1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/arraycopynode.hpp"
  36 #include "opto/c2compiler.hpp"
  37 #include "opto/callGenerator.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/cfgnode.hpp"
  40 #include "opto/convertnode.hpp"
  41 #include "opto/countbitsnode.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/mathexactnode.hpp"
  45 #include "opto/movenode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "prims/nativeLookup.hpp"
  54 #include "prims/unsafe.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #ifdef TRACE_HAVE_INTRINSICS
  57 #include "trace/traceMacros.hpp"
  58 #endif
  59 
  60 class LibraryIntrinsic : public InlineCallGenerator {
  61   // Extend the set of intrinsics known to the runtime:
  62  public:
  63  private:
  64   bool             _is_virtual;
  65   bool             _does_virtual_dispatch;
  66   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  67   int8_t           _last_predicate; // Last generated predicate
  68   vmIntrinsics::ID _intrinsic_id;
  69 
  70  public:
  71   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  72     : InlineCallGenerator(m),
  73       _is_virtual(is_virtual),
  74       _does_virtual_dispatch(does_virtual_dispatch),
  75       _predicates_count((int8_t)predicates_count),
  76       _last_predicate((int8_t)-1),
  77       _intrinsic_id(id)
  78   {
  79   }
  80   virtual bool is_intrinsic() const { return true; }
  81   virtual bool is_virtual()   const { return _is_virtual; }
  82   virtual bool is_predicated() const { return _predicates_count > 0; }
  83   virtual int  predicates_count() const { return _predicates_count; }
  84   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  85   virtual JVMState* generate(JVMState* jvms);
  86   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  87   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  88 };
  89 
  90 
  91 // Local helper class for LibraryIntrinsic:
  92 class LibraryCallKit : public GraphKit {
  93  private:
  94   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  95   Node*             _result;        // the result node, if any
  96   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  97 
  98   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
  99 
 100  public:
 101   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 102     : GraphKit(jvms),
 103       _intrinsic(intrinsic),
 104       _result(NULL)
 105   {
 106     // Check if this is a root compile.  In that case we don't have a caller.
 107     if (!jvms->has_method()) {
 108       _reexecute_sp = sp();
 109     } else {
 110       // Find out how many arguments the interpreter needs when deoptimizing
 111       // and save the stack pointer value so it can used by uncommon_trap.
 112       // We find the argument count by looking at the declared signature.
 113       bool ignored_will_link;
 114       ciSignature* declared_signature = NULL;
 115       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 116       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 117       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 118     }
 119   }
 120 
 121   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 122 
 123   ciMethod*         caller()    const    { return jvms()->method(); }
 124   int               bci()       const    { return jvms()->bci(); }
 125   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 126   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 127   ciMethod*         callee()    const    { return _intrinsic->method(); }
 128 
 129   bool  try_to_inline(int predicate);
 130   Node* try_to_predicate(int predicate);
 131 
 132   void push_result() {
 133     // Push the result onto the stack.
 134     if (!stopped() && result() != NULL) {
 135       BasicType bt = result()->bottom_type()->basic_type();
 136       push_node(bt, result());
 137     }
 138   }
 139 
 140  private:
 141   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 142     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 143   }
 144 
 145   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 146   void  set_result(RegionNode* region, PhiNode* value);
 147   Node*     result() { return _result; }
 148 
 149   virtual int reexecute_sp() { return _reexecute_sp; }
 150 
 151   // Helper functions to inline natives
 152   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 153   Node* generate_slow_guard(Node* test, RegionNode* region);
 154   Node* generate_fair_guard(Node* test, RegionNode* region);
 155   Node* generate_negative_guard(Node* index, RegionNode* region,
 156                                 // resulting CastII of index:
 157                                 Node* *pos_index = NULL);
 158   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 159                              Node* array_length,
 160                              RegionNode* region);
 161   void  generate_string_range_check(Node* array, Node* offset,
 162                                     Node* length, bool char_count);
 163   Node* generate_current_thread(Node* &tls_output);
 164   Node* load_mirror_from_klass(Node* klass);
 165   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 166                                       RegionNode* region, int null_path,
 167                                       int offset);
 168   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 169                                RegionNode* region, int null_path) {
 170     int offset = java_lang_Class::klass_offset_in_bytes();
 171     return load_klass_from_mirror_common(mirror, never_see_null,
 172                                          region, null_path,
 173                                          offset);
 174   }
 175   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 176                                      RegionNode* region, int null_path) {
 177     int offset = java_lang_Class::array_klass_offset_in_bytes();
 178     return load_klass_from_mirror_common(mirror, never_see_null,
 179                                          region, null_path,
 180                                          offset);
 181   }
 182   Node* generate_access_flags_guard(Node* kls,
 183                                     int modifier_mask, int modifier_bits,
 184                                     RegionNode* region);
 185   Node* generate_interface_guard(Node* kls, RegionNode* region);
 186   Node* generate_array_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, false, false);
 188   }
 189   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, false, true);
 191   }
 192   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 193     return generate_array_guard_common(kls, region, true, false);
 194   }
 195   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 196     return generate_array_guard_common(kls, region, true, true);
 197   }
 198   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 199                                     bool obj_array, bool not_array);
 200   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 201   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 202                                      bool is_virtual = false, bool is_static = false);
 203   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 204     return generate_method_call(method_id, false, true);
 205   }
 206   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 207     return generate_method_call(method_id, true, false);
 208   }
 209   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 210   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 211 
 212   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 213   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 214   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 215   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 216   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 217                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_indexOfChar();
 219   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 220   bool inline_string_toBytesU();
 221   bool inline_string_getCharsU();
 222   bool inline_string_copy(bool compress);
 223   bool inline_string_char_access(bool is_store);
 224   Node* round_double_node(Node* n);
 225   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 226   bool inline_math_native(vmIntrinsics::ID id);
 227   bool inline_math(vmIntrinsics::ID id);
 228   template <typename OverflowOp>
 229   bool inline_math_overflow(Node* arg1, Node* arg2);
 230   void inline_math_mathExact(Node* math, Node* test);
 231   bool inline_math_addExactI(bool is_increment);
 232   bool inline_math_addExactL(bool is_increment);
 233   bool inline_math_multiplyExactI();
 234   bool inline_math_multiplyExactL();
 235   bool inline_math_multiplyHigh();
 236   bool inline_math_negateExactI();
 237   bool inline_math_negateExactL();
 238   bool inline_math_subtractExactI(bool is_decrement);
 239   bool inline_math_subtractExactL(bool is_decrement);
 240   bool inline_min_max(vmIntrinsics::ID id);
 241   bool inline_notify(vmIntrinsics::ID id);
 242   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 243   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 244   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 245   Node* make_unsafe_address(Node*& base, Node* offset, BasicType type = T_ILLEGAL, bool can_cast = false);
 246   // Helper for inline_unsafe_access.
 247   // Generates the guards that check whether the result of
 248   // Unsafe.getObject should be recorded in an SATB log buffer.
 249   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 250 
 251   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 252   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 253   static bool klass_needs_init_guard(Node* kls);
 254   bool inline_unsafe_allocate();
 255   bool inline_unsafe_newArray(bool uninitialized);
 256   bool inline_unsafe_copyMemory();
 257   bool inline_native_currentThread();
 258 
 259   bool inline_native_time_funcs(address method, const char* funcName);
 260 #ifdef TRACE_HAVE_INTRINSICS
 261   bool inline_native_classID();
 262   bool inline_native_getBufferWriter();
 263 #endif
 264   bool inline_native_isInterrupted();
 265   bool inline_native_Class_query(vmIntrinsics::ID id);
 266   bool inline_native_subtype_check();
 267   bool inline_native_getLength();
 268   bool inline_array_copyOf(bool is_copyOfRange);
 269   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 270   bool inline_preconditions_checkIndex();
 271   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 272   bool inline_native_clone(bool is_virtual);
 273   bool inline_native_Reflection_getCallerClass();
 274   // Helper function for inlining native object hash method
 275   bool inline_native_hashcode(bool is_virtual, bool is_static);
 276   bool inline_native_getClass();
 277 
 278   // Helper functions for inlining arraycopy
 279   bool inline_arraycopy();
 280   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 281                                                 RegionNode* slow_region);
 282   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 283   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 284                                       uint new_idx);
 285 
 286   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 287   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 288   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 289   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 290   bool inline_unsafe_fence(vmIntrinsics::ID id);
 291   bool inline_onspinwait();
 292   bool inline_fp_conversions(vmIntrinsics::ID id);
 293   bool inline_number_methods(vmIntrinsics::ID id);
 294   bool inline_reference_get();
 295   bool inline_Class_cast();
 296   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 297   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 298   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 299   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 300   Node* inline_counterMode_AESCrypt_predicate();
 301   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 302   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 303   bool inline_ghash_processBlocks();
 304   bool inline_sha_implCompress(vmIntrinsics::ID id);
 305   bool inline_digestBase_implCompressMB(int predicate);
 306   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 307                                  bool long_state, address stubAddr, const char *stubName,
 308                                  Node* src_start, Node* ofs, Node* limit);
 309   Node* get_state_from_sha_object(Node *sha_object);
 310   Node* get_state_from_sha5_object(Node *sha_object);
 311   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 312   bool inline_encodeISOArray();
 313   bool inline_updateCRC32();
 314   bool inline_updateBytesCRC32();
 315   bool inline_updateByteBufferCRC32();
 316   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 317   bool inline_updateBytesCRC32C();
 318   bool inline_updateDirectByteBufferCRC32C();
 319   bool inline_updateBytesAdler32();
 320   bool inline_updateByteBufferAdler32();
 321   bool inline_multiplyToLen();
 322   bool inline_hasNegatives();
 323   bool inline_squareToLen();
 324   bool inline_mulAdd();
 325   bool inline_montgomeryMultiply();
 326   bool inline_montgomerySquare();
 327   bool inline_vectorizedMismatch();
 328   bool inline_fma(vmIntrinsics::ID id);
 329 
 330   bool inline_profileBoolean();
 331   bool inline_isCompileConstant();
 332   void clear_upper_avx() {
 333 #ifdef X86
 334     if (UseAVX >= 2) {
 335       C->set_clear_upper_avx(true);
 336     }
 337 #endif
 338   }
 339 };
 340 
 341 //---------------------------make_vm_intrinsic----------------------------
 342 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 343   vmIntrinsics::ID id = m->intrinsic_id();
 344   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 345 
 346   if (!m->is_loaded()) {
 347     // Do not attempt to inline unloaded methods.
 348     return NULL;
 349   }
 350 
 351   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 352   bool is_available = false;
 353 
 354   {
 355     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 356     // the compiler must transition to '_thread_in_vm' state because both
 357     // methods access VM-internal data.
 358     VM_ENTRY_MARK;
 359     methodHandle mh(THREAD, m->get_Method());
 360     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 361                    !C->directive()->is_intrinsic_disabled(mh) &&
 362                    !vmIntrinsics::is_disabled_by_flags(mh);
 363 
 364   }
 365 
 366   if (is_available) {
 367     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 368     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 369     return new LibraryIntrinsic(m, is_virtual,
 370                                 vmIntrinsics::predicates_needed(id),
 371                                 vmIntrinsics::does_virtual_dispatch(id),
 372                                 (vmIntrinsics::ID) id);
 373   } else {
 374     return NULL;
 375   }
 376 }
 377 
 378 //----------------------register_library_intrinsics-----------------------
 379 // Initialize this file's data structures, for each Compile instance.
 380 void Compile::register_library_intrinsics() {
 381   // Nothing to do here.
 382 }
 383 
 384 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 385   LibraryCallKit kit(jvms, this);
 386   Compile* C = kit.C;
 387   int nodes = C->unique();
 388 #ifndef PRODUCT
 389   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 390     char buf[1000];
 391     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 392     tty->print_cr("Intrinsic %s", str);
 393   }
 394 #endif
 395   ciMethod* callee = kit.callee();
 396   const int bci    = kit.bci();
 397 
 398   // Try to inline the intrinsic.
 399   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 400       kit.try_to_inline(_last_predicate)) {
 401     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 402                                           : "(intrinsic)";
 403     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 404     if (C->print_intrinsics() || C->print_inlining()) {
 405       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 406     }
 407     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 408     if (C->log()) {
 409       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 410                      vmIntrinsics::name_at(intrinsic_id()),
 411                      (is_virtual() ? " virtual='1'" : ""),
 412                      C->unique() - nodes);
 413     }
 414     // Push the result from the inlined method onto the stack.
 415     kit.push_result();
 416     C->print_inlining_update(this);
 417     return kit.transfer_exceptions_into_jvms();
 418   }
 419 
 420   // The intrinsic bailed out
 421   if (jvms->has_method()) {
 422     // Not a root compile.
 423     const char* msg;
 424     if (callee->intrinsic_candidate()) {
 425       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 426     } else {
 427       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 428                          : "failed to inline (intrinsic), method not annotated";
 429     }
 430     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 431     if (C->print_intrinsics() || C->print_inlining()) {
 432       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 433     }
 434   } else {
 435     // Root compile
 436     ResourceMark rm;
 437     stringStream msg_stream;
 438     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 439                      vmIntrinsics::name_at(intrinsic_id()),
 440                      is_virtual() ? " (virtual)" : "", bci);
 441     const char *msg = msg_stream.as_string();
 442     log_debug(jit, inlining)("%s", msg);
 443     if (C->print_intrinsics() || C->print_inlining()) {
 444       tty->print("%s", msg);
 445     }
 446   }
 447   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 448   C->print_inlining_update(this);
 449   return NULL;
 450 }
 451 
 452 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 453   LibraryCallKit kit(jvms, this);
 454   Compile* C = kit.C;
 455   int nodes = C->unique();
 456   _last_predicate = predicate;
 457 #ifndef PRODUCT
 458   assert(is_predicated() && predicate < predicates_count(), "sanity");
 459   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 460     char buf[1000];
 461     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 462     tty->print_cr("Predicate for intrinsic %s", str);
 463   }
 464 #endif
 465   ciMethod* callee = kit.callee();
 466   const int bci    = kit.bci();
 467 
 468   Node* slow_ctl = kit.try_to_predicate(predicate);
 469   if (!kit.failing()) {
 470     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 471                                           : "(intrinsic, predicate)";
 472     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 473     if (C->print_intrinsics() || C->print_inlining()) {
 474       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 475     }
 476     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 477     if (C->log()) {
 478       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 479                      vmIntrinsics::name_at(intrinsic_id()),
 480                      (is_virtual() ? " virtual='1'" : ""),
 481                      C->unique() - nodes);
 482     }
 483     return slow_ctl; // Could be NULL if the check folds.
 484   }
 485 
 486   // The intrinsic bailed out
 487   if (jvms->has_method()) {
 488     // Not a root compile.
 489     const char* msg = "failed to generate predicate for intrinsic";
 490     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 491     if (C->print_intrinsics() || C->print_inlining()) {
 492       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 493     }
 494   } else {
 495     // Root compile
 496     ResourceMark rm;
 497     stringStream msg_stream;
 498     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 499                      vmIntrinsics::name_at(intrinsic_id()),
 500                      is_virtual() ? " (virtual)" : "", bci);
 501     const char *msg = msg_stream.as_string();
 502     log_debug(jit, inlining)("%s", msg);
 503     if (C->print_intrinsics() || C->print_inlining()) {
 504       C->print_inlining_stream()->print("%s", msg);
 505     }
 506   }
 507   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 508   return NULL;
 509 }
 510 
 511 bool LibraryCallKit::try_to_inline(int predicate) {
 512   // Handle symbolic names for otherwise undistinguished boolean switches:
 513   const bool is_store       = true;
 514   const bool is_compress    = true;
 515   const bool is_static      = true;
 516   const bool is_volatile    = true;
 517 
 518   if (!jvms()->has_method()) {
 519     // Root JVMState has a null method.
 520     assert(map()->memory()->Opcode() == Op_Parm, "");
 521     // Insert the memory aliasing node
 522     set_all_memory(reset_memory());
 523   }
 524   assert(merged_memory(), "");
 525 
 526 
 527   switch (intrinsic_id()) {
 528   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 529   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 530   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 531 
 532   case vmIntrinsics::_dsin:
 533   case vmIntrinsics::_dcos:
 534   case vmIntrinsics::_dtan:
 535   case vmIntrinsics::_dabs:
 536   case vmIntrinsics::_datan2:
 537   case vmIntrinsics::_dsqrt:
 538   case vmIntrinsics::_dexp:
 539   case vmIntrinsics::_dlog:
 540   case vmIntrinsics::_dlog10:
 541   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 542 
 543   case vmIntrinsics::_min:
 544   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 545 
 546   case vmIntrinsics::_notify:
 547   case vmIntrinsics::_notifyAll:
 548     if (InlineNotify) {
 549       return inline_notify(intrinsic_id());
 550     }
 551     return false;
 552 
 553   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 554   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 555   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 556   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 557   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 558   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 559   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 560   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 561   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 562   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 563   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 564   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 565   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 566 
 567   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 568 
 569   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 570   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 571   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 572   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 573 
 574   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 575   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 576   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 577   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 578   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 579   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 580   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 581 
 582   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 583   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 584 
 585   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 586   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 587   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 588   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 589 
 590   case vmIntrinsics::_compressStringC:
 591   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 592   case vmIntrinsics::_inflateStringC:
 593   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 594 
 595   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 596   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 597   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 598   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 599   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 600   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 601   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 602   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 603   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 604 
 605   case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 606   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 607   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 608   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 609   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 610   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 611   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 612   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 613   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 614 
 615   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 616   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 617   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 618   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 619   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 620   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 621   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 622   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 623   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 624 
 625   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 626   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 627   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 628   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 629   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 630   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 631   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 632   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 633   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 634 
 635   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 636   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 637   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 638   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 639 
 640   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 641   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 642   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 643   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 644 
 645   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 646   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 647   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 648   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 649   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 650   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 651   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 652   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 653   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 654 
 655   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 656   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 657   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 658   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 659   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 660   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 661   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 662   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 663   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 664 
 665   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 666   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 667   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 668   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 669   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 670   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 671   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 672   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 673   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 674 
 675   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 676   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 677   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 678   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 679   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 680   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 681   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 682   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 683   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 684 
 685   case vmIntrinsics::_compareAndSetObject:              return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 686   case vmIntrinsics::_compareAndSetByte:                return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 687   case vmIntrinsics::_compareAndSetShort:               return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 688   case vmIntrinsics::_compareAndSetInt:                 return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 689   case vmIntrinsics::_compareAndSetLong:                return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 690 
 691   case vmIntrinsics::_weakCompareAndSetObjectPlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 692   case vmIntrinsics::_weakCompareAndSetObjectAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 693   case vmIntrinsics::_weakCompareAndSetObjectRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 694   case vmIntrinsics::_weakCompareAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 695   case vmIntrinsics::_weakCompareAndSetBytePlain:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 696   case vmIntrinsics::_weakCompareAndSetByteAcquire:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 697   case vmIntrinsics::_weakCompareAndSetByteRelease:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 698   case vmIntrinsics::_weakCompareAndSetByte:            return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 699   case vmIntrinsics::_weakCompareAndSetShortPlain:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 700   case vmIntrinsics::_weakCompareAndSetShortAcquire:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 701   case vmIntrinsics::_weakCompareAndSetShortRelease:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 702   case vmIntrinsics::_weakCompareAndSetShort:           return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 703   case vmIntrinsics::_weakCompareAndSetIntPlain:        return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 704   case vmIntrinsics::_weakCompareAndSetIntAcquire:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 705   case vmIntrinsics::_weakCompareAndSetIntRelease:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 706   case vmIntrinsics::_weakCompareAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 707   case vmIntrinsics::_weakCompareAndSetLongPlain:       return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 708   case vmIntrinsics::_weakCompareAndSetLongAcquire:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 709   case vmIntrinsics::_weakCompareAndSetLongRelease:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 710   case vmIntrinsics::_weakCompareAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 711 
 712   case vmIntrinsics::_compareAndExchangeObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 713   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 714   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 715   case vmIntrinsics::_compareAndExchangeByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 716   case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 717   case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 718   case vmIntrinsics::_compareAndExchangeShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 719   case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 720   case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 721   case vmIntrinsics::_compareAndExchangeInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 722   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 723   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 724   case vmIntrinsics::_compareAndExchangeLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 725   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 726   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 727 
 728   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 729   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 730   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 731   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 732 
 733   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 734   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 735   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 736   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 737   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 738 
 739   case vmIntrinsics::_loadFence:
 740   case vmIntrinsics::_storeFence:
 741   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 742 
 743   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 744 
 745   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 746   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 747 
 748 #ifdef TRACE_HAVE_INTRINSICS
 749   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 750   case vmIntrinsics::_getClassId:               return inline_native_classID();
 751   case vmIntrinsics::_getBufferWriter:          return inline_native_getBufferWriter();
 752 #endif
 753   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 754   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 755   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 756   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 757   case vmIntrinsics::_getLength:                return inline_native_getLength();
 758   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 759   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 760   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 761   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 762   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 763   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 764 
 765   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 766   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 767 
 768   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 769 
 770   case vmIntrinsics::_isInstance:
 771   case vmIntrinsics::_getModifiers:
 772   case vmIntrinsics::_isInterface:
 773   case vmIntrinsics::_isArray:
 774   case vmIntrinsics::_isPrimitive:
 775   case vmIntrinsics::_getSuperclass:
 776   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 777 
 778   case vmIntrinsics::_floatToRawIntBits:
 779   case vmIntrinsics::_floatToIntBits:
 780   case vmIntrinsics::_intBitsToFloat:
 781   case vmIntrinsics::_doubleToRawLongBits:
 782   case vmIntrinsics::_doubleToLongBits:
 783   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 784 
 785   case vmIntrinsics::_numberOfLeadingZeros_i:
 786   case vmIntrinsics::_numberOfLeadingZeros_l:
 787   case vmIntrinsics::_numberOfTrailingZeros_i:
 788   case vmIntrinsics::_numberOfTrailingZeros_l:
 789   case vmIntrinsics::_bitCount_i:
 790   case vmIntrinsics::_bitCount_l:
 791   case vmIntrinsics::_reverseBytes_i:
 792   case vmIntrinsics::_reverseBytes_l:
 793   case vmIntrinsics::_reverseBytes_s:
 794   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 795 
 796   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 797 
 798   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 799 
 800   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 801 
 802   case vmIntrinsics::_aescrypt_encryptBlock:
 803   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 804 
 805   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 806   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 807     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 808 
 809   case vmIntrinsics::_counterMode_AESCrypt:
 810     return inline_counterMode_AESCrypt(intrinsic_id());
 811 
 812   case vmIntrinsics::_sha_implCompress:
 813   case vmIntrinsics::_sha2_implCompress:
 814   case vmIntrinsics::_sha5_implCompress:
 815     return inline_sha_implCompress(intrinsic_id());
 816 
 817   case vmIntrinsics::_digestBase_implCompressMB:
 818     return inline_digestBase_implCompressMB(predicate);
 819 
 820   case vmIntrinsics::_multiplyToLen:
 821     return inline_multiplyToLen();
 822 
 823   case vmIntrinsics::_squareToLen:
 824     return inline_squareToLen();
 825 
 826   case vmIntrinsics::_mulAdd:
 827     return inline_mulAdd();
 828 
 829   case vmIntrinsics::_montgomeryMultiply:
 830     return inline_montgomeryMultiply();
 831   case vmIntrinsics::_montgomerySquare:
 832     return inline_montgomerySquare();
 833 
 834   case vmIntrinsics::_vectorizedMismatch:
 835     return inline_vectorizedMismatch();
 836 
 837   case vmIntrinsics::_ghash_processBlocks:
 838     return inline_ghash_processBlocks();
 839 
 840   case vmIntrinsics::_encodeISOArray:
 841   case vmIntrinsics::_encodeByteISOArray:
 842     return inline_encodeISOArray();
 843 
 844   case vmIntrinsics::_updateCRC32:
 845     return inline_updateCRC32();
 846   case vmIntrinsics::_updateBytesCRC32:
 847     return inline_updateBytesCRC32();
 848   case vmIntrinsics::_updateByteBufferCRC32:
 849     return inline_updateByteBufferCRC32();
 850 
 851   case vmIntrinsics::_updateBytesCRC32C:
 852     return inline_updateBytesCRC32C();
 853   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 854     return inline_updateDirectByteBufferCRC32C();
 855 
 856   case vmIntrinsics::_updateBytesAdler32:
 857     return inline_updateBytesAdler32();
 858   case vmIntrinsics::_updateByteBufferAdler32:
 859     return inline_updateByteBufferAdler32();
 860 
 861   case vmIntrinsics::_profileBoolean:
 862     return inline_profileBoolean();
 863   case vmIntrinsics::_isCompileConstant:
 864     return inline_isCompileConstant();
 865 
 866   case vmIntrinsics::_hasNegatives:
 867     return inline_hasNegatives();
 868 
 869   case vmIntrinsics::_fmaD:
 870   case vmIntrinsics::_fmaF:
 871     return inline_fma(intrinsic_id());
 872 
 873   default:
 874     // If you get here, it may be that someone has added a new intrinsic
 875     // to the list in vmSymbols.hpp without implementing it here.
 876 #ifndef PRODUCT
 877     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 878       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 879                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 880     }
 881 #endif
 882     return false;
 883   }
 884 }
 885 
 886 Node* LibraryCallKit::try_to_predicate(int predicate) {
 887   if (!jvms()->has_method()) {
 888     // Root JVMState has a null method.
 889     assert(map()->memory()->Opcode() == Op_Parm, "");
 890     // Insert the memory aliasing node
 891     set_all_memory(reset_memory());
 892   }
 893   assert(merged_memory(), "");
 894 
 895   switch (intrinsic_id()) {
 896   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 897     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 898   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 899     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 900   case vmIntrinsics::_counterMode_AESCrypt:
 901     return inline_counterMode_AESCrypt_predicate();
 902   case vmIntrinsics::_digestBase_implCompressMB:
 903     return inline_digestBase_implCompressMB_predicate(predicate);
 904 
 905   default:
 906     // If you get here, it may be that someone has added a new intrinsic
 907     // to the list in vmSymbols.hpp without implementing it here.
 908 #ifndef PRODUCT
 909     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 910       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 911                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 912     }
 913 #endif
 914     Node* slow_ctl = control();
 915     set_control(top()); // No fast path instrinsic
 916     return slow_ctl;
 917   }
 918 }
 919 
 920 //------------------------------set_result-------------------------------
 921 // Helper function for finishing intrinsics.
 922 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 923   record_for_igvn(region);
 924   set_control(_gvn.transform(region));
 925   set_result( _gvn.transform(value));
 926   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 927 }
 928 
 929 //------------------------------generate_guard---------------------------
 930 // Helper function for generating guarded fast-slow graph structures.
 931 // The given 'test', if true, guards a slow path.  If the test fails
 932 // then a fast path can be taken.  (We generally hope it fails.)
 933 // In all cases, GraphKit::control() is updated to the fast path.
 934 // The returned value represents the control for the slow path.
 935 // The return value is never 'top'; it is either a valid control
 936 // or NULL if it is obvious that the slow path can never be taken.
 937 // Also, if region and the slow control are not NULL, the slow edge
 938 // is appended to the region.
 939 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 940   if (stopped()) {
 941     // Already short circuited.
 942     return NULL;
 943   }
 944 
 945   // Build an if node and its projections.
 946   // If test is true we take the slow path, which we assume is uncommon.
 947   if (_gvn.type(test) == TypeInt::ZERO) {
 948     // The slow branch is never taken.  No need to build this guard.
 949     return NULL;
 950   }
 951 
 952   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 953 
 954   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 955   if (if_slow == top()) {
 956     // The slow branch is never taken.  No need to build this guard.
 957     return NULL;
 958   }
 959 
 960   if (region != NULL)
 961     region->add_req(if_slow);
 962 
 963   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 964   set_control(if_fast);
 965 
 966   return if_slow;
 967 }
 968 
 969 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 970   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 971 }
 972 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 973   return generate_guard(test, region, PROB_FAIR);
 974 }
 975 
 976 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 977                                                      Node* *pos_index) {
 978   if (stopped())
 979     return NULL;                // already stopped
 980   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 981     return NULL;                // index is already adequately typed
 982   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 983   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 984   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 985   if (is_neg != NULL && pos_index != NULL) {
 986     // Emulate effect of Parse::adjust_map_after_if.
 987     Node* ccast = new CastIINode(index, TypeInt::POS);
 988     ccast->set_req(0, control());
 989     (*pos_index) = _gvn.transform(ccast);
 990   }
 991   return is_neg;
 992 }
 993 
 994 // Make sure that 'position' is a valid limit index, in [0..length].
 995 // There are two equivalent plans for checking this:
 996 //   A. (offset + copyLength)  unsigned<=  arrayLength
 997 //   B. offset  <=  (arrayLength - copyLength)
 998 // We require that all of the values above, except for the sum and
 999 // difference, are already known to be non-negative.
1000 // Plan A is robust in the face of overflow, if offset and copyLength
1001 // are both hugely positive.
1002 //
1003 // Plan B is less direct and intuitive, but it does not overflow at
1004 // all, since the difference of two non-negatives is always
1005 // representable.  Whenever Java methods must perform the equivalent
1006 // check they generally use Plan B instead of Plan A.
1007 // For the moment we use Plan A.
1008 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1009                                                   Node* subseq_length,
1010                                                   Node* array_length,
1011                                                   RegionNode* region) {
1012   if (stopped())
1013     return NULL;                // already stopped
1014   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1015   if (zero_offset && subseq_length->eqv_uncast(array_length))
1016     return NULL;                // common case of whole-array copy
1017   Node* last = subseq_length;
1018   if (!zero_offset)             // last += offset
1019     last = _gvn.transform(new AddINode(last, offset));
1020   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1021   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1022   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1023   return is_over;
1024 }
1025 
1026 // Emit range checks for the given String.value byte array
1027 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1028   if (stopped()) {
1029     return; // already stopped
1030   }
1031   RegionNode* bailout = new RegionNode(1);
1032   record_for_igvn(bailout);
1033   if (char_count) {
1034     // Convert char count to byte count
1035     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1036   }
1037 
1038   // Offset and count must not be negative
1039   generate_negative_guard(offset, bailout);
1040   generate_negative_guard(count, bailout);
1041   // Offset + count must not exceed length of array
1042   generate_limit_guard(offset, count, load_array_length(array), bailout);
1043 
1044   if (bailout->req() > 1) {
1045     PreserveJVMState pjvms(this);
1046     set_control(_gvn.transform(bailout));
1047     uncommon_trap(Deoptimization::Reason_intrinsic,
1048                   Deoptimization::Action_maybe_recompile);
1049   }
1050 }
1051 
1052 //--------------------------generate_current_thread--------------------
1053 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1054   ciKlass*    thread_klass = env()->Thread_klass();
1055   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1056   Node* thread = _gvn.transform(new ThreadLocalNode());
1057   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1058   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1059   tls_output = thread;
1060   return threadObj;
1061 }
1062 
1063 
1064 //------------------------------make_string_method_node------------------------
1065 // Helper method for String intrinsic functions. This version is called with
1066 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1067 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1068 // containing the lengths of str1 and str2.
1069 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1070   Node* result = NULL;
1071   switch (opcode) {
1072   case Op_StrIndexOf:
1073     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1074                                 str1_start, cnt1, str2_start, cnt2, ae);
1075     break;
1076   case Op_StrComp:
1077     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1078                              str1_start, cnt1, str2_start, cnt2, ae);
1079     break;
1080   case Op_StrEquals:
1081     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1082     // Use the constant length if there is one because optimized match rule may exist.
1083     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1084                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1085     break;
1086   default:
1087     ShouldNotReachHere();
1088     return NULL;
1089   }
1090 
1091   // All these intrinsics have checks.
1092   C->set_has_split_ifs(true); // Has chance for split-if optimization
1093   clear_upper_avx();
1094 
1095   return _gvn.transform(result);
1096 }
1097 
1098 //------------------------------inline_string_compareTo------------------------
1099 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1100   Node* arg1 = argument(0);
1101   Node* arg2 = argument(1);
1102 
1103   // Get start addr and length of first argument
1104   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1105   Node* arg1_cnt    = load_array_length(arg1);
1106 
1107   // Get start addr and length of second argument
1108   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1109   Node* arg2_cnt    = load_array_length(arg2);
1110 
1111   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1112   set_result(result);
1113   return true;
1114 }
1115 
1116 //------------------------------inline_string_equals------------------------
1117 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1118   Node* arg1 = argument(0);
1119   Node* arg2 = argument(1);
1120 
1121   // paths (plus control) merge
1122   RegionNode* region = new RegionNode(3);
1123   Node* phi = new PhiNode(region, TypeInt::BOOL);
1124 
1125   if (!stopped()) {
1126     // Get start addr and length of first argument
1127     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1128     Node* arg1_cnt    = load_array_length(arg1);
1129 
1130     // Get start addr and length of second argument
1131     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1132     Node* arg2_cnt    = load_array_length(arg2);
1133 
1134     // Check for arg1_cnt != arg2_cnt
1135     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1136     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1137     Node* if_ne = generate_slow_guard(bol, NULL);
1138     if (if_ne != NULL) {
1139       phi->init_req(2, intcon(0));
1140       region->init_req(2, if_ne);
1141     }
1142 
1143     // Check for count == 0 is done by assembler code for StrEquals.
1144 
1145     if (!stopped()) {
1146       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1147       phi->init_req(1, equals);
1148       region->init_req(1, control());
1149     }
1150   }
1151 
1152   // post merge
1153   set_control(_gvn.transform(region));
1154   record_for_igvn(region);
1155 
1156   set_result(_gvn.transform(phi));
1157   return true;
1158 }
1159 
1160 //------------------------------inline_array_equals----------------------------
1161 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1162   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1163   Node* arg1 = argument(0);
1164   Node* arg2 = argument(1);
1165 
1166   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1167   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1168   clear_upper_avx();
1169 
1170   return true;
1171 }
1172 
1173 //------------------------------inline_hasNegatives------------------------------
1174 bool LibraryCallKit::inline_hasNegatives() {
1175   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1176     return false;
1177   }
1178 
1179   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1180   // no receiver since it is static method
1181   Node* ba         = argument(0);
1182   Node* offset     = argument(1);
1183   Node* len        = argument(2);
1184 
1185   // Range checks
1186   generate_string_range_check(ba, offset, len, false);
1187   if (stopped()) {
1188     return true;
1189   }
1190   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1191   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1192   set_result(_gvn.transform(result));
1193   return true;
1194 }
1195 
1196 bool LibraryCallKit::inline_preconditions_checkIndex() {
1197   Node* index = argument(0);
1198   Node* length = argument(1);
1199   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1200     return false;
1201   }
1202 
1203   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1204   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1205 
1206   {
1207     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1208     uncommon_trap(Deoptimization::Reason_intrinsic,
1209                   Deoptimization::Action_make_not_entrant);
1210   }
1211 
1212   if (stopped()) {
1213     return false;
1214   }
1215 
1216   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1217   BoolTest::mask btest = BoolTest::lt;
1218   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1219   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1220   _gvn.set_type(rc, rc->Value(&_gvn));
1221   if (!rc_bool->is_Con()) {
1222     record_for_igvn(rc);
1223   }
1224   set_control(_gvn.transform(new IfTrueNode(rc)));
1225   {
1226     PreserveJVMState pjvms(this);
1227     set_control(_gvn.transform(new IfFalseNode(rc)));
1228     uncommon_trap(Deoptimization::Reason_range_check,
1229                   Deoptimization::Action_make_not_entrant);
1230   }
1231 
1232   if (stopped()) {
1233     return false;
1234   }
1235 
1236   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1237   result->set_req(0, control());
1238   result = _gvn.transform(result);
1239   set_result(result);
1240   replace_in_map(index, result);
1241   clear_upper_avx();
1242   return true;
1243 }
1244 
1245 //------------------------------inline_string_indexOf------------------------
1246 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1247   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1248     return false;
1249   }
1250   Node* src = argument(0);
1251   Node* tgt = argument(1);
1252 
1253   // Make the merge point
1254   RegionNode* result_rgn = new RegionNode(4);
1255   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1256 
1257   // Get start addr and length of source string
1258   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1259   Node* src_count = load_array_length(src);
1260 
1261   // Get start addr and length of substring
1262   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1263   Node* tgt_count = load_array_length(tgt);
1264 
1265   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1266     // Divide src size by 2 if String is UTF16 encoded
1267     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1268   }
1269   if (ae == StrIntrinsicNode::UU) {
1270     // Divide substring size by 2 if String is UTF16 encoded
1271     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1272   }
1273 
1274   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1275   if (result != NULL) {
1276     result_phi->init_req(3, result);
1277     result_rgn->init_req(3, control());
1278   }
1279   set_control(_gvn.transform(result_rgn));
1280   record_for_igvn(result_rgn);
1281   set_result(_gvn.transform(result_phi));
1282 
1283   return true;
1284 }
1285 
1286 //-----------------------------inline_string_indexOf-----------------------
1287 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1288   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1289     return false;
1290   }
1291   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1292     return false;
1293   }
1294   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1295   Node* src         = argument(0); // byte[]
1296   Node* src_count   = argument(1); // char count
1297   Node* tgt         = argument(2); // byte[]
1298   Node* tgt_count   = argument(3); // char count
1299   Node* from_index  = argument(4); // char index
1300 
1301   // Multiply byte array index by 2 if String is UTF16 encoded
1302   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1303   src_count = _gvn.transform(new SubINode(src_count, from_index));
1304   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1305   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1306 
1307   // Range checks
1308   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1309   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1310   if (stopped()) {
1311     return true;
1312   }
1313 
1314   RegionNode* region = new RegionNode(5);
1315   Node* phi = new PhiNode(region, TypeInt::INT);
1316 
1317   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1318   if (result != NULL) {
1319     // The result is index relative to from_index if substring was found, -1 otherwise.
1320     // Generate code which will fold into cmove.
1321     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1322     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1323 
1324     Node* if_lt = generate_slow_guard(bol, NULL);
1325     if (if_lt != NULL) {
1326       // result == -1
1327       phi->init_req(3, result);
1328       region->init_req(3, if_lt);
1329     }
1330     if (!stopped()) {
1331       result = _gvn.transform(new AddINode(result, from_index));
1332       phi->init_req(4, result);
1333       region->init_req(4, control());
1334     }
1335   }
1336 
1337   set_control(_gvn.transform(region));
1338   record_for_igvn(region);
1339   set_result(_gvn.transform(phi));
1340   clear_upper_avx();
1341 
1342   return true;
1343 }
1344 
1345 // Create StrIndexOfNode with fast path checks
1346 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1347                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1348   // Check for substr count > string count
1349   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1350   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1351   Node* if_gt = generate_slow_guard(bol, NULL);
1352   if (if_gt != NULL) {
1353     phi->init_req(1, intcon(-1));
1354     region->init_req(1, if_gt);
1355   }
1356   if (!stopped()) {
1357     // Check for substr count == 0
1358     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1359     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1360     Node* if_zero = generate_slow_guard(bol, NULL);
1361     if (if_zero != NULL) {
1362       phi->init_req(2, intcon(0));
1363       region->init_req(2, if_zero);
1364     }
1365   }
1366   if (!stopped()) {
1367     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1368   }
1369   return NULL;
1370 }
1371 
1372 //-----------------------------inline_string_indexOfChar-----------------------
1373 bool LibraryCallKit::inline_string_indexOfChar() {
1374   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1375     return false;
1376   }
1377   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1378     return false;
1379   }
1380   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1381   Node* src         = argument(0); // byte[]
1382   Node* tgt         = argument(1); // tgt is int ch
1383   Node* from_index  = argument(2);
1384   Node* max         = argument(3);
1385 
1386   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1387   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1388   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1389 
1390   // Range checks
1391   generate_string_range_check(src, src_offset, src_count, true);
1392   if (stopped()) {
1393     return true;
1394   }
1395 
1396   RegionNode* region = new RegionNode(3);
1397   Node* phi = new PhiNode(region, TypeInt::INT);
1398 
1399   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1400   C->set_has_split_ifs(true); // Has chance for split-if optimization
1401   _gvn.transform(result);
1402 
1403   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1404   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1405 
1406   Node* if_lt = generate_slow_guard(bol, NULL);
1407   if (if_lt != NULL) {
1408     // result == -1
1409     phi->init_req(2, result);
1410     region->init_req(2, if_lt);
1411   }
1412   if (!stopped()) {
1413     result = _gvn.transform(new AddINode(result, from_index));
1414     phi->init_req(1, result);
1415     region->init_req(1, control());
1416   }
1417   set_control(_gvn.transform(region));
1418   record_for_igvn(region);
1419   set_result(_gvn.transform(phi));
1420 
1421   return true;
1422 }
1423 //---------------------------inline_string_copy---------------------
1424 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1425 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1426 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1427 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1428 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1429 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1430 bool LibraryCallKit::inline_string_copy(bool compress) {
1431   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1432     return false;
1433   }
1434   int nargs = 5;  // 2 oops, 3 ints
1435   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1436 
1437   Node* src         = argument(0);
1438   Node* src_offset  = argument(1);
1439   Node* dst         = argument(2);
1440   Node* dst_offset  = argument(3);
1441   Node* length      = argument(4);
1442 
1443   // Check for allocation before we add nodes that would confuse
1444   // tightly_coupled_allocation()
1445   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1446 
1447   // Figure out the size and type of the elements we will be copying.
1448   const Type* src_type = src->Value(&_gvn);
1449   const Type* dst_type = dst->Value(&_gvn);
1450   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1451   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1452   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1453          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1454          "Unsupported array types for inline_string_copy");
1455 
1456   // Convert char[] offsets to byte[] offsets
1457   bool convert_src = (compress && src_elem == T_BYTE);
1458   bool convert_dst = (!compress && dst_elem == T_BYTE);
1459   if (convert_src) {
1460     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1461   } else if (convert_dst) {
1462     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1463   }
1464 
1465   // Range checks
1466   generate_string_range_check(src, src_offset, length, convert_src);
1467   generate_string_range_check(dst, dst_offset, length, convert_dst);
1468   if (stopped()) {
1469     return true;
1470   }
1471 
1472   Node* src_start = array_element_address(src, src_offset, src_elem);
1473   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1474   // 'src_start' points to src array + scaled offset
1475   // 'dst_start' points to dst array + scaled offset
1476   Node* count = NULL;
1477   if (compress) {
1478     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1479   } else {
1480     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1481   }
1482 
1483   if (alloc != NULL) {
1484     if (alloc->maybe_set_complete(&_gvn)) {
1485       // "You break it, you buy it."
1486       InitializeNode* init = alloc->initialization();
1487       assert(init->is_complete(), "we just did this");
1488       init->set_complete_with_arraycopy();
1489       assert(dst->is_CheckCastPP(), "sanity");
1490       assert(dst->in(0)->in(0) == init, "dest pinned");
1491     }
1492     // Do not let stores that initialize this object be reordered with
1493     // a subsequent store that would make this object accessible by
1494     // other threads.
1495     // Record what AllocateNode this StoreStore protects so that
1496     // escape analysis can go from the MemBarStoreStoreNode to the
1497     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1498     // based on the escape status of the AllocateNode.
1499     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1500   }
1501   if (compress) {
1502     set_result(_gvn.transform(count));
1503   }
1504   clear_upper_avx();
1505 
1506   return true;
1507 }
1508 
1509 #ifdef _LP64
1510 #define XTOP ,top() /*additional argument*/
1511 #else  //_LP64
1512 #define XTOP        /*no additional argument*/
1513 #endif //_LP64
1514 
1515 //------------------------inline_string_toBytesU--------------------------
1516 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1517 bool LibraryCallKit::inline_string_toBytesU() {
1518   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1519     return false;
1520   }
1521   // Get the arguments.
1522   Node* value     = argument(0);
1523   Node* offset    = argument(1);
1524   Node* length    = argument(2);
1525 
1526   Node* newcopy = NULL;
1527 
1528   // Set the original stack and the reexecute bit for the interpreter to reexecute
1529   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1530   { PreserveReexecuteState preexecs(this);
1531     jvms()->set_should_reexecute(true);
1532 
1533     // Check if a null path was taken unconditionally.
1534     value = null_check(value);
1535 
1536     RegionNode* bailout = new RegionNode(1);
1537     record_for_igvn(bailout);
1538 
1539     // Range checks
1540     generate_negative_guard(offset, bailout);
1541     generate_negative_guard(length, bailout);
1542     generate_limit_guard(offset, length, load_array_length(value), bailout);
1543     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1544     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1545 
1546     if (bailout->req() > 1) {
1547       PreserveJVMState pjvms(this);
1548       set_control(_gvn.transform(bailout));
1549       uncommon_trap(Deoptimization::Reason_intrinsic,
1550                     Deoptimization::Action_maybe_recompile);
1551     }
1552     if (stopped()) {
1553       return true;
1554     }
1555 
1556     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1557     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1558     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1559     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1560 
1561     // Calculate starting addresses.
1562     Node* src_start = array_element_address(value, offset, T_CHAR);
1563     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1564 
1565     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1566     const TypeInt* toffset = gvn().type(offset)->is_int();
1567     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1568 
1569     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1570     const char* copyfunc_name = "arraycopy";
1571     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1572     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1573                       OptoRuntime::fast_arraycopy_Type(),
1574                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1575                       src_start, dst_start, ConvI2X(length) XTOP);
1576     // Do not let reads from the cloned object float above the arraycopy.
1577     if (alloc != NULL) {
1578       if (alloc->maybe_set_complete(&_gvn)) {
1579         // "You break it, you buy it."
1580         InitializeNode* init = alloc->initialization();
1581         assert(init->is_complete(), "we just did this");
1582         init->set_complete_with_arraycopy();
1583         assert(newcopy->is_CheckCastPP(), "sanity");
1584         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1585       }
1586       // Do not let stores that initialize this object be reordered with
1587       // a subsequent store that would make this object accessible by
1588       // other threads.
1589       // Record what AllocateNode this StoreStore protects so that
1590       // escape analysis can go from the MemBarStoreStoreNode to the
1591       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1592       // based on the escape status of the AllocateNode.
1593       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1594     } else {
1595       insert_mem_bar(Op_MemBarCPUOrder);
1596     }
1597   } // original reexecute is set back here
1598 
1599   C->set_has_split_ifs(true); // Has chance for split-if optimization
1600   if (!stopped()) {
1601     set_result(newcopy);
1602   }
1603   clear_upper_avx();
1604 
1605   return true;
1606 }
1607 
1608 //------------------------inline_string_getCharsU--------------------------
1609 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1610 bool LibraryCallKit::inline_string_getCharsU() {
1611   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1612     return false;
1613   }
1614 
1615   // Get the arguments.
1616   Node* src       = argument(0);
1617   Node* src_begin = argument(1);
1618   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1619   Node* dst       = argument(3);
1620   Node* dst_begin = argument(4);
1621 
1622   // Check for allocation before we add nodes that would confuse
1623   // tightly_coupled_allocation()
1624   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1625 
1626   // Check if a null path was taken unconditionally.
1627   src = null_check(src);
1628   dst = null_check(dst);
1629   if (stopped()) {
1630     return true;
1631   }
1632 
1633   // Get length and convert char[] offset to byte[] offset
1634   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1635   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1636 
1637   // Range checks
1638   generate_string_range_check(src, src_begin, length, true);
1639   generate_string_range_check(dst, dst_begin, length, false);
1640   if (stopped()) {
1641     return true;
1642   }
1643 
1644   if (!stopped()) {
1645     // Calculate starting addresses.
1646     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1647     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1648 
1649     // Check if array addresses are aligned to HeapWordSize
1650     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1651     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1652     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1653                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1654 
1655     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1656     const char* copyfunc_name = "arraycopy";
1657     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1658     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1659                       OptoRuntime::fast_arraycopy_Type(),
1660                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1661                       src_start, dst_start, ConvI2X(length) XTOP);
1662     // Do not let reads from the cloned object float above the arraycopy.
1663     if (alloc != NULL) {
1664       if (alloc->maybe_set_complete(&_gvn)) {
1665         // "You break it, you buy it."
1666         InitializeNode* init = alloc->initialization();
1667         assert(init->is_complete(), "we just did this");
1668         init->set_complete_with_arraycopy();
1669         assert(dst->is_CheckCastPP(), "sanity");
1670         assert(dst->in(0)->in(0) == init, "dest pinned");
1671       }
1672       // Do not let stores that initialize this object be reordered with
1673       // a subsequent store that would make this object accessible by
1674       // other threads.
1675       // Record what AllocateNode this StoreStore protects so that
1676       // escape analysis can go from the MemBarStoreStoreNode to the
1677       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1678       // based on the escape status of the AllocateNode.
1679       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1680     } else {
1681       insert_mem_bar(Op_MemBarCPUOrder);
1682     }
1683   }
1684 
1685   C->set_has_split_ifs(true); // Has chance for split-if optimization
1686   return true;
1687 }
1688 
1689 //----------------------inline_string_char_access----------------------------
1690 // Store/Load char to/from byte[] array.
1691 // static void StringUTF16.putChar(byte[] val, int index, int c)
1692 // static char StringUTF16.getChar(byte[] val, int index)
1693 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1694   Node* value  = argument(0);
1695   Node* index  = argument(1);
1696   Node* ch = is_store ? argument(2) : NULL;
1697 
1698   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1699   // correctly requires matched array shapes.
1700   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1701           "sanity: byte[] and char[] bases agree");
1702   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1703           "sanity: byte[] and char[] scales agree");
1704 
1705   // Bail when getChar over constants is requested: constant folding would
1706   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1707   // Java method would constant fold nicely instead.
1708   if (!is_store && value->is_Con() && index->is_Con()) {
1709     return false;
1710   }
1711 
1712   Node* adr = array_element_address(value, index, T_CHAR);
1713   if (adr->is_top()) {
1714     return false;
1715   }
1716   if (is_store) {
1717     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1718                            false, false, true /* mismatched */);
1719   } else {
1720     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1721                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1722     set_result(ch);
1723   }
1724   return true;
1725 }
1726 
1727 //--------------------------round_double_node--------------------------------
1728 // Round a double node if necessary.
1729 Node* LibraryCallKit::round_double_node(Node* n) {
1730   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1731     n = _gvn.transform(new RoundDoubleNode(0, n));
1732   return n;
1733 }
1734 
1735 //------------------------------inline_math-----------------------------------
1736 // public static double Math.abs(double)
1737 // public static double Math.sqrt(double)
1738 // public static double Math.log(double)
1739 // public static double Math.log10(double)
1740 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1741   Node* arg = round_double_node(argument(0));
1742   Node* n = NULL;
1743   switch (id) {
1744   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1745   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1746   default:  fatal_unexpected_iid(id);  break;
1747   }
1748   set_result(_gvn.transform(n));
1749   return true;
1750 }
1751 
1752 //------------------------------runtime_math-----------------------------
1753 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1754   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1755          "must be (DD)D or (D)D type");
1756 
1757   // Inputs
1758   Node* a = round_double_node(argument(0));
1759   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1760 
1761   const TypePtr* no_memory_effects = NULL;
1762   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1763                                  no_memory_effects,
1764                                  a, top(), b, b ? top() : NULL);
1765   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1766 #ifdef ASSERT
1767   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1768   assert(value_top == top(), "second value must be top");
1769 #endif
1770 
1771   set_result(value);
1772   return true;
1773 }
1774 
1775 //------------------------------inline_math_native-----------------------------
1776 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1777 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1778   switch (id) {
1779     // These intrinsics are not properly supported on all hardware
1780   case vmIntrinsics::_dsin:
1781     return StubRoutines::dsin() != NULL ?
1782       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1783       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1784   case vmIntrinsics::_dcos:
1785     return StubRoutines::dcos() != NULL ?
1786       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1787       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1788   case vmIntrinsics::_dtan:
1789     return StubRoutines::dtan() != NULL ?
1790       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1791       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1792   case vmIntrinsics::_dlog:
1793     return StubRoutines::dlog() != NULL ?
1794       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1795       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1796   case vmIntrinsics::_dlog10:
1797     return StubRoutines::dlog10() != NULL ?
1798       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1799       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1800 
1801     // These intrinsics are supported on all hardware
1802   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1803   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1804 
1805   case vmIntrinsics::_dexp:
1806     return StubRoutines::dexp() != NULL ?
1807       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1808       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1809   case vmIntrinsics::_dpow: {
1810     Node* exp = round_double_node(argument(2));
1811     const TypeD* d = _gvn.type(exp)->isa_double_constant();
1812     if (d != NULL && d->getd() == 2.0) {
1813       // Special case: pow(x, 2.0) => x * x
1814       Node* base = round_double_node(argument(0));
1815       set_result(_gvn.transform(new MulDNode(base, base)));
1816       return true;
1817     }
1818     return StubRoutines::dexp() != NULL ?
1819       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1820       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1821   }
1822 #undef FN_PTR
1823 
1824    // These intrinsics are not yet correctly implemented
1825   case vmIntrinsics::_datan2:
1826     return false;
1827 
1828   default:
1829     fatal_unexpected_iid(id);
1830     return false;
1831   }
1832 }
1833 
1834 static bool is_simple_name(Node* n) {
1835   return (n->req() == 1         // constant
1836           || (n->is_Type() && n->as_Type()->type()->singleton())
1837           || n->is_Proj()       // parameter or return value
1838           || n->is_Phi()        // local of some sort
1839           );
1840 }
1841 
1842 //----------------------------inline_notify-----------------------------------*
1843 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1844   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1845   address func;
1846   if (id == vmIntrinsics::_notify) {
1847     func = OptoRuntime::monitor_notify_Java();
1848   } else {
1849     func = OptoRuntime::monitor_notifyAll_Java();
1850   }
1851   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1852   make_slow_call_ex(call, env()->Throwable_klass(), false);
1853   return true;
1854 }
1855 
1856 
1857 //----------------------------inline_min_max-----------------------------------
1858 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1859   set_result(generate_min_max(id, argument(0), argument(1)));
1860   return true;
1861 }
1862 
1863 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1864   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1865   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1866   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1867   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1868 
1869   {
1870     PreserveJVMState pjvms(this);
1871     PreserveReexecuteState preexecs(this);
1872     jvms()->set_should_reexecute(true);
1873 
1874     set_control(slow_path);
1875     set_i_o(i_o());
1876 
1877     uncommon_trap(Deoptimization::Reason_intrinsic,
1878                   Deoptimization::Action_none);
1879   }
1880 
1881   set_control(fast_path);
1882   set_result(math);
1883 }
1884 
1885 template <typename OverflowOp>
1886 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1887   typedef typename OverflowOp::MathOp MathOp;
1888 
1889   MathOp* mathOp = new MathOp(arg1, arg2);
1890   Node* operation = _gvn.transform( mathOp );
1891   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1892   inline_math_mathExact(operation, ofcheck);
1893   return true;
1894 }
1895 
1896 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1897   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1898 }
1899 
1900 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1901   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1902 }
1903 
1904 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1905   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1906 }
1907 
1908 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1909   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1910 }
1911 
1912 bool LibraryCallKit::inline_math_negateExactI() {
1913   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1914 }
1915 
1916 bool LibraryCallKit::inline_math_negateExactL() {
1917   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1918 }
1919 
1920 bool LibraryCallKit::inline_math_multiplyExactI() {
1921   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1922 }
1923 
1924 bool LibraryCallKit::inline_math_multiplyExactL() {
1925   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1926 }
1927 
1928 bool LibraryCallKit::inline_math_multiplyHigh() {
1929   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
1930   return true;
1931 }
1932 
1933 Node*
1934 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1935   // These are the candidate return value:
1936   Node* xvalue = x0;
1937   Node* yvalue = y0;
1938 
1939   if (xvalue == yvalue) {
1940     return xvalue;
1941   }
1942 
1943   bool want_max = (id == vmIntrinsics::_max);
1944 
1945   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1946   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1947   if (txvalue == NULL || tyvalue == NULL)  return top();
1948   // This is not really necessary, but it is consistent with a
1949   // hypothetical MaxINode::Value method:
1950   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1951 
1952   // %%% This folding logic should (ideally) be in a different place.
1953   // Some should be inside IfNode, and there to be a more reliable
1954   // transformation of ?: style patterns into cmoves.  We also want
1955   // more powerful optimizations around cmove and min/max.
1956 
1957   // Try to find a dominating comparison of these guys.
1958   // It can simplify the index computation for Arrays.copyOf
1959   // and similar uses of System.arraycopy.
1960   // First, compute the normalized version of CmpI(x, y).
1961   int   cmp_op = Op_CmpI;
1962   Node* xkey = xvalue;
1963   Node* ykey = yvalue;
1964   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1965   if (ideal_cmpxy->is_Cmp()) {
1966     // E.g., if we have CmpI(length - offset, count),
1967     // it might idealize to CmpI(length, count + offset)
1968     cmp_op = ideal_cmpxy->Opcode();
1969     xkey = ideal_cmpxy->in(1);
1970     ykey = ideal_cmpxy->in(2);
1971   }
1972 
1973   // Start by locating any relevant comparisons.
1974   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1975   Node* cmpxy = NULL;
1976   Node* cmpyx = NULL;
1977   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1978     Node* cmp = start_from->fast_out(k);
1979     if (cmp->outcnt() > 0 &&            // must have prior uses
1980         cmp->in(0) == NULL &&           // must be context-independent
1981         cmp->Opcode() == cmp_op) {      // right kind of compare
1982       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1983       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1984     }
1985   }
1986 
1987   const int NCMPS = 2;
1988   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1989   int cmpn;
1990   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1991     if (cmps[cmpn] != NULL)  break;     // find a result
1992   }
1993   if (cmpn < NCMPS) {
1994     // Look for a dominating test that tells us the min and max.
1995     int depth = 0;                // Limit search depth for speed
1996     Node* dom = control();
1997     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1998       if (++depth >= 100)  break;
1999       Node* ifproj = dom;
2000       if (!ifproj->is_Proj())  continue;
2001       Node* iff = ifproj->in(0);
2002       if (!iff->is_If())  continue;
2003       Node* bol = iff->in(1);
2004       if (!bol->is_Bool())  continue;
2005       Node* cmp = bol->in(1);
2006       if (cmp == NULL)  continue;
2007       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2008         if (cmps[cmpn] == cmp)  break;
2009       if (cmpn == NCMPS)  continue;
2010       BoolTest::mask btest = bol->as_Bool()->_test._test;
2011       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2012       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2013       // At this point, we know that 'x btest y' is true.
2014       switch (btest) {
2015       case BoolTest::eq:
2016         // They are proven equal, so we can collapse the min/max.
2017         // Either value is the answer.  Choose the simpler.
2018         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2019           return yvalue;
2020         return xvalue;
2021       case BoolTest::lt:          // x < y
2022       case BoolTest::le:          // x <= y
2023         return (want_max ? yvalue : xvalue);
2024       case BoolTest::gt:          // x > y
2025       case BoolTest::ge:          // x >= y
2026         return (want_max ? xvalue : yvalue);
2027       default:
2028         break;
2029       }
2030     }
2031   }
2032 
2033   // We failed to find a dominating test.
2034   // Let's pick a test that might GVN with prior tests.
2035   Node*          best_bol   = NULL;
2036   BoolTest::mask best_btest = BoolTest::illegal;
2037   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2038     Node* cmp = cmps[cmpn];
2039     if (cmp == NULL)  continue;
2040     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2041       Node* bol = cmp->fast_out(j);
2042       if (!bol->is_Bool())  continue;
2043       BoolTest::mask btest = bol->as_Bool()->_test._test;
2044       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2045       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2046       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2047         best_bol   = bol->as_Bool();
2048         best_btest = btest;
2049       }
2050     }
2051   }
2052 
2053   Node* answer_if_true  = NULL;
2054   Node* answer_if_false = NULL;
2055   switch (best_btest) {
2056   default:
2057     if (cmpxy == NULL)
2058       cmpxy = ideal_cmpxy;
2059     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2060     // and fall through:
2061   case BoolTest::lt:          // x < y
2062   case BoolTest::le:          // x <= y
2063     answer_if_true  = (want_max ? yvalue : xvalue);
2064     answer_if_false = (want_max ? xvalue : yvalue);
2065     break;
2066   case BoolTest::gt:          // x > y
2067   case BoolTest::ge:          // x >= y
2068     answer_if_true  = (want_max ? xvalue : yvalue);
2069     answer_if_false = (want_max ? yvalue : xvalue);
2070     break;
2071   }
2072 
2073   jint hi, lo;
2074   if (want_max) {
2075     // We can sharpen the minimum.
2076     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2077     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2078   } else {
2079     // We can sharpen the maximum.
2080     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2081     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2082   }
2083 
2084   // Use a flow-free graph structure, to avoid creating excess control edges
2085   // which could hinder other optimizations.
2086   // Since Math.min/max is often used with arraycopy, we want
2087   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2088   Node* cmov = CMoveNode::make(NULL, best_bol,
2089                                answer_if_false, answer_if_true,
2090                                TypeInt::make(lo, hi, widen));
2091 
2092   return _gvn.transform(cmov);
2093 
2094   /*
2095   // This is not as desirable as it may seem, since Min and Max
2096   // nodes do not have a full set of optimizations.
2097   // And they would interfere, anyway, with 'if' optimizations
2098   // and with CMoveI canonical forms.
2099   switch (id) {
2100   case vmIntrinsics::_min:
2101     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2102   case vmIntrinsics::_max:
2103     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2104   default:
2105     ShouldNotReachHere();
2106   }
2107   */
2108 }
2109 
2110 inline int
2111 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2112   const TypePtr* base_type = TypePtr::NULL_PTR;
2113   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2114   if (base_type == NULL) {
2115     // Unknown type.
2116     return Type::AnyPtr;
2117   } else if (base_type == TypePtr::NULL_PTR) {
2118     // Since this is a NULL+long form, we have to switch to a rawptr.
2119     base   = _gvn.transform(new CastX2PNode(offset));
2120     offset = MakeConX(0);
2121     return Type::RawPtr;
2122   } else if (base_type->base() == Type::RawPtr) {
2123     return Type::RawPtr;
2124   } else if (base_type->isa_oopptr()) {
2125     // Base is never null => always a heap address.
2126     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2127       return Type::OopPtr;
2128     }
2129     // Offset is small => always a heap address.
2130     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2131     if (offset_type != NULL &&
2132         base_type->offset() == 0 &&     // (should always be?)
2133         offset_type->_lo >= 0 &&
2134         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2135       return Type::OopPtr;
2136     } else if (type == T_OBJECT) {
2137       // off heap access to an oop doesn't make any sense. Has to be on
2138       // heap.
2139       return Type::OopPtr;
2140     }
2141     // Otherwise, it might either be oop+off or NULL+addr.
2142     return Type::AnyPtr;
2143   } else {
2144     // No information:
2145     return Type::AnyPtr;
2146   }
2147 }
2148 
2149 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2150   Node* uncasted_base = base;
2151   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2152   if (kind == Type::RawPtr) {
2153     return basic_plus_adr(top(), uncasted_base, offset);
2154   } else if (kind == Type::AnyPtr) {
2155     assert(base == uncasted_base, "unexpected base change");
2156     if (can_cast) {
2157       if (!_gvn.type(base)->speculative_maybe_null() &&
2158           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2159         // According to profiling, this access is always on
2160         // heap. Casting the base to not null and thus avoiding membars
2161         // around the access should allow better optimizations
2162         Node* null_ctl = top();
2163         base = null_check_oop(base, &null_ctl, true, true, true);
2164         assert(null_ctl->is_top(), "no null control here");
2165         return basic_plus_adr(base, offset);
2166       } else if (_gvn.type(base)->speculative_always_null() &&
2167                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2168         // According to profiling, this access is always off
2169         // heap.
2170         base = null_assert(base);
2171         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2172         offset = MakeConX(0);
2173         return basic_plus_adr(top(), raw_base, offset);
2174       }
2175     }
2176     // We don't know if it's an on heap or off heap access. Fall back
2177     // to raw memory access.
2178     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2179     return basic_plus_adr(top(), raw, offset);
2180   } else {
2181     assert(base == uncasted_base, "unexpected base change");
2182     // We know it's an on heap access so base can't be null
2183     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2184       base = must_be_not_null(base, true);
2185     }
2186     return basic_plus_adr(base, offset);
2187   }
2188 }
2189 
2190 //--------------------------inline_number_methods-----------------------------
2191 // inline int     Integer.numberOfLeadingZeros(int)
2192 // inline int        Long.numberOfLeadingZeros(long)
2193 //
2194 // inline int     Integer.numberOfTrailingZeros(int)
2195 // inline int        Long.numberOfTrailingZeros(long)
2196 //
2197 // inline int     Integer.bitCount(int)
2198 // inline int        Long.bitCount(long)
2199 //
2200 // inline char  Character.reverseBytes(char)
2201 // inline short     Short.reverseBytes(short)
2202 // inline int     Integer.reverseBytes(int)
2203 // inline long       Long.reverseBytes(long)
2204 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2205   Node* arg = argument(0);
2206   Node* n = NULL;
2207   switch (id) {
2208   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2209   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2210   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2211   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2212   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2213   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2214   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2215   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2216   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2217   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2218   default:  fatal_unexpected_iid(id);  break;
2219   }
2220   set_result(_gvn.transform(n));
2221   return true;
2222 }
2223 
2224 //----------------------------inline_unsafe_access----------------------------
2225 
2226 // Helper that guards and inserts a pre-barrier.
2227 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2228                                         Node* pre_val, bool need_mem_bar) {
2229   // We could be accessing the referent field of a reference object. If so, when G1
2230   // is enabled, we need to log the value in the referent field in an SATB buffer.
2231   // This routine performs some compile time filters and generates suitable
2232   // runtime filters that guard the pre-barrier code.
2233   // Also add memory barrier for non volatile load from the referent field
2234   // to prevent commoning of loads across safepoint.
2235   if (!UseG1GC && !need_mem_bar)
2236     return;
2237 
2238   // Some compile time checks.
2239 
2240   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2241   const TypeX* otype = offset->find_intptr_t_type();
2242   if (otype != NULL && otype->is_con() &&
2243       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2244     // Constant offset but not the reference_offset so just return
2245     return;
2246   }
2247 
2248   // We only need to generate the runtime guards for instances.
2249   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2250   if (btype != NULL) {
2251     if (btype->isa_aryptr()) {
2252       // Array type so nothing to do
2253       return;
2254     }
2255 
2256     const TypeInstPtr* itype = btype->isa_instptr();
2257     if (itype != NULL) {
2258       // Can the klass of base_oop be statically determined to be
2259       // _not_ a sub-class of Reference and _not_ Object?
2260       ciKlass* klass = itype->klass();
2261       if ( klass->is_loaded() &&
2262           !klass->is_subtype_of(env()->Reference_klass()) &&
2263           !env()->Object_klass()->is_subtype_of(klass)) {
2264         return;
2265       }
2266     }
2267   }
2268 
2269   // The compile time filters did not reject base_oop/offset so
2270   // we need to generate the following runtime filters
2271   //
2272   // if (offset == java_lang_ref_Reference::_reference_offset) {
2273   //   if (instance_of(base, java.lang.ref.Reference)) {
2274   //     pre_barrier(_, pre_val, ...);
2275   //   }
2276   // }
2277 
2278   float likely   = PROB_LIKELY(  0.999);
2279   float unlikely = PROB_UNLIKELY(0.999);
2280 
2281   IdealKit ideal(this);
2282 #define __ ideal.
2283 
2284   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2285 
2286   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2287       // Update graphKit memory and control from IdealKit.
2288       sync_kit(ideal);
2289 
2290       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2291       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2292 
2293       // Update IdealKit memory and control from graphKit.
2294       __ sync_kit(this);
2295 
2296       Node* one = __ ConI(1);
2297       // is_instof == 0 if base_oop == NULL
2298       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2299 
2300         // Update graphKit from IdeakKit.
2301         sync_kit(ideal);
2302 
2303         // Use the pre-barrier to record the value in the referent field
2304         pre_barrier(false /* do_load */,
2305                     __ ctrl(),
2306                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2307                     pre_val /* pre_val */,
2308                     T_OBJECT);
2309         if (need_mem_bar) {
2310           // Add memory barrier to prevent commoning reads from this field
2311           // across safepoint since GC can change its value.
2312           insert_mem_bar(Op_MemBarCPUOrder);
2313         }
2314         // Update IdealKit from graphKit.
2315         __ sync_kit(this);
2316 
2317       } __ end_if(); // _ref_type != ref_none
2318   } __ end_if(); // offset == referent_offset
2319 
2320   // Final sync IdealKit and GraphKit.
2321   final_sync(ideal);
2322 #undef __
2323 }
2324 
2325 
2326 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2327   // Attempt to infer a sharper value type from the offset and base type.
2328   ciKlass* sharpened_klass = NULL;
2329 
2330   // See if it is an instance field, with an object type.
2331   if (alias_type->field() != NULL) {
2332     if (alias_type->field()->type()->is_klass()) {
2333       sharpened_klass = alias_type->field()->type()->as_klass();
2334     }
2335   }
2336 
2337   // See if it is a narrow oop array.
2338   if (adr_type->isa_aryptr()) {
2339     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2340       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2341       if (elem_type != NULL) {
2342         sharpened_klass = elem_type->klass();
2343       }
2344     }
2345   }
2346 
2347   // The sharpened class might be unloaded if there is no class loader
2348   // contraint in place.
2349   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2350     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2351 
2352 #ifndef PRODUCT
2353     if (C->print_intrinsics() || C->print_inlining()) {
2354       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2355       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2356     }
2357 #endif
2358     // Sharpen the value type.
2359     return tjp;
2360   }
2361   return NULL;
2362 }
2363 
2364 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2365   if (callee()->is_static())  return false;  // caller must have the capability!
2366   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2367   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2368   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2369 
2370 #ifndef PRODUCT
2371   {
2372     ResourceMark rm;
2373     // Check the signatures.
2374     ciSignature* sig = callee()->signature();
2375 #ifdef ASSERT
2376     if (!is_store) {
2377       // Object getObject(Object base, int/long offset), etc.
2378       BasicType rtype = sig->return_type()->basic_type();
2379       assert(rtype == type, "getter must return the expected value");
2380       assert(sig->count() == 2, "oop getter has 2 arguments");
2381       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2382       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2383     } else {
2384       // void putObject(Object base, int/long offset, Object x), etc.
2385       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2386       assert(sig->count() == 3, "oop putter has 3 arguments");
2387       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2388       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2389       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2390       assert(vtype == type, "putter must accept the expected value");
2391     }
2392 #endif // ASSERT
2393  }
2394 #endif //PRODUCT
2395 
2396   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2397 
2398   Node* receiver = argument(0);  // type: oop
2399 
2400   // Build address expression.
2401   Node* adr;
2402   Node* heap_base_oop = top();
2403   Node* offset = top();
2404   Node* val;
2405 
2406   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2407   Node* base = argument(1);  // type: oop
2408   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2409   offset = argument(2);  // type: long
2410   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2411   // to be plain byte offsets, which are also the same as those accepted
2412   // by oopDesc::field_addr.
2413   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2414          "fieldOffset must be byte-scaled");
2415   // 32-bit machines ignore the high half!
2416   offset = ConvL2X(offset);
2417   adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2418 
2419   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2420     heap_base_oop = base;
2421   } else if (type == T_OBJECT) {
2422     return false; // off-heap oop accesses are not supported
2423   }
2424 
2425   // Can base be NULL? Otherwise, always on-heap access.
2426   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2427 
2428   val = is_store ? argument(4) : NULL;
2429 
2430   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2431 
2432   // Try to categorize the address.
2433   Compile::AliasType* alias_type = C->alias_type(adr_type);
2434   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2435 
2436   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2437       alias_type->adr_type() == TypeAryPtr::RANGE) {
2438     return false; // not supported
2439   }
2440 
2441   bool mismatched = false;
2442   BasicType bt = alias_type->basic_type();
2443   if (bt != T_ILLEGAL) {
2444     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2445     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2446       // Alias type doesn't differentiate between byte[] and boolean[]).
2447       // Use address type to get the element type.
2448       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2449     }
2450     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2451       // accessing an array field with getObject is not a mismatch
2452       bt = T_OBJECT;
2453     }
2454     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2455       // Don't intrinsify mismatched object accesses
2456       return false;
2457     }
2458     mismatched = (bt != type);
2459   } else if (alias_type->adr_type()->isa_oopptr()) {
2460     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2461   }
2462 
2463   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2464 
2465   // First guess at the value type.
2466   const Type *value_type = Type::get_const_basic_type(type);
2467 
2468   // We will need memory barriers unless we can determine a unique
2469   // alias category for this reference.  (Note:  If for some reason
2470   // the barriers get omitted and the unsafe reference begins to "pollute"
2471   // the alias analysis of the rest of the graph, either Compile::can_alias
2472   // or Compile::must_alias will throw a diagnostic assert.)
2473   bool need_mem_bar = false;
2474   switch (kind) {
2475       case Relaxed:
2476           need_mem_bar = (mismatched && !adr_type->isa_aryptr()) || can_access_non_heap;
2477           break;
2478       case Opaque:
2479           // Opaque uses CPUOrder membars for protection against code movement.
2480       case Acquire:
2481       case Release:
2482       case Volatile:
2483           need_mem_bar = true;
2484           break;
2485       default:
2486           ShouldNotReachHere();
2487   }
2488 
2489   // Some accesses require access atomicity for all types, notably longs and doubles.
2490   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2491   bool requires_atomic_access = false;
2492   switch (kind) {
2493       case Relaxed:
2494           requires_atomic_access = AlwaysAtomicAccesses;
2495           break;
2496       case Opaque:
2497           // Opaque accesses are atomic.
2498       case Acquire:
2499       case Release:
2500       case Volatile:
2501           requires_atomic_access = true;
2502           break;
2503       default:
2504           ShouldNotReachHere();
2505   }
2506 
2507   // Figure out the memory ordering.
2508   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2509   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2510 
2511   // If we are reading the value of the referent field of a Reference
2512   // object (either by using Unsafe directly or through reflection)
2513   // then, if G1 is enabled, we need to record the referent in an
2514   // SATB log buffer using the pre-barrier mechanism.
2515   // Also we need to add memory barrier to prevent commoning reads
2516   // from this field across safepoint since GC can change its value.
2517   bool need_read_barrier = !is_store &&
2518                            offset != top() && heap_base_oop != top();
2519 
2520   if (!is_store && type == T_OBJECT) {
2521     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2522     if (tjp != NULL) {
2523       value_type = tjp;
2524     }
2525   }
2526 
2527   receiver = null_check(receiver);
2528   if (stopped()) {
2529     return true;
2530   }
2531   // Heap pointers get a null-check from the interpreter,
2532   // as a courtesy.  However, this is not guaranteed by Unsafe,
2533   // and it is not possible to fully distinguish unintended nulls
2534   // from intended ones in this API.
2535 
2536   // We need to emit leading and trailing CPU membars (see below) in
2537   // addition to memory membars for special access modes. This is a little
2538   // too strong, but avoids the need to insert per-alias-type
2539   // volatile membars (for stores; compare Parse::do_put_xxx), which
2540   // we cannot do effectively here because we probably only have a
2541   // rough approximation of type.
2542 
2543   switch(kind) {
2544     case Relaxed:
2545     case Opaque:
2546     case Acquire:
2547       break;
2548     case Release:
2549     case Volatile:
2550       if (is_store) {
2551         insert_mem_bar(Op_MemBarRelease);
2552       } else {
2553         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2554           insert_mem_bar(Op_MemBarVolatile);
2555         }
2556       }
2557       break;
2558     default:
2559       ShouldNotReachHere();
2560   }
2561 
2562   // Memory barrier to prevent normal and 'unsafe' accesses from
2563   // bypassing each other.  Happens after null checks, so the
2564   // exception paths do not take memory state from the memory barrier,
2565   // so there's no problems making a strong assert about mixing users
2566   // of safe & unsafe memory.
2567   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2568 
2569   if (!is_store) {
2570     Node* p = NULL;
2571     // Try to constant fold a load from a constant field
2572     ciField* field = alias_type->field();
2573     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2574       // final or stable field
2575       p = make_constant_from_field(field, heap_base_oop);
2576     }
2577     if (p == NULL) {
2578       // To be valid, unsafe loads may depend on other conditions than
2579       // the one that guards them: pin the Load node
2580       LoadNode::ControlDependency dep = LoadNode::Pinned;
2581       Node* ctrl = control();
2582       // non volatile loads may be able to float
2583       if (!need_mem_bar && adr_type->isa_instptr()) {
2584         assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
2585         intptr_t offset = Type::OffsetBot;
2586         AddPNode::Ideal_base_and_offset(adr, &_gvn, offset);
2587         if (offset >= 0) {
2588           int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
2589           if (offset < s) {
2590             // Guaranteed to be a valid access, no need to pin it
2591             dep = LoadNode::DependsOnlyOnTest;
2592             ctrl = NULL;
2593           }
2594         }
2595       }
2596       p = make_load(ctrl, adr, value_type, type, adr_type, mo, dep, requires_atomic_access, unaligned, mismatched);
2597       // load value
2598       switch (type) {
2599       case T_BOOLEAN:
2600       {
2601         // Normalize the value returned by getBoolean in the following cases
2602         if (mismatched ||
2603             heap_base_oop == top() ||                            // - heap_base_oop is NULL or
2604             (can_access_non_heap && alias_type->field() == NULL) // - heap_base_oop is potentially NULL
2605                                                                  //   and the unsafe access is made to large offset
2606                                                                  //   (i.e., larger than the maximum offset necessary for any
2607                                                                  //   field access)
2608             ) {
2609           IdealKit ideal = IdealKit(this);
2610 #define __ ideal.
2611           IdealVariable normalized_result(ideal);
2612           __ declarations_done();
2613           __ set(normalized_result, p);
2614           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2615           __ set(normalized_result, ideal.ConI(1));
2616           ideal.end_if();
2617           final_sync(ideal);
2618           p = __ value(normalized_result);
2619 #undef __
2620         }
2621       }
2622       case T_CHAR:
2623       case T_BYTE:
2624       case T_SHORT:
2625       case T_INT:
2626       case T_LONG:
2627       case T_FLOAT:
2628       case T_DOUBLE:
2629         break;
2630       case T_OBJECT:
2631         if (need_read_barrier) {
2632           // We do not require a mem bar inside pre_barrier if need_mem_bar
2633           // is set: the barriers would be emitted by us.
2634           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2635         }
2636         break;
2637       case T_ADDRESS:
2638         // Cast to an int type.
2639         p = _gvn.transform(new CastP2XNode(NULL, p));
2640         p = ConvX2UL(p);
2641         break;
2642       default:
2643         fatal("unexpected type %d: %s", type, type2name(type));
2644         break;
2645       }
2646     }
2647     // The load node has the control of the preceding MemBarCPUOrder.  All
2648     // following nodes will have the control of the MemBarCPUOrder inserted at
2649     // the end of this method.  So, pushing the load onto the stack at a later
2650     // point is fine.
2651     set_result(p);
2652   } else {
2653     // place effect of store into memory
2654     switch (type) {
2655     case T_DOUBLE:
2656       val = dstore_rounding(val);
2657       break;
2658     case T_ADDRESS:
2659       // Repackage the long as a pointer.
2660       val = ConvL2X(val);
2661       val = _gvn.transform(new CastX2PNode(val));
2662       break;
2663     default:
2664       break;
2665     }
2666 
2667     if (type == T_OBJECT) {
2668       store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2669     } else {
2670       store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2671     }
2672   }
2673 
2674   switch(kind) {
2675     case Relaxed:
2676     case Opaque:
2677     case Release:
2678       break;
2679     case Acquire:
2680     case Volatile:
2681       if (!is_store) {
2682         insert_mem_bar(Op_MemBarAcquire);
2683       } else {
2684         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2685           insert_mem_bar(Op_MemBarVolatile);
2686         }
2687       }
2688       break;
2689     default:
2690       ShouldNotReachHere();
2691   }
2692 
2693   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2694 
2695   return true;
2696 }
2697 
2698 //----------------------------inline_unsafe_load_store----------------------------
2699 // This method serves a couple of different customers (depending on LoadStoreKind):
2700 //
2701 // LS_cmp_swap:
2702 //
2703 //   boolean compareAndSetObject(Object o, long offset, Object expected, Object x);
2704 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2705 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2706 //
2707 // LS_cmp_swap_weak:
2708 //
2709 //   boolean weakCompareAndSetObject(       Object o, long offset, Object expected, Object x);
2710 //   boolean weakCompareAndSetObjectPlain(  Object o, long offset, Object expected, Object x);
2711 //   boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x);
2712 //   boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x);
2713 //
2714 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2715 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2716 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2717 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2718 //
2719 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2720 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2721 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2722 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2723 //
2724 // LS_cmp_exchange:
2725 //
2726 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2727 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2728 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2729 //
2730 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2731 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2732 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2733 //
2734 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2735 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2736 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2737 //
2738 // LS_get_add:
2739 //
2740 //   int  getAndAddInt( Object o, long offset, int  delta)
2741 //   long getAndAddLong(Object o, long offset, long delta)
2742 //
2743 // LS_get_set:
2744 //
2745 //   int    getAndSet(Object o, long offset, int    newValue)
2746 //   long   getAndSet(Object o, long offset, long   newValue)
2747 //   Object getAndSet(Object o, long offset, Object newValue)
2748 //
2749 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2750   // This basic scheme here is the same as inline_unsafe_access, but
2751   // differs in enough details that combining them would make the code
2752   // overly confusing.  (This is a true fact! I originally combined
2753   // them, but even I was confused by it!) As much code/comments as
2754   // possible are retained from inline_unsafe_access though to make
2755   // the correspondences clearer. - dl
2756 
2757   if (callee()->is_static())  return false;  // caller must have the capability!
2758 
2759 #ifndef PRODUCT
2760   BasicType rtype;
2761   {
2762     ResourceMark rm;
2763     // Check the signatures.
2764     ciSignature* sig = callee()->signature();
2765     rtype = sig->return_type()->basic_type();
2766     switch(kind) {
2767       case LS_get_add:
2768       case LS_get_set: {
2769       // Check the signatures.
2770 #ifdef ASSERT
2771       assert(rtype == type, "get and set must return the expected type");
2772       assert(sig->count() == 3, "get and set has 3 arguments");
2773       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2774       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2775       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2776       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2777 #endif // ASSERT
2778         break;
2779       }
2780       case LS_cmp_swap:
2781       case LS_cmp_swap_weak: {
2782       // Check the signatures.
2783 #ifdef ASSERT
2784       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2785       assert(sig->count() == 4, "CAS has 4 arguments");
2786       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2787       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2788 #endif // ASSERT
2789         break;
2790       }
2791       case LS_cmp_exchange: {
2792       // Check the signatures.
2793 #ifdef ASSERT
2794       assert(rtype == type, "CAS must return the expected type");
2795       assert(sig->count() == 4, "CAS has 4 arguments");
2796       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2797       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2798 #endif // ASSERT
2799         break;
2800       }
2801       default:
2802         ShouldNotReachHere();
2803     }
2804   }
2805 #endif //PRODUCT
2806 
2807   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2808 
2809   // Get arguments:
2810   Node* receiver = NULL;
2811   Node* base     = NULL;
2812   Node* offset   = NULL;
2813   Node* oldval   = NULL;
2814   Node* newval   = NULL;
2815   switch(kind) {
2816     case LS_cmp_swap:
2817     case LS_cmp_swap_weak:
2818     case LS_cmp_exchange: {
2819       const bool two_slot_type = type2size[type] == 2;
2820       receiver = argument(0);  // type: oop
2821       base     = argument(1);  // type: oop
2822       offset   = argument(2);  // type: long
2823       oldval   = argument(4);  // type: oop, int, or long
2824       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2825       break;
2826     }
2827     case LS_get_add:
2828     case LS_get_set: {
2829       receiver = argument(0);  // type: oop
2830       base     = argument(1);  // type: oop
2831       offset   = argument(2);  // type: long
2832       oldval   = NULL;
2833       newval   = argument(4);  // type: oop, int, or long
2834       break;
2835     }
2836     default:
2837       ShouldNotReachHere();
2838   }
2839 
2840   // Build field offset expression.
2841   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2842   // to be plain byte offsets, which are also the same as those accepted
2843   // by oopDesc::field_addr.
2844   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2845   // 32-bit machines ignore the high half of long offsets
2846   offset = ConvL2X(offset);
2847   Node* adr = make_unsafe_address(base, offset, type, false);
2848   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2849 
2850   Compile::AliasType* alias_type = C->alias_type(adr_type);
2851   BasicType bt = alias_type->basic_type();
2852   if (bt != T_ILLEGAL &&
2853       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2854     // Don't intrinsify mismatched object accesses.
2855     return false;
2856   }
2857 
2858   // For CAS, unlike inline_unsafe_access, there seems no point in
2859   // trying to refine types. Just use the coarse types here.
2860   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2861   const Type *value_type = Type::get_const_basic_type(type);
2862 
2863   switch (kind) {
2864     case LS_get_set:
2865     case LS_cmp_exchange: {
2866       if (type == T_OBJECT) {
2867         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2868         if (tjp != NULL) {
2869           value_type = tjp;
2870         }
2871       }
2872       break;
2873     }
2874     case LS_cmp_swap:
2875     case LS_cmp_swap_weak:
2876     case LS_get_add:
2877       break;
2878     default:
2879       ShouldNotReachHere();
2880   }
2881 
2882   // Null check receiver.
2883   receiver = null_check(receiver);
2884   if (stopped()) {
2885     return true;
2886   }
2887 
2888   int alias_idx = C->get_alias_index(adr_type);
2889 
2890   // Memory-model-wise, a LoadStore acts like a little synchronized
2891   // block, so needs barriers on each side.  These don't translate
2892   // into actual barriers on most machines, but we still need rest of
2893   // compiler to respect ordering.
2894 
2895   switch (access_kind) {
2896     case Relaxed:
2897     case Acquire:
2898       break;
2899     case Release:
2900       insert_mem_bar(Op_MemBarRelease);
2901       break;
2902     case Volatile:
2903       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2904         insert_mem_bar(Op_MemBarVolatile);
2905       } else {
2906         insert_mem_bar(Op_MemBarRelease);
2907       }
2908       break;
2909     default:
2910       ShouldNotReachHere();
2911   }
2912   insert_mem_bar(Op_MemBarCPUOrder);
2913 
2914   // Figure out the memory ordering.
2915   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2916 
2917   // 4984716: MemBars must be inserted before this
2918   //          memory node in order to avoid a false
2919   //          dependency which will confuse the scheduler.
2920   Node *mem = memory(alias_idx);
2921 
2922   // For now, we handle only those cases that actually exist: ints,
2923   // longs, and Object. Adding others should be straightforward.
2924   Node* load_store = NULL;
2925   switch(type) {
2926   case T_BYTE:
2927     switch(kind) {
2928       case LS_get_add:
2929         load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2930         break;
2931       case LS_get_set:
2932         load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2933         break;
2934       case LS_cmp_swap_weak:
2935         load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2936         break;
2937       case LS_cmp_swap:
2938         load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2939         break;
2940       case LS_cmp_exchange:
2941         load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2942         break;
2943       default:
2944         ShouldNotReachHere();
2945     }
2946     break;
2947   case T_SHORT:
2948     switch(kind) {
2949       case LS_get_add:
2950         load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2951         break;
2952       case LS_get_set:
2953         load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2954         break;
2955       case LS_cmp_swap_weak:
2956         load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2957         break;
2958       case LS_cmp_swap:
2959         load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2960         break;
2961       case LS_cmp_exchange:
2962         load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2963         break;
2964       default:
2965         ShouldNotReachHere();
2966     }
2967     break;
2968   case T_INT:
2969     switch(kind) {
2970       case LS_get_add:
2971         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2972         break;
2973       case LS_get_set:
2974         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2975         break;
2976       case LS_cmp_swap_weak:
2977         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2978         break;
2979       case LS_cmp_swap:
2980         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2981         break;
2982       case LS_cmp_exchange:
2983         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2984         break;
2985       default:
2986         ShouldNotReachHere();
2987     }
2988     break;
2989   case T_LONG:
2990     switch(kind) {
2991       case LS_get_add:
2992         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2993         break;
2994       case LS_get_set:
2995         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2996         break;
2997       case LS_cmp_swap_weak:
2998         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2999         break;
3000       case LS_cmp_swap:
3001         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
3002         break;
3003       case LS_cmp_exchange:
3004         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
3005         break;
3006       default:
3007         ShouldNotReachHere();
3008     }
3009     break;
3010   case T_OBJECT:
3011     // Transformation of a value which could be NULL pointer (CastPP #NULL)
3012     // could be delayed during Parse (for example, in adjust_map_after_if()).
3013     // Execute transformation here to avoid barrier generation in such case.
3014     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3015       newval = _gvn.makecon(TypePtr::NULL_PTR);
3016 
3017     // Reference stores need a store barrier.
3018     switch(kind) {
3019       case LS_get_set: {
3020         // If pre-barrier must execute before the oop store, old value will require do_load here.
3021         if (!can_move_pre_barrier()) {
3022           pre_barrier(true /* do_load*/,
3023                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
3024                       NULL /* pre_val*/,
3025                       T_OBJECT);
3026         } // Else move pre_barrier to use load_store value, see below.
3027         break;
3028       }
3029       case LS_cmp_swap_weak:
3030       case LS_cmp_swap:
3031       case LS_cmp_exchange: {
3032         // Same as for newval above:
3033         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3034           oldval = _gvn.makecon(TypePtr::NULL_PTR);
3035         }
3036         // The only known value which might get overwritten is oldval.
3037         pre_barrier(false /* do_load */,
3038                     control(), NULL, NULL, max_juint, NULL, NULL,
3039                     oldval /* pre_val */,
3040                     T_OBJECT);
3041         break;
3042       }
3043       default:
3044         ShouldNotReachHere();
3045     }
3046 
3047 #ifdef _LP64
3048     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3049       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3050 
3051       switch(kind) {
3052         case LS_get_set:
3053           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
3054           break;
3055         case LS_cmp_swap_weak: {
3056           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3057           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3058           break;
3059         }
3060         case LS_cmp_swap: {
3061           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3062           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3063           break;
3064         }
3065         case LS_cmp_exchange: {
3066           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3067           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
3068           break;
3069         }
3070         default:
3071           ShouldNotReachHere();
3072       }
3073     } else
3074 #endif
3075     switch (kind) {
3076       case LS_get_set:
3077         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3078         break;
3079       case LS_cmp_swap_weak:
3080         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3081         break;
3082       case LS_cmp_swap:
3083         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3084         break;
3085       case LS_cmp_exchange:
3086         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
3087         break;
3088       default:
3089         ShouldNotReachHere();
3090     }
3091 
3092     // Emit the post barrier only when the actual store happened. This makes sense
3093     // to check only for LS_cmp_* that can fail to set the value.
3094     // LS_cmp_exchange does not produce any branches by default, so there is no
3095     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3096     // CompareAndExchange and move branches here, it would make sense to conditionalize
3097     // post_barriers for LS_cmp_exchange as well.
3098     //
3099     // CAS success path is marked more likely since we anticipate this is a performance
3100     // critical path, while CAS failure path can use the penalty for going through unlikely
3101     // path as backoff. Which is still better than doing a store barrier there.
3102     switch (kind) {
3103       case LS_get_set:
3104       case LS_cmp_exchange: {
3105         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3106         break;
3107       }
3108       case LS_cmp_swap_weak:
3109       case LS_cmp_swap: {
3110         IdealKit ideal(this);
3111         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3112           sync_kit(ideal);
3113           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3114           ideal.sync_kit(this);
3115         } ideal.end_if();
3116         final_sync(ideal);
3117         break;
3118       }
3119       default:
3120         ShouldNotReachHere();
3121     }
3122     break;
3123   default:
3124     fatal("unexpected type %d: %s", type, type2name(type));
3125     break;
3126   }
3127 
3128   // SCMemProjNodes represent the memory state of a LoadStore. Their
3129   // main role is to prevent LoadStore nodes from being optimized away
3130   // when their results aren't used.
3131   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3132   set_memory(proj, alias_idx);
3133 
3134   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3135 #ifdef _LP64
3136     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3137       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3138     }
3139 #endif
3140     if (can_move_pre_barrier() && kind == LS_get_set) {
3141       // Don't need to load pre_val. The old value is returned by load_store.
3142       // The pre_barrier can execute after the xchg as long as no safepoint
3143       // gets inserted between them.
3144       pre_barrier(false /* do_load */,
3145                   control(), NULL, NULL, max_juint, NULL, NULL,
3146                   load_store /* pre_val */,
3147                   T_OBJECT);
3148     }
3149   }
3150 
3151   // Add the trailing membar surrounding the access
3152   insert_mem_bar(Op_MemBarCPUOrder);
3153 
3154   switch (access_kind) {
3155     case Relaxed:
3156     case Release:
3157       break; // do nothing
3158     case Acquire:
3159     case Volatile:
3160       insert_mem_bar(Op_MemBarAcquire);
3161       // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3162       break;
3163     default:
3164       ShouldNotReachHere();
3165   }
3166 
3167   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3168   set_result(load_store);
3169   return true;
3170 }
3171 
3172 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3173   MemNode::MemOrd mo = MemNode::unset;
3174   switch(kind) {
3175     case Opaque:
3176     case Relaxed:  mo = MemNode::unordered; break;
3177     case Acquire:  mo = MemNode::acquire;   break;
3178     case Release:  mo = MemNode::release;   break;
3179     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3180     default:
3181       ShouldNotReachHere();
3182   }
3183   guarantee(mo != MemNode::unset, "Should select memory ordering");
3184   return mo;
3185 }
3186 
3187 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3188   MemNode::MemOrd mo = MemNode::unset;
3189   switch(kind) {
3190     case Opaque:
3191     case Relaxed:  mo = MemNode::unordered; break;
3192     case Acquire:  mo = MemNode::acquire;   break;
3193     case Release:  mo = MemNode::release;   break;
3194     case Volatile: mo = MemNode::seqcst;    break;
3195     default:
3196       ShouldNotReachHere();
3197   }
3198   guarantee(mo != MemNode::unset, "Should select memory ordering");
3199   return mo;
3200 }
3201 
3202 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3203   // Regardless of form, don't allow previous ld/st to move down,
3204   // then issue acquire, release, or volatile mem_bar.
3205   insert_mem_bar(Op_MemBarCPUOrder);
3206   switch(id) {
3207     case vmIntrinsics::_loadFence:
3208       insert_mem_bar(Op_LoadFence);
3209       return true;
3210     case vmIntrinsics::_storeFence:
3211       insert_mem_bar(Op_StoreFence);
3212       return true;
3213     case vmIntrinsics::_fullFence:
3214       insert_mem_bar(Op_MemBarVolatile);
3215       return true;
3216     default:
3217       fatal_unexpected_iid(id);
3218       return false;
3219   }
3220 }
3221 
3222 bool LibraryCallKit::inline_onspinwait() {
3223   insert_mem_bar(Op_OnSpinWait);
3224   return true;
3225 }
3226 
3227 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3228   if (!kls->is_Con()) {
3229     return true;
3230   }
3231   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3232   if (klsptr == NULL) {
3233     return true;
3234   }
3235   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3236   // don't need a guard for a klass that is already initialized
3237   return !ik->is_initialized();
3238 }
3239 
3240 //----------------------------inline_unsafe_allocate---------------------------
3241 // public native Object Unsafe.allocateInstance(Class<?> cls);
3242 bool LibraryCallKit::inline_unsafe_allocate() {
3243   if (callee()->is_static())  return false;  // caller must have the capability!
3244 
3245   null_check_receiver();  // null-check, then ignore
3246   Node* cls = null_check(argument(1));
3247   if (stopped())  return true;
3248 
3249   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3250   kls = null_check(kls);
3251   if (stopped())  return true;  // argument was like int.class
3252 
3253   Node* test = NULL;
3254   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3255     // Note:  The argument might still be an illegal value like
3256     // Serializable.class or Object[].class.   The runtime will handle it.
3257     // But we must make an explicit check for initialization.
3258     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3259     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3260     // can generate code to load it as unsigned byte.
3261     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3262     Node* bits = intcon(InstanceKlass::fully_initialized);
3263     test = _gvn.transform(new SubINode(inst, bits));
3264     // The 'test' is non-zero if we need to take a slow path.
3265   }
3266 
3267   Node* obj = new_instance(kls, test);
3268   set_result(obj);
3269   return true;
3270 }
3271 
3272 //------------------------inline_native_time_funcs--------------
3273 // inline code for System.currentTimeMillis() and System.nanoTime()
3274 // these have the same type and signature
3275 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3276   const TypeFunc* tf = OptoRuntime::void_long_Type();
3277   const TypePtr* no_memory_effects = NULL;
3278   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3279   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3280 #ifdef ASSERT
3281   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3282   assert(value_top == top(), "second value must be top");
3283 #endif
3284   set_result(value);
3285   return true;
3286 }
3287 
3288 #ifdef TRACE_HAVE_INTRINSICS
3289 
3290 /*
3291 * oop -> myklass
3292 * myklass->trace_id |= USED
3293 * return myklass->trace_id & ~0x3
3294 */
3295 bool LibraryCallKit::inline_native_classID() {
3296   Node* cls = null_check(argument(0), T_OBJECT);
3297   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3298   kls = null_check(kls, T_OBJECT);
3299 
3300   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3301   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3302   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3303 
3304   Node* clsused = longcon(0x01l); // set the class bit
3305   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3306   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3307   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3308 
3309 #ifdef TRACE_ID_META_BITS
3310   Node* mbits = longcon(~TRACE_ID_META_BITS);
3311   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
3312 #endif
3313 #ifdef TRACE_ID_CLASS_SHIFT
3314   Node* cbits = intcon(TRACE_ID_CLASS_SHIFT);
3315   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
3316 #endif
3317 
3318   set_result(tvalue);
3319   return true;
3320 
3321 }
3322 
3323 bool LibraryCallKit::inline_native_getBufferWriter() {
3324   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3325 
3326   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3327                                   in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET)
3328                                   );
3329 
3330   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3331 
3332   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3333   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3334 
3335   IfNode* iff_jobj_null =
3336     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3337 
3338   enum { _normal_path = 1,
3339          _null_path = 2,
3340          PATH_LIMIT };
3341 
3342   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3343   PhiNode*    result_val = new PhiNode(result_rgn, TypePtr::BOTTOM);
3344 
3345   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3346   result_rgn->init_req(_null_path, jobj_is_null);
3347   result_val->init_req(_null_path, null());
3348 
3349   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3350   result_rgn->init_req(_normal_path, jobj_is_not_null);
3351 
3352   Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3353   result_val->init_req(_normal_path, res);
3354 
3355   set_result(result_rgn, result_val);
3356 
3357   return true;
3358 }
3359 
3360 #endif
3361 
3362 //------------------------inline_native_currentThread------------------
3363 bool LibraryCallKit::inline_native_currentThread() {
3364   Node* junk = NULL;
3365   set_result(generate_current_thread(junk));
3366   return true;
3367 }
3368 
3369 //------------------------inline_native_isInterrupted------------------
3370 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3371 bool LibraryCallKit::inline_native_isInterrupted() {
3372   // Add a fast path to t.isInterrupted(clear_int):
3373   //   (t == Thread.current() &&
3374   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3375   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3376   // So, in the common case that the interrupt bit is false,
3377   // we avoid making a call into the VM.  Even if the interrupt bit
3378   // is true, if the clear_int argument is false, we avoid the VM call.
3379   // However, if the receiver is not currentThread, we must call the VM,
3380   // because there must be some locking done around the operation.
3381 
3382   // We only go to the fast case code if we pass two guards.
3383   // Paths which do not pass are accumulated in the slow_region.
3384 
3385   enum {
3386     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3387     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3388     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3389     PATH_LIMIT
3390   };
3391 
3392   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3393   // out of the function.
3394   insert_mem_bar(Op_MemBarCPUOrder);
3395 
3396   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3397   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3398 
3399   RegionNode* slow_region = new RegionNode(1);
3400   record_for_igvn(slow_region);
3401 
3402   // (a) Receiving thread must be the current thread.
3403   Node* rec_thr = argument(0);
3404   Node* tls_ptr = NULL;
3405   Node* cur_thr = generate_current_thread(tls_ptr);
3406   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3407   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3408 
3409   generate_slow_guard(bol_thr, slow_region);
3410 
3411   // (b) Interrupt bit on TLS must be false.
3412   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3413   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3414   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3415 
3416   // Set the control input on the field _interrupted read to prevent it floating up.
3417   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3418   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3419   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3420 
3421   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3422 
3423   // First fast path:  if (!TLS._interrupted) return false;
3424   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3425   result_rgn->init_req(no_int_result_path, false_bit);
3426   result_val->init_req(no_int_result_path, intcon(0));
3427 
3428   // drop through to next case
3429   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3430 
3431 #ifndef _WINDOWS
3432   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3433   Node* clr_arg = argument(1);
3434   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3435   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3436   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3437 
3438   // Second fast path:  ... else if (!clear_int) return true;
3439   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3440   result_rgn->init_req(no_clear_result_path, false_arg);
3441   result_val->init_req(no_clear_result_path, intcon(1));
3442 
3443   // drop through to next case
3444   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3445 #else
3446   // To return true on Windows you must read the _interrupted field
3447   // and check the event state i.e. take the slow path.
3448 #endif // _WINDOWS
3449 
3450   // (d) Otherwise, go to the slow path.
3451   slow_region->add_req(control());
3452   set_control( _gvn.transform(slow_region));
3453 
3454   if (stopped()) {
3455     // There is no slow path.
3456     result_rgn->init_req(slow_result_path, top());
3457     result_val->init_req(slow_result_path, top());
3458   } else {
3459     // non-virtual because it is a private non-static
3460     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3461 
3462     Node* slow_val = set_results_for_java_call(slow_call);
3463     // this->control() comes from set_results_for_java_call
3464 
3465     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3466     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3467 
3468     // These two phis are pre-filled with copies of of the fast IO and Memory
3469     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3470     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3471 
3472     result_rgn->init_req(slow_result_path, control());
3473     result_io ->init_req(slow_result_path, i_o());
3474     result_mem->init_req(slow_result_path, reset_memory());
3475     result_val->init_req(slow_result_path, slow_val);
3476 
3477     set_all_memory(_gvn.transform(result_mem));
3478     set_i_o(       _gvn.transform(result_io));
3479   }
3480 
3481   C->set_has_split_ifs(true); // Has chance for split-if optimization
3482   set_result(result_rgn, result_val);
3483   return true;
3484 }
3485 
3486 //---------------------------load_mirror_from_klass----------------------------
3487 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3488 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3489   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3490   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3491   return make_load(NULL, load, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3492 }
3493 
3494 //-----------------------load_klass_from_mirror_common-------------------------
3495 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3496 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3497 // and branch to the given path on the region.
3498 // If never_see_null, take an uncommon trap on null, so we can optimistically
3499 // compile for the non-null case.
3500 // If the region is NULL, force never_see_null = true.
3501 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3502                                                     bool never_see_null,
3503                                                     RegionNode* region,
3504                                                     int null_path,
3505                                                     int offset) {
3506   if (region == NULL)  never_see_null = true;
3507   Node* p = basic_plus_adr(mirror, offset);
3508   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3509   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3510   Node* null_ctl = top();
3511   kls = null_check_oop(kls, &null_ctl, never_see_null);
3512   if (region != NULL) {
3513     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3514     region->init_req(null_path, null_ctl);
3515   } else {
3516     assert(null_ctl == top(), "no loose ends");
3517   }
3518   return kls;
3519 }
3520 
3521 //--------------------(inline_native_Class_query helpers)---------------------
3522 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3523 // Fall through if (mods & mask) == bits, take the guard otherwise.
3524 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3525   // Branch around if the given klass has the given modifier bit set.
3526   // Like generate_guard, adds a new path onto the region.
3527   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3528   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3529   Node* mask = intcon(modifier_mask);
3530   Node* bits = intcon(modifier_bits);
3531   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3532   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3533   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3534   return generate_fair_guard(bol, region);
3535 }
3536 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3537   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3538 }
3539 
3540 //-------------------------inline_native_Class_query-------------------
3541 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3542   const Type* return_type = TypeInt::BOOL;
3543   Node* prim_return_value = top();  // what happens if it's a primitive class?
3544   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3545   bool expect_prim = false;     // most of these guys expect to work on refs
3546 
3547   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3548 
3549   Node* mirror = argument(0);
3550   Node* obj    = top();
3551 
3552   switch (id) {
3553   case vmIntrinsics::_isInstance:
3554     // nothing is an instance of a primitive type
3555     prim_return_value = intcon(0);
3556     obj = argument(1);
3557     break;
3558   case vmIntrinsics::_getModifiers:
3559     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3560     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3561     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3562     break;
3563   case vmIntrinsics::_isInterface:
3564     prim_return_value = intcon(0);
3565     break;
3566   case vmIntrinsics::_isArray:
3567     prim_return_value = intcon(0);
3568     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3569     break;
3570   case vmIntrinsics::_isPrimitive:
3571     prim_return_value = intcon(1);
3572     expect_prim = true;  // obviously
3573     break;
3574   case vmIntrinsics::_getSuperclass:
3575     prim_return_value = null();
3576     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3577     break;
3578   case vmIntrinsics::_getClassAccessFlags:
3579     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3580     return_type = TypeInt::INT;  // not bool!  6297094
3581     break;
3582   default:
3583     fatal_unexpected_iid(id);
3584     break;
3585   }
3586 
3587   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3588   if (mirror_con == NULL)  return false;  // cannot happen?
3589 
3590 #ifndef PRODUCT
3591   if (C->print_intrinsics() || C->print_inlining()) {
3592     ciType* k = mirror_con->java_mirror_type();
3593     if (k) {
3594       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3595       k->print_name();
3596       tty->cr();
3597     }
3598   }
3599 #endif
3600 
3601   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3602   RegionNode* region = new RegionNode(PATH_LIMIT);
3603   record_for_igvn(region);
3604   PhiNode* phi = new PhiNode(region, return_type);
3605 
3606   // The mirror will never be null of Reflection.getClassAccessFlags, however
3607   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3608   // if it is. See bug 4774291.
3609 
3610   // For Reflection.getClassAccessFlags(), the null check occurs in
3611   // the wrong place; see inline_unsafe_access(), above, for a similar
3612   // situation.
3613   mirror = null_check(mirror);
3614   // If mirror or obj is dead, only null-path is taken.
3615   if (stopped())  return true;
3616 
3617   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3618 
3619   // Now load the mirror's klass metaobject, and null-check it.
3620   // Side-effects region with the control path if the klass is null.
3621   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3622   // If kls is null, we have a primitive mirror.
3623   phi->init_req(_prim_path, prim_return_value);
3624   if (stopped()) { set_result(region, phi); return true; }
3625   bool safe_for_replace = (region->in(_prim_path) == top());
3626 
3627   Node* p;  // handy temp
3628   Node* null_ctl;
3629 
3630   // Now that we have the non-null klass, we can perform the real query.
3631   // For constant classes, the query will constant-fold in LoadNode::Value.
3632   Node* query_value = top();
3633   switch (id) {
3634   case vmIntrinsics::_isInstance:
3635     // nothing is an instance of a primitive type
3636     query_value = gen_instanceof(obj, kls, safe_for_replace);
3637     break;
3638 
3639   case vmIntrinsics::_getModifiers:
3640     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3641     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3642     break;
3643 
3644   case vmIntrinsics::_isInterface:
3645     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3646     if (generate_interface_guard(kls, region) != NULL)
3647       // A guard was added.  If the guard is taken, it was an interface.
3648       phi->add_req(intcon(1));
3649     // If we fall through, it's a plain class.
3650     query_value = intcon(0);
3651     break;
3652 
3653   case vmIntrinsics::_isArray:
3654     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3655     if (generate_array_guard(kls, region) != NULL)
3656       // A guard was added.  If the guard is taken, it was an array.
3657       phi->add_req(intcon(1));
3658     // If we fall through, it's a plain class.
3659     query_value = intcon(0);
3660     break;
3661 
3662   case vmIntrinsics::_isPrimitive:
3663     query_value = intcon(0); // "normal" path produces false
3664     break;
3665 
3666   case vmIntrinsics::_getSuperclass:
3667     // The rules here are somewhat unfortunate, but we can still do better
3668     // with random logic than with a JNI call.
3669     // Interfaces store null or Object as _super, but must report null.
3670     // Arrays store an intermediate super as _super, but must report Object.
3671     // Other types can report the actual _super.
3672     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3673     if (generate_interface_guard(kls, region) != NULL)
3674       // A guard was added.  If the guard is taken, it was an interface.
3675       phi->add_req(null());
3676     if (generate_array_guard(kls, region) != NULL)
3677       // A guard was added.  If the guard is taken, it was an array.
3678       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3679     // If we fall through, it's a plain class.  Get its _super.
3680     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3681     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3682     null_ctl = top();
3683     kls = null_check_oop(kls, &null_ctl);
3684     if (null_ctl != top()) {
3685       // If the guard is taken, Object.superClass is null (both klass and mirror).
3686       region->add_req(null_ctl);
3687       phi   ->add_req(null());
3688     }
3689     if (!stopped()) {
3690       query_value = load_mirror_from_klass(kls);
3691     }
3692     break;
3693 
3694   case vmIntrinsics::_getClassAccessFlags:
3695     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3696     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3697     break;
3698 
3699   default:
3700     fatal_unexpected_iid(id);
3701     break;
3702   }
3703 
3704   // Fall-through is the normal case of a query to a real class.
3705   phi->init_req(1, query_value);
3706   region->init_req(1, control());
3707 
3708   C->set_has_split_ifs(true); // Has chance for split-if optimization
3709   set_result(region, phi);
3710   return true;
3711 }
3712 
3713 //-------------------------inline_Class_cast-------------------
3714 bool LibraryCallKit::inline_Class_cast() {
3715   Node* mirror = argument(0); // Class
3716   Node* obj    = argument(1);
3717   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3718   if (mirror_con == NULL) {
3719     return false;  // dead path (mirror->is_top()).
3720   }
3721   if (obj == NULL || obj->is_top()) {
3722     return false;  // dead path
3723   }
3724   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3725 
3726   // First, see if Class.cast() can be folded statically.
3727   // java_mirror_type() returns non-null for compile-time Class constants.
3728   ciType* tm = mirror_con->java_mirror_type();
3729   if (tm != NULL && tm->is_klass() &&
3730       tp != NULL && tp->klass() != NULL) {
3731     if (!tp->klass()->is_loaded()) {
3732       // Don't use intrinsic when class is not loaded.
3733       return false;
3734     } else {
3735       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3736       if (static_res == Compile::SSC_always_true) {
3737         // isInstance() is true - fold the code.
3738         set_result(obj);
3739         return true;
3740       } else if (static_res == Compile::SSC_always_false) {
3741         // Don't use intrinsic, have to throw ClassCastException.
3742         // If the reference is null, the non-intrinsic bytecode will
3743         // be optimized appropriately.
3744         return false;
3745       }
3746     }
3747   }
3748 
3749   // Bailout intrinsic and do normal inlining if exception path is frequent.
3750   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3751     return false;
3752   }
3753 
3754   // Generate dynamic checks.
3755   // Class.cast() is java implementation of _checkcast bytecode.
3756   // Do checkcast (Parse::do_checkcast()) optimizations here.
3757 
3758   mirror = null_check(mirror);
3759   // If mirror is dead, only null-path is taken.
3760   if (stopped()) {
3761     return true;
3762   }
3763 
3764   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3765   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3766   RegionNode* region = new RegionNode(PATH_LIMIT);
3767   record_for_igvn(region);
3768 
3769   // Now load the mirror's klass metaobject, and null-check it.
3770   // If kls is null, we have a primitive mirror and
3771   // nothing is an instance of a primitive type.
3772   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3773 
3774   Node* res = top();
3775   if (!stopped()) {
3776     Node* bad_type_ctrl = top();
3777     // Do checkcast optimizations.
3778     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3779     region->init_req(_bad_type_path, bad_type_ctrl);
3780   }
3781   if (region->in(_prim_path) != top() ||
3782       region->in(_bad_type_path) != top()) {
3783     // Let Interpreter throw ClassCastException.
3784     PreserveJVMState pjvms(this);
3785     set_control(_gvn.transform(region));
3786     uncommon_trap(Deoptimization::Reason_intrinsic,
3787                   Deoptimization::Action_maybe_recompile);
3788   }
3789   if (!stopped()) {
3790     set_result(res);
3791   }
3792   return true;
3793 }
3794 
3795 
3796 //--------------------------inline_native_subtype_check------------------------
3797 // This intrinsic takes the JNI calls out of the heart of
3798 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3799 bool LibraryCallKit::inline_native_subtype_check() {
3800   // Pull both arguments off the stack.
3801   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3802   args[0] = argument(0);
3803   args[1] = argument(1);
3804   Node* klasses[2];             // corresponding Klasses: superk, subk
3805   klasses[0] = klasses[1] = top();
3806 
3807   enum {
3808     // A full decision tree on {superc is prim, subc is prim}:
3809     _prim_0_path = 1,           // {P,N} => false
3810                                 // {P,P} & superc!=subc => false
3811     _prim_same_path,            // {P,P} & superc==subc => true
3812     _prim_1_path,               // {N,P} => false
3813     _ref_subtype_path,          // {N,N} & subtype check wins => true
3814     _both_ref_path,             // {N,N} & subtype check loses => false
3815     PATH_LIMIT
3816   };
3817 
3818   RegionNode* region = new RegionNode(PATH_LIMIT);
3819   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3820   record_for_igvn(region);
3821 
3822   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3823   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3824   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3825 
3826   // First null-check both mirrors and load each mirror's klass metaobject.
3827   int which_arg;
3828   for (which_arg = 0; which_arg <= 1; which_arg++) {
3829     Node* arg = args[which_arg];
3830     arg = null_check(arg);
3831     if (stopped())  break;
3832     args[which_arg] = arg;
3833 
3834     Node* p = basic_plus_adr(arg, class_klass_offset);
3835     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3836     klasses[which_arg] = _gvn.transform(kls);
3837   }
3838 
3839   // Having loaded both klasses, test each for null.
3840   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3841   for (which_arg = 0; which_arg <= 1; which_arg++) {
3842     Node* kls = klasses[which_arg];
3843     Node* null_ctl = top();
3844     kls = null_check_oop(kls, &null_ctl, never_see_null);
3845     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3846     region->init_req(prim_path, null_ctl);
3847     if (stopped())  break;
3848     klasses[which_arg] = kls;
3849   }
3850 
3851   if (!stopped()) {
3852     // now we have two reference types, in klasses[0..1]
3853     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3854     Node* superk = klasses[0];  // the receiver
3855     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3856     // now we have a successful reference subtype check
3857     region->set_req(_ref_subtype_path, control());
3858   }
3859 
3860   // If both operands are primitive (both klasses null), then
3861   // we must return true when they are identical primitives.
3862   // It is convenient to test this after the first null klass check.
3863   set_control(region->in(_prim_0_path)); // go back to first null check
3864   if (!stopped()) {
3865     // Since superc is primitive, make a guard for the superc==subc case.
3866     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3867     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3868     generate_guard(bol_eq, region, PROB_FAIR);
3869     if (region->req() == PATH_LIMIT+1) {
3870       // A guard was added.  If the added guard is taken, superc==subc.
3871       region->swap_edges(PATH_LIMIT, _prim_same_path);
3872       region->del_req(PATH_LIMIT);
3873     }
3874     region->set_req(_prim_0_path, control()); // Not equal after all.
3875   }
3876 
3877   // these are the only paths that produce 'true':
3878   phi->set_req(_prim_same_path,   intcon(1));
3879   phi->set_req(_ref_subtype_path, intcon(1));
3880 
3881   // pull together the cases:
3882   assert(region->req() == PATH_LIMIT, "sane region");
3883   for (uint i = 1; i < region->req(); i++) {
3884     Node* ctl = region->in(i);
3885     if (ctl == NULL || ctl == top()) {
3886       region->set_req(i, top());
3887       phi   ->set_req(i, top());
3888     } else if (phi->in(i) == NULL) {
3889       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3890     }
3891   }
3892 
3893   set_control(_gvn.transform(region));
3894   set_result(_gvn.transform(phi));
3895   return true;
3896 }
3897 
3898 //---------------------generate_array_guard_common------------------------
3899 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3900                                                   bool obj_array, bool not_array) {
3901 
3902   if (stopped()) {
3903     return NULL;
3904   }
3905 
3906   // If obj_array/non_array==false/false:
3907   // Branch around if the given klass is in fact an array (either obj or prim).
3908   // If obj_array/non_array==false/true:
3909   // Branch around if the given klass is not an array klass of any kind.
3910   // If obj_array/non_array==true/true:
3911   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3912   // If obj_array/non_array==true/false:
3913   // Branch around if the kls is an oop array (Object[] or subtype)
3914   //
3915   // Like generate_guard, adds a new path onto the region.
3916   jint  layout_con = 0;
3917   Node* layout_val = get_layout_helper(kls, layout_con);
3918   if (layout_val == NULL) {
3919     bool query = (obj_array
3920                   ? Klass::layout_helper_is_objArray(layout_con)
3921                   : Klass::layout_helper_is_array(layout_con));
3922     if (query == not_array) {
3923       return NULL;                       // never a branch
3924     } else {                             // always a branch
3925       Node* always_branch = control();
3926       if (region != NULL)
3927         region->add_req(always_branch);
3928       set_control(top());
3929       return always_branch;
3930     }
3931   }
3932   // Now test the correct condition.
3933   jint  nval = (obj_array
3934                 ? (jint)(Klass::_lh_array_tag_type_value
3935                    <<    Klass::_lh_array_tag_shift)
3936                 : Klass::_lh_neutral_value);
3937   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3938   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3939   // invert the test if we are looking for a non-array
3940   if (not_array)  btest = BoolTest(btest).negate();
3941   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3942   return generate_fair_guard(bol, region);
3943 }
3944 
3945 
3946 //-----------------------inline_native_newArray--------------------------
3947 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3948 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3949 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3950   Node* mirror;
3951   Node* count_val;
3952   if (uninitialized) {
3953     mirror    = argument(1);
3954     count_val = argument(2);
3955   } else {
3956     mirror    = argument(0);
3957     count_val = argument(1);
3958   }
3959 
3960   mirror = null_check(mirror);
3961   // If mirror or obj is dead, only null-path is taken.
3962   if (stopped())  return true;
3963 
3964   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3965   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3966   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3967   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3968   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3969 
3970   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3971   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3972                                                   result_reg, _slow_path);
3973   Node* normal_ctl   = control();
3974   Node* no_array_ctl = result_reg->in(_slow_path);
3975 
3976   // Generate code for the slow case.  We make a call to newArray().
3977   set_control(no_array_ctl);
3978   if (!stopped()) {
3979     // Either the input type is void.class, or else the
3980     // array klass has not yet been cached.  Either the
3981     // ensuing call will throw an exception, or else it
3982     // will cache the array klass for next time.
3983     PreserveJVMState pjvms(this);
3984     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3985     Node* slow_result = set_results_for_java_call(slow_call);
3986     // this->control() comes from set_results_for_java_call
3987     result_reg->set_req(_slow_path, control());
3988     result_val->set_req(_slow_path, slow_result);
3989     result_io ->set_req(_slow_path, i_o());
3990     result_mem->set_req(_slow_path, reset_memory());
3991   }
3992 
3993   set_control(normal_ctl);
3994   if (!stopped()) {
3995     // Normal case:  The array type has been cached in the java.lang.Class.
3996     // The following call works fine even if the array type is polymorphic.
3997     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3998     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3999     result_reg->init_req(_normal_path, control());
4000     result_val->init_req(_normal_path, obj);
4001     result_io ->init_req(_normal_path, i_o());
4002     result_mem->init_req(_normal_path, reset_memory());
4003 
4004     if (uninitialized) {
4005       // Mark the allocation so that zeroing is skipped
4006       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
4007       alloc->maybe_set_complete(&_gvn);
4008     }
4009   }
4010 
4011   // Return the combined state.
4012   set_i_o(        _gvn.transform(result_io)  );
4013   set_all_memory( _gvn.transform(result_mem));
4014 
4015   C->set_has_split_ifs(true); // Has chance for split-if optimization
4016   set_result(result_reg, result_val);
4017   return true;
4018 }
4019 
4020 //----------------------inline_native_getLength--------------------------
4021 // public static native int java.lang.reflect.Array.getLength(Object array);
4022 bool LibraryCallKit::inline_native_getLength() {
4023   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4024 
4025   Node* array = null_check(argument(0));
4026   // If array is dead, only null-path is taken.
4027   if (stopped())  return true;
4028 
4029   // Deoptimize if it is a non-array.
4030   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
4031 
4032   if (non_array != NULL) {
4033     PreserveJVMState pjvms(this);
4034     set_control(non_array);
4035     uncommon_trap(Deoptimization::Reason_intrinsic,
4036                   Deoptimization::Action_maybe_recompile);
4037   }
4038 
4039   // If control is dead, only non-array-path is taken.
4040   if (stopped())  return true;
4041 
4042   // The works fine even if the array type is polymorphic.
4043   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4044   Node* result = load_array_length(array);
4045 
4046   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4047   set_result(result);
4048   return true;
4049 }
4050 
4051 //------------------------inline_array_copyOf----------------------------
4052 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4053 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4054 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4055   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4056 
4057   // Get the arguments.
4058   Node* original          = argument(0);
4059   Node* start             = is_copyOfRange? argument(1): intcon(0);
4060   Node* end               = is_copyOfRange? argument(2): argument(1);
4061   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4062 
4063   Node* newcopy = NULL;
4064 
4065   // Set the original stack and the reexecute bit for the interpreter to reexecute
4066   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4067   { PreserveReexecuteState preexecs(this);
4068     jvms()->set_should_reexecute(true);
4069 
4070     array_type_mirror = null_check(array_type_mirror);
4071     original          = null_check(original);
4072 
4073     // Check if a null path was taken unconditionally.
4074     if (stopped())  return true;
4075 
4076     Node* orig_length = load_array_length(original);
4077 
4078     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
4079     klass_node = null_check(klass_node);
4080 
4081     RegionNode* bailout = new RegionNode(1);
4082     record_for_igvn(bailout);
4083 
4084     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4085     // Bail out if that is so.
4086     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4087     if (not_objArray != NULL) {
4088       // Improve the klass node's type from the new optimistic assumption:
4089       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4090       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4091       Node* cast = new CastPPNode(klass_node, akls);
4092       cast->init_req(0, control());
4093       klass_node = _gvn.transform(cast);
4094     }
4095 
4096     // Bail out if either start or end is negative.
4097     generate_negative_guard(start, bailout, &start);
4098     generate_negative_guard(end,   bailout, &end);
4099 
4100     Node* length = end;
4101     if (_gvn.type(start) != TypeInt::ZERO) {
4102       length = _gvn.transform(new SubINode(end, start));
4103     }
4104 
4105     // Bail out if length is negative.
4106     // Without this the new_array would throw
4107     // NegativeArraySizeException but IllegalArgumentException is what
4108     // should be thrown
4109     generate_negative_guard(length, bailout, &length);
4110 
4111     if (bailout->req() > 1) {
4112       PreserveJVMState pjvms(this);
4113       set_control(_gvn.transform(bailout));
4114       uncommon_trap(Deoptimization::Reason_intrinsic,
4115                     Deoptimization::Action_maybe_recompile);
4116     }
4117 
4118     if (!stopped()) {
4119       // How many elements will we copy from the original?
4120       // The answer is MinI(orig_length - start, length).
4121       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4122       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4123 
4124       // Generate a direct call to the right arraycopy function(s).
4125       // We know the copy is disjoint but we might not know if the
4126       // oop stores need checking.
4127       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4128       // This will fail a store-check if x contains any non-nulls.
4129 
4130       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4131       // loads/stores but it is legal only if we're sure the
4132       // Arrays.copyOf would succeed. So we need all input arguments
4133       // to the copyOf to be validated, including that the copy to the
4134       // new array won't trigger an ArrayStoreException. That subtype
4135       // check can be optimized if we know something on the type of
4136       // the input array from type speculation.
4137       if (_gvn.type(klass_node)->singleton()) {
4138         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
4139         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
4140 
4141         int test = C->static_subtype_check(superk, subk);
4142         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4143           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4144           if (t_original->speculative_type() != NULL) {
4145             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4146           }
4147         }
4148       }
4149 
4150       bool validated = false;
4151       // Reason_class_check rather than Reason_intrinsic because we
4152       // want to intrinsify even if this traps.
4153       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4154         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4155                                                    klass_node);
4156 
4157         if (not_subtype_ctrl != top()) {
4158           PreserveJVMState pjvms(this);
4159           set_control(not_subtype_ctrl);
4160           uncommon_trap(Deoptimization::Reason_class_check,
4161                         Deoptimization::Action_make_not_entrant);
4162           assert(stopped(), "Should be stopped");
4163         }
4164         validated = true;
4165       }
4166 
4167       if (!stopped()) {
4168         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4169 
4170         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4171                                                 load_object_klass(original), klass_node);
4172         if (!is_copyOfRange) {
4173           ac->set_copyof(validated);
4174         } else {
4175           ac->set_copyofrange(validated);
4176         }
4177         Node* n = _gvn.transform(ac);
4178         if (n == ac) {
4179           ac->connect_outputs(this);
4180         } else {
4181           assert(validated, "shouldn't transform if all arguments not validated");
4182           set_all_memory(n);
4183         }
4184       }
4185     }
4186   } // original reexecute is set back here
4187 
4188   C->set_has_split_ifs(true); // Has chance for split-if optimization
4189   if (!stopped()) {
4190     set_result(newcopy);
4191   }
4192   return true;
4193 }
4194 
4195 
4196 //----------------------generate_virtual_guard---------------------------
4197 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4198 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4199                                              RegionNode* slow_region) {
4200   ciMethod* method = callee();
4201   int vtable_index = method->vtable_index();
4202   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4203          "bad index %d", vtable_index);
4204   // Get the Method* out of the appropriate vtable entry.
4205   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4206                      vtable_index*vtableEntry::size_in_bytes() +
4207                      vtableEntry::method_offset_in_bytes();
4208   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4209   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4210 
4211   // Compare the target method with the expected method (e.g., Object.hashCode).
4212   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4213 
4214   Node* native_call = makecon(native_call_addr);
4215   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4216   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4217 
4218   return generate_slow_guard(test_native, slow_region);
4219 }
4220 
4221 //-----------------------generate_method_call----------------------------
4222 // Use generate_method_call to make a slow-call to the real
4223 // method if the fast path fails.  An alternative would be to
4224 // use a stub like OptoRuntime::slow_arraycopy_Java.
4225 // This only works for expanding the current library call,
4226 // not another intrinsic.  (E.g., don't use this for making an
4227 // arraycopy call inside of the copyOf intrinsic.)
4228 CallJavaNode*
4229 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4230   // When compiling the intrinsic method itself, do not use this technique.
4231   guarantee(callee() != C->method(), "cannot make slow-call to self");
4232 
4233   ciMethod* method = callee();
4234   // ensure the JVMS we have will be correct for this call
4235   guarantee(method_id == method->intrinsic_id(), "must match");
4236 
4237   const TypeFunc* tf = TypeFunc::make(method);
4238   CallJavaNode* slow_call;
4239   if (is_static) {
4240     assert(!is_virtual, "");
4241     slow_call = new CallStaticJavaNode(C, tf,
4242                            SharedRuntime::get_resolve_static_call_stub(),
4243                            method, bci());
4244   } else if (is_virtual) {
4245     null_check_receiver();
4246     int vtable_index = Method::invalid_vtable_index;
4247     if (UseInlineCaches) {
4248       // Suppress the vtable call
4249     } else {
4250       // hashCode and clone are not a miranda methods,
4251       // so the vtable index is fixed.
4252       // No need to use the linkResolver to get it.
4253        vtable_index = method->vtable_index();
4254        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4255               "bad index %d", vtable_index);
4256     }
4257     slow_call = new CallDynamicJavaNode(tf,
4258                           SharedRuntime::get_resolve_virtual_call_stub(),
4259                           method, vtable_index, bci());
4260   } else {  // neither virtual nor static:  opt_virtual
4261     null_check_receiver();
4262     slow_call = new CallStaticJavaNode(C, tf,
4263                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4264                                 method, bci());
4265     slow_call->set_optimized_virtual(true);
4266   }
4267   set_arguments_for_java_call(slow_call);
4268   set_edges_for_java_call(slow_call);
4269   return slow_call;
4270 }
4271 
4272 
4273 /**
4274  * Build special case code for calls to hashCode on an object. This call may
4275  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4276  * slightly different code.
4277  */
4278 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4279   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4280   assert(!(is_virtual && is_static), "either virtual, special, or static");
4281 
4282   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4283 
4284   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4285   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4286   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4287   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4288   Node* obj = NULL;
4289   if (!is_static) {
4290     // Check for hashing null object
4291     obj = null_check_receiver();
4292     if (stopped())  return true;        // unconditionally null
4293     result_reg->init_req(_null_path, top());
4294     result_val->init_req(_null_path, top());
4295   } else {
4296     // Do a null check, and return zero if null.
4297     // System.identityHashCode(null) == 0
4298     obj = argument(0);
4299     Node* null_ctl = top();
4300     obj = null_check_oop(obj, &null_ctl);
4301     result_reg->init_req(_null_path, null_ctl);
4302     result_val->init_req(_null_path, _gvn.intcon(0));
4303   }
4304 
4305   // Unconditionally null?  Then return right away.
4306   if (stopped()) {
4307     set_control( result_reg->in(_null_path));
4308     if (!stopped())
4309       set_result(result_val->in(_null_path));
4310     return true;
4311   }
4312 
4313   // We only go to the fast case code if we pass a number of guards.  The
4314   // paths which do not pass are accumulated in the slow_region.
4315   RegionNode* slow_region = new RegionNode(1);
4316   record_for_igvn(slow_region);
4317 
4318   // If this is a virtual call, we generate a funny guard.  We pull out
4319   // the vtable entry corresponding to hashCode() from the target object.
4320   // If the target method which we are calling happens to be the native
4321   // Object hashCode() method, we pass the guard.  We do not need this
4322   // guard for non-virtual calls -- the caller is known to be the native
4323   // Object hashCode().
4324   if (is_virtual) {
4325     // After null check, get the object's klass.
4326     Node* obj_klass = load_object_klass(obj);
4327     generate_virtual_guard(obj_klass, slow_region);
4328   }
4329 
4330   // Get the header out of the object, use LoadMarkNode when available
4331   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4332   // The control of the load must be NULL. Otherwise, the load can move before
4333   // the null check after castPP removal.
4334   Node* no_ctrl = NULL;
4335   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4336 
4337   // Test the header to see if it is unlocked.
4338   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4339   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4340   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4341   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4342   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4343 
4344   generate_slow_guard(test_unlocked, slow_region);
4345 
4346   // Get the hash value and check to see that it has been properly assigned.
4347   // We depend on hash_mask being at most 32 bits and avoid the use of
4348   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4349   // vm: see markOop.hpp.
4350   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4351   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4352   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4353   // This hack lets the hash bits live anywhere in the mark object now, as long
4354   // as the shift drops the relevant bits into the low 32 bits.  Note that
4355   // Java spec says that HashCode is an int so there's no point in capturing
4356   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4357   hshifted_header      = ConvX2I(hshifted_header);
4358   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4359 
4360   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4361   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4362   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4363 
4364   generate_slow_guard(test_assigned, slow_region);
4365 
4366   Node* init_mem = reset_memory();
4367   // fill in the rest of the null path:
4368   result_io ->init_req(_null_path, i_o());
4369   result_mem->init_req(_null_path, init_mem);
4370 
4371   result_val->init_req(_fast_path, hash_val);
4372   result_reg->init_req(_fast_path, control());
4373   result_io ->init_req(_fast_path, i_o());
4374   result_mem->init_req(_fast_path, init_mem);
4375 
4376   // Generate code for the slow case.  We make a call to hashCode().
4377   set_control(_gvn.transform(slow_region));
4378   if (!stopped()) {
4379     // No need for PreserveJVMState, because we're using up the present state.
4380     set_all_memory(init_mem);
4381     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4382     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4383     Node* slow_result = set_results_for_java_call(slow_call);
4384     // this->control() comes from set_results_for_java_call
4385     result_reg->init_req(_slow_path, control());
4386     result_val->init_req(_slow_path, slow_result);
4387     result_io  ->set_req(_slow_path, i_o());
4388     result_mem ->set_req(_slow_path, reset_memory());
4389   }
4390 
4391   // Return the combined state.
4392   set_i_o(        _gvn.transform(result_io)  );
4393   set_all_memory( _gvn.transform(result_mem));
4394 
4395   set_result(result_reg, result_val);
4396   return true;
4397 }
4398 
4399 //---------------------------inline_native_getClass----------------------------
4400 // public final native Class<?> java.lang.Object.getClass();
4401 //
4402 // Build special case code for calls to getClass on an object.
4403 bool LibraryCallKit::inline_native_getClass() {
4404   Node* obj = null_check_receiver();
4405   if (stopped())  return true;
4406   set_result(load_mirror_from_klass(load_object_klass(obj)));
4407   return true;
4408 }
4409 
4410 //-----------------inline_native_Reflection_getCallerClass---------------------
4411 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4412 //
4413 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4414 //
4415 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4416 // in that it must skip particular security frames and checks for
4417 // caller sensitive methods.
4418 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4419 #ifndef PRODUCT
4420   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4421     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4422   }
4423 #endif
4424 
4425   if (!jvms()->has_method()) {
4426 #ifndef PRODUCT
4427     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4428       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4429     }
4430 #endif
4431     return false;
4432   }
4433 
4434   // Walk back up the JVM state to find the caller at the required
4435   // depth.
4436   JVMState* caller_jvms = jvms();
4437 
4438   // Cf. JVM_GetCallerClass
4439   // NOTE: Start the loop at depth 1 because the current JVM state does
4440   // not include the Reflection.getCallerClass() frame.
4441   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4442     ciMethod* m = caller_jvms->method();
4443     switch (n) {
4444     case 0:
4445       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4446       break;
4447     case 1:
4448       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4449       if (!m->caller_sensitive()) {
4450 #ifndef PRODUCT
4451         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4452           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4453         }
4454 #endif
4455         return false;  // bail-out; let JVM_GetCallerClass do the work
4456       }
4457       break;
4458     default:
4459       if (!m->is_ignored_by_security_stack_walk()) {
4460         // We have reached the desired frame; return the holder class.
4461         // Acquire method holder as java.lang.Class and push as constant.
4462         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4463         ciInstance* caller_mirror = caller_klass->java_mirror();
4464         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4465 
4466 #ifndef PRODUCT
4467         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4468           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4469           tty->print_cr("  JVM state at this point:");
4470           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4471             ciMethod* m = jvms()->of_depth(i)->method();
4472             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4473           }
4474         }
4475 #endif
4476         return true;
4477       }
4478       break;
4479     }
4480   }
4481 
4482 #ifndef PRODUCT
4483   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4484     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4485     tty->print_cr("  JVM state at this point:");
4486     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4487       ciMethod* m = jvms()->of_depth(i)->method();
4488       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4489     }
4490   }
4491 #endif
4492 
4493   return false;  // bail-out; let JVM_GetCallerClass do the work
4494 }
4495 
4496 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4497   Node* arg = argument(0);
4498   Node* result = NULL;
4499 
4500   switch (id) {
4501   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4502   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4503   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4504   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4505 
4506   case vmIntrinsics::_doubleToLongBits: {
4507     // two paths (plus control) merge in a wood
4508     RegionNode *r = new RegionNode(3);
4509     Node *phi = new PhiNode(r, TypeLong::LONG);
4510 
4511     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4512     // Build the boolean node
4513     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4514 
4515     // Branch either way.
4516     // NaN case is less traveled, which makes all the difference.
4517     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4518     Node *opt_isnan = _gvn.transform(ifisnan);
4519     assert( opt_isnan->is_If(), "Expect an IfNode");
4520     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4521     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4522 
4523     set_control(iftrue);
4524 
4525     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4526     Node *slow_result = longcon(nan_bits); // return NaN
4527     phi->init_req(1, _gvn.transform( slow_result ));
4528     r->init_req(1, iftrue);
4529 
4530     // Else fall through
4531     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4532     set_control(iffalse);
4533 
4534     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4535     r->init_req(2, iffalse);
4536 
4537     // Post merge
4538     set_control(_gvn.transform(r));
4539     record_for_igvn(r);
4540 
4541     C->set_has_split_ifs(true); // Has chance for split-if optimization
4542     result = phi;
4543     assert(result->bottom_type()->isa_long(), "must be");
4544     break;
4545   }
4546 
4547   case vmIntrinsics::_floatToIntBits: {
4548     // two paths (plus control) merge in a wood
4549     RegionNode *r = new RegionNode(3);
4550     Node *phi = new PhiNode(r, TypeInt::INT);
4551 
4552     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4553     // Build the boolean node
4554     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4555 
4556     // Branch either way.
4557     // NaN case is less traveled, which makes all the difference.
4558     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4559     Node *opt_isnan = _gvn.transform(ifisnan);
4560     assert( opt_isnan->is_If(), "Expect an IfNode");
4561     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4562     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4563 
4564     set_control(iftrue);
4565 
4566     static const jint nan_bits = 0x7fc00000;
4567     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4568     phi->init_req(1, _gvn.transform( slow_result ));
4569     r->init_req(1, iftrue);
4570 
4571     // Else fall through
4572     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4573     set_control(iffalse);
4574 
4575     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4576     r->init_req(2, iffalse);
4577 
4578     // Post merge
4579     set_control(_gvn.transform(r));
4580     record_for_igvn(r);
4581 
4582     C->set_has_split_ifs(true); // Has chance for split-if optimization
4583     result = phi;
4584     assert(result->bottom_type()->isa_int(), "must be");
4585     break;
4586   }
4587 
4588   default:
4589     fatal_unexpected_iid(id);
4590     break;
4591   }
4592   set_result(_gvn.transform(result));
4593   return true;
4594 }
4595 
4596 //----------------------inline_unsafe_copyMemory-------------------------
4597 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4598 bool LibraryCallKit::inline_unsafe_copyMemory() {
4599   if (callee()->is_static())  return false;  // caller must have the capability!
4600   null_check_receiver();  // null-check receiver
4601   if (stopped())  return true;
4602 
4603   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4604 
4605   Node* src_ptr =         argument(1);   // type: oop
4606   Node* src_off = ConvL2X(argument(2));  // type: long
4607   Node* dst_ptr =         argument(4);   // type: oop
4608   Node* dst_off = ConvL2X(argument(5));  // type: long
4609   Node* size    = ConvL2X(argument(7));  // type: long
4610 
4611   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4612          "fieldOffset must be byte-scaled");
4613 
4614   Node* src = make_unsafe_address(src_ptr, src_off);
4615   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4616 
4617   // Conservatively insert a memory barrier on all memory slices.
4618   // Do not let writes of the copy source or destination float below the copy.
4619   insert_mem_bar(Op_MemBarCPUOrder);
4620 
4621   // Call it.  Note that the length argument is not scaled.
4622   make_runtime_call(RC_LEAF|RC_NO_FP,
4623                     OptoRuntime::fast_arraycopy_Type(),
4624                     StubRoutines::unsafe_arraycopy(),
4625                     "unsafe_arraycopy",
4626                     TypeRawPtr::BOTTOM,
4627                     src, dst, size XTOP);
4628 
4629   // Do not let reads of the copy destination float above the copy.
4630   insert_mem_bar(Op_MemBarCPUOrder);
4631 
4632   return true;
4633 }
4634 
4635 //------------------------clone_coping-----------------------------------
4636 // Helper function for inline_native_clone.
4637 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4638   assert(obj_size != NULL, "");
4639   Node* raw_obj = alloc_obj->in(1);
4640   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4641 
4642   AllocateNode* alloc = NULL;
4643   if (ReduceBulkZeroing) {
4644     // We will be completely responsible for initializing this object -
4645     // mark Initialize node as complete.
4646     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4647     // The object was just allocated - there should be no any stores!
4648     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4649     // Mark as complete_with_arraycopy so that on AllocateNode
4650     // expansion, we know this AllocateNode is initialized by an array
4651     // copy and a StoreStore barrier exists after the array copy.
4652     alloc->initialization()->set_complete_with_arraycopy();
4653   }
4654 
4655   // Copy the fastest available way.
4656   // TODO: generate fields copies for small objects instead.
4657   Node* src  = obj;
4658   Node* dest = alloc_obj;
4659   Node* size = _gvn.transform(obj_size);
4660 
4661   // Exclude the header but include array length to copy by 8 bytes words.
4662   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4663   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4664                             instanceOopDesc::base_offset_in_bytes();
4665   // base_off:
4666   // 8  - 32-bit VM
4667   // 12 - 64-bit VM, compressed klass
4668   // 16 - 64-bit VM, normal klass
4669   if (base_off % BytesPerLong != 0) {
4670     assert(UseCompressedClassPointers, "");
4671     if (is_array) {
4672       // Exclude length to copy by 8 bytes words.
4673       base_off += sizeof(int);
4674     } else {
4675       // Include klass to copy by 8 bytes words.
4676       base_off = instanceOopDesc::klass_offset_in_bytes();
4677     }
4678     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4679   }
4680   src  = basic_plus_adr(src,  base_off);
4681   dest = basic_plus_adr(dest, base_off);
4682 
4683   // Compute the length also, if needed:
4684   Node* countx = size;
4685   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4686   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4687 
4688   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4689 
4690   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false, false);
4691   ac->set_clonebasic();
4692   Node* n = _gvn.transform(ac);
4693   if (n == ac) {
4694     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4695   } else {
4696     set_all_memory(n);
4697   }
4698 
4699   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4700   if (card_mark) {
4701     assert(!is_array, "");
4702     // Put in store barrier for any and all oops we are sticking
4703     // into this object.  (We could avoid this if we could prove
4704     // that the object type contains no oop fields at all.)
4705     Node* no_particular_value = NULL;
4706     Node* no_particular_field = NULL;
4707     int raw_adr_idx = Compile::AliasIdxRaw;
4708     post_barrier(control(),
4709                  memory(raw_adr_type),
4710                  alloc_obj,
4711                  no_particular_field,
4712                  raw_adr_idx,
4713                  no_particular_value,
4714                  T_OBJECT,
4715                  false);
4716   }
4717 
4718   // Do not let reads from the cloned object float above the arraycopy.
4719   if (alloc != NULL) {
4720     // Do not let stores that initialize this object be reordered with
4721     // a subsequent store that would make this object accessible by
4722     // other threads.
4723     // Record what AllocateNode this StoreStore protects so that
4724     // escape analysis can go from the MemBarStoreStoreNode to the
4725     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4726     // based on the escape status of the AllocateNode.
4727     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4728   } else {
4729     insert_mem_bar(Op_MemBarCPUOrder);
4730   }
4731 }
4732 
4733 //------------------------inline_native_clone----------------------------
4734 // protected native Object java.lang.Object.clone();
4735 //
4736 // Here are the simple edge cases:
4737 //  null receiver => normal trap
4738 //  virtual and clone was overridden => slow path to out-of-line clone
4739 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4740 //
4741 // The general case has two steps, allocation and copying.
4742 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4743 //
4744 // Copying also has two cases, oop arrays and everything else.
4745 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4746 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4747 //
4748 // These steps fold up nicely if and when the cloned object's klass
4749 // can be sharply typed as an object array, a type array, or an instance.
4750 //
4751 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4752   PhiNode* result_val;
4753 
4754   // Set the reexecute bit for the interpreter to reexecute
4755   // the bytecode that invokes Object.clone if deoptimization happens.
4756   { PreserveReexecuteState preexecs(this);
4757     jvms()->set_should_reexecute(true);
4758 
4759     Node* obj = null_check_receiver();
4760     if (stopped())  return true;
4761 
4762     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4763 
4764     // If we are going to clone an instance, we need its exact type to
4765     // know the number and types of fields to convert the clone to
4766     // loads/stores. Maybe a speculative type can help us.
4767     if (!obj_type->klass_is_exact() &&
4768         obj_type->speculative_type() != NULL &&
4769         obj_type->speculative_type()->is_instance_klass()) {
4770       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4771       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4772           !spec_ik->has_injected_fields()) {
4773         ciKlass* k = obj_type->klass();
4774         if (!k->is_instance_klass() ||
4775             k->as_instance_klass()->is_interface() ||
4776             k->as_instance_klass()->has_subklass()) {
4777           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4778         }
4779       }
4780     }
4781 
4782     Node* obj_klass = load_object_klass(obj);
4783     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4784     const TypeOopPtr*   toop   = ((tklass != NULL)
4785                                 ? tklass->as_instance_type()
4786                                 : TypeInstPtr::NOTNULL);
4787 
4788     // Conservatively insert a memory barrier on all memory slices.
4789     // Do not let writes into the original float below the clone.
4790     insert_mem_bar(Op_MemBarCPUOrder);
4791 
4792     // paths into result_reg:
4793     enum {
4794       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4795       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4796       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4797       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4798       PATH_LIMIT
4799     };
4800     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4801     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4802     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4803     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4804     record_for_igvn(result_reg);
4805 
4806     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4807     int raw_adr_idx = Compile::AliasIdxRaw;
4808 
4809     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4810     if (array_ctl != NULL) {
4811       // It's an array.
4812       PreserveJVMState pjvms(this);
4813       set_control(array_ctl);
4814       Node* obj_length = load_array_length(obj);
4815       Node* obj_size  = NULL;
4816       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4817 
4818       if (!use_ReduceInitialCardMarks()) {
4819         // If it is an oop array, it requires very special treatment,
4820         // because card marking is required on each card of the array.
4821         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4822         if (is_obja != NULL) {
4823           PreserveJVMState pjvms2(this);
4824           set_control(is_obja);
4825           // Generate a direct call to the right arraycopy function(s).
4826           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4827           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4828           ac->set_cloneoop();
4829           Node* n = _gvn.transform(ac);
4830           assert(n == ac, "cannot disappear");
4831           ac->connect_outputs(this);
4832 
4833           result_reg->init_req(_objArray_path, control());
4834           result_val->init_req(_objArray_path, alloc_obj);
4835           result_i_o ->set_req(_objArray_path, i_o());
4836           result_mem ->set_req(_objArray_path, reset_memory());
4837         }
4838       }
4839       // Otherwise, there are no card marks to worry about.
4840       // (We can dispense with card marks if we know the allocation
4841       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4842       //  causes the non-eden paths to take compensating steps to
4843       //  simulate a fresh allocation, so that no further
4844       //  card marks are required in compiled code to initialize
4845       //  the object.)
4846 
4847       if (!stopped()) {
4848         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4849 
4850         // Present the results of the copy.
4851         result_reg->init_req(_array_path, control());
4852         result_val->init_req(_array_path, alloc_obj);
4853         result_i_o ->set_req(_array_path, i_o());
4854         result_mem ->set_req(_array_path, reset_memory());
4855       }
4856     }
4857 
4858     // We only go to the instance fast case code if we pass a number of guards.
4859     // The paths which do not pass are accumulated in the slow_region.
4860     RegionNode* slow_region = new RegionNode(1);
4861     record_for_igvn(slow_region);
4862     if (!stopped()) {
4863       // It's an instance (we did array above).  Make the slow-path tests.
4864       // If this is a virtual call, we generate a funny guard.  We grab
4865       // the vtable entry corresponding to clone() from the target object.
4866       // If the target method which we are calling happens to be the
4867       // Object clone() method, we pass the guard.  We do not need this
4868       // guard for non-virtual calls; the caller is known to be the native
4869       // Object clone().
4870       if (is_virtual) {
4871         generate_virtual_guard(obj_klass, slow_region);
4872       }
4873 
4874       // The object must be easily cloneable and must not have a finalizer.
4875       // Both of these conditions may be checked in a single test.
4876       // We could optimize the test further, but we don't care.
4877       generate_access_flags_guard(obj_klass,
4878                                   // Test both conditions:
4879                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4880                                   // Must be cloneable but not finalizer:
4881                                   JVM_ACC_IS_CLONEABLE_FAST,
4882                                   slow_region);
4883     }
4884 
4885     if (!stopped()) {
4886       // It's an instance, and it passed the slow-path tests.
4887       PreserveJVMState pjvms(this);
4888       Node* obj_size  = NULL;
4889       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4890       // is reexecuted if deoptimization occurs and there could be problems when merging
4891       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4892       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4893 
4894       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4895 
4896       // Present the results of the slow call.
4897       result_reg->init_req(_instance_path, control());
4898       result_val->init_req(_instance_path, alloc_obj);
4899       result_i_o ->set_req(_instance_path, i_o());
4900       result_mem ->set_req(_instance_path, reset_memory());
4901     }
4902 
4903     // Generate code for the slow case.  We make a call to clone().
4904     set_control(_gvn.transform(slow_region));
4905     if (!stopped()) {
4906       PreserveJVMState pjvms(this);
4907       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4908       Node* slow_result = set_results_for_java_call(slow_call);
4909       // this->control() comes from set_results_for_java_call
4910       result_reg->init_req(_slow_path, control());
4911       result_val->init_req(_slow_path, slow_result);
4912       result_i_o ->set_req(_slow_path, i_o());
4913       result_mem ->set_req(_slow_path, reset_memory());
4914     }
4915 
4916     // Return the combined state.
4917     set_control(    _gvn.transform(result_reg));
4918     set_i_o(        _gvn.transform(result_i_o));
4919     set_all_memory( _gvn.transform(result_mem));
4920   } // original reexecute is set back here
4921 
4922   set_result(_gvn.transform(result_val));
4923   return true;
4924 }
4925 
4926 // If we have a tighly coupled allocation, the arraycopy may take care
4927 // of the array initialization. If one of the guards we insert between
4928 // the allocation and the arraycopy causes a deoptimization, an
4929 // unitialized array will escape the compiled method. To prevent that
4930 // we set the JVM state for uncommon traps between the allocation and
4931 // the arraycopy to the state before the allocation so, in case of
4932 // deoptimization, we'll reexecute the allocation and the
4933 // initialization.
4934 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4935   if (alloc != NULL) {
4936     ciMethod* trap_method = alloc->jvms()->method();
4937     int trap_bci = alloc->jvms()->bci();
4938 
4939     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4940           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4941       // Make sure there's no store between the allocation and the
4942       // arraycopy otherwise visible side effects could be rexecuted
4943       // in case of deoptimization and cause incorrect execution.
4944       bool no_interfering_store = true;
4945       Node* mem = alloc->in(TypeFunc::Memory);
4946       if (mem->is_MergeMem()) {
4947         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4948           Node* n = mms.memory();
4949           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4950             assert(n->is_Store(), "what else?");
4951             no_interfering_store = false;
4952             break;
4953           }
4954         }
4955       } else {
4956         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4957           Node* n = mms.memory();
4958           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4959             assert(n->is_Store(), "what else?");
4960             no_interfering_store = false;
4961             break;
4962           }
4963         }
4964       }
4965 
4966       if (no_interfering_store) {
4967         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4968         uint size = alloc->req();
4969         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4970         old_jvms->set_map(sfpt);
4971         for (uint i = 0; i < size; i++) {
4972           sfpt->init_req(i, alloc->in(i));
4973         }
4974         // re-push array length for deoptimization
4975         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4976         old_jvms->set_sp(old_jvms->sp()+1);
4977         old_jvms->set_monoff(old_jvms->monoff()+1);
4978         old_jvms->set_scloff(old_jvms->scloff()+1);
4979         old_jvms->set_endoff(old_jvms->endoff()+1);
4980         old_jvms->set_should_reexecute(true);
4981 
4982         sfpt->set_i_o(map()->i_o());
4983         sfpt->set_memory(map()->memory());
4984         sfpt->set_control(map()->control());
4985 
4986         JVMState* saved_jvms = jvms();
4987         saved_reexecute_sp = _reexecute_sp;
4988 
4989         set_jvms(sfpt->jvms());
4990         _reexecute_sp = jvms()->sp();
4991 
4992         return saved_jvms;
4993       }
4994     }
4995   }
4996   return NULL;
4997 }
4998 
4999 // In case of a deoptimization, we restart execution at the
5000 // allocation, allocating a new array. We would leave an uninitialized
5001 // array in the heap that GCs wouldn't expect. Move the allocation
5002 // after the traps so we don't allocate the array if we
5003 // deoptimize. This is possible because tightly_coupled_allocation()
5004 // guarantees there's no observer of the allocated array at this point
5005 // and the control flow is simple enough.
5006 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
5007                                                     int saved_reexecute_sp, uint new_idx) {
5008   if (saved_jvms != NULL && !stopped()) {
5009     assert(alloc != NULL, "only with a tightly coupled allocation");
5010     // restore JVM state to the state at the arraycopy
5011     saved_jvms->map()->set_control(map()->control());
5012     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
5013     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
5014     // If we've improved the types of some nodes (null check) while
5015     // emitting the guards, propagate them to the current state
5016     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
5017     set_jvms(saved_jvms);
5018     _reexecute_sp = saved_reexecute_sp;
5019 
5020     // Remove the allocation from above the guards
5021     CallProjections callprojs;
5022     alloc->extract_projections(&callprojs, true);
5023     InitializeNode* init = alloc->initialization();
5024     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5025     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5026     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5027     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5028 
5029     // move the allocation here (after the guards)
5030     _gvn.hash_delete(alloc);
5031     alloc->set_req(TypeFunc::Control, control());
5032     alloc->set_req(TypeFunc::I_O, i_o());
5033     Node *mem = reset_memory();
5034     set_all_memory(mem);
5035     alloc->set_req(TypeFunc::Memory, mem);
5036     set_control(init->proj_out_or_null(TypeFunc::Control));
5037     set_i_o(callprojs.fallthrough_ioproj);
5038 
5039     // Update memory as done in GraphKit::set_output_for_allocation()
5040     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5041     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5042     if (ary_type->isa_aryptr() && length_type != NULL) {
5043       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5044     }
5045     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5046     int            elemidx  = C->get_alias_index(telemref);
5047     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5048     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5049 
5050     Node* allocx = _gvn.transform(alloc);
5051     assert(allocx == alloc, "where has the allocation gone?");
5052     assert(dest->is_CheckCastPP(), "not an allocation result?");
5053 
5054     _gvn.hash_delete(dest);
5055     dest->set_req(0, control());
5056     Node* destx = _gvn.transform(dest);
5057     assert(destx == dest, "where has the allocation result gone?");
5058   }
5059 }
5060 
5061 
5062 //------------------------------inline_arraycopy-----------------------
5063 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5064 //                                                      Object dest, int destPos,
5065 //                                                      int length);
5066 bool LibraryCallKit::inline_arraycopy() {
5067   // Get the arguments.
5068   Node* src         = argument(0);  // type: oop
5069   Node* src_offset  = argument(1);  // type: int
5070   Node* dest        = argument(2);  // type: oop
5071   Node* dest_offset = argument(3);  // type: int
5072   Node* length      = argument(4);  // type: int
5073 
5074   uint new_idx = C->unique();
5075 
5076   // Check for allocation before we add nodes that would confuse
5077   // tightly_coupled_allocation()
5078   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
5079 
5080   int saved_reexecute_sp = -1;
5081   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5082   // See arraycopy_restore_alloc_state() comment
5083   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5084   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
5085   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
5086   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
5087 
5088   // The following tests must be performed
5089   // (1) src and dest are arrays.
5090   // (2) src and dest arrays must have elements of the same BasicType
5091   // (3) src and dest must not be null.
5092   // (4) src_offset must not be negative.
5093   // (5) dest_offset must not be negative.
5094   // (6) length must not be negative.
5095   // (7) src_offset + length must not exceed length of src.
5096   // (8) dest_offset + length must not exceed length of dest.
5097   // (9) each element of an oop array must be assignable
5098 
5099   // (3) src and dest must not be null.
5100   // always do this here because we need the JVM state for uncommon traps
5101   Node* null_ctl = top();
5102   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
5103   assert(null_ctl->is_top(), "no null control here");
5104   dest = null_check(dest, T_ARRAY);
5105 
5106   if (!can_emit_guards) {
5107     // if saved_jvms == NULL and alloc != NULL, we don't emit any
5108     // guards but the arraycopy node could still take advantage of a
5109     // tightly allocated allocation. tightly_coupled_allocation() is
5110     // called again to make sure it takes the null check above into
5111     // account: the null check is mandatory and if it caused an
5112     // uncommon trap to be emitted then the allocation can't be
5113     // considered tightly coupled in this context.
5114     alloc = tightly_coupled_allocation(dest, NULL);
5115   }
5116 
5117   bool validated = false;
5118 
5119   const Type* src_type  = _gvn.type(src);
5120   const Type* dest_type = _gvn.type(dest);
5121   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5122   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5123 
5124   // Do we have the type of src?
5125   bool has_src = (top_src != NULL && top_src->klass() != NULL);
5126   // Do we have the type of dest?
5127   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5128   // Is the type for src from speculation?
5129   bool src_spec = false;
5130   // Is the type for dest from speculation?
5131   bool dest_spec = false;
5132 
5133   if ((!has_src || !has_dest) && can_emit_guards) {
5134     // We don't have sufficient type information, let's see if
5135     // speculative types can help. We need to have types for both src
5136     // and dest so that it pays off.
5137 
5138     // Do we already have or could we have type information for src
5139     bool could_have_src = has_src;
5140     // Do we already have or could we have type information for dest
5141     bool could_have_dest = has_dest;
5142 
5143     ciKlass* src_k = NULL;
5144     if (!has_src) {
5145       src_k = src_type->speculative_type_not_null();
5146       if (src_k != NULL && src_k->is_array_klass()) {
5147         could_have_src = true;
5148       }
5149     }
5150 
5151     ciKlass* dest_k = NULL;
5152     if (!has_dest) {
5153       dest_k = dest_type->speculative_type_not_null();
5154       if (dest_k != NULL && dest_k->is_array_klass()) {
5155         could_have_dest = true;
5156       }
5157     }
5158 
5159     if (could_have_src && could_have_dest) {
5160       // This is going to pay off so emit the required guards
5161       if (!has_src) {
5162         src = maybe_cast_profiled_obj(src, src_k, true);
5163         src_type  = _gvn.type(src);
5164         top_src  = src_type->isa_aryptr();
5165         has_src = (top_src != NULL && top_src->klass() != NULL);
5166         src_spec = true;
5167       }
5168       if (!has_dest) {
5169         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5170         dest_type  = _gvn.type(dest);
5171         top_dest  = dest_type->isa_aryptr();
5172         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5173         dest_spec = true;
5174       }
5175     }
5176   }
5177 
5178   if (has_src && has_dest && can_emit_guards) {
5179     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5180     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5181     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5182     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5183 
5184     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5185       // If both arrays are object arrays then having the exact types
5186       // for both will remove the need for a subtype check at runtime
5187       // before the call and may make it possible to pick a faster copy
5188       // routine (without a subtype check on every element)
5189       // Do we have the exact type of src?
5190       bool could_have_src = src_spec;
5191       // Do we have the exact type of dest?
5192       bool could_have_dest = dest_spec;
5193       ciKlass* src_k = top_src->klass();
5194       ciKlass* dest_k = top_dest->klass();
5195       if (!src_spec) {
5196         src_k = src_type->speculative_type_not_null();
5197         if (src_k != NULL && src_k->is_array_klass()) {
5198           could_have_src = true;
5199         }
5200       }
5201       if (!dest_spec) {
5202         dest_k = dest_type->speculative_type_not_null();
5203         if (dest_k != NULL && dest_k->is_array_klass()) {
5204           could_have_dest = true;
5205         }
5206       }
5207       if (could_have_src && could_have_dest) {
5208         // If we can have both exact types, emit the missing guards
5209         if (could_have_src && !src_spec) {
5210           src = maybe_cast_profiled_obj(src, src_k, true);
5211         }
5212         if (could_have_dest && !dest_spec) {
5213           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5214         }
5215       }
5216     }
5217   }
5218 
5219   ciMethod* trap_method = method();
5220   int trap_bci = bci();
5221   if (saved_jvms != NULL) {
5222     trap_method = alloc->jvms()->method();
5223     trap_bci = alloc->jvms()->bci();
5224   }
5225 
5226   bool negative_length_guard_generated = false;
5227 
5228   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5229       can_emit_guards &&
5230       !src->is_top() && !dest->is_top()) {
5231     // validate arguments: enables transformation the ArrayCopyNode
5232     validated = true;
5233 
5234     RegionNode* slow_region = new RegionNode(1);
5235     record_for_igvn(slow_region);
5236 
5237     // (1) src and dest are arrays.
5238     generate_non_array_guard(load_object_klass(src), slow_region);
5239     generate_non_array_guard(load_object_klass(dest), slow_region);
5240 
5241     // (2) src and dest arrays must have elements of the same BasicType
5242     // done at macro expansion or at Ideal transformation time
5243 
5244     // (4) src_offset must not be negative.
5245     generate_negative_guard(src_offset, slow_region);
5246 
5247     // (5) dest_offset must not be negative.
5248     generate_negative_guard(dest_offset, slow_region);
5249 
5250     // (7) src_offset + length must not exceed length of src.
5251     generate_limit_guard(src_offset, length,
5252                          load_array_length(src),
5253                          slow_region);
5254 
5255     // (8) dest_offset + length must not exceed length of dest.
5256     generate_limit_guard(dest_offset, length,
5257                          load_array_length(dest),
5258                          slow_region);
5259 
5260     // (6) length must not be negative.
5261     // This is also checked in generate_arraycopy() during macro expansion, but
5262     // we also have to check it here for the case where the ArrayCopyNode will
5263     // be eliminated by Escape Analysis.
5264     if (EliminateAllocations) {
5265       generate_negative_guard(length, slow_region);
5266       negative_length_guard_generated = true;
5267     }
5268 
5269     // (9) each element of an oop array must be assignable
5270     Node* src_klass  = load_object_klass(src);
5271     Node* dest_klass = load_object_klass(dest);
5272     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5273 
5274     if (not_subtype_ctrl != top()) {
5275       PreserveJVMState pjvms(this);
5276       set_control(not_subtype_ctrl);
5277       uncommon_trap(Deoptimization::Reason_intrinsic,
5278                     Deoptimization::Action_make_not_entrant);
5279       assert(stopped(), "Should be stopped");
5280     }
5281     {
5282       PreserveJVMState pjvms(this);
5283       set_control(_gvn.transform(slow_region));
5284       uncommon_trap(Deoptimization::Reason_intrinsic,
5285                     Deoptimization::Action_make_not_entrant);
5286       assert(stopped(), "Should be stopped");
5287     }
5288 
5289     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5290     const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
5291     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5292   }
5293 
5294   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
5295 
5296   if (stopped()) {
5297     return true;
5298   }
5299 
5300   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
5301                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5302                                           // so the compiler has a chance to eliminate them: during macro expansion,
5303                                           // we have to set their control (CastPP nodes are eliminated).
5304                                           load_object_klass(src), load_object_klass(dest),
5305                                           load_array_length(src), load_array_length(dest));
5306 
5307   ac->set_arraycopy(validated);
5308 
5309   Node* n = _gvn.transform(ac);
5310   if (n == ac) {
5311     ac->connect_outputs(this);
5312   } else {
5313     assert(validated, "shouldn't transform if all arguments not validated");
5314     set_all_memory(n);
5315   }
5316   clear_upper_avx();
5317 
5318 
5319   return true;
5320 }
5321 
5322 
5323 // Helper function which determines if an arraycopy immediately follows
5324 // an allocation, with no intervening tests or other escapes for the object.
5325 AllocateArrayNode*
5326 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5327                                            RegionNode* slow_region) {
5328   if (stopped())             return NULL;  // no fast path
5329   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5330 
5331   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5332   if (alloc == NULL)  return NULL;
5333 
5334   Node* rawmem = memory(Compile::AliasIdxRaw);
5335   // Is the allocation's memory state untouched?
5336   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5337     // Bail out if there have been raw-memory effects since the allocation.
5338     // (Example:  There might have been a call or safepoint.)
5339     return NULL;
5340   }
5341   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5342   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5343     return NULL;
5344   }
5345 
5346   // There must be no unexpected observers of this allocation.
5347   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5348     Node* obs = ptr->fast_out(i);
5349     if (obs != this->map()) {
5350       return NULL;
5351     }
5352   }
5353 
5354   // This arraycopy must unconditionally follow the allocation of the ptr.
5355   Node* alloc_ctl = ptr->in(0);
5356   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5357 
5358   Node* ctl = control();
5359   while (ctl != alloc_ctl) {
5360     // There may be guards which feed into the slow_region.
5361     // Any other control flow means that we might not get a chance
5362     // to finish initializing the allocated object.
5363     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5364       IfNode* iff = ctl->in(0)->as_If();
5365       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
5366       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5367       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5368         ctl = iff->in(0);       // This test feeds the known slow_region.
5369         continue;
5370       }
5371       // One more try:  Various low-level checks bottom out in
5372       // uncommon traps.  If the debug-info of the trap omits
5373       // any reference to the allocation, as we've already
5374       // observed, then there can be no objection to the trap.
5375       bool found_trap = false;
5376       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5377         Node* obs = not_ctl->fast_out(j);
5378         if (obs->in(0) == not_ctl && obs->is_Call() &&
5379             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5380           found_trap = true; break;
5381         }
5382       }
5383       if (found_trap) {
5384         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5385         continue;
5386       }
5387     }
5388     return NULL;
5389   }
5390 
5391   // If we get this far, we have an allocation which immediately
5392   // precedes the arraycopy, and we can take over zeroing the new object.
5393   // The arraycopy will finish the initialization, and provide
5394   // a new control state to which we will anchor the destination pointer.
5395 
5396   return alloc;
5397 }
5398 
5399 //-------------inline_encodeISOArray-----------------------------------
5400 // encode char[] to byte[] in ISO_8859_1
5401 bool LibraryCallKit::inline_encodeISOArray() {
5402   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5403   // no receiver since it is static method
5404   Node *src         = argument(0);
5405   Node *src_offset  = argument(1);
5406   Node *dst         = argument(2);
5407   Node *dst_offset  = argument(3);
5408   Node *length      = argument(4);
5409 
5410   const Type* src_type = src->Value(&_gvn);
5411   const Type* dst_type = dst->Value(&_gvn);
5412   const TypeAryPtr* top_src = src_type->isa_aryptr();
5413   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5414   if (top_src  == NULL || top_src->klass()  == NULL ||
5415       top_dest == NULL || top_dest->klass() == NULL) {
5416     // failed array check
5417     return false;
5418   }
5419 
5420   // Figure out the size and type of the elements we will be copying.
5421   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5422   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5423   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5424     return false;
5425   }
5426 
5427   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5428   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5429   // 'src_start' points to src array + scaled offset
5430   // 'dst_start' points to dst array + scaled offset
5431 
5432   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5433   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5434   enc = _gvn.transform(enc);
5435   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5436   set_memory(res_mem, mtype);
5437   set_result(enc);
5438   clear_upper_avx();
5439 
5440   return true;
5441 }
5442 
5443 //-------------inline_multiplyToLen-----------------------------------
5444 bool LibraryCallKit::inline_multiplyToLen() {
5445   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5446 
5447   address stubAddr = StubRoutines::multiplyToLen();
5448   if (stubAddr == NULL) {
5449     return false; // Intrinsic's stub is not implemented on this platform
5450   }
5451   const char* stubName = "multiplyToLen";
5452 
5453   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5454 
5455   // no receiver because it is a static method
5456   Node* x    = argument(0);
5457   Node* xlen = argument(1);
5458   Node* y    = argument(2);
5459   Node* ylen = argument(3);
5460   Node* z    = argument(4);
5461 
5462   const Type* x_type = x->Value(&_gvn);
5463   const Type* y_type = y->Value(&_gvn);
5464   const TypeAryPtr* top_x = x_type->isa_aryptr();
5465   const TypeAryPtr* top_y = y_type->isa_aryptr();
5466   if (top_x  == NULL || top_x->klass()  == NULL ||
5467       top_y == NULL || top_y->klass() == NULL) {
5468     // failed array check
5469     return false;
5470   }
5471 
5472   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5473   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5474   if (x_elem != T_INT || y_elem != T_INT) {
5475     return false;
5476   }
5477 
5478   // Set the original stack and the reexecute bit for the interpreter to reexecute
5479   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5480   // on the return from z array allocation in runtime.
5481   { PreserveReexecuteState preexecs(this);
5482     jvms()->set_should_reexecute(true);
5483 
5484     Node* x_start = array_element_address(x, intcon(0), x_elem);
5485     Node* y_start = array_element_address(y, intcon(0), y_elem);
5486     // 'x_start' points to x array + scaled xlen
5487     // 'y_start' points to y array + scaled ylen
5488 
5489     // Allocate the result array
5490     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5491     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5492     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5493 
5494     IdealKit ideal(this);
5495 
5496 #define __ ideal.
5497      Node* one = __ ConI(1);
5498      Node* zero = __ ConI(0);
5499      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5500      __ set(need_alloc, zero);
5501      __ set(z_alloc, z);
5502      __ if_then(z, BoolTest::eq, null()); {
5503        __ increment (need_alloc, one);
5504      } __ else_(); {
5505        // Update graphKit memory and control from IdealKit.
5506        sync_kit(ideal);
5507        Node* zlen_arg = load_array_length(z);
5508        // Update IdealKit memory and control from graphKit.
5509        __ sync_kit(this);
5510        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5511          __ increment (need_alloc, one);
5512        } __ end_if();
5513      } __ end_if();
5514 
5515      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5516        // Update graphKit memory and control from IdealKit.
5517        sync_kit(ideal);
5518        Node * narr = new_array(klass_node, zlen, 1);
5519        // Update IdealKit memory and control from graphKit.
5520        __ sync_kit(this);
5521        __ set(z_alloc, narr);
5522      } __ end_if();
5523 
5524      sync_kit(ideal);
5525      z = __ value(z_alloc);
5526      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5527      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5528      // Final sync IdealKit and GraphKit.
5529      final_sync(ideal);
5530 #undef __
5531 
5532     Node* z_start = array_element_address(z, intcon(0), T_INT);
5533 
5534     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5535                                    OptoRuntime::multiplyToLen_Type(),
5536                                    stubAddr, stubName, TypePtr::BOTTOM,
5537                                    x_start, xlen, y_start, ylen, z_start, zlen);
5538   } // original reexecute is set back here
5539 
5540   C->set_has_split_ifs(true); // Has chance for split-if optimization
5541   set_result(z);
5542   return true;
5543 }
5544 
5545 //-------------inline_squareToLen------------------------------------
5546 bool LibraryCallKit::inline_squareToLen() {
5547   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5548 
5549   address stubAddr = StubRoutines::squareToLen();
5550   if (stubAddr == NULL) {
5551     return false; // Intrinsic's stub is not implemented on this platform
5552   }
5553   const char* stubName = "squareToLen";
5554 
5555   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5556 
5557   Node* x    = argument(0);
5558   Node* len  = argument(1);
5559   Node* z    = argument(2);
5560   Node* zlen = argument(3);
5561 
5562   const Type* x_type = x->Value(&_gvn);
5563   const Type* z_type = z->Value(&_gvn);
5564   const TypeAryPtr* top_x = x_type->isa_aryptr();
5565   const TypeAryPtr* top_z = z_type->isa_aryptr();
5566   if (top_x  == NULL || top_x->klass()  == NULL ||
5567       top_z  == NULL || top_z->klass()  == NULL) {
5568     // failed array check
5569     return false;
5570   }
5571 
5572   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5573   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5574   if (x_elem != T_INT || z_elem != T_INT) {
5575     return false;
5576   }
5577 
5578 
5579   Node* x_start = array_element_address(x, intcon(0), x_elem);
5580   Node* z_start = array_element_address(z, intcon(0), z_elem);
5581 
5582   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5583                                   OptoRuntime::squareToLen_Type(),
5584                                   stubAddr, stubName, TypePtr::BOTTOM,
5585                                   x_start, len, z_start, zlen);
5586 
5587   set_result(z);
5588   return true;
5589 }
5590 
5591 //-------------inline_mulAdd------------------------------------------
5592 bool LibraryCallKit::inline_mulAdd() {
5593   assert(UseMulAddIntrinsic, "not implemented on this platform");
5594 
5595   address stubAddr = StubRoutines::mulAdd();
5596   if (stubAddr == NULL) {
5597     return false; // Intrinsic's stub is not implemented on this platform
5598   }
5599   const char* stubName = "mulAdd";
5600 
5601   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5602 
5603   Node* out      = argument(0);
5604   Node* in       = argument(1);
5605   Node* offset   = argument(2);
5606   Node* len      = argument(3);
5607   Node* k        = argument(4);
5608 
5609   const Type* out_type = out->Value(&_gvn);
5610   const Type* in_type = in->Value(&_gvn);
5611   const TypeAryPtr* top_out = out_type->isa_aryptr();
5612   const TypeAryPtr* top_in = in_type->isa_aryptr();
5613   if (top_out  == NULL || top_out->klass()  == NULL ||
5614       top_in == NULL || top_in->klass() == NULL) {
5615     // failed array check
5616     return false;
5617   }
5618 
5619   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5620   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5621   if (out_elem != T_INT || in_elem != T_INT) {
5622     return false;
5623   }
5624 
5625   Node* outlen = load_array_length(out);
5626   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5627   Node* out_start = array_element_address(out, intcon(0), out_elem);
5628   Node* in_start = array_element_address(in, intcon(0), in_elem);
5629 
5630   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5631                                   OptoRuntime::mulAdd_Type(),
5632                                   stubAddr, stubName, TypePtr::BOTTOM,
5633                                   out_start,in_start, new_offset, len, k);
5634   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5635   set_result(result);
5636   return true;
5637 }
5638 
5639 //-------------inline_montgomeryMultiply-----------------------------------
5640 bool LibraryCallKit::inline_montgomeryMultiply() {
5641   address stubAddr = StubRoutines::montgomeryMultiply();
5642   if (stubAddr == NULL) {
5643     return false; // Intrinsic's stub is not implemented on this platform
5644   }
5645 
5646   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5647   const char* stubName = "montgomery_multiply";
5648 
5649   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5650 
5651   Node* a    = argument(0);
5652   Node* b    = argument(1);
5653   Node* n    = argument(2);
5654   Node* len  = argument(3);
5655   Node* inv  = argument(4);
5656   Node* m    = argument(6);
5657 
5658   const Type* a_type = a->Value(&_gvn);
5659   const TypeAryPtr* top_a = a_type->isa_aryptr();
5660   const Type* b_type = b->Value(&_gvn);
5661   const TypeAryPtr* top_b = b_type->isa_aryptr();
5662   const Type* n_type = a->Value(&_gvn);
5663   const TypeAryPtr* top_n = n_type->isa_aryptr();
5664   const Type* m_type = a->Value(&_gvn);
5665   const TypeAryPtr* top_m = m_type->isa_aryptr();
5666   if (top_a  == NULL || top_a->klass()  == NULL ||
5667       top_b == NULL || top_b->klass()  == NULL ||
5668       top_n == NULL || top_n->klass()  == NULL ||
5669       top_m == NULL || top_m->klass()  == NULL) {
5670     // failed array check
5671     return false;
5672   }
5673 
5674   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5675   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5676   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5677   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5678   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5679     return false;
5680   }
5681 
5682   // Make the call
5683   {
5684     Node* a_start = array_element_address(a, intcon(0), a_elem);
5685     Node* b_start = array_element_address(b, intcon(0), b_elem);
5686     Node* n_start = array_element_address(n, intcon(0), n_elem);
5687     Node* m_start = array_element_address(m, intcon(0), m_elem);
5688 
5689     Node* call = make_runtime_call(RC_LEAF,
5690                                    OptoRuntime::montgomeryMultiply_Type(),
5691                                    stubAddr, stubName, TypePtr::BOTTOM,
5692                                    a_start, b_start, n_start, len, inv, top(),
5693                                    m_start);
5694     set_result(m);
5695   }
5696 
5697   return true;
5698 }
5699 
5700 bool LibraryCallKit::inline_montgomerySquare() {
5701   address stubAddr = StubRoutines::montgomerySquare();
5702   if (stubAddr == NULL) {
5703     return false; // Intrinsic's stub is not implemented on this platform
5704   }
5705 
5706   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5707   const char* stubName = "montgomery_square";
5708 
5709   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5710 
5711   Node* a    = argument(0);
5712   Node* n    = argument(1);
5713   Node* len  = argument(2);
5714   Node* inv  = argument(3);
5715   Node* m    = argument(5);
5716 
5717   const Type* a_type = a->Value(&_gvn);
5718   const TypeAryPtr* top_a = a_type->isa_aryptr();
5719   const Type* n_type = a->Value(&_gvn);
5720   const TypeAryPtr* top_n = n_type->isa_aryptr();
5721   const Type* m_type = a->Value(&_gvn);
5722   const TypeAryPtr* top_m = m_type->isa_aryptr();
5723   if (top_a  == NULL || top_a->klass()  == NULL ||
5724       top_n == NULL || top_n->klass()  == NULL ||
5725       top_m == NULL || top_m->klass()  == NULL) {
5726     // failed array check
5727     return false;
5728   }
5729 
5730   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5731   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5732   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5733   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5734     return false;
5735   }
5736 
5737   // Make the call
5738   {
5739     Node* a_start = array_element_address(a, intcon(0), a_elem);
5740     Node* n_start = array_element_address(n, intcon(0), n_elem);
5741     Node* m_start = array_element_address(m, intcon(0), m_elem);
5742 
5743     Node* call = make_runtime_call(RC_LEAF,
5744                                    OptoRuntime::montgomerySquare_Type(),
5745                                    stubAddr, stubName, TypePtr::BOTTOM,
5746                                    a_start, n_start, len, inv, top(),
5747                                    m_start);
5748     set_result(m);
5749   }
5750 
5751   return true;
5752 }
5753 
5754 //-------------inline_vectorizedMismatch------------------------------
5755 bool LibraryCallKit::inline_vectorizedMismatch() {
5756   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5757 
5758   address stubAddr = StubRoutines::vectorizedMismatch();
5759   if (stubAddr == NULL) {
5760     return false; // Intrinsic's stub is not implemented on this platform
5761   }
5762   const char* stubName = "vectorizedMismatch";
5763   int size_l = callee()->signature()->size();
5764   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5765 
5766   Node* obja = argument(0);
5767   Node* aoffset = argument(1);
5768   Node* objb = argument(3);
5769   Node* boffset = argument(4);
5770   Node* length = argument(6);
5771   Node* scale = argument(7);
5772 
5773   const Type* a_type = obja->Value(&_gvn);
5774   const Type* b_type = objb->Value(&_gvn);
5775   const TypeAryPtr* top_a = a_type->isa_aryptr();
5776   const TypeAryPtr* top_b = b_type->isa_aryptr();
5777   if (top_a == NULL || top_a->klass() == NULL ||
5778     top_b == NULL || top_b->klass() == NULL) {
5779     // failed array check
5780     return false;
5781   }
5782 
5783   Node* call;
5784   jvms()->set_should_reexecute(true);
5785 
5786   Node* obja_adr = make_unsafe_address(obja, aoffset);
5787   Node* objb_adr = make_unsafe_address(objb, boffset);
5788 
5789   call = make_runtime_call(RC_LEAF,
5790     OptoRuntime::vectorizedMismatch_Type(),
5791     stubAddr, stubName, TypePtr::BOTTOM,
5792     obja_adr, objb_adr, length, scale);
5793 
5794   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5795   set_result(result);
5796   return true;
5797 }
5798 
5799 /**
5800  * Calculate CRC32 for byte.
5801  * int java.util.zip.CRC32.update(int crc, int b)
5802  */
5803 bool LibraryCallKit::inline_updateCRC32() {
5804   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5805   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5806   // no receiver since it is static method
5807   Node* crc  = argument(0); // type: int
5808   Node* b    = argument(1); // type: int
5809 
5810   /*
5811    *    int c = ~ crc;
5812    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5813    *    b = b ^ (c >>> 8);
5814    *    crc = ~b;
5815    */
5816 
5817   Node* M1 = intcon(-1);
5818   crc = _gvn.transform(new XorINode(crc, M1));
5819   Node* result = _gvn.transform(new XorINode(crc, b));
5820   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5821 
5822   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5823   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5824   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5825   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5826 
5827   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5828   result = _gvn.transform(new XorINode(crc, result));
5829   result = _gvn.transform(new XorINode(result, M1));
5830   set_result(result);
5831   return true;
5832 }
5833 
5834 /**
5835  * Calculate CRC32 for byte[] array.
5836  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5837  */
5838 bool LibraryCallKit::inline_updateBytesCRC32() {
5839   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5840   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5841   // no receiver since it is static method
5842   Node* crc     = argument(0); // type: int
5843   Node* src     = argument(1); // type: oop
5844   Node* offset  = argument(2); // type: int
5845   Node* length  = argument(3); // type: int
5846 
5847   const Type* src_type = src->Value(&_gvn);
5848   const TypeAryPtr* top_src = src_type->isa_aryptr();
5849   if (top_src  == NULL || top_src->klass()  == NULL) {
5850     // failed array check
5851     return false;
5852   }
5853 
5854   // Figure out the size and type of the elements we will be copying.
5855   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5856   if (src_elem != T_BYTE) {
5857     return false;
5858   }
5859 
5860   // 'src_start' points to src array + scaled offset
5861   Node* src_start = array_element_address(src, offset, src_elem);
5862 
5863   // We assume that range check is done by caller.
5864   // TODO: generate range check (offset+length < src.length) in debug VM.
5865 
5866   // Call the stub.
5867   address stubAddr = StubRoutines::updateBytesCRC32();
5868   const char *stubName = "updateBytesCRC32";
5869 
5870   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5871                                  stubAddr, stubName, TypePtr::BOTTOM,
5872                                  crc, src_start, length);
5873   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5874   set_result(result);
5875   return true;
5876 }
5877 
5878 /**
5879  * Calculate CRC32 for ByteBuffer.
5880  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5881  */
5882 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5883   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5884   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5885   // no receiver since it is static method
5886   Node* crc     = argument(0); // type: int
5887   Node* src     = argument(1); // type: long
5888   Node* offset  = argument(3); // type: int
5889   Node* length  = argument(4); // type: int
5890 
5891   src = ConvL2X(src);  // adjust Java long to machine word
5892   Node* base = _gvn.transform(new CastX2PNode(src));
5893   offset = ConvI2X(offset);
5894 
5895   // 'src_start' points to src array + scaled offset
5896   Node* src_start = basic_plus_adr(top(), base, offset);
5897 
5898   // Call the stub.
5899   address stubAddr = StubRoutines::updateBytesCRC32();
5900   const char *stubName = "updateBytesCRC32";
5901 
5902   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5903                                  stubAddr, stubName, TypePtr::BOTTOM,
5904                                  crc, src_start, length);
5905   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5906   set_result(result);
5907   return true;
5908 }
5909 
5910 //------------------------------get_table_from_crc32c_class-----------------------
5911 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5912   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5913   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5914 
5915   return table;
5916 }
5917 
5918 //------------------------------inline_updateBytesCRC32C-----------------------
5919 //
5920 // Calculate CRC32C for byte[] array.
5921 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5922 //
5923 bool LibraryCallKit::inline_updateBytesCRC32C() {
5924   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5925   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5926   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5927   // no receiver since it is a static method
5928   Node* crc     = argument(0); // type: int
5929   Node* src     = argument(1); // type: oop
5930   Node* offset  = argument(2); // type: int
5931   Node* end     = argument(3); // type: int
5932 
5933   Node* length = _gvn.transform(new SubINode(end, offset));
5934 
5935   const Type* src_type = src->Value(&_gvn);
5936   const TypeAryPtr* top_src = src_type->isa_aryptr();
5937   if (top_src  == NULL || top_src->klass()  == NULL) {
5938     // failed array check
5939     return false;
5940   }
5941 
5942   // Figure out the size and type of the elements we will be copying.
5943   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5944   if (src_elem != T_BYTE) {
5945     return false;
5946   }
5947 
5948   // 'src_start' points to src array + scaled offset
5949   Node* src_start = array_element_address(src, offset, src_elem);
5950 
5951   // static final int[] byteTable in class CRC32C
5952   Node* table = get_table_from_crc32c_class(callee()->holder());
5953   Node* table_start = array_element_address(table, intcon(0), T_INT);
5954 
5955   // We assume that range check is done by caller.
5956   // TODO: generate range check (offset+length < src.length) in debug VM.
5957 
5958   // Call the stub.
5959   address stubAddr = StubRoutines::updateBytesCRC32C();
5960   const char *stubName = "updateBytesCRC32C";
5961 
5962   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5963                                  stubAddr, stubName, TypePtr::BOTTOM,
5964                                  crc, src_start, length, table_start);
5965   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5966   set_result(result);
5967   return true;
5968 }
5969 
5970 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5971 //
5972 // Calculate CRC32C for DirectByteBuffer.
5973 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5974 //
5975 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5976   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5977   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5978   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5979   // no receiver since it is a static method
5980   Node* crc     = argument(0); // type: int
5981   Node* src     = argument(1); // type: long
5982   Node* offset  = argument(3); // type: int
5983   Node* end     = argument(4); // type: int
5984 
5985   Node* length = _gvn.transform(new SubINode(end, offset));
5986 
5987   src = ConvL2X(src);  // adjust Java long to machine word
5988   Node* base = _gvn.transform(new CastX2PNode(src));
5989   offset = ConvI2X(offset);
5990 
5991   // 'src_start' points to src array + scaled offset
5992   Node* src_start = basic_plus_adr(top(), base, offset);
5993 
5994   // static final int[] byteTable in class CRC32C
5995   Node* table = get_table_from_crc32c_class(callee()->holder());
5996   Node* table_start = array_element_address(table, intcon(0), T_INT);
5997 
5998   // Call the stub.
5999   address stubAddr = StubRoutines::updateBytesCRC32C();
6000   const char *stubName = "updateBytesCRC32C";
6001 
6002   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6003                                  stubAddr, stubName, TypePtr::BOTTOM,
6004                                  crc, src_start, length, table_start);
6005   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6006   set_result(result);
6007   return true;
6008 }
6009 
6010 //------------------------------inline_updateBytesAdler32----------------------
6011 //
6012 // Calculate Adler32 checksum for byte[] array.
6013 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6014 //
6015 bool LibraryCallKit::inline_updateBytesAdler32() {
6016   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
6017   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6018   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6019   // no receiver since it is static method
6020   Node* crc     = argument(0); // type: int
6021   Node* src     = argument(1); // type: oop
6022   Node* offset  = argument(2); // type: int
6023   Node* length  = argument(3); // type: int
6024 
6025   const Type* src_type = src->Value(&_gvn);
6026   const TypeAryPtr* top_src = src_type->isa_aryptr();
6027   if (top_src  == NULL || top_src->klass()  == NULL) {
6028     // failed array check
6029     return false;
6030   }
6031 
6032   // Figure out the size and type of the elements we will be copying.
6033   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6034   if (src_elem != T_BYTE) {
6035     return false;
6036   }
6037 
6038   // 'src_start' points to src array + scaled offset
6039   Node* src_start = array_element_address(src, offset, src_elem);
6040 
6041   // We assume that range check is done by caller.
6042   // TODO: generate range check (offset+length < src.length) in debug VM.
6043 
6044   // Call the stub.
6045   address stubAddr = StubRoutines::updateBytesAdler32();
6046   const char *stubName = "updateBytesAdler32";
6047 
6048   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6049                                  stubAddr, stubName, TypePtr::BOTTOM,
6050                                  crc, src_start, length);
6051   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6052   set_result(result);
6053   return true;
6054 }
6055 
6056 //------------------------------inline_updateByteBufferAdler32---------------
6057 //
6058 // Calculate Adler32 checksum for DirectByteBuffer.
6059 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6060 //
6061 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6062   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
6063   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6064   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6065   // no receiver since it is static method
6066   Node* crc     = argument(0); // type: int
6067   Node* src     = argument(1); // type: long
6068   Node* offset  = argument(3); // type: int
6069   Node* length  = argument(4); // type: int
6070 
6071   src = ConvL2X(src);  // adjust Java long to machine word
6072   Node* base = _gvn.transform(new CastX2PNode(src));
6073   offset = ConvI2X(offset);
6074 
6075   // 'src_start' points to src array + scaled offset
6076   Node* src_start = basic_plus_adr(top(), base, offset);
6077 
6078   // Call the stub.
6079   address stubAddr = StubRoutines::updateBytesAdler32();
6080   const char *stubName = "updateBytesAdler32";
6081 
6082   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6083                                  stubAddr, stubName, TypePtr::BOTTOM,
6084                                  crc, src_start, length);
6085 
6086   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6087   set_result(result);
6088   return true;
6089 }
6090 
6091 //----------------------------inline_reference_get----------------------------
6092 // public T java.lang.ref.Reference.get();
6093 bool LibraryCallKit::inline_reference_get() {
6094   const int referent_offset = java_lang_ref_Reference::referent_offset;
6095   guarantee(referent_offset > 0, "should have already been set");
6096 
6097   // Get the argument:
6098   Node* reference_obj = null_check_receiver();
6099   if (stopped()) return true;
6100 
6101   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6102 
6103   ciInstanceKlass* klass = env()->Object_klass();
6104   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6105 
6106   Node* no_ctrl = NULL;
6107   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6108 
6109   // Use the pre-barrier to record the value in the referent field
6110   pre_barrier(false /* do_load */,
6111               control(),
6112               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6113               result /* pre_val */,
6114               T_OBJECT);
6115 
6116   // Add memory barrier to prevent commoning reads from this field
6117   // across safepoint since GC can change its value.
6118   insert_mem_bar(Op_MemBarCPUOrder);
6119 
6120   set_result(result);
6121   return true;
6122 }
6123 
6124 
6125 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6126                                               bool is_exact=true, bool is_static=false,
6127                                               ciInstanceKlass * fromKls=NULL) {
6128   if (fromKls == NULL) {
6129     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6130     assert(tinst != NULL, "obj is null");
6131     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6132     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6133     fromKls = tinst->klass()->as_instance_klass();
6134   } else {
6135     assert(is_static, "only for static field access");
6136   }
6137   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6138                                               ciSymbol::make(fieldTypeString),
6139                                               is_static);
6140 
6141   assert (field != NULL, "undefined field");
6142   if (field == NULL) return (Node *) NULL;
6143 
6144   if (is_static) {
6145     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6146     fromObj = makecon(tip);
6147   }
6148 
6149   // Next code  copied from Parse::do_get_xxx():
6150 
6151   // Compute address and memory type.
6152   int offset  = field->offset_in_bytes();
6153   bool is_vol = field->is_volatile();
6154   ciType* field_klass = field->type();
6155   assert(field_klass->is_loaded(), "should be loaded");
6156   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6157   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6158   BasicType bt = field->layout_type();
6159 
6160   // Build the resultant type of the load
6161   const Type *type;
6162   if (bt == T_OBJECT) {
6163     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6164   } else {
6165     type = Type::get_const_basic_type(bt);
6166   }
6167 
6168   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6169     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6170   }
6171   // Build the load.
6172   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6173   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6174   // If reference is volatile, prevent following memory ops from
6175   // floating up past the volatile read.  Also prevents commoning
6176   // another volatile read.
6177   if (is_vol) {
6178     // Memory barrier includes bogus read of value to force load BEFORE membar
6179     insert_mem_bar(Op_MemBarAcquire, loadedField);
6180   }
6181   return loadedField;
6182 }
6183 
6184 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6185                                                  bool is_exact = true, bool is_static = false,
6186                                                  ciInstanceKlass * fromKls = NULL) {
6187   if (fromKls == NULL) {
6188     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6189     assert(tinst != NULL, "obj is null");
6190     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6191     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6192     fromKls = tinst->klass()->as_instance_klass();
6193   }
6194   else {
6195     assert(is_static, "only for static field access");
6196   }
6197   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6198     ciSymbol::make(fieldTypeString),
6199     is_static);
6200 
6201   assert(field != NULL, "undefined field");
6202   assert(!field->is_volatile(), "not defined for volatile fields");
6203 
6204   if (is_static) {
6205     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6206     fromObj = makecon(tip);
6207   }
6208 
6209   // Next code  copied from Parse::do_get_xxx():
6210 
6211   // Compute address and memory type.
6212   int offset = field->offset_in_bytes();
6213   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6214 
6215   return adr;
6216 }
6217 
6218 //------------------------------inline_aescrypt_Block-----------------------
6219 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6220   address stubAddr = NULL;
6221   const char *stubName;
6222   assert(UseAES, "need AES instruction support");
6223 
6224   switch(id) {
6225   case vmIntrinsics::_aescrypt_encryptBlock:
6226     stubAddr = StubRoutines::aescrypt_encryptBlock();
6227     stubName = "aescrypt_encryptBlock";
6228     break;
6229   case vmIntrinsics::_aescrypt_decryptBlock:
6230     stubAddr = StubRoutines::aescrypt_decryptBlock();
6231     stubName = "aescrypt_decryptBlock";
6232     break;
6233   default:
6234     break;
6235   }
6236   if (stubAddr == NULL) return false;
6237 
6238   Node* aescrypt_object = argument(0);
6239   Node* src             = argument(1);
6240   Node* src_offset      = argument(2);
6241   Node* dest            = argument(3);
6242   Node* dest_offset     = argument(4);
6243 
6244   // (1) src and dest are arrays.
6245   const Type* src_type = src->Value(&_gvn);
6246   const Type* dest_type = dest->Value(&_gvn);
6247   const TypeAryPtr* top_src = src_type->isa_aryptr();
6248   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6249   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6250 
6251   // for the quick and dirty code we will skip all the checks.
6252   // we are just trying to get the call to be generated.
6253   Node* src_start  = src;
6254   Node* dest_start = dest;
6255   if (src_offset != NULL || dest_offset != NULL) {
6256     assert(src_offset != NULL && dest_offset != NULL, "");
6257     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6258     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6259   }
6260 
6261   // now need to get the start of its expanded key array
6262   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6263   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6264   if (k_start == NULL) return false;
6265 
6266   if (Matcher::pass_original_key_for_aes()) {
6267     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6268     // compatibility issues between Java key expansion and SPARC crypto instructions
6269     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6270     if (original_k_start == NULL) return false;
6271 
6272     // Call the stub.
6273     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6274                       stubAddr, stubName, TypePtr::BOTTOM,
6275                       src_start, dest_start, k_start, original_k_start);
6276   } else {
6277     // Call the stub.
6278     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6279                       stubAddr, stubName, TypePtr::BOTTOM,
6280                       src_start, dest_start, k_start);
6281   }
6282 
6283   return true;
6284 }
6285 
6286 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6287 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6288   address stubAddr = NULL;
6289   const char *stubName = NULL;
6290 
6291   assert(UseAES, "need AES instruction support");
6292 
6293   switch(id) {
6294   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6295     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6296     stubName = "cipherBlockChaining_encryptAESCrypt";
6297     break;
6298   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6299     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6300     stubName = "cipherBlockChaining_decryptAESCrypt";
6301     break;
6302   default:
6303     break;
6304   }
6305   if (stubAddr == NULL) return false;
6306 
6307   Node* cipherBlockChaining_object = argument(0);
6308   Node* src                        = argument(1);
6309   Node* src_offset                 = argument(2);
6310   Node* len                        = argument(3);
6311   Node* dest                       = argument(4);
6312   Node* dest_offset                = argument(5);
6313 
6314   // (1) src and dest are arrays.
6315   const Type* src_type = src->Value(&_gvn);
6316   const Type* dest_type = dest->Value(&_gvn);
6317   const TypeAryPtr* top_src = src_type->isa_aryptr();
6318   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6319   assert (top_src  != NULL && top_src->klass()  != NULL
6320           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6321 
6322   // checks are the responsibility of the caller
6323   Node* src_start  = src;
6324   Node* dest_start = dest;
6325   if (src_offset != NULL || dest_offset != NULL) {
6326     assert(src_offset != NULL && dest_offset != NULL, "");
6327     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6328     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6329   }
6330 
6331   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6332   // (because of the predicated logic executed earlier).
6333   // so we cast it here safely.
6334   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6335 
6336   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6337   if (embeddedCipherObj == NULL) return false;
6338 
6339   // cast it to what we know it will be at runtime
6340   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6341   assert(tinst != NULL, "CBC obj is null");
6342   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6343   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6344   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6345 
6346   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6347   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6348   const TypeOopPtr* xtype = aklass->as_instance_type();
6349   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6350   aescrypt_object = _gvn.transform(aescrypt_object);
6351 
6352   // we need to get the start of the aescrypt_object's expanded key array
6353   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6354   if (k_start == NULL) return false;
6355 
6356   // similarly, get the start address of the r vector
6357   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6358   if (objRvec == NULL) return false;
6359   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6360 
6361   Node* cbcCrypt;
6362   if (Matcher::pass_original_key_for_aes()) {
6363     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6364     // compatibility issues between Java key expansion and SPARC crypto instructions
6365     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6366     if (original_k_start == NULL) return false;
6367 
6368     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6369     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6370                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6371                                  stubAddr, stubName, TypePtr::BOTTOM,
6372                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6373   } else {
6374     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6375     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6376                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6377                                  stubAddr, stubName, TypePtr::BOTTOM,
6378                                  src_start, dest_start, k_start, r_start, len);
6379   }
6380 
6381   // return cipher length (int)
6382   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6383   set_result(retvalue);
6384   return true;
6385 }
6386 
6387 //------------------------------inline_counterMode_AESCrypt-----------------------
6388 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6389   assert(UseAES, "need AES instruction support");
6390   if (!UseAESCTRIntrinsics) return false;
6391 
6392   address stubAddr = NULL;
6393   const char *stubName = NULL;
6394   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6395     stubAddr = StubRoutines::counterMode_AESCrypt();
6396     stubName = "counterMode_AESCrypt";
6397   }
6398   if (stubAddr == NULL) return false;
6399 
6400   Node* counterMode_object = argument(0);
6401   Node* src = argument(1);
6402   Node* src_offset = argument(2);
6403   Node* len = argument(3);
6404   Node* dest = argument(4);
6405   Node* dest_offset = argument(5);
6406 
6407   // (1) src and dest are arrays.
6408   const Type* src_type = src->Value(&_gvn);
6409   const Type* dest_type = dest->Value(&_gvn);
6410   const TypeAryPtr* top_src = src_type->isa_aryptr();
6411   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6412   assert(top_src != NULL && top_src->klass() != NULL &&
6413          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6414 
6415   // checks are the responsibility of the caller
6416   Node* src_start = src;
6417   Node* dest_start = dest;
6418   if (src_offset != NULL || dest_offset != NULL) {
6419     assert(src_offset != NULL && dest_offset != NULL, "");
6420     src_start = array_element_address(src, src_offset, T_BYTE);
6421     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6422   }
6423 
6424   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6425   // (because of the predicated logic executed earlier).
6426   // so we cast it here safely.
6427   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6428   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6429   if (embeddedCipherObj == NULL) return false;
6430   // cast it to what we know it will be at runtime
6431   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6432   assert(tinst != NULL, "CTR obj is null");
6433   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6434   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6435   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6436   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6437   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6438   const TypeOopPtr* xtype = aklass->as_instance_type();
6439   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6440   aescrypt_object = _gvn.transform(aescrypt_object);
6441   // we need to get the start of the aescrypt_object's expanded key array
6442   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6443   if (k_start == NULL) return false;
6444   // similarly, get the start address of the r vector
6445   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6446   if (obj_counter == NULL) return false;
6447   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6448 
6449   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6450   if (saved_encCounter == NULL) return false;
6451   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6452   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6453 
6454   Node* ctrCrypt;
6455   if (Matcher::pass_original_key_for_aes()) {
6456     // no SPARC version for AES/CTR intrinsics now.
6457     return false;
6458   }
6459   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6460   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6461                                OptoRuntime::counterMode_aescrypt_Type(),
6462                                stubAddr, stubName, TypePtr::BOTTOM,
6463                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6464 
6465   // return cipher length (int)
6466   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6467   set_result(retvalue);
6468   return true;
6469 }
6470 
6471 //------------------------------get_key_start_from_aescrypt_object-----------------------
6472 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6473 #if defined(PPC64) || defined(S390)
6474   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6475   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6476   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6477   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6478   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6479   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6480   if (objSessionK == NULL) {
6481     return (Node *) NULL;
6482   }
6483   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6484 #else
6485   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6486 #endif // PPC64
6487   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6488   if (objAESCryptKey == NULL) return (Node *) NULL;
6489 
6490   // now have the array, need to get the start address of the K array
6491   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6492   return k_start;
6493 }
6494 
6495 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6496 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6497   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6498   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6499   if (objAESCryptKey == NULL) return (Node *) NULL;
6500 
6501   // now have the array, need to get the start address of the lastKey array
6502   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6503   return original_k_start;
6504 }
6505 
6506 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6507 // Return node representing slow path of predicate check.
6508 // the pseudo code we want to emulate with this predicate is:
6509 // for encryption:
6510 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6511 // for decryption:
6512 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6513 //    note cipher==plain is more conservative than the original java code but that's OK
6514 //
6515 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6516   // The receiver was checked for NULL already.
6517   Node* objCBC = argument(0);
6518 
6519   // Load embeddedCipher field of CipherBlockChaining object.
6520   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6521 
6522   // get AESCrypt klass for instanceOf check
6523   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6524   // will have same classloader as CipherBlockChaining object
6525   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6526   assert(tinst != NULL, "CBCobj is null");
6527   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6528 
6529   // we want to do an instanceof comparison against the AESCrypt class
6530   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6531   if (!klass_AESCrypt->is_loaded()) {
6532     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6533     Node* ctrl = control();
6534     set_control(top()); // no regular fast path
6535     return ctrl;
6536   }
6537   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6538 
6539   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6540   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6541   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6542 
6543   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6544 
6545   // for encryption, we are done
6546   if (!decrypting)
6547     return instof_false;  // even if it is NULL
6548 
6549   // for decryption, we need to add a further check to avoid
6550   // taking the intrinsic path when cipher and plain are the same
6551   // see the original java code for why.
6552   RegionNode* region = new RegionNode(3);
6553   region->init_req(1, instof_false);
6554   Node* src = argument(1);
6555   Node* dest = argument(4);
6556   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6557   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6558   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6559   region->init_req(2, src_dest_conjoint);
6560 
6561   record_for_igvn(region);
6562   return _gvn.transform(region);
6563 }
6564 
6565 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6566 // Return node representing slow path of predicate check.
6567 // the pseudo code we want to emulate with this predicate is:
6568 // for encryption:
6569 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6570 // for decryption:
6571 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6572 //    note cipher==plain is more conservative than the original java code but that's OK
6573 //
6574 
6575 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6576   // The receiver was checked for NULL already.
6577   Node* objCTR = argument(0);
6578 
6579   // Load embeddedCipher field of CipherBlockChaining object.
6580   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6581 
6582   // get AESCrypt klass for instanceOf check
6583   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6584   // will have same classloader as CipherBlockChaining object
6585   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6586   assert(tinst != NULL, "CTRobj is null");
6587   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6588 
6589   // we want to do an instanceof comparison against the AESCrypt class
6590   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6591   if (!klass_AESCrypt->is_loaded()) {
6592     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6593     Node* ctrl = control();
6594     set_control(top()); // no regular fast path
6595     return ctrl;
6596   }
6597 
6598   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6599   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6600   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6601   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6602   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6603 
6604   return instof_false; // even if it is NULL
6605 }
6606 
6607 //------------------------------inline_ghash_processBlocks
6608 bool LibraryCallKit::inline_ghash_processBlocks() {
6609   address stubAddr;
6610   const char *stubName;
6611   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6612 
6613   stubAddr = StubRoutines::ghash_processBlocks();
6614   stubName = "ghash_processBlocks";
6615 
6616   Node* data           = argument(0);
6617   Node* offset         = argument(1);
6618   Node* len            = argument(2);
6619   Node* state          = argument(3);
6620   Node* subkeyH        = argument(4);
6621 
6622   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6623   assert(state_start, "state is NULL");
6624   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6625   assert(subkeyH_start, "subkeyH is NULL");
6626   Node* data_start  = array_element_address(data, offset, T_BYTE);
6627   assert(data_start, "data is NULL");
6628 
6629   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6630                                   OptoRuntime::ghash_processBlocks_Type(),
6631                                   stubAddr, stubName, TypePtr::BOTTOM,
6632                                   state_start, subkeyH_start, data_start, len);
6633   return true;
6634 }
6635 
6636 //------------------------------inline_sha_implCompress-----------------------
6637 //
6638 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6639 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6640 //
6641 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6642 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6643 //
6644 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6645 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6646 //
6647 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6648   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6649 
6650   Node* sha_obj = argument(0);
6651   Node* src     = argument(1); // type oop
6652   Node* ofs     = argument(2); // type int
6653 
6654   const Type* src_type = src->Value(&_gvn);
6655   const TypeAryPtr* top_src = src_type->isa_aryptr();
6656   if (top_src  == NULL || top_src->klass()  == NULL) {
6657     // failed array check
6658     return false;
6659   }
6660   // Figure out the size and type of the elements we will be copying.
6661   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6662   if (src_elem != T_BYTE) {
6663     return false;
6664   }
6665   // 'src_start' points to src array + offset
6666   Node* src_start = array_element_address(src, ofs, src_elem);
6667   Node* state = NULL;
6668   address stubAddr;
6669   const char *stubName;
6670 
6671   switch(id) {
6672   case vmIntrinsics::_sha_implCompress:
6673     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6674     state = get_state_from_sha_object(sha_obj);
6675     stubAddr = StubRoutines::sha1_implCompress();
6676     stubName = "sha1_implCompress";
6677     break;
6678   case vmIntrinsics::_sha2_implCompress:
6679     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6680     state = get_state_from_sha_object(sha_obj);
6681     stubAddr = StubRoutines::sha256_implCompress();
6682     stubName = "sha256_implCompress";
6683     break;
6684   case vmIntrinsics::_sha5_implCompress:
6685     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6686     state = get_state_from_sha5_object(sha_obj);
6687     stubAddr = StubRoutines::sha512_implCompress();
6688     stubName = "sha512_implCompress";
6689     break;
6690   default:
6691     fatal_unexpected_iid(id);
6692     return false;
6693   }
6694   if (state == NULL) return false;
6695 
6696   // Call the stub.
6697   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6698                                  stubAddr, stubName, TypePtr::BOTTOM,
6699                                  src_start, state);
6700 
6701   return true;
6702 }
6703 
6704 //------------------------------inline_digestBase_implCompressMB-----------------------
6705 //
6706 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6707 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6708 //
6709 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6710   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6711          "need SHA1/SHA256/SHA512 instruction support");
6712   assert((uint)predicate < 3, "sanity");
6713   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6714 
6715   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6716   Node* src            = argument(1); // byte[] array
6717   Node* ofs            = argument(2); // type int
6718   Node* limit          = argument(3); // type int
6719 
6720   const Type* src_type = src->Value(&_gvn);
6721   const TypeAryPtr* top_src = src_type->isa_aryptr();
6722   if (top_src  == NULL || top_src->klass()  == NULL) {
6723     // failed array check
6724     return false;
6725   }
6726   // Figure out the size and type of the elements we will be copying.
6727   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6728   if (src_elem != T_BYTE) {
6729     return false;
6730   }
6731   // 'src_start' points to src array + offset
6732   Node* src_start = array_element_address(src, ofs, src_elem);
6733 
6734   const char* klass_SHA_name = NULL;
6735   const char* stub_name = NULL;
6736   address     stub_addr = NULL;
6737   bool        long_state = false;
6738 
6739   switch (predicate) {
6740   case 0:
6741     if (UseSHA1Intrinsics) {
6742       klass_SHA_name = "sun/security/provider/SHA";
6743       stub_name = "sha1_implCompressMB";
6744       stub_addr = StubRoutines::sha1_implCompressMB();
6745     }
6746     break;
6747   case 1:
6748     if (UseSHA256Intrinsics) {
6749       klass_SHA_name = "sun/security/provider/SHA2";
6750       stub_name = "sha256_implCompressMB";
6751       stub_addr = StubRoutines::sha256_implCompressMB();
6752     }
6753     break;
6754   case 2:
6755     if (UseSHA512Intrinsics) {
6756       klass_SHA_name = "sun/security/provider/SHA5";
6757       stub_name = "sha512_implCompressMB";
6758       stub_addr = StubRoutines::sha512_implCompressMB();
6759       long_state = true;
6760     }
6761     break;
6762   default:
6763     fatal("unknown SHA intrinsic predicate: %d", predicate);
6764   }
6765   if (klass_SHA_name != NULL) {
6766     // get DigestBase klass to lookup for SHA klass
6767     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6768     assert(tinst != NULL, "digestBase_obj is not instance???");
6769     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6770 
6771     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6772     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6773     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6774     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6775   }
6776   return false;
6777 }
6778 //------------------------------inline_sha_implCompressMB-----------------------
6779 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6780                                                bool long_state, address stubAddr, const char *stubName,
6781                                                Node* src_start, Node* ofs, Node* limit) {
6782   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6783   const TypeOopPtr* xtype = aklass->as_instance_type();
6784   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6785   sha_obj = _gvn.transform(sha_obj);
6786 
6787   Node* state;
6788   if (long_state) {
6789     state = get_state_from_sha5_object(sha_obj);
6790   } else {
6791     state = get_state_from_sha_object(sha_obj);
6792   }
6793   if (state == NULL) return false;
6794 
6795   // Call the stub.
6796   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6797                                  OptoRuntime::digestBase_implCompressMB_Type(),
6798                                  stubAddr, stubName, TypePtr::BOTTOM,
6799                                  src_start, state, ofs, limit);
6800   // return ofs (int)
6801   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6802   set_result(result);
6803 
6804   return true;
6805 }
6806 
6807 //------------------------------get_state_from_sha_object-----------------------
6808 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6809   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6810   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6811   if (sha_state == NULL) return (Node *) NULL;
6812 
6813   // now have the array, need to get the start address of the state array
6814   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6815   return state;
6816 }
6817 
6818 //------------------------------get_state_from_sha5_object-----------------------
6819 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6820   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6821   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6822   if (sha_state == NULL) return (Node *) NULL;
6823 
6824   // now have the array, need to get the start address of the state array
6825   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6826   return state;
6827 }
6828 
6829 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6830 // Return node representing slow path of predicate check.
6831 // the pseudo code we want to emulate with this predicate is:
6832 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6833 //
6834 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6835   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6836          "need SHA1/SHA256/SHA512 instruction support");
6837   assert((uint)predicate < 3, "sanity");
6838 
6839   // The receiver was checked for NULL already.
6840   Node* digestBaseObj = argument(0);
6841 
6842   // get DigestBase klass for instanceOf check
6843   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6844   assert(tinst != NULL, "digestBaseObj is null");
6845   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6846 
6847   const char* klass_SHA_name = NULL;
6848   switch (predicate) {
6849   case 0:
6850     if (UseSHA1Intrinsics) {
6851       // we want to do an instanceof comparison against the SHA class
6852       klass_SHA_name = "sun/security/provider/SHA";
6853     }
6854     break;
6855   case 1:
6856     if (UseSHA256Intrinsics) {
6857       // we want to do an instanceof comparison against the SHA2 class
6858       klass_SHA_name = "sun/security/provider/SHA2";
6859     }
6860     break;
6861   case 2:
6862     if (UseSHA512Intrinsics) {
6863       // we want to do an instanceof comparison against the SHA5 class
6864       klass_SHA_name = "sun/security/provider/SHA5";
6865     }
6866     break;
6867   default:
6868     fatal("unknown SHA intrinsic predicate: %d", predicate);
6869   }
6870 
6871   ciKlass* klass_SHA = NULL;
6872   if (klass_SHA_name != NULL) {
6873     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6874   }
6875   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6876     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6877     Node* ctrl = control();
6878     set_control(top()); // no intrinsic path
6879     return ctrl;
6880   }
6881   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6882 
6883   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6884   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6885   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6886   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6887 
6888   return instof_false;  // even if it is NULL
6889 }
6890 
6891 //-------------inline_fma-----------------------------------
6892 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6893   Node *a = NULL;
6894   Node *b = NULL;
6895   Node *c = NULL;
6896   Node* result = NULL;
6897   switch (id) {
6898   case vmIntrinsics::_fmaD:
6899     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6900     // no receiver since it is static method
6901     a = round_double_node(argument(0));
6902     b = round_double_node(argument(2));
6903     c = round_double_node(argument(4));
6904     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6905     break;
6906   case vmIntrinsics::_fmaF:
6907     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6908     a = argument(0);
6909     b = argument(1);
6910     c = argument(2);
6911     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6912     break;
6913   default:
6914     fatal_unexpected_iid(id);  break;
6915   }
6916   set_result(result);
6917   return true;
6918 }
6919 
6920 bool LibraryCallKit::inline_profileBoolean() {
6921   Node* counts = argument(1);
6922   const TypeAryPtr* ary = NULL;
6923   ciArray* aobj = NULL;
6924   if (counts->is_Con()
6925       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6926       && (aobj = ary->const_oop()->as_array()) != NULL
6927       && (aobj->length() == 2)) {
6928     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6929     jint false_cnt = aobj->element_value(0).as_int();
6930     jint  true_cnt = aobj->element_value(1).as_int();
6931 
6932     if (C->log() != NULL) {
6933       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6934                      false_cnt, true_cnt);
6935     }
6936 
6937     if (false_cnt + true_cnt == 0) {
6938       // According to profile, never executed.
6939       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6940                           Deoptimization::Action_reinterpret);
6941       return true;
6942     }
6943 
6944     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6945     // is a number of each value occurrences.
6946     Node* result = argument(0);
6947     if (false_cnt == 0 || true_cnt == 0) {
6948       // According to profile, one value has been never seen.
6949       int expected_val = (false_cnt == 0) ? 1 : 0;
6950 
6951       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6952       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6953 
6954       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6955       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6956       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6957 
6958       { // Slow path: uncommon trap for never seen value and then reexecute
6959         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6960         // the value has been seen at least once.
6961         PreserveJVMState pjvms(this);
6962         PreserveReexecuteState preexecs(this);
6963         jvms()->set_should_reexecute(true);
6964 
6965         set_control(slow_path);
6966         set_i_o(i_o());
6967 
6968         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6969                             Deoptimization::Action_reinterpret);
6970       }
6971       // The guard for never seen value enables sharpening of the result and
6972       // returning a constant. It allows to eliminate branches on the same value
6973       // later on.
6974       set_control(fast_path);
6975       result = intcon(expected_val);
6976     }
6977     // Stop profiling.
6978     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6979     // By replacing method body with profile data (represented as ProfileBooleanNode
6980     // on IR level) we effectively disable profiling.
6981     // It enables full speed execution once optimized code is generated.
6982     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6983     C->record_for_igvn(profile);
6984     set_result(profile);
6985     return true;
6986   } else {
6987     // Continue profiling.
6988     // Profile data isn't available at the moment. So, execute method's bytecode version.
6989     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6990     // is compiled and counters aren't available since corresponding MethodHandle
6991     // isn't a compile-time constant.
6992     return false;
6993   }
6994 }
6995 
6996 bool LibraryCallKit::inline_isCompileConstant() {
6997   Node* n = argument(0);
6998   set_result(n->is_Con() ? intcon(1) : intcon(0));
6999   return true;
7000 }