1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_RUNTIME_PERFMEMORY_HPP
  26 #define SHARE_VM_RUNTIME_PERFMEMORY_HPP
  27 
  28 #include "utilities/exceptions.hpp"
  29 
  30 /*
  31  * PerfData Version Constants
  32  *   - Major Version - change whenever the structure of PerfDataEntry changes
  33  *   - Minor Version - change whenever the data within the PerfDataEntry
  34  *                     structure changes. for example, new unit or variability
  35  *                     values are added or new PerfData subtypes are added.
  36  */
  37 #define PERFDATA_MAJOR_VERSION 2
  38 #define PERFDATA_MINOR_VERSION 0
  39 
  40 /* Byte order of the PerfData memory region. The byte order is exposed in
  41  * the PerfData memory region as the data in the memory region may have
  42  * been generated by a little endian JVM implementation. Tracking the byte
  43  * order in the PerfData memory region allows Java applications to adapt
  44  * to the native byte order for monitoring purposes. This indicator is
  45  * also useful when a snapshot of the PerfData memory region is shipped
  46  * to a machine with a native byte order different from that of the
  47  * originating machine.
  48  */
  49 #define PERFDATA_BIG_ENDIAN     0
  50 #define PERFDATA_LITTLE_ENDIAN  1
  51 
  52 /*
  53  * The PerfDataPrologue structure is known by the PerfDataBuffer Java class
  54  * libraries that read the PerfData memory region. The size and the position
  55  * of the fields must be changed along with their counterparts in the
  56  * PerfDataBuffer Java class. The first four bytes of this structure
  57  * should never change, or compatibility problems between the monitoring
  58  * applications and HotSpot VMs will result. The reserved fields are
  59  * available for future enhancements.
  60  */
  61 typedef struct {
  62   jint   magic;              // magic number - 0xcafec0c0
  63   jbyte  byte_order;         // byte order of the buffer
  64   jbyte  major_version;      // major and minor version numbers
  65   jbyte  minor_version;
  66   jbyte  accessible;         // ready to access
  67   jint   used;               // number of PerfData memory bytes used
  68   jint   overflow;           // number of bytes of overflow
  69   jlong  mod_time_stamp;     // time stamp of last structural modification
  70   jint   entry_offset;       // offset of the first PerfDataEntry
  71   jint   num_entries;        // number of allocated PerfData entries
  72 } PerfDataPrologue;
  73 
  74 /* The PerfDataEntry structure defines the fixed portion of an entry
  75  * in the PerfData memory region. The PerfDataBuffer Java libraries
  76  * are aware of this structure and need to be changed when this
  77  * structure changes.
  78  */
  79 typedef struct {
  80 
  81   jint entry_length;      // entry length in bytes
  82   jint name_offset;       // offset of the data item name
  83   jint vector_length;     // length of the vector. If 0, then scalar
  84   jbyte data_type;        // type of the data item -
  85                           // 'B','Z','J','I','S','C','D','F','V','L','['
  86   jbyte flags;            // flags indicating misc attributes
  87   jbyte data_units;       // unit of measure for the data type
  88   jbyte data_variability; // variability classification of data type
  89   jint  data_offset;      // offset of the data item
  90 
  91 /*
  92   body of PerfData memory entry is variable length
  93 
  94   jbyte[name_length] data_name;        // name of the data item
  95   jbyte[pad_length] data_pad;          // alignment of data item
  96   j<data_type>[data_length] data_item; // array of appropriate types.
  97                                        // data_length is > 1 only when the
  98                                        // data_type is T_ARRAY.
  99 */
 100 } PerfDataEntry;
 101 
 102 // Prefix of performance data file.
 103 extern const char PERFDATA_NAME[];
 104 
 105 // UINT_CHARS contains the number of characters holding a process id
 106 // (i.e. pid). pid is defined as unsigned "int" so the maximum possible pid value
 107 // would be 2^32 - 1 (4294967295) which can be represented as a 10 characters
 108 // string.
 109 static const size_t UINT_CHARS = 10;
 110 
 111 /* the PerfMemory class manages creation, destruction,
 112  * and allocation of the PerfData region.
 113  */
 114 class PerfMemory : AllStatic {
 115     friend class VMStructs;
 116     friend class PerfMemoryTest;
 117   private:
 118     static char*  _start;
 119     static char*  _end;
 120     static char*  _top;
 121     static size_t _capacity;
 122     static PerfDataPrologue*  _prologue;
 123     static int    _initialized;
 124     static bool   _destroyed;
 125 
 126     static void create_memory_region(size_t sizep);
 127     static void delete_memory_region();
 128 
 129   public:
 130     enum PerfMemoryMode {
 131       PERF_MODE_RO = 0,
 132       PERF_MODE_RW = 1
 133     };
 134 
 135     static char* alloc(size_t size);
 136     static char* start() { return _start; }
 137     static char* end() { return _end; }
 138     static size_t used() { return (size_t) (_top - _start); }
 139     static size_t capacity() { return _capacity; }
 140     static bool is_initialized();
 141     static bool is_destroyed() { return _destroyed; }
 142     static bool is_usable() { return is_initialized() && !is_destroyed(); }
 143     static bool contains(char* addr) {
 144       return ((_start != NULL) && (addr >= _start) && (addr < _end));
 145     }
 146     static void mark_updated();
 147 
 148     // methods for attaching to and detaching from the PerfData
 149     // memory segment of another JVM process on the same system.
 150     static void attach(const char* user, int vmid, PerfMemoryMode mode,
 151                        char** addrp, size_t* size, TRAPS);
 152     static void detach(char* addr, size_t bytes, TRAPS);
 153 
 154     static void initialize();
 155     static void destroy();
 156     static void set_accessible(bool value) {
 157       if (UsePerfData) {
 158         _prologue->accessible = value;
 159       }
 160     }
 161 
 162     // returns the complete file path of hsperfdata.
 163     // the caller is expected to free the allocated memory.
 164     static char* get_perfdata_file_path();
 165 };
 166 
 167 void perfMemory_init();
 168 void perfMemory_exit();
 169 
 170 #endif // SHARE_VM_RUNTIME_PERFMEMORY_HPP