 582 }
 583 
 584 void os::print_register_info(outputStream *st, const void *context) {
 585   if (context == NULL) return;
 586 
 587   const ucontext_t *uc = (const ucontext_t*)context;
 588 
 589   st->print_cr("Register to memory mapping:");
 590   st->cr();
 591 
 592   // this is only for the "general purpose" registers
 593   for (int i = 0; i < 32; i++) {
 594     st->print("r%-2d=", i);
 595     print_location(st, uc->uc_mcontext.regs->gpr[i]);
 596   }
 597   st->cr();
 598 }
 599 
 600 extern "C" {
 601   int SpinPause() {
 602     return 0;
 603   }
 604 }
 605 
 606 #ifndef PRODUCT
 607 void os::verify_stack_alignment() {
 608   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 609 }
 610 #endif
 611 
 612 int os::extra_bang_size_in_bytes() {
 613   // PPC does not require the additional stack bang.
 614   return 0;
 615 }