1 /*
   2  * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "memory/universe.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/safepointMechanism.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/synchronizer.hpp"
  40 
  41 #ifdef PRODUCT
  42 #define __ _masm->
  43 #define BLOCK_COMMENT(str)
  44 #define BIND(label)        __ bind(label);
  45 #else
  46 #define __ (PRODUCT_ONLY(false&&)Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
  47 #define BLOCK_COMMENT(str) __ block_comment(str)
  48 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  49 #endif
  50 
  51 // The assumed minimum size of a BranchTableBlock.
  52 // The actual size of each block heavily depends on the CPU capabilities and,
  53 // of course, on the logic implemented in each block.
  54 #ifdef ASSERT
  55   #define BTB_MINSIZE 256
  56 #else
  57   #define BTB_MINSIZE  64
  58 #endif
  59 
  60 #ifdef ASSERT
  61 // Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
  62 #define BTB_BEGIN(lbl, alignment, name)                                        \
  63   __ align_address(alignment);                                                 \
  64   __ bind(lbl);                                                                \
  65   { unsigned int b_off = __ offset();                                          \
  66     uintptr_t   b_addr = (uintptr_t)__ pc();                                   \
  67     __ z_larl(Z_R0, (int64_t)0);     /* Check current address alignment. */    \
  68     __ z_slgr(Z_R0, br_tab);         /* Current Address must be equal    */    \
  69     __ z_slgr(Z_R0, flags);          /* to calculated branch target.     */    \
  70     __ z_brc(Assembler::bcondLogZero, 3); /* skip trap if ok. */               \
  71     __ z_illtrap(0x55);                                                        \
  72     guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
  73 
  74 // Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
  75 #define BTB_END(lbl, alignment, name)                                          \
  76     uintptr_t   e_addr = (uintptr_t)__ pc();                                   \
  77     unsigned int e_off = __ offset();                                          \
  78     unsigned int len   = e_off-b_off;                                          \
  79     if (len > alignment) {                                                     \
  80       tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s",        \
  81                     len, alignment, e_addr-len, name);                         \
  82       guarantee(len <= alignment, "block too large");                          \
  83     }                                                                          \
  84     guarantee(len == e_addr-b_addr, "block len mismatch");                     \
  85   }
  86 #else
  87 // Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
  88 #define BTB_BEGIN(lbl, alignment, name)                                        \
  89   __ align_address(alignment);                                                 \
  90   __ bind(lbl);                                                                \
  91   { unsigned int b_off = __ offset();                                          \
  92     uintptr_t   b_addr = (uintptr_t)__ pc();                                   \
  93     guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
  94 
  95 // Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
  96 #define BTB_END(lbl, alignment, name)                                          \
  97     uintptr_t   e_addr = (uintptr_t)__ pc();                                   \
  98     unsigned int e_off = __ offset();                                          \
  99     unsigned int len   = e_off-b_off;                                          \
 100     if (len > alignment) {                                                     \
 101       tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s",        \
 102                     len, alignment, e_addr-len, name);                         \
 103       guarantee(len <= alignment, "block too large");                          \
 104     }                                                                          \
 105     guarantee(len == e_addr-b_addr, "block len mismatch");                     \
 106   }
 107 #endif // ASSERT
 108 
 109 // Platform-dependent initialization.
 110 
 111 void TemplateTable::pd_initialize() {
 112   // No specific initialization.
 113 }
 114 
 115 // Address computation: local variables
 116 
 117 static inline Address iaddress(int n) {
 118   return Address(Z_locals, Interpreter::local_offset_in_bytes(n));
 119 }
 120 
 121 static inline Address laddress(int n) {
 122   return iaddress(n + 1);
 123 }
 124 
 125 static inline Address faddress(int n) {
 126   return iaddress(n);
 127 }
 128 
 129 static inline Address daddress(int n) {
 130   return laddress(n);
 131 }
 132 
 133 static inline Address aaddress(int n) {
 134   return iaddress(n);
 135 }
 136 
 137 // Pass NULL, if no shift instruction should be emitted.
 138 static inline Address iaddress(InterpreterMacroAssembler *masm, Register r) {
 139   if (masm) {
 140     masm->z_sllg(r, r, LogBytesPerWord);  // index2bytes
 141   }
 142   return Address(Z_locals, r, Interpreter::local_offset_in_bytes(0));
 143 }
 144 
 145 // Pass NULL, if no shift instruction should be emitted.
 146 static inline Address laddress(InterpreterMacroAssembler *masm, Register r) {
 147   if (masm) {
 148     masm->z_sllg(r, r, LogBytesPerWord);  // index2bytes
 149   }
 150   return Address(Z_locals, r, Interpreter::local_offset_in_bytes(1) );
 151 }
 152 
 153 static inline Address faddress(InterpreterMacroAssembler *masm, Register r) {
 154   return iaddress(masm, r);
 155 }
 156 
 157 static inline Address daddress(InterpreterMacroAssembler *masm, Register r) {
 158   return laddress(masm, r);
 159 }
 160 
 161 static inline Address aaddress(InterpreterMacroAssembler *masm, Register r) {
 162   return iaddress(masm, r);
 163 }
 164 
 165 // At top of Java expression stack which may be different than esp(). It
 166 // isn't for category 1 objects.
 167 static inline Address at_tos(int slot = 0) {
 168   return Address(Z_esp, Interpreter::expr_offset_in_bytes(slot));
 169 }
 170 
 171 // Condition conversion
 172 static Assembler::branch_condition j_not(TemplateTable::Condition cc) {
 173   switch (cc) {
 174     case TemplateTable::equal :
 175       return Assembler::bcondNotEqual;
 176     case TemplateTable::not_equal :
 177       return Assembler::bcondEqual;
 178     case TemplateTable::less :
 179       return Assembler::bcondNotLow;
 180     case TemplateTable::less_equal :
 181       return Assembler::bcondHigh;
 182     case TemplateTable::greater :
 183       return Assembler::bcondNotHigh;
 184     case TemplateTable::greater_equal:
 185       return Assembler::bcondLow;
 186   }
 187   ShouldNotReachHere();
 188   return Assembler::bcondZero;
 189 }
 190 
 191 // Do an oop store like *(base + offset) = val
 192 // offset can be a register or a constant.
 193 static void do_oop_store(InterpreterMacroAssembler* _masm,
 194                          Register base,
 195                          RegisterOrConstant offset,
 196                          Register val,
 197                          bool val_is_null, // == false does not guarantee that val really is not equal NULL.
 198                          Register tmp1,    // If tmp3 is volatile, either tmp1 or tmp2 must be
 199                          Register tmp2,    // non-volatile to hold a copy of pre_val across runtime calls.
 200                          Register tmp3,    // Ideally, this tmp register is non-volatile, as it is used to
 201                                            // hold pre_val (must survive runtime calls).
 202                          BarrierSet::Name barrier,
 203                          bool precise) {
 204   BLOCK_COMMENT("do_oop_store {");
 205   assert(val != noreg, "val must always be valid, even if it is zero");
 206   assert_different_registers(tmp1, tmp2, tmp3, val, base, offset.register_or_noreg());
 207   __ verify_oop(val);
 208   switch (barrier) {
 209 #if INCLUDE_ALL_GCS
 210     case BarrierSet::G1BarrierSet:
 211       {
 212 #ifdef ASSERT
 213         if (val_is_null) { // Check if the flag setting reflects reality.
 214           Label OK;
 215           __ z_ltgr(val, val);
 216           __ z_bre(OK);
 217           __ z_illtrap(0x11);
 218           __ bind(OK);
 219         }
 220 #endif
 221         Register pre_val = tmp3;
 222         // Load and record the previous value.
 223         __ g1_write_barrier_pre(base, offset, pre_val, val,
 224                                 tmp1, tmp2,
 225                                 false);  // Needs to hold pre_val in non_volatile register?
 226 
 227         if (val_is_null) {
 228           __ store_heap_oop_null(val, offset, base);
 229         } else {
 230           Label Done;
 231           // val_is_null == false does not guarantee that val really is not equal NULL.
 232           // Checking for this case dynamically has some cost, but also some benefit (in GC).
 233           // It's hard to say if cost or benefit is greater.
 234           { Label OK;
 235             __ z_ltgr(val, val);
 236             __ z_brne(OK);
 237             __ store_heap_oop_null(val, offset, base);
 238             __ z_bru(Done);
 239             __ bind(OK);
 240           }
 241           // G1 barrier needs uncompressed oop for region cross check.
 242           // Store_heap_oop compresses the oop in the argument register.
 243           Register val_work = val;
 244           if (UseCompressedOops) {
 245             val_work = tmp3;
 246             __ z_lgr(val_work, val);
 247           }
 248           __ store_heap_oop_not_null(val_work, offset, base);
 249 
 250           // We need precise card marks for oop array stores.
 251           // Otherwise, cardmarking the object which contains the oop is sufficient.
 252           if (precise && !(offset.is_constant() && offset.as_constant() == 0)) {
 253             __ add2reg_with_index(base,
 254                                   offset.constant_or_zero(),
 255                                   offset.register_or_noreg(),
 256                                   base);
 257           }
 258           __ g1_write_barrier_post(base /* store_adr */, val, tmp1, tmp2, tmp3);
 259           __ bind(Done);
 260         }
 261       }
 262       break;
 263 #endif // INCLUDE_ALL_GCS
 264     case BarrierSet::CardTableModRef:
 265     {
 266       if (val_is_null) {
 267         __ store_heap_oop_null(val, offset, base);
 268       } else {
 269         __ store_heap_oop(val, offset, base);
 270         // Flatten object address if needed.
 271         if (precise && ((offset.register_or_noreg() != noreg) || (offset.constant_or_zero() != 0))) {
 272           __ load_address(base, Address(base, offset.register_or_noreg(), offset.constant_or_zero()));
 273         }
 274         __ card_write_barrier_post(base, tmp1);
 275       }
 276     }
 277     break;
 278   case BarrierSet::ModRef:
 279     // fall through
 280   default:
 281     ShouldNotReachHere();
 282 
 283   }
 284   BLOCK_COMMENT("} do_oop_store");
 285 }
 286 
 287 Address TemplateTable::at_bcp(int offset) {
 288   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 289   return Address(Z_bcp, offset);
 290 }
 291 
 292 void TemplateTable::patch_bytecode(Bytecodes::Code bc,
 293                                    Register        bc_reg,
 294                                    Register        temp_reg,
 295                                    bool            load_bc_into_bc_reg, // = true
 296                                    int             byte_no) {
 297   if (!RewriteBytecodes) { return; }
 298 
 299   NearLabel L_patch_done;
 300   BLOCK_COMMENT("patch_bytecode {");
 301 
 302   switch (bc) {
 303     case Bytecodes::_fast_aputfield:
 304     case Bytecodes::_fast_bputfield:
 305     case Bytecodes::_fast_zputfield:
 306     case Bytecodes::_fast_cputfield:
 307     case Bytecodes::_fast_dputfield:
 308     case Bytecodes::_fast_fputfield:
 309     case Bytecodes::_fast_iputfield:
 310     case Bytecodes::_fast_lputfield:
 311     case Bytecodes::_fast_sputfield:
 312       {
 313         // We skip bytecode quickening for putfield instructions when
 314         // the put_code written to the constant pool cache is zero.
 315         // This is required so that every execution of this instruction
 316         // calls out to InterpreterRuntime::resolve_get_put to do
 317         // additional, required work.
 318         assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 319         assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 320         __ get_cache_and_index_and_bytecode_at_bcp(Z_R1_scratch, bc_reg,
 321                                                    temp_reg, byte_no, 1);
 322         __ load_const_optimized(bc_reg, bc);
 323         __ compareU32_and_branch(temp_reg, (intptr_t)0,
 324                                  Assembler::bcondZero, L_patch_done);
 325       }
 326       break;
 327     default:
 328       assert(byte_no == -1, "sanity");
 329       // The pair bytecodes have already done the load.
 330       if (load_bc_into_bc_reg) {
 331         __ load_const_optimized(bc_reg, bc);
 332       }
 333       break;
 334   }
 335 
 336   if (JvmtiExport::can_post_breakpoint()) {
 337 
 338     Label   L_fast_patch;
 339 
 340     // If a breakpoint is present we can't rewrite the stream directly.
 341     __ z_cli(at_bcp(0), Bytecodes::_breakpoint);
 342     __ z_brne(L_fast_patch);
 343     __ get_method(temp_reg);
 344     // Let breakpoint table handling rewrite to quicker bytecode.
 345     __ call_VM_static(noreg,
 346                       CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at),
 347                       temp_reg, Z_R13, bc_reg);
 348     __ z_bru(L_patch_done);
 349 
 350     __ bind(L_fast_patch);
 351   }
 352 
 353 #ifdef ASSERT
 354   NearLabel   L_okay;
 355 
 356   // We load into 64 bits, since this works on any CPU.
 357   __ z_llgc(temp_reg, at_bcp(0));
 358   __ compareU32_and_branch(temp_reg, Bytecodes::java_code(bc),
 359                             Assembler::bcondEqual, L_okay        );
 360   __ compareU32_and_branch(temp_reg, bc_reg, Assembler::bcondEqual, L_okay);
 361   __ stop_static("patching the wrong bytecode");
 362   __ bind(L_okay);
 363 #endif
 364 
 365   // Patch bytecode.
 366   __ z_stc(bc_reg, at_bcp(0));
 367 
 368   __ bind(L_patch_done);
 369   BLOCK_COMMENT("} patch_bytecode");
 370 }
 371 
 372 // Individual instructions
 373 
 374 void TemplateTable::nop() {
 375   transition(vtos, vtos);
 376 }
 377 
 378 void TemplateTable::shouldnotreachhere() {
 379   transition(vtos, vtos);
 380   __ stop("shouldnotreachhere bytecode");
 381 }
 382 
 383 void TemplateTable::aconst_null() {
 384   transition(vtos, atos);
 385   __ clear_reg(Z_tos, true, false);
 386 }
 387 
 388 void TemplateTable::iconst(int value) {
 389   transition(vtos, itos);
 390   // Zero extension of the iconst makes zero extension at runtime obsolete.
 391   __ load_const_optimized(Z_tos, ((unsigned long)(unsigned int)value));
 392 }
 393 
 394 void TemplateTable::lconst(int value) {
 395   transition(vtos, ltos);
 396   __ load_const_optimized(Z_tos, value);
 397 }
 398 
 399 // No pc-relative load/store for floats.
 400 void TemplateTable::fconst(int value) {
 401   transition(vtos, ftos);
 402   static float   one = 1.0f, two = 2.0f;
 403 
 404   switch (value) {
 405     case 0:
 406       __ z_lzer(Z_ftos);
 407       return;
 408     case 1:
 409       __ load_absolute_address(Z_R1_scratch, (address) &one);
 410       __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
 411       return;
 412     case 2:
 413       __ load_absolute_address(Z_R1_scratch, (address) &two);
 414       __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
 415       return;
 416     default:
 417       ShouldNotReachHere();
 418       return;
 419   }
 420 }
 421 
 422 void TemplateTable::dconst(int value) {
 423   transition(vtos, dtos);
 424   static double one = 1.0;
 425 
 426   switch (value) {
 427     case 0:
 428       __ z_lzdr(Z_ftos);
 429       return;
 430     case 1:
 431       __ load_absolute_address(Z_R1_scratch, (address) &one);
 432       __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch));
 433       return;
 434     default:
 435       ShouldNotReachHere();
 436       return;
 437   }
 438 }
 439 
 440 void TemplateTable::bipush() {
 441   transition(vtos, itos);
 442   __ z_lb(Z_tos, at_bcp(1));
 443 }
 444 
 445 void TemplateTable::sipush() {
 446   transition(vtos, itos);
 447   __ get_2_byte_integer_at_bcp(Z_tos, 1, InterpreterMacroAssembler::Signed);
 448 }
 449 
 450 
 451 void TemplateTable::ldc(bool wide) {
 452   transition(vtos, vtos);
 453   Label call_ldc, notFloat, notClass, notInt, Done;
 454   const Register RcpIndex = Z_tmp_1;
 455   const Register Rtags = Z_ARG2;
 456 
 457   if (wide) {
 458     __ get_2_byte_integer_at_bcp(RcpIndex, 1, InterpreterMacroAssembler::Unsigned);
 459   } else {
 460     __ z_llgc(RcpIndex, at_bcp(1));
 461   }
 462 
 463   __ get_cpool_and_tags(Z_tmp_2, Rtags);
 464 
 465   const int      base_offset = ConstantPool::header_size() * wordSize;
 466   const int      tags_offset = Array<u1>::base_offset_in_bytes();
 467   const Register Raddr_type = Rtags;
 468 
 469   // Get address of type.
 470   __ add2reg_with_index(Raddr_type, tags_offset, RcpIndex, Rtags);
 471 
 472   __ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClass);
 473   __ z_bre(call_ldc);    // Unresolved class - get the resolved class.
 474 
 475   __ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClassInError);
 476   __ z_bre(call_ldc);    // Unresolved class in error state - call into runtime
 477                          // to throw the error from the first resolution attempt.
 478 
 479   __ z_cli(0, Raddr_type, JVM_CONSTANT_Class);
 480   __ z_brne(notClass);   // Resolved class - need to call vm to get java
 481                          // mirror of the class.
 482 
 483   // We deal with a class. Call vm to do the appropriate.
 484   __ bind(call_ldc);
 485   __ load_const_optimized(Z_ARG2, wide);
 486   call_VM(Z_RET, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), Z_ARG2);
 487   __ push_ptr(Z_RET);
 488   __ z_bru(Done);
 489 
 490   // Not a class.
 491   __ bind(notClass);
 492   Register RcpOffset = RcpIndex;
 493   __ z_sllg(RcpOffset, RcpIndex, LogBytesPerWord); // Convert index to offset.
 494   __ z_cli(0, Raddr_type, JVM_CONSTANT_Float);
 495   __ z_brne(notFloat);
 496 
 497   // ftos
 498   __ mem2freg_opt(Z_ftos, Address(Z_tmp_2, RcpOffset, base_offset), false);
 499   __ push_f();
 500   __ z_bru(Done);
 501 
 502   __ bind(notFloat);
 503   __ z_cli(0, Raddr_type, JVM_CONSTANT_Integer);
 504   __ z_brne(notInt);
 505 
 506   // itos
 507   __ mem2reg_opt(Z_tos, Address(Z_tmp_2, RcpOffset, base_offset), false);
 508   __ push_i(Z_tos);
 509   __ z_bru(Done);
 510 
 511   // assume the tag is for condy; if not, the VM runtime will tell us
 512   __ bind(notInt);
 513   condy_helper(Done);
 514 
 515   __ bind(Done);
 516 }
 517 
 518 // Fast path for caching oop constants.
 519 // %%% We should use this to handle Class and String constants also.
 520 // %%% It will simplify the ldc/primitive path considerably.
 521 void TemplateTable::fast_aldc(bool wide) {
 522   transition(vtos, atos);
 523 
 524   const Register index = Z_tmp_2;
 525   int            index_size = wide ? sizeof(u2) : sizeof(u1);
 526   Label          L_do_resolve, L_resolved;
 527 
 528   // We are resolved if the resolved reference cache entry contains a
 529   // non-null object (CallSite, etc.).
 530   __ get_cache_index_at_bcp(index, 1, index_size);  // Load index.
 531   __ load_resolved_reference_at_index(Z_tos, index);
 532   __ z_ltgr(Z_tos, Z_tos);
 533   __ z_bre(L_do_resolve);
 534 
 535   // Convert null sentinel to NULL.
 536   __ load_const_optimized(Z_R1_scratch, (intptr_t)Universe::the_null_sentinel_addr());
 537   __ z_cg(Z_tos, Address(Z_R1_scratch));
 538   __ z_brne(L_resolved);
 539   __ clear_reg(Z_tos);
 540   __ z_bru(L_resolved);
 541 
 542   __ bind(L_do_resolve);
 543   // First time invocation - must resolve first.
 544   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 545   __ load_const_optimized(Z_ARG1, (int)bytecode());
 546   __ call_VM(Z_tos, entry, Z_ARG1);
 547 
 548   __ bind(L_resolved);
 549   __ verify_oop(Z_tos);
 550 }
 551 
 552 void TemplateTable::ldc2_w() {
 553   transition(vtos, vtos);
 554   Label notDouble, notLong, Done;
 555 
 556   // Z_tmp_1 = index of cp entry
 557   __ get_2_byte_integer_at_bcp(Z_tmp_1, 1, InterpreterMacroAssembler::Unsigned);
 558 
 559   __ get_cpool_and_tags(Z_tmp_2, Z_tos);
 560 
 561   const int base_offset = ConstantPool::header_size() * wordSize;
 562   const int tags_offset = Array<u1>::base_offset_in_bytes();
 563 
 564   // Get address of type.
 565   __ add2reg_with_index(Z_tos, tags_offset, Z_tos, Z_tmp_1);
 566 
 567   // Index needed in both branches, so calculate here.
 568   __ z_sllg(Z_tmp_1, Z_tmp_1, LogBytesPerWord);  // index2bytes
 569 
 570   // Check type.
 571   __ z_cli(0, Z_tos, JVM_CONSTANT_Double);
 572   __ z_brne(notDouble);
 573   // dtos
 574   __ mem2freg_opt(Z_ftos, Address(Z_tmp_2, Z_tmp_1, base_offset));
 575   __ push_d();
 576   __ z_bru(Done);
 577 
 578   __ bind(notDouble);
 579   __ z_cli(0, Z_tos, JVM_CONSTANT_Long);
 580   __ z_brne(notLong);
 581   // ltos
 582   __ mem2reg_opt(Z_tos, Address(Z_tmp_2, Z_tmp_1, base_offset));
 583   __ push_l();
 584   __ z_bru(Done);
 585 
 586   __ bind(notLong);
 587   condy_helper(Done);
 588 
 589   __ bind(Done);
 590 }
 591 
 592 void TemplateTable::condy_helper(Label& Done) {
 593   const Register obj   = Z_tmp_1;
 594   const Register off   = Z_tmp_2;
 595   const Register flags = Z_ARG1;
 596   const Register rarg  = Z_ARG2;
 597   __ load_const_optimized(rarg, (int)bytecode());
 598   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
 599   __ get_vm_result_2(flags);
 600 
 601   // VMr = obj = base address to find primitive value to push
 602   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 603   assert(ConstantPoolCacheEntry::field_index_mask == 0xffff, "or use other instructions");
 604   __ z_llghr(off, flags);
 605   const Address field(obj, off);
 606 
 607   // What sort of thing are we loading?
 608   __ z_srl(flags, ConstantPoolCacheEntry::tos_state_shift);
 609   // Make sure we don't need to mask flags for tos_state after the above shift.
 610   ConstantPoolCacheEntry::verify_tos_state_shift();
 611 
 612   switch (bytecode()) {
 613   case Bytecodes::_ldc:
 614   case Bytecodes::_ldc_w:
 615     {
 616       // tos in (itos, ftos, stos, btos, ctos, ztos)
 617       Label notInt, notFloat, notShort, notByte, notChar, notBool;
 618       __ z_cghi(flags, itos);
 619       __ z_brne(notInt);
 620       // itos
 621       __ z_l(Z_tos, field);
 622       __ push(itos);
 623       __ z_bru(Done);
 624 
 625       __ bind(notInt);
 626       __ z_cghi(flags, ftos);
 627       __ z_brne(notFloat);
 628       // ftos
 629       __ z_le(Z_ftos, field);
 630       __ push(ftos);
 631       __ z_bru(Done);
 632 
 633       __ bind(notFloat);
 634       __ z_cghi(flags, stos);
 635       __ z_brne(notShort);
 636       // stos
 637       __ z_lh(Z_tos, field);
 638       __ push(stos);
 639       __ z_bru(Done);
 640 
 641       __ bind(notShort);
 642       __ z_cghi(flags, btos);
 643       __ z_brne(notByte);
 644       // btos
 645       __ z_lb(Z_tos, field);
 646       __ push(btos);
 647       __ z_bru(Done);
 648 
 649       __ bind(notByte);
 650       __ z_cghi(flags, ctos);
 651       __ z_brne(notChar);
 652       // ctos
 653       __ z_llh(Z_tos, field);
 654       __ push(ctos);
 655       __ z_bru(Done);
 656 
 657       __ bind(notChar);
 658       __ z_cghi(flags, ztos);
 659       __ z_brne(notBool);
 660       // ztos
 661       __ z_lb(Z_tos, field);
 662       __ push(ztos);
 663       __ z_bru(Done);
 664 
 665       __ bind(notBool);
 666       break;
 667     }
 668 
 669   case Bytecodes::_ldc2_w:
 670     {
 671       Label notLong, notDouble;
 672       __ z_cghi(flags, ltos);
 673       __ z_brne(notLong);
 674       // ltos
 675       __ z_lg(Z_tos, field);
 676       __ push(ltos);
 677       __ z_bru(Done);
 678 
 679       __ bind(notLong);
 680       __ z_cghi(flags, dtos);
 681       __ z_brne(notDouble);
 682       // dtos
 683       __ z_ld(Z_ftos, field);
 684       __ push(dtos);
 685       __ z_bru(Done);
 686 
 687       __ bind(notDouble);
 688       break;
 689     }
 690 
 691   default:
 692     ShouldNotReachHere();
 693   }
 694 
 695   __ stop("bad ldc/condy");
 696 }
 697 
 698 void TemplateTable::locals_index(Register reg, int offset) {
 699   __ z_llgc(reg, at_bcp(offset));
 700   __ z_lcgr(reg);
 701 }
 702 
 703 void TemplateTable::iload() {
 704   iload_internal();
 705 }
 706 
 707 void TemplateTable::nofast_iload() {
 708   iload_internal(may_not_rewrite);
 709 }
 710 
 711 void TemplateTable::iload_internal(RewriteControl rc) {
 712   transition(vtos, itos);
 713 
 714   if (RewriteFrequentPairs && rc == may_rewrite) {
 715     NearLabel rewrite, done;
 716     const Register bc = Z_ARG4;
 717 
 718     assert(Z_R1_scratch != bc, "register damaged");
 719 
 720     // Get next byte.
 721     __ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_iload)));
 722 
 723     // If _iload, wait to rewrite to iload2. We only want to rewrite the
 724     // last two iloads in a pair. Comparing against fast_iload means that
 725     // the next bytecode is neither an iload or a caload, and therefore
 726     // an iload pair.
 727     __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_iload,
 728                              Assembler::bcondEqual, done);
 729 
 730     __ load_const_optimized(bc, Bytecodes::_fast_iload2);
 731     __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_iload,
 732                              Assembler::bcondEqual, rewrite);
 733 
 734     // If _caload, rewrite to fast_icaload.
 735     __ load_const_optimized(bc, Bytecodes::_fast_icaload);
 736     __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_caload,
 737                              Assembler::bcondEqual, rewrite);
 738 
 739     // Rewrite so iload doesn't check again.
 740     __ load_const_optimized(bc, Bytecodes::_fast_iload);
 741 
 742     // rewrite
 743     // bc: fast bytecode
 744     __ bind(rewrite);
 745     patch_bytecode(Bytecodes::_iload, bc, Z_R1_scratch, false);
 746 
 747     __ bind(done);
 748 
 749   }
 750 
 751   // Get the local value into tos.
 752   locals_index(Z_R1_scratch);
 753   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
 754 }
 755 
 756 void TemplateTable::fast_iload2() {
 757   transition(vtos, itos);
 758 
 759   locals_index(Z_R1_scratch);
 760   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
 761   __ push_i(Z_tos);
 762   locals_index(Z_R1_scratch, 3);
 763   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
 764 }
 765 
 766 void TemplateTable::fast_iload() {
 767   transition(vtos, itos);
 768 
 769   locals_index(Z_R1_scratch);
 770   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
 771 }
 772 
 773 void TemplateTable::lload() {
 774   transition(vtos, ltos);
 775 
 776   locals_index(Z_R1_scratch);
 777   __ mem2reg_opt(Z_tos, laddress(_masm, Z_R1_scratch));
 778 }
 779 
 780 void TemplateTable::fload() {
 781   transition(vtos, ftos);
 782 
 783   locals_index(Z_R1_scratch);
 784   __ mem2freg_opt(Z_ftos, faddress(_masm, Z_R1_scratch), false);
 785 }
 786 
 787 void TemplateTable::dload() {
 788   transition(vtos, dtos);
 789 
 790   locals_index(Z_R1_scratch);
 791   __ mem2freg_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
 792 }
 793 
 794 void TemplateTable::aload() {
 795   transition(vtos, atos);
 796 
 797   locals_index(Z_R1_scratch);
 798   __ mem2reg_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
 799 }
 800 
 801 void TemplateTable::locals_index_wide(Register reg) {
 802   __ get_2_byte_integer_at_bcp(reg, 2, InterpreterMacroAssembler::Unsigned);
 803   __ z_lcgr(reg);
 804 }
 805 
 806 void TemplateTable::wide_iload() {
 807   transition(vtos, itos);
 808 
 809   locals_index_wide(Z_tmp_1);
 810   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
 811 }
 812 
 813 void TemplateTable::wide_lload() {
 814   transition(vtos, ltos);
 815 
 816   locals_index_wide(Z_tmp_1);
 817   __ mem2reg_opt(Z_tos, laddress(_masm, Z_tmp_1));
 818 }
 819 
 820 void TemplateTable::wide_fload() {
 821   transition(vtos, ftos);
 822 
 823   locals_index_wide(Z_tmp_1);
 824   __ mem2freg_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
 825 }
 826 
 827 void TemplateTable::wide_dload() {
 828   transition(vtos, dtos);
 829 
 830   locals_index_wide(Z_tmp_1);
 831   __ mem2freg_opt(Z_ftos, daddress(_masm, Z_tmp_1));
 832 }
 833 
 834 void TemplateTable::wide_aload() {
 835   transition(vtos, atos);
 836 
 837   locals_index_wide(Z_tmp_1);
 838   __ mem2reg_opt(Z_tos, aaddress(_masm, Z_tmp_1));
 839 }
 840 
 841 void TemplateTable::index_check(Register array, Register index, unsigned int shift) {
 842   assert_different_registers(Z_R1_scratch, array, index);
 843 
 844   // Check array.
 845   __ null_check(array, Z_R0_scratch, arrayOopDesc::length_offset_in_bytes());
 846 
 847   // Sign extend index for use by indexed load.
 848   __ z_lgfr(index, index);
 849 
 850   // Check index.
 851   Label index_ok;
 852   __ z_cl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 853   __ z_brl(index_ok);
 854   __ lgr_if_needed(Z_ARG3, index); // See generate_ArrayIndexOutOfBounds_handler().
 855   // Give back the array to create more detailed exceptions.
 856   __ lgr_if_needed(Z_ARG2, array); // See generate_ArrayIndexOutOfBounds_handler().
 857   __ load_absolute_address(Z_R1_scratch,
 858                            Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 859   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 860   __ bind(index_ok);
 861 
 862   if (shift > 0)
 863     __ z_sllg(index, index, shift);
 864 }
 865 
 866 void TemplateTable::iaload() {
 867   transition(itos, itos);
 868 
 869   __ pop_ptr(Z_tmp_1);  // array
 870   // Index is in Z_tos.
 871   Register index = Z_tos;
 872   index_check(Z_tmp_1, index, LogBytesPerInt); // Kills Z_ARG3.
 873   // Load the value.
 874   __ mem2reg_opt(Z_tos,
 875                  Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
 876                  false);
 877 }
 878 
 879 void TemplateTable::laload() {
 880   transition(itos, ltos);
 881 
 882   __ pop_ptr(Z_tmp_2);
 883   // Z_tos   : index
 884   // Z_tmp_2 : array
 885   Register index = Z_tos;
 886   index_check(Z_tmp_2, index, LogBytesPerLong);
 887   __ mem2reg_opt(Z_tos,
 888                  Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_LONG)));
 889 }
 890 
 891 void TemplateTable::faload() {
 892   transition(itos, ftos);
 893 
 894   __ pop_ptr(Z_tmp_2);
 895   // Z_tos   : index
 896   // Z_tmp_2 : array
 897   Register index = Z_tos;
 898   index_check(Z_tmp_2, index, LogBytesPerInt);
 899   __ mem2freg_opt(Z_ftos,
 900                   Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 901                   false);
 902 }
 903 
 904 void TemplateTable::daload() {
 905   transition(itos, dtos);
 906 
 907   __ pop_ptr(Z_tmp_2);
 908   // Z_tos   : index
 909   // Z_tmp_2 : array
 910   Register index = Z_tos;
 911   index_check(Z_tmp_2, index, LogBytesPerLong);
 912   __ mem2freg_opt(Z_ftos,
 913                   Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 914 }
 915 
 916 void TemplateTable::aaload() {
 917   transition(itos, atos);
 918 
 919   unsigned const int shift = LogBytesPerHeapOop;
 920   __ pop_ptr(Z_tmp_1);  // array
 921   // Index is in Z_tos.
 922   Register index = Z_tos;
 923   index_check(Z_tmp_1, index, shift);
 924   // Now load array element.
 925   __ load_heap_oop(Z_tos,
 926                    Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 927   __ verify_oop(Z_tos);
 928 }
 929 
 930 void TemplateTable::baload() {
 931   transition(itos, itos);
 932 
 933   __ pop_ptr(Z_tmp_1);
 934   // Z_tos   : index
 935   // Z_tmp_1 : array
 936   Register index = Z_tos;
 937   index_check(Z_tmp_1, index, 0);
 938   __ z_lb(Z_tos,
 939           Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 940 }
 941 
 942 void TemplateTable::caload() {
 943   transition(itos, itos);
 944 
 945   __ pop_ptr(Z_tmp_2);
 946   // Z_tos   : index
 947   // Z_tmp_2 : array
 948   Register index = Z_tos;
 949   index_check(Z_tmp_2, index, LogBytesPerShort);
 950   // Load into 64 bits, works on all CPUs.
 951   __ z_llgh(Z_tos,
 952             Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 953 }
 954 
 955 // Iload followed by caload frequent pair.
 956 void TemplateTable::fast_icaload() {
 957   transition(vtos, itos);
 958 
 959   // Load index out of locals.
 960   locals_index(Z_R1_scratch);
 961   __ mem2reg_opt(Z_ARG3, iaddress(_masm, Z_R1_scratch), false);
 962   // Z_ARG3  : index
 963   // Z_tmp_2 : array
 964   __ pop_ptr(Z_tmp_2);
 965   index_check(Z_tmp_2, Z_ARG3, LogBytesPerShort);
 966   // Load into 64 bits, works on all CPUs.
 967   __ z_llgh(Z_tos,
 968             Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 969 }
 970 
 971 void TemplateTable::saload() {
 972   transition(itos, itos);
 973 
 974   __ pop_ptr(Z_tmp_2);
 975   // Z_tos   : index
 976   // Z_tmp_2 : array
 977   Register index = Z_tos;
 978   index_check(Z_tmp_2, index, LogBytesPerShort);
 979   __ z_lh(Z_tos,
 980           Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 981 }
 982 
 983 void TemplateTable::iload(int n) {
 984   transition(vtos, itos);
 985   __ z_ly(Z_tos, iaddress(n));
 986 }
 987 
 988 void TemplateTable::lload(int n) {
 989   transition(vtos, ltos);
 990   __ z_lg(Z_tos, laddress(n));
 991 }
 992 
 993 void TemplateTable::fload(int n) {
 994   transition(vtos, ftos);
 995   __ mem2freg_opt(Z_ftos, faddress(n), false);
 996 }
 997 
 998 void TemplateTable::dload(int n) {
 999   transition(vtos, dtos);
1000   __ mem2freg_opt(Z_ftos, daddress(n));
1001 }
1002 
1003 void TemplateTable::aload(int n) {
1004   transition(vtos, atos);
1005   __ mem2reg_opt(Z_tos, aaddress(n));
1006 }
1007 
1008 void TemplateTable::aload_0() {
1009   aload_0_internal();
1010 }
1011 
1012 void TemplateTable::nofast_aload_0() {
1013   aload_0_internal(may_not_rewrite);
1014 }
1015 
1016 void TemplateTable::aload_0_internal(RewriteControl rc) {
1017   transition(vtos, atos);
1018 
1019   // According to bytecode histograms, the pairs:
1020   //
1021   // _aload_0, _fast_igetfield
1022   // _aload_0, _fast_agetfield
1023   // _aload_0, _fast_fgetfield
1024   //
1025   // occur frequently. If RewriteFrequentPairs is set, the (slow)
1026   // _aload_0 bytecode checks if the next bytecode is either
1027   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
1028   // rewrites the current bytecode into a pair bytecode; otherwise it
1029   // rewrites the current bytecode into _fast_aload_0 that doesn't do
1030   // the pair check anymore.
1031   //
1032   // Note: If the next bytecode is _getfield, the rewrite must be
1033   //       delayed, otherwise we may miss an opportunity for a pair.
1034   //
1035   // Also rewrite frequent pairs
1036   //   aload_0, aload_1
1037   //   aload_0, iload_1
1038   // These bytecodes with a small amount of code are most profitable
1039   // to rewrite.
1040   if (!(RewriteFrequentPairs && (rc == may_rewrite))) {
1041     aload(0);
1042     return;
1043   }
1044 
1045   NearLabel rewrite, done;
1046   const Register bc = Z_ARG4;
1047 
1048   assert(Z_R1_scratch != bc, "register damaged");
1049   // Get next byte.
1050   __ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_aload_0)));
1051 
1052   // Do actual aload_0.
1053   aload(0);
1054 
1055   // If _getfield then wait with rewrite.
1056   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_getfield,
1057                            Assembler::bcondEqual, done);
1058 
1059   // If _igetfield then rewrite to _fast_iaccess_0.
1060   assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0)
1061             == Bytecodes::_aload_0, "fix bytecode definition");
1062 
1063   __ load_const_optimized(bc, Bytecodes::_fast_iaccess_0);
1064   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_igetfield,
1065                            Assembler::bcondEqual, rewrite);
1066 
1067   // If _agetfield then rewrite to _fast_aaccess_0.
1068   assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0)
1069             == Bytecodes::_aload_0, "fix bytecode definition");
1070 
1071   __ load_const_optimized(bc, Bytecodes::_fast_aaccess_0);
1072   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_agetfield,
1073                            Assembler::bcondEqual, rewrite);
1074 
1075   // If _fgetfield then rewrite to _fast_faccess_0.
1076   assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0)
1077             == Bytecodes::_aload_0, "fix bytecode definition");
1078 
1079   __ load_const_optimized(bc, Bytecodes::_fast_faccess_0);
1080   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_fgetfield,
1081                            Assembler::bcondEqual, rewrite);
1082 
1083   // Else rewrite to _fast_aload0.
1084   assert(Bytecodes::java_code(Bytecodes::_fast_aload_0)
1085             == Bytecodes::_aload_0, "fix bytecode definition");
1086   __ load_const_optimized(bc, Bytecodes::_fast_aload_0);
1087 
1088   // rewrite
1089   // bc: fast bytecode
1090   __ bind(rewrite);
1091 
1092   patch_bytecode(Bytecodes::_aload_0, bc, Z_R1_scratch, false);
1093   // Reload local 0 because of VM call inside patch_bytecode().
1094   // this may trigger GC and thus change the oop.
1095   aload(0);
1096 
1097   __ bind(done);
1098 }
1099 
1100 void TemplateTable::istore() {
1101   transition(itos, vtos);
1102   locals_index(Z_R1_scratch);
1103   __ reg2mem_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
1104 }
1105 
1106 void TemplateTable::lstore() {
1107   transition(ltos, vtos);
1108   locals_index(Z_R1_scratch);
1109   __ reg2mem_opt(Z_tos, laddress(_masm, Z_R1_scratch));
1110 }
1111 
1112 void TemplateTable::fstore() {
1113   transition(ftos, vtos);
1114   locals_index(Z_R1_scratch);
1115   __ freg2mem_opt(Z_ftos, faddress(_masm, Z_R1_scratch));
1116 }
1117 
1118 void TemplateTable::dstore() {
1119   transition(dtos, vtos);
1120   locals_index(Z_R1_scratch);
1121   __ freg2mem_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
1122 }
1123 
1124 void TemplateTable::astore() {
1125   transition(vtos, vtos);
1126   __ pop_ptr(Z_tos);
1127   locals_index(Z_R1_scratch);
1128   __ reg2mem_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
1129 }
1130 
1131 void TemplateTable::wide_istore() {
1132   transition(vtos, vtos);
1133   __ pop_i(Z_tos);
1134   locals_index_wide(Z_tmp_1);
1135   __ reg2mem_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
1136 }
1137 
1138 void TemplateTable::wide_lstore() {
1139   transition(vtos, vtos);
1140   __ pop_l(Z_tos);
1141   locals_index_wide(Z_tmp_1);
1142   __ reg2mem_opt(Z_tos, laddress(_masm, Z_tmp_1));
1143 }
1144 
1145 void TemplateTable::wide_fstore() {
1146   transition(vtos, vtos);
1147   __ pop_f(Z_ftos);
1148   locals_index_wide(Z_tmp_1);
1149   __ freg2mem_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
1150 }
1151 
1152 void TemplateTable::wide_dstore() {
1153   transition(vtos, vtos);
1154   __ pop_d(Z_ftos);
1155   locals_index_wide(Z_tmp_1);
1156   __ freg2mem_opt(Z_ftos, daddress(_masm, Z_tmp_1));
1157 }
1158 
1159 void TemplateTable::wide_astore() {
1160   transition(vtos, vtos);
1161   __ pop_ptr(Z_tos);
1162   locals_index_wide(Z_tmp_1);
1163   __ reg2mem_opt(Z_tos, aaddress(_masm, Z_tmp_1));
1164 }
1165 
1166 void TemplateTable::iastore() {
1167   transition(itos, vtos);
1168 
1169   Register index = Z_ARG3; // Index_check expects index in Z_ARG3.
1170   // Value is in Z_tos ...
1171   __ pop_i(index);        // index
1172   __ pop_ptr(Z_tmp_1);    // array
1173   index_check(Z_tmp_1, index, LogBytesPerInt);
1174   // ... and then move the value.
1175   __ reg2mem_opt(Z_tos,
1176                  Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
1177                  false);
1178 }
1179 
1180 void TemplateTable::lastore() {
1181   transition(ltos, vtos);
1182 
1183   __ pop_i(Z_ARG3);
1184   __ pop_ptr(Z_tmp_2);
1185   // Z_tos   : value
1186   // Z_ARG3  : index
1187   // Z_tmp_2 : array
1188  index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
1189   __ reg2mem_opt(Z_tos,
1190                  Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_LONG)));
1191 }
1192 
1193 void TemplateTable::fastore() {
1194   transition(ftos, vtos);
1195 
1196   __ pop_i(Z_ARG3);
1197   __ pop_ptr(Z_tmp_2);
1198   // Z_ftos  : value
1199   // Z_ARG3  : index
1200   // Z_tmp_2 : array
1201   index_check(Z_tmp_2, Z_ARG3, LogBytesPerInt); // Prefer index in Z_ARG3.
1202   __ freg2mem_opt(Z_ftos,
1203                   Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1204                   false);
1205 }
1206 
1207 void TemplateTable::dastore() {
1208   transition(dtos, vtos);
1209 
1210   __ pop_i(Z_ARG3);
1211   __ pop_ptr(Z_tmp_2);
1212   // Z_ftos  : value
1213   // Z_ARG3  : index
1214   // Z_tmp_2 : array
1215   index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
1216   __ freg2mem_opt(Z_ftos,
1217                   Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
1218 }
1219 
1220 void TemplateTable::aastore() {
1221   NearLabel is_null, ok_is_subtype, done;
1222   transition(vtos, vtos);
1223 
1224   // stack: ..., array, index, value
1225 
1226   Register Rvalue = Z_tos;
1227   Register Rarray = Z_ARG2;
1228   Register Rindex = Z_ARG3; // Convention for index_check().
1229 
1230   __ load_ptr(0, Rvalue);
1231   __ z_l(Rindex, Address(Z_esp, Interpreter::expr_offset_in_bytes(1)));
1232   __ load_ptr(2, Rarray);
1233 
1234   unsigned const int shift = LogBytesPerHeapOop;
1235   index_check(Rarray, Rindex, shift); // side effect: Rindex = Rindex << shift
1236   Register Rstore_addr  = Rindex;
1237   // Address where the store goes to, i.e. &(Rarry[index])
1238   __ load_address(Rstore_addr, Address(Rarray, Rindex, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1239 
1240   // do array store check - check for NULL value first.
1241   __ compareU64_and_branch(Rvalue, (intptr_t)0, Assembler::bcondEqual, is_null);
1242 
1243   Register Rsub_klass   = Z_ARG4;
1244   Register Rsuper_klass = Z_ARG5;
1245   __ load_klass(Rsub_klass, Rvalue);
1246   // Load superklass.
1247   __ load_klass(Rsuper_klass, Rarray);
1248   __ z_lg(Rsuper_klass, Address(Rsuper_klass, ObjArrayKlass::element_klass_offset()));
1249 
1250   // Generate a fast subtype check.  Branch to ok_is_subtype if no failure.
1251   // Throw if failure.
1252   Register tmp1 = Z_tmp_1;
1253   Register tmp2 = Z_tmp_2;
1254   __ gen_subtype_check(Rsub_klass, Rsuper_klass, tmp1, tmp2, ok_is_subtype);
1255 
1256   // Fall through on failure.
1257   // Object is in Rvalue == Z_tos.
1258   assert(Rvalue == Z_tos, "that's the expected location");
1259   __ load_absolute_address(tmp1, Interpreter::_throw_ArrayStoreException_entry);
1260   __ z_br(tmp1);
1261 
1262   // Come here on success.
1263   __ bind(ok_is_subtype);
1264 
1265   // Now store using the appropriate barrier.
1266   Register tmp3 = Rsub_klass;
1267   do_oop_store(_masm, Rstore_addr, (intptr_t)0/*offset*/, Rvalue, false/*val==null*/,
1268                tmp3, tmp2, tmp1, _bs->kind(), true);
1269   __ z_bru(done);
1270 
1271   // Have a NULL in Rvalue.
1272   __ bind(is_null);
1273   __ profile_null_seen(tmp1);
1274 
1275   // Store a NULL.
1276   do_oop_store(_masm, Rstore_addr, (intptr_t)0/*offset*/, Rvalue, true/*val==null*/,
1277                tmp3, tmp2, tmp1, _bs->kind(), true);
1278 
1279   // Pop stack arguments.
1280   __ bind(done);
1281   __ add2reg(Z_esp, 3 * Interpreter::stackElementSize);
1282 }
1283 
1284 
1285 void TemplateTable::bastore() {
1286   transition(itos, vtos);
1287 
1288   __ pop_i(Z_ARG3);
1289   __ pop_ptr(Z_tmp_2);
1290   // Z_tos   : value
1291   // Z_ARG3  : index
1292   // Z_tmp_2 : array
1293 
1294   // Need to check whether array is boolean or byte
1295   // since both types share the bastore bytecode.
1296   __ load_klass(Z_tmp_1, Z_tmp_2);
1297   __ z_llgf(Z_tmp_1, Address(Z_tmp_1, Klass::layout_helper_offset()));
1298   __ z_tmll(Z_tmp_1, Klass::layout_helper_boolean_diffbit());
1299   Label L_skip;
1300   __ z_bfalse(L_skip);
1301   // if it is a T_BOOLEAN array, mask the stored value to 0/1
1302   __ z_nilf(Z_tos, 0x1);
1303   __ bind(L_skip);
1304 
1305   // No index shift necessary - pass 0.
1306   index_check(Z_tmp_2, Z_ARG3, 0); // Prefer index in Z_ARG3.
1307   __ z_stc(Z_tos,
1308            Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
1309 }
1310 
1311 void TemplateTable::castore() {
1312   transition(itos, vtos);
1313 
1314   __ pop_i(Z_ARG3);
1315   __ pop_ptr(Z_tmp_2);
1316   // Z_tos   : value
1317   // Z_ARG3  : index
1318   // Z_tmp_2 : array
1319   Register index = Z_ARG3; // prefer index in Z_ARG3
1320   index_check(Z_tmp_2, index, LogBytesPerShort);
1321   __ z_sth(Z_tos,
1322            Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
1323 }
1324 
1325 void TemplateTable::sastore() {
1326   castore();
1327 }
1328 
1329 void TemplateTable::istore(int n) {
1330   transition(itos, vtos);
1331   __ reg2mem_opt(Z_tos, iaddress(n), false);
1332 }
1333 
1334 void TemplateTable::lstore(int n) {
1335   transition(ltos, vtos);
1336   __ reg2mem_opt(Z_tos, laddress(n));
1337 }
1338 
1339 void TemplateTable::fstore(int n) {
1340   transition(ftos, vtos);
1341   __ freg2mem_opt(Z_ftos, faddress(n), false);
1342 }
1343 
1344 void TemplateTable::dstore(int n) {
1345   transition(dtos, vtos);
1346   __ freg2mem_opt(Z_ftos, daddress(n));
1347 }
1348 
1349 void TemplateTable::astore(int n) {
1350   transition(vtos, vtos);
1351   __ pop_ptr(Z_tos);
1352   __ reg2mem_opt(Z_tos, aaddress(n));
1353 }
1354 
1355 void TemplateTable::pop() {
1356   transition(vtos, vtos);
1357   __ add2reg(Z_esp, Interpreter::stackElementSize);
1358 }
1359 
1360 void TemplateTable::pop2() {
1361   transition(vtos, vtos);
1362   __ add2reg(Z_esp, 2 * Interpreter::stackElementSize);
1363 }
1364 
1365 void TemplateTable::dup() {
1366   transition(vtos, vtos);
1367   __ load_ptr(0, Z_tos);
1368   __ push_ptr(Z_tos);
1369   // stack: ..., a, a
1370 }
1371 
1372 void TemplateTable::dup_x1() {
1373   transition(vtos, vtos);
1374 
1375   // stack: ..., a, b
1376   __ load_ptr(0, Z_tos);          // load b
1377   __ load_ptr(1, Z_R0_scratch);   // load a
1378   __ store_ptr(1, Z_tos);         // store b
1379   __ store_ptr(0, Z_R0_scratch);  // store a
1380   __ push_ptr(Z_tos);             // push b
1381   // stack: ..., b, a, b
1382 }
1383 
1384 void TemplateTable::dup_x2() {
1385   transition(vtos, vtos);
1386 
1387   // stack: ..., a, b, c
1388   __ load_ptr(0, Z_R0_scratch);   // load c
1389   __ load_ptr(2, Z_R1_scratch);   // load a
1390   __ store_ptr(2, Z_R0_scratch);  // store c in a
1391   __ push_ptr(Z_R0_scratch);      // push c
1392   // stack: ..., c, b, c, c
1393   __ load_ptr(2, Z_R0_scratch);   // load b
1394   __ store_ptr(2, Z_R1_scratch);  // store a in b
1395   // stack: ..., c, a, c, c
1396   __ store_ptr(1, Z_R0_scratch);  // store b in c
1397   // stack: ..., c, a, b, c
1398 }
1399 
1400 void TemplateTable::dup2() {
1401   transition(vtos, vtos);
1402 
1403   // stack: ..., a, b
1404   __ load_ptr(1, Z_R0_scratch);  // load a
1405   __ push_ptr(Z_R0_scratch);     // push a
1406   __ load_ptr(1, Z_R0_scratch);  // load b
1407   __ push_ptr(Z_R0_scratch);     // push b
1408   // stack: ..., a, b, a, b
1409 }
1410 
1411 void TemplateTable::dup2_x1() {
1412   transition(vtos, vtos);
1413 
1414   // stack: ..., a, b, c
1415   __ load_ptr(0, Z_R0_scratch);  // load c
1416   __ load_ptr(1, Z_R1_scratch);  // load b
1417   __ push_ptr(Z_R1_scratch);     // push b
1418   __ push_ptr(Z_R0_scratch);     // push c
1419   // stack: ..., a, b, c, b, c
1420   __ store_ptr(3, Z_R0_scratch); // store c in b
1421   // stack: ..., a, c, c, b, c
1422   __ load_ptr( 4, Z_R0_scratch); // load a
1423   __ store_ptr(2, Z_R0_scratch); // store a in 2nd c
1424   // stack: ..., a, c, a, b, c
1425   __ store_ptr(4, Z_R1_scratch); // store b in a
1426   // stack: ..., b, c, a, b, c
1427 }
1428 
1429 void TemplateTable::dup2_x2() {
1430   transition(vtos, vtos);
1431 
1432   // stack: ..., a, b, c, d
1433   __ load_ptr(0, Z_R0_scratch);   // load d
1434   __ load_ptr(1, Z_R1_scratch);   // load c
1435   __ push_ptr(Z_R1_scratch);      // push c
1436   __ push_ptr(Z_R0_scratch);      // push d
1437   // stack: ..., a, b, c, d, c, d
1438   __ load_ptr(4, Z_R1_scratch);   // load b
1439   __ store_ptr(2, Z_R1_scratch);  // store b in d
1440   __ store_ptr(4, Z_R0_scratch);  // store d in b
1441   // stack: ..., a, d, c, b, c, d
1442   __ load_ptr(5, Z_R0_scratch);   // load a
1443   __ load_ptr(3, Z_R1_scratch);   // load c
1444   __ store_ptr(3, Z_R0_scratch);  // store a in c
1445   __ store_ptr(5, Z_R1_scratch);  // store c in a
1446   // stack: ..., c, d, a, b, c, d
1447 }
1448 
1449 void TemplateTable::swap() {
1450   transition(vtos, vtos);
1451 
1452   // stack: ..., a, b
1453   __ load_ptr(1, Z_R0_scratch);  // load a
1454   __ load_ptr(0, Z_R1_scratch);  // load b
1455   __ store_ptr(0, Z_R0_scratch);  // store a in b
1456   __ store_ptr(1, Z_R1_scratch);  // store b in a
1457   // stack: ..., b, a
1458 }
1459 
1460 void TemplateTable::iop2(Operation op) {
1461   transition(itos, itos);
1462   switch (op) {
1463     case add  :                           __ z_ay(Z_tos,  __ stackTop()); __ pop_i(); break;
1464     case sub  :                           __ z_sy(Z_tos,  __ stackTop()); __ pop_i(); __ z_lcr(Z_tos, Z_tos); break;
1465     case mul  :                           __ z_msy(Z_tos, __ stackTop()); __ pop_i(); break;
1466     case _and :                           __ z_ny(Z_tos,  __ stackTop()); __ pop_i(); break;
1467     case _or  :                           __ z_oy(Z_tos,  __ stackTop()); __ pop_i(); break;
1468     case _xor :                           __ z_xy(Z_tos,  __ stackTop()); __ pop_i(); break;
1469     case shl  : __ z_lr(Z_tmp_1, Z_tos);
1470                 __ z_nill(Z_tmp_1, 31);  // Lowest 5 bits are shiftamount.
1471                                           __ pop_i(Z_tos);   __ z_sll(Z_tos, 0,  Z_tmp_1); break;
1472     case shr  : __ z_lr(Z_tmp_1, Z_tos);
1473                 __ z_nill(Z_tmp_1, 31);  // Lowest 5 bits are shiftamount.
1474                                           __ pop_i(Z_tos);   __ z_sra(Z_tos, 0,  Z_tmp_1); break;
1475     case ushr : __ z_lr(Z_tmp_1, Z_tos);
1476                 __ z_nill(Z_tmp_1, 31);  // Lowest 5 bits are shiftamount.
1477                                           __ pop_i(Z_tos);   __ z_srl(Z_tos, 0,  Z_tmp_1); break;
1478     default   : ShouldNotReachHere(); break;
1479   }
1480   return;
1481 }
1482 
1483 void TemplateTable::lop2(Operation op) {
1484   transition(ltos, ltos);
1485 
1486   switch (op) {
1487     case add  :  __ z_ag(Z_tos,  __ stackTop()); __ pop_l(); break;
1488     case sub  :  __ z_sg(Z_tos,  __ stackTop()); __ pop_l(); __ z_lcgr(Z_tos, Z_tos); break;
1489     case mul  :  __ z_msg(Z_tos, __ stackTop()); __ pop_l(); break;
1490     case _and :  __ z_ng(Z_tos,  __ stackTop()); __ pop_l(); break;
1491     case _or  :  __ z_og(Z_tos,  __ stackTop()); __ pop_l(); break;
1492     case _xor :  __ z_xg(Z_tos,  __ stackTop()); __ pop_l(); break;
1493     default   : ShouldNotReachHere(); break;
1494   }
1495   return;
1496 }
1497 
1498 // Common part of idiv/irem.
1499 static void idiv_helper(InterpreterMacroAssembler * _masm, address exception) {
1500   NearLabel not_null;
1501 
1502   // Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
1503   assert(Z_tmp_1->successor() == Z_tmp_2, " need even/odd register pair for idiv/irem");
1504 
1505   // Get dividend.
1506   __ pop_i(Z_tmp_2);
1507 
1508   // If divisor == 0 throw exception.
1509   __ compare32_and_branch(Z_tos, (intptr_t) 0,
1510                           Assembler::bcondNotEqual, not_null   );
1511   __ load_absolute_address(Z_R1_scratch, exception);
1512   __ z_br(Z_R1_scratch);
1513 
1514   __ bind(not_null);
1515 
1516   __ z_lgfr(Z_tmp_2, Z_tmp_2);   // Sign extend dividend.
1517   __ z_dsgfr(Z_tmp_1, Z_tos);    // Do it.
1518 }
1519 
1520 void TemplateTable::idiv() {
1521   transition(itos, itos);
1522 
1523   idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
1524   __ z_llgfr(Z_tos, Z_tmp_2);     // Result is in Z_tmp_2.
1525 }
1526 
1527 void TemplateTable::irem() {
1528   transition(itos, itos);
1529 
1530   idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
1531   __ z_llgfr(Z_tos, Z_tmp_1);     // Result is in Z_tmp_1.
1532 }
1533 
1534 void TemplateTable::lmul() {
1535   transition(ltos, ltos);
1536 
1537   // Multiply with memory operand.
1538   __ z_msg(Z_tos, __ stackTop());
1539   __ pop_l();  // Pop operand.
1540 }
1541 
1542 // Common part of ldiv/lrem.
1543 //
1544 // Input:
1545 //     Z_tos := the divisor (dividend still on stack)
1546 //
1547 // Updated registers:
1548 //     Z_tmp_1 := pop_l() % Z_tos     ; if is_ldiv == false
1549 //     Z_tmp_2 := pop_l() / Z_tos     ; if is_ldiv == true
1550 //
1551 static void ldiv_helper(InterpreterMacroAssembler * _masm, address exception, bool is_ldiv) {
1552   NearLabel not_null, done;
1553 
1554   // Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
1555   assert(Z_tmp_1->successor() == Z_tmp_2,
1556          " need even/odd register pair for idiv/irem");
1557 
1558   // Get dividend.
1559   __ pop_l(Z_tmp_2);
1560 
1561   // If divisor == 0 throw exception.
1562   __ compare64_and_branch(Z_tos, (intptr_t)0, Assembler::bcondNotEqual, not_null);
1563   __ load_absolute_address(Z_R1_scratch, exception);
1564   __ z_br(Z_R1_scratch);
1565 
1566   __ bind(not_null);
1567   // Special case for dividend == 0x8000 and divisor == -1.
1568   if (is_ldiv) {
1569     // result := Z_tmp_2 := - dividend
1570     __ z_lcgr(Z_tmp_2, Z_tmp_2);
1571   } else {
1572     // result remainder := Z_tmp_1 := 0
1573     __ clear_reg(Z_tmp_1, true, false);  // Don't set CC.
1574   }
1575 
1576   // if divisor == -1 goto done
1577   __ compare64_and_branch(Z_tos, -1, Assembler::bcondEqual, done);
1578   if (is_ldiv)
1579     // Restore sign, because divisor != -1.
1580     __ z_lcgr(Z_tmp_2, Z_tmp_2);
1581   __ z_dsgr(Z_tmp_1, Z_tos);    // Do it.
1582   __ bind(done);
1583 }
1584 
1585 void TemplateTable::ldiv() {
1586   transition(ltos, ltos);
1587 
1588   ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, true /*is_ldiv*/);
1589   __ z_lgr(Z_tos, Z_tmp_2);     // Result is in Z_tmp_2.
1590 }
1591 
1592 void TemplateTable::lrem() {
1593   transition(ltos, ltos);
1594 
1595   ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, false /*is_ldiv*/);
1596   __ z_lgr(Z_tos, Z_tmp_1);     // Result is in Z_tmp_1.
1597 }
1598 
1599 void TemplateTable::lshl() {
1600   transition(itos, ltos);
1601 
1602   // Z_tos: shift amount
1603   __ pop_l(Z_tmp_1);              // Get shift value.
1604   __ z_sllg(Z_tos, Z_tmp_1, 0, Z_tos);
1605 }
1606 
1607 void TemplateTable::lshr() {
1608   transition(itos, ltos);
1609 
1610   // Z_tos: shift amount
1611   __ pop_l(Z_tmp_1);              // Get shift value.
1612   __ z_srag(Z_tos, Z_tmp_1, 0, Z_tos);
1613 }
1614 
1615 void TemplateTable::lushr() {
1616   transition(itos, ltos);
1617 
1618   // Z_tos: shift amount
1619   __ pop_l(Z_tmp_1);              // Get shift value.
1620   __ z_srlg(Z_tos, Z_tmp_1, 0, Z_tos);
1621 }
1622 
1623 void TemplateTable::fop2(Operation op) {
1624   transition(ftos, ftos);
1625 
1626   switch (op) {
1627     case add:
1628       // Add memory operand.
1629       __ z_aeb(Z_ftos, __ stackTop()); __ pop_f(); return;
1630     case sub:
1631       // Sub memory operand.
1632       __ z_ler(Z_F1, Z_ftos);    // first operand
1633       __ pop_f(Z_ftos);          // second operand from stack
1634       __ z_sebr(Z_ftos, Z_F1);
1635       return;
1636     case mul:
1637       // Multiply with memory operand.
1638       __ z_meeb(Z_ftos, __ stackTop()); __ pop_f(); return;
1639     case div:
1640       __ z_ler(Z_F1, Z_ftos);    // first operand
1641       __ pop_f(Z_ftos);          // second operand from stack
1642       __ z_debr(Z_ftos, Z_F1);
1643       return;
1644     case rem:
1645       // Do runtime call.
1646       __ z_ler(Z_FARG2, Z_ftos);  // divisor
1647       __ pop_f(Z_FARG1);          // dividend
1648       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1649       // Result should be in the right place (Z_ftos == Z_FRET).
1650       return;
1651     default:
1652       ShouldNotReachHere();
1653       return;
1654   }
1655 }
1656 
1657 void TemplateTable::dop2(Operation op) {
1658   transition(dtos, dtos);
1659 
1660   switch (op) {
1661     case add:
1662       // Add memory operand.
1663       __ z_adb(Z_ftos, __ stackTop()); __ pop_d(); return;
1664     case sub:
1665       // Sub memory operand.
1666       __ z_ldr(Z_F1, Z_ftos);    // first operand
1667       __ pop_d(Z_ftos);          // second operand from stack
1668       __ z_sdbr(Z_ftos, Z_F1);
1669       return;
1670     case mul:
1671       // Multiply with memory operand.
1672       __ z_mdb(Z_ftos, __ stackTop()); __ pop_d(); return;
1673     case div:
1674       __ z_ldr(Z_F1, Z_ftos);    // first operand
1675       __ pop_d(Z_ftos);          // second operand from stack
1676       __ z_ddbr(Z_ftos, Z_F1);
1677       return;
1678     case rem:
1679       // Do runtime call.
1680       __ z_ldr(Z_FARG2, Z_ftos);  // divisor
1681       __ pop_d(Z_FARG1);          // dividend
1682       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1683       // Result should be in the right place (Z_ftos == Z_FRET).
1684       return;
1685     default:
1686       ShouldNotReachHere();
1687       return;
1688   }
1689 }
1690 
1691 void TemplateTable::ineg() {
1692   transition(itos, itos);
1693   __ z_lcr(Z_tos);
1694 }
1695 
1696 void TemplateTable::lneg() {
1697   transition(ltos, ltos);
1698   __ z_lcgr(Z_tos);
1699 }
1700 
1701 void TemplateTable::fneg() {
1702   transition(ftos, ftos);
1703   __ z_lcebr(Z_ftos, Z_ftos);
1704 }
1705 
1706 void TemplateTable::dneg() {
1707   transition(dtos, dtos);
1708   __ z_lcdbr(Z_ftos, Z_ftos);
1709 }
1710 
1711 void TemplateTable::iinc() {
1712   transition(vtos, vtos);
1713 
1714   Address local;
1715   __ z_lb(Z_R0_scratch, at_bcp(2)); // Get constant.
1716   locals_index(Z_R1_scratch);
1717   local = iaddress(_masm, Z_R1_scratch);
1718   __ z_a(Z_R0_scratch, local);
1719   __ reg2mem_opt(Z_R0_scratch, local, false);
1720 }
1721 
1722 void TemplateTable::wide_iinc() {
1723   transition(vtos, vtos);
1724 
1725   // Z_tmp_1 := increment
1726   __ get_2_byte_integer_at_bcp(Z_tmp_1, 4, InterpreterMacroAssembler::Signed);
1727   // Z_R1_scratch := index of local to increment
1728   locals_index_wide(Z_tmp_2);
1729   // Load, increment, and store.
1730   __ access_local_int(Z_tmp_2, Z_tos);
1731   __ z_agr(Z_tos,  Z_tmp_1);
1732   // Shifted index is still in Z_tmp_2.
1733   __ reg2mem_opt(Z_tos, Address(Z_locals, Z_tmp_2), false);
1734 }
1735 
1736 
1737 void TemplateTable::convert() {
1738   // Checking
1739 #ifdef ASSERT
1740   TosState   tos_in  = ilgl;
1741   TosState   tos_out = ilgl;
1742 
1743   switch (bytecode()) {
1744     case Bytecodes::_i2l:
1745     case Bytecodes::_i2f:
1746     case Bytecodes::_i2d:
1747     case Bytecodes::_i2b:
1748     case Bytecodes::_i2c:
1749     case Bytecodes::_i2s:
1750       tos_in = itos;
1751       break;
1752     case Bytecodes::_l2i:
1753     case Bytecodes::_l2f:
1754     case Bytecodes::_l2d:
1755       tos_in = ltos;
1756       break;
1757     case Bytecodes::_f2i:
1758     case Bytecodes::_f2l:
1759     case Bytecodes::_f2d:
1760       tos_in = ftos;
1761       break;
1762     case Bytecodes::_d2i:
1763     case Bytecodes::_d2l:
1764     case Bytecodes::_d2f:
1765       tos_in = dtos;
1766       break;
1767     default :
1768       ShouldNotReachHere();
1769   }
1770   switch (bytecode()) {
1771     case Bytecodes::_l2i:
1772     case Bytecodes::_f2i:
1773     case Bytecodes::_d2i:
1774     case Bytecodes::_i2b:
1775     case Bytecodes::_i2c:
1776     case Bytecodes::_i2s:
1777       tos_out = itos;
1778       break;
1779     case Bytecodes::_i2l:
1780     case Bytecodes::_f2l:
1781     case Bytecodes::_d2l:
1782       tos_out = ltos;
1783       break;
1784     case Bytecodes::_i2f:
1785     case Bytecodes::_l2f:
1786     case Bytecodes::_d2f:
1787       tos_out = ftos;
1788       break;
1789     case Bytecodes::_i2d:
1790     case Bytecodes::_l2d:
1791     case Bytecodes::_f2d:
1792       tos_out = dtos;
1793       break;
1794     default :
1795       ShouldNotReachHere();
1796   }
1797 
1798   transition(tos_in, tos_out);
1799 #endif // ASSERT
1800 
1801   // Conversion
1802   Label done;
1803   switch (bytecode()) {
1804     case Bytecodes::_i2l:
1805       __ z_lgfr(Z_tos, Z_tos);
1806       return;
1807     case Bytecodes::_i2f:
1808       __ z_cefbr(Z_ftos, Z_tos);
1809       return;
1810     case Bytecodes::_i2d:
1811       __ z_cdfbr(Z_ftos, Z_tos);
1812       return;
1813     case Bytecodes::_i2b:
1814       // Sign extend least significant byte.
1815       __ move_reg_if_needed(Z_tos, T_BYTE, Z_tos, T_INT);
1816       return;
1817     case Bytecodes::_i2c:
1818       // Zero extend 2 least significant bytes.
1819       __ move_reg_if_needed(Z_tos, T_CHAR, Z_tos, T_INT);
1820       return;
1821     case Bytecodes::_i2s:
1822       // Sign extend 2 least significant bytes.
1823       __ move_reg_if_needed(Z_tos, T_SHORT, Z_tos, T_INT);
1824       return;
1825     case Bytecodes::_l2i:
1826       // Sign-extend not needed here, upper 4 bytes of int value in register are ignored.
1827       return;
1828     case Bytecodes::_l2f:
1829       __ z_cegbr(Z_ftos, Z_tos);
1830       return;
1831     case Bytecodes::_l2d:
1832       __ z_cdgbr(Z_ftos, Z_tos);
1833       return;
1834     case Bytecodes::_f2i:
1835     case Bytecodes::_f2l:
1836       __ clear_reg(Z_tos, true, false);  // Don't set CC.
1837       __ z_cebr(Z_ftos, Z_ftos);
1838       __ z_brno(done); // NaN -> 0
1839       if (bytecode() == Bytecodes::_f2i)
1840         __ z_cfebr(Z_tos, Z_ftos, Assembler::to_zero);
1841       else // bytecode() == Bytecodes::_f2l
1842         __ z_cgebr(Z_tos, Z_ftos, Assembler::to_zero);
1843       break;
1844     case Bytecodes::_f2d:
1845       __ move_freg_if_needed(Z_ftos, T_DOUBLE, Z_ftos, T_FLOAT);
1846       return;
1847     case Bytecodes::_d2i:
1848     case Bytecodes::_d2l:
1849       __ clear_reg(Z_tos, true, false);  // Ddon't set CC.
1850       __ z_cdbr(Z_ftos, Z_ftos);
1851       __ z_brno(done); // NaN -> 0
1852       if (bytecode() == Bytecodes::_d2i)
1853         __ z_cfdbr(Z_tos, Z_ftos, Assembler::to_zero);
1854       else // Bytecodes::_d2l
1855         __ z_cgdbr(Z_tos, Z_ftos, Assembler::to_zero);
1856       break;
1857     case Bytecodes::_d2f:
1858       __ move_freg_if_needed(Z_ftos, T_FLOAT, Z_ftos, T_DOUBLE);
1859       return;
1860     default:
1861       ShouldNotReachHere();
1862   }
1863   __ bind(done);
1864 }
1865 
1866 void TemplateTable::lcmp() {
1867   transition(ltos, itos);
1868 
1869   Label   done;
1870   Register val1 = Z_R0_scratch;
1871   Register val2 = Z_R1_scratch;
1872 
1873   if (VM_Version::has_LoadStoreConditional()) {
1874     __ pop_l(val1);           // pop value 1.
1875     __ z_lghi(val2,  -1);     // lt value
1876     __ z_cgr(val1, Z_tos);    // Compare with Z_tos (value 2). Protect CC under all circumstances.
1877     __ z_lghi(val1,   1);     // gt value
1878     __ z_lghi(Z_tos,  0);     // eq value
1879 
1880     __ z_locgr(Z_tos, val1, Assembler::bcondHigh);
1881     __ z_locgr(Z_tos, val2, Assembler::bcondLow);
1882   } else {
1883     __ pop_l(val1);           // Pop value 1.
1884     __ z_cgr(val1, Z_tos);    // Compare with Z_tos (value 2). Protect CC under all circumstances.
1885 
1886     __ z_lghi(Z_tos,  0);     // eq value
1887     __ z_bre(done);
1888 
1889     __ z_lghi(Z_tos,  1);     // gt value
1890     __ z_brh(done);
1891 
1892     __ z_lghi(Z_tos, -1);     // lt value
1893   }
1894 
1895   __ bind(done);
1896 }
1897 
1898 
1899 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1900   Label done;
1901 
1902   if (is_float) {
1903     __ pop_f(Z_FARG2);
1904     __ z_cebr(Z_FARG2, Z_ftos);
1905   } else {
1906     __ pop_d(Z_FARG2);
1907     __ z_cdbr(Z_FARG2, Z_ftos);
1908   }
1909 
1910   if (VM_Version::has_LoadStoreConditional()) {
1911     Register one       = Z_R0_scratch;
1912     Register minus_one = Z_R1_scratch;
1913     __ z_lghi(minus_one,  -1);
1914     __ z_lghi(one,  1);
1915     __ z_lghi(Z_tos, 0);
1916     __ z_locgr(Z_tos, one,       unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh);
1917     __ z_locgr(Z_tos, minus_one, unordered_result == 1 ? Assembler::bcondLow              : Assembler::bcondLowOrNotOrdered);
1918   } else {
1919     // Z_FARG2 == Z_ftos
1920     __ clear_reg(Z_tos, false, false);
1921     __ z_bre(done);
1922 
1923     // F_ARG2 > Z_Ftos, or unordered
1924     __ z_lhi(Z_tos, 1);
1925     __ z_brc(unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh, done);
1926 
1927     // F_ARG2 < Z_FTOS, or unordered
1928     __ z_lhi(Z_tos, -1);
1929 
1930     __ bind(done);
1931   }
1932 }
1933 
1934 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1935   const Register   bumped_count = Z_tmp_1;
1936   const Register   method       = Z_tmp_2;
1937   const Register   m_counters   = Z_R1_scratch;
1938   const Register   mdo          = Z_tos;
1939 
1940   BLOCK_COMMENT("TemplateTable::branch {");
1941   __ get_method(method);
1942   __ profile_taken_branch(mdo, bumped_count);
1943 
1944   const ByteSize ctr_offset = InvocationCounter::counter_offset();
1945   const ByteSize be_offset  = MethodCounters::backedge_counter_offset()   + ctr_offset;
1946   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + ctr_offset;
1947 
1948   // Get (wide) offset to disp.
1949   const Register disp = Z_ARG5;
1950   if (is_wide) {
1951     __ get_4_byte_integer_at_bcp(disp, 1);
1952   } else {
1953     __ get_2_byte_integer_at_bcp(disp, 1, InterpreterMacroAssembler::Signed);
1954   }
1955 
1956   // Handle all the JSR stuff here, then exit.
1957   // It's much shorter and cleaner than intermingling with the
1958   // non-JSR normal-branch stuff occurring below.
1959   if (is_jsr) {
1960     // Compute return address as bci in Z_tos.
1961     __ z_lgr(Z_R1_scratch, Z_bcp);
1962     __ z_sg(Z_R1_scratch, Address(method, Method::const_offset()));
1963     __ add2reg(Z_tos, (is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset()), Z_R1_scratch);
1964 
1965     // Bump bcp to target of JSR.
1966     __ z_agr(Z_bcp, disp);
1967     // Push return address for "ret" on stack.
1968     __ push_ptr(Z_tos);
1969     // And away we go!
1970     __ dispatch_next(vtos, 0 , true);
1971     return;
1972   }
1973 
1974   // Normal (non-jsr) branch handling.
1975 
1976   // Bump bytecode pointer by displacement (take the branch).
1977   __ z_agr(Z_bcp, disp);
1978 
1979   assert(UseLoopCounter || !UseOnStackReplacement,
1980          "on-stack-replacement requires loop counters");
1981 
1982   NearLabel backedge_counter_overflow;
1983   NearLabel profile_method;
1984   NearLabel dispatch;
1985   int       increment = InvocationCounter::count_increment;
1986 
1987   if (UseLoopCounter) {
1988     // Increment backedge counter for backward branches.
1989     // disp: target offset
1990     // Z_bcp: target bcp
1991     // Z_locals: locals pointer
1992     //
1993     // Count only if backward branch.
1994     __ compare32_and_branch(disp, (intptr_t)0, Assembler::bcondHigh, dispatch);
1995 
1996     if (TieredCompilation) {
1997       Label noCounters;
1998 
1999       if (ProfileInterpreter) {
2000         NearLabel   no_mdo;
2001 
2002         // Are we profiling?
2003         __ load_and_test_long(mdo, Address(method, Method::method_data_offset()));
2004         __ branch_optimized(Assembler::bcondZero, no_mdo);
2005 
2006         // Increment the MDO backedge counter.
2007         const Address mdo_backedge_counter(mdo, MethodData::backedge_counter_offset() + InvocationCounter::counter_offset());
2008 
2009         const Address mask(mdo, MethodData::backedge_mask_offset());
2010         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
2011                                    Z_ARG2, false, Assembler::bcondZero,
2012                                    UseOnStackReplacement ? &backedge_counter_overflow : NULL);
2013         __ z_bru(dispatch);
2014         __ bind(no_mdo);
2015       }
2016 
2017       // Increment backedge counter in MethodCounters*.
2018       __ get_method_counters(method, m_counters, noCounters);
2019       const Address mask(m_counters, MethodCounters::backedge_mask_offset());
2020       __ increment_mask_and_jump(Address(m_counters, be_offset),
2021                                  increment, mask,
2022                                  Z_ARG2, false, Assembler::bcondZero,
2023                                  UseOnStackReplacement ? &backedge_counter_overflow : NULL);
2024       __ bind(noCounters);
2025     } else {
2026       Register counter = Z_tos;
2027       Label    noCounters;
2028       // Get address of MethodCounters object.
2029       __ get_method_counters(method, m_counters, noCounters);
2030       // Increment backedge counter.
2031       __ increment_backedge_counter(m_counters, counter);
2032 
2033       if (ProfileInterpreter) {
2034         // Test to see if we should create a method data obj.
2035         __ z_cl(counter, Address(m_counters, MethodCounters::interpreter_profile_limit_offset()));
2036         __ z_brl(dispatch);
2037 
2038         // If no method data exists, go to profile method.
2039         __ test_method_data_pointer(Z_ARG4/*result unused*/, profile_method);
2040 
2041         if (UseOnStackReplacement) {
2042           // Check for overflow against 'bumped_count' which is the MDO taken count.
2043           __ z_cl(bumped_count, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
2044           __ z_brl(dispatch);
2045 
2046           // When ProfileInterpreter is on, the backedge_count comes
2047           // from the methodDataOop, which value does not get reset on
2048           // the call to frequency_counter_overflow(). To avoid
2049           // excessive calls to the overflow routine while the method is
2050           // being compiled, add a second test to make sure the overflow
2051           // function is called only once every overflow_frequency.
2052           const int overflow_frequency = 1024;
2053           __ and_imm(bumped_count, overflow_frequency - 1);
2054           __ z_brz(backedge_counter_overflow);
2055 
2056         }
2057       } else {
2058         if (UseOnStackReplacement) {
2059           // Check for overflow against 'counter', which is the sum of the
2060           // counters.
2061           __ z_cl(counter, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
2062           __ z_brh(backedge_counter_overflow);
2063         }
2064       }
2065       __ bind(noCounters);
2066     }
2067 
2068     __ bind(dispatch);
2069   }
2070 
2071   // Pre-load the next target bytecode into rbx.
2072   __ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0));
2073 
2074   // Continue with the bytecode @ target.
2075   // Z_tos: Return bci for jsr's, unused otherwise.
2076   // Z_bytecode: target bytecode
2077   // Z_bcp: target bcp
2078   __ dispatch_only(vtos, true);
2079 
2080   // Out-of-line code runtime calls.
2081   if (UseLoopCounter) {
2082     if (ProfileInterpreter) {
2083       // Out-of-line code to allocate method data oop.
2084       __ bind(profile_method);
2085 
2086       __ call_VM(noreg,
2087                  CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2088       __ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0));  // Restore target bytecode.
2089       __ set_method_data_pointer_for_bcp();
2090       __ z_bru(dispatch);
2091     }
2092 
2093     if (UseOnStackReplacement) {
2094 
2095       // invocation counter overflow
2096       __ bind(backedge_counter_overflow);
2097 
2098       __ z_lcgr(Z_ARG2, disp); // Z_ARG2 := -disp
2099       __ z_agr(Z_ARG2, Z_bcp); // Z_ARG2 := branch target bcp - disp == branch bcp
2100       __ call_VM(noreg,
2101                  CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
2102                  Z_ARG2);
2103 
2104       // Z_RET: osr nmethod (osr ok) or NULL (osr not possible).
2105       __ compare64_and_branch(Z_RET, (intptr_t) 0, Assembler::bcondEqual, dispatch);
2106 
2107       // Nmethod may have been invalidated (VM may block upon call_VM return).
2108       __ z_cliy(nmethod::state_offset(), Z_RET, nmethod::in_use);
2109       __ z_brne(dispatch);
2110 
2111       // Migrate the interpreter frame off of the stack.
2112 
2113       __ z_lgr(Z_tmp_1, Z_RET); // Save the nmethod.
2114 
2115       call_VM(noreg,
2116               CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2117 
2118       // Z_RET is OSR buffer, move it to expected parameter location.
2119       __ lgr_if_needed(Z_ARG1, Z_RET);
2120 
2121       // Pop the interpreter frame ...
2122       __ pop_interpreter_frame(Z_R14, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
2123 
2124       // ... and begin the OSR nmethod.
2125       __ z_lg(Z_R1_scratch, Address(Z_tmp_1, nmethod::osr_entry_point_offset()));
2126       __ z_br(Z_R1_scratch);
2127     }
2128   }
2129   BLOCK_COMMENT("} TemplateTable::branch");
2130 }
2131 
2132 void TemplateTable::if_0cmp(Condition cc) {
2133   transition(itos, vtos);
2134 
2135   // Assume branch is more often taken than not (loops use backward branches).
2136   NearLabel not_taken;
2137   __ compare32_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
2138   branch(false, false);
2139   __ bind(not_taken);
2140   __ profile_not_taken_branch(Z_tos);
2141 }
2142 
2143 void TemplateTable::if_icmp(Condition cc) {
2144   transition(itos, vtos);
2145 
2146   // Assume branch is more often taken than not (loops use backward branches).
2147   NearLabel not_taken;
2148   __ pop_i(Z_R0_scratch);
2149   __ compare32_and_branch(Z_R0_scratch, Z_tos, j_not(cc), not_taken);
2150   branch(false, false);
2151   __ bind(not_taken);
2152   __ profile_not_taken_branch(Z_tos);
2153 }
2154 
2155 void TemplateTable::if_nullcmp(Condition cc) {
2156   transition(atos, vtos);
2157 
2158   // Assume branch is more often taken than not (loops use backward branches) .
2159   NearLabel not_taken;
2160   __ compare64_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
2161   branch(false, false);
2162   __ bind(not_taken);
2163   __ profile_not_taken_branch(Z_tos);
2164 }
2165 
2166 void TemplateTable::if_acmp(Condition cc) {
2167   transition(atos, vtos);
2168   // Assume branch is more often taken than not (loops use backward branches).
2169   NearLabel not_taken;
2170   __ pop_ptr(Z_ARG2);
2171   __ verify_oop(Z_ARG2);
2172   __ verify_oop(Z_tos);
2173   __ compareU64_and_branch(Z_tos, Z_ARG2, j_not(cc), not_taken);
2174   branch(false, false);
2175   __ bind(not_taken);
2176   __ profile_not_taken_branch(Z_ARG3);
2177 }
2178 
2179 void TemplateTable::ret() {
2180   transition(vtos, vtos);
2181 
2182   locals_index(Z_tmp_1);
2183   // Get return bci, compute return bcp. Must load 64 bits.
2184   __ mem2reg_opt(Z_tmp_1, iaddress(_masm, Z_tmp_1));
2185   __ profile_ret(Z_tmp_1, Z_tmp_2);
2186   __ get_method(Z_tos);
2187   __ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
2188   __ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
2189   __ dispatch_next(vtos, 0 , true);
2190 }
2191 
2192 void TemplateTable::wide_ret() {
2193   transition(vtos, vtos);
2194 
2195   locals_index_wide(Z_tmp_1);
2196   // Get return bci, compute return bcp.
2197   __ mem2reg_opt(Z_tmp_1, aaddress(_masm, Z_tmp_1));
2198   __ profile_ret(Z_tmp_1, Z_tmp_2);
2199   __ get_method(Z_tos);
2200   __ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
2201   __ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
2202   __ dispatch_next(vtos, 0, true);
2203 }
2204 
2205 void TemplateTable::tableswitch () {
2206   transition(itos, vtos);
2207 
2208   NearLabel default_case, continue_execution;
2209   Register  bcp = Z_ARG5;
2210   // Align bcp.
2211   __ load_address(bcp, at_bcp(BytesPerInt));
2212   __ z_nill(bcp, (-BytesPerInt) & 0xffff);
2213 
2214   // Load lo & hi.
2215   Register low  = Z_tmp_1;
2216   Register high = Z_tmp_2;
2217 
2218   // Load low into 64 bits, since used for address calculation.
2219   __ mem2reg_signed_opt(low, Address(bcp, BytesPerInt));
2220   __ mem2reg_opt(high, Address(bcp, 2 * BytesPerInt), false);
2221   // Sign extend "label" value for address calculation.
2222   __ z_lgfr(Z_tos, Z_tos);
2223 
2224   // Check against lo & hi.
2225   __ compare32_and_branch(Z_tos, low, Assembler::bcondLow, default_case);
2226   __ compare32_and_branch(Z_tos, high, Assembler::bcondHigh, default_case);
2227 
2228   // Lookup dispatch offset.
2229   __ z_sgr(Z_tos, low);
2230   Register jump_table_offset = Z_ARG3;
2231   // Index2offset; index in Z_tos is killed by profile_switch_case.
2232   __ z_sllg(jump_table_offset, Z_tos, LogBytesPerInt);
2233   __ profile_switch_case(Z_tos, Z_ARG4 /*tmp for mdp*/, low/*tmp*/, Z_bytecode/*tmp*/);
2234 
2235   Register index = Z_tmp_2;
2236 
2237   // Load index sign extended for addressing.
2238   __ mem2reg_signed_opt(index, Address(bcp, jump_table_offset, 3 * BytesPerInt));
2239 
2240   // Continue execution.
2241   __ bind(continue_execution);
2242 
2243   // Load next bytecode.
2244   __ z_llgc(Z_bytecode, Address(Z_bcp, index));
2245   __ z_agr(Z_bcp, index); // Advance bcp.
2246   __ dispatch_only(vtos, true);
2247 
2248   // Handle default.
2249   __ bind(default_case);
2250 
2251   __ profile_switch_default(Z_tos);
2252   __ mem2reg_signed_opt(index, Address(bcp));
2253   __ z_bru(continue_execution);
2254 }
2255 
2256 void TemplateTable::lookupswitch () {
2257   transition(itos, itos);
2258   __ stop("lookupswitch bytecode should have been rewritten");
2259 }
2260 
2261 void TemplateTable::fast_linearswitch () {
2262   transition(itos, vtos);
2263 
2264   Label    loop_entry, loop, found, continue_execution;
2265   Register bcp = Z_ARG5;
2266 
2267   // Align bcp.
2268   __ load_address(bcp, at_bcp(BytesPerInt));
2269   __ z_nill(bcp, (-BytesPerInt) & 0xffff);
2270 
2271   // Start search with last case.
2272   Register current_case_offset = Z_tmp_1;
2273 
2274   __ mem2reg_signed_opt(current_case_offset, Address(bcp, BytesPerInt));
2275   __ z_sllg(current_case_offset, current_case_offset, LogBytesPerWord);   // index2bytes
2276   __ z_bru(loop_entry);
2277 
2278   // table search
2279   __ bind(loop);
2280 
2281   __ z_c(Z_tos, Address(bcp, current_case_offset, 2 * BytesPerInt));
2282   __ z_bre(found);
2283 
2284   __ bind(loop_entry);
2285   __ z_aghi(current_case_offset, -2 * BytesPerInt);  // Decrement.
2286   __ z_brnl(loop);
2287 
2288   // default case
2289   Register   offset = Z_tmp_2;
2290 
2291   __ profile_switch_default(Z_tos);
2292   // Load offset sign extended for addressing.
2293   __ mem2reg_signed_opt(offset, Address(bcp));
2294   __ z_bru(continue_execution);
2295 
2296   // Entry found -> get offset.
2297   __ bind(found);
2298   __ mem2reg_signed_opt(offset, Address(bcp, current_case_offset, 3 * BytesPerInt));
2299   // Profile that this case was taken.
2300   Register current_case_idx = Z_ARG4;
2301   __ z_srlg(current_case_idx, current_case_offset, LogBytesPerWord); // bytes2index
2302   __ profile_switch_case(current_case_idx, Z_tos, bcp, Z_bytecode);
2303 
2304   // Continue execution.
2305   __ bind(continue_execution);
2306 
2307   // Load next bytecode.
2308   __ z_llgc(Z_bytecode, Address(Z_bcp, offset, 0));
2309   __ z_agr(Z_bcp, offset); // Advance bcp.
2310   __ dispatch_only(vtos, true);
2311 }
2312 
2313 
2314 void TemplateTable::fast_binaryswitch() {
2315 
2316   transition(itos, vtos);
2317 
2318   // Implementation using the following core algorithm:
2319   //
2320   // int binary_search(int key, LookupswitchPair* array, int n) {
2321   //   // Binary search according to "Methodik des Programmierens" by
2322   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2323   //   int i = 0;
2324   //   int j = n;
2325   //   while (i+1 < j) {
2326   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2327   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2328   //     // where a stands for the array and assuming that the (inexisting)
2329   //     // element a[n] is infinitely big.
2330   //     int h = (i + j) >> 1;
2331   //     // i < h < j
2332   //     if (key < array[h].fast_match()) {
2333   //       j = h;
2334   //     } else {
2335   //       i = h;
2336   //     }
2337   //   }
2338   //   // R: a[i] <= key < a[i+1] or Q
2339   //   // (i.e., if key is within array, i is the correct index)
2340   //   return i;
2341   // }
2342 
2343   // Register allocation
2344   // Note: Since we use the indices in address operands, we do all the
2345   // computation in 64 bits.
2346   const Register key   = Z_tos; // Already set (tosca).
2347   const Register array = Z_tmp_1;
2348   const Register i     = Z_tmp_2;
2349   const Register j     = Z_ARG5;
2350   const Register h     = Z_ARG4;
2351   const Register temp  = Z_R1_scratch;
2352 
2353   // Find array start.
2354   __ load_address(array, at_bcp(3 * BytesPerInt));
2355   __ z_nill(array, (-BytesPerInt) & 0xffff);   // align
2356 
2357   // Initialize i & j.
2358   __ clear_reg(i, true, false);  // i = 0;  Don't set CC.
2359   __ mem2reg_signed_opt(j, Address(array, -BytesPerInt)); // j = length(array);
2360 
2361   // And start.
2362   Label entry;
2363   __ z_bru(entry);
2364 
2365   // binary search loop
2366   {
2367     NearLabel   loop;
2368 
2369     __ bind(loop);
2370 
2371     // int h = (i + j) >> 1;
2372     __ add2reg_with_index(h, 0, i, j); // h = i + j;
2373     __ z_srag(h, h, 1);                // h = (i + j) >> 1;
2374 
2375     // if (key < array[h].fast_match()) {
2376     //   j = h;
2377     // } else {
2378     //   i = h;
2379     // }
2380 
2381     // Convert array[h].match to native byte-ordering before compare.
2382     __ z_sllg(temp, h, LogBytesPerWord);   // index2bytes
2383     __ mem2reg_opt(temp, Address(array, temp), false);
2384 
2385     NearLabel  else_;
2386 
2387     __ compare32_and_branch(key, temp, Assembler::bcondNotLow, else_);
2388     // j = h if (key <  array[h].fast_match())
2389     __ z_lgr(j, h);
2390     __ z_bru(entry); // continue
2391 
2392     __ bind(else_);
2393 
2394     // i = h if (key >= array[h].fast_match())
2395     __ z_lgr(i, h);  // and fallthrough
2396 
2397     // while (i+1 < j)
2398     __ bind(entry);
2399 
2400     // if (i + 1 < j) continue search
2401     __ add2reg(h, 1, i);
2402     __ compare64_and_branch(h, j, Assembler::bcondLow, loop);
2403   }
2404 
2405   // End of binary search, result index is i (must check again!).
2406   NearLabel default_case;
2407 
2408   // h is no longer needed, so use it to hold the byte offset.
2409   __ z_sllg(h, i, LogBytesPerWord);   // index2bytes
2410   __ mem2reg_opt(temp, Address(array, h), false);
2411   __ compare32_and_branch(key, temp, Assembler::bcondNotEqual, default_case);
2412 
2413   // entry found -> j = offset
2414   __ mem2reg_signed_opt(j, Address(array, h, BytesPerInt));
2415   __ profile_switch_case(i, key, array, Z_bytecode);
2416   // Load next bytecode.
2417   __ z_llgc(Z_bytecode, Address(Z_bcp, j));
2418   __ z_agr(Z_bcp, j);       // Advance bcp.
2419   __ dispatch_only(vtos, true);
2420 
2421   // default case -> j = default offset
2422   __ bind(default_case);
2423 
2424   __ profile_switch_default(i);
2425   __ mem2reg_signed_opt(j, Address(array, -2 * BytesPerInt));
2426   // Load next bytecode.
2427   __ z_llgc(Z_bytecode, Address(Z_bcp, j));
2428   __ z_agr(Z_bcp, j);       // Advance bcp.
2429   __ dispatch_only(vtos, true);
2430 }
2431 
2432 void TemplateTable::_return(TosState state) {
2433   transition(state, state);
2434   assert(_desc->calls_vm(),
2435          "inconsistent calls_vm information"); // call in remove_activation
2436 
2437   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2438     Register Rthis  = Z_ARG2;
2439     Register Rklass = Z_ARG5;
2440     Label skip_register_finalizer;
2441     assert(state == vtos, "only valid state");
2442     __ z_lg(Rthis, aaddress(0));
2443     __ load_klass(Rklass, Rthis);
2444     __ testbit(Address(Rklass, Klass::access_flags_offset()), exact_log2(JVM_ACC_HAS_FINALIZER));
2445     __ z_bfalse(skip_register_finalizer);
2446     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Rthis);
2447     __ bind(skip_register_finalizer);
2448   }
2449 
2450   if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
2451     Label no_safepoint;
2452     const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */);
2453     __ z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
2454     __ z_braz(no_safepoint);
2455     __ push(state);
2456     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2457     __ pop(state);
2458     __ bind(no_safepoint);
2459   }
2460 
2461   if (state == itos) {
2462     // Narrow result if state is itos but result type is smaller.
2463     // Need to narrow in the return bytecode rather than in generate_return_entry
2464     // since compiled code callers expect the result to already be narrowed.
2465     __ narrow(Z_tos, Z_tmp_1); /* fall through */
2466   }
2467 
2468   __ remove_activation(state, Z_R14);
2469   __ z_br(Z_R14);
2470 }
2471 
2472 // ----------------------------------------------------------------------------
2473 // NOTE: Cpe_offset is already computed as byte offset, so we must not
2474 // shift it afterwards!
2475 void TemplateTable::resolve_cache_and_index(int byte_no,
2476                                             Register Rcache,
2477                                             Register cpe_offset,
2478                                             size_t index_size) {
2479   BLOCK_COMMENT("resolve_cache_and_index {");
2480   NearLabel      resolved;
2481   const Register bytecode_in_cpcache = Z_R1_scratch;
2482   const int      total_f1_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f1_offset());
2483   assert_different_registers(Rcache, cpe_offset, bytecode_in_cpcache);
2484 
2485   Bytecodes::Code code = bytecode();
2486   switch (code) {
2487     case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2488     case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2489   }
2490 
2491   {
2492     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2493     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, cpe_offset, bytecode_in_cpcache, byte_no, 1, index_size);
2494     // Have we resolved this bytecode?
2495     __ compare32_and_branch(bytecode_in_cpcache, (int)code, Assembler::bcondEqual, resolved);
2496   }
2497 
2498   // Resolve first time through.
2499   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2500   __ load_const_optimized(Z_ARG2, (int) code);
2501   __ call_VM(noreg, entry, Z_ARG2);
2502 
2503   // Update registers with resolved info.
2504   __ get_cache_and_index_at_bcp(Rcache, cpe_offset, 1, index_size);
2505   __ bind(resolved);
2506   BLOCK_COMMENT("} resolve_cache_and_index");
2507 }
2508 
2509 // The Rcache and index registers must be set before call.
2510 // Index is already a byte offset, don't shift!
2511 void TemplateTable::load_field_cp_cache_entry(Register obj,
2512                                               Register cache,
2513                                               Register index,
2514                                               Register off,
2515                                               Register flags,
2516                                               bool is_static = false) {
2517   assert_different_registers(cache, index, flags, off);
2518   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2519 
2520   // Field offset
2521   __ mem2reg_opt(off, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f2_offset()));
2522   // Flags. Must load 64 bits.
2523   __ mem2reg_opt(flags, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::flags_offset()));
2524 
2525   // klass overwrite register
2526   if (is_static) {
2527     __ mem2reg_opt(obj, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f1_offset()));
2528     __ mem2reg_opt(obj, Address(obj, Klass::java_mirror_offset()));
2529     __ resolve_oop_handle(obj);
2530   }
2531 }
2532 
2533 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2534                                                Register method,
2535                                                Register itable_index,
2536                                                Register flags,
2537                                                bool is_invokevirtual,
2538                                                bool is_invokevfinal, // unused
2539                                                bool is_invokedynamic) {
2540   BLOCK_COMMENT("load_invoke_cp_cache_entry {");
2541   // Setup registers.
2542   const Register cache     = Z_ARG1;
2543   const Register cpe_offset= flags;
2544   const ByteSize base_off  = ConstantPoolCache::base_offset();
2545   const ByteSize f1_off    = ConstantPoolCacheEntry::f1_offset();
2546   const ByteSize f2_off    = ConstantPoolCacheEntry::f2_offset();
2547   const ByteSize flags_off = ConstantPoolCacheEntry::flags_offset();
2548   const int method_offset  = in_bytes(base_off + ((byte_no == f2_byte) ? f2_off : f1_off));
2549   const int flags_offset   = in_bytes(base_off + flags_off);
2550   // Access constant pool cache fields.
2551   const int index_offset   = in_bytes(base_off + f2_off);
2552 
2553   assert_different_registers(method, itable_index, flags, cache);
2554   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2555 
2556   if (is_invokevfinal) {
2557     // Already resolved.
2558      assert(itable_index == noreg, "register not used");
2559      __ get_cache_and_index_at_bcp(cache, cpe_offset, 1);
2560   } else {
2561     // Need to resolve.
2562     resolve_cache_and_index(byte_no, cache, cpe_offset, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2563   }
2564   __ z_lg(method, Address(cache, cpe_offset, method_offset));
2565 
2566   if (itable_index != noreg) {
2567     __ z_lg(itable_index, Address(cache, cpe_offset, index_offset));
2568   }
2569 
2570   // Only load the lower 4 bytes and fill high bytes of flags with zeros.
2571   // Callers depend on this zero-extension!!!
2572   // Attention: overwrites cpe_offset == flags
2573   __ z_llgf(flags, Address(cache, cpe_offset, flags_offset + (BytesPerLong-BytesPerInt)));
2574 
2575   BLOCK_COMMENT("} load_invoke_cp_cache_entry");
2576 }
2577 
2578 // The registers cache and index expected to be set before call.
2579 // Correct values of the cache and index registers are preserved.
2580 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2581                                             bool is_static, bool has_tos) {
2582 
2583   // Do the JVMTI work here to avoid disturbing the register state below.
2584   // We use c_rarg registers here because we want to use the register used in
2585   // the call to the VM
2586   if (!JvmtiExport::can_post_field_access()) {
2587     return;
2588   }
2589 
2590   // Check to see if a field access watch has been set before we
2591   // take the time to call into the VM.
2592   Label exit;
2593   assert_different_registers(cache, index, Z_tos);
2594   __ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_access_count_addr());
2595   __ load_and_test_int(Z_R0, Address(Z_tos));
2596   __ z_brz(exit);
2597 
2598   // Index is returned as byte offset, do not shift!
2599   __ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
2600 
2601   // cache entry pointer
2602   __ add2reg_with_index(Z_ARG3,
2603                         in_bytes(ConstantPoolCache::base_offset()),
2604                         Z_ARG3, Z_R1_scratch);
2605 
2606   if (is_static) {
2607     __ clear_reg(Z_ARG2, true, false); // NULL object reference. Don't set CC.
2608   } else {
2609     __ mem2reg_opt(Z_ARG2, at_tos());  // Get object pointer without popping it.
2610     __ verify_oop(Z_ARG2);
2611   }
2612   // Z_ARG2: object pointer or NULL
2613   // Z_ARG3: cache entry pointer
2614   __ call_VM(noreg,
2615              CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2616              Z_ARG2, Z_ARG3);
2617   __ get_cache_and_index_at_bcp(cache, index, 1);
2618 
2619   __ bind(exit);
2620 }
2621 
2622 void TemplateTable::pop_and_check_object(Register r) {
2623   __ pop_ptr(r);
2624   __ null_check(r);  // for field access must check obj.
2625   __ verify_oop(r);
2626 }
2627 
2628 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2629   transition(vtos, vtos);
2630 
2631   const Register cache = Z_tmp_1;
2632   const Register index = Z_tmp_2;
2633   const Register obj   = Z_tmp_1;
2634   const Register off   = Z_ARG2;
2635   const Register flags = Z_ARG1;
2636   const Register bc    = Z_tmp_1;  // Uses same reg as obj, so don't mix them.
2637 
2638   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2639   jvmti_post_field_access(cache, index, is_static, false);
2640   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2641 
2642   if (!is_static) {
2643     // Obj is on the stack.
2644     pop_and_check_object(obj);
2645   }
2646 
2647   // Displacement is 0, so any store instruction will be fine on any CPU.
2648   const Address field(obj, off);
2649 
2650   Label    is_Byte, is_Bool, is_Int, is_Short, is_Char,
2651            is_Long, is_Float, is_Object, is_Double;
2652   Label    is_badState8, is_badState9, is_badStateA, is_badStateB,
2653            is_badStateC, is_badStateD, is_badStateE, is_badStateF,
2654            is_badState;
2655   Label    branchTable, atosHandler,  Done;
2656   Register br_tab       = Z_R1_scratch;
2657   bool     do_rewrite   = !is_static && (rc == may_rewrite);
2658   bool     dont_rewrite = (is_static || (rc == may_not_rewrite));
2659 
2660   assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
2661   assert(btos == 0, "change code, btos != 0");
2662 
2663   // Calculate branch table size. Generated code size depends on ASSERT and on bytecode rewriting.
2664 #ifdef ASSERT
2665   const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
2666 #else
2667   const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
2668 #endif
2669 
2670   // Calculate address of branch table entry and branch there.
2671   {
2672     const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
2673     const int r_bitpos  = 63 - bit_shift;
2674     const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
2675     const int n_rotate  = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
2676     __ z_larl(br_tab, branchTable);
2677     __ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
2678   }
2679   __ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
2680 
2681   __ align_address(bsize);
2682   BIND(branchTable);
2683 
2684   // btos
2685   BTB_BEGIN(is_Byte, bsize, "getfield_or_static:is_Byte");
2686   __ z_lb(Z_tos, field);
2687   __ push(btos);
2688   // Rewrite bytecode to be faster.
2689   if (do_rewrite) {
2690     patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
2691   }
2692   __ z_bru(Done);
2693   BTB_END(is_Byte, bsize, "getfield_or_static:is_Byte");
2694 
2695   // ztos
2696   BTB_BEGIN(is_Bool, bsize, "getfield_or_static:is_Bool");
2697   __ z_lb(Z_tos, field);
2698   __ push(ztos);
2699   // Rewrite bytecode to be faster.
2700   if (do_rewrite) {
2701     // Use btos rewriting, no truncating to t/f bit is needed for getfield.
2702     patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
2703   }
2704   __ z_bru(Done);
2705   BTB_END(is_Bool, bsize, "getfield_or_static:is_Bool");
2706 
2707   // ctos
2708   BTB_BEGIN(is_Char, bsize, "getfield_or_static:is_Char");
2709   // Load into 64 bits, works on all CPUs.
2710   __ z_llgh(Z_tos, field);
2711   __ push(ctos);
2712   // Rewrite bytecode to be faster.
2713   if (do_rewrite) {
2714     patch_bytecode(Bytecodes::_fast_cgetfield, bc, Z_ARG5);
2715   }
2716   __ z_bru(Done);
2717   BTB_END(is_Char, bsize, "getfield_or_static:is_Char");
2718 
2719   // stos
2720   BTB_BEGIN(is_Short, bsize, "getfield_or_static:is_Short");
2721   __ z_lh(Z_tos, field);
2722   __ push(stos);
2723   // Rewrite bytecode to be faster.
2724   if (do_rewrite) {
2725     patch_bytecode(Bytecodes::_fast_sgetfield, bc, Z_ARG5);
2726   }
2727   __ z_bru(Done);
2728   BTB_END(is_Short, bsize, "getfield_or_static:is_Short");
2729 
2730   // itos
2731   BTB_BEGIN(is_Int, bsize, "getfield_or_static:is_Int");
2732   __ mem2reg_opt(Z_tos, field, false);
2733   __ push(itos);
2734   // Rewrite bytecode to be faster.
2735   if (do_rewrite) {
2736     patch_bytecode(Bytecodes::_fast_igetfield, bc, Z_ARG5);
2737   }
2738   __ z_bru(Done);
2739   BTB_END(is_Int, bsize, "getfield_or_static:is_Int");
2740 
2741   // ltos
2742   BTB_BEGIN(is_Long, bsize, "getfield_or_static:is_Long");
2743   __ mem2reg_opt(Z_tos, field);
2744   __ push(ltos);
2745   // Rewrite bytecode to be faster.
2746   if (do_rewrite) {
2747     patch_bytecode(Bytecodes::_fast_lgetfield, bc, Z_ARG5);
2748   }
2749   __ z_bru(Done);
2750   BTB_END(is_Long, bsize, "getfield_or_static:is_Long");
2751 
2752   // ftos
2753   BTB_BEGIN(is_Float, bsize, "getfield_or_static:is_Float");
2754   __ mem2freg_opt(Z_ftos, field, false);
2755   __ push(ftos);
2756   // Rewrite bytecode to be faster.
2757   if (do_rewrite) {
2758     patch_bytecode(Bytecodes::_fast_fgetfield, bc, Z_ARG5);
2759   }
2760   __ z_bru(Done);
2761   BTB_END(is_Float, bsize, "getfield_or_static:is_Float");
2762 
2763   // dtos
2764   BTB_BEGIN(is_Double, bsize, "getfield_or_static:is_Double");
2765   __ mem2freg_opt(Z_ftos, field);
2766   __ push(dtos);
2767   // Rewrite bytecode to be faster.
2768   if (do_rewrite) {
2769     patch_bytecode(Bytecodes::_fast_dgetfield, bc, Z_ARG5);
2770   }
2771   __ z_bru(Done);
2772   BTB_END(is_Double, bsize, "getfield_or_static:is_Double");
2773 
2774   // atos
2775   BTB_BEGIN(is_Object, bsize, "getfield_or_static:is_Object");
2776   __ z_bru(atosHandler);
2777   BTB_END(is_Object, bsize, "getfield_or_static:is_Object");
2778 
2779   // Bad state detection comes at no extra runtime cost.
2780   BTB_BEGIN(is_badState8, bsize, "getfield_or_static:is_badState8");
2781   __ z_illtrap();
2782   __ z_bru(is_badState);
2783   BTB_END( is_badState8, bsize, "getfield_or_static:is_badState8");
2784   BTB_BEGIN(is_badState9, bsize, "getfield_or_static:is_badState9");
2785   __ z_illtrap();
2786   __ z_bru(is_badState);
2787   BTB_END( is_badState9, bsize, "getfield_or_static:is_badState9");
2788   BTB_BEGIN(is_badStateA, bsize, "getfield_or_static:is_badStateA");
2789   __ z_illtrap();
2790   __ z_bru(is_badState);
2791   BTB_END( is_badStateA, bsize, "getfield_or_static:is_badStateA");
2792   BTB_BEGIN(is_badStateB, bsize, "getfield_or_static:is_badStateB");
2793   __ z_illtrap();
2794   __ z_bru(is_badState);
2795   BTB_END( is_badStateB, bsize, "getfield_or_static:is_badStateB");
2796   BTB_BEGIN(is_badStateC, bsize, "getfield_or_static:is_badStateC");
2797   __ z_illtrap();
2798   __ z_bru(is_badState);
2799   BTB_END( is_badStateC, bsize, "getfield_or_static:is_badStateC");
2800   BTB_BEGIN(is_badStateD, bsize, "getfield_or_static:is_badStateD");
2801   __ z_illtrap();
2802   __ z_bru(is_badState);
2803   BTB_END( is_badStateD, bsize, "getfield_or_static:is_badStateD");
2804   BTB_BEGIN(is_badStateE, bsize, "getfield_or_static:is_badStateE");
2805   __ z_illtrap();
2806   __ z_bru(is_badState);
2807   BTB_END( is_badStateE, bsize, "getfield_or_static:is_badStateE");
2808   BTB_BEGIN(is_badStateF, bsize, "getfield_or_static:is_badStateF");
2809   __ z_illtrap();
2810   __ z_bru(is_badState);
2811   BTB_END( is_badStateF, bsize, "getfield_or_static:is_badStateF");
2812 
2813   __ align_address(64);
2814   BIND(is_badState);  // Do this outside branch table. Needs a lot of space.
2815   {
2816     unsigned int b_off = __ offset();
2817     if (is_static) {
2818       __ stop_static("Bad state in getstatic");
2819     } else {
2820       __ stop_static("Bad state in getfield");
2821     }
2822     unsigned int e_off = __ offset();
2823   }
2824 
2825   __ align_address(64);
2826   BIND(atosHandler);  // Oops are really complicated to handle.
2827                       // There is a lot of code generated.
2828                       // Therefore: generate the handler outside of branch table.
2829                       // There is no performance penalty. The additional branch
2830                       // to here is compensated for by the fallthru to "Done".
2831   {
2832     unsigned int b_off = __ offset();
2833     __ load_heap_oop(Z_tos, field);
2834     __ verify_oop(Z_tos);
2835     __ push(atos);
2836     if (do_rewrite) {
2837       patch_bytecode(Bytecodes::_fast_agetfield, bc, Z_ARG5);
2838     }
2839     unsigned int e_off = __ offset();
2840   }
2841 
2842   BIND(Done);
2843 }
2844 
2845 void TemplateTable::getfield(int byte_no) {
2846   BLOCK_COMMENT("getfield  {");
2847   getfield_or_static(byte_no, false);
2848   BLOCK_COMMENT("} getfield");
2849 }
2850 
2851 void TemplateTable::nofast_getfield(int byte_no) {
2852   getfield_or_static(byte_no, false, may_not_rewrite);
2853 }
2854 
2855 void TemplateTable::getstatic(int byte_no) {
2856   BLOCK_COMMENT("getstatic {");
2857   getfield_or_static(byte_no, true);
2858   BLOCK_COMMENT("} getstatic");
2859 }
2860 
2861 // The registers cache and index expected to be set before call.  The
2862 // function may destroy various registers, just not the cache and
2863 // index registers.
2864 void TemplateTable::jvmti_post_field_mod(Register cache,
2865                                          Register index, bool is_static) {
2866   transition(vtos, vtos);
2867 
2868   if (!JvmtiExport::can_post_field_modification()) {
2869     return;
2870   }
2871 
2872   BLOCK_COMMENT("jvmti_post_field_mod {");
2873 
2874   // Check to see if a field modification watch has been set before
2875   // we take the time to call into the VM.
2876   Label    L1;
2877   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2878   assert_different_registers(cache, index, Z_tos);
2879 
2880   __ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_modification_count_addr());
2881   __ load_and_test_int(Z_R0, Address(Z_tos));
2882   __ z_brz(L1);
2883 
2884   // Index is returned as byte offset, do not shift!
2885   __ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
2886 
2887   if (is_static) {
2888     // Life is simple. Null out the object pointer.
2889     __ clear_reg(Z_ARG2, true, false);   // Don't set CC.
2890   } else {
2891     // Life is harder. The stack holds the value on top, followed by
2892     // the object. We don't know the size of the value, though. It
2893     // could be one or two words depending on its type. As a result,
2894     // we must find the type to determine where the object is.
2895     __ mem2reg_opt(Z_ARG4,
2896                    Address(Z_ARG3, Z_R1_scratch,
2897                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()) +
2898                            (BytesPerLong - BytesPerInt)),
2899                    false);
2900     __ z_srl(Z_ARG4, ConstantPoolCacheEntry::tos_state_shift);
2901     // Make sure we don't need to mask Z_ARG4 for tos_state after the above shift.
2902     ConstantPoolCacheEntry::verify_tos_state_shift();
2903     __ mem2reg_opt(Z_ARG2, at_tos(1));  // Initially assume a one word jvalue.
2904 
2905     NearLabel   load_dtos, cont;
2906 
2907     __ compareU32_and_branch(Z_ARG4, (intptr_t) ltos,
2908                               Assembler::bcondNotEqual, load_dtos);
2909     __ mem2reg_opt(Z_ARG2, at_tos(2)); // ltos (two word jvalue)
2910     __ z_bru(cont);
2911 
2912     __ bind(load_dtos);
2913     __ compareU32_and_branch(Z_ARG4, (intptr_t)dtos, Assembler::bcondNotEqual, cont);
2914     __ mem2reg_opt(Z_ARG2, at_tos(2)); // dtos (two word jvalue)
2915 
2916     __ bind(cont);
2917   }
2918   // cache entry pointer
2919 
2920   __ add2reg_with_index(Z_ARG3, in_bytes(cp_base_offset), Z_ARG3, Z_R1_scratch);
2921 
2922   // object(tos)
2923   __ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
2924   // Z_ARG2: object pointer set up above (NULL if static)
2925   // Z_ARG3: cache entry pointer
2926   // Z_ARG4: jvalue object on the stack
2927   __ call_VM(noreg,
2928              CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2929              Z_ARG2, Z_ARG3, Z_ARG4);
2930   __ get_cache_and_index_at_bcp(cache, index, 1);
2931 
2932   __ bind(L1);
2933   BLOCK_COMMENT("} jvmti_post_field_mod");
2934 }
2935 
2936 
2937 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2938   transition(vtos, vtos);
2939 
2940   const Register cache         = Z_tmp_1;
2941   const Register index         = Z_ARG5;
2942   const Register obj           = Z_tmp_1;
2943   const Register off           = Z_tmp_2;
2944   const Register flags         = Z_R1_scratch;
2945   const Register br_tab        = Z_ARG5;
2946   const Register bc            = Z_tmp_1;
2947   const Register oopStore_tmp1 = Z_R1_scratch;
2948   const Register oopStore_tmp2 = Z_ARG5;
2949   const Register oopStore_tmp3 = Z_R0_scratch;
2950 
2951   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2952   jvmti_post_field_mod(cache, index, is_static);
2953   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2954   // begin of life for:
2955   //   obj, off   long life range
2956   //   flags      short life range, up to branch into branch table
2957   // end of life for:
2958   //   cache, index
2959 
2960   const Address field(obj, off);
2961   Label is_Byte, is_Bool, is_Int, is_Short, is_Char,
2962         is_Long, is_Float, is_Object, is_Double;
2963   Label is_badState8, is_badState9, is_badStateA, is_badStateB,
2964         is_badStateC, is_badStateD, is_badStateE, is_badStateF,
2965         is_badState;
2966   Label branchTable, atosHandler, Done;
2967   bool  do_rewrite   = !is_static && (rc == may_rewrite);
2968   bool  dont_rewrite = (is_static || (rc == may_not_rewrite));
2969 
2970   assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
2971 
2972   assert(btos == 0, "change code, btos != 0");
2973 
2974 #ifdef ASSERT
2975   const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
2976 #else
2977   const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*8;
2978 #endif
2979 
2980   // Calculate address of branch table entry and branch there.
2981   {
2982     const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
2983     const int r_bitpos  = 63 - bit_shift;
2984     const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
2985     const int n_rotate  = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
2986     __ z_larl(br_tab, branchTable);
2987     __ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
2988     __ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
2989   }
2990   // end of life for:
2991   //   flags, br_tab
2992 
2993   __ align_address(bsize);
2994   BIND(branchTable);
2995 
2996   // btos
2997   BTB_BEGIN(is_Byte, bsize, "putfield_or_static:is_Byte");
2998   __ pop(btos);
2999   if (!is_static) {
3000     pop_and_check_object(obj);
3001   }
3002   __ z_stc(Z_tos, field);
3003   if (do_rewrite) {
3004     patch_bytecode(Bytecodes::_fast_bputfield, bc, Z_ARG5, true, byte_no);
3005   }
3006   __ z_bru(Done);
3007   BTB_END( is_Byte, bsize, "putfield_or_static:is_Byte");
3008 
3009   // ztos
3010   BTB_BEGIN(is_Bool, bsize, "putfield_or_static:is_Bool");
3011   __ pop(ztos);
3012   if (!is_static) {
3013     pop_and_check_object(obj);
3014   }
3015   __ z_nilf(Z_tos, 0x1);
3016   __ z_stc(Z_tos, field);
3017   if (do_rewrite) {
3018     patch_bytecode(Bytecodes::_fast_zputfield, bc, Z_ARG5, true, byte_no);
3019   }
3020   __ z_bru(Done);
3021   BTB_END(is_Bool, bsize, "putfield_or_static:is_Bool");
3022 
3023   // ctos
3024   BTB_BEGIN(is_Char, bsize, "putfield_or_static:is_Char");
3025   __ pop(ctos);
3026   if (!is_static) {
3027     pop_and_check_object(obj);
3028   }
3029   __ z_sth(Z_tos, field);
3030   if (do_rewrite) {
3031     patch_bytecode(Bytecodes::_fast_cputfield, bc, Z_ARG5, true, byte_no);
3032   }
3033   __ z_bru(Done);
3034   BTB_END( is_Char, bsize, "putfield_or_static:is_Char");
3035 
3036   // stos
3037   BTB_BEGIN(is_Short, bsize, "putfield_or_static:is_Short");
3038   __ pop(stos);
3039   if (!is_static) {
3040     pop_and_check_object(obj);
3041   }
3042   __ z_sth(Z_tos, field);
3043   if (do_rewrite) {
3044     patch_bytecode(Bytecodes::_fast_sputfield, bc, Z_ARG5, true, byte_no);
3045   }
3046   __ z_bru(Done);
3047   BTB_END( is_Short, bsize, "putfield_or_static:is_Short");
3048 
3049   // itos
3050   BTB_BEGIN(is_Int, bsize, "putfield_or_static:is_Int");
3051   __ pop(itos);
3052   if (!is_static) {
3053     pop_and_check_object(obj);
3054   }
3055   __ reg2mem_opt(Z_tos, field, false);
3056   if (do_rewrite) {
3057     patch_bytecode(Bytecodes::_fast_iputfield, bc, Z_ARG5, true, byte_no);
3058   }
3059   __ z_bru(Done);
3060   BTB_END( is_Int, bsize, "putfield_or_static:is_Int");
3061 
3062   // ltos
3063   BTB_BEGIN(is_Long, bsize, "putfield_or_static:is_Long");
3064   __ pop(ltos);
3065   if (!is_static) {
3066     pop_and_check_object(obj);
3067   }
3068   __ reg2mem_opt(Z_tos, field);
3069   if (do_rewrite) {
3070     patch_bytecode(Bytecodes::_fast_lputfield, bc, Z_ARG5, true, byte_no);
3071   }
3072   __ z_bru(Done);
3073   BTB_END( is_Long, bsize, "putfield_or_static:is_Long");
3074 
3075   // ftos
3076   BTB_BEGIN(is_Float, bsize, "putfield_or_static:is_Float");
3077   __ pop(ftos);
3078   if (!is_static) {
3079     pop_and_check_object(obj);
3080   }
3081   __ freg2mem_opt(Z_ftos, field, false);
3082   if (do_rewrite) {
3083     patch_bytecode(Bytecodes::_fast_fputfield, bc, Z_ARG5, true, byte_no);
3084   }
3085   __ z_bru(Done);
3086   BTB_END( is_Float, bsize, "putfield_or_static:is_Float");
3087 
3088   // dtos
3089   BTB_BEGIN(is_Double, bsize, "putfield_or_static:is_Double");
3090   __ pop(dtos);
3091   if (!is_static) {
3092     pop_and_check_object(obj);
3093   }
3094   __ freg2mem_opt(Z_ftos, field);
3095   if (do_rewrite) {
3096     patch_bytecode(Bytecodes::_fast_dputfield, bc, Z_ARG5, true, byte_no);
3097   }
3098   __ z_bru(Done);
3099   BTB_END( is_Double, bsize, "putfield_or_static:is_Double");
3100 
3101   // atos
3102   BTB_BEGIN(is_Object, bsize, "putfield_or_static:is_Object");
3103   __ z_bru(atosHandler);
3104   BTB_END( is_Object, bsize, "putfield_or_static:is_Object");
3105 
3106   // Bad state detection comes at no extra runtime cost.
3107   BTB_BEGIN(is_badState8, bsize, "putfield_or_static:is_badState8");
3108   __ z_illtrap();
3109   __ z_bru(is_badState);
3110   BTB_END( is_badState8, bsize, "putfield_or_static:is_badState8");
3111   BTB_BEGIN(is_badState9, bsize, "putfield_or_static:is_badState9");
3112   __ z_illtrap();
3113   __ z_bru(is_badState);
3114   BTB_END( is_badState9, bsize, "putfield_or_static:is_badState9");
3115   BTB_BEGIN(is_badStateA, bsize, "putfield_or_static:is_badStateA");
3116   __ z_illtrap();
3117   __ z_bru(is_badState);
3118   BTB_END( is_badStateA, bsize, "putfield_or_static:is_badStateA");
3119   BTB_BEGIN(is_badStateB, bsize, "putfield_or_static:is_badStateB");
3120   __ z_illtrap();
3121   __ z_bru(is_badState);
3122   BTB_END( is_badStateB, bsize, "putfield_or_static:is_badStateB");
3123   BTB_BEGIN(is_badStateC, bsize, "putfield_or_static:is_badStateC");
3124   __ z_illtrap();
3125   __ z_bru(is_badState);
3126   BTB_END( is_badStateC, bsize, "putfield_or_static:is_badStateC");
3127   BTB_BEGIN(is_badStateD, bsize, "putfield_or_static:is_badStateD");
3128   __ z_illtrap();
3129   __ z_bru(is_badState);
3130   BTB_END( is_badStateD, bsize, "putfield_or_static:is_badStateD");
3131   BTB_BEGIN(is_badStateE, bsize, "putfield_or_static:is_badStateE");
3132   __ z_illtrap();
3133   __ z_bru(is_badState);
3134   BTB_END( is_badStateE, bsize, "putfield_or_static:is_badStateE");
3135   BTB_BEGIN(is_badStateF, bsize, "putfield_or_static:is_badStateF");
3136   __ z_illtrap();
3137   __ z_bru(is_badState);
3138   BTB_END( is_badStateF, bsize, "putfield_or_static:is_badStateF");
3139 
3140   __ align_address(64);
3141   BIND(is_badState);  // Do this outside branch table. Needs a lot of space.
3142   {
3143     unsigned int b_off = __ offset();
3144     if (is_static) __ stop_static("Bad state in putstatic");
3145     else            __ stop_static("Bad state in putfield");
3146     unsigned int e_off = __ offset();
3147   }
3148 
3149   __ align_address(64);
3150   BIND(atosHandler);  // Oops are really complicated to handle.
3151                       // There is a lot of code generated.
3152                       // Therefore: generate the handler outside of branch table.
3153                       // There is no performance penalty. The additional branch
3154                       // to here is compensated for by the fallthru to "Done".
3155   {
3156     unsigned int b_off = __ offset();
3157     __ pop(atos);
3158     if (!is_static) {
3159       pop_and_check_object(obj);
3160     }
3161     // Store into the field
3162     do_oop_store(_masm, obj, off, Z_tos, false,
3163                  oopStore_tmp1, oopStore_tmp2, oopStore_tmp3, _bs->kind(), false);
3164     if (do_rewrite) {
3165       patch_bytecode(Bytecodes::_fast_aputfield, bc, Z_ARG5, true, byte_no);
3166     }
3167     // __ z_bru(Done); // fallthru
3168     unsigned int e_off = __ offset();
3169   }
3170 
3171   BIND(Done);
3172 
3173   // Check for volatile store.
3174   Label notVolatile;
3175 
3176   __ testbit(Z_ARG4, ConstantPoolCacheEntry::is_volatile_shift);
3177   __ z_brz(notVolatile);
3178   __ z_fence();
3179 
3180   BIND(notVolatile);
3181 }
3182 
3183 void TemplateTable::putfield(int byte_no) {
3184   BLOCK_COMMENT("putfield  {");
3185   putfield_or_static(byte_no, false);
3186   BLOCK_COMMENT("} putfield");
3187 }
3188 
3189 void TemplateTable::nofast_putfield(int byte_no) {
3190   putfield_or_static(byte_no, false, may_not_rewrite);
3191 }
3192 
3193 void TemplateTable::putstatic(int byte_no) {
3194   BLOCK_COMMENT("putstatic {");
3195   putfield_or_static(byte_no, true);
3196   BLOCK_COMMENT("} putstatic");
3197 }
3198 
3199 // Push the tos value back to the stack.
3200 // gc will find oops there and update.
3201 void TemplateTable::jvmti_post_fast_field_mod() {
3202 
3203   if (!JvmtiExport::can_post_field_modification()) {
3204     return;
3205   }
3206 
3207   // Check to see if a field modification watch has been set before
3208   // we take the time to call into the VM.
3209   Label   exit;
3210 
3211   BLOCK_COMMENT("jvmti_post_fast_field_mod {");
3212 
3213   __ load_absolute_address(Z_R1_scratch,
3214                            (address) JvmtiExport::get_field_modification_count_addr());
3215   __ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
3216   __ z_brz(exit);
3217 
3218   Register obj = Z_tmp_1;
3219 
3220   __ pop_ptr(obj);                  // Copy the object pointer from tos.
3221   __ verify_oop(obj);
3222   __ push_ptr(obj);                 // Put the object pointer back on tos.
3223 
3224   // Save tos values before call_VM() clobbers them. Since we have
3225   // to do it for every data type, we use the saved values as the
3226   // jvalue object.
3227   switch (bytecode()) {          // Load values into the jvalue object.
3228     case Bytecodes::_fast_aputfield:
3229       __ push_ptr(Z_tos);
3230       break;
3231     case Bytecodes::_fast_bputfield:
3232     case Bytecodes::_fast_zputfield:
3233     case Bytecodes::_fast_sputfield:
3234     case Bytecodes::_fast_cputfield:
3235     case Bytecodes::_fast_iputfield:
3236       __ push_i(Z_tos);
3237       break;
3238     case Bytecodes::_fast_dputfield:
3239       __ push_d();
3240       break;
3241     case Bytecodes::_fast_fputfield:
3242       __ push_f();
3243       break;
3244     case Bytecodes::_fast_lputfield:
3245       __ push_l(Z_tos);
3246       break;
3247 
3248     default:
3249       ShouldNotReachHere();
3250   }
3251 
3252   // jvalue on the stack
3253   __ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
3254   // Access constant pool cache entry.
3255   __ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tos, 1);
3256   __ verify_oop(obj);
3257 
3258   // obj   : object pointer copied above
3259   // Z_ARG3: cache entry pointer
3260   // Z_ARG4: jvalue object on the stack
3261   __ call_VM(noreg,
3262              CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
3263              obj, Z_ARG3, Z_ARG4);
3264 
3265   switch (bytecode()) {             // Restore tos values.
3266     case Bytecodes::_fast_aputfield:
3267       __ pop_ptr(Z_tos);
3268       break;
3269     case Bytecodes::_fast_bputfield:
3270     case Bytecodes::_fast_zputfield:
3271     case Bytecodes::_fast_sputfield:
3272     case Bytecodes::_fast_cputfield:
3273     case Bytecodes::_fast_iputfield:
3274       __ pop_i(Z_tos);
3275       break;
3276     case Bytecodes::_fast_dputfield:
3277       __ pop_d(Z_ftos);
3278       break;
3279     case Bytecodes::_fast_fputfield:
3280       __ pop_f(Z_ftos);
3281       break;
3282     case Bytecodes::_fast_lputfield:
3283       __ pop_l(Z_tos);
3284       break;
3285   }
3286 
3287   __ bind(exit);
3288   BLOCK_COMMENT("} jvmti_post_fast_field_mod");
3289 }
3290 
3291 void TemplateTable::fast_storefield(TosState state) {
3292   transition(state, vtos);
3293 
3294   ByteSize base = ConstantPoolCache::base_offset();
3295   jvmti_post_fast_field_mod();
3296 
3297   // Access constant pool cache.
3298   Register cache = Z_tmp_1;
3299   Register index = Z_tmp_2;
3300   Register flags = Z_ARG5;
3301 
3302   // Index comes in bytes, don't shift afterwards!
3303   __ get_cache_and_index_at_bcp(cache, index, 1);
3304 
3305   // Test for volatile.
3306   assert(!flags->is_volatile(), "do_oop_store could perform leaf RT call");
3307   __ z_lg(flags, Address(cache, index, base + ConstantPoolCacheEntry::flags_offset()));
3308 
3309   // Replace index with field offset from cache entry.
3310   Register field_offset = index;
3311   __ z_lg(field_offset, Address(cache, index, base + ConstantPoolCacheEntry::f2_offset()));
3312 
3313   // Get object from stack.
3314   Register   obj = cache;
3315 
3316   pop_and_check_object(obj);
3317 
3318   // field address
3319   const Address   field(obj, field_offset);
3320 
3321   // access field
3322   switch (bytecode()) {
3323     case Bytecodes::_fast_aputfield:
3324       do_oop_store(_masm, obj, field_offset, Z_tos, false,
3325                    Z_ARG2, Z_ARG3, Z_ARG4, _bs->kind(), false);
3326       break;
3327     case Bytecodes::_fast_lputfield:
3328       __ reg2mem_opt(Z_tos, field);
3329       break;
3330     case Bytecodes::_fast_iputfield:
3331       __ reg2mem_opt(Z_tos, field, false);
3332       break;
3333     case Bytecodes::_fast_zputfield:
3334       __ z_nilf(Z_tos, 0x1);
3335       // fall through to bputfield
3336     case Bytecodes::_fast_bputfield:
3337       __ z_stc(Z_tos, field);
3338       break;
3339     case Bytecodes::_fast_sputfield:
3340       // fall through
3341     case Bytecodes::_fast_cputfield:
3342       __ z_sth(Z_tos, field);
3343       break;
3344     case Bytecodes::_fast_fputfield:
3345       __ freg2mem_opt(Z_ftos, field, false);
3346       break;
3347     case Bytecodes::_fast_dputfield:
3348       __ freg2mem_opt(Z_ftos, field);
3349       break;
3350     default:
3351       ShouldNotReachHere();
3352   }
3353 
3354   //  Check for volatile store.
3355   Label notVolatile;
3356 
3357   __ testbit(flags, ConstantPoolCacheEntry::is_volatile_shift);
3358   __ z_brz(notVolatile);
3359   __ z_fence();
3360 
3361   __ bind(notVolatile);
3362 }
3363 
3364 void TemplateTable::fast_accessfield(TosState state) {
3365   transition(atos, state);
3366 
3367   Register obj = Z_tos;
3368 
3369   // Do the JVMTI work here to avoid disturbing the register state below
3370   if (JvmtiExport::can_post_field_access()) {
3371     // Check to see if a field access watch has been set before we
3372     // take the time to call into the VM.
3373     Label cont;
3374 
3375     __ load_absolute_address(Z_R1_scratch,
3376                              (address)JvmtiExport::get_field_access_count_addr());
3377     __ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
3378     __ z_brz(cont);
3379 
3380     // Access constant pool cache entry.
3381 
3382     __ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tmp_1, 1);
3383     __ verify_oop(obj);
3384     __ push_ptr(obj);  // Save object pointer before call_VM() clobbers it.
3385     __ z_lgr(Z_ARG2, obj);
3386 
3387     // Z_ARG2: object pointer copied above
3388     // Z_ARG3: cache entry pointer
3389     __ call_VM(noreg,
3390                CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
3391                Z_ARG2, Z_ARG3);
3392     __ pop_ptr(obj); // Restore object pointer.
3393 
3394     __ bind(cont);
3395   }
3396 
3397   // Access constant pool cache.
3398   Register   cache = Z_tmp_1;
3399   Register   index = Z_tmp_2;
3400 
3401   // Index comes in bytes, don't shift afterwards!
3402   __ get_cache_and_index_at_bcp(cache, index, 1);
3403   // Replace index with field offset from cache entry.
3404   __ mem2reg_opt(index,
3405                  Address(cache, index,
3406                          ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
3407 
3408   __ verify_oop(obj);
3409   __ null_check(obj);
3410 
3411   Address field(obj, index);
3412 
3413   // access field
3414   switch (bytecode()) {
3415     case Bytecodes::_fast_agetfield:
3416       __ load_heap_oop(Z_tos, field);
3417       __ verify_oop(Z_tos);
3418       return;
3419     case Bytecodes::_fast_lgetfield:
3420       __ mem2reg_opt(Z_tos, field);
3421       return;
3422     case Bytecodes::_fast_igetfield:
3423       __ mem2reg_opt(Z_tos, field, false);
3424       return;
3425     case Bytecodes::_fast_bgetfield:
3426       __ z_lb(Z_tos, field);
3427       return;
3428     case Bytecodes::_fast_sgetfield:
3429       __ z_lh(Z_tos, field);
3430       return;
3431     case Bytecodes::_fast_cgetfield:
3432       __ z_llgh(Z_tos, field);   // Load into 64 bits, works on all CPUs.
3433       return;
3434     case Bytecodes::_fast_fgetfield:
3435       __ mem2freg_opt(Z_ftos, field, false);
3436       return;
3437     case Bytecodes::_fast_dgetfield:
3438       __ mem2freg_opt(Z_ftos, field);
3439       return;
3440     default:
3441       ShouldNotReachHere();
3442   }
3443 }
3444 
3445 void TemplateTable::fast_xaccess(TosState state) {
3446   transition(vtos, state);
3447 
3448   Register receiver = Z_tos;
3449   // Get receiver.
3450   __ mem2reg_opt(Z_tos, aaddress(0));
3451 
3452   // Access constant pool cache.
3453   Register cache = Z_tmp_1;
3454   Register index = Z_tmp_2;
3455 
3456   // Index comes in bytes, don't shift afterwards!
3457   __ get_cache_and_index_at_bcp(cache, index, 2);
3458   // Replace index with field offset from cache entry.
3459   __ mem2reg_opt(index,
3460                  Address(cache, index,
3461                          ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
3462 
3463   // Make sure exception is reported in correct bcp range (getfield is
3464   // next instruction).
3465   __ add2reg(Z_bcp, 1);
3466   __ null_check(receiver);
3467   switch (state) {
3468     case itos:
3469       __ mem2reg_opt(Z_tos, Address(receiver, index), false);
3470       break;
3471     case atos:
3472       __ load_heap_oop(Z_tos, Address(receiver, index));
3473       __ verify_oop(Z_tos);
3474       break;
3475     case ftos:
3476       __ mem2freg_opt(Z_ftos, Address(receiver, index));
3477       break;
3478     default:
3479       ShouldNotReachHere();
3480   }
3481 
3482   // Reset bcp to original position.
3483   __ add2reg(Z_bcp, -1);
3484 }
3485 
3486 //-----------------------------------------------------------------------------
3487 // Calls
3488 
3489 void TemplateTable::prepare_invoke(int byte_no,
3490                                    Register method,  // linked method (or i-klass)
3491                                    Register index,   // itable index, MethodType, etc.
3492                                    Register recv,    // If caller wants to see it.
3493                                    Register flags) { // If caller wants to test it.
3494   // Determine flags.
3495   const Bytecodes::Code code = bytecode();
3496   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3497   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3498   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3499   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3500   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3501   const bool load_receiver       = (recv != noreg);
3502   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3503 
3504   // Setup registers & access constant pool cache.
3505   if (recv  == noreg) { recv  = Z_ARG1; }
3506   if (flags == noreg) { flags = Z_ARG2; }
3507   assert_different_registers(method, Z_R14, index, recv, flags);
3508 
3509   BLOCK_COMMENT("prepare_invoke {");
3510 
3511   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3512 
3513   // Maybe push appendix to arguments.
3514   if (is_invokedynamic || is_invokehandle) {
3515     Label L_no_push;
3516     Register resolved_reference = Z_R1_scratch;
3517     __ testbit(flags, ConstantPoolCacheEntry::has_appendix_shift);
3518     __ z_bfalse(L_no_push);
3519     // Push the appendix as a trailing parameter.
3520     // This must be done before we get the receiver,
3521     // since the parameter_size includes it.
3522     __ load_resolved_reference_at_index(resolved_reference, index);
3523     __ verify_oop(resolved_reference);
3524     __ push_ptr(resolved_reference);  // Push appendix (MethodType, CallSite, etc.).
3525     __ bind(L_no_push);
3526   }
3527 
3528   // Load receiver if needed (after appendix is pushed so parameter size is correct).
3529   if (load_receiver) {
3530     assert(!is_invokedynamic, "");
3531     // recv := int2long(flags & ConstantPoolCacheEntry::parameter_size_mask) << 3
3532     // Flags is zero-extended int2long when loaded during load_invoke_cp_cache_entry().
3533     // Only the least significant byte (psize) of flags is used.
3534     {
3535       const unsigned int logSES = Interpreter::logStackElementSize;
3536       const int bit_shift = logSES;
3537       const int r_bitpos  = 63 - bit_shift;
3538       const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::parameter_size_bits + 1;
3539       const int n_rotate  = bit_shift;
3540       assert(ConstantPoolCacheEntry::parameter_size_mask == 255, "adapt bitpositions");
3541       __ rotate_then_insert(recv, flags, l_bitpos, r_bitpos, n_rotate, true);
3542     }
3543     // Recv now contains #arguments * StackElementSize.
3544 
3545     Address recv_addr(Z_esp, recv);
3546     __ z_lg(recv, recv_addr);
3547     __ verify_oop(recv);
3548   }
3549 
3550   // Compute return type.
3551   // ret_type is used by callers (invokespecial, invokestatic) at least.
3552   Register ret_type = Z_R1_scratch;
3553   assert_different_registers(ret_type, method);
3554 
3555   const address table_addr = (address)Interpreter::invoke_return_entry_table_for(code);
3556   __ load_absolute_address(Z_R14, table_addr);
3557 
3558   {
3559     const int bit_shift = LogBytesPerWord;           // Size of each table entry.
3560     const int r_bitpos  = 63 - bit_shift;
3561     const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
3562     const int n_rotate  = bit_shift-ConstantPoolCacheEntry::tos_state_shift;
3563     __ rotate_then_insert(ret_type, flags, l_bitpos, r_bitpos, n_rotate, true);
3564     // Make sure we don't need to mask flags for tos_state after the above shift.
3565     ConstantPoolCacheEntry::verify_tos_state_shift();
3566   }
3567 
3568     __ z_lg(Z_R14, Address(Z_R14, ret_type)); // Load return address.
3569   BLOCK_COMMENT("} prepare_invoke");
3570 }
3571 
3572 
3573 void TemplateTable::invokevirtual_helper(Register index,
3574                                          Register recv,
3575                                          Register flags) {
3576   // Uses temporary registers Z_tmp_2, Z_ARG4.
3577   assert_different_registers(index, recv, Z_tmp_2, Z_ARG4);
3578 
3579   // Test for an invoke of a final method.
3580   Label notFinal;
3581 
3582   BLOCK_COMMENT("invokevirtual_helper {");
3583 
3584   __ testbit(flags, ConstantPoolCacheEntry::is_vfinal_shift);
3585   __ z_brz(notFinal);
3586 
3587   const Register method = index;  // Method must be Z_ARG3.
3588   assert(method == Z_ARG3, "method must be second argument for interpreter calling convention");
3589 
3590   // Do the call - the index is actually the method to call.
3591   // That is, f2 is a vtable index if !is_vfinal, else f2 is a method.
3592 
3593   // It's final, need a null check here!
3594   __ null_check(recv);
3595 
3596   // Profile this call.
3597   __ profile_final_call(Z_tmp_2);
3598   __ profile_arguments_type(Z_tmp_2, method, Z_ARG5, true); // Argument type profiling.
3599   __ jump_from_interpreted(method, Z_tmp_2);
3600 
3601   __ bind(notFinal);
3602 
3603   // Get receiver klass.
3604   __ null_check(recv, Z_R0_scratch, oopDesc::klass_offset_in_bytes());
3605   __ load_klass(Z_tmp_2, recv);
3606 
3607   // Profile this call.
3608   __ profile_virtual_call(Z_tmp_2, Z_ARG4, Z_ARG5);
3609 
3610   // Get target method & entry point.
3611   __ z_sllg(index, index, exact_log2(vtableEntry::size_in_bytes()));
3612   __ mem2reg_opt(method,
3613                  Address(Z_tmp_2, index,
3614                          Klass::vtable_start_offset() + in_ByteSize(vtableEntry::method_offset_in_bytes())));
3615   __ profile_arguments_type(Z_ARG4, method, Z_ARG5, true);
3616   __ jump_from_interpreted(method, Z_ARG4);
3617   BLOCK_COMMENT("} invokevirtual_helper");
3618 }
3619 
3620 void TemplateTable::invokevirtual(int byte_no) {
3621   transition(vtos, vtos);
3622 
3623   assert(byte_no == f2_byte, "use this argument");
3624   prepare_invoke(byte_no,
3625                  Z_ARG3,  // method or vtable index
3626                  noreg,   // unused itable index
3627                  Z_ARG1,  // recv
3628                  Z_ARG2); // flags
3629 
3630   // Z_ARG3 : index
3631   // Z_ARG1 : receiver
3632   // Z_ARG2 : flags
3633   invokevirtual_helper(Z_ARG3, Z_ARG1, Z_ARG2);
3634 }
3635 
3636 void TemplateTable::invokespecial(int byte_no) {
3637   transition(vtos, vtos);
3638 
3639   assert(byte_no == f1_byte, "use this argument");
3640   Register Rmethod = Z_tmp_2;
3641   prepare_invoke(byte_no, Rmethod, noreg, // Get f1 method.
3642                  Z_ARG3);   // Get receiver also for null check.
3643   __ verify_oop(Z_ARG3);
3644   __ null_check(Z_ARG3);
3645   // Do the call.
3646   __ profile_call(Z_ARG2);
3647   __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
3648   __ jump_from_interpreted(Rmethod, Z_R1_scratch);
3649 }
3650 
3651 void TemplateTable::invokestatic(int byte_no) {
3652   transition(vtos, vtos);
3653 
3654   assert(byte_no == f1_byte, "use this argument");
3655   Register Rmethod = Z_tmp_2;
3656   prepare_invoke(byte_no, Rmethod);   // Get f1 method.
3657   // Do the call.
3658   __ profile_call(Z_ARG2);
3659   __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
3660   __ jump_from_interpreted(Rmethod, Z_R1_scratch);
3661 }
3662 
3663 // Outdated feature, and we don't support it.
3664 void TemplateTable::fast_invokevfinal(int byte_no) {
3665   transition(vtos, vtos);
3666   assert(byte_no == f2_byte, "use this argument");
3667   __ stop("fast_invokevfinal not used on linuxs390x");
3668 }
3669 
3670 void TemplateTable::invokeinterface(int byte_no) {
3671   transition(vtos, vtos);
3672 
3673   assert(byte_no == f1_byte, "use this argument");
3674   Register klass     = Z_ARG2,
3675            method    = Z_ARG3,
3676            interface = Z_ARG4,
3677            flags     = Z_ARG5,
3678            receiver  = Z_tmp_1;
3679 
3680   BLOCK_COMMENT("invokeinterface {");
3681 
3682   prepare_invoke(byte_no, interface, method,  // Get f1 klassOop, f2 itable index.
3683                  receiver, flags);
3684 
3685   // Z_R14 (== Z_bytecode) : return entry
3686 
3687   // Special case of invokeinterface called for virtual method of
3688   // java.lang.Object. See cpCacheOop.cpp for details.
3689   // This code isn't produced by javac, but could be produced by
3690   // another compliant java compiler.
3691   NearLabel notMethod, no_such_interface, no_such_method;
3692   __ testbit(flags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3693   __ z_brz(notMethod);
3694   invokevirtual_helper(method, receiver, flags);
3695   __ bind(notMethod);
3696 
3697   // Get receiver klass into klass - also a null check.
3698   __ restore_locals();
3699   __ load_klass(klass, receiver);
3700 
3701   __ lookup_interface_method(klass, interface, noreg, noreg, /*temp*/Z_ARG1,
3702                              no_such_interface, /*return_method=*/false);
3703 
3704   // Profile this call.
3705   __ profile_virtual_call(klass, Z_ARG1/*mdp*/, flags/*scratch*/);
3706 
3707   // Find entry point to call.
3708 
3709   // Get declaring interface class from method
3710   __ z_lg(interface, Address(method, Method::const_offset()));
3711   __ z_lg(interface, Address(interface, ConstMethod::constants_offset()));
3712   __ z_lg(interface, Address(interface, ConstantPool::pool_holder_offset_in_bytes()));
3713 
3714   // Get itable index from method
3715   Register index   = receiver,
3716            method2 = flags;
3717   __ z_lgf(index, Address(method, Method::itable_index_offset()));
3718   __ z_aghi(index, -Method::itable_index_max);
3719   __ z_lcgr(index, index);
3720 
3721   __ lookup_interface_method(klass, interface, index, method2, Z_tmp_2,
3722                              no_such_interface);
3723 
3724   // Check for abstract method error.
3725   // Note: This should be done more efficiently via a throw_abstract_method_error
3726   // interpreter entry point and a conditional jump to it in case of a null
3727   // method.
3728   __ compareU64_and_branch(method2, (intptr_t) 0,
3729                             Assembler::bcondZero, no_such_method);
3730 
3731   __ profile_arguments_type(Z_tmp_1, method2, Z_tmp_2, true);
3732 
3733   // Do the call.
3734   __ jump_from_interpreted(method2, Z_tmp_2);
3735   __ should_not_reach_here();
3736 
3737   // exception handling code follows...
3738   // Note: Must restore interpreter registers to canonical
3739   // state for exception handling to work correctly!
3740 
3741   __ bind(no_such_method);
3742 
3743   // Throw exception.
3744   __ restore_bcp();      // Bcp must be correct for exception handler   (was destroyed).
3745   __ restore_locals();   // Make sure locals pointer is correct as well (was destroyed).
3746   // Pass arguments for generating a verbose error message.
3747   __ z_lgr(Z_tmp_1, method); // Prevent register clash.
3748   __ call_VM(noreg,
3749              CAST_FROM_FN_PTR(address,
3750                               InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3751                               klass, Z_tmp_1);
3752   // The call_VM checks for exception, so we should never return here.
3753   __ should_not_reach_here();
3754 
3755   __ bind(no_such_interface);
3756 
3757   // Throw exception.
3758   __ restore_bcp();      // Bcp must be correct for exception handler   (was destroyed).
3759   __ restore_locals();   // Make sure locals pointer is correct as well (was destroyed).
3760   // Pass arguments for generating a verbose error message.
3761   __ call_VM(noreg,
3762              CAST_FROM_FN_PTR(address,
3763                               InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3764                               klass, interface);
3765   // The call_VM checks for exception, so we should never return here.
3766   __ should_not_reach_here();
3767 
3768   BLOCK_COMMENT("} invokeinterface");
3769   return;
3770 }
3771 
3772 void TemplateTable::invokehandle(int byte_no) {
3773   transition(vtos, vtos);
3774 
3775   const Register method = Z_tmp_2;
3776   const Register recv   = Z_ARG5;
3777   const Register mtype  = Z_tmp_1;
3778   prepare_invoke(byte_no,
3779                  method, mtype,   // Get f2 method, f1 MethodType.
3780                  recv);
3781   __ verify_method_ptr(method);
3782   __ verify_oop(recv);
3783   __ null_check(recv);
3784 
3785   // Note: Mtype is already pushed (if necessary) by prepare_invoke.
3786 
3787   // FIXME: profile the LambdaForm also.
3788   __ profile_final_call(Z_ARG2);
3789   __ profile_arguments_type(Z_ARG3, method, Z_ARG5, true);
3790 
3791   __ jump_from_interpreted(method, Z_ARG3);
3792 }
3793 
3794 void TemplateTable::invokedynamic(int byte_no) {
3795   transition(vtos, vtos);
3796 
3797   const Register Rmethod   = Z_tmp_2;
3798   const Register Rcallsite = Z_tmp_1;
3799 
3800   prepare_invoke(byte_no, Rmethod, Rcallsite);
3801 
3802   // Rmethod: CallSite object (from f1)
3803   // Rcallsite: MH.linkToCallSite method (from f2)
3804 
3805   // Note: Callsite is already pushed by prepare_invoke.
3806 
3807   // TODO: should make a type profile for any invokedynamic that takes a ref argument.
3808   // Profile this call.
3809   __ profile_call(Z_ARG2);
3810   __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
3811   __ jump_from_interpreted(Rmethod, Z_ARG2);
3812 }
3813 
3814 //-----------------------------------------------------------------------------
3815 // Allocation
3816 
3817 // Original comment on "allow_shared_alloc":
3818 // Always go the slow path.
3819 //  + Eliminated optimization within the template-based interpreter:
3820 //    If an allocation is done within the interpreter without using
3821 //    tlabs, the interpreter tries to do the allocation directly
3822 //    on the heap.
3823 //  + That means the profiling hooks are not considered and allocations
3824 //    get lost for the profiling framework.
3825 //  + However, we do not think that this optimization is really needed,
3826 //    so we always go now the slow path through the VM in this case --
3827 //    spec jbb2005 shows no measurable performance degradation.
3828 void TemplateTable::_new() {
3829   transition(vtos, atos);
3830   address prev_instr_address = NULL;
3831   Register tags  = Z_tmp_1;
3832   Register RallocatedObject   = Z_tos;
3833   Register cpool = Z_ARG2;
3834   Register tmp = Z_ARG3; // RobjectFields==tmp and Rsize==offset must be a register pair.
3835   Register offset = Z_ARG4;
3836   Label slow_case;
3837   Label done;
3838   Label initialize_header;
3839   Label allocate_shared;
3840 
3841   BLOCK_COMMENT("TemplateTable::_new {");
3842   __ get_2_byte_integer_at_bcp(offset/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
3843   __ get_cpool_and_tags(cpool, tags);
3844   // Make sure the class we're about to instantiate has been resolved.
3845   // This is done before loading InstanceKlass to be consistent with the order
3846   // how Constant Pool is updated (see ConstantPool::klass_at_put).
3847   const int tags_offset = Array<u1>::base_offset_in_bytes();
3848   __ load_address(tmp, Address(tags, offset, tags_offset));
3849   __ z_cli(0, tmp, JVM_CONSTANT_Class);
3850   __ z_brne(slow_case);
3851 
3852   __ z_sllg(offset, offset, LogBytesPerWord); // Convert to to offset.
3853   // Get InstanceKlass.
3854   Register iklass = cpool;
3855   __ load_resolved_klass_at_offset(cpool, offset, iklass);
3856 
3857   // Make sure klass is initialized & doesn't have finalizer.
3858   // Make sure klass is fully initialized.
3859   const int state_offset = in_bytes(InstanceKlass::init_state_offset());
3860   if (Immediate::is_uimm12(state_offset)) {
3861     __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
3862   } else {
3863     __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
3864   }
3865   __ z_brne(slow_case);
3866 
3867   // Get instance_size in InstanceKlass (scaled to a count of bytes).
3868   Register Rsize = offset;
3869   const int mask = 1 << Klass::_lh_instance_slow_path_bit;
3870   __ z_llgf(Rsize, Address(iklass, Klass::layout_helper_offset()));
3871   __ z_tmll(Rsize, mask);
3872   __ z_btrue(slow_case);
3873 
3874   // Allocate the instance
3875   // 1) Try to allocate in the TLAB.
3876   // 2) If the above fails (or is not applicable), go to a slow case
3877   // (creates a new TLAB, etc.).
3878   // Note: compared to other architectures, s390's implementation always goes
3879   // to the slow path if TLAB is used and fails.
3880   if (UseTLAB) {
3881     Register RoldTopValue = RallocatedObject;
3882     Register RnewTopValue = tmp;
3883     __ z_lg(RoldTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
3884     __ load_address(RnewTopValue, Address(RoldTopValue, Rsize));
3885     __ z_cg(RnewTopValue, Address(Z_thread, JavaThread::tlab_end_offset()));
3886     __ z_brh(slow_case);
3887     __ z_stg(RnewTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
3888 
3889     Register RobjectFields = tmp;
3890     Register Rzero = Z_R1_scratch;
3891     __ clear_reg(Rzero, true /*whole reg*/, false); // Load 0L into Rzero. Don't set CC.
3892 
3893     if (!ZeroTLAB) {
3894       // The object is initialized before the header. If the object size is
3895       // zero, go directly to the header initialization.
3896       __ z_aghi(Rsize, (int)-sizeof(oopDesc)); // Subtract header size, set CC.
3897       __ z_bre(initialize_header);             // Jump if size of fields is zero.
3898 
3899       // Initialize object fields.
3900       // See documentation for MVCLE instruction!!!
3901       assert(RobjectFields->encoding() % 2 == 0, "RobjectFields must be an even register");
3902       assert(Rsize->encoding() == (RobjectFields->encoding()+1),
3903              "RobjectFields and Rsize must be a register pair");
3904       assert(Rzero->encoding() % 2 == 1, "Rzero must be an odd register");
3905 
3906       // Set Rzero to 0 and use it as src length, then mvcle will copy nothing
3907       // and fill the object with the padding value 0.
3908       __ add2reg(RobjectFields, sizeof(oopDesc), RallocatedObject);
3909       __ move_long_ext(RobjectFields, as_Register(Rzero->encoding() - 1), 0);
3910     }
3911 
3912     // Initialize object header only.
3913     __ bind(initialize_header);
3914     if (UseBiasedLocking) {
3915       Register prototype = RobjectFields;
3916       __ z_lg(prototype, Address(iklass, Klass::prototype_header_offset()));
3917       __ z_stg(prototype, Address(RallocatedObject, oopDesc::mark_offset_in_bytes()));
3918     } else {
3919       __ store_const(Address(RallocatedObject, oopDesc::mark_offset_in_bytes()),
3920                      (long)markOopDesc::prototype());
3921     }
3922 
3923     __ store_klass_gap(Rzero, RallocatedObject);  // Zero klass gap for compressed oops.
3924     __ store_klass(iklass, RallocatedObject);     // Store klass last.
3925 
3926     {
3927       SkipIfEqual skip(_masm, &DTraceAllocProbes, false, Z_ARG5 /*scratch*/);
3928       // Trigger dtrace event for fastpath.
3929       __ push(atos); // Save the return value.
3930       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), RallocatedObject);
3931       __ pop(atos); // Restore the return value.
3932     }
3933     __ z_bru(done);
3934   }
3935 
3936   // slow case
3937   __ bind(slow_case);
3938   __ get_constant_pool(Z_ARG2);
3939   __ get_2_byte_integer_at_bcp(Z_ARG3/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
3940   call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Z_ARG2, Z_ARG3);
3941   __ verify_oop(Z_tos);
3942 
3943   // continue
3944   __ bind(done);
3945 
3946   BLOCK_COMMENT("} TemplateTable::_new");
3947 }
3948 
3949 void TemplateTable::newarray() {
3950   transition(itos, atos);
3951 
3952   // Call runtime.
3953   __ z_llgc(Z_ARG2, at_bcp(1));   // type
3954   __ z_lgfr(Z_ARG3, Z_tos);       // size
3955   call_VM(Z_RET,
3956           CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3957           Z_ARG2, Z_ARG3);
3958 }
3959 
3960 void TemplateTable::anewarray() {
3961   transition(itos, atos);
3962   __ get_2_byte_integer_at_bcp(Z_ARG3, 1, InterpreterMacroAssembler::Unsigned);
3963   __ get_constant_pool(Z_ARG2);
3964   __ z_lgfr(Z_ARG4, Z_tos);
3965   call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3966           Z_ARG2, Z_ARG3, Z_ARG4);
3967 }
3968 
3969 void TemplateTable::arraylength() {
3970   transition(atos, itos);
3971 
3972   int offset = arrayOopDesc::length_offset_in_bytes();
3973 
3974   __ null_check(Z_tos, Z_R0_scratch, offset);
3975   __ mem2reg_opt(Z_tos, Address(Z_tos, offset), false);
3976 }
3977 
3978 void TemplateTable::checkcast() {
3979   transition(atos, atos);
3980 
3981   NearLabel done, is_null, ok_is_subtype, quicked, resolved;
3982 
3983   BLOCK_COMMENT("checkcast {");
3984   // If object is NULL, we are almost done.
3985   __ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
3986 
3987   // Get cpool & tags index.
3988   Register cpool = Z_tmp_1;
3989   Register tags = Z_tmp_2;
3990   Register index = Z_ARG5;
3991 
3992   __ get_cpool_and_tags(cpool, tags);
3993   __ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
3994   // See if bytecode has already been quicked.
3995   // Note: For CLI, we would have to add the index to the tags pointer first,
3996   // thus load and compare in a "classic" manner.
3997   __ z_llgc(Z_R0_scratch,
3998             Address(tags, index, Array<u1>::base_offset_in_bytes()));
3999   __ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class,
4000                            Assembler::bcondEqual, quicked);
4001 
4002   __ push(atos); // Save receiver for result, and for GC.
4003   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4004   __ get_vm_result_2(Z_tos);
4005 
4006   Register   receiver = Z_ARG4;
4007   Register   klass = Z_tos;
4008   Register   subklass = Z_ARG5;
4009 
4010   __ pop_ptr(receiver); // restore receiver
4011   __ z_bru(resolved);
4012 
4013   // Get superklass in klass and subklass in subklass.
4014   __ bind(quicked);
4015 
4016   __ z_lgr(Z_ARG4, Z_tos);  // Save receiver.
4017   __ z_sllg(index, index, LogBytesPerWord);  // index2bytes for addressing
4018   __ load_resolved_klass_at_offset(cpool, index, klass);
4019 
4020   __ bind(resolved);
4021 
4022   __ load_klass(subklass, receiver);
4023 
4024   // Generate subtype check. Object in receiver.
4025   // Superklass in klass. Subklass in subklass.
4026   __ gen_subtype_check(subklass, klass, Z_ARG3, Z_tmp_1, ok_is_subtype);
4027 
4028   // Come here on failure.
4029   __ push_ptr(receiver);
4030   // Object is at TOS, target klass oop expected in rax by convention.
4031   __ z_brul((address) Interpreter::_throw_ClassCastException_entry);
4032 
4033   // Come here on success.
4034   __ bind(ok_is_subtype);
4035 
4036   __ z_lgr(Z_tos, receiver); // Restore object.
4037 
4038   // Collect counts on whether this test sees NULLs a lot or not.
4039   if (ProfileInterpreter) {
4040     __ z_bru(done);
4041     __ bind(is_null);
4042     __ profile_null_seen(Z_tmp_1);
4043   } else {
4044     __ bind(is_null);   // Same as 'done'.
4045   }
4046 
4047   __ bind(done);
4048   BLOCK_COMMENT("} checkcast");
4049 }
4050 
4051 void TemplateTable::instanceof() {
4052   transition(atos, itos);
4053 
4054   NearLabel done, is_null, ok_is_subtype, quicked, resolved;
4055 
4056   BLOCK_COMMENT("instanceof {");
4057   // If object is NULL, we are almost done.
4058   __ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
4059 
4060   // Get cpool & tags index.
4061   Register cpool = Z_tmp_1;
4062   Register tags = Z_tmp_2;
4063   Register index = Z_ARG5;
4064 
4065   __ get_cpool_and_tags(cpool, tags);
4066   __ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
4067   // See if bytecode has already been quicked.
4068   // Note: For CLI, we would have to add the index to the tags pointer first,
4069   // thus load and compare in a "classic" manner.
4070   __ z_llgc(Z_R0_scratch,
4071             Address(tags, index, Array<u1>::base_offset_in_bytes()));
4072   __ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class, Assembler::bcondEqual, quicked);
4073 
4074   __ push(atos); // Save receiver for result, and for GC.
4075   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4076   __ get_vm_result_2(Z_tos);
4077 
4078   Register receiver = Z_tmp_2;
4079   Register klass = Z_tos;
4080   Register subklass = Z_tmp_2;
4081 
4082   __ pop_ptr(receiver); // Restore receiver.
4083   __ verify_oop(receiver);
4084   __ load_klass(subklass, subklass);
4085   __ z_bru(resolved);
4086 
4087   // Get superklass in klass and subklass in subklass.
4088   __ bind(quicked);
4089 
4090   __ load_klass(subklass, Z_tos);
4091   __ z_sllg(index, index, LogBytesPerWord);  // index2bytes for addressing
4092   __ load_resolved_klass_at_offset(cpool, index, klass);
4093 
4094   __ bind(resolved);
4095 
4096   // Generate subtype check.
4097   // Superklass in klass. Subklass in subklass.
4098   __ gen_subtype_check(subklass, klass, Z_ARG4, Z_ARG5, ok_is_subtype);
4099 
4100   // Come here on failure.
4101   __ clear_reg(Z_tos, true, false);
4102   __ z_bru(done);
4103 
4104   // Come here on success.
4105   __ bind(ok_is_subtype);
4106   __ load_const_optimized(Z_tos, 1);
4107 
4108   // Collect counts on whether this test sees NULLs a lot or not.
4109   if (ProfileInterpreter) {
4110     __ z_bru(done);
4111     __ bind(is_null);
4112     __ profile_null_seen(Z_tmp_1);
4113   } else {
4114     __ bind(is_null);   // same as 'done'
4115   }
4116 
4117   __ bind(done);
4118   // tos = 0: obj == NULL or  obj is not an instanceof the specified klass
4119   // tos = 1: obj != NULL and obj is     an instanceof the specified klass
4120   BLOCK_COMMENT("} instanceof");
4121 }
4122 
4123 //-----------------------------------------------------------------------------
4124 // Breakpoints
4125 void TemplateTable::_breakpoint() {
4126 
4127   // Note: We get here even if we are single stepping.
4128   // Jbug insists on setting breakpoints at every bytecode
4129   // even if we are in single step mode.
4130 
4131   transition(vtos, vtos);
4132 
4133   // Get the unpatched byte code.
4134   __ get_method(Z_ARG2);
4135   __ call_VM(noreg,
4136              CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at),
4137              Z_ARG2, Z_bcp);
4138   // Save the result to a register that is preserved over C-function calls.
4139   __ z_lgr(Z_tmp_1, Z_RET);
4140 
4141   // Post the breakpoint event.
4142   __ get_method(Z_ARG2);
4143   __ call_VM(noreg,
4144              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4145              Z_ARG2, Z_bcp);
4146 
4147   // Must restore the bytecode, because call_VM destroys Z_bytecode.
4148   __ z_lgr(Z_bytecode, Z_tmp_1);
4149 
4150   // Complete the execution of original bytecode.
4151   __ dispatch_only_normal(vtos);
4152 }
4153 
4154 
4155 // Exceptions
4156 
4157 void TemplateTable::athrow() {
4158   transition(atos, vtos);
4159   __ null_check(Z_tos);
4160   __ load_absolute_address(Z_ARG2, Interpreter::throw_exception_entry());
4161   __ z_br(Z_ARG2);
4162 }
4163 
4164 // Synchronization
4165 //
4166 // Note: monitorenter & exit are symmetric routines; which is reflected
4167 //       in the assembly code structure as well
4168 //
4169 // Stack layout:
4170 //
4171 //               callers_sp        <- Z_SP (callers_sp == Z_fp (own fp))
4172 //               return_pc
4173 //               [rest of ABI_160]
4174 //              /slot o:   free
4175 //             / ...       free
4176 //       oper. | slot n+1: free    <- Z_esp points to first free slot
4177 //       stack | slot n:   val                      caches IJAVA_STATE.esp
4178 //             | ...
4179 //              \slot 0:   val
4180 //              /slot m            <- IJAVA_STATE.monitors = monitor block top
4181 //             | ...
4182 //     monitors| slot 2
4183 //             | slot 1
4184 //              \slot 0
4185 //              /slot l            <- monitor block bot
4186 // ijava_state | ...
4187 //             | slot 2
4188 //              \slot 0
4189 //                                 <- Z_fp
4190 void TemplateTable::monitorenter() {
4191   transition(atos, vtos);
4192 
4193   BLOCK_COMMENT("monitorenter {");
4194 
4195   // Check for NULL object.
4196   __ null_check(Z_tos);
4197   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4198   NearLabel allocated;
4199   // Initialize entry pointer.
4200   const Register Rfree_slot = Z_tmp_1;
4201   __ clear_reg(Rfree_slot, true, false); // Points to free slot or NULL. Don't set CC.
4202 
4203   // Find a free slot in the monitor block from top to bot (result in Rfree_slot).
4204   {
4205     const Register Rcurr_monitor = Z_ARG2;
4206     const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
4207     const Register Rlocked_obj = Z_ARG4;
4208     NearLabel loop, exit, not_free;
4209     // Starting with top-most entry.
4210     __ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
4211     __ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
4212 
4213 #ifdef ASSERT
4214     address reentry = NULL;
4215     { NearLabel ok;
4216       __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
4217       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
4218       __ bind(ok);
4219     }
4220     { NearLabel ok;
4221       __ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
4222       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
4223       __ bind(ok);
4224     }
4225 #endif
4226 
4227     // Check if bottom reached, i.e. if there is at least one monitor.
4228     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, exit);
4229 
4230     __ bind(loop);
4231     // Check if current entry is used.
4232     __ load_and_test_long(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
4233     __ z_brne(not_free);
4234     // If not used then remember entry in Rfree_slot.
4235     __ z_lgr(Rfree_slot, Rcurr_monitor);
4236     __ bind(not_free);
4237     // Exit if current entry is for same object; this guarantees, that new monitor
4238     // used for recursive lock is above the older one.
4239     __ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, exit);
4240     // otherwise advance to next entry
4241     __ add2reg(Rcurr_monitor, entry_size);
4242     // Check if bottom reached, if not at bottom then check this entry.
4243     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
4244     __ bind(exit);
4245   }
4246 
4247   // Rfree_slot != NULL -> found one
4248   __ compareU64_and_branch(Rfree_slot, (intptr_t)0L, Assembler::bcondNotEqual, allocated);
4249 
4250   // Allocate one if there's no free slot.
4251   __ add_monitor_to_stack(false, Z_ARG3, Z_ARG4, Z_ARG5);
4252   __ get_monitors(Rfree_slot);
4253 
4254   // Rfree_slot: points to monitor entry.
4255   __ bind(allocated);
4256 
4257   // Increment bcp to point to the next bytecode, so exception
4258   // handling for async. exceptions work correctly.
4259   // The object has already been poped from the stack, so the
4260   // expression stack looks correct.
4261   __ add2reg(Z_bcp, 1, Z_bcp);
4262 
4263   // Store object.
4264   __ z_stg(Z_tos, BasicObjectLock::obj_offset_in_bytes(), Rfree_slot);
4265   __ lock_object(Rfree_slot, Z_tos);
4266 
4267   // Check to make sure this monitor doesn't cause stack overflow after locking.
4268   __ save_bcp();  // in case of exception
4269   __ generate_stack_overflow_check(0);
4270 
4271   // The bcp has already been incremented. Just need to dispatch to
4272   // next instruction.
4273   __ dispatch_next(vtos);
4274 
4275   BLOCK_COMMENT("} monitorenter");
4276 }
4277 
4278 
4279 void TemplateTable::monitorexit() {
4280   transition(atos, vtos);
4281 
4282   BLOCK_COMMENT("monitorexit {");
4283 
4284   // Check for NULL object.
4285   __ null_check(Z_tos);
4286 
4287   NearLabel found, not_found;
4288   const Register Rcurr_monitor = Z_ARG2;
4289 
4290   // Find matching slot.
4291   {
4292     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4293     NearLabel entry, loop;
4294 
4295     const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
4296     const Register Rlocked_obj = Z_ARG4;
4297     // Starting with top-most entry.
4298     __ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
4299     __ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
4300 
4301 #ifdef ASSERT
4302     address reentry = NULL;
4303     { NearLabel ok;
4304       __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
4305       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
4306       __ bind(ok);
4307     }
4308     { NearLabel ok;
4309       __ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
4310       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
4311       __ bind(ok);
4312     }
4313 #endif
4314 
4315     // Check if bottom reached, i.e. if there is at least one monitor.
4316     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, not_found);
4317 
4318     __ bind(loop);
4319     // Check if current entry is for same object.
4320     __ z_lg(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
4321     // If same object then stop searching.
4322     __ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, found);
4323     // Otherwise advance to next entry.
4324     __ add2reg(Rcurr_monitor, entry_size);
4325     // Check if bottom reached, if not at bottom then check this entry.
4326     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
4327   }
4328 
4329   __ bind(not_found);
4330   // Error handling. Unlocking was not block-structured.
4331   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4332                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4333   __ should_not_reach_here();
4334 
4335   __ bind(found);
4336   __ push_ptr(Z_tos); // Make sure object is on stack (contract with oopMaps).
4337   __ unlock_object(Rcurr_monitor, Z_tos);
4338   __ pop_ptr(Z_tos); // Discard object.
4339   BLOCK_COMMENT("} monitorexit");
4340 }
4341 
4342 // Wide instructions
4343 void TemplateTable::wide() {
4344   transition(vtos, vtos);
4345 
4346   __ z_llgc(Z_R1_scratch, at_bcp(1));
4347   __ z_sllg(Z_R1_scratch, Z_R1_scratch, LogBytesPerWord);
4348   __ load_absolute_address(Z_tmp_1, (address) Interpreter::_wentry_point);
4349   __ mem2reg_opt(Z_tmp_1, Address(Z_tmp_1, Z_R1_scratch));
4350   __ z_br(Z_tmp_1);
4351   // Note: the bcp increment step is part of the individual wide
4352   // bytecode implementations.
4353 }
4354 
4355 // Multi arrays
4356 void TemplateTable::multianewarray() {
4357   transition(vtos, atos);
4358 
4359   __ z_llgc(Z_tmp_1, at_bcp(3)); // Get number of dimensions.
4360   // Slot count to byte offset.
4361   __ z_sllg(Z_tmp_1, Z_tmp_1, Interpreter::logStackElementSize);
4362   // Z_esp points past last_dim, so set to Z_ARG2 to first_dim address.
4363   __ load_address(Z_ARG2, Address(Z_esp, Z_tmp_1));
4364   call_VM(Z_RET,
4365           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4366           Z_ARG2);
4367   // Pop dimensions from expression stack.
4368   __ z_agr(Z_esp, Z_tmp_1);
4369 }