1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 // Signal number used to suspend/resume a thread
 160 
 161 // do not use any signal number less than SIGSEGV, see 4355769
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   julong avail_mem;
 177 
 178   if (OSContainer::is_containerized()) {
 179     jlong mem_limit, mem_usage;
 180     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 181       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 182                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 183     }
 184     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 185       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 186     }
 187     if (mem_limit > 0 && mem_usage > 0 ) {
 188       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 189       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 190       return avail_mem;
 191     }
 192   }
 193 
 194   sysinfo(&si);
 195   avail_mem = (julong)si.freeram * si.mem_unit;
 196   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 197   return avail_mem;
 198 }
 199 
 200 julong os::physical_memory() {
 201   jlong phys_mem = 0;
 202   if (OSContainer::is_containerized()) {
 203     jlong mem_limit;
 204     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 205       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 206       return mem_limit;
 207     }
 208     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 209                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 210   }
 211 
 212   phys_mem = Linux::physical_memory();
 213   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 214   return phys_mem;
 215 }
 216 
 217 // Return true if user is running as root.
 218 
 219 bool os::have_special_privileges() {
 220   static bool init = false;
 221   static bool privileges = false;
 222   if (!init) {
 223     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 224     init = true;
 225   }
 226   return privileges;
 227 }
 228 
 229 
 230 #ifndef SYS_gettid
 231 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 232   #ifdef __ia64__
 233     #define SYS_gettid 1105
 234   #else
 235     #ifdef __i386__
 236       #define SYS_gettid 224
 237     #else
 238       #ifdef __amd64__
 239         #define SYS_gettid 186
 240       #else
 241         #ifdef __sparc__
 242           #define SYS_gettid 143
 243         #else
 244           #error define gettid for the arch
 245         #endif
 246       #endif
 247     #endif
 248   #endif
 249 #endif
 250 
 251 
 252 // pid_t gettid()
 253 //
 254 // Returns the kernel thread id of the currently running thread. Kernel
 255 // thread id is used to access /proc.
 256 pid_t os::Linux::gettid() {
 257   int rslt = syscall(SYS_gettid);
 258   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 259   return (pid_t)rslt;
 260 }
 261 
 262 // Most versions of linux have a bug where the number of processors are
 263 // determined by looking at the /proc file system.  In a chroot environment,
 264 // the system call returns 1.  This causes the VM to act as if it is
 265 // a single processor and elide locking (see is_MP() call).
 266 static bool unsafe_chroot_detected = false;
 267 static const char *unstable_chroot_error = "/proc file system not found.\n"
 268                      "Java may be unstable running multithreaded in a chroot "
 269                      "environment on Linux when /proc filesystem is not mounted.";
 270 
 271 void os::Linux::initialize_system_info() {
 272   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 273   if (processor_count() == 1) {
 274     pid_t pid = os::Linux::gettid();
 275     char fname[32];
 276     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 277     FILE *fp = fopen(fname, "r");
 278     if (fp == NULL) {
 279       unsafe_chroot_detected = true;
 280     } else {
 281       fclose(fp);
 282     }
 283   }
 284   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 285   assert(processor_count() > 0, "linux error");
 286 }
 287 
 288 void os::init_system_properties_values() {
 289   // The next steps are taken in the product version:
 290   //
 291   // Obtain the JAVA_HOME value from the location of libjvm.so.
 292   // This library should be located at:
 293   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 294   //
 295   // If "/jre/lib/" appears at the right place in the path, then we
 296   // assume libjvm.so is installed in a JDK and we use this path.
 297   //
 298   // Otherwise exit with message: "Could not create the Java virtual machine."
 299   //
 300   // The following extra steps are taken in the debugging version:
 301   //
 302   // If "/jre/lib/" does NOT appear at the right place in the path
 303   // instead of exit check for $JAVA_HOME environment variable.
 304   //
 305   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 306   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 307   // it looks like libjvm.so is installed there
 308   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 309   //
 310   // Otherwise exit.
 311   //
 312   // Important note: if the location of libjvm.so changes this
 313   // code needs to be changed accordingly.
 314 
 315   // See ld(1):
 316   //      The linker uses the following search paths to locate required
 317   //      shared libraries:
 318   //        1: ...
 319   //        ...
 320   //        7: The default directories, normally /lib and /usr/lib.
 321 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 322   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 323 #else
 324   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 325 #endif
 326 
 327 // Base path of extensions installed on the system.
 328 #define SYS_EXT_DIR     "/usr/java/packages"
 329 #define EXTENSIONS_DIR  "/lib/ext"
 330 
 331   // Buffer that fits several sprintfs.
 332   // Note that the space for the colon and the trailing null are provided
 333   // by the nulls included by the sizeof operator.
 334   const size_t bufsize =
 335     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 336          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 338 
 339   // sysclasspath, java_home, dll_dir
 340   {
 341     char *pslash;
 342     os::jvm_path(buf, bufsize);
 343 
 344     // Found the full path to libjvm.so.
 345     // Now cut the path to <java_home>/jre if we can.
 346     pslash = strrchr(buf, '/');
 347     if (pslash != NULL) {
 348       *pslash = '\0';            // Get rid of /libjvm.so.
 349     }
 350     pslash = strrchr(buf, '/');
 351     if (pslash != NULL) {
 352       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 353     }
 354     Arguments::set_dll_dir(buf);
 355 
 356     if (pslash != NULL) {
 357       pslash = strrchr(buf, '/');
 358       if (pslash != NULL) {
 359         *pslash = '\0';        // Get rid of /lib.
 360       }
 361     }
 362     Arguments::set_java_home(buf);
 363     set_boot_path('/', ':');
 364   }
 365 
 366   // Where to look for native libraries.
 367   //
 368   // Note: Due to a legacy implementation, most of the library path
 369   // is set in the launcher. This was to accomodate linking restrictions
 370   // on legacy Linux implementations (which are no longer supported).
 371   // Eventually, all the library path setting will be done here.
 372   //
 373   // However, to prevent the proliferation of improperly built native
 374   // libraries, the new path component /usr/java/packages is added here.
 375   // Eventually, all the library path setting will be done here.
 376   {
 377     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 378     // should always exist (until the legacy problem cited above is
 379     // addressed).
 380     const char *v = ::getenv("LD_LIBRARY_PATH");
 381     const char *v_colon = ":";
 382     if (v == NULL) { v = ""; v_colon = ""; }
 383     // That's +1 for the colon and +1 for the trailing '\0'.
 384     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 385                                                      strlen(v) + 1 +
 386                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 387                                                      mtInternal);
 388     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 389     Arguments::set_library_path(ld_library_path);
 390     FREE_C_HEAP_ARRAY(char, ld_library_path);
 391   }
 392 
 393   // Extensions directories.
 394   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 395   Arguments::set_ext_dirs(buf);
 396 
 397   FREE_C_HEAP_ARRAY(char, buf);
 398 
 399 #undef DEFAULT_LIBPATH
 400 #undef SYS_EXT_DIR
 401 #undef EXTENSIONS_DIR
 402 }
 403 
 404 ////////////////////////////////////////////////////////////////////////////////
 405 // breakpoint support
 406 
 407 void os::breakpoint() {
 408   BREAKPOINT;
 409 }
 410 
 411 extern "C" void breakpoint() {
 412   // use debugger to set breakpoint here
 413 }
 414 
 415 ////////////////////////////////////////////////////////////////////////////////
 416 // signal support
 417 
 418 debug_only(static bool signal_sets_initialized = false);
 419 static sigset_t unblocked_sigs, vm_sigs;
 420 
 421 bool os::Linux::is_sig_ignored(int sig) {
 422   struct sigaction oact;
 423   sigaction(sig, (struct sigaction*)NULL, &oact);
 424   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 425                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 426   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 427     return true;
 428   } else {
 429     return false;
 430   }
 431 }
 432 
 433 void os::Linux::signal_sets_init() {
 434   // Should also have an assertion stating we are still single-threaded.
 435   assert(!signal_sets_initialized, "Already initialized");
 436   // Fill in signals that are necessarily unblocked for all threads in
 437   // the VM. Currently, we unblock the following signals:
 438   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 439   //                         by -Xrs (=ReduceSignalUsage));
 440   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 441   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 442   // the dispositions or masks wrt these signals.
 443   // Programs embedding the VM that want to use the above signals for their
 444   // own purposes must, at this time, use the "-Xrs" option to prevent
 445   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 446   // (See bug 4345157, and other related bugs).
 447   // In reality, though, unblocking these signals is really a nop, since
 448   // these signals are not blocked by default.
 449   sigemptyset(&unblocked_sigs);
 450   sigaddset(&unblocked_sigs, SIGILL);
 451   sigaddset(&unblocked_sigs, SIGSEGV);
 452   sigaddset(&unblocked_sigs, SIGBUS);
 453   sigaddset(&unblocked_sigs, SIGFPE);
 454 #if defined(PPC64)
 455   sigaddset(&unblocked_sigs, SIGTRAP);
 456 #endif
 457   sigaddset(&unblocked_sigs, SR_signum);
 458 
 459   if (!ReduceSignalUsage) {
 460     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 461       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 462     }
 463     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 464       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 465     }
 466     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 468     }
 469   }
 470   // Fill in signals that are blocked by all but the VM thread.
 471   sigemptyset(&vm_sigs);
 472   if (!ReduceSignalUsage) {
 473     sigaddset(&vm_sigs, BREAK_SIGNAL);
 474   }
 475   debug_only(signal_sets_initialized = true);
 476 
 477 }
 478 
 479 // These are signals that are unblocked while a thread is running Java.
 480 // (For some reason, they get blocked by default.)
 481 sigset_t* os::Linux::unblocked_signals() {
 482   assert(signal_sets_initialized, "Not initialized");
 483   return &unblocked_sigs;
 484 }
 485 
 486 // These are the signals that are blocked while a (non-VM) thread is
 487 // running Java. Only the VM thread handles these signals.
 488 sigset_t* os::Linux::vm_signals() {
 489   assert(signal_sets_initialized, "Not initialized");
 490   return &vm_sigs;
 491 }
 492 
 493 void os::Linux::hotspot_sigmask(Thread* thread) {
 494 
 495   //Save caller's signal mask before setting VM signal mask
 496   sigset_t caller_sigmask;
 497   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 498 
 499   OSThread* osthread = thread->osthread();
 500   osthread->set_caller_sigmask(caller_sigmask);
 501 
 502   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 503 
 504   if (!ReduceSignalUsage) {
 505     if (thread->is_VM_thread()) {
 506       // Only the VM thread handles BREAK_SIGNAL ...
 507       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 508     } else {
 509       // ... all other threads block BREAK_SIGNAL
 510       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 511     }
 512   }
 513 }
 514 
 515 //////////////////////////////////////////////////////////////////////////////
 516 // detecting pthread library
 517 
 518 void os::Linux::libpthread_init() {
 519   // Save glibc and pthread version strings.
 520 #if !defined(_CS_GNU_LIBC_VERSION) || \
 521     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 522   #error "glibc too old (< 2.3.2)"
 523 #endif
 524 
 525   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 526   assert(n > 0, "cannot retrieve glibc version");
 527   char *str = (char *)malloc(n, mtInternal);
 528   confstr(_CS_GNU_LIBC_VERSION, str, n);
 529   os::Linux::set_glibc_version(str);
 530 
 531   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 532   assert(n > 0, "cannot retrieve pthread version");
 533   str = (char *)malloc(n, mtInternal);
 534   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 535   os::Linux::set_libpthread_version(str);
 536 }
 537 
 538 /////////////////////////////////////////////////////////////////////////////
 539 // thread stack expansion
 540 
 541 // os::Linux::manually_expand_stack() takes care of expanding the thread
 542 // stack. Note that this is normally not needed: pthread stacks allocate
 543 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 544 // committed. Therefore it is not necessary to expand the stack manually.
 545 //
 546 // Manually expanding the stack was historically needed on LinuxThreads
 547 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 548 // it is kept to deal with very rare corner cases:
 549 //
 550 // For one, user may run the VM on an own implementation of threads
 551 // whose stacks are - like the old LinuxThreads - implemented using
 552 // mmap(MAP_GROWSDOWN).
 553 //
 554 // Also, this coding may be needed if the VM is running on the primordial
 555 // thread. Normally we avoid running on the primordial thread; however,
 556 // user may still invoke the VM on the primordial thread.
 557 //
 558 // The following historical comment describes the details about running
 559 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 560 
 561 
 562 // Force Linux kernel to expand current thread stack. If "bottom" is close
 563 // to the stack guard, caller should block all signals.
 564 //
 565 // MAP_GROWSDOWN:
 566 //   A special mmap() flag that is used to implement thread stacks. It tells
 567 //   kernel that the memory region should extend downwards when needed. This
 568 //   allows early versions of LinuxThreads to only mmap the first few pages
 569 //   when creating a new thread. Linux kernel will automatically expand thread
 570 //   stack as needed (on page faults).
 571 //
 572 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 573 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 574 //   region, it's hard to tell if the fault is due to a legitimate stack
 575 //   access or because of reading/writing non-exist memory (e.g. buffer
 576 //   overrun). As a rule, if the fault happens below current stack pointer,
 577 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 578 //   application (see Linux kernel fault.c).
 579 //
 580 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 581 //   stack overflow detection.
 582 //
 583 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 584 //   not use MAP_GROWSDOWN.
 585 //
 586 // To get around the problem and allow stack banging on Linux, we need to
 587 // manually expand thread stack after receiving the SIGSEGV.
 588 //
 589 // There are two ways to expand thread stack to address "bottom", we used
 590 // both of them in JVM before 1.5:
 591 //   1. adjust stack pointer first so that it is below "bottom", and then
 592 //      touch "bottom"
 593 //   2. mmap() the page in question
 594 //
 595 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 596 // if current sp is already near the lower end of page 101, and we need to
 597 // call mmap() to map page 100, it is possible that part of the mmap() frame
 598 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 599 // That will destroy the mmap() frame and cause VM to crash.
 600 //
 601 // The following code works by adjusting sp first, then accessing the "bottom"
 602 // page to force a page fault. Linux kernel will then automatically expand the
 603 // stack mapping.
 604 //
 605 // _expand_stack_to() assumes its frame size is less than page size, which
 606 // should always be true if the function is not inlined.
 607 
 608 static void NOINLINE _expand_stack_to(address bottom) {
 609   address sp;
 610   size_t size;
 611   volatile char *p;
 612 
 613   // Adjust bottom to point to the largest address within the same page, it
 614   // gives us a one-page buffer if alloca() allocates slightly more memory.
 615   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 616   bottom += os::Linux::page_size() - 1;
 617 
 618   // sp might be slightly above current stack pointer; if that's the case, we
 619   // will alloca() a little more space than necessary, which is OK. Don't use
 620   // os::current_stack_pointer(), as its result can be slightly below current
 621   // stack pointer, causing us to not alloca enough to reach "bottom".
 622   sp = (address)&sp;
 623 
 624   if (sp > bottom) {
 625     size = sp - bottom;
 626     p = (volatile char *)alloca(size);
 627     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 628     p[0] = '\0';
 629   }
 630 }
 631 
 632 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 633   assert(t!=NULL, "just checking");
 634   assert(t->osthread()->expanding_stack(), "expand should be set");
 635   assert(t->stack_base() != NULL, "stack_base was not initialized");
 636 
 637   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 638     sigset_t mask_all, old_sigset;
 639     sigfillset(&mask_all);
 640     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 641     _expand_stack_to(addr);
 642     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 643     return true;
 644   }
 645   return false;
 646 }
 647 
 648 //////////////////////////////////////////////////////////////////////////////
 649 // create new thread
 650 
 651 // Thread start routine for all newly created threads
 652 static void *thread_native_entry(Thread *thread) {
 653   // Try to randomize the cache line index of hot stack frames.
 654   // This helps when threads of the same stack traces evict each other's
 655   // cache lines. The threads can be either from the same JVM instance, or
 656   // from different JVM instances. The benefit is especially true for
 657   // processors with hyperthreading technology.
 658   static int counter = 0;
 659   int pid = os::current_process_id();
 660   alloca(((pid ^ counter++) & 7) * 128);
 661 
 662   thread->initialize_thread_current();
 663 
 664   OSThread* osthread = thread->osthread();
 665   Monitor* sync = osthread->startThread_lock();
 666 
 667   osthread->set_thread_id(os::current_thread_id());
 668 
 669   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 670     os::current_thread_id(), (uintx) pthread_self());
 671 
 672   if (UseNUMA) {
 673     int lgrp_id = os::numa_get_group_id();
 674     if (lgrp_id != -1) {
 675       thread->set_lgrp_id(lgrp_id);
 676     }
 677   }
 678   // initialize signal mask for this thread
 679   os::Linux::hotspot_sigmask(thread);
 680 
 681   // initialize floating point control register
 682   os::Linux::init_thread_fpu_state();
 683 
 684   // handshaking with parent thread
 685   {
 686     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 687 
 688     // notify parent thread
 689     osthread->set_state(INITIALIZED);
 690     sync->notify_all();
 691 
 692     // wait until os::start_thread()
 693     while (osthread->get_state() == INITIALIZED) {
 694       sync->wait(Mutex::_no_safepoint_check_flag);
 695     }
 696   }
 697 
 698   // call one more level start routine
 699   thread->run();
 700 
 701   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 702     os::current_thread_id(), (uintx) pthread_self());
 703 
 704   // If a thread has not deleted itself ("delete this") as part of its
 705   // termination sequence, we have to ensure thread-local-storage is
 706   // cleared before we actually terminate. No threads should ever be
 707   // deleted asynchronously with respect to their termination.
 708   if (Thread::current_or_null_safe() != NULL) {
 709     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 710     thread->clear_thread_current();
 711   }
 712 
 713   return 0;
 714 }
 715 
 716 bool os::create_thread(Thread* thread, ThreadType thr_type,
 717                        size_t req_stack_size) {
 718   assert(thread->osthread() == NULL, "caller responsible");
 719 
 720   // Allocate the OSThread object
 721   OSThread* osthread = new OSThread(NULL, NULL);
 722   if (osthread == NULL) {
 723     return false;
 724   }
 725 
 726   // set the correct thread state
 727   osthread->set_thread_type(thr_type);
 728 
 729   // Initial state is ALLOCATED but not INITIALIZED
 730   osthread->set_state(ALLOCATED);
 731 
 732   thread->set_osthread(osthread);
 733 
 734   // init thread attributes
 735   pthread_attr_t attr;
 736   pthread_attr_init(&attr);
 737   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 738 
 739   // Calculate stack size if it's not specified by caller.
 740   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 741   // In the Linux NPTL pthread implementation the guard size mechanism
 742   // is not implemented properly. The posix standard requires adding
 743   // the size of the guard pages to the stack size, instead Linux
 744   // takes the space out of 'stacksize'. Thus we adapt the requested
 745   // stack_size by the size of the guard pages to mimick proper
 746   // behaviour. However, be careful not to end up with a size
 747   // of zero due to overflow. Don't add the guard page in that case.
 748   size_t guard_size = os::Linux::default_guard_size(thr_type);
 749   if (stack_size <= SIZE_MAX - guard_size) {
 750     stack_size += guard_size;
 751   }
 752   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 753 
 754   int status = pthread_attr_setstacksize(&attr, stack_size);
 755   assert_status(status == 0, status, "pthread_attr_setstacksize");
 756 
 757   // Configure glibc guard page.
 758   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 759 
 760   ThreadState state;
 761 
 762   {
 763     pthread_t tid;
 764     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 765 
 766     char buf[64];
 767     if (ret == 0) {
 768       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 769         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 770     } else {
 771       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 772         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 773     }
 774 
 775     pthread_attr_destroy(&attr);
 776 
 777     if (ret != 0) {
 778       // Need to clean up stuff we've allocated so far
 779       thread->set_osthread(NULL);
 780       delete osthread;
 781       return false;
 782     }
 783 
 784     // Store pthread info into the OSThread
 785     osthread->set_pthread_id(tid);
 786 
 787     // Wait until child thread is either initialized or aborted
 788     {
 789       Monitor* sync_with_child = osthread->startThread_lock();
 790       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 791       while ((state = osthread->get_state()) == ALLOCATED) {
 792         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 793       }
 794     }
 795   }
 796 
 797   // Aborted due to thread limit being reached
 798   if (state == ZOMBIE) {
 799     thread->set_osthread(NULL);
 800     delete osthread;
 801     return false;
 802   }
 803 
 804   // The thread is returned suspended (in state INITIALIZED),
 805   // and is started higher up in the call chain
 806   assert(state == INITIALIZED, "race condition");
 807   return true;
 808 }
 809 
 810 /////////////////////////////////////////////////////////////////////////////
 811 // attach existing thread
 812 
 813 // bootstrap the main thread
 814 bool os::create_main_thread(JavaThread* thread) {
 815   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 816   return create_attached_thread(thread);
 817 }
 818 
 819 bool os::create_attached_thread(JavaThread* thread) {
 820 #ifdef ASSERT
 821   thread->verify_not_published();
 822 #endif
 823 
 824   // Allocate the OSThread object
 825   OSThread* osthread = new OSThread(NULL, NULL);
 826 
 827   if (osthread == NULL) {
 828     return false;
 829   }
 830 
 831   // Store pthread info into the OSThread
 832   osthread->set_thread_id(os::Linux::gettid());
 833   osthread->set_pthread_id(::pthread_self());
 834 
 835   // initialize floating point control register
 836   os::Linux::init_thread_fpu_state();
 837 
 838   // Initial thread state is RUNNABLE
 839   osthread->set_state(RUNNABLE);
 840 
 841   thread->set_osthread(osthread);
 842 
 843   if (UseNUMA) {
 844     int lgrp_id = os::numa_get_group_id();
 845     if (lgrp_id != -1) {
 846       thread->set_lgrp_id(lgrp_id);
 847     }
 848   }
 849 
 850   if (os::is_primordial_thread()) {
 851     // If current thread is primordial thread, its stack is mapped on demand,
 852     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 853     // the entire stack region to avoid SEGV in stack banging.
 854     // It is also useful to get around the heap-stack-gap problem on SuSE
 855     // kernel (see 4821821 for details). We first expand stack to the top
 856     // of yellow zone, then enable stack yellow zone (order is significant,
 857     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 858     // is no gap between the last two virtual memory regions.
 859 
 860     JavaThread *jt = (JavaThread *)thread;
 861     address addr = jt->stack_reserved_zone_base();
 862     assert(addr != NULL, "initialization problem?");
 863     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 864 
 865     osthread->set_expanding_stack();
 866     os::Linux::manually_expand_stack(jt, addr);
 867     osthread->clear_expanding_stack();
 868   }
 869 
 870   // initialize signal mask for this thread
 871   // and save the caller's signal mask
 872   os::Linux::hotspot_sigmask(thread);
 873 
 874   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 875     os::current_thread_id(), (uintx) pthread_self());
 876 
 877   return true;
 878 }
 879 
 880 void os::pd_start_thread(Thread* thread) {
 881   OSThread * osthread = thread->osthread();
 882   assert(osthread->get_state() != INITIALIZED, "just checking");
 883   Monitor* sync_with_child = osthread->startThread_lock();
 884   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 885   sync_with_child->notify();
 886 }
 887 
 888 // Free Linux resources related to the OSThread
 889 void os::free_thread(OSThread* osthread) {
 890   assert(osthread != NULL, "osthread not set");
 891 
 892   // We are told to free resources of the argument thread,
 893   // but we can only really operate on the current thread.
 894   assert(Thread::current()->osthread() == osthread,
 895          "os::free_thread but not current thread");
 896 
 897 #ifdef ASSERT
 898   sigset_t current;
 899   sigemptyset(&current);
 900   pthread_sigmask(SIG_SETMASK, NULL, &current);
 901   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 902 #endif
 903 
 904   // Restore caller's signal mask
 905   sigset_t sigmask = osthread->caller_sigmask();
 906   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 907 
 908   delete osthread;
 909 }
 910 
 911 //////////////////////////////////////////////////////////////////////////////
 912 // primordial thread
 913 
 914 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 915 bool os::is_primordial_thread(void) {
 916   char dummy;
 917   // If called before init complete, thread stack bottom will be null.
 918   // Can be called if fatal error occurs before initialization.
 919   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 920   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 921          os::Linux::initial_thread_stack_size()   != 0,
 922          "os::init did not locate primordial thread's stack region");
 923   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 924       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 925                         os::Linux::initial_thread_stack_size()) {
 926     return true;
 927   } else {
 928     return false;
 929   }
 930 }
 931 
 932 // Find the virtual memory area that contains addr
 933 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 934   FILE *fp = fopen("/proc/self/maps", "r");
 935   if (fp) {
 936     address low, high;
 937     while (!feof(fp)) {
 938       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 939         if (low <= addr && addr < high) {
 940           if (vma_low)  *vma_low  = low;
 941           if (vma_high) *vma_high = high;
 942           fclose(fp);
 943           return true;
 944         }
 945       }
 946       for (;;) {
 947         int ch = fgetc(fp);
 948         if (ch == EOF || ch == (int)'\n') break;
 949       }
 950     }
 951     fclose(fp);
 952   }
 953   return false;
 954 }
 955 
 956 // Locate primordial thread stack. This special handling of primordial thread stack
 957 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 958 // bogus value for the primordial process thread. While the launcher has created
 959 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 960 // JNI invocation API from a primordial thread.
 961 void os::Linux::capture_initial_stack(size_t max_size) {
 962 
 963   // max_size is either 0 (which means accept OS default for thread stacks) or
 964   // a user-specified value known to be at least the minimum needed. If we
 965   // are actually on the primordial thread we can make it appear that we have a
 966   // smaller max_size stack by inserting the guard pages at that location. But we
 967   // cannot do anything to emulate a larger stack than what has been provided by
 968   // the OS or threading library. In fact if we try to use a stack greater than
 969   // what is set by rlimit then we will crash the hosting process.
 970 
 971   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 972   // If this is "unlimited" then it will be a huge value.
 973   struct rlimit rlim;
 974   getrlimit(RLIMIT_STACK, &rlim);
 975   size_t stack_size = rlim.rlim_cur;
 976 
 977   // 6308388: a bug in ld.so will relocate its own .data section to the
 978   //   lower end of primordial stack; reduce ulimit -s value a little bit
 979   //   so we won't install guard page on ld.so's data section.
 980   //   But ensure we don't underflow the stack size - allow 1 page spare
 981   if (stack_size >= (size_t)(3 * page_size())) {
 982     stack_size -= 2 * page_size();
 983   }
 984 
 985   // Try to figure out where the stack base (top) is. This is harder.
 986   //
 987   // When an application is started, glibc saves the initial stack pointer in
 988   // a global variable "__libc_stack_end", which is then used by system
 989   // libraries. __libc_stack_end should be pretty close to stack top. The
 990   // variable is available since the very early days. However, because it is
 991   // a private interface, it could disappear in the future.
 992   //
 993   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 994   // to __libc_stack_end, it is very close to stack top, but isn't the real
 995   // stack top. Note that /proc may not exist if VM is running as a chroot
 996   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 997   // /proc/<pid>/stat could change in the future (though unlikely).
 998   //
 999   // We try __libc_stack_end first. If that doesn't work, look for
1000   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1001   // as a hint, which should work well in most cases.
1002 
1003   uintptr_t stack_start;
1004 
1005   // try __libc_stack_end first
1006   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1007   if (p && *p) {
1008     stack_start = *p;
1009   } else {
1010     // see if we can get the start_stack field from /proc/self/stat
1011     FILE *fp;
1012     int pid;
1013     char state;
1014     int ppid;
1015     int pgrp;
1016     int session;
1017     int nr;
1018     int tpgrp;
1019     unsigned long flags;
1020     unsigned long minflt;
1021     unsigned long cminflt;
1022     unsigned long majflt;
1023     unsigned long cmajflt;
1024     unsigned long utime;
1025     unsigned long stime;
1026     long cutime;
1027     long cstime;
1028     long prio;
1029     long nice;
1030     long junk;
1031     long it_real;
1032     uintptr_t start;
1033     uintptr_t vsize;
1034     intptr_t rss;
1035     uintptr_t rsslim;
1036     uintptr_t scodes;
1037     uintptr_t ecode;
1038     int i;
1039 
1040     // Figure what the primordial thread stack base is. Code is inspired
1041     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1042     // followed by command name surrounded by parentheses, state, etc.
1043     char stat[2048];
1044     int statlen;
1045 
1046     fp = fopen("/proc/self/stat", "r");
1047     if (fp) {
1048       statlen = fread(stat, 1, 2047, fp);
1049       stat[statlen] = '\0';
1050       fclose(fp);
1051 
1052       // Skip pid and the command string. Note that we could be dealing with
1053       // weird command names, e.g. user could decide to rename java launcher
1054       // to "java 1.4.2 :)", then the stat file would look like
1055       //                1234 (java 1.4.2 :)) R ... ...
1056       // We don't really need to know the command string, just find the last
1057       // occurrence of ")" and then start parsing from there. See bug 4726580.
1058       char * s = strrchr(stat, ')');
1059 
1060       i = 0;
1061       if (s) {
1062         // Skip blank chars
1063         do { s++; } while (s && isspace(*s));
1064 
1065 #define _UFM UINTX_FORMAT
1066 #define _DFM INTX_FORMAT
1067 
1068         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1069         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1070         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1071                    &state,          // 3  %c
1072                    &ppid,           // 4  %d
1073                    &pgrp,           // 5  %d
1074                    &session,        // 6  %d
1075                    &nr,             // 7  %d
1076                    &tpgrp,          // 8  %d
1077                    &flags,          // 9  %lu
1078                    &minflt,         // 10 %lu
1079                    &cminflt,        // 11 %lu
1080                    &majflt,         // 12 %lu
1081                    &cmajflt,        // 13 %lu
1082                    &utime,          // 14 %lu
1083                    &stime,          // 15 %lu
1084                    &cutime,         // 16 %ld
1085                    &cstime,         // 17 %ld
1086                    &prio,           // 18 %ld
1087                    &nice,           // 19 %ld
1088                    &junk,           // 20 %ld
1089                    &it_real,        // 21 %ld
1090                    &start,          // 22 UINTX_FORMAT
1091                    &vsize,          // 23 UINTX_FORMAT
1092                    &rss,            // 24 INTX_FORMAT
1093                    &rsslim,         // 25 UINTX_FORMAT
1094                    &scodes,         // 26 UINTX_FORMAT
1095                    &ecode,          // 27 UINTX_FORMAT
1096                    &stack_start);   // 28 UINTX_FORMAT
1097       }
1098 
1099 #undef _UFM
1100 #undef _DFM
1101 
1102       if (i != 28 - 2) {
1103         assert(false, "Bad conversion from /proc/self/stat");
1104         // product mode - assume we are the primordial thread, good luck in the
1105         // embedded case.
1106         warning("Can't detect primordial thread stack location - bad conversion");
1107         stack_start = (uintptr_t) &rlim;
1108       }
1109     } else {
1110       // For some reason we can't open /proc/self/stat (for example, running on
1111       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1112       // most cases, so don't abort:
1113       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1114       stack_start = (uintptr_t) &rlim;
1115     }
1116   }
1117 
1118   // Now we have a pointer (stack_start) very close to the stack top, the
1119   // next thing to do is to figure out the exact location of stack top. We
1120   // can find out the virtual memory area that contains stack_start by
1121   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1122   // and its upper limit is the real stack top. (again, this would fail if
1123   // running inside chroot, because /proc may not exist.)
1124 
1125   uintptr_t stack_top;
1126   address low, high;
1127   if (find_vma((address)stack_start, &low, &high)) {
1128     // success, "high" is the true stack top. (ignore "low", because initial
1129     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1130     stack_top = (uintptr_t)high;
1131   } else {
1132     // failed, likely because /proc/self/maps does not exist
1133     warning("Can't detect primordial thread stack location - find_vma failed");
1134     // best effort: stack_start is normally within a few pages below the real
1135     // stack top, use it as stack top, and reduce stack size so we won't put
1136     // guard page outside stack.
1137     stack_top = stack_start;
1138     stack_size -= 16 * page_size();
1139   }
1140 
1141   // stack_top could be partially down the page so align it
1142   stack_top = align_up(stack_top, page_size());
1143 
1144   // Allowed stack value is minimum of max_size and what we derived from rlimit
1145   if (max_size > 0) {
1146     _initial_thread_stack_size = MIN2(max_size, stack_size);
1147   } else {
1148     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1149     // clamp it at 8MB as we do on Solaris
1150     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1151   }
1152   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1153   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1154 
1155   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1156 
1157   if (log_is_enabled(Info, os, thread)) {
1158     // See if we seem to be on primordial process thread
1159     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1160                       uintptr_t(&rlim) < stack_top;
1161 
1162     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1163                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1164                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1165                          stack_top, intptr_t(_initial_thread_stack_bottom));
1166   }
1167 }
1168 
1169 ////////////////////////////////////////////////////////////////////////////////
1170 // time support
1171 
1172 // Time since start-up in seconds to a fine granularity.
1173 // Used by VMSelfDestructTimer and the MemProfiler.
1174 double os::elapsedTime() {
1175 
1176   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1177 }
1178 
1179 jlong os::elapsed_counter() {
1180   return javaTimeNanos() - initial_time_count;
1181 }
1182 
1183 jlong os::elapsed_frequency() {
1184   return NANOSECS_PER_SEC; // nanosecond resolution
1185 }
1186 
1187 bool os::supports_vtime() { return true; }
1188 bool os::enable_vtime()   { return false; }
1189 bool os::vtime_enabled()  { return false; }
1190 
1191 double os::elapsedVTime() {
1192   struct rusage usage;
1193   int retval = getrusage(RUSAGE_THREAD, &usage);
1194   if (retval == 0) {
1195     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1196   } else {
1197     // better than nothing, but not much
1198     return elapsedTime();
1199   }
1200 }
1201 
1202 jlong os::javaTimeMillis() {
1203   timeval time;
1204   int status = gettimeofday(&time, NULL);
1205   assert(status != -1, "linux error");
1206   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1207 }
1208 
1209 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1210   timeval time;
1211   int status = gettimeofday(&time, NULL);
1212   assert(status != -1, "linux error");
1213   seconds = jlong(time.tv_sec);
1214   nanos = jlong(time.tv_usec) * 1000;
1215 }
1216 
1217 
1218 #ifndef CLOCK_MONOTONIC
1219   #define CLOCK_MONOTONIC (1)
1220 #endif
1221 
1222 void os::Linux::clock_init() {
1223   // we do dlopen's in this particular order due to bug in linux
1224   // dynamical loader (see 6348968) leading to crash on exit
1225   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1226   if (handle == NULL) {
1227     handle = dlopen("librt.so", RTLD_LAZY);
1228   }
1229 
1230   if (handle) {
1231     int (*clock_getres_func)(clockid_t, struct timespec*) =
1232            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1233     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1234            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1235     if (clock_getres_func && clock_gettime_func) {
1236       // See if monotonic clock is supported by the kernel. Note that some
1237       // early implementations simply return kernel jiffies (updated every
1238       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1239       // for nano time (though the monotonic property is still nice to have).
1240       // It's fixed in newer kernels, however clock_getres() still returns
1241       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1242       // resolution for now. Hopefully as people move to new kernels, this
1243       // won't be a problem.
1244       struct timespec res;
1245       struct timespec tp;
1246       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1247           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1248         // yes, monotonic clock is supported
1249         _clock_gettime = clock_gettime_func;
1250         return;
1251       } else {
1252         // close librt if there is no monotonic clock
1253         dlclose(handle);
1254       }
1255     }
1256   }
1257   warning("No monotonic clock was available - timed services may " \
1258           "be adversely affected if the time-of-day clock changes");
1259 }
1260 
1261 #ifndef SYS_clock_getres
1262   #if defined(X86) || defined(PPC64) || defined(S390)
1263     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1264     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1265   #else
1266     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1267     #define sys_clock_getres(x,y)  -1
1268   #endif
1269 #else
1270   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1271 #endif
1272 
1273 void os::Linux::fast_thread_clock_init() {
1274   if (!UseLinuxPosixThreadCPUClocks) {
1275     return;
1276   }
1277   clockid_t clockid;
1278   struct timespec tp;
1279   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1280       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1281 
1282   // Switch to using fast clocks for thread cpu time if
1283   // the sys_clock_getres() returns 0 error code.
1284   // Note, that some kernels may support the current thread
1285   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1286   // returned by the pthread_getcpuclockid().
1287   // If the fast Posix clocks are supported then the sys_clock_getres()
1288   // must return at least tp.tv_sec == 0 which means a resolution
1289   // better than 1 sec. This is extra check for reliability.
1290 
1291   if (pthread_getcpuclockid_func &&
1292       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1293       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1294     _supports_fast_thread_cpu_time = true;
1295     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1296   }
1297 }
1298 
1299 jlong os::javaTimeNanos() {
1300   if (os::supports_monotonic_clock()) {
1301     struct timespec tp;
1302     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1303     assert(status == 0, "gettime error");
1304     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1305     return result;
1306   } else {
1307     timeval time;
1308     int status = gettimeofday(&time, NULL);
1309     assert(status != -1, "linux error");
1310     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1311     return 1000 * usecs;
1312   }
1313 }
1314 
1315 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1316   if (os::supports_monotonic_clock()) {
1317     info_ptr->max_value = ALL_64_BITS;
1318 
1319     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1320     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1321     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1322   } else {
1323     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1324     info_ptr->max_value = ALL_64_BITS;
1325 
1326     // gettimeofday is a real time clock so it skips
1327     info_ptr->may_skip_backward = true;
1328     info_ptr->may_skip_forward = true;
1329   }
1330 
1331   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1332 }
1333 
1334 // Return the real, user, and system times in seconds from an
1335 // arbitrary fixed point in the past.
1336 bool os::getTimesSecs(double* process_real_time,
1337                       double* process_user_time,
1338                       double* process_system_time) {
1339   struct tms ticks;
1340   clock_t real_ticks = times(&ticks);
1341 
1342   if (real_ticks == (clock_t) (-1)) {
1343     return false;
1344   } else {
1345     double ticks_per_second = (double) clock_tics_per_sec;
1346     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1347     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1348     *process_real_time = ((double) real_ticks) / ticks_per_second;
1349 
1350     return true;
1351   }
1352 }
1353 
1354 
1355 char * os::local_time_string(char *buf, size_t buflen) {
1356   struct tm t;
1357   time_t long_time;
1358   time(&long_time);
1359   localtime_r(&long_time, &t);
1360   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1361                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1362                t.tm_hour, t.tm_min, t.tm_sec);
1363   return buf;
1364 }
1365 
1366 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1367   return localtime_r(clock, res);
1368 }
1369 
1370 ////////////////////////////////////////////////////////////////////////////////
1371 // runtime exit support
1372 
1373 // Note: os::shutdown() might be called very early during initialization, or
1374 // called from signal handler. Before adding something to os::shutdown(), make
1375 // sure it is async-safe and can handle partially initialized VM.
1376 void os::shutdown() {
1377 
1378   // allow PerfMemory to attempt cleanup of any persistent resources
1379   perfMemory_exit();
1380 
1381   // needs to remove object in file system
1382   AttachListener::abort();
1383 
1384   // flush buffered output, finish log files
1385   ostream_abort();
1386 
1387   // Check for abort hook
1388   abort_hook_t abort_hook = Arguments::abort_hook();
1389   if (abort_hook != NULL) {
1390     abort_hook();
1391   }
1392 
1393 }
1394 
1395 // Note: os::abort() might be called very early during initialization, or
1396 // called from signal handler. Before adding something to os::abort(), make
1397 // sure it is async-safe and can handle partially initialized VM.
1398 void os::abort(bool dump_core, void* siginfo, const void* context) {
1399   os::shutdown();
1400   if (dump_core) {
1401 #ifndef PRODUCT
1402     fdStream out(defaultStream::output_fd());
1403     out.print_raw("Current thread is ");
1404     char buf[16];
1405     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1406     out.print_raw_cr(buf);
1407     out.print_raw_cr("Dumping core ...");
1408 #endif
1409     ::abort(); // dump core
1410   }
1411 
1412   ::exit(1);
1413 }
1414 
1415 // Die immediately, no exit hook, no abort hook, no cleanup.
1416 void os::die() {
1417   ::abort();
1418 }
1419 
1420 
1421 // This method is a copy of JDK's sysGetLastErrorString
1422 // from src/solaris/hpi/src/system_md.c
1423 
1424 size_t os::lasterror(char *buf, size_t len) {
1425   if (errno == 0)  return 0;
1426 
1427   const char *s = os::strerror(errno);
1428   size_t n = ::strlen(s);
1429   if (n >= len) {
1430     n = len - 1;
1431   }
1432   ::strncpy(buf, s, n);
1433   buf[n] = '\0';
1434   return n;
1435 }
1436 
1437 // thread_id is kernel thread id (similar to Solaris LWP id)
1438 intx os::current_thread_id() { return os::Linux::gettid(); }
1439 int os::current_process_id() {
1440   return ::getpid();
1441 }
1442 
1443 // DLL functions
1444 
1445 const char* os::dll_file_extension() { return ".so"; }
1446 
1447 // This must be hard coded because it's the system's temporary
1448 // directory not the java application's temp directory, ala java.io.tmpdir.
1449 const char* os::get_temp_directory() { return "/tmp"; }
1450 
1451 static bool file_exists(const char* filename) {
1452   struct stat statbuf;
1453   if (filename == NULL || strlen(filename) == 0) {
1454     return false;
1455   }
1456   return os::stat(filename, &statbuf) == 0;
1457 }
1458 
1459 // check if addr is inside libjvm.so
1460 bool os::address_is_in_vm(address addr) {
1461   static address libjvm_base_addr;
1462   Dl_info dlinfo;
1463 
1464   if (libjvm_base_addr == NULL) {
1465     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1466       libjvm_base_addr = (address)dlinfo.dli_fbase;
1467     }
1468     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1469   }
1470 
1471   if (dladdr((void *)addr, &dlinfo) != 0) {
1472     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1473   }
1474 
1475   return false;
1476 }
1477 
1478 bool os::dll_address_to_function_name(address addr, char *buf,
1479                                       int buflen, int *offset,
1480                                       bool demangle) {
1481   // buf is not optional, but offset is optional
1482   assert(buf != NULL, "sanity check");
1483 
1484   Dl_info dlinfo;
1485 
1486   if (dladdr((void*)addr, &dlinfo) != 0) {
1487     // see if we have a matching symbol
1488     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1489       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1490         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1491       }
1492       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1493       return true;
1494     }
1495     // no matching symbol so try for just file info
1496     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1497       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1498                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1499         return true;
1500       }
1501     }
1502   }
1503 
1504   buf[0] = '\0';
1505   if (offset != NULL) *offset = -1;
1506   return false;
1507 }
1508 
1509 struct _address_to_library_name {
1510   address addr;          // input : memory address
1511   size_t  buflen;        //         size of fname
1512   char*   fname;         // output: library name
1513   address base;          //         library base addr
1514 };
1515 
1516 static int address_to_library_name_callback(struct dl_phdr_info *info,
1517                                             size_t size, void *data) {
1518   int i;
1519   bool found = false;
1520   address libbase = NULL;
1521   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1522 
1523   // iterate through all loadable segments
1524   for (i = 0; i < info->dlpi_phnum; i++) {
1525     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1526     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1527       // base address of a library is the lowest address of its loaded
1528       // segments.
1529       if (libbase == NULL || libbase > segbase) {
1530         libbase = segbase;
1531       }
1532       // see if 'addr' is within current segment
1533       if (segbase <= d->addr &&
1534           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1535         found = true;
1536       }
1537     }
1538   }
1539 
1540   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1541   // so dll_address_to_library_name() can fall through to use dladdr() which
1542   // can figure out executable name from argv[0].
1543   if (found && info->dlpi_name && info->dlpi_name[0]) {
1544     d->base = libbase;
1545     if (d->fname) {
1546       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1547     }
1548     return 1;
1549   }
1550   return 0;
1551 }
1552 
1553 bool os::dll_address_to_library_name(address addr, char* buf,
1554                                      int buflen, int* offset) {
1555   // buf is not optional, but offset is optional
1556   assert(buf != NULL, "sanity check");
1557 
1558   Dl_info dlinfo;
1559   struct _address_to_library_name data;
1560 
1561   // There is a bug in old glibc dladdr() implementation that it could resolve
1562   // to wrong library name if the .so file has a base address != NULL. Here
1563   // we iterate through the program headers of all loaded libraries to find
1564   // out which library 'addr' really belongs to. This workaround can be
1565   // removed once the minimum requirement for glibc is moved to 2.3.x.
1566   data.addr = addr;
1567   data.fname = buf;
1568   data.buflen = buflen;
1569   data.base = NULL;
1570   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1571 
1572   if (rslt) {
1573     // buf already contains library name
1574     if (offset) *offset = addr - data.base;
1575     return true;
1576   }
1577   if (dladdr((void*)addr, &dlinfo) != 0) {
1578     if (dlinfo.dli_fname != NULL) {
1579       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1580     }
1581     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1582       *offset = addr - (address)dlinfo.dli_fbase;
1583     }
1584     return true;
1585   }
1586 
1587   buf[0] = '\0';
1588   if (offset) *offset = -1;
1589   return false;
1590 }
1591 
1592 // Loads .dll/.so and
1593 // in case of error it checks if .dll/.so was built for the
1594 // same architecture as Hotspot is running on
1595 
1596 
1597 // Remember the stack's state. The Linux dynamic linker will change
1598 // the stack to 'executable' at most once, so we must safepoint only once.
1599 bool os::Linux::_stack_is_executable = false;
1600 
1601 // VM operation that loads a library.  This is necessary if stack protection
1602 // of the Java stacks can be lost during loading the library.  If we
1603 // do not stop the Java threads, they can stack overflow before the stacks
1604 // are protected again.
1605 class VM_LinuxDllLoad: public VM_Operation {
1606  private:
1607   const char *_filename;
1608   char *_ebuf;
1609   int _ebuflen;
1610   void *_lib;
1611  public:
1612   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1613     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1614   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1615   void doit() {
1616     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1617     os::Linux::_stack_is_executable = true;
1618   }
1619   void* loaded_library() { return _lib; }
1620 };
1621 
1622 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1623   void * result = NULL;
1624   bool load_attempted = false;
1625 
1626   // Check whether the library to load might change execution rights
1627   // of the stack. If they are changed, the protection of the stack
1628   // guard pages will be lost. We need a safepoint to fix this.
1629   //
1630   // See Linux man page execstack(8) for more info.
1631   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1632     if (!ElfFile::specifies_noexecstack(filename)) {
1633       if (!is_init_completed()) {
1634         os::Linux::_stack_is_executable = true;
1635         // This is OK - No Java threads have been created yet, and hence no
1636         // stack guard pages to fix.
1637         //
1638         // This should happen only when you are building JDK7 using a very
1639         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1640         //
1641         // Dynamic loader will make all stacks executable after
1642         // this function returns, and will not do that again.
1643 #ifdef ASSERT
1644         ThreadsListHandle tlh;
1645         assert(tlh.length() == 0, "no Java threads should exist yet.");
1646 #endif
1647       } else {
1648         warning("You have loaded library %s which might have disabled stack guard. "
1649                 "The VM will try to fix the stack guard now.\n"
1650                 "It's highly recommended that you fix the library with "
1651                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1652                 filename);
1653 
1654         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1655         JavaThread *jt = JavaThread::current();
1656         if (jt->thread_state() != _thread_in_native) {
1657           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1658           // that requires ExecStack. Cannot enter safe point. Let's give up.
1659           warning("Unable to fix stack guard. Giving up.");
1660         } else {
1661           if (!LoadExecStackDllInVMThread) {
1662             // This is for the case where the DLL has an static
1663             // constructor function that executes JNI code. We cannot
1664             // load such DLLs in the VMThread.
1665             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1666           }
1667 
1668           ThreadInVMfromNative tiv(jt);
1669           debug_only(VMNativeEntryWrapper vew;)
1670 
1671           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1672           VMThread::execute(&op);
1673           if (LoadExecStackDllInVMThread) {
1674             result = op.loaded_library();
1675           }
1676           load_attempted = true;
1677         }
1678       }
1679     }
1680   }
1681 
1682   if (!load_attempted) {
1683     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1684   }
1685 
1686   if (result != NULL) {
1687     // Successful loading
1688     return result;
1689   }
1690 
1691   Elf32_Ehdr elf_head;
1692   int diag_msg_max_length=ebuflen-strlen(ebuf);
1693   char* diag_msg_buf=ebuf+strlen(ebuf);
1694 
1695   if (diag_msg_max_length==0) {
1696     // No more space in ebuf for additional diagnostics message
1697     return NULL;
1698   }
1699 
1700 
1701   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1702 
1703   if (file_descriptor < 0) {
1704     // Can't open library, report dlerror() message
1705     return NULL;
1706   }
1707 
1708   bool failed_to_read_elf_head=
1709     (sizeof(elf_head)!=
1710      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1711 
1712   ::close(file_descriptor);
1713   if (failed_to_read_elf_head) {
1714     // file i/o error - report dlerror() msg
1715     return NULL;
1716   }
1717 
1718   typedef struct {
1719     Elf32_Half    code;         // Actual value as defined in elf.h
1720     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1721     unsigned char elf_class;    // 32 or 64 bit
1722     unsigned char endianess;    // MSB or LSB
1723     char*         name;         // String representation
1724   } arch_t;
1725 
1726 #ifndef EM_486
1727   #define EM_486          6               /* Intel 80486 */
1728 #endif
1729 #ifndef EM_AARCH64
1730   #define EM_AARCH64    183               /* ARM AARCH64 */
1731 #endif
1732 
1733   static const arch_t arch_array[]={
1734     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1735     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1736     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1737     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1738     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1739     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1740     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1741     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1742 #if defined(VM_LITTLE_ENDIAN)
1743     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1744     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1745 #else
1746     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1747     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1748 #endif
1749     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1750     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1751     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1752     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1753     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1754     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1755     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1756     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1757   };
1758 
1759 #if  (defined IA32)
1760   static  Elf32_Half running_arch_code=EM_386;
1761 #elif   (defined AMD64)
1762   static  Elf32_Half running_arch_code=EM_X86_64;
1763 #elif  (defined IA64)
1764   static  Elf32_Half running_arch_code=EM_IA_64;
1765 #elif  (defined __sparc) && (defined _LP64)
1766   static  Elf32_Half running_arch_code=EM_SPARCV9;
1767 #elif  (defined __sparc) && (!defined _LP64)
1768   static  Elf32_Half running_arch_code=EM_SPARC;
1769 #elif  (defined __powerpc64__)
1770   static  Elf32_Half running_arch_code=EM_PPC64;
1771 #elif  (defined __powerpc__)
1772   static  Elf32_Half running_arch_code=EM_PPC;
1773 #elif  (defined AARCH64)
1774   static  Elf32_Half running_arch_code=EM_AARCH64;
1775 #elif  (defined ARM)
1776   static  Elf32_Half running_arch_code=EM_ARM;
1777 #elif  (defined S390)
1778   static  Elf32_Half running_arch_code=EM_S390;
1779 #elif  (defined ALPHA)
1780   static  Elf32_Half running_arch_code=EM_ALPHA;
1781 #elif  (defined MIPSEL)
1782   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1783 #elif  (defined PARISC)
1784   static  Elf32_Half running_arch_code=EM_PARISC;
1785 #elif  (defined MIPS)
1786   static  Elf32_Half running_arch_code=EM_MIPS;
1787 #elif  (defined M68K)
1788   static  Elf32_Half running_arch_code=EM_68K;
1789 #elif  (defined SH)
1790   static  Elf32_Half running_arch_code=EM_SH;
1791 #else
1792     #error Method os::dll_load requires that one of following is defined:\
1793         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1794 #endif
1795 
1796   // Identify compatability class for VM's architecture and library's architecture
1797   // Obtain string descriptions for architectures
1798 
1799   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1800   int running_arch_index=-1;
1801 
1802   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1803     if (running_arch_code == arch_array[i].code) {
1804       running_arch_index    = i;
1805     }
1806     if (lib_arch.code == arch_array[i].code) {
1807       lib_arch.compat_class = arch_array[i].compat_class;
1808       lib_arch.name         = arch_array[i].name;
1809     }
1810   }
1811 
1812   assert(running_arch_index != -1,
1813          "Didn't find running architecture code (running_arch_code) in arch_array");
1814   if (running_arch_index == -1) {
1815     // Even though running architecture detection failed
1816     // we may still continue with reporting dlerror() message
1817     return NULL;
1818   }
1819 
1820   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1821     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1822     return NULL;
1823   }
1824 
1825 #ifndef S390
1826   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1827     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1828     return NULL;
1829   }
1830 #endif // !S390
1831 
1832   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1833     if (lib_arch.name!=NULL) {
1834       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1835                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1836                  lib_arch.name, arch_array[running_arch_index].name);
1837     } else {
1838       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1839                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1840                  lib_arch.code,
1841                  arch_array[running_arch_index].name);
1842     }
1843   }
1844 
1845   return NULL;
1846 }
1847 
1848 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1849                                 int ebuflen) {
1850   void * result = ::dlopen(filename, RTLD_LAZY);
1851   if (result == NULL) {
1852     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1853     ebuf[ebuflen-1] = '\0';
1854   }
1855   return result;
1856 }
1857 
1858 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1859                                        int ebuflen) {
1860   void * result = NULL;
1861   if (LoadExecStackDllInVMThread) {
1862     result = dlopen_helper(filename, ebuf, ebuflen);
1863   }
1864 
1865   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1866   // library that requires an executable stack, or which does not have this
1867   // stack attribute set, dlopen changes the stack attribute to executable. The
1868   // read protection of the guard pages gets lost.
1869   //
1870   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1871   // may have been queued at the same time.
1872 
1873   if (!_stack_is_executable) {
1874     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1875       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1876           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1877         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1878           warning("Attempt to reguard stack yellow zone failed.");
1879         }
1880       }
1881     }
1882   }
1883 
1884   return result;
1885 }
1886 
1887 void* os::dll_lookup(void* handle, const char* name) {
1888   void* res = dlsym(handle, name);
1889   return res;
1890 }
1891 
1892 void* os::get_default_process_handle() {
1893   return (void*)::dlopen(NULL, RTLD_LAZY);
1894 }
1895 
1896 static bool _print_ascii_file(const char* filename, outputStream* st) {
1897   int fd = ::open(filename, O_RDONLY);
1898   if (fd == -1) {
1899     return false;
1900   }
1901 
1902   char buf[33];
1903   int bytes;
1904   buf[32] = '\0';
1905   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1906     st->print_raw(buf, bytes);
1907   }
1908 
1909   ::close(fd);
1910 
1911   return true;
1912 }
1913 
1914 void os::print_dll_info(outputStream *st) {
1915   st->print_cr("Dynamic libraries:");
1916 
1917   char fname[32];
1918   pid_t pid = os::Linux::gettid();
1919 
1920   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1921 
1922   if (!_print_ascii_file(fname, st)) {
1923     st->print("Can not get library information for pid = %d\n", pid);
1924   }
1925 }
1926 
1927 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1928   FILE *procmapsFile = NULL;
1929 
1930   // Open the procfs maps file for the current process
1931   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1932     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1933     char line[PATH_MAX + 100];
1934 
1935     // Read line by line from 'file'
1936     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1937       u8 base, top, offset, inode;
1938       char permissions[5];
1939       char device[6];
1940       char name[PATH_MAX + 1];
1941 
1942       // Parse fields from line
1943       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1944              &base, &top, permissions, &offset, device, &inode, name);
1945 
1946       // Filter by device id '00:00' so that we only get file system mapped files.
1947       if (strcmp(device, "00:00") != 0) {
1948 
1949         // Call callback with the fields of interest
1950         if(callback(name, (address)base, (address)top, param)) {
1951           // Oops abort, callback aborted
1952           fclose(procmapsFile);
1953           return 1;
1954         }
1955       }
1956     }
1957     fclose(procmapsFile);
1958   }
1959   return 0;
1960 }
1961 
1962 void os::print_os_info_brief(outputStream* st) {
1963   os::Linux::print_distro_info(st);
1964 
1965   os::Posix::print_uname_info(st);
1966 
1967   os::Linux::print_libversion_info(st);
1968 
1969 }
1970 
1971 void os::print_os_info(outputStream* st) {
1972   st->print("OS:");
1973 
1974   os::Linux::print_distro_info(st);
1975 
1976   os::Posix::print_uname_info(st);
1977 
1978   // Print warning if unsafe chroot environment detected
1979   if (unsafe_chroot_detected) {
1980     st->print("WARNING!! ");
1981     st->print_cr("%s", unstable_chroot_error);
1982   }
1983 
1984   os::Linux::print_libversion_info(st);
1985 
1986   os::Posix::print_rlimit_info(st);
1987 
1988   os::Posix::print_load_average(st);
1989 
1990   os::Linux::print_full_memory_info(st);
1991 
1992   os::Linux::print_container_info(st);
1993 }
1994 
1995 // Try to identify popular distros.
1996 // Most Linux distributions have a /etc/XXX-release file, which contains
1997 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1998 // file that also contains the OS version string. Some have more than one
1999 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2000 // /etc/redhat-release.), so the order is important.
2001 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2002 // their own specific XXX-release file as well as a redhat-release file.
2003 // Because of this the XXX-release file needs to be searched for before the
2004 // redhat-release file.
2005 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2006 // search for redhat-release / SuSE-release needs to be before lsb-release.
2007 // Since the lsb-release file is the new standard it needs to be searched
2008 // before the older style release files.
2009 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2010 // next to last resort.  The os-release file is a new standard that contains
2011 // distribution information and the system-release file seems to be an old
2012 // standard that has been replaced by the lsb-release and os-release files.
2013 // Searching for the debian_version file is the last resort.  It contains
2014 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2015 // "Debian " is printed before the contents of the debian_version file.
2016 
2017 const char* distro_files[] = {
2018   "/etc/oracle-release",
2019   "/etc/mandriva-release",
2020   "/etc/mandrake-release",
2021   "/etc/sun-release",
2022   "/etc/redhat-release",
2023   "/etc/SuSE-release",
2024   "/etc/lsb-release",
2025   "/etc/turbolinux-release",
2026   "/etc/gentoo-release",
2027   "/etc/ltib-release",
2028   "/etc/angstrom-version",
2029   "/etc/system-release",
2030   "/etc/os-release",
2031   NULL };
2032 
2033 void os::Linux::print_distro_info(outputStream* st) {
2034   for (int i = 0;; i++) {
2035     const char* file = distro_files[i];
2036     if (file == NULL) {
2037       break;  // done
2038     }
2039     // If file prints, we found it.
2040     if (_print_ascii_file(file, st)) {
2041       return;
2042     }
2043   }
2044 
2045   if (file_exists("/etc/debian_version")) {
2046     st->print("Debian ");
2047     _print_ascii_file("/etc/debian_version", st);
2048   } else {
2049     st->print("Linux");
2050   }
2051   st->cr();
2052 }
2053 
2054 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2055   char buf[256];
2056   while (fgets(buf, sizeof(buf), fp)) {
2057     // Edit out extra stuff in expected format
2058     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2059       char* ptr = strstr(buf, "\"");  // the name is in quotes
2060       if (ptr != NULL) {
2061         ptr++; // go beyond first quote
2062         char* nl = strchr(ptr, '\"');
2063         if (nl != NULL) *nl = '\0';
2064         strncpy(distro, ptr, length);
2065       } else {
2066         ptr = strstr(buf, "=");
2067         ptr++; // go beyond equals then
2068         char* nl = strchr(ptr, '\n');
2069         if (nl != NULL) *nl = '\0';
2070         strncpy(distro, ptr, length);
2071       }
2072       return;
2073     } else if (get_first_line) {
2074       char* nl = strchr(buf, '\n');
2075       if (nl != NULL) *nl = '\0';
2076       strncpy(distro, buf, length);
2077       return;
2078     }
2079   }
2080   // print last line and close
2081   char* nl = strchr(buf, '\n');
2082   if (nl != NULL) *nl = '\0';
2083   strncpy(distro, buf, length);
2084 }
2085 
2086 static void parse_os_info(char* distro, size_t length, const char* file) {
2087   FILE* fp = fopen(file, "r");
2088   if (fp != NULL) {
2089     // if suse format, print out first line
2090     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2091     parse_os_info_helper(fp, distro, length, get_first_line);
2092     fclose(fp);
2093   }
2094 }
2095 
2096 void os::get_summary_os_info(char* buf, size_t buflen) {
2097   for (int i = 0;; i++) {
2098     const char* file = distro_files[i];
2099     if (file == NULL) {
2100       break; // ran out of distro_files
2101     }
2102     if (file_exists(file)) {
2103       parse_os_info(buf, buflen, file);
2104       return;
2105     }
2106   }
2107   // special case for debian
2108   if (file_exists("/etc/debian_version")) {
2109     strncpy(buf, "Debian ", buflen);
2110     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2111   } else {
2112     strncpy(buf, "Linux", buflen);
2113   }
2114 }
2115 
2116 void os::Linux::print_libversion_info(outputStream* st) {
2117   // libc, pthread
2118   st->print("libc:");
2119   st->print("%s ", os::Linux::glibc_version());
2120   st->print("%s ", os::Linux::libpthread_version());
2121   st->cr();
2122 }
2123 
2124 void os::Linux::print_full_memory_info(outputStream* st) {
2125   st->print("\n/proc/meminfo:\n");
2126   _print_ascii_file("/proc/meminfo", st);
2127   st->cr();
2128 }
2129 
2130 void os::Linux::print_container_info(outputStream* st) {
2131   if (!OSContainer::is_containerized()) {
2132     return;
2133   }
2134 
2135   st->print("container (cgroup) information:\n");
2136 
2137   const char *p_ct = OSContainer::container_type();
2138   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2139 
2140   char *p = OSContainer::cpu_cpuset_cpus();
2141   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2142   free(p);
2143 
2144   p = OSContainer::cpu_cpuset_memory_nodes();
2145   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2146   free(p);
2147 
2148   int i = OSContainer::active_processor_count();
2149   if (i > 0) {
2150     st->print("active_processor_count: %d\n", i);
2151   } else {
2152     st->print("active_processor_count: failed\n");
2153   }
2154 
2155   i = OSContainer::cpu_quota();
2156   st->print("cpu_quota: %d\n", i);
2157 
2158   i = OSContainer::cpu_period();
2159   st->print("cpu_period: %d\n", i);
2160 
2161   i = OSContainer::cpu_shares();
2162   st->print("cpu_shares: %d\n", i);
2163 
2164   jlong j = OSContainer::memory_limit_in_bytes();
2165   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2166 
2167   j = OSContainer::memory_and_swap_limit_in_bytes();
2168   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2169 
2170   j = OSContainer::memory_soft_limit_in_bytes();
2171   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2172 
2173   j = OSContainer::OSContainer::memory_usage_in_bytes();
2174   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2175 
2176   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2177   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2178   st->cr();
2179 }
2180 
2181 void os::print_memory_info(outputStream* st) {
2182 
2183   st->print("Memory:");
2184   st->print(" %dk page", os::vm_page_size()>>10);
2185 
2186   // values in struct sysinfo are "unsigned long"
2187   struct sysinfo si;
2188   sysinfo(&si);
2189 
2190   st->print(", physical " UINT64_FORMAT "k",
2191             os::physical_memory() >> 10);
2192   st->print("(" UINT64_FORMAT "k free)",
2193             os::available_memory() >> 10);
2194   st->print(", swap " UINT64_FORMAT "k",
2195             ((jlong)si.totalswap * si.mem_unit) >> 10);
2196   st->print("(" UINT64_FORMAT "k free)",
2197             ((jlong)si.freeswap * si.mem_unit) >> 10);
2198   st->cr();
2199 }
2200 
2201 // Print the first "model name" line and the first "flags" line
2202 // that we find and nothing more. We assume "model name" comes
2203 // before "flags" so if we find a second "model name", then the
2204 // "flags" field is considered missing.
2205 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2206 #if defined(IA32) || defined(AMD64)
2207   // Other platforms have less repetitive cpuinfo files
2208   FILE *fp = fopen("/proc/cpuinfo", "r");
2209   if (fp) {
2210     while (!feof(fp)) {
2211       if (fgets(buf, buflen, fp)) {
2212         // Assume model name comes before flags
2213         bool model_name_printed = false;
2214         if (strstr(buf, "model name") != NULL) {
2215           if (!model_name_printed) {
2216             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2217             st->print_raw(buf);
2218             model_name_printed = true;
2219           } else {
2220             // model name printed but not flags?  Odd, just return
2221             fclose(fp);
2222             return true;
2223           }
2224         }
2225         // print the flags line too
2226         if (strstr(buf, "flags") != NULL) {
2227           st->print_raw(buf);
2228           fclose(fp);
2229           return true;
2230         }
2231       }
2232     }
2233     fclose(fp);
2234   }
2235 #endif // x86 platforms
2236   return false;
2237 }
2238 
2239 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2240   // Only print the model name if the platform provides this as a summary
2241   if (!print_model_name_and_flags(st, buf, buflen)) {
2242     st->print("\n/proc/cpuinfo:\n");
2243     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2244       st->print_cr("  <Not Available>");
2245     }
2246   }
2247 }
2248 
2249 #if defined(AMD64) || defined(IA32) || defined(X32)
2250 const char* search_string = "model name";
2251 #elif defined(M68K)
2252 const char* search_string = "CPU";
2253 #elif defined(PPC64)
2254 const char* search_string = "cpu";
2255 #elif defined(S390)
2256 const char* search_string = "processor";
2257 #elif defined(SPARC)
2258 const char* search_string = "cpu";
2259 #else
2260 const char* search_string = "Processor";
2261 #endif
2262 
2263 // Parses the cpuinfo file for string representing the model name.
2264 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2265   FILE* fp = fopen("/proc/cpuinfo", "r");
2266   if (fp != NULL) {
2267     while (!feof(fp)) {
2268       char buf[256];
2269       if (fgets(buf, sizeof(buf), fp)) {
2270         char* start = strstr(buf, search_string);
2271         if (start != NULL) {
2272           char *ptr = start + strlen(search_string);
2273           char *end = buf + strlen(buf);
2274           while (ptr != end) {
2275              // skip whitespace and colon for the rest of the name.
2276              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2277                break;
2278              }
2279              ptr++;
2280           }
2281           if (ptr != end) {
2282             // reasonable string, get rid of newline and keep the rest
2283             char* nl = strchr(buf, '\n');
2284             if (nl != NULL) *nl = '\0';
2285             strncpy(cpuinfo, ptr, length);
2286             fclose(fp);
2287             return;
2288           }
2289         }
2290       }
2291     }
2292     fclose(fp);
2293   }
2294   // cpuinfo not found or parsing failed, just print generic string.  The entire
2295   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2296 #if   defined(AARCH64)
2297   strncpy(cpuinfo, "AArch64", length);
2298 #elif defined(AMD64)
2299   strncpy(cpuinfo, "x86_64", length);
2300 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2301   strncpy(cpuinfo, "ARM", length);
2302 #elif defined(IA32)
2303   strncpy(cpuinfo, "x86_32", length);
2304 #elif defined(IA64)
2305   strncpy(cpuinfo, "IA64", length);
2306 #elif defined(PPC)
2307   strncpy(cpuinfo, "PPC64", length);
2308 #elif defined(S390)
2309   strncpy(cpuinfo, "S390", length);
2310 #elif defined(SPARC)
2311   strncpy(cpuinfo, "sparcv9", length);
2312 #elif defined(ZERO_LIBARCH)
2313   strncpy(cpuinfo, ZERO_LIBARCH, length);
2314 #else
2315   strncpy(cpuinfo, "unknown", length);
2316 #endif
2317 }
2318 
2319 static void print_signal_handler(outputStream* st, int sig,
2320                                  char* buf, size_t buflen);
2321 
2322 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2323   st->print_cr("Signal Handlers:");
2324   print_signal_handler(st, SIGSEGV, buf, buflen);
2325   print_signal_handler(st, SIGBUS , buf, buflen);
2326   print_signal_handler(st, SIGFPE , buf, buflen);
2327   print_signal_handler(st, SIGPIPE, buf, buflen);
2328   print_signal_handler(st, SIGXFSZ, buf, buflen);
2329   print_signal_handler(st, SIGILL , buf, buflen);
2330   print_signal_handler(st, SR_signum, buf, buflen);
2331   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2332   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2333   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2334   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2335 #if defined(PPC64)
2336   print_signal_handler(st, SIGTRAP, buf, buflen);
2337 #endif
2338 }
2339 
2340 static char saved_jvm_path[MAXPATHLEN] = {0};
2341 
2342 // Find the full path to the current module, libjvm.so
2343 void os::jvm_path(char *buf, jint buflen) {
2344   // Error checking.
2345   if (buflen < MAXPATHLEN) {
2346     assert(false, "must use a large-enough buffer");
2347     buf[0] = '\0';
2348     return;
2349   }
2350   // Lazy resolve the path to current module.
2351   if (saved_jvm_path[0] != 0) {
2352     strcpy(buf, saved_jvm_path);
2353     return;
2354   }
2355 
2356   char dli_fname[MAXPATHLEN];
2357   bool ret = dll_address_to_library_name(
2358                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2359                                          dli_fname, sizeof(dli_fname), NULL);
2360   assert(ret, "cannot locate libjvm");
2361   char *rp = NULL;
2362   if (ret && dli_fname[0] != '\0') {
2363     rp = os::Posix::realpath(dli_fname, buf, buflen);
2364   }
2365   if (rp == NULL) {
2366     return;
2367   }
2368 
2369   if (Arguments::sun_java_launcher_is_altjvm()) {
2370     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2371     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2372     // If "/jre/lib/" appears at the right place in the string, then
2373     // assume we are installed in a JDK and we're done. Otherwise, check
2374     // for a JAVA_HOME environment variable and fix up the path so it
2375     // looks like libjvm.so is installed there (append a fake suffix
2376     // hotspot/libjvm.so).
2377     const char *p = buf + strlen(buf) - 1;
2378     for (int count = 0; p > buf && count < 5; ++count) {
2379       for (--p; p > buf && *p != '/'; --p)
2380         /* empty */ ;
2381     }
2382 
2383     if (strncmp(p, "/jre/lib/", 9) != 0) {
2384       // Look for JAVA_HOME in the environment.
2385       char* java_home_var = ::getenv("JAVA_HOME");
2386       if (java_home_var != NULL && java_home_var[0] != 0) {
2387         char* jrelib_p;
2388         int len;
2389 
2390         // Check the current module name "libjvm.so".
2391         p = strrchr(buf, '/');
2392         if (p == NULL) {
2393           return;
2394         }
2395         assert(strstr(p, "/libjvm") == p, "invalid library name");
2396 
2397         rp = os::Posix::realpath(java_home_var, buf, buflen);
2398         if (rp == NULL) {
2399           return;
2400         }
2401 
2402         // determine if this is a legacy image or modules image
2403         // modules image doesn't have "jre" subdirectory
2404         len = strlen(buf);
2405         assert(len < buflen, "Ran out of buffer room");
2406         jrelib_p = buf + len;
2407         snprintf(jrelib_p, buflen-len, "/jre/lib");
2408         if (0 != access(buf, F_OK)) {
2409           snprintf(jrelib_p, buflen-len, "/lib");
2410         }
2411 
2412         if (0 == access(buf, F_OK)) {
2413           // Use current module name "libjvm.so"
2414           len = strlen(buf);
2415           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2416         } else {
2417           // Go back to path of .so
2418           rp = os::Posix::realpath(dli_fname, buf, buflen);
2419           if (rp == NULL) {
2420             return;
2421           }
2422         }
2423       }
2424     }
2425   }
2426 
2427   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2428   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2429 }
2430 
2431 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2432   // no prefix required, not even "_"
2433 }
2434 
2435 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2436   // no suffix required
2437 }
2438 
2439 ////////////////////////////////////////////////////////////////////////////////
2440 // sun.misc.Signal support
2441 
2442 static volatile jint sigint_count = 0;
2443 
2444 static void UserHandler(int sig, void *siginfo, void *context) {
2445   // 4511530 - sem_post is serialized and handled by the manager thread. When
2446   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2447   // don't want to flood the manager thread with sem_post requests.
2448   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2449     return;
2450   }
2451 
2452   // Ctrl-C is pressed during error reporting, likely because the error
2453   // handler fails to abort. Let VM die immediately.
2454   if (sig == SIGINT && VMError::is_error_reported()) {
2455     os::die();
2456   }
2457 
2458   os::signal_notify(sig);
2459 }
2460 
2461 void* os::user_handler() {
2462   return CAST_FROM_FN_PTR(void*, UserHandler);
2463 }
2464 
2465 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2466   struct timespec ts;
2467   // Semaphore's are always associated with CLOCK_REALTIME
2468   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2469   // see os_posix.cpp for discussion on overflow checking
2470   if (sec >= MAX_SECS) {
2471     ts.tv_sec += MAX_SECS;
2472     ts.tv_nsec = 0;
2473   } else {
2474     ts.tv_sec += sec;
2475     ts.tv_nsec += nsec;
2476     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2477       ts.tv_nsec -= NANOSECS_PER_SEC;
2478       ++ts.tv_sec; // note: this must be <= max_secs
2479     }
2480   }
2481 
2482   return ts;
2483 }
2484 
2485 extern "C" {
2486   typedef void (*sa_handler_t)(int);
2487   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2488 }
2489 
2490 void* os::signal(int signal_number, void* handler) {
2491   struct sigaction sigAct, oldSigAct;
2492 
2493   sigfillset(&(sigAct.sa_mask));
2494   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2495   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2496 
2497   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2498     // -1 means registration failed
2499     return (void *)-1;
2500   }
2501 
2502   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2503 }
2504 
2505 void os::signal_raise(int signal_number) {
2506   ::raise(signal_number);
2507 }
2508 
2509 // The following code is moved from os.cpp for making this
2510 // code platform specific, which it is by its very nature.
2511 
2512 // Will be modified when max signal is changed to be dynamic
2513 int os::sigexitnum_pd() {
2514   return NSIG;
2515 }
2516 
2517 // a counter for each possible signal value
2518 static volatile jint pending_signals[NSIG+1] = { 0 };
2519 
2520 // Linux(POSIX) specific hand shaking semaphore.
2521 static Semaphore* sig_sem = NULL;
2522 static PosixSemaphore sr_semaphore;
2523 
2524 void os::signal_init_pd() {
2525   // Initialize signal structures
2526   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2527 
2528   // Initialize signal semaphore
2529   sig_sem = new Semaphore();
2530 }
2531 
2532 void os::signal_notify(int sig) {
2533   if (sig_sem != NULL) {
2534     Atomic::inc(&pending_signals[sig]);
2535     sig_sem->signal();
2536   } else {
2537     // Signal thread is not created with ReduceSignalUsage and signal_init_pd
2538     // initialization isn't called.
2539     assert(ReduceSignalUsage, "signal semaphore should be created");
2540   }
2541 }
2542 
2543 static int check_pending_signals() {
2544   Atomic::store(0, &sigint_count);
2545   for (;;) {
2546     for (int i = 0; i < NSIG + 1; i++) {
2547       jint n = pending_signals[i];
2548       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2549         return i;
2550       }
2551     }
2552     JavaThread *thread = JavaThread::current();
2553     ThreadBlockInVM tbivm(thread);
2554 
2555     bool threadIsSuspended;
2556     do {
2557       thread->set_suspend_equivalent();
2558       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2559       sig_sem->wait();
2560 
2561       // were we externally suspended while we were waiting?
2562       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2563       if (threadIsSuspended) {
2564         // The semaphore has been incremented, but while we were waiting
2565         // another thread suspended us. We don't want to continue running
2566         // while suspended because that would surprise the thread that
2567         // suspended us.
2568         sig_sem->signal();
2569 
2570         thread->java_suspend_self();
2571       }
2572     } while (threadIsSuspended);
2573   }
2574 }
2575 
2576 int os::signal_wait() {
2577   return check_pending_signals();
2578 }
2579 
2580 ////////////////////////////////////////////////////////////////////////////////
2581 // Virtual Memory
2582 
2583 int os::vm_page_size() {
2584   // Seems redundant as all get out
2585   assert(os::Linux::page_size() != -1, "must call os::init");
2586   return os::Linux::page_size();
2587 }
2588 
2589 // Solaris allocates memory by pages.
2590 int os::vm_allocation_granularity() {
2591   assert(os::Linux::page_size() != -1, "must call os::init");
2592   return os::Linux::page_size();
2593 }
2594 
2595 // Rationale behind this function:
2596 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2597 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2598 //  samples for JITted code. Here we create private executable mapping over the code cache
2599 //  and then we can use standard (well, almost, as mapping can change) way to provide
2600 //  info for the reporting script by storing timestamp and location of symbol
2601 void linux_wrap_code(char* base, size_t size) {
2602   static volatile jint cnt = 0;
2603 
2604   if (!UseOprofile) {
2605     return;
2606   }
2607 
2608   char buf[PATH_MAX+1];
2609   int num = Atomic::add(1, &cnt);
2610 
2611   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2612            os::get_temp_directory(), os::current_process_id(), num);
2613   unlink(buf);
2614 
2615   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2616 
2617   if (fd != -1) {
2618     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2619     if (rv != (off_t)-1) {
2620       if (::write(fd, "", 1) == 1) {
2621         mmap(base, size,
2622              PROT_READ|PROT_WRITE|PROT_EXEC,
2623              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2624       }
2625     }
2626     ::close(fd);
2627     unlink(buf);
2628   }
2629 }
2630 
2631 static bool recoverable_mmap_error(int err) {
2632   // See if the error is one we can let the caller handle. This
2633   // list of errno values comes from JBS-6843484. I can't find a
2634   // Linux man page that documents this specific set of errno
2635   // values so while this list currently matches Solaris, it may
2636   // change as we gain experience with this failure mode.
2637   switch (err) {
2638   case EBADF:
2639   case EINVAL:
2640   case ENOTSUP:
2641     // let the caller deal with these errors
2642     return true;
2643 
2644   default:
2645     // Any remaining errors on this OS can cause our reserved mapping
2646     // to be lost. That can cause confusion where different data
2647     // structures think they have the same memory mapped. The worst
2648     // scenario is if both the VM and a library think they have the
2649     // same memory mapped.
2650     return false;
2651   }
2652 }
2653 
2654 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2655                                     int err) {
2656   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2657           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2658           os::strerror(err), err);
2659 }
2660 
2661 static void warn_fail_commit_memory(char* addr, size_t size,
2662                                     size_t alignment_hint, bool exec,
2663                                     int err) {
2664   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2665           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2666           alignment_hint, exec, os::strerror(err), err);
2667 }
2668 
2669 // NOTE: Linux kernel does not really reserve the pages for us.
2670 //       All it does is to check if there are enough free pages
2671 //       left at the time of mmap(). This could be a potential
2672 //       problem.
2673 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2674   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2675   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2676                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2677   if (res != (uintptr_t) MAP_FAILED) {
2678     if (UseNUMAInterleaving) {
2679       numa_make_global(addr, size);
2680     }
2681     return 0;
2682   }
2683 
2684   int err = errno;  // save errno from mmap() call above
2685 
2686   if (!recoverable_mmap_error(err)) {
2687     warn_fail_commit_memory(addr, size, exec, err);
2688     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2689   }
2690 
2691   return err;
2692 }
2693 
2694 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2695   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2696 }
2697 
2698 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2699                                   const char* mesg) {
2700   assert(mesg != NULL, "mesg must be specified");
2701   int err = os::Linux::commit_memory_impl(addr, size, exec);
2702   if (err != 0) {
2703     // the caller wants all commit errors to exit with the specified mesg:
2704     warn_fail_commit_memory(addr, size, exec, err);
2705     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2706   }
2707 }
2708 
2709 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2710 #ifndef MAP_HUGETLB
2711   #define MAP_HUGETLB 0x40000
2712 #endif
2713 
2714 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2715 #ifndef MADV_HUGEPAGE
2716   #define MADV_HUGEPAGE 14
2717 #endif
2718 
2719 int os::Linux::commit_memory_impl(char* addr, size_t size,
2720                                   size_t alignment_hint, bool exec) {
2721   int err = os::Linux::commit_memory_impl(addr, size, exec);
2722   if (err == 0) {
2723     realign_memory(addr, size, alignment_hint);
2724   }
2725   return err;
2726 }
2727 
2728 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2729                           bool exec) {
2730   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2731 }
2732 
2733 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2734                                   size_t alignment_hint, bool exec,
2735                                   const char* mesg) {
2736   assert(mesg != NULL, "mesg must be specified");
2737   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2738   if (err != 0) {
2739     // the caller wants all commit errors to exit with the specified mesg:
2740     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2741     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2742   }
2743 }
2744 
2745 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2746   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2747     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2748     // be supported or the memory may already be backed by huge pages.
2749     ::madvise(addr, bytes, MADV_HUGEPAGE);
2750   }
2751 }
2752 
2753 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2754   // This method works by doing an mmap over an existing mmaping and effectively discarding
2755   // the existing pages. However it won't work for SHM-based large pages that cannot be
2756   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2757   // small pages on top of the SHM segment. This method always works for small pages, so we
2758   // allow that in any case.
2759   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2760     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2761   }
2762 }
2763 
2764 void os::numa_make_global(char *addr, size_t bytes) {
2765   Linux::numa_interleave_memory(addr, bytes);
2766 }
2767 
2768 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2769 // bind policy to MPOL_PREFERRED for the current thread.
2770 #define USE_MPOL_PREFERRED 0
2771 
2772 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2773   // To make NUMA and large pages more robust when both enabled, we need to ease
2774   // the requirements on where the memory should be allocated. MPOL_BIND is the
2775   // default policy and it will force memory to be allocated on the specified
2776   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2777   // the specified node, but will not force it. Using this policy will prevent
2778   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2779   // free large pages.
2780   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2781   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2782 }
2783 
2784 bool os::numa_topology_changed() { return false; }
2785 
2786 size_t os::numa_get_groups_num() {
2787   // Return just the number of nodes in which it's possible to allocate memory
2788   // (in numa terminology, configured nodes).
2789   return Linux::numa_num_configured_nodes();
2790 }
2791 
2792 int os::numa_get_group_id() {
2793   int cpu_id = Linux::sched_getcpu();
2794   if (cpu_id != -1) {
2795     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2796     if (lgrp_id != -1) {
2797       return lgrp_id;
2798     }
2799   }
2800   return 0;
2801 }
2802 
2803 int os::Linux::get_existing_num_nodes() {
2804   size_t node;
2805   size_t highest_node_number = Linux::numa_max_node();
2806   int num_nodes = 0;
2807 
2808   // Get the total number of nodes in the system including nodes without memory.
2809   for (node = 0; node <= highest_node_number; node++) {
2810     if (isnode_in_existing_nodes(node)) {
2811       num_nodes++;
2812     }
2813   }
2814   return num_nodes;
2815 }
2816 
2817 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2818   size_t highest_node_number = Linux::numa_max_node();
2819   size_t i = 0;
2820 
2821   // Map all node ids in which is possible to allocate memory. Also nodes are
2822   // not always consecutively available, i.e. available from 0 to the highest
2823   // node number.
2824   for (size_t node = 0; node <= highest_node_number; node++) {
2825     if (Linux::isnode_in_configured_nodes(node)) {
2826       ids[i++] = node;
2827     }
2828   }
2829   return i;
2830 }
2831 
2832 bool os::get_page_info(char *start, page_info* info) {
2833   return false;
2834 }
2835 
2836 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2837                      page_info* page_found) {
2838   return end;
2839 }
2840 
2841 
2842 int os::Linux::sched_getcpu_syscall(void) {
2843   unsigned int cpu = 0;
2844   int retval = -1;
2845 
2846 #if defined(IA32)
2847   #ifndef SYS_getcpu
2848     #define SYS_getcpu 318
2849   #endif
2850   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2851 #elif defined(AMD64)
2852 // Unfortunately we have to bring all these macros here from vsyscall.h
2853 // to be able to compile on old linuxes.
2854   #define __NR_vgetcpu 2
2855   #define VSYSCALL_START (-10UL << 20)
2856   #define VSYSCALL_SIZE 1024
2857   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2858   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2859   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2860   retval = vgetcpu(&cpu, NULL, NULL);
2861 #endif
2862 
2863   return (retval == -1) ? retval : cpu;
2864 }
2865 
2866 void os::Linux::sched_getcpu_init() {
2867   // sched_getcpu() should be in libc.
2868   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2869                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2870 
2871   // If it's not, try a direct syscall.
2872   if (sched_getcpu() == -1) {
2873     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2874                                     (void*)&sched_getcpu_syscall));
2875   }
2876 }
2877 
2878 // Something to do with the numa-aware allocator needs these symbols
2879 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2880 extern "C" JNIEXPORT void numa_error(char *where) { }
2881 
2882 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2883 // load symbol from base version instead.
2884 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2885   void *f = dlvsym(handle, name, "libnuma_1.1");
2886   if (f == NULL) {
2887     f = dlsym(handle, name);
2888   }
2889   return f;
2890 }
2891 
2892 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2893 // Return NULL if the symbol is not defined in this particular version.
2894 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2895   return dlvsym(handle, name, "libnuma_1.2");
2896 }
2897 
2898 bool os::Linux::libnuma_init() {
2899   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2900     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2901     if (handle != NULL) {
2902       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2903                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2904       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2905                                        libnuma_dlsym(handle, "numa_max_node")));
2906       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2907                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2908       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2909                                         libnuma_dlsym(handle, "numa_available")));
2910       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2911                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2912       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2913                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2914       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2915                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2916       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2917                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2918       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2919                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2920       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2921                                        libnuma_dlsym(handle, "numa_distance")));
2922 
2923       if (numa_available() != -1) {
2924         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2925         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2926         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2927         // Create an index -> node mapping, since nodes are not always consecutive
2928         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2929         rebuild_nindex_to_node_map();
2930         // Create a cpu -> node mapping
2931         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2932         rebuild_cpu_to_node_map();
2933         return true;
2934       }
2935     }
2936   }
2937   return false;
2938 }
2939 
2940 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2941   // Creating guard page is very expensive. Java thread has HotSpot
2942   // guard pages, only enable glibc guard page for non-Java threads.
2943   // (Remember: compiler thread is a Java thread, too!)
2944   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2945 }
2946 
2947 void os::Linux::rebuild_nindex_to_node_map() {
2948   int highest_node_number = Linux::numa_max_node();
2949 
2950   nindex_to_node()->clear();
2951   for (int node = 0; node <= highest_node_number; node++) {
2952     if (Linux::isnode_in_existing_nodes(node)) {
2953       nindex_to_node()->append(node);
2954     }
2955   }
2956 }
2957 
2958 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2959 // The table is later used in get_node_by_cpu().
2960 void os::Linux::rebuild_cpu_to_node_map() {
2961   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2962                               // in libnuma (possible values are starting from 16,
2963                               // and continuing up with every other power of 2, but less
2964                               // than the maximum number of CPUs supported by kernel), and
2965                               // is a subject to change (in libnuma version 2 the requirements
2966                               // are more reasonable) we'll just hardcode the number they use
2967                               // in the library.
2968   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2969 
2970   size_t cpu_num = processor_count();
2971   size_t cpu_map_size = NCPUS / BitsPerCLong;
2972   size_t cpu_map_valid_size =
2973     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2974 
2975   cpu_to_node()->clear();
2976   cpu_to_node()->at_grow(cpu_num - 1);
2977 
2978   size_t node_num = get_existing_num_nodes();
2979 
2980   int distance = 0;
2981   int closest_distance = INT_MAX;
2982   int closest_node = 0;
2983   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2984   for (size_t i = 0; i < node_num; i++) {
2985     // Check if node is configured (not a memory-less node). If it is not, find
2986     // the closest configured node.
2987     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2988       closest_distance = INT_MAX;
2989       // Check distance from all remaining nodes in the system. Ignore distance
2990       // from itself and from another non-configured node.
2991       for (size_t m = 0; m < node_num; m++) {
2992         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2993           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2994           // If a closest node is found, update. There is always at least one
2995           // configured node in the system so there is always at least one node
2996           // close.
2997           if (distance != 0 && distance < closest_distance) {
2998             closest_distance = distance;
2999             closest_node = nindex_to_node()->at(m);
3000           }
3001         }
3002       }
3003      } else {
3004        // Current node is already a configured node.
3005        closest_node = nindex_to_node()->at(i);
3006      }
3007 
3008     // Get cpus from the original node and map them to the closest node. If node
3009     // is a configured node (not a memory-less node), then original node and
3010     // closest node are the same.
3011     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3012       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3013         if (cpu_map[j] != 0) {
3014           for (size_t k = 0; k < BitsPerCLong; k++) {
3015             if (cpu_map[j] & (1UL << k)) {
3016               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3017             }
3018           }
3019         }
3020       }
3021     }
3022   }
3023   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3024 }
3025 
3026 int os::Linux::get_node_by_cpu(int cpu_id) {
3027   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3028     return cpu_to_node()->at(cpu_id);
3029   }
3030   return -1;
3031 }
3032 
3033 GrowableArray<int>* os::Linux::_cpu_to_node;
3034 GrowableArray<int>* os::Linux::_nindex_to_node;
3035 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3036 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3037 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3038 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3039 os::Linux::numa_available_func_t os::Linux::_numa_available;
3040 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3041 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3042 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3043 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3044 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3045 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3046 unsigned long* os::Linux::_numa_all_nodes;
3047 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3048 struct bitmask* os::Linux::_numa_nodes_ptr;
3049 
3050 bool os::pd_uncommit_memory(char* addr, size_t size) {
3051   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3052                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3053   return res  != (uintptr_t) MAP_FAILED;
3054 }
3055 
3056 static address get_stack_commited_bottom(address bottom, size_t size) {
3057   address nbot = bottom;
3058   address ntop = bottom + size;
3059 
3060   size_t page_sz = os::vm_page_size();
3061   unsigned pages = size / page_sz;
3062 
3063   unsigned char vec[1];
3064   unsigned imin = 1, imax = pages + 1, imid;
3065   int mincore_return_value = 0;
3066 
3067   assert(imin <= imax, "Unexpected page size");
3068 
3069   while (imin < imax) {
3070     imid = (imax + imin) / 2;
3071     nbot = ntop - (imid * page_sz);
3072 
3073     // Use a trick with mincore to check whether the page is mapped or not.
3074     // mincore sets vec to 1 if page resides in memory and to 0 if page
3075     // is swapped output but if page we are asking for is unmapped
3076     // it returns -1,ENOMEM
3077     mincore_return_value = mincore(nbot, page_sz, vec);
3078 
3079     if (mincore_return_value == -1) {
3080       // Page is not mapped go up
3081       // to find first mapped page
3082       if (errno != EAGAIN) {
3083         assert(errno == ENOMEM, "Unexpected mincore errno");
3084         imax = imid;
3085       }
3086     } else {
3087       // Page is mapped go down
3088       // to find first not mapped page
3089       imin = imid + 1;
3090     }
3091   }
3092 
3093   nbot = nbot + page_sz;
3094 
3095   // Adjust stack bottom one page up if last checked page is not mapped
3096   if (mincore_return_value == -1) {
3097     nbot = nbot + page_sz;
3098   }
3099 
3100   return nbot;
3101 }
3102 
3103 
3104 // Linux uses a growable mapping for the stack, and if the mapping for
3105 // the stack guard pages is not removed when we detach a thread the
3106 // stack cannot grow beyond the pages where the stack guard was
3107 // mapped.  If at some point later in the process the stack expands to
3108 // that point, the Linux kernel cannot expand the stack any further
3109 // because the guard pages are in the way, and a segfault occurs.
3110 //
3111 // However, it's essential not to split the stack region by unmapping
3112 // a region (leaving a hole) that's already part of the stack mapping,
3113 // so if the stack mapping has already grown beyond the guard pages at
3114 // the time we create them, we have to truncate the stack mapping.
3115 // So, we need to know the extent of the stack mapping when
3116 // create_stack_guard_pages() is called.
3117 
3118 // We only need this for stacks that are growable: at the time of
3119 // writing thread stacks don't use growable mappings (i.e. those
3120 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3121 // only applies to the main thread.
3122 
3123 // If the (growable) stack mapping already extends beyond the point
3124 // where we're going to put our guard pages, truncate the mapping at
3125 // that point by munmap()ping it.  This ensures that when we later
3126 // munmap() the guard pages we don't leave a hole in the stack
3127 // mapping. This only affects the main/primordial thread
3128 
3129 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3130   if (os::is_primordial_thread()) {
3131     // As we manually grow stack up to bottom inside create_attached_thread(),
3132     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3133     // we don't need to do anything special.
3134     // Check it first, before calling heavy function.
3135     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3136     unsigned char vec[1];
3137 
3138     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3139       // Fallback to slow path on all errors, including EAGAIN
3140       stack_extent = (uintptr_t) get_stack_commited_bottom(
3141                                                            os::Linux::initial_thread_stack_bottom(),
3142                                                            (size_t)addr - stack_extent);
3143     }
3144 
3145     if (stack_extent < (uintptr_t)addr) {
3146       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3147     }
3148   }
3149 
3150   return os::commit_memory(addr, size, !ExecMem);
3151 }
3152 
3153 // If this is a growable mapping, remove the guard pages entirely by
3154 // munmap()ping them.  If not, just call uncommit_memory(). This only
3155 // affects the main/primordial thread, but guard against future OS changes.
3156 // It's safe to always unmap guard pages for primordial thread because we
3157 // always place it right after end of the mapped region.
3158 
3159 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3160   uintptr_t stack_extent, stack_base;
3161 
3162   if (os::is_primordial_thread()) {
3163     return ::munmap(addr, size) == 0;
3164   }
3165 
3166   return os::uncommit_memory(addr, size);
3167 }
3168 
3169 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3170 // at 'requested_addr'. If there are existing memory mappings at the same
3171 // location, however, they will be overwritten. If 'fixed' is false,
3172 // 'requested_addr' is only treated as a hint, the return value may or
3173 // may not start from the requested address. Unlike Linux mmap(), this
3174 // function returns NULL to indicate failure.
3175 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3176   char * addr;
3177   int flags;
3178 
3179   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3180   if (fixed) {
3181     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3182     flags |= MAP_FIXED;
3183   }
3184 
3185   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3186   // touch an uncommitted page. Otherwise, the read/write might
3187   // succeed if we have enough swap space to back the physical page.
3188   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3189                        flags, -1, 0);
3190 
3191   return addr == MAP_FAILED ? NULL : addr;
3192 }
3193 
3194 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3195 //   (req_addr != NULL) or with a given alignment.
3196 //  - bytes shall be a multiple of alignment.
3197 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3198 //  - alignment sets the alignment at which memory shall be allocated.
3199 //     It must be a multiple of allocation granularity.
3200 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3201 //  req_addr or NULL.
3202 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3203 
3204   size_t extra_size = bytes;
3205   if (req_addr == NULL && alignment > 0) {
3206     extra_size += alignment;
3207   }
3208 
3209   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3210     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3211     -1, 0);
3212   if (start == MAP_FAILED) {
3213     start = NULL;
3214   } else {
3215     if (req_addr != NULL) {
3216       if (start != req_addr) {
3217         ::munmap(start, extra_size);
3218         start = NULL;
3219       }
3220     } else {
3221       char* const start_aligned = align_up(start, alignment);
3222       char* const end_aligned = start_aligned + bytes;
3223       char* const end = start + extra_size;
3224       if (start_aligned > start) {
3225         ::munmap(start, start_aligned - start);
3226       }
3227       if (end_aligned < end) {
3228         ::munmap(end_aligned, end - end_aligned);
3229       }
3230       start = start_aligned;
3231     }
3232   }
3233   return start;
3234 }
3235 
3236 static int anon_munmap(char * addr, size_t size) {
3237   return ::munmap(addr, size) == 0;
3238 }
3239 
3240 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3241                             size_t alignment_hint) {
3242   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3243 }
3244 
3245 bool os::pd_release_memory(char* addr, size_t size) {
3246   return anon_munmap(addr, size);
3247 }
3248 
3249 static bool linux_mprotect(char* addr, size_t size, int prot) {
3250   // Linux wants the mprotect address argument to be page aligned.
3251   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3252 
3253   // According to SUSv3, mprotect() should only be used with mappings
3254   // established by mmap(), and mmap() always maps whole pages. Unaligned
3255   // 'addr' likely indicates problem in the VM (e.g. trying to change
3256   // protection of malloc'ed or statically allocated memory). Check the
3257   // caller if you hit this assert.
3258   assert(addr == bottom, "sanity check");
3259 
3260   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3261   return ::mprotect(bottom, size, prot) == 0;
3262 }
3263 
3264 // Set protections specified
3265 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3266                         bool is_committed) {
3267   unsigned int p = 0;
3268   switch (prot) {
3269   case MEM_PROT_NONE: p = PROT_NONE; break;
3270   case MEM_PROT_READ: p = PROT_READ; break;
3271   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3272   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3273   default:
3274     ShouldNotReachHere();
3275   }
3276   // is_committed is unused.
3277   return linux_mprotect(addr, bytes, p);
3278 }
3279 
3280 bool os::guard_memory(char* addr, size_t size) {
3281   return linux_mprotect(addr, size, PROT_NONE);
3282 }
3283 
3284 bool os::unguard_memory(char* addr, size_t size) {
3285   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3286 }
3287 
3288 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3289                                                     size_t page_size) {
3290   bool result = false;
3291   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3292                  MAP_ANONYMOUS|MAP_PRIVATE,
3293                  -1, 0);
3294   if (p != MAP_FAILED) {
3295     void *aligned_p = align_up(p, page_size);
3296 
3297     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3298 
3299     munmap(p, page_size * 2);
3300   }
3301 
3302   if (warn && !result) {
3303     warning("TransparentHugePages is not supported by the operating system.");
3304   }
3305 
3306   return result;
3307 }
3308 
3309 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3310   bool result = false;
3311   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3312                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3313                  -1, 0);
3314 
3315   if (p != MAP_FAILED) {
3316     // We don't know if this really is a huge page or not.
3317     FILE *fp = fopen("/proc/self/maps", "r");
3318     if (fp) {
3319       while (!feof(fp)) {
3320         char chars[257];
3321         long x = 0;
3322         if (fgets(chars, sizeof(chars), fp)) {
3323           if (sscanf(chars, "%lx-%*x", &x) == 1
3324               && x == (long)p) {
3325             if (strstr (chars, "hugepage")) {
3326               result = true;
3327               break;
3328             }
3329           }
3330         }
3331       }
3332       fclose(fp);
3333     }
3334     munmap(p, page_size);
3335   }
3336 
3337   if (warn && !result) {
3338     warning("HugeTLBFS is not supported by the operating system.");
3339   }
3340 
3341   return result;
3342 }
3343 
3344 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3345 //
3346 // From the coredump_filter documentation:
3347 //
3348 // - (bit 0) anonymous private memory
3349 // - (bit 1) anonymous shared memory
3350 // - (bit 2) file-backed private memory
3351 // - (bit 3) file-backed shared memory
3352 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3353 //           effective only if the bit 2 is cleared)
3354 // - (bit 5) hugetlb private memory
3355 // - (bit 6) hugetlb shared memory
3356 // - (bit 7) dax private memory
3357 // - (bit 8) dax shared memory
3358 //
3359 static void set_coredump_filter(bool largepages, bool dax_shared) {
3360   FILE *f;
3361   long cdm;
3362   bool filter_changed = false;
3363 
3364   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3365     return;
3366   }
3367 
3368   if (fscanf(f, "%lx", &cdm) != 1) {
3369     fclose(f);
3370     return;
3371   }
3372 
3373   rewind(f);
3374 
3375   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3376     cdm |= LARGEPAGES_BIT;
3377     filter_changed = true;
3378   }
3379   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3380     cdm |= DAX_SHARED_BIT;
3381     filter_changed = true;
3382   }
3383   if (filter_changed) {
3384     fprintf(f, "%#lx", cdm);
3385   }
3386 
3387   fclose(f);
3388 }
3389 
3390 // Large page support
3391 
3392 static size_t _large_page_size = 0;
3393 
3394 size_t os::Linux::find_large_page_size() {
3395   size_t large_page_size = 0;
3396 
3397   // large_page_size on Linux is used to round up heap size. x86 uses either
3398   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3399   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3400   // page as large as 256M.
3401   //
3402   // Here we try to figure out page size by parsing /proc/meminfo and looking
3403   // for a line with the following format:
3404   //    Hugepagesize:     2048 kB
3405   //
3406   // If we can't determine the value (e.g. /proc is not mounted, or the text
3407   // format has been changed), we'll use the largest page size supported by
3408   // the processor.
3409 
3410 #ifndef ZERO
3411   large_page_size =
3412     AARCH64_ONLY(2 * M)
3413     AMD64_ONLY(2 * M)
3414     ARM32_ONLY(2 * M)
3415     IA32_ONLY(4 * M)
3416     IA64_ONLY(256 * M)
3417     PPC_ONLY(4 * M)
3418     S390_ONLY(1 * M)
3419     SPARC_ONLY(4 * M);
3420 #endif // ZERO
3421 
3422   FILE *fp = fopen("/proc/meminfo", "r");
3423   if (fp) {
3424     while (!feof(fp)) {
3425       int x = 0;
3426       char buf[16];
3427       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3428         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3429           large_page_size = x * K;
3430           break;
3431         }
3432       } else {
3433         // skip to next line
3434         for (;;) {
3435           int ch = fgetc(fp);
3436           if (ch == EOF || ch == (int)'\n') break;
3437         }
3438       }
3439     }
3440     fclose(fp);
3441   }
3442 
3443   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3444     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3445             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3446             proper_unit_for_byte_size(large_page_size));
3447   }
3448 
3449   return large_page_size;
3450 }
3451 
3452 size_t os::Linux::setup_large_page_size() {
3453   _large_page_size = Linux::find_large_page_size();
3454   const size_t default_page_size = (size_t)Linux::page_size();
3455   if (_large_page_size > default_page_size) {
3456     _page_sizes[0] = _large_page_size;
3457     _page_sizes[1] = default_page_size;
3458     _page_sizes[2] = 0;
3459   }
3460 
3461   return _large_page_size;
3462 }
3463 
3464 bool os::Linux::setup_large_page_type(size_t page_size) {
3465   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3466       FLAG_IS_DEFAULT(UseSHM) &&
3467       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3468 
3469     // The type of large pages has not been specified by the user.
3470 
3471     // Try UseHugeTLBFS and then UseSHM.
3472     UseHugeTLBFS = UseSHM = true;
3473 
3474     // Don't try UseTransparentHugePages since there are known
3475     // performance issues with it turned on. This might change in the future.
3476     UseTransparentHugePages = false;
3477   }
3478 
3479   if (UseTransparentHugePages) {
3480     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3481     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3482       UseHugeTLBFS = false;
3483       UseSHM = false;
3484       return true;
3485     }
3486     UseTransparentHugePages = false;
3487   }
3488 
3489   if (UseHugeTLBFS) {
3490     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3491     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3492       UseSHM = false;
3493       return true;
3494     }
3495     UseHugeTLBFS = false;
3496   }
3497 
3498   return UseSHM;
3499 }
3500 
3501 void os::large_page_init() {
3502   if (!UseLargePages &&
3503       !UseTransparentHugePages &&
3504       !UseHugeTLBFS &&
3505       !UseSHM) {
3506     // Not using large pages.
3507     return;
3508   }
3509 
3510   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3511     // The user explicitly turned off large pages.
3512     // Ignore the rest of the large pages flags.
3513     UseTransparentHugePages = false;
3514     UseHugeTLBFS = false;
3515     UseSHM = false;
3516     return;
3517   }
3518 
3519   size_t large_page_size = Linux::setup_large_page_size();
3520   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3521 
3522   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3523 }
3524 
3525 #ifndef SHM_HUGETLB
3526   #define SHM_HUGETLB 04000
3527 #endif
3528 
3529 #define shm_warning_format(format, ...)              \
3530   do {                                               \
3531     if (UseLargePages &&                             \
3532         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3533          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3534          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3535       warning(format, __VA_ARGS__);                  \
3536     }                                                \
3537   } while (0)
3538 
3539 #define shm_warning(str) shm_warning_format("%s", str)
3540 
3541 #define shm_warning_with_errno(str)                \
3542   do {                                             \
3543     int err = errno;                               \
3544     shm_warning_format(str " (error = %d)", err);  \
3545   } while (0)
3546 
3547 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3548   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3549 
3550   if (!is_aligned(alignment, SHMLBA)) {
3551     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3552     return NULL;
3553   }
3554 
3555   // To ensure that we get 'alignment' aligned memory from shmat,
3556   // we pre-reserve aligned virtual memory and then attach to that.
3557 
3558   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3559   if (pre_reserved_addr == NULL) {
3560     // Couldn't pre-reserve aligned memory.
3561     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3562     return NULL;
3563   }
3564 
3565   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3566   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3567 
3568   if ((intptr_t)addr == -1) {
3569     int err = errno;
3570     shm_warning_with_errno("Failed to attach shared memory.");
3571 
3572     assert(err != EACCES, "Unexpected error");
3573     assert(err != EIDRM,  "Unexpected error");
3574     assert(err != EINVAL, "Unexpected error");
3575 
3576     // Since we don't know if the kernel unmapped the pre-reserved memory area
3577     // we can't unmap it, since that would potentially unmap memory that was
3578     // mapped from other threads.
3579     return NULL;
3580   }
3581 
3582   return addr;
3583 }
3584 
3585 static char* shmat_at_address(int shmid, char* req_addr) {
3586   if (!is_aligned(req_addr, SHMLBA)) {
3587     assert(false, "Requested address needs to be SHMLBA aligned");
3588     return NULL;
3589   }
3590 
3591   char* addr = (char*)shmat(shmid, req_addr, 0);
3592 
3593   if ((intptr_t)addr == -1) {
3594     shm_warning_with_errno("Failed to attach shared memory.");
3595     return NULL;
3596   }
3597 
3598   return addr;
3599 }
3600 
3601 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3602   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3603   if (req_addr != NULL) {
3604     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3605     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3606     return shmat_at_address(shmid, req_addr);
3607   }
3608 
3609   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3610   // return large page size aligned memory addresses when req_addr == NULL.
3611   // However, if the alignment is larger than the large page size, we have
3612   // to manually ensure that the memory returned is 'alignment' aligned.
3613   if (alignment > os::large_page_size()) {
3614     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3615     return shmat_with_alignment(shmid, bytes, alignment);
3616   } else {
3617     return shmat_at_address(shmid, NULL);
3618   }
3619 }
3620 
3621 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3622                                             char* req_addr, bool exec) {
3623   // "exec" is passed in but not used.  Creating the shared image for
3624   // the code cache doesn't have an SHM_X executable permission to check.
3625   assert(UseLargePages && UseSHM, "only for SHM large pages");
3626   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3627   assert(is_aligned(req_addr, alignment), "Unaligned address");
3628 
3629   if (!is_aligned(bytes, os::large_page_size())) {
3630     return NULL; // Fallback to small pages.
3631   }
3632 
3633   // Create a large shared memory region to attach to based on size.
3634   // Currently, size is the total size of the heap.
3635   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3636   if (shmid == -1) {
3637     // Possible reasons for shmget failure:
3638     // 1. shmmax is too small for Java heap.
3639     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3640     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3641     // 2. not enough large page memory.
3642     //    > check available large pages: cat /proc/meminfo
3643     //    > increase amount of large pages:
3644     //          echo new_value > /proc/sys/vm/nr_hugepages
3645     //      Note 1: different Linux may use different name for this property,
3646     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3647     //      Note 2: it's possible there's enough physical memory available but
3648     //            they are so fragmented after a long run that they can't
3649     //            coalesce into large pages. Try to reserve large pages when
3650     //            the system is still "fresh".
3651     shm_warning_with_errno("Failed to reserve shared memory.");
3652     return NULL;
3653   }
3654 
3655   // Attach to the region.
3656   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3657 
3658   // Remove shmid. If shmat() is successful, the actual shared memory segment
3659   // will be deleted when it's detached by shmdt() or when the process
3660   // terminates. If shmat() is not successful this will remove the shared
3661   // segment immediately.
3662   shmctl(shmid, IPC_RMID, NULL);
3663 
3664   return addr;
3665 }
3666 
3667 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3668                                         int error) {
3669   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3670 
3671   bool warn_on_failure = UseLargePages &&
3672       (!FLAG_IS_DEFAULT(UseLargePages) ||
3673        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3674        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3675 
3676   if (warn_on_failure) {
3677     char msg[128];
3678     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3679                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3680     warning("%s", msg);
3681   }
3682 }
3683 
3684 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3685                                                         char* req_addr,
3686                                                         bool exec) {
3687   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3688   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3689   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3690 
3691   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3692   char* addr = (char*)::mmap(req_addr, bytes, prot,
3693                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3694                              -1, 0);
3695 
3696   if (addr == MAP_FAILED) {
3697     warn_on_large_pages_failure(req_addr, bytes, errno);
3698     return NULL;
3699   }
3700 
3701   assert(is_aligned(addr, os::large_page_size()), "Must be");
3702 
3703   return addr;
3704 }
3705 
3706 // Reserve memory using mmap(MAP_HUGETLB).
3707 //  - bytes shall be a multiple of alignment.
3708 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3709 //  - alignment sets the alignment at which memory shall be allocated.
3710 //     It must be a multiple of allocation granularity.
3711 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3712 //  req_addr or NULL.
3713 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3714                                                          size_t alignment,
3715                                                          char* req_addr,
3716                                                          bool exec) {
3717   size_t large_page_size = os::large_page_size();
3718   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3719 
3720   assert(is_aligned(req_addr, alignment), "Must be");
3721   assert(is_aligned(bytes, alignment), "Must be");
3722 
3723   // First reserve - but not commit - the address range in small pages.
3724   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3725 
3726   if (start == NULL) {
3727     return NULL;
3728   }
3729 
3730   assert(is_aligned(start, alignment), "Must be");
3731 
3732   char* end = start + bytes;
3733 
3734   // Find the regions of the allocated chunk that can be promoted to large pages.
3735   char* lp_start = align_up(start, large_page_size);
3736   char* lp_end   = align_down(end, large_page_size);
3737 
3738   size_t lp_bytes = lp_end - lp_start;
3739 
3740   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3741 
3742   if (lp_bytes == 0) {
3743     // The mapped region doesn't even span the start and the end of a large page.
3744     // Fall back to allocate a non-special area.
3745     ::munmap(start, end - start);
3746     return NULL;
3747   }
3748 
3749   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3750 
3751   void* result;
3752 
3753   // Commit small-paged leading area.
3754   if (start != lp_start) {
3755     result = ::mmap(start, lp_start - start, prot,
3756                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3757                     -1, 0);
3758     if (result == MAP_FAILED) {
3759       ::munmap(lp_start, end - lp_start);
3760       return NULL;
3761     }
3762   }
3763 
3764   // Commit large-paged area.
3765   result = ::mmap(lp_start, lp_bytes, prot,
3766                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3767                   -1, 0);
3768   if (result == MAP_FAILED) {
3769     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3770     // If the mmap above fails, the large pages region will be unmapped and we
3771     // have regions before and after with small pages. Release these regions.
3772     //
3773     // |  mapped  |  unmapped  |  mapped  |
3774     // ^          ^            ^          ^
3775     // start      lp_start     lp_end     end
3776     //
3777     ::munmap(start, lp_start - start);
3778     ::munmap(lp_end, end - lp_end);
3779     return NULL;
3780   }
3781 
3782   // Commit small-paged trailing area.
3783   if (lp_end != end) {
3784     result = ::mmap(lp_end, end - lp_end, prot,
3785                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3786                     -1, 0);
3787     if (result == MAP_FAILED) {
3788       ::munmap(start, lp_end - start);
3789       return NULL;
3790     }
3791   }
3792 
3793   return start;
3794 }
3795 
3796 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3797                                                    size_t alignment,
3798                                                    char* req_addr,
3799                                                    bool exec) {
3800   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3801   assert(is_aligned(req_addr, alignment), "Must be");
3802   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3803   assert(is_power_of_2(os::large_page_size()), "Must be");
3804   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3805 
3806   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3807     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3808   } else {
3809     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3810   }
3811 }
3812 
3813 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3814                                  char* req_addr, bool exec) {
3815   assert(UseLargePages, "only for large pages");
3816 
3817   char* addr;
3818   if (UseSHM) {
3819     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3820   } else {
3821     assert(UseHugeTLBFS, "must be");
3822     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3823   }
3824 
3825   if (addr != NULL) {
3826     if (UseNUMAInterleaving) {
3827       numa_make_global(addr, bytes);
3828     }
3829 
3830     // The memory is committed
3831     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3832   }
3833 
3834   return addr;
3835 }
3836 
3837 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3838   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3839   return shmdt(base) == 0;
3840 }
3841 
3842 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3843   return pd_release_memory(base, bytes);
3844 }
3845 
3846 bool os::release_memory_special(char* base, size_t bytes) {
3847   bool res;
3848   if (MemTracker::tracking_level() > NMT_minimal) {
3849     Tracker tkr(Tracker::release);
3850     res = os::Linux::release_memory_special_impl(base, bytes);
3851     if (res) {
3852       tkr.record((address)base, bytes);
3853     }
3854 
3855   } else {
3856     res = os::Linux::release_memory_special_impl(base, bytes);
3857   }
3858   return res;
3859 }
3860 
3861 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3862   assert(UseLargePages, "only for large pages");
3863   bool res;
3864 
3865   if (UseSHM) {
3866     res = os::Linux::release_memory_special_shm(base, bytes);
3867   } else {
3868     assert(UseHugeTLBFS, "must be");
3869     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3870   }
3871   return res;
3872 }
3873 
3874 size_t os::large_page_size() {
3875   return _large_page_size;
3876 }
3877 
3878 // With SysV SHM the entire memory region must be allocated as shared
3879 // memory.
3880 // HugeTLBFS allows application to commit large page memory on demand.
3881 // However, when committing memory with HugeTLBFS fails, the region
3882 // that was supposed to be committed will lose the old reservation
3883 // and allow other threads to steal that memory region. Because of this
3884 // behavior we can't commit HugeTLBFS memory.
3885 bool os::can_commit_large_page_memory() {
3886   return UseTransparentHugePages;
3887 }
3888 
3889 bool os::can_execute_large_page_memory() {
3890   return UseTransparentHugePages || UseHugeTLBFS;
3891 }
3892 
3893 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3894   assert(file_desc >= 0, "file_desc is not valid");
3895   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3896   if (result != NULL) {
3897     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3898       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3899     }
3900   }
3901   return result;
3902 }
3903 
3904 // Reserve memory at an arbitrary address, only if that area is
3905 // available (and not reserved for something else).
3906 
3907 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3908   const int max_tries = 10;
3909   char* base[max_tries];
3910   size_t size[max_tries];
3911   const size_t gap = 0x000000;
3912 
3913   // Assert only that the size is a multiple of the page size, since
3914   // that's all that mmap requires, and since that's all we really know
3915   // about at this low abstraction level.  If we need higher alignment,
3916   // we can either pass an alignment to this method or verify alignment
3917   // in one of the methods further up the call chain.  See bug 5044738.
3918   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3919 
3920   // Repeatedly allocate blocks until the block is allocated at the
3921   // right spot.
3922 
3923   // Linux mmap allows caller to pass an address as hint; give it a try first,
3924   // if kernel honors the hint then we can return immediately.
3925   char * addr = anon_mmap(requested_addr, bytes, false);
3926   if (addr == requested_addr) {
3927     return requested_addr;
3928   }
3929 
3930   if (addr != NULL) {
3931     // mmap() is successful but it fails to reserve at the requested address
3932     anon_munmap(addr, bytes);
3933   }
3934 
3935   int i;
3936   for (i = 0; i < max_tries; ++i) {
3937     base[i] = reserve_memory(bytes);
3938 
3939     if (base[i] != NULL) {
3940       // Is this the block we wanted?
3941       if (base[i] == requested_addr) {
3942         size[i] = bytes;
3943         break;
3944       }
3945 
3946       // Does this overlap the block we wanted? Give back the overlapped
3947       // parts and try again.
3948 
3949       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3950       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3951         unmap_memory(base[i], top_overlap);
3952         base[i] += top_overlap;
3953         size[i] = bytes - top_overlap;
3954       } else {
3955         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3956         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3957           unmap_memory(requested_addr, bottom_overlap);
3958           size[i] = bytes - bottom_overlap;
3959         } else {
3960           size[i] = bytes;
3961         }
3962       }
3963     }
3964   }
3965 
3966   // Give back the unused reserved pieces.
3967 
3968   for (int j = 0; j < i; ++j) {
3969     if (base[j] != NULL) {
3970       unmap_memory(base[j], size[j]);
3971     }
3972   }
3973 
3974   if (i < max_tries) {
3975     return requested_addr;
3976   } else {
3977     return NULL;
3978   }
3979 }
3980 
3981 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3982   return ::read(fd, buf, nBytes);
3983 }
3984 
3985 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3986   return ::pread(fd, buf, nBytes, offset);
3987 }
3988 
3989 // Short sleep, direct OS call.
3990 //
3991 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3992 // sched_yield(2) will actually give up the CPU:
3993 //
3994 //   * Alone on this pariticular CPU, keeps running.
3995 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3996 //     (pre 2.6.39).
3997 //
3998 // So calling this with 0 is an alternative.
3999 //
4000 void os::naked_short_sleep(jlong ms) {
4001   struct timespec req;
4002 
4003   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4004   req.tv_sec = 0;
4005   if (ms > 0) {
4006     req.tv_nsec = (ms % 1000) * 1000000;
4007   } else {
4008     req.tv_nsec = 1;
4009   }
4010 
4011   nanosleep(&req, NULL);
4012 
4013   return;
4014 }
4015 
4016 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4017 void os::infinite_sleep() {
4018   while (true) {    // sleep forever ...
4019     ::sleep(100);   // ... 100 seconds at a time
4020   }
4021 }
4022 
4023 // Used to convert frequent JVM_Yield() to nops
4024 bool os::dont_yield() {
4025   return DontYieldALot;
4026 }
4027 
4028 void os::naked_yield() {
4029   sched_yield();
4030 }
4031 
4032 ////////////////////////////////////////////////////////////////////////////////
4033 // thread priority support
4034 
4035 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4036 // only supports dynamic priority, static priority must be zero. For real-time
4037 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4038 // However, for large multi-threaded applications, SCHED_RR is not only slower
4039 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4040 // of 5 runs - Sep 2005).
4041 //
4042 // The following code actually changes the niceness of kernel-thread/LWP. It
4043 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4044 // not the entire user process, and user level threads are 1:1 mapped to kernel
4045 // threads. It has always been the case, but could change in the future. For
4046 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4047 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4048 
4049 int os::java_to_os_priority[CriticalPriority + 1] = {
4050   19,              // 0 Entry should never be used
4051 
4052    4,              // 1 MinPriority
4053    3,              // 2
4054    2,              // 3
4055 
4056    1,              // 4
4057    0,              // 5 NormPriority
4058   -1,              // 6
4059 
4060   -2,              // 7
4061   -3,              // 8
4062   -4,              // 9 NearMaxPriority
4063 
4064   -5,              // 10 MaxPriority
4065 
4066   -5               // 11 CriticalPriority
4067 };
4068 
4069 static int prio_init() {
4070   if (ThreadPriorityPolicy == 1) {
4071     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4072     // if effective uid is not root. Perhaps, a more elegant way of doing
4073     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4074     if (geteuid() != 0) {
4075       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4076         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4077       }
4078       ThreadPriorityPolicy = 0;
4079     }
4080   }
4081   if (UseCriticalJavaThreadPriority) {
4082     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4083   }
4084   return 0;
4085 }
4086 
4087 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4088   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4089 
4090   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4091   return (ret == 0) ? OS_OK : OS_ERR;
4092 }
4093 
4094 OSReturn os::get_native_priority(const Thread* const thread,
4095                                  int *priority_ptr) {
4096   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4097     *priority_ptr = java_to_os_priority[NormPriority];
4098     return OS_OK;
4099   }
4100 
4101   errno = 0;
4102   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4103   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4104 }
4105 
4106 // Hint to the underlying OS that a task switch would not be good.
4107 // Void return because it's a hint and can fail.
4108 void os::hint_no_preempt() {}
4109 
4110 ////////////////////////////////////////////////////////////////////////////////
4111 // suspend/resume support
4112 
4113 //  The low-level signal-based suspend/resume support is a remnant from the
4114 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4115 //  within hotspot. Currently used by JFR's OSThreadSampler
4116 //
4117 //  The remaining code is greatly simplified from the more general suspension
4118 //  code that used to be used.
4119 //
4120 //  The protocol is quite simple:
4121 //  - suspend:
4122 //      - sends a signal to the target thread
4123 //      - polls the suspend state of the osthread using a yield loop
4124 //      - target thread signal handler (SR_handler) sets suspend state
4125 //        and blocks in sigsuspend until continued
4126 //  - resume:
4127 //      - sets target osthread state to continue
4128 //      - sends signal to end the sigsuspend loop in the SR_handler
4129 //
4130 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4131 //  but is checked for NULL in SR_handler as a thread termination indicator.
4132 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4133 //
4134 //  Note that resume_clear_context() and suspend_save_context() are needed
4135 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4136 //  which in part is used by:
4137 //    - Forte Analyzer: AsyncGetCallTrace()
4138 //    - StackBanging: get_frame_at_stack_banging_point()
4139 
4140 static void resume_clear_context(OSThread *osthread) {
4141   osthread->set_ucontext(NULL);
4142   osthread->set_siginfo(NULL);
4143 }
4144 
4145 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4146                                  ucontext_t* context) {
4147   osthread->set_ucontext(context);
4148   osthread->set_siginfo(siginfo);
4149 }
4150 
4151 // Handler function invoked when a thread's execution is suspended or
4152 // resumed. We have to be careful that only async-safe functions are
4153 // called here (Note: most pthread functions are not async safe and
4154 // should be avoided.)
4155 //
4156 // Note: sigwait() is a more natural fit than sigsuspend() from an
4157 // interface point of view, but sigwait() prevents the signal hander
4158 // from being run. libpthread would get very confused by not having
4159 // its signal handlers run and prevents sigwait()'s use with the
4160 // mutex granting granting signal.
4161 //
4162 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4163 //
4164 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4165   // Save and restore errno to avoid confusing native code with EINTR
4166   // after sigsuspend.
4167   int old_errno = errno;
4168 
4169   Thread* thread = Thread::current_or_null_safe();
4170   assert(thread != NULL, "Missing current thread in SR_handler");
4171 
4172   // On some systems we have seen signal delivery get "stuck" until the signal
4173   // mask is changed as part of thread termination. Check that the current thread
4174   // has not already terminated (via SR_lock()) - else the following assertion
4175   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4176   // destructor has completed.
4177 
4178   if (thread->SR_lock() == NULL) {
4179     return;
4180   }
4181 
4182   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4183 
4184   OSThread* osthread = thread->osthread();
4185 
4186   os::SuspendResume::State current = osthread->sr.state();
4187   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4188     suspend_save_context(osthread, siginfo, context);
4189 
4190     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4191     os::SuspendResume::State state = osthread->sr.suspended();
4192     if (state == os::SuspendResume::SR_SUSPENDED) {
4193       sigset_t suspend_set;  // signals for sigsuspend()
4194       sigemptyset(&suspend_set);
4195       // get current set of blocked signals and unblock resume signal
4196       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4197       sigdelset(&suspend_set, SR_signum);
4198 
4199       sr_semaphore.signal();
4200       // wait here until we are resumed
4201       while (1) {
4202         sigsuspend(&suspend_set);
4203 
4204         os::SuspendResume::State result = osthread->sr.running();
4205         if (result == os::SuspendResume::SR_RUNNING) {
4206           sr_semaphore.signal();
4207           break;
4208         }
4209       }
4210 
4211     } else if (state == os::SuspendResume::SR_RUNNING) {
4212       // request was cancelled, continue
4213     } else {
4214       ShouldNotReachHere();
4215     }
4216 
4217     resume_clear_context(osthread);
4218   } else if (current == os::SuspendResume::SR_RUNNING) {
4219     // request was cancelled, continue
4220   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4221     // ignore
4222   } else {
4223     // ignore
4224   }
4225 
4226   errno = old_errno;
4227 }
4228 
4229 static int SR_initialize() {
4230   struct sigaction act;
4231   char *s;
4232 
4233   // Get signal number to use for suspend/resume
4234   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4235     int sig = ::strtol(s, 0, 10);
4236     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4237         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4238       SR_signum = sig;
4239     } else {
4240       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4241               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4242     }
4243   }
4244 
4245   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4246          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4247 
4248   sigemptyset(&SR_sigset);
4249   sigaddset(&SR_sigset, SR_signum);
4250 
4251   // Set up signal handler for suspend/resume
4252   act.sa_flags = SA_RESTART|SA_SIGINFO;
4253   act.sa_handler = (void (*)(int)) SR_handler;
4254 
4255   // SR_signum is blocked by default.
4256   // 4528190 - We also need to block pthread restart signal (32 on all
4257   // supported Linux platforms). Note that LinuxThreads need to block
4258   // this signal for all threads to work properly. So we don't have
4259   // to use hard-coded signal number when setting up the mask.
4260   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4261 
4262   if (sigaction(SR_signum, &act, 0) == -1) {
4263     return -1;
4264   }
4265 
4266   // Save signal flag
4267   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4268   return 0;
4269 }
4270 
4271 static int sr_notify(OSThread* osthread) {
4272   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4273   assert_status(status == 0, status, "pthread_kill");
4274   return status;
4275 }
4276 
4277 // "Randomly" selected value for how long we want to spin
4278 // before bailing out on suspending a thread, also how often
4279 // we send a signal to a thread we want to resume
4280 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4281 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4282 
4283 // returns true on success and false on error - really an error is fatal
4284 // but this seems the normal response to library errors
4285 static bool do_suspend(OSThread* osthread) {
4286   assert(osthread->sr.is_running(), "thread should be running");
4287   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4288 
4289   // mark as suspended and send signal
4290   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4291     // failed to switch, state wasn't running?
4292     ShouldNotReachHere();
4293     return false;
4294   }
4295 
4296   if (sr_notify(osthread) != 0) {
4297     ShouldNotReachHere();
4298   }
4299 
4300   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4301   while (true) {
4302     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4303       break;
4304     } else {
4305       // timeout
4306       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4307       if (cancelled == os::SuspendResume::SR_RUNNING) {
4308         return false;
4309       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4310         // make sure that we consume the signal on the semaphore as well
4311         sr_semaphore.wait();
4312         break;
4313       } else {
4314         ShouldNotReachHere();
4315         return false;
4316       }
4317     }
4318   }
4319 
4320   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4321   return true;
4322 }
4323 
4324 static void do_resume(OSThread* osthread) {
4325   assert(osthread->sr.is_suspended(), "thread should be suspended");
4326   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4327 
4328   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4329     // failed to switch to WAKEUP_REQUEST
4330     ShouldNotReachHere();
4331     return;
4332   }
4333 
4334   while (true) {
4335     if (sr_notify(osthread) == 0) {
4336       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4337         if (osthread->sr.is_running()) {
4338           return;
4339         }
4340       }
4341     } else {
4342       ShouldNotReachHere();
4343     }
4344   }
4345 
4346   guarantee(osthread->sr.is_running(), "Must be running!");
4347 }
4348 
4349 ///////////////////////////////////////////////////////////////////////////////////
4350 // signal handling (except suspend/resume)
4351 
4352 // This routine may be used by user applications as a "hook" to catch signals.
4353 // The user-defined signal handler must pass unrecognized signals to this
4354 // routine, and if it returns true (non-zero), then the signal handler must
4355 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4356 // routine will never retun false (zero), but instead will execute a VM panic
4357 // routine kill the process.
4358 //
4359 // If this routine returns false, it is OK to call it again.  This allows
4360 // the user-defined signal handler to perform checks either before or after
4361 // the VM performs its own checks.  Naturally, the user code would be making
4362 // a serious error if it tried to handle an exception (such as a null check
4363 // or breakpoint) that the VM was generating for its own correct operation.
4364 //
4365 // This routine may recognize any of the following kinds of signals:
4366 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4367 // It should be consulted by handlers for any of those signals.
4368 //
4369 // The caller of this routine must pass in the three arguments supplied
4370 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4371 // field of the structure passed to sigaction().  This routine assumes that
4372 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4373 //
4374 // Note that the VM will print warnings if it detects conflicting signal
4375 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4376 //
4377 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4378                                                  siginfo_t* siginfo,
4379                                                  void* ucontext,
4380                                                  int abort_if_unrecognized);
4381 
4382 void signalHandler(int sig, siginfo_t* info, void* uc) {
4383   assert(info != NULL && uc != NULL, "it must be old kernel");
4384   int orig_errno = errno;  // Preserve errno value over signal handler.
4385   JVM_handle_linux_signal(sig, info, uc, true);
4386   errno = orig_errno;
4387 }
4388 
4389 
4390 // This boolean allows users to forward their own non-matching signals
4391 // to JVM_handle_linux_signal, harmlessly.
4392 bool os::Linux::signal_handlers_are_installed = false;
4393 
4394 // For signal-chaining
4395 struct sigaction sigact[NSIG];
4396 uint64_t sigs = 0;
4397 #if (64 < NSIG-1)
4398 #error "Not all signals can be encoded in sigs. Adapt its type!"
4399 #endif
4400 bool os::Linux::libjsig_is_loaded = false;
4401 typedef struct sigaction *(*get_signal_t)(int);
4402 get_signal_t os::Linux::get_signal_action = NULL;
4403 
4404 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4405   struct sigaction *actp = NULL;
4406 
4407   if (libjsig_is_loaded) {
4408     // Retrieve the old signal handler from libjsig
4409     actp = (*get_signal_action)(sig);
4410   }
4411   if (actp == NULL) {
4412     // Retrieve the preinstalled signal handler from jvm
4413     actp = get_preinstalled_handler(sig);
4414   }
4415 
4416   return actp;
4417 }
4418 
4419 static bool call_chained_handler(struct sigaction *actp, int sig,
4420                                  siginfo_t *siginfo, void *context) {
4421   // Call the old signal handler
4422   if (actp->sa_handler == SIG_DFL) {
4423     // It's more reasonable to let jvm treat it as an unexpected exception
4424     // instead of taking the default action.
4425     return false;
4426   } else if (actp->sa_handler != SIG_IGN) {
4427     if ((actp->sa_flags & SA_NODEFER) == 0) {
4428       // automaticlly block the signal
4429       sigaddset(&(actp->sa_mask), sig);
4430     }
4431 
4432     sa_handler_t hand = NULL;
4433     sa_sigaction_t sa = NULL;
4434     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4435     // retrieve the chained handler
4436     if (siginfo_flag_set) {
4437       sa = actp->sa_sigaction;
4438     } else {
4439       hand = actp->sa_handler;
4440     }
4441 
4442     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4443       actp->sa_handler = SIG_DFL;
4444     }
4445 
4446     // try to honor the signal mask
4447     sigset_t oset;
4448     sigemptyset(&oset);
4449     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4450 
4451     // call into the chained handler
4452     if (siginfo_flag_set) {
4453       (*sa)(sig, siginfo, context);
4454     } else {
4455       (*hand)(sig);
4456     }
4457 
4458     // restore the signal mask
4459     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4460   }
4461   // Tell jvm's signal handler the signal is taken care of.
4462   return true;
4463 }
4464 
4465 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4466   bool chained = false;
4467   // signal-chaining
4468   if (UseSignalChaining) {
4469     struct sigaction *actp = get_chained_signal_action(sig);
4470     if (actp != NULL) {
4471       chained = call_chained_handler(actp, sig, siginfo, context);
4472     }
4473   }
4474   return chained;
4475 }
4476 
4477 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4478   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4479     return &sigact[sig];
4480   }
4481   return NULL;
4482 }
4483 
4484 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4485   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4486   sigact[sig] = oldAct;
4487   sigs |= (uint64_t)1 << (sig-1);
4488 }
4489 
4490 // for diagnostic
4491 int sigflags[NSIG];
4492 
4493 int os::Linux::get_our_sigflags(int sig) {
4494   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4495   return sigflags[sig];
4496 }
4497 
4498 void os::Linux::set_our_sigflags(int sig, int flags) {
4499   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4500   if (sig > 0 && sig < NSIG) {
4501     sigflags[sig] = flags;
4502   }
4503 }
4504 
4505 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4506   // Check for overwrite.
4507   struct sigaction oldAct;
4508   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4509 
4510   void* oldhand = oldAct.sa_sigaction
4511                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4512                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4513   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4514       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4515       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4516     if (AllowUserSignalHandlers || !set_installed) {
4517       // Do not overwrite; user takes responsibility to forward to us.
4518       return;
4519     } else if (UseSignalChaining) {
4520       // save the old handler in jvm
4521       save_preinstalled_handler(sig, oldAct);
4522       // libjsig also interposes the sigaction() call below and saves the
4523       // old sigaction on it own.
4524     } else {
4525       fatal("Encountered unexpected pre-existing sigaction handler "
4526             "%#lx for signal %d.", (long)oldhand, sig);
4527     }
4528   }
4529 
4530   struct sigaction sigAct;
4531   sigfillset(&(sigAct.sa_mask));
4532   sigAct.sa_handler = SIG_DFL;
4533   if (!set_installed) {
4534     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4535   } else {
4536     sigAct.sa_sigaction = signalHandler;
4537     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4538   }
4539   // Save flags, which are set by ours
4540   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4541   sigflags[sig] = sigAct.sa_flags;
4542 
4543   int ret = sigaction(sig, &sigAct, &oldAct);
4544   assert(ret == 0, "check");
4545 
4546   void* oldhand2  = oldAct.sa_sigaction
4547                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4548                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4549   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4550 }
4551 
4552 // install signal handlers for signals that HotSpot needs to
4553 // handle in order to support Java-level exception handling.
4554 
4555 void os::Linux::install_signal_handlers() {
4556   if (!signal_handlers_are_installed) {
4557     signal_handlers_are_installed = true;
4558 
4559     // signal-chaining
4560     typedef void (*signal_setting_t)();
4561     signal_setting_t begin_signal_setting = NULL;
4562     signal_setting_t end_signal_setting = NULL;
4563     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4564                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4565     if (begin_signal_setting != NULL) {
4566       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4567                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4568       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4569                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4570       libjsig_is_loaded = true;
4571       assert(UseSignalChaining, "should enable signal-chaining");
4572     }
4573     if (libjsig_is_loaded) {
4574       // Tell libjsig jvm is setting signal handlers
4575       (*begin_signal_setting)();
4576     }
4577 
4578     set_signal_handler(SIGSEGV, true);
4579     set_signal_handler(SIGPIPE, true);
4580     set_signal_handler(SIGBUS, true);
4581     set_signal_handler(SIGILL, true);
4582     set_signal_handler(SIGFPE, true);
4583 #if defined(PPC64)
4584     set_signal_handler(SIGTRAP, true);
4585 #endif
4586     set_signal_handler(SIGXFSZ, true);
4587 
4588     if (libjsig_is_loaded) {
4589       // Tell libjsig jvm finishes setting signal handlers
4590       (*end_signal_setting)();
4591     }
4592 
4593     // We don't activate signal checker if libjsig is in place, we trust ourselves
4594     // and if UserSignalHandler is installed all bets are off.
4595     // Log that signal checking is off only if -verbose:jni is specified.
4596     if (CheckJNICalls) {
4597       if (libjsig_is_loaded) {
4598         if (PrintJNIResolving) {
4599           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4600         }
4601         check_signals = false;
4602       }
4603       if (AllowUserSignalHandlers) {
4604         if (PrintJNIResolving) {
4605           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4606         }
4607         check_signals = false;
4608       }
4609     }
4610   }
4611 }
4612 
4613 // This is the fastest way to get thread cpu time on Linux.
4614 // Returns cpu time (user+sys) for any thread, not only for current.
4615 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4616 // It might work on 2.6.10+ with a special kernel/glibc patch.
4617 // For reference, please, see IEEE Std 1003.1-2004:
4618 //   http://www.unix.org/single_unix_specification
4619 
4620 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4621   struct timespec tp;
4622   int rc = os::Linux::clock_gettime(clockid, &tp);
4623   assert(rc == 0, "clock_gettime is expected to return 0 code");
4624 
4625   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4626 }
4627 
4628 void os::Linux::initialize_os_info() {
4629   assert(_os_version == 0, "OS info already initialized");
4630 
4631   struct utsname _uname;
4632 
4633   uint32_t major;
4634   uint32_t minor;
4635   uint32_t fix;
4636 
4637   int rc;
4638 
4639   // Kernel version is unknown if
4640   // verification below fails.
4641   _os_version = 0x01000000;
4642 
4643   rc = uname(&_uname);
4644   if (rc != -1) {
4645 
4646     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4647     if (rc == 3) {
4648 
4649       if (major < 256 && minor < 256 && fix < 256) {
4650         // Kernel version format is as expected,
4651         // set it overriding unknown state.
4652         _os_version = (major << 16) |
4653                       (minor << 8 ) |
4654                       (fix   << 0 ) ;
4655       }
4656     }
4657   }
4658 }
4659 
4660 uint32_t os::Linux::os_version() {
4661   assert(_os_version != 0, "not initialized");
4662   return _os_version & 0x00FFFFFF;
4663 }
4664 
4665 bool os::Linux::os_version_is_known() {
4666   assert(_os_version != 0, "not initialized");
4667   return _os_version & 0x01000000 ? false : true;
4668 }
4669 
4670 /////
4671 // glibc on Linux platform uses non-documented flag
4672 // to indicate, that some special sort of signal
4673 // trampoline is used.
4674 // We will never set this flag, and we should
4675 // ignore this flag in our diagnostic
4676 #ifdef SIGNIFICANT_SIGNAL_MASK
4677   #undef SIGNIFICANT_SIGNAL_MASK
4678 #endif
4679 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4680 
4681 static const char* get_signal_handler_name(address handler,
4682                                            char* buf, int buflen) {
4683   int offset = 0;
4684   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4685   if (found) {
4686     // skip directory names
4687     const char *p1, *p2;
4688     p1 = buf;
4689     size_t len = strlen(os::file_separator());
4690     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4691     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4692   } else {
4693     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4694   }
4695   return buf;
4696 }
4697 
4698 static void print_signal_handler(outputStream* st, int sig,
4699                                  char* buf, size_t buflen) {
4700   struct sigaction sa;
4701 
4702   sigaction(sig, NULL, &sa);
4703 
4704   // See comment for SIGNIFICANT_SIGNAL_MASK define
4705   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4706 
4707   st->print("%s: ", os::exception_name(sig, buf, buflen));
4708 
4709   address handler = (sa.sa_flags & SA_SIGINFO)
4710     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4711     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4712 
4713   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4714     st->print("SIG_DFL");
4715   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4716     st->print("SIG_IGN");
4717   } else {
4718     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4719   }
4720 
4721   st->print(", sa_mask[0]=");
4722   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4723 
4724   address rh = VMError::get_resetted_sighandler(sig);
4725   // May be, handler was resetted by VMError?
4726   if (rh != NULL) {
4727     handler = rh;
4728     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4729   }
4730 
4731   st->print(", sa_flags=");
4732   os::Posix::print_sa_flags(st, sa.sa_flags);
4733 
4734   // Check: is it our handler?
4735   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4736       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4737     // It is our signal handler
4738     // check for flags, reset system-used one!
4739     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4740       st->print(
4741                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4742                 os::Linux::get_our_sigflags(sig));
4743     }
4744   }
4745   st->cr();
4746 }
4747 
4748 
4749 #define DO_SIGNAL_CHECK(sig)                      \
4750   do {                                            \
4751     if (!sigismember(&check_signal_done, sig)) {  \
4752       os::Linux::check_signal_handler(sig);       \
4753     }                                             \
4754   } while (0)
4755 
4756 // This method is a periodic task to check for misbehaving JNI applications
4757 // under CheckJNI, we can add any periodic checks here
4758 
4759 void os::run_periodic_checks() {
4760   if (check_signals == false) return;
4761 
4762   // SEGV and BUS if overridden could potentially prevent
4763   // generation of hs*.log in the event of a crash, debugging
4764   // such a case can be very challenging, so we absolutely
4765   // check the following for a good measure:
4766   DO_SIGNAL_CHECK(SIGSEGV);
4767   DO_SIGNAL_CHECK(SIGILL);
4768   DO_SIGNAL_CHECK(SIGFPE);
4769   DO_SIGNAL_CHECK(SIGBUS);
4770   DO_SIGNAL_CHECK(SIGPIPE);
4771   DO_SIGNAL_CHECK(SIGXFSZ);
4772 #if defined(PPC64)
4773   DO_SIGNAL_CHECK(SIGTRAP);
4774 #endif
4775 
4776   // ReduceSignalUsage allows the user to override these handlers
4777   // see comments at the very top and jvm_md.h
4778   if (!ReduceSignalUsage) {
4779     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4780     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4781     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4782     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4783   }
4784 
4785   DO_SIGNAL_CHECK(SR_signum);
4786 }
4787 
4788 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4789 
4790 static os_sigaction_t os_sigaction = NULL;
4791 
4792 void os::Linux::check_signal_handler(int sig) {
4793   char buf[O_BUFLEN];
4794   address jvmHandler = NULL;
4795 
4796 
4797   struct sigaction act;
4798   if (os_sigaction == NULL) {
4799     // only trust the default sigaction, in case it has been interposed
4800     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4801     if (os_sigaction == NULL) return;
4802   }
4803 
4804   os_sigaction(sig, (struct sigaction*)NULL, &act);
4805 
4806 
4807   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4808 
4809   address thisHandler = (act.sa_flags & SA_SIGINFO)
4810     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4811     : CAST_FROM_FN_PTR(address, act.sa_handler);
4812 
4813 
4814   switch (sig) {
4815   case SIGSEGV:
4816   case SIGBUS:
4817   case SIGFPE:
4818   case SIGPIPE:
4819   case SIGILL:
4820   case SIGXFSZ:
4821     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4822     break;
4823 
4824   case SHUTDOWN1_SIGNAL:
4825   case SHUTDOWN2_SIGNAL:
4826   case SHUTDOWN3_SIGNAL:
4827   case BREAK_SIGNAL:
4828     jvmHandler = (address)user_handler();
4829     break;
4830 
4831   default:
4832     if (sig == SR_signum) {
4833       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4834     } else {
4835       return;
4836     }
4837     break;
4838   }
4839 
4840   if (thisHandler != jvmHandler) {
4841     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4842     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4843     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4844     // No need to check this sig any longer
4845     sigaddset(&check_signal_done, sig);
4846     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4847     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4848       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4849                     exception_name(sig, buf, O_BUFLEN));
4850     }
4851   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4852     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4853     tty->print("expected:");
4854     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4855     tty->cr();
4856     tty->print("  found:");
4857     os::Posix::print_sa_flags(tty, act.sa_flags);
4858     tty->cr();
4859     // No need to check this sig any longer
4860     sigaddset(&check_signal_done, sig);
4861   }
4862 
4863   // Dump all the signal
4864   if (sigismember(&check_signal_done, sig)) {
4865     print_signal_handlers(tty, buf, O_BUFLEN);
4866   }
4867 }
4868 
4869 extern void report_error(char* file_name, int line_no, char* title,
4870                          char* format, ...);
4871 
4872 // this is called _before_ most of the global arguments have been parsed
4873 void os::init(void) {
4874   char dummy;   // used to get a guess on initial stack address
4875 
4876   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4877 
4878   init_random(1234567);
4879 
4880   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4881   if (Linux::page_size() == -1) {
4882     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4883           os::strerror(errno));
4884   }
4885   init_page_sizes((size_t) Linux::page_size());
4886 
4887   Linux::initialize_system_info();
4888 
4889   Linux::initialize_os_info();
4890 
4891   // _main_thread points to the thread that created/loaded the JVM.
4892   Linux::_main_thread = pthread_self();
4893 
4894   Linux::clock_init();
4895   initial_time_count = javaTimeNanos();
4896 
4897   // retrieve entry point for pthread_setname_np
4898   Linux::_pthread_setname_np =
4899     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4900 
4901   os::Posix::init();
4902 }
4903 
4904 // To install functions for atexit system call
4905 extern "C" {
4906   static void perfMemory_exit_helper() {
4907     perfMemory_exit();
4908   }
4909 }
4910 
4911 void os::pd_init_container_support() {
4912   OSContainer::init();
4913 }
4914 
4915 // this is called _after_ the global arguments have been parsed
4916 jint os::init_2(void) {
4917 
4918   os::Posix::init_2();
4919 
4920   Linux::fast_thread_clock_init();
4921 
4922   // initialize suspend/resume support - must do this before signal_sets_init()
4923   if (SR_initialize() != 0) {
4924     perror("SR_initialize failed");
4925     return JNI_ERR;
4926   }
4927 
4928   Linux::signal_sets_init();
4929   Linux::install_signal_handlers();
4930 
4931   // Check and sets minimum stack sizes against command line options
4932   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4933     return JNI_ERR;
4934   }
4935   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4936 
4937 #if defined(IA32)
4938   workaround_expand_exec_shield_cs_limit();
4939 #endif
4940 
4941   Linux::libpthread_init();
4942   Linux::sched_getcpu_init();
4943   log_info(os)("HotSpot is running with %s, %s",
4944                Linux::glibc_version(), Linux::libpthread_version());
4945 
4946   if (UseNUMA) {
4947     if (!Linux::libnuma_init()) {
4948       UseNUMA = false;
4949     } else {
4950       if ((Linux::numa_max_node() < 1)) {
4951         // There's only one node(they start from 0), disable NUMA.
4952         UseNUMA = false;
4953       }
4954     }
4955 
4956     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4957       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4958       // we can make the adaptive lgrp chunk resizing work. If the user specified both
4959       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
4960       // and disable adaptive resizing.
4961       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4962         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
4963                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4964         UseAdaptiveSizePolicy = false;
4965         UseAdaptiveNUMAChunkSizing = false;
4966       }
4967     }
4968 
4969     if (!UseNUMA && ForceNUMA) {
4970       UseNUMA = true;
4971     }
4972   }
4973 
4974   if (MaxFDLimit) {
4975     // set the number of file descriptors to max. print out error
4976     // if getrlimit/setrlimit fails but continue regardless.
4977     struct rlimit nbr_files;
4978     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4979     if (status != 0) {
4980       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4981     } else {
4982       nbr_files.rlim_cur = nbr_files.rlim_max;
4983       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4984       if (status != 0) {
4985         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4986       }
4987     }
4988   }
4989 
4990   // Initialize lock used to serialize thread creation (see os::create_thread)
4991   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4992 
4993   // at-exit methods are called in the reverse order of their registration.
4994   // atexit functions are called on return from main or as a result of a
4995   // call to exit(3C). There can be only 32 of these functions registered
4996   // and atexit() does not set errno.
4997 
4998   if (PerfAllowAtExitRegistration) {
4999     // only register atexit functions if PerfAllowAtExitRegistration is set.
5000     // atexit functions can be delayed until process exit time, which
5001     // can be problematic for embedded VM situations. Embedded VMs should
5002     // call DestroyJavaVM() to assure that VM resources are released.
5003 
5004     // note: perfMemory_exit_helper atexit function may be removed in
5005     // the future if the appropriate cleanup code can be added to the
5006     // VM_Exit VMOperation's doit method.
5007     if (atexit(perfMemory_exit_helper) != 0) {
5008       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5009     }
5010   }
5011 
5012   // initialize thread priority policy
5013   prio_init();
5014 
5015   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5016     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5017   }
5018   return JNI_OK;
5019 }
5020 
5021 // Mark the polling page as unreadable
5022 void os::make_polling_page_unreadable(void) {
5023   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5024     fatal("Could not disable polling page");
5025   }
5026 }
5027 
5028 // Mark the polling page as readable
5029 void os::make_polling_page_readable(void) {
5030   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5031     fatal("Could not enable polling page");
5032   }
5033 }
5034 
5035 // older glibc versions don't have this macro (which expands to
5036 // an optimized bit-counting function) so we have to roll our own
5037 #ifndef CPU_COUNT
5038 
5039 static int _cpu_count(const cpu_set_t* cpus) {
5040   int count = 0;
5041   // only look up to the number of configured processors
5042   for (int i = 0; i < os::processor_count(); i++) {
5043     if (CPU_ISSET(i, cpus)) {
5044       count++;
5045     }
5046   }
5047   return count;
5048 }
5049 
5050 #define CPU_COUNT(cpus) _cpu_count(cpus)
5051 
5052 #endif // CPU_COUNT
5053 
5054 // Get the current number of available processors for this process.
5055 // This value can change at any time during a process's lifetime.
5056 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5057 // If it appears there may be more than 1024 processors then we do a
5058 // dynamic check - see 6515172 for details.
5059 // If anything goes wrong we fallback to returning the number of online
5060 // processors - which can be greater than the number available to the process.
5061 int os::Linux::active_processor_count() {
5062   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5063   cpu_set_t* cpus_p = &cpus;
5064   int cpus_size = sizeof(cpu_set_t);
5065 
5066   int configured_cpus = os::processor_count();  // upper bound on available cpus
5067   int cpu_count = 0;
5068 
5069 // old build platforms may not support dynamic cpu sets
5070 #ifdef CPU_ALLOC
5071 
5072   // To enable easy testing of the dynamic path on different platforms we
5073   // introduce a diagnostic flag: UseCpuAllocPath
5074   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5075     // kernel may use a mask bigger than cpu_set_t
5076     log_trace(os)("active_processor_count: using dynamic path %s"
5077                   "- configured processors: %d",
5078                   UseCpuAllocPath ? "(forced) " : "",
5079                   configured_cpus);
5080     cpus_p = CPU_ALLOC(configured_cpus);
5081     if (cpus_p != NULL) {
5082       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5083       // zero it just to be safe
5084       CPU_ZERO_S(cpus_size, cpus_p);
5085     }
5086     else {
5087        // failed to allocate so fallback to online cpus
5088        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5089        log_trace(os)("active_processor_count: "
5090                      "CPU_ALLOC failed (%s) - using "
5091                      "online processor count: %d",
5092                      os::strerror(errno), online_cpus);
5093        return online_cpus;
5094     }
5095   }
5096   else {
5097     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5098                   configured_cpus);
5099   }
5100 #else // CPU_ALLOC
5101 // these stubs won't be executed
5102 #define CPU_COUNT_S(size, cpus) -1
5103 #define CPU_FREE(cpus)
5104 
5105   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5106                 configured_cpus);
5107 #endif // CPU_ALLOC
5108 
5109   // pid 0 means the current thread - which we have to assume represents the process
5110   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5111     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5112       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5113     }
5114     else {
5115       cpu_count = CPU_COUNT(cpus_p);
5116     }
5117     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5118   }
5119   else {
5120     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5121     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5122             "which may exceed available processors", os::strerror(errno), cpu_count);
5123   }
5124 
5125   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5126     CPU_FREE(cpus_p);
5127   }
5128 
5129   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5130   return cpu_count;
5131 }
5132 
5133 // Determine the active processor count from one of
5134 // three different sources:
5135 //
5136 // 1. User option -XX:ActiveProcessorCount
5137 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5138 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5139 //
5140 // Option 1, if specified, will always override.
5141 // If the cgroup subsystem is active and configured, we
5142 // will return the min of the cgroup and option 2 results.
5143 // This is required since tools, such as numactl, that
5144 // alter cpu affinity do not update cgroup subsystem
5145 // cpuset configuration files.
5146 int os::active_processor_count() {
5147   // User has overridden the number of active processors
5148   if (ActiveProcessorCount > 0) {
5149     log_trace(os)("active_processor_count: "
5150                   "active processor count set by user : %d",
5151                   ActiveProcessorCount);
5152     return ActiveProcessorCount;
5153   }
5154 
5155   int active_cpus;
5156   if (OSContainer::is_containerized()) {
5157     active_cpus = OSContainer::active_processor_count();
5158     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5159                    active_cpus);
5160   } else {
5161     active_cpus = os::Linux::active_processor_count();
5162   }
5163 
5164   return active_cpus;
5165 }
5166 
5167 void os::set_native_thread_name(const char *name) {
5168   if (Linux::_pthread_setname_np) {
5169     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5170     snprintf(buf, sizeof(buf), "%s", name);
5171     buf[sizeof(buf) - 1] = '\0';
5172     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5173     // ERANGE should not happen; all other errors should just be ignored.
5174     assert(rc != ERANGE, "pthread_setname_np failed");
5175   }
5176 }
5177 
5178 bool os::distribute_processes(uint length, uint* distribution) {
5179   // Not yet implemented.
5180   return false;
5181 }
5182 
5183 bool os::bind_to_processor(uint processor_id) {
5184   // Not yet implemented.
5185   return false;
5186 }
5187 
5188 ///
5189 
5190 void os::SuspendedThreadTask::internal_do_task() {
5191   if (do_suspend(_thread->osthread())) {
5192     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5193     do_task(context);
5194     do_resume(_thread->osthread());
5195   }
5196 }
5197 
5198 ////////////////////////////////////////////////////////////////////////////////
5199 // debug support
5200 
5201 bool os::find(address addr, outputStream* st) {
5202   Dl_info dlinfo;
5203   memset(&dlinfo, 0, sizeof(dlinfo));
5204   if (dladdr(addr, &dlinfo) != 0) {
5205     st->print(PTR_FORMAT ": ", p2i(addr));
5206     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5207       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5208                 p2i(addr) - p2i(dlinfo.dli_saddr));
5209     } else if (dlinfo.dli_fbase != NULL) {
5210       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5211     } else {
5212       st->print("<absolute address>");
5213     }
5214     if (dlinfo.dli_fname != NULL) {
5215       st->print(" in %s", dlinfo.dli_fname);
5216     }
5217     if (dlinfo.dli_fbase != NULL) {
5218       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5219     }
5220     st->cr();
5221 
5222     if (Verbose) {
5223       // decode some bytes around the PC
5224       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5225       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5226       address       lowest = (address) dlinfo.dli_sname;
5227       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5228       if (begin < lowest)  begin = lowest;
5229       Dl_info dlinfo2;
5230       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5231           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5232         end = (address) dlinfo2.dli_saddr;
5233       }
5234       Disassembler::decode(begin, end, st);
5235     }
5236     return true;
5237   }
5238   return false;
5239 }
5240 
5241 ////////////////////////////////////////////////////////////////////////////////
5242 // misc
5243 
5244 // This does not do anything on Linux. This is basically a hook for being
5245 // able to use structured exception handling (thread-local exception filters)
5246 // on, e.g., Win32.
5247 void
5248 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5249                          JavaCallArguments* args, Thread* thread) {
5250   f(value, method, args, thread);
5251 }
5252 
5253 void os::print_statistics() {
5254 }
5255 
5256 bool os::message_box(const char* title, const char* message) {
5257   int i;
5258   fdStream err(defaultStream::error_fd());
5259   for (i = 0; i < 78; i++) err.print_raw("=");
5260   err.cr();
5261   err.print_raw_cr(title);
5262   for (i = 0; i < 78; i++) err.print_raw("-");
5263   err.cr();
5264   err.print_raw_cr(message);
5265   for (i = 0; i < 78; i++) err.print_raw("=");
5266   err.cr();
5267 
5268   char buf[16];
5269   // Prevent process from exiting upon "read error" without consuming all CPU
5270   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5271 
5272   return buf[0] == 'y' || buf[0] == 'Y';
5273 }
5274 
5275 int os::stat(const char *path, struct stat *sbuf) {
5276   char pathbuf[MAX_PATH];
5277   if (strlen(path) > MAX_PATH - 1) {
5278     errno = ENAMETOOLONG;
5279     return -1;
5280   }
5281   os::native_path(strcpy(pathbuf, path));
5282   return ::stat(pathbuf, sbuf);
5283 }
5284 
5285 // Is a (classpath) directory empty?
5286 bool os::dir_is_empty(const char* path) {
5287   DIR *dir = NULL;
5288   struct dirent *ptr;
5289 
5290   dir = opendir(path);
5291   if (dir == NULL) return true;
5292 
5293   // Scan the directory
5294   bool result = true;
5295   char buf[sizeof(struct dirent) + MAX_PATH];
5296   while (result && (ptr = ::readdir(dir)) != NULL) {
5297     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5298       result = false;
5299     }
5300   }
5301   closedir(dir);
5302   return result;
5303 }
5304 
5305 // This code originates from JDK's sysOpen and open64_w
5306 // from src/solaris/hpi/src/system_md.c
5307 
5308 int os::open(const char *path, int oflag, int mode) {
5309   if (strlen(path) > MAX_PATH - 1) {
5310     errno = ENAMETOOLONG;
5311     return -1;
5312   }
5313 
5314   // All file descriptors that are opened in the Java process and not
5315   // specifically destined for a subprocess should have the close-on-exec
5316   // flag set.  If we don't set it, then careless 3rd party native code
5317   // might fork and exec without closing all appropriate file descriptors
5318   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5319   // turn might:
5320   //
5321   // - cause end-of-file to fail to be detected on some file
5322   //   descriptors, resulting in mysterious hangs, or
5323   //
5324   // - might cause an fopen in the subprocess to fail on a system
5325   //   suffering from bug 1085341.
5326   //
5327   // (Yes, the default setting of the close-on-exec flag is a Unix
5328   // design flaw)
5329   //
5330   // See:
5331   // 1085341: 32-bit stdio routines should support file descriptors >255
5332   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5333   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5334   //
5335   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5336   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5337   // because it saves a system call and removes a small window where the flag
5338   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5339   // and we fall back to using FD_CLOEXEC (see below).
5340 #ifdef O_CLOEXEC
5341   oflag |= O_CLOEXEC;
5342 #endif
5343 
5344   int fd = ::open64(path, oflag, mode);
5345   if (fd == -1) return -1;
5346 
5347   //If the open succeeded, the file might still be a directory
5348   {
5349     struct stat64 buf64;
5350     int ret = ::fstat64(fd, &buf64);
5351     int st_mode = buf64.st_mode;
5352 
5353     if (ret != -1) {
5354       if ((st_mode & S_IFMT) == S_IFDIR) {
5355         errno = EISDIR;
5356         ::close(fd);
5357         return -1;
5358       }
5359     } else {
5360       ::close(fd);
5361       return -1;
5362     }
5363   }
5364 
5365 #ifdef FD_CLOEXEC
5366   // Validate that the use of the O_CLOEXEC flag on open above worked.
5367   // With recent kernels, we will perform this check exactly once.
5368   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5369   if (!O_CLOEXEC_is_known_to_work) {
5370     int flags = ::fcntl(fd, F_GETFD);
5371     if (flags != -1) {
5372       if ((flags & FD_CLOEXEC) != 0)
5373         O_CLOEXEC_is_known_to_work = 1;
5374       else
5375         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5376     }
5377   }
5378 #endif
5379 
5380   return fd;
5381 }
5382 
5383 
5384 // create binary file, rewriting existing file if required
5385 int os::create_binary_file(const char* path, bool rewrite_existing) {
5386   int oflags = O_WRONLY | O_CREAT;
5387   if (!rewrite_existing) {
5388     oflags |= O_EXCL;
5389   }
5390   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5391 }
5392 
5393 // return current position of file pointer
5394 jlong os::current_file_offset(int fd) {
5395   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5396 }
5397 
5398 // move file pointer to the specified offset
5399 jlong os::seek_to_file_offset(int fd, jlong offset) {
5400   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5401 }
5402 
5403 // This code originates from JDK's sysAvailable
5404 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5405 
5406 int os::available(int fd, jlong *bytes) {
5407   jlong cur, end;
5408   int mode;
5409   struct stat64 buf64;
5410 
5411   if (::fstat64(fd, &buf64) >= 0) {
5412     mode = buf64.st_mode;
5413     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5414       int n;
5415       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5416         *bytes = n;
5417         return 1;
5418       }
5419     }
5420   }
5421   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5422     return 0;
5423   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5424     return 0;
5425   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5426     return 0;
5427   }
5428   *bytes = end - cur;
5429   return 1;
5430 }
5431 
5432 // Map a block of memory.
5433 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5434                         char *addr, size_t bytes, bool read_only,
5435                         bool allow_exec) {
5436   int prot;
5437   int flags = MAP_PRIVATE;
5438 
5439   if (read_only) {
5440     prot = PROT_READ;
5441   } else {
5442     prot = PROT_READ | PROT_WRITE;
5443   }
5444 
5445   if (allow_exec) {
5446     prot |= PROT_EXEC;
5447   }
5448 
5449   if (addr != NULL) {
5450     flags |= MAP_FIXED;
5451   }
5452 
5453   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5454                                      fd, file_offset);
5455   if (mapped_address == MAP_FAILED) {
5456     return NULL;
5457   }
5458   return mapped_address;
5459 }
5460 
5461 
5462 // Remap a block of memory.
5463 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5464                           char *addr, size_t bytes, bool read_only,
5465                           bool allow_exec) {
5466   // same as map_memory() on this OS
5467   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5468                         allow_exec);
5469 }
5470 
5471 
5472 // Unmap a block of memory.
5473 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5474   return munmap(addr, bytes) == 0;
5475 }
5476 
5477 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5478 
5479 static clockid_t thread_cpu_clockid(Thread* thread) {
5480   pthread_t tid = thread->osthread()->pthread_id();
5481   clockid_t clockid;
5482 
5483   // Get thread clockid
5484   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5485   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5486   return clockid;
5487 }
5488 
5489 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5490 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5491 // of a thread.
5492 //
5493 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5494 // the fast estimate available on the platform.
5495 
5496 jlong os::current_thread_cpu_time() {
5497   if (os::Linux::supports_fast_thread_cpu_time()) {
5498     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5499   } else {
5500     // return user + sys since the cost is the same
5501     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5502   }
5503 }
5504 
5505 jlong os::thread_cpu_time(Thread* thread) {
5506   // consistent with what current_thread_cpu_time() returns
5507   if (os::Linux::supports_fast_thread_cpu_time()) {
5508     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5509   } else {
5510     return slow_thread_cpu_time(thread, true /* user + sys */);
5511   }
5512 }
5513 
5514 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5515   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5516     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5517   } else {
5518     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5519   }
5520 }
5521 
5522 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5523   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5524     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5525   } else {
5526     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5527   }
5528 }
5529 
5530 //  -1 on error.
5531 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5532   pid_t  tid = thread->osthread()->thread_id();
5533   char *s;
5534   char stat[2048];
5535   int statlen;
5536   char proc_name[64];
5537   int count;
5538   long sys_time, user_time;
5539   char cdummy;
5540   int idummy;
5541   long ldummy;
5542   FILE *fp;
5543 
5544   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5545   fp = fopen(proc_name, "r");
5546   if (fp == NULL) return -1;
5547   statlen = fread(stat, 1, 2047, fp);
5548   stat[statlen] = '\0';
5549   fclose(fp);
5550 
5551   // Skip pid and the command string. Note that we could be dealing with
5552   // weird command names, e.g. user could decide to rename java launcher
5553   // to "java 1.4.2 :)", then the stat file would look like
5554   //                1234 (java 1.4.2 :)) R ... ...
5555   // We don't really need to know the command string, just find the last
5556   // occurrence of ")" and then start parsing from there. See bug 4726580.
5557   s = strrchr(stat, ')');
5558   if (s == NULL) return -1;
5559 
5560   // Skip blank chars
5561   do { s++; } while (s && isspace(*s));
5562 
5563   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5564                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5565                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5566                  &user_time, &sys_time);
5567   if (count != 13) return -1;
5568   if (user_sys_cpu_time) {
5569     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5570   } else {
5571     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5572   }
5573 }
5574 
5575 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5576   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5577   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5578   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5579   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5580 }
5581 
5582 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5583   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5584   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5585   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5586   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5587 }
5588 
5589 bool os::is_thread_cpu_time_supported() {
5590   return true;
5591 }
5592 
5593 // System loadavg support.  Returns -1 if load average cannot be obtained.
5594 // Linux doesn't yet have a (official) notion of processor sets,
5595 // so just return the system wide load average.
5596 int os::loadavg(double loadavg[], int nelem) {
5597   return ::getloadavg(loadavg, nelem);
5598 }
5599 
5600 void os::pause() {
5601   char filename[MAX_PATH];
5602   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5603     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5604   } else {
5605     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5606   }
5607 
5608   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5609   if (fd != -1) {
5610     struct stat buf;
5611     ::close(fd);
5612     while (::stat(filename, &buf) == 0) {
5613       (void)::poll(NULL, 0, 100);
5614     }
5615   } else {
5616     jio_fprintf(stderr,
5617                 "Could not open pause file '%s', continuing immediately.\n", filename);
5618   }
5619 }
5620 
5621 extern char** environ;
5622 
5623 // Run the specified command in a separate process. Return its exit value,
5624 // or -1 on failure (e.g. can't fork a new process).
5625 // Unlike system(), this function can be called from signal handler. It
5626 // doesn't block SIGINT et al.
5627 int os::fork_and_exec(char* cmd) {
5628   const char * argv[4] = {"sh", "-c", cmd, NULL};
5629 
5630   pid_t pid = fork();
5631 
5632   if (pid < 0) {
5633     // fork failed
5634     return -1;
5635 
5636   } else if (pid == 0) {
5637     // child process
5638 
5639     execve("/bin/sh", (char* const*)argv, environ);
5640 
5641     // execve failed
5642     _exit(-1);
5643 
5644   } else  {
5645     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5646     // care about the actual exit code, for now.
5647 
5648     int status;
5649 
5650     // Wait for the child process to exit.  This returns immediately if
5651     // the child has already exited. */
5652     while (waitpid(pid, &status, 0) < 0) {
5653       switch (errno) {
5654       case ECHILD: return 0;
5655       case EINTR: break;
5656       default: return -1;
5657       }
5658     }
5659 
5660     if (WIFEXITED(status)) {
5661       // The child exited normally; get its exit code.
5662       return WEXITSTATUS(status);
5663     } else if (WIFSIGNALED(status)) {
5664       // The child exited because of a signal
5665       // The best value to return is 0x80 + signal number,
5666       // because that is what all Unix shells do, and because
5667       // it allows callers to distinguish between process exit and
5668       // process death by signal.
5669       return 0x80 + WTERMSIG(status);
5670     } else {
5671       // Unknown exit code; pass it through
5672       return status;
5673     }
5674   }
5675 }
5676 
5677 // Get the default path to the core file
5678 // Returns the length of the string
5679 int os::get_core_path(char* buffer, size_t bufferSize) {
5680   /*
5681    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5682    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5683    */
5684   const int core_pattern_len = 129;
5685   char core_pattern[core_pattern_len] = {0};
5686 
5687   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5688   if (core_pattern_file == -1) {
5689     return -1;
5690   }
5691 
5692   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5693   ::close(core_pattern_file);
5694   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5695     return -1;
5696   }
5697   if (core_pattern[ret-1] == '\n') {
5698     core_pattern[ret-1] = '\0';
5699   } else {
5700     core_pattern[ret] = '\0';
5701   }
5702 
5703   char *pid_pos = strstr(core_pattern, "%p");
5704   int written;
5705 
5706   if (core_pattern[0] == '/') {
5707     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5708   } else {
5709     char cwd[PATH_MAX];
5710 
5711     const char* p = get_current_directory(cwd, PATH_MAX);
5712     if (p == NULL) {
5713       return -1;
5714     }
5715 
5716     if (core_pattern[0] == '|') {
5717       written = jio_snprintf(buffer, bufferSize,
5718                              "\"%s\" (or dumping to %s/core.%d)",
5719                              &core_pattern[1], p, current_process_id());
5720     } else {
5721       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5722     }
5723   }
5724 
5725   if (written < 0) {
5726     return -1;
5727   }
5728 
5729   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5730     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5731 
5732     if (core_uses_pid_file != -1) {
5733       char core_uses_pid = 0;
5734       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5735       ::close(core_uses_pid_file);
5736 
5737       if (core_uses_pid == '1') {
5738         jio_snprintf(buffer + written, bufferSize - written,
5739                                           ".%d", current_process_id());
5740       }
5741     }
5742   }
5743 
5744   return strlen(buffer);
5745 }
5746 
5747 bool os::start_debugging(char *buf, int buflen) {
5748   int len = (int)strlen(buf);
5749   char *p = &buf[len];
5750 
5751   jio_snprintf(p, buflen-len,
5752                "\n\n"
5753                "Do you want to debug the problem?\n\n"
5754                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5755                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5756                "Otherwise, press RETURN to abort...",
5757                os::current_process_id(), os::current_process_id(),
5758                os::current_thread_id(), os::current_thread_id());
5759 
5760   bool yes = os::message_box("Unexpected Error", buf);
5761 
5762   if (yes) {
5763     // yes, user asked VM to launch debugger
5764     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5765                  os::current_process_id(), os::current_process_id());
5766 
5767     os::fork_and_exec(buf);
5768     yes = false;
5769   }
5770   return yes;
5771 }
5772 
5773 
5774 // Java/Compiler thread:
5775 //
5776 //   Low memory addresses
5777 // P0 +------------------------+
5778 //    |                        |\  Java thread created by VM does not have glibc
5779 //    |    glibc guard page    | - guard page, attached Java thread usually has
5780 //    |                        |/  1 glibc guard page.
5781 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5782 //    |                        |\
5783 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5784 //    |                        |/
5785 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5786 //    |                        |\
5787 //    |      Normal Stack      | -
5788 //    |                        |/
5789 // P2 +------------------------+ Thread::stack_base()
5790 //
5791 // Non-Java thread:
5792 //
5793 //   Low memory addresses
5794 // P0 +------------------------+
5795 //    |                        |\
5796 //    |  glibc guard page      | - usually 1 page
5797 //    |                        |/
5798 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5799 //    |                        |\
5800 //    |      Normal Stack      | -
5801 //    |                        |/
5802 // P2 +------------------------+ Thread::stack_base()
5803 //
5804 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5805 //    returned from pthread_attr_getstack().
5806 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5807 //    of the stack size given in pthread_attr. We work around this for
5808 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5809 //
5810 #ifndef ZERO
5811 static void current_stack_region(address * bottom, size_t * size) {
5812   if (os::is_primordial_thread()) {
5813     // primordial thread needs special handling because pthread_getattr_np()
5814     // may return bogus value.
5815     *bottom = os::Linux::initial_thread_stack_bottom();
5816     *size   = os::Linux::initial_thread_stack_size();
5817   } else {
5818     pthread_attr_t attr;
5819 
5820     int rslt = pthread_getattr_np(pthread_self(), &attr);
5821 
5822     // JVM needs to know exact stack location, abort if it fails
5823     if (rslt != 0) {
5824       if (rslt == ENOMEM) {
5825         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5826       } else {
5827         fatal("pthread_getattr_np failed with error = %d", rslt);
5828       }
5829     }
5830 
5831     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5832       fatal("Cannot locate current stack attributes!");
5833     }
5834 
5835     // Work around NPTL stack guard error.
5836     size_t guard_size = 0;
5837     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5838     if (rslt != 0) {
5839       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5840     }
5841     *bottom += guard_size;
5842     *size   -= guard_size;
5843 
5844     pthread_attr_destroy(&attr);
5845 
5846   }
5847   assert(os::current_stack_pointer() >= *bottom &&
5848          os::current_stack_pointer() < *bottom + *size, "just checking");
5849 }
5850 
5851 address os::current_stack_base() {
5852   address bottom;
5853   size_t size;
5854   current_stack_region(&bottom, &size);
5855   return (bottom + size);
5856 }
5857 
5858 size_t os::current_stack_size() {
5859   // This stack size includes the usable stack and HotSpot guard pages
5860   // (for the threads that have Hotspot guard pages).
5861   address bottom;
5862   size_t size;
5863   current_stack_region(&bottom, &size);
5864   return size;
5865 }
5866 #endif
5867 
5868 static inline struct timespec get_mtime(const char* filename) {
5869   struct stat st;
5870   int ret = os::stat(filename, &st);
5871   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5872   return st.st_mtim;
5873 }
5874 
5875 int os::compare_file_modified_times(const char* file1, const char* file2) {
5876   struct timespec filetime1 = get_mtime(file1);
5877   struct timespec filetime2 = get_mtime(file2);
5878   int diff = filetime1.tv_sec - filetime2.tv_sec;
5879   if (diff == 0) {
5880     return filetime1.tv_nsec - filetime2.tv_nsec;
5881   }
5882   return diff;
5883 }
5884 
5885 /////////////// Unit tests ///////////////
5886 
5887 #ifndef PRODUCT
5888 
5889 #define test_log(...)              \
5890   do {                             \
5891     if (VerboseInternalVMTests) {  \
5892       tty->print_cr(__VA_ARGS__);  \
5893       tty->flush();                \
5894     }                              \
5895   } while (false)
5896 
5897 class TestReserveMemorySpecial : AllStatic {
5898  public:
5899   static void small_page_write(void* addr, size_t size) {
5900     size_t page_size = os::vm_page_size();
5901 
5902     char* end = (char*)addr + size;
5903     for (char* p = (char*)addr; p < end; p += page_size) {
5904       *p = 1;
5905     }
5906   }
5907 
5908   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5909     if (!UseHugeTLBFS) {
5910       return;
5911     }
5912 
5913     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5914 
5915     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5916 
5917     if (addr != NULL) {
5918       small_page_write(addr, size);
5919 
5920       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5921     }
5922   }
5923 
5924   static void test_reserve_memory_special_huge_tlbfs_only() {
5925     if (!UseHugeTLBFS) {
5926       return;
5927     }
5928 
5929     size_t lp = os::large_page_size();
5930 
5931     for (size_t size = lp; size <= lp * 10; size += lp) {
5932       test_reserve_memory_special_huge_tlbfs_only(size);
5933     }
5934   }
5935 
5936   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5937     size_t lp = os::large_page_size();
5938     size_t ag = os::vm_allocation_granularity();
5939 
5940     // sizes to test
5941     const size_t sizes[] = {
5942       lp, lp + ag, lp + lp / 2, lp * 2,
5943       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5944       lp * 10, lp * 10 + lp / 2
5945     };
5946     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5947 
5948     // For each size/alignment combination, we test three scenarios:
5949     // 1) with req_addr == NULL
5950     // 2) with a non-null req_addr at which we expect to successfully allocate
5951     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5952     //    expect the allocation to either fail or to ignore req_addr
5953 
5954     // Pre-allocate two areas; they shall be as large as the largest allocation
5955     //  and aligned to the largest alignment we will be testing.
5956     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5957     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5958       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5959       -1, 0);
5960     assert(mapping1 != MAP_FAILED, "should work");
5961 
5962     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5963       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5964       -1, 0);
5965     assert(mapping2 != MAP_FAILED, "should work");
5966 
5967     // Unmap the first mapping, but leave the second mapping intact: the first
5968     // mapping will serve as a value for a "good" req_addr (case 2). The second
5969     // mapping, still intact, as "bad" req_addr (case 3).
5970     ::munmap(mapping1, mapping_size);
5971 
5972     // Case 1
5973     test_log("%s, req_addr NULL:", __FUNCTION__);
5974     test_log("size            align           result");
5975 
5976     for (int i = 0; i < num_sizes; i++) {
5977       const size_t size = sizes[i];
5978       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5979         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5980         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5981                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5982         if (p != NULL) {
5983           assert(is_aligned(p, alignment), "must be");
5984           small_page_write(p, size);
5985           os::Linux::release_memory_special_huge_tlbfs(p, size);
5986         }
5987       }
5988     }
5989 
5990     // Case 2
5991     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5992     test_log("size            align           req_addr         result");
5993 
5994     for (int i = 0; i < num_sizes; i++) {
5995       const size_t size = sizes[i];
5996       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5997         char* const req_addr = align_up(mapping1, alignment);
5998         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5999         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6000                  size, alignment, p2i(req_addr), p2i(p),
6001                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6002         if (p != NULL) {
6003           assert(p == req_addr, "must be");
6004           small_page_write(p, size);
6005           os::Linux::release_memory_special_huge_tlbfs(p, size);
6006         }
6007       }
6008     }
6009 
6010     // Case 3
6011     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6012     test_log("size            align           req_addr         result");
6013 
6014     for (int i = 0; i < num_sizes; i++) {
6015       const size_t size = sizes[i];
6016       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6017         char* const req_addr = align_up(mapping2, alignment);
6018         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6019         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6020                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6021         // as the area around req_addr contains already existing mappings, the API should always
6022         // return NULL (as per contract, it cannot return another address)
6023         assert(p == NULL, "must be");
6024       }
6025     }
6026 
6027     ::munmap(mapping2, mapping_size);
6028 
6029   }
6030 
6031   static void test_reserve_memory_special_huge_tlbfs() {
6032     if (!UseHugeTLBFS) {
6033       return;
6034     }
6035 
6036     test_reserve_memory_special_huge_tlbfs_only();
6037     test_reserve_memory_special_huge_tlbfs_mixed();
6038   }
6039 
6040   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6041     if (!UseSHM) {
6042       return;
6043     }
6044 
6045     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6046 
6047     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6048 
6049     if (addr != NULL) {
6050       assert(is_aligned(addr, alignment), "Check");
6051       assert(is_aligned(addr, os::large_page_size()), "Check");
6052 
6053       small_page_write(addr, size);
6054 
6055       os::Linux::release_memory_special_shm(addr, size);
6056     }
6057   }
6058 
6059   static void test_reserve_memory_special_shm() {
6060     size_t lp = os::large_page_size();
6061     size_t ag = os::vm_allocation_granularity();
6062 
6063     for (size_t size = ag; size < lp * 3; size += ag) {
6064       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6065         test_reserve_memory_special_shm(size, alignment);
6066       }
6067     }
6068   }
6069 
6070   static void test() {
6071     test_reserve_memory_special_huge_tlbfs();
6072     test_reserve_memory_special_shm();
6073   }
6074 };
6075 
6076 void TestReserveMemorySpecial_test() {
6077   TestReserveMemorySpecial::test();
6078 }
6079 
6080 #endif