1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/cardTable.hpp"
  38 #include "gc/shared/cardTableModRefBS.hpp"

  39 #include "runtime/arguments.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/vm_version.hpp"
  43 #include "utilities/bitMap.inline.hpp"
  44 #include "utilities/macros.hpp"
  45 #if INCLUDE_ALL_GCS
  46 #include "gc/g1/heapRegion.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 #ifdef TRACE_HAVE_INTRINSICS
  49 #include "trace/traceMacros.hpp"
  50 #endif
  51 
  52 #ifdef ASSERT
  53 #define __ gen()->lir(__FILE__, __LINE__)->
  54 #else
  55 #define __ gen()->lir()->
  56 #endif
  57 
  58 #ifndef PATCHED_ADDR
  59 #define PATCHED_ADDR  (max_jint)
  60 #endif
  61 
  62 void PhiResolverState::reset(int max_vregs) {
  63   // Initialize array sizes
  64   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _virtual_operands.trunc_to(0);
  66   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _other_operands.trunc_to(0);
  68   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  69   _vreg_table.trunc_to(0);
  70 }
  71 
  72 
  73 
  74 //--------------------------------------------------------------
  75 // PhiResolver
  76 
  77 // Resolves cycles:
  78 //
  79 //  r1 := r2  becomes  temp := r1
  80 //  r2 := r1           r1 := r2
  81 //                     r2 := temp
  82 // and orders moves:
  83 //
  84 //  r2 := r3  becomes  r1 := r2
  85 //  r1 := r2           r2 := r3
  86 
  87 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  88  : _gen(gen)
  89  , _state(gen->resolver_state())
  90  , _temp(LIR_OprFact::illegalOpr)
  91 {
  92   // reinitialize the shared state arrays
  93   _state.reset(max_vregs);
  94 }
  95 
  96 
  97 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  98   assert(src->is_valid(), "");
  99   assert(dest->is_valid(), "");
 100   __ move(src, dest);
 101 }
 102 
 103 
 104 void PhiResolver::move_temp_to(LIR_Opr dest) {
 105   assert(_temp->is_valid(), "");
 106   emit_move(_temp, dest);
 107   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 108 }
 109 
 110 
 111 void PhiResolver::move_to_temp(LIR_Opr src) {
 112   assert(_temp->is_illegal(), "");
 113   _temp = _gen->new_register(src->type());
 114   emit_move(src, _temp);
 115 }
 116 
 117 
 118 // Traverse assignment graph in depth first order and generate moves in post order
 119 // ie. two assignments: b := c, a := b start with node c:
 120 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 121 // Generates moves in this order: move b to a and move c to b
 122 // ie. cycle a := b, b := a start with node a
 123 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 124 // Generates moves in this order: move b to temp, move a to b, move temp to a
 125 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 126   if (!dest->visited()) {
 127     dest->set_visited();
 128     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 129       move(dest, dest->destination_at(i));
 130     }
 131   } else if (!dest->start_node()) {
 132     // cylce in graph detected
 133     assert(_loop == NULL, "only one loop valid!");
 134     _loop = dest;
 135     move_to_temp(src->operand());
 136     return;
 137   } // else dest is a start node
 138 
 139   if (!dest->assigned()) {
 140     if (_loop == dest) {
 141       move_temp_to(dest->operand());
 142       dest->set_assigned();
 143     } else if (src != NULL) {
 144       emit_move(src->operand(), dest->operand());
 145       dest->set_assigned();
 146     }
 147   }
 148 }
 149 
 150 
 151 PhiResolver::~PhiResolver() {
 152   int i;
 153   // resolve any cycles in moves from and to virtual registers
 154   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 155     ResolveNode* node = virtual_operands().at(i);
 156     if (!node->visited()) {
 157       _loop = NULL;
 158       move(NULL, node);
 159       node->set_start_node();
 160       assert(_temp->is_illegal(), "move_temp_to() call missing");
 161     }
 162   }
 163 
 164   // generate move for move from non virtual register to abitrary destination
 165   for (i = other_operands().length() - 1; i >= 0; i --) {
 166     ResolveNode* node = other_operands().at(i);
 167     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 168       emit_move(node->operand(), node->destination_at(j)->operand());
 169     }
 170   }
 171 }
 172 
 173 
 174 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 175   ResolveNode* node;
 176   if (opr->is_virtual()) {
 177     int vreg_num = opr->vreg_number();
 178     node = vreg_table().at_grow(vreg_num, NULL);
 179     assert(node == NULL || node->operand() == opr, "");
 180     if (node == NULL) {
 181       node = new ResolveNode(opr);
 182       vreg_table().at_put(vreg_num, node);
 183     }
 184     // Make sure that all virtual operands show up in the list when
 185     // they are used as the source of a move.
 186     if (source && !virtual_operands().contains(node)) {
 187       virtual_operands().append(node);
 188     }
 189   } else {
 190     assert(source, "");
 191     node = new ResolveNode(opr);
 192     other_operands().append(node);
 193   }
 194   return node;
 195 }
 196 
 197 
 198 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 199   assert(dest->is_virtual(), "");
 200   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 201   assert(src->is_valid(), "");
 202   assert(dest->is_valid(), "");
 203   ResolveNode* source = source_node(src);
 204   source->append(destination_node(dest));
 205 }
 206 
 207 
 208 //--------------------------------------------------------------
 209 // LIRItem
 210 
 211 void LIRItem::set_result(LIR_Opr opr) {
 212   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 213   value()->set_operand(opr);
 214 
 215   if (opr->is_virtual()) {
 216     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 217   }
 218 
 219   _result = opr;
 220 }
 221 
 222 void LIRItem::load_item() {
 223   if (result()->is_illegal()) {
 224     // update the items result
 225     _result = value()->operand();
 226   }
 227   if (!result()->is_register()) {
 228     LIR_Opr reg = _gen->new_register(value()->type());
 229     __ move(result(), reg);
 230     if (result()->is_constant()) {
 231       _result = reg;
 232     } else {
 233       set_result(reg);
 234     }
 235   }
 236 }
 237 
 238 
 239 void LIRItem::load_for_store(BasicType type) {
 240   if (_gen->can_store_as_constant(value(), type)) {
 241     _result = value()->operand();
 242     if (!_result->is_constant()) {
 243       _result = LIR_OprFact::value_type(value()->type());
 244     }
 245   } else if (type == T_BYTE || type == T_BOOLEAN) {
 246     load_byte_item();
 247   } else {
 248     load_item();
 249   }
 250 }
 251 
 252 void LIRItem::load_item_force(LIR_Opr reg) {
 253   LIR_Opr r = result();
 254   if (r != reg) {
 255 #if !defined(ARM) && !defined(E500V2)
 256     if (r->type() != reg->type()) {
 257       // moves between different types need an intervening spill slot
 258       r = _gen->force_to_spill(r, reg->type());
 259     }
 260 #endif
 261     __ move(r, reg);
 262     _result = reg;
 263   }
 264 }
 265 
 266 ciObject* LIRItem::get_jobject_constant() const {
 267   ObjectType* oc = type()->as_ObjectType();
 268   if (oc) {
 269     return oc->constant_value();
 270   }
 271   return NULL;
 272 }
 273 
 274 
 275 jint LIRItem::get_jint_constant() const {
 276   assert(is_constant() && value() != NULL, "");
 277   assert(type()->as_IntConstant() != NULL, "type check");
 278   return type()->as_IntConstant()->value();
 279 }
 280 
 281 
 282 jint LIRItem::get_address_constant() const {
 283   assert(is_constant() && value() != NULL, "");
 284   assert(type()->as_AddressConstant() != NULL, "type check");
 285   return type()->as_AddressConstant()->value();
 286 }
 287 
 288 
 289 jfloat LIRItem::get_jfloat_constant() const {
 290   assert(is_constant() && value() != NULL, "");
 291   assert(type()->as_FloatConstant() != NULL, "type check");
 292   return type()->as_FloatConstant()->value();
 293 }
 294 
 295 
 296 jdouble LIRItem::get_jdouble_constant() const {
 297   assert(is_constant() && value() != NULL, "");
 298   assert(type()->as_DoubleConstant() != NULL, "type check");
 299   return type()->as_DoubleConstant()->value();
 300 }
 301 
 302 
 303 jlong LIRItem::get_jlong_constant() const {
 304   assert(is_constant() && value() != NULL, "");
 305   assert(type()->as_LongConstant() != NULL, "type check");
 306   return type()->as_LongConstant()->value();
 307 }
 308 
 309 
 310 
 311 //--------------------------------------------------------------
 312 
 313 
 314 void LIRGenerator::init() {
 315   _bs = Universe::heap()->barrier_set();
 316 }
 317 
 318 
 319 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 320 #ifndef PRODUCT
 321   if (PrintIRWithLIR) {
 322     block->print();
 323   }
 324 #endif
 325 
 326   // set up the list of LIR instructions
 327   assert(block->lir() == NULL, "LIR list already computed for this block");
 328   _lir = new LIR_List(compilation(), block);
 329   block->set_lir(_lir);
 330 
 331   __ branch_destination(block->label());
 332 
 333   if (LIRTraceExecution &&
 334       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 335       !block->is_set(BlockBegin::exception_entry_flag)) {
 336     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 337     trace_block_entry(block);
 338   }
 339 }
 340 
 341 
 342 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 343 #ifndef PRODUCT
 344   if (PrintIRWithLIR) {
 345     tty->cr();
 346   }
 347 #endif
 348 
 349   // LIR_Opr for unpinned constants shouldn't be referenced by other
 350   // blocks so clear them out after processing the block.
 351   for (int i = 0; i < _unpinned_constants.length(); i++) {
 352     _unpinned_constants.at(i)->clear_operand();
 353   }
 354   _unpinned_constants.trunc_to(0);
 355 
 356   // clear our any registers for other local constants
 357   _constants.trunc_to(0);
 358   _reg_for_constants.trunc_to(0);
 359 }
 360 
 361 
 362 void LIRGenerator::block_do(BlockBegin* block) {
 363   CHECK_BAILOUT();
 364 
 365   block_do_prolog(block);
 366   set_block(block);
 367 
 368   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 369     if (instr->is_pinned()) do_root(instr);
 370   }
 371 
 372   set_block(NULL);
 373   block_do_epilog(block);
 374 }
 375 
 376 
 377 //-------------------------LIRGenerator-----------------------------
 378 
 379 // This is where the tree-walk starts; instr must be root;
 380 void LIRGenerator::do_root(Value instr) {
 381   CHECK_BAILOUT();
 382 
 383   InstructionMark im(compilation(), instr);
 384 
 385   assert(instr->is_pinned(), "use only with roots");
 386   assert(instr->subst() == instr, "shouldn't have missed substitution");
 387 
 388   instr->visit(this);
 389 
 390   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 391          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 392 }
 393 
 394 
 395 // This is called for each node in tree; the walk stops if a root is reached
 396 void LIRGenerator::walk(Value instr) {
 397   InstructionMark im(compilation(), instr);
 398   //stop walk when encounter a root
 399   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 400     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 401   } else {
 402     assert(instr->subst() == instr, "shouldn't have missed substitution");
 403     instr->visit(this);
 404     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 405   }
 406 }
 407 
 408 
 409 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 410   assert(state != NULL, "state must be defined");
 411 
 412 #ifndef PRODUCT
 413   state->verify();
 414 #endif
 415 
 416   ValueStack* s = state;
 417   for_each_state(s) {
 418     if (s->kind() == ValueStack::EmptyExceptionState) {
 419       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 420       continue;
 421     }
 422 
 423     int index;
 424     Value value;
 425     for_each_stack_value(s, index, value) {
 426       assert(value->subst() == value, "missed substitution");
 427       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 428         walk(value);
 429         assert(value->operand()->is_valid(), "must be evaluated now");
 430       }
 431     }
 432 
 433     int bci = s->bci();
 434     IRScope* scope = s->scope();
 435     ciMethod* method = scope->method();
 436 
 437     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 438     if (bci == SynchronizationEntryBCI) {
 439       if (x->as_ExceptionObject() || x->as_Throw()) {
 440         // all locals are dead on exit from the synthetic unlocker
 441         liveness.clear();
 442       } else {
 443         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 444       }
 445     }
 446     if (!liveness.is_valid()) {
 447       // Degenerate or breakpointed method.
 448       bailout("Degenerate or breakpointed method");
 449     } else {
 450       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 451       for_each_local_value(s, index, value) {
 452         assert(value->subst() == value, "missed substition");
 453         if (liveness.at(index) && !value->type()->is_illegal()) {
 454           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 455             walk(value);
 456             assert(value->operand()->is_valid(), "must be evaluated now");
 457           }
 458         } else {
 459           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 460           s->invalidate_local(index);
 461         }
 462       }
 463     }
 464   }
 465 
 466   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 467 }
 468 
 469 
 470 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 471   return state_for(x, x->exception_state());
 472 }
 473 
 474 
 475 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 476   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 477    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 478    * the class. */
 479   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 480     assert(info != NULL, "info must be set if class is not loaded");
 481     __ klass2reg_patch(NULL, r, info);
 482   } else {
 483     // no patching needed
 484     __ metadata2reg(obj->constant_encoding(), r);
 485   }
 486 }
 487 
 488 
 489 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 490                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 491   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 494                 index->as_jint(), null_check_info);
 495     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 496   } else {
 497     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 498                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 499     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 500   }
 501 }
 502 
 503 
 504 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 505   CodeStub* stub = new RangeCheckStub(info, index, true);
 506   if (index->is_constant()) {
 507     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 508     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 509   } else {
 510     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 511                 java_nio_Buffer::limit_offset(), T_INT, info);
 512     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 513   }
 514   __ move(index, result);
 515 }
 516 
 517 
 518 
 519 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 520   LIR_Opr result_op = result;
 521   LIR_Opr left_op   = left;
 522   LIR_Opr right_op  = right;
 523 
 524   if (TwoOperandLIRForm && left_op != result_op) {
 525     assert(right_op != result_op, "malformed");
 526     __ move(left_op, result_op);
 527     left_op = result_op;
 528   }
 529 
 530   switch(code) {
 531     case Bytecodes::_dadd:
 532     case Bytecodes::_fadd:
 533     case Bytecodes::_ladd:
 534     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 535     case Bytecodes::_fmul:
 536     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 537 
 538     case Bytecodes::_dmul:
 539       {
 540         if (is_strictfp) {
 541           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 542         } else {
 543           __ mul(left_op, right_op, result_op); break;
 544         }
 545       }
 546       break;
 547 
 548     case Bytecodes::_imul:
 549       {
 550         bool did_strength_reduce = false;
 551 
 552         if (right->is_constant()) {
 553           jint c = right->as_jint();
 554           if (c > 0 && is_power_of_2(c)) {
 555             // do not need tmp here
 556             __ shift_left(left_op, exact_log2(c), result_op);
 557             did_strength_reduce = true;
 558           } else {
 559             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 560           }
 561         }
 562         // we couldn't strength reduce so just emit the multiply
 563         if (!did_strength_reduce) {
 564           __ mul(left_op, right_op, result_op);
 565         }
 566       }
 567       break;
 568 
 569     case Bytecodes::_dsub:
 570     case Bytecodes::_fsub:
 571     case Bytecodes::_lsub:
 572     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 573 
 574     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 575     // ldiv and lrem are implemented with a direct runtime call
 576 
 577     case Bytecodes::_ddiv:
 578       {
 579         if (is_strictfp) {
 580           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 581         } else {
 582           __ div (left_op, right_op, result_op); break;
 583         }
 584       }
 585       break;
 586 
 587     case Bytecodes::_drem:
 588     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 589 
 590     default: ShouldNotReachHere();
 591   }
 592 }
 593 
 594 
 595 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 596   arithmetic_op(code, result, left, right, false, tmp);
 597 }
 598 
 599 
 600 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 601   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 602 }
 603 
 604 
 605 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 606   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 607 }
 608 
 609 
 610 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 611 
 612   if (TwoOperandLIRForm && value != result_op
 613       // Only 32bit right shifts require two operand form on S390.
 614       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 615     assert(count != result_op, "malformed");
 616     __ move(value, result_op);
 617     value = result_op;
 618   }
 619 
 620   assert(count->is_constant() || count->is_register(), "must be");
 621   switch(code) {
 622   case Bytecodes::_ishl:
 623   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 624   case Bytecodes::_ishr:
 625   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 626   case Bytecodes::_iushr:
 627   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 628   default: ShouldNotReachHere();
 629   }
 630 }
 631 
 632 
 633 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 634   if (TwoOperandLIRForm && left_op != result_op) {
 635     assert(right_op != result_op, "malformed");
 636     __ move(left_op, result_op);
 637     left_op = result_op;
 638   }
 639 
 640   switch(code) {
 641     case Bytecodes::_iand:
 642     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 643 
 644     case Bytecodes::_ior:
 645     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 646 
 647     case Bytecodes::_ixor:
 648     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 649 
 650     default: ShouldNotReachHere();
 651   }
 652 }
 653 
 654 
 655 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 656   if (!GenerateSynchronizationCode) return;
 657   // for slow path, use debug info for state after successful locking
 658   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 659   __ load_stack_address_monitor(monitor_no, lock);
 660   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 661   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 662 }
 663 
 664 
 665 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 666   if (!GenerateSynchronizationCode) return;
 667   // setup registers
 668   LIR_Opr hdr = lock;
 669   lock = new_hdr;
 670   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 671   __ load_stack_address_monitor(monitor_no, lock);
 672   __ unlock_object(hdr, object, lock, scratch, slow_path);
 673 }
 674 
 675 #ifndef PRODUCT
 676 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 677   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 678     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 679   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 680     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 681   }
 682 }
 683 #endif
 684 
 685 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 686   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 687   // If klass is not loaded we do not know if the klass has finalizers:
 688   if (UseFastNewInstance && klass->is_loaded()
 689       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 690 
 691     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 692 
 693     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 694 
 695     assert(klass->is_loaded(), "must be loaded");
 696     // allocate space for instance
 697     assert(klass->size_helper() >= 0, "illegal instance size");
 698     const int instance_size = align_object_size(klass->size_helper());
 699     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 700                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 701   } else {
 702     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 703     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 704     __ branch_destination(slow_path->continuation());
 705   }
 706 }
 707 
 708 
 709 static bool is_constant_zero(Instruction* inst) {
 710   IntConstant* c = inst->type()->as_IntConstant();
 711   if (c) {
 712     return (c->value() == 0);
 713   }
 714   return false;
 715 }
 716 
 717 
 718 static bool positive_constant(Instruction* inst) {
 719   IntConstant* c = inst->type()->as_IntConstant();
 720   if (c) {
 721     return (c->value() >= 0);
 722   }
 723   return false;
 724 }
 725 
 726 
 727 static ciArrayKlass* as_array_klass(ciType* type) {
 728   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 729     return (ciArrayKlass*)type;
 730   } else {
 731     return NULL;
 732   }
 733 }
 734 
 735 static ciType* phi_declared_type(Phi* phi) {
 736   ciType* t = phi->operand_at(0)->declared_type();
 737   if (t == NULL) {
 738     return NULL;
 739   }
 740   for(int i = 1; i < phi->operand_count(); i++) {
 741     if (t != phi->operand_at(i)->declared_type()) {
 742       return NULL;
 743     }
 744   }
 745   return t;
 746 }
 747 
 748 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 749   Instruction* src     = x->argument_at(0);
 750   Instruction* src_pos = x->argument_at(1);
 751   Instruction* dst     = x->argument_at(2);
 752   Instruction* dst_pos = x->argument_at(3);
 753   Instruction* length  = x->argument_at(4);
 754 
 755   // first try to identify the likely type of the arrays involved
 756   ciArrayKlass* expected_type = NULL;
 757   bool is_exact = false, src_objarray = false, dst_objarray = false;
 758   {
 759     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 760     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 761     Phi* phi;
 762     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 763       src_declared_type = as_array_klass(phi_declared_type(phi));
 764     }
 765     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 766     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 767     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 768       dst_declared_type = as_array_klass(phi_declared_type(phi));
 769     }
 770 
 771     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 772       // the types exactly match so the type is fully known
 773       is_exact = true;
 774       expected_type = src_exact_type;
 775     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 776       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 777       ciArrayKlass* src_type = NULL;
 778       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 779         src_type = (ciArrayKlass*) src_exact_type;
 780       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 781         src_type = (ciArrayKlass*) src_declared_type;
 782       }
 783       if (src_type != NULL) {
 784         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 785           is_exact = true;
 786           expected_type = dst_type;
 787         }
 788       }
 789     }
 790     // at least pass along a good guess
 791     if (expected_type == NULL) expected_type = dst_exact_type;
 792     if (expected_type == NULL) expected_type = src_declared_type;
 793     if (expected_type == NULL) expected_type = dst_declared_type;
 794 
 795     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 796     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 797   }
 798 
 799   // if a probable array type has been identified, figure out if any
 800   // of the required checks for a fast case can be elided.
 801   int flags = LIR_OpArrayCopy::all_flags;
 802 
 803   if (!src_objarray)
 804     flags &= ~LIR_OpArrayCopy::src_objarray;
 805   if (!dst_objarray)
 806     flags &= ~LIR_OpArrayCopy::dst_objarray;
 807 
 808   if (!x->arg_needs_null_check(0))
 809     flags &= ~LIR_OpArrayCopy::src_null_check;
 810   if (!x->arg_needs_null_check(2))
 811     flags &= ~LIR_OpArrayCopy::dst_null_check;
 812 
 813 
 814   if (expected_type != NULL) {
 815     Value length_limit = NULL;
 816 
 817     IfOp* ifop = length->as_IfOp();
 818     if (ifop != NULL) {
 819       // look for expressions like min(v, a.length) which ends up as
 820       //   x > y ? y : x  or  x >= y ? y : x
 821       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 822           ifop->x() == ifop->fval() &&
 823           ifop->y() == ifop->tval()) {
 824         length_limit = ifop->y();
 825       }
 826     }
 827 
 828     // try to skip null checks and range checks
 829     NewArray* src_array = src->as_NewArray();
 830     if (src_array != NULL) {
 831       flags &= ~LIR_OpArrayCopy::src_null_check;
 832       if (length_limit != NULL &&
 833           src_array->length() == length_limit &&
 834           is_constant_zero(src_pos)) {
 835         flags &= ~LIR_OpArrayCopy::src_range_check;
 836       }
 837     }
 838 
 839     NewArray* dst_array = dst->as_NewArray();
 840     if (dst_array != NULL) {
 841       flags &= ~LIR_OpArrayCopy::dst_null_check;
 842       if (length_limit != NULL &&
 843           dst_array->length() == length_limit &&
 844           is_constant_zero(dst_pos)) {
 845         flags &= ~LIR_OpArrayCopy::dst_range_check;
 846       }
 847     }
 848 
 849     // check from incoming constant values
 850     if (positive_constant(src_pos))
 851       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 852     if (positive_constant(dst_pos))
 853       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 854     if (positive_constant(length))
 855       flags &= ~LIR_OpArrayCopy::length_positive_check;
 856 
 857     // see if the range check can be elided, which might also imply
 858     // that src or dst is non-null.
 859     ArrayLength* al = length->as_ArrayLength();
 860     if (al != NULL) {
 861       if (al->array() == src) {
 862         // it's the length of the source array
 863         flags &= ~LIR_OpArrayCopy::length_positive_check;
 864         flags &= ~LIR_OpArrayCopy::src_null_check;
 865         if (is_constant_zero(src_pos))
 866           flags &= ~LIR_OpArrayCopy::src_range_check;
 867       }
 868       if (al->array() == dst) {
 869         // it's the length of the destination array
 870         flags &= ~LIR_OpArrayCopy::length_positive_check;
 871         flags &= ~LIR_OpArrayCopy::dst_null_check;
 872         if (is_constant_zero(dst_pos))
 873           flags &= ~LIR_OpArrayCopy::dst_range_check;
 874       }
 875     }
 876     if (is_exact) {
 877       flags &= ~LIR_OpArrayCopy::type_check;
 878     }
 879   }
 880 
 881   IntConstant* src_int = src_pos->type()->as_IntConstant();
 882   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 883   if (src_int && dst_int) {
 884     int s_offs = src_int->value();
 885     int d_offs = dst_int->value();
 886     if (src_int->value() >= dst_int->value()) {
 887       flags &= ~LIR_OpArrayCopy::overlapping;
 888     }
 889     if (expected_type != NULL) {
 890       BasicType t = expected_type->element_type()->basic_type();
 891       int element_size = type2aelembytes(t);
 892       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 893           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 894         flags &= ~LIR_OpArrayCopy::unaligned;
 895       }
 896     }
 897   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 898     // src and dest positions are the same, or dst is zero so assume
 899     // nonoverlapping copy.
 900     flags &= ~LIR_OpArrayCopy::overlapping;
 901   }
 902 
 903   if (src == dst) {
 904     // moving within a single array so no type checks are needed
 905     if (flags & LIR_OpArrayCopy::type_check) {
 906       flags &= ~LIR_OpArrayCopy::type_check;
 907     }
 908   }
 909   *flagsp = flags;
 910   *expected_typep = (ciArrayKlass*)expected_type;
 911 }
 912 
 913 
 914 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 915   assert(opr->is_register(), "why spill if item is not register?");
 916 
 917   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 918     LIR_Opr result = new_register(T_FLOAT);
 919     set_vreg_flag(result, must_start_in_memory);
 920     assert(opr->is_register(), "only a register can be spilled");
 921     assert(opr->value_type()->is_float(), "rounding only for floats available");
 922     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 923     return result;
 924   }
 925   return opr;
 926 }
 927 
 928 
 929 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 930   assert(type2size[t] == type2size[value->type()],
 931          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 932   if (!value->is_register()) {
 933     // force into a register
 934     LIR_Opr r = new_register(value->type());
 935     __ move(value, r);
 936     value = r;
 937   }
 938 
 939   // create a spill location
 940   LIR_Opr tmp = new_register(t);
 941   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 942 
 943   // move from register to spill
 944   __ move(value, tmp);
 945   return tmp;
 946 }
 947 
 948 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 949   if (if_instr->should_profile()) {
 950     ciMethod* method = if_instr->profiled_method();
 951     assert(method != NULL, "method should be set if branch is profiled");
 952     ciMethodData* md = method->method_data_or_null();
 953     assert(md != NULL, "Sanity");
 954     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 955     assert(data != NULL, "must have profiling data");
 956     assert(data->is_BranchData(), "need BranchData for two-way branches");
 957     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 958     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 959     if (if_instr->is_swapped()) {
 960       int t = taken_count_offset;
 961       taken_count_offset = not_taken_count_offset;
 962       not_taken_count_offset = t;
 963     }
 964 
 965     LIR_Opr md_reg = new_register(T_METADATA);
 966     __ metadata2reg(md->constant_encoding(), md_reg);
 967 
 968     LIR_Opr data_offset_reg = new_pointer_register();
 969     __ cmove(lir_cond(cond),
 970              LIR_OprFact::intptrConst(taken_count_offset),
 971              LIR_OprFact::intptrConst(not_taken_count_offset),
 972              data_offset_reg, as_BasicType(if_instr->x()->type()));
 973 
 974     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 975     LIR_Opr data_reg = new_pointer_register();
 976     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 977     __ move(data_addr, data_reg);
 978     // Use leal instead of add to avoid destroying condition codes on x86
 979     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 980     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 981     __ move(data_reg, data_addr);
 982   }
 983 }
 984 
 985 // Phi technique:
 986 // This is about passing live values from one basic block to the other.
 987 // In code generated with Java it is rather rare that more than one
 988 // value is on the stack from one basic block to the other.
 989 // We optimize our technique for efficient passing of one value
 990 // (of type long, int, double..) but it can be extended.
 991 // When entering or leaving a basic block, all registers and all spill
 992 // slots are release and empty. We use the released registers
 993 // and spill slots to pass the live values from one block
 994 // to the other. The topmost value, i.e., the value on TOS of expression
 995 // stack is passed in registers. All other values are stored in spilling
 996 // area. Every Phi has an index which designates its spill slot
 997 // At exit of a basic block, we fill the register(s) and spill slots.
 998 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 999 // and locks necessary registers and spilling slots.
1000 
1001 
1002 // move current value to referenced phi function
1003 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1004   Phi* phi = sux_val->as_Phi();
1005   // cur_val can be null without phi being null in conjunction with inlining
1006   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1007     Phi* cur_phi = cur_val->as_Phi();
1008     if (cur_phi != NULL && cur_phi->is_illegal()) {
1009       // Phi and local would need to get invalidated
1010       // (which is unexpected for Linear Scan).
1011       // But this case is very rare so we simply bail out.
1012       bailout("propagation of illegal phi");
1013       return;
1014     }
1015     LIR_Opr operand = cur_val->operand();
1016     if (operand->is_illegal()) {
1017       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1018              "these can be produced lazily");
1019       operand = operand_for_instruction(cur_val);
1020     }
1021     resolver->move(operand, operand_for_instruction(phi));
1022   }
1023 }
1024 
1025 
1026 // Moves all stack values into their PHI position
1027 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1028   BlockBegin* bb = block();
1029   if (bb->number_of_sux() == 1) {
1030     BlockBegin* sux = bb->sux_at(0);
1031     assert(sux->number_of_preds() > 0, "invalid CFG");
1032 
1033     // a block with only one predecessor never has phi functions
1034     if (sux->number_of_preds() > 1) {
1035       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1036       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1037 
1038       ValueStack* sux_state = sux->state();
1039       Value sux_value;
1040       int index;
1041 
1042       assert(cur_state->scope() == sux_state->scope(), "not matching");
1043       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1044       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1045 
1046       for_each_stack_value(sux_state, index, sux_value) {
1047         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1048       }
1049 
1050       for_each_local_value(sux_state, index, sux_value) {
1051         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1052       }
1053 
1054       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1055     }
1056   }
1057 }
1058 
1059 
1060 LIR_Opr LIRGenerator::new_register(BasicType type) {
1061   int vreg = _virtual_register_number;
1062   // add a little fudge factor for the bailout, since the bailout is
1063   // only checked periodically.  This gives a few extra registers to
1064   // hand out before we really run out, which helps us keep from
1065   // tripping over assertions.
1066   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1067     bailout("out of virtual registers");
1068     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1069       // wrap it around
1070       _virtual_register_number = LIR_OprDesc::vreg_base;
1071     }
1072   }
1073   _virtual_register_number += 1;
1074   return LIR_OprFact::virtual_register(vreg, type);
1075 }
1076 
1077 
1078 // Try to lock using register in hint
1079 LIR_Opr LIRGenerator::rlock(Value instr) {
1080   return new_register(instr->type());
1081 }
1082 
1083 
1084 // does an rlock and sets result
1085 LIR_Opr LIRGenerator::rlock_result(Value x) {
1086   LIR_Opr reg = rlock(x);
1087   set_result(x, reg);
1088   return reg;
1089 }
1090 
1091 
1092 // does an rlock and sets result
1093 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1094   LIR_Opr reg;
1095   switch (type) {
1096   case T_BYTE:
1097   case T_BOOLEAN:
1098     reg = rlock_byte(type);
1099     break;
1100   default:
1101     reg = rlock(x);
1102     break;
1103   }
1104 
1105   set_result(x, reg);
1106   return reg;
1107 }
1108 
1109 
1110 //---------------------------------------------------------------------
1111 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1112   ObjectType* oc = value->type()->as_ObjectType();
1113   if (oc) {
1114     return oc->constant_value();
1115   }
1116   return NULL;
1117 }
1118 
1119 
1120 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1121   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1122   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1123 
1124   // no moves are created for phi functions at the begin of exception
1125   // handlers, so assign operands manually here
1126   for_each_phi_fun(block(), phi,
1127                    operand_for_instruction(phi));
1128 
1129   LIR_Opr thread_reg = getThreadPointer();
1130   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1131                exceptionOopOpr());
1132   __ move_wide(LIR_OprFact::oopConst(NULL),
1133                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1134   __ move_wide(LIR_OprFact::oopConst(NULL),
1135                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1136 
1137   LIR_Opr result = new_register(T_OBJECT);
1138   __ move(exceptionOopOpr(), result);
1139   set_result(x, result);
1140 }
1141 
1142 
1143 //----------------------------------------------------------------------
1144 //----------------------------------------------------------------------
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 //                        visitor functions
1148 //----------------------------------------------------------------------
1149 //----------------------------------------------------------------------
1150 //----------------------------------------------------------------------
1151 //----------------------------------------------------------------------
1152 
1153 void LIRGenerator::do_Phi(Phi* x) {
1154   // phi functions are never visited directly
1155   ShouldNotReachHere();
1156 }
1157 
1158 
1159 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1160 void LIRGenerator::do_Constant(Constant* x) {
1161   if (x->state_before() != NULL) {
1162     // Any constant with a ValueStack requires patching so emit the patch here
1163     LIR_Opr reg = rlock_result(x);
1164     CodeEmitInfo* info = state_for(x, x->state_before());
1165     __ oop2reg_patch(NULL, reg, info);
1166   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1167     if (!x->is_pinned()) {
1168       // unpinned constants are handled specially so that they can be
1169       // put into registers when they are used multiple times within a
1170       // block.  After the block completes their operand will be
1171       // cleared so that other blocks can't refer to that register.
1172       set_result(x, load_constant(x));
1173     } else {
1174       LIR_Opr res = x->operand();
1175       if (!res->is_valid()) {
1176         res = LIR_OprFact::value_type(x->type());
1177       }
1178       if (res->is_constant()) {
1179         LIR_Opr reg = rlock_result(x);
1180         __ move(res, reg);
1181       } else {
1182         set_result(x, res);
1183       }
1184     }
1185   } else {
1186     set_result(x, LIR_OprFact::value_type(x->type()));
1187   }
1188 }
1189 
1190 
1191 void LIRGenerator::do_Local(Local* x) {
1192   // operand_for_instruction has the side effect of setting the result
1193   // so there's no need to do it here.
1194   operand_for_instruction(x);
1195 }
1196 
1197 
1198 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1199   Unimplemented();
1200 }
1201 
1202 
1203 void LIRGenerator::do_Return(Return* x) {
1204   if (compilation()->env()->dtrace_method_probes()) {
1205     BasicTypeList signature;
1206     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1207     signature.append(T_METADATA); // Method*
1208     LIR_OprList* args = new LIR_OprList();
1209     args->append(getThreadPointer());
1210     LIR_Opr meth = new_register(T_METADATA);
1211     __ metadata2reg(method()->constant_encoding(), meth);
1212     args->append(meth);
1213     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1214   }
1215 
1216   if (x->type()->is_void()) {
1217     __ return_op(LIR_OprFact::illegalOpr);
1218   } else {
1219     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1220     LIRItem result(x->result(), this);
1221 
1222     result.load_item_force(reg);
1223     __ return_op(result.result());
1224   }
1225   set_no_result(x);
1226 }
1227 
1228 // Examble: ref.get()
1229 // Combination of LoadField and g1 pre-write barrier
1230 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1231 
1232   const int referent_offset = java_lang_ref_Reference::referent_offset;
1233   guarantee(referent_offset > 0, "referent offset not initialized");
1234 
1235   assert(x->number_of_arguments() == 1, "wrong type");
1236 
1237   LIRItem reference(x->argument_at(0), this);
1238   reference.load_item();
1239 
1240   // need to perform the null check on the reference objecy
1241   CodeEmitInfo* info = NULL;
1242   if (x->needs_null_check()) {
1243     info = state_for(x);
1244   }
1245 
1246   LIR_Address* referent_field_adr =
1247     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1248 
1249   LIR_Opr result = rlock_result(x);
1250 
1251   __ load(referent_field_adr, result, info);
1252 
1253   // Register the value in the referent field with the pre-barrier
1254   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1255               result /* pre_val */,
1256               false  /* do_load */,
1257               false  /* patch */,
1258               NULL   /* info */);
1259 }
1260 
1261 // Example: clazz.isInstance(object)
1262 void LIRGenerator::do_isInstance(Intrinsic* x) {
1263   assert(x->number_of_arguments() == 2, "wrong type");
1264 
1265   // TODO could try to substitute this node with an equivalent InstanceOf
1266   // if clazz is known to be a constant Class. This will pick up newly found
1267   // constants after HIR construction. I'll leave this to a future change.
1268 
1269   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1270   // could follow the aastore example in a future change.
1271 
1272   LIRItem clazz(x->argument_at(0), this);
1273   LIRItem object(x->argument_at(1), this);
1274   clazz.load_item();
1275   object.load_item();
1276   LIR_Opr result = rlock_result(x);
1277 
1278   // need to perform null check on clazz
1279   if (x->needs_null_check()) {
1280     CodeEmitInfo* info = state_for(x);
1281     __ null_check(clazz.result(), info);
1282   }
1283 
1284   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1285                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1286                                      x->type(),
1287                                      NULL); // NULL CodeEmitInfo results in a leaf call
1288   __ move(call_result, result);
1289 }
1290 
1291 // Example: object.getClass ()
1292 void LIRGenerator::do_getClass(Intrinsic* x) {
1293   assert(x->number_of_arguments() == 1, "wrong type");
1294 
1295   LIRItem rcvr(x->argument_at(0), this);
1296   rcvr.load_item();
1297   LIR_Opr temp = new_register(T_METADATA);
1298   LIR_Opr result = rlock_result(x);
1299 
1300   // need to perform the null check on the rcvr
1301   CodeEmitInfo* info = NULL;
1302   if (x->needs_null_check()) {
1303     info = state_for(x);
1304   }
1305 
1306   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1307   // meaning of these two is mixed up (see JDK-8026837).
1308   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1309   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), result);
1310   // mirror = ((OopHandle)mirror)->resolve();
1311   __ move_wide(new LIR_Address(result, T_OBJECT), result);
1312 }
1313 
1314 // java.lang.Class::isPrimitive()
1315 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1316   assert(x->number_of_arguments() == 1, "wrong type");
1317 
1318   LIRItem rcvr(x->argument_at(0), this);
1319   rcvr.load_item();
1320   LIR_Opr temp = new_register(T_METADATA);
1321   LIR_Opr result = rlock_result(x);
1322 
1323   CodeEmitInfo* info = NULL;
1324   if (x->needs_null_check()) {
1325     info = state_for(x);
1326   }
1327 
1328   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1329   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1330   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1331 }
1332 
1333 
1334 // Example: Thread.currentThread()
1335 void LIRGenerator::do_currentThread(Intrinsic* x) {
1336   assert(x->number_of_arguments() == 0, "wrong type");
1337   LIR_Opr reg = rlock_result(x);
1338   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1339 }
1340 
1341 
1342 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1343   assert(x->number_of_arguments() == 1, "wrong type");
1344   LIRItem receiver(x->argument_at(0), this);
1345 
1346   receiver.load_item();
1347   BasicTypeList signature;
1348   signature.append(T_OBJECT); // receiver
1349   LIR_OprList* args = new LIR_OprList();
1350   args->append(receiver.result());
1351   CodeEmitInfo* info = state_for(x, x->state());
1352   call_runtime(&signature, args,
1353                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1354                voidType, info);
1355 
1356   set_no_result(x);
1357 }
1358 
1359 
1360 //------------------------local access--------------------------------------
1361 
1362 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1363   if (x->operand()->is_illegal()) {
1364     Constant* c = x->as_Constant();
1365     if (c != NULL) {
1366       x->set_operand(LIR_OprFact::value_type(c->type()));
1367     } else {
1368       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1369       // allocate a virtual register for this local or phi
1370       x->set_operand(rlock(x));
1371       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1372     }
1373   }
1374   return x->operand();
1375 }
1376 
1377 
1378 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1379   if (opr->is_virtual()) {
1380     return instruction_for_vreg(opr->vreg_number());
1381   }
1382   return NULL;
1383 }
1384 
1385 
1386 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1387   if (reg_num < _instruction_for_operand.length()) {
1388     return _instruction_for_operand.at(reg_num);
1389   }
1390   return NULL;
1391 }
1392 
1393 
1394 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1395   if (_vreg_flags.size_in_bits() == 0) {
1396     BitMap2D temp(100, num_vreg_flags);
1397     _vreg_flags = temp;
1398   }
1399   _vreg_flags.at_put_grow(vreg_num, f, true);
1400 }
1401 
1402 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1403   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1404     return false;
1405   }
1406   return _vreg_flags.at(vreg_num, f);
1407 }
1408 
1409 
1410 // Block local constant handling.  This code is useful for keeping
1411 // unpinned constants and constants which aren't exposed in the IR in
1412 // registers.  Unpinned Constant instructions have their operands
1413 // cleared when the block is finished so that other blocks can't end
1414 // up referring to their registers.
1415 
1416 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1417   assert(!x->is_pinned(), "only for unpinned constants");
1418   _unpinned_constants.append(x);
1419   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1420 }
1421 
1422 
1423 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1424   BasicType t = c->type();
1425   for (int i = 0; i < _constants.length(); i++) {
1426     LIR_Const* other = _constants.at(i);
1427     if (t == other->type()) {
1428       switch (t) {
1429       case T_INT:
1430       case T_FLOAT:
1431         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1432         break;
1433       case T_LONG:
1434       case T_DOUBLE:
1435         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1436         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1437         break;
1438       case T_OBJECT:
1439         if (c->as_jobject() != other->as_jobject()) continue;
1440         break;
1441       default:
1442         break;
1443       }
1444       return _reg_for_constants.at(i);
1445     }
1446   }
1447 
1448   LIR_Opr result = new_register(t);
1449   __ move((LIR_Opr)c, result);
1450   _constants.append(c);
1451   _reg_for_constants.append(result);
1452   return result;
1453 }
1454 
1455 // Various barriers
1456 
1457 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1458                                bool do_load, bool patch, CodeEmitInfo* info) {
1459   // Do the pre-write barrier, if any.
1460   switch (_bs->kind()) {
1461 #if INCLUDE_ALL_GCS
1462     case BarrierSet::G1BarrierSet:
1463       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1464       break;
1465 #endif // INCLUDE_ALL_GCS
1466     case BarrierSet::CardTableModRef:
1467       // No pre barriers
1468       break;
1469     default      :
1470       ShouldNotReachHere();
1471 
1472   }
1473 }
1474 
1475 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1476   switch (_bs->kind()) {
1477 #if INCLUDE_ALL_GCS
1478     case BarrierSet::G1BarrierSet:
1479       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1480       break;
1481 #endif // INCLUDE_ALL_GCS
1482     case BarrierSet::CardTableModRef:
1483       CardTableModRef_post_barrier(addr,  new_val);
1484       break;
1485     default      :
1486       ShouldNotReachHere();
1487     }
1488 }
1489 
1490 ////////////////////////////////////////////////////////////////////////
1491 #if INCLUDE_ALL_GCS
1492 
1493 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1494                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1495   // First we test whether marking is in progress.
1496   BasicType flag_type;
1497   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1498     flag_type = T_INT;
1499   } else {
1500     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1501               "Assumption");
1502     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1503     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1504     flag_type = T_BOOLEAN;
1505   }
1506   LIR_Opr thrd = getThreadPointer();
1507   LIR_Address* mark_active_flag_addr =
1508     new LIR_Address(thrd,
1509                     in_bytes(JavaThread::satb_mark_queue_offset() +
1510                              SATBMarkQueue::byte_offset_of_active()),
1511                     flag_type);
1512   // Read the marking-in-progress flag.
1513   LIR_Opr flag_val = new_register(T_INT);
1514   __ load(mark_active_flag_addr, flag_val);
1515   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1516 
1517   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1518 
1519   CodeStub* slow;
1520 
1521   if (do_load) {
1522     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1523     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1524 
1525     if (patch)
1526       pre_val_patch_code = lir_patch_normal;
1527 
1528     pre_val = new_register(T_OBJECT);
1529 
1530     if (!addr_opr->is_address()) {
1531       assert(addr_opr->is_register(), "must be");
1532       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1533     }
1534     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1535   } else {
1536     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1537     assert(pre_val->is_register(), "must be");
1538     assert(pre_val->type() == T_OBJECT, "must be an object");
1539     assert(info == NULL, "sanity");
1540 
1541     slow = new G1PreBarrierStub(pre_val);
1542   }
1543 
1544   __ branch(lir_cond_notEqual, T_INT, slow);
1545   __ branch_destination(slow->continuation());
1546 }
1547 
1548 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1549   // If the "new_val" is a constant NULL, no barrier is necessary.
1550   if (new_val->is_constant() &&
1551       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1552 
1553   if (!new_val->is_register()) {
1554     LIR_Opr new_val_reg = new_register(T_OBJECT);
1555     if (new_val->is_constant()) {
1556       __ move(new_val, new_val_reg);
1557     } else {
1558       __ leal(new_val, new_val_reg);
1559     }
1560     new_val = new_val_reg;
1561   }
1562   assert(new_val->is_register(), "must be a register at this point");
1563 
1564   if (addr->is_address()) {
1565     LIR_Address* address = addr->as_address_ptr();
1566     LIR_Opr ptr = new_pointer_register();
1567     if (!address->index()->is_valid() && address->disp() == 0) {
1568       __ move(address->base(), ptr);
1569     } else {
1570       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1571       __ leal(addr, ptr);
1572     }
1573     addr = ptr;
1574   }
1575   assert(addr->is_register(), "must be a register at this point");
1576 
1577   LIR_Opr xor_res = new_pointer_register();
1578   LIR_Opr xor_shift_res = new_pointer_register();
1579   if (TwoOperandLIRForm ) {
1580     __ move(addr, xor_res);
1581     __ logical_xor(xor_res, new_val, xor_res);
1582     __ move(xor_res, xor_shift_res);
1583     __ unsigned_shift_right(xor_shift_res,
1584                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1585                             xor_shift_res,
1586                             LIR_OprDesc::illegalOpr());
1587   } else {
1588     __ logical_xor(addr, new_val, xor_res);
1589     __ unsigned_shift_right(xor_res,
1590                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1591                             xor_shift_res,
1592                             LIR_OprDesc::illegalOpr());
1593   }
1594 
1595   if (!new_val->is_register()) {
1596     LIR_Opr new_val_reg = new_register(T_OBJECT);
1597     __ leal(new_val, new_val_reg);
1598     new_val = new_val_reg;
1599   }
1600   assert(new_val->is_register(), "must be a register at this point");
1601 
1602   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1603 
1604   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1605   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1606   __ branch_destination(slow->continuation());
1607 }
1608 
1609 #endif // INCLUDE_ALL_GCS
1610 ////////////////////////////////////////////////////////////////////////
1611 
1612 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1613   LIR_Const* card_table_base = new LIR_Const(ci_card_table_address());
1614   if (addr->is_address()) {
1615     LIR_Address* address = addr->as_address_ptr();
1616     // ptr cannot be an object because we use this barrier for array card marks
1617     // and addr can point in the middle of an array.
1618     LIR_Opr ptr = new_pointer_register();
1619     if (!address->index()->is_valid() && address->disp() == 0) {
1620       __ move(address->base(), ptr);
1621     } else {
1622       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1623       __ leal(addr, ptr);
1624     }
1625     addr = ptr;
1626   }
1627   assert(addr->is_register(), "must be a register at this point");
1628 
1629 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1630   CardTableModRef_post_barrier_helper(addr, card_table_base);
1631 #else
1632   LIR_Opr tmp = new_pointer_register();
1633   if (TwoOperandLIRForm) {
1634     __ move(addr, tmp);
1635     __ unsigned_shift_right(tmp, CardTable::card_shift, tmp);
1636   } else {
1637     __ unsigned_shift_right(addr, CardTable::card_shift, tmp);
1638   }
1639 
1640   LIR_Address* card_addr;
1641   if (can_inline_as_constant(card_table_base)) {
1642     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1643   } else {
1644     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1645   }
1646 
1647   LIR_Opr dirty = LIR_OprFact::intConst(CardTable::dirty_card_val());
1648   if (UseCondCardMark) {
1649     LIR_Opr cur_value = new_register(T_INT);
1650     if (UseConcMarkSweepGC) {
1651       __ membar_storeload();
1652     }
1653     __ move(card_addr, cur_value);
1654 
1655     LabelObj* L_already_dirty = new LabelObj();
1656     __ cmp(lir_cond_equal, cur_value, dirty);
1657     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1658     __ move(dirty, card_addr);
1659     __ branch_destination(L_already_dirty->label());
1660   } else {
1661     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1662       __ membar_storestore();
1663     }
1664     __ move(dirty, card_addr);
1665   }
1666 #endif
1667 }
1668 
1669 
1670 //------------------------field access--------------------------------------
1671 
1672 // Comment copied form templateTable_i486.cpp
1673 // ----------------------------------------------------------------------------
1674 // Volatile variables demand their effects be made known to all CPU's in
1675 // order.  Store buffers on most chips allow reads & writes to reorder; the
1676 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1677 // memory barrier (i.e., it's not sufficient that the interpreter does not
1678 // reorder volatile references, the hardware also must not reorder them).
1679 //
1680 // According to the new Java Memory Model (JMM):
1681 // (1) All volatiles are serialized wrt to each other.
1682 // ALSO reads & writes act as aquire & release, so:
1683 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1684 // the read float up to before the read.  It's OK for non-volatile memory refs
1685 // that happen before the volatile read to float down below it.
1686 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1687 // that happen BEFORE the write float down to after the write.  It's OK for
1688 // non-volatile memory refs that happen after the volatile write to float up
1689 // before it.
1690 //
1691 // We only put in barriers around volatile refs (they are expensive), not
1692 // _between_ memory refs (that would require us to track the flavor of the
1693 // previous memory refs).  Requirements (2) and (3) require some barriers
1694 // before volatile stores and after volatile loads.  These nearly cover
1695 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1696 // case is placed after volatile-stores although it could just as well go
1697 // before volatile-loads.
1698 
1699 
1700 void LIRGenerator::do_StoreField(StoreField* x) {
1701   bool needs_patching = x->needs_patching();
1702   bool is_volatile = x->field()->is_volatile();
1703   BasicType field_type = x->field_type();
1704   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1705 
1706   CodeEmitInfo* info = NULL;
1707   if (needs_patching) {
1708     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1709     info = state_for(x, x->state_before());
1710   } else if (x->needs_null_check()) {
1711     NullCheck* nc = x->explicit_null_check();
1712     if (nc == NULL) {
1713       info = state_for(x);
1714     } else {
1715       info = state_for(nc);
1716     }
1717   }
1718 
1719 
1720   LIRItem object(x->obj(), this);
1721   LIRItem value(x->value(),  this);
1722 
1723   object.load_item();
1724 
1725   if (is_volatile || needs_patching) {
1726     // load item if field is volatile (fewer special cases for volatiles)
1727     // load item if field not initialized
1728     // load item if field not constant
1729     // because of code patching we cannot inline constants
1730     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1731       value.load_byte_item();
1732     } else  {
1733       value.load_item();
1734     }
1735   } else {
1736     value.load_for_store(field_type);
1737   }
1738 
1739   set_no_result(x);
1740 
1741 #ifndef PRODUCT
1742   if (PrintNotLoaded && needs_patching) {
1743     tty->print_cr("   ###class not loaded at store_%s bci %d",
1744                   x->is_static() ?  "static" : "field", x->printable_bci());
1745   }
1746 #endif
1747 
1748   if (x->needs_null_check() &&
1749       (needs_patching ||
1750        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1751     // Emit an explicit null check because the offset is too large.
1752     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1753     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1754     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1755   }
1756 
1757   LIR_Address* address;
1758   if (needs_patching) {
1759     // we need to patch the offset in the instruction so don't allow
1760     // generate_address to try to be smart about emitting the -1.
1761     // Otherwise the patching code won't know how to find the
1762     // instruction to patch.
1763     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1764   } else {
1765     address = generate_address(object.result(), x->offset(), field_type);
1766   }
1767 
1768   if (is_volatile && os::is_MP()) {
1769     __ membar_release();
1770   }
1771 
1772   if (is_oop) {
1773     // Do the pre-write barrier, if any.
1774     pre_barrier(LIR_OprFact::address(address),
1775                 LIR_OprFact::illegalOpr /* pre_val */,
1776                 true /* do_load*/,
1777                 needs_patching,
1778                 (info ? new CodeEmitInfo(info) : NULL));
1779   }
1780 
1781   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1782   if (needs_atomic_access && !needs_patching) {
1783     volatile_field_store(value.result(), address, info);
1784   } else {
1785     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1786     __ store(value.result(), address, info, patch_code);
1787   }
1788 
1789   if (is_oop) {
1790     // Store to object so mark the card of the header
1791     post_barrier(object.result(), value.result());
1792   }
1793 
1794   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1795     __ membar();
1796   }
1797 }
1798 
1799 
1800 void LIRGenerator::do_LoadField(LoadField* x) {
1801   bool needs_patching = x->needs_patching();
1802   bool is_volatile = x->field()->is_volatile();
1803   BasicType field_type = x->field_type();
1804 
1805   CodeEmitInfo* info = NULL;
1806   if (needs_patching) {
1807     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1808     info = state_for(x, x->state_before());
1809   } else if (x->needs_null_check()) {
1810     NullCheck* nc = x->explicit_null_check();
1811     if (nc == NULL) {
1812       info = state_for(x);
1813     } else {
1814       info = state_for(nc);
1815     }
1816   }
1817 
1818   LIRItem object(x->obj(), this);
1819 
1820   object.load_item();
1821 
1822 #ifndef PRODUCT
1823   if (PrintNotLoaded && needs_patching) {
1824     tty->print_cr("   ###class not loaded at load_%s bci %d",
1825                   x->is_static() ?  "static" : "field", x->printable_bci());
1826   }
1827 #endif
1828 
1829   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1830   if (x->needs_null_check() &&
1831       (needs_patching ||
1832        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1833        stress_deopt)) {
1834     LIR_Opr obj = object.result();
1835     if (stress_deopt) {
1836       obj = new_register(T_OBJECT);
1837       __ move(LIR_OprFact::oopConst(NULL), obj);
1838     }
1839     // Emit an explicit null check because the offset is too large.
1840     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1841     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1842     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1843   }
1844 
1845   LIR_Opr reg = rlock_result(x, field_type);
1846   LIR_Address* address;
1847   if (needs_patching) {
1848     // we need to patch the offset in the instruction so don't allow
1849     // generate_address to try to be smart about emitting the -1.
1850     // Otherwise the patching code won't know how to find the
1851     // instruction to patch.
1852     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1853   } else {
1854     address = generate_address(object.result(), x->offset(), field_type);
1855   }
1856 
1857   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1858     __ membar();
1859   }
1860 
1861   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1862   if (needs_atomic_access && !needs_patching) {
1863     volatile_field_load(address, reg, info);
1864   } else {
1865     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1866     __ load(address, reg, info, patch_code);
1867   }
1868 
1869   if (is_volatile && os::is_MP()) {
1870     __ membar_acquire();
1871   }
1872 }
1873 
1874 
1875 //------------------------java.nio.Buffer.checkIndex------------------------
1876 
1877 // int java.nio.Buffer.checkIndex(int)
1878 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1879   // NOTE: by the time we are in checkIndex() we are guaranteed that
1880   // the buffer is non-null (because checkIndex is package-private and
1881   // only called from within other methods in the buffer).
1882   assert(x->number_of_arguments() == 2, "wrong type");
1883   LIRItem buf  (x->argument_at(0), this);
1884   LIRItem index(x->argument_at(1), this);
1885   buf.load_item();
1886   index.load_item();
1887 
1888   LIR_Opr result = rlock_result(x);
1889   if (GenerateRangeChecks) {
1890     CodeEmitInfo* info = state_for(x);
1891     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1892     if (index.result()->is_constant()) {
1893       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1894       __ branch(lir_cond_belowEqual, T_INT, stub);
1895     } else {
1896       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1897                   java_nio_Buffer::limit_offset(), T_INT, info);
1898       __ branch(lir_cond_aboveEqual, T_INT, stub);
1899     }
1900     __ move(index.result(), result);
1901   } else {
1902     // Just load the index into the result register
1903     __ move(index.result(), result);
1904   }
1905 }
1906 
1907 
1908 //------------------------array access--------------------------------------
1909 
1910 
1911 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1912   LIRItem array(x->array(), this);
1913   array.load_item();
1914   LIR_Opr reg = rlock_result(x);
1915 
1916   CodeEmitInfo* info = NULL;
1917   if (x->needs_null_check()) {
1918     NullCheck* nc = x->explicit_null_check();
1919     if (nc == NULL) {
1920       info = state_for(x);
1921     } else {
1922       info = state_for(nc);
1923     }
1924     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1925       LIR_Opr obj = new_register(T_OBJECT);
1926       __ move(LIR_OprFact::oopConst(NULL), obj);
1927       __ null_check(obj, new CodeEmitInfo(info));
1928     }
1929   }
1930   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1931 }
1932 
1933 
1934 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1935   bool use_length = x->length() != NULL;
1936   LIRItem array(x->array(), this);
1937   LIRItem index(x->index(), this);
1938   LIRItem length(this);
1939   bool needs_range_check = x->compute_needs_range_check();
1940 
1941   if (use_length && needs_range_check) {
1942     length.set_instruction(x->length());
1943     length.load_item();
1944   }
1945 
1946   array.load_item();
1947   if (index.is_constant() && can_inline_as_constant(x->index())) {
1948     // let it be a constant
1949     index.dont_load_item();
1950   } else {
1951     index.load_item();
1952   }
1953 
1954   CodeEmitInfo* range_check_info = state_for(x);
1955   CodeEmitInfo* null_check_info = NULL;
1956   if (x->needs_null_check()) {
1957     NullCheck* nc = x->explicit_null_check();
1958     if (nc != NULL) {
1959       null_check_info = state_for(nc);
1960     } else {
1961       null_check_info = range_check_info;
1962     }
1963     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1964       LIR_Opr obj = new_register(T_OBJECT);
1965       __ move(LIR_OprFact::oopConst(NULL), obj);
1966       __ null_check(obj, new CodeEmitInfo(null_check_info));
1967     }
1968   }
1969 
1970   // emit array address setup early so it schedules better
1971   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1972 
1973   if (GenerateRangeChecks && needs_range_check) {
1974     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1975       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1976     } else if (use_length) {
1977       // TODO: use a (modified) version of array_range_check that does not require a
1978       //       constant length to be loaded to a register
1979       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1980       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1981     } else {
1982       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1983       // The range check performs the null check, so clear it out for the load
1984       null_check_info = NULL;
1985     }
1986   }
1987 
1988   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1989 }
1990 
1991 
1992 void LIRGenerator::do_NullCheck(NullCheck* x) {
1993   if (x->can_trap()) {
1994     LIRItem value(x->obj(), this);
1995     value.load_item();
1996     CodeEmitInfo* info = state_for(x);
1997     __ null_check(value.result(), info);
1998   }
1999 }
2000 
2001 
2002 void LIRGenerator::do_TypeCast(TypeCast* x) {
2003   LIRItem value(x->obj(), this);
2004   value.load_item();
2005   // the result is the same as from the node we are casting
2006   set_result(x, value.result());
2007 }
2008 
2009 
2010 void LIRGenerator::do_Throw(Throw* x) {
2011   LIRItem exception(x->exception(), this);
2012   exception.load_item();
2013   set_no_result(x);
2014   LIR_Opr exception_opr = exception.result();
2015   CodeEmitInfo* info = state_for(x, x->state());
2016 
2017 #ifndef PRODUCT
2018   if (PrintC1Statistics) {
2019     increment_counter(Runtime1::throw_count_address(), T_INT);
2020   }
2021 #endif
2022 
2023   // check if the instruction has an xhandler in any of the nested scopes
2024   bool unwind = false;
2025   if (info->exception_handlers()->length() == 0) {
2026     // this throw is not inside an xhandler
2027     unwind = true;
2028   } else {
2029     // get some idea of the throw type
2030     bool type_is_exact = true;
2031     ciType* throw_type = x->exception()->exact_type();
2032     if (throw_type == NULL) {
2033       type_is_exact = false;
2034       throw_type = x->exception()->declared_type();
2035     }
2036     if (throw_type != NULL && throw_type->is_instance_klass()) {
2037       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2038       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2039     }
2040   }
2041 
2042   // do null check before moving exception oop into fixed register
2043   // to avoid a fixed interval with an oop during the null check.
2044   // Use a copy of the CodeEmitInfo because debug information is
2045   // different for null_check and throw.
2046   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2047     // if the exception object wasn't created using new then it might be null.
2048     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2049   }
2050 
2051   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2052     // we need to go through the exception lookup path to get JVMTI
2053     // notification done
2054     unwind = false;
2055   }
2056 
2057   // move exception oop into fixed register
2058   __ move(exception_opr, exceptionOopOpr());
2059 
2060   if (unwind) {
2061     __ unwind_exception(exceptionOopOpr());
2062   } else {
2063     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2064   }
2065 }
2066 
2067 
2068 void LIRGenerator::do_RoundFP(RoundFP* x) {
2069   LIRItem input(x->input(), this);
2070   input.load_item();
2071   LIR_Opr input_opr = input.result();
2072   assert(input_opr->is_register(), "why round if value is not in a register?");
2073   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2074   if (input_opr->is_single_fpu()) {
2075     set_result(x, round_item(input_opr)); // This code path not currently taken
2076   } else {
2077     LIR_Opr result = new_register(T_DOUBLE);
2078     set_vreg_flag(result, must_start_in_memory);
2079     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2080     set_result(x, result);
2081   }
2082 }
2083 
2084 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2085 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2086 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2087   LIRItem base(x->base(), this);
2088   LIRItem idx(this);
2089 
2090   base.load_item();
2091   if (x->has_index()) {
2092     idx.set_instruction(x->index());
2093     idx.load_nonconstant();
2094   }
2095 
2096   LIR_Opr reg = rlock_result(x, x->basic_type());
2097 
2098   int   log2_scale = 0;
2099   if (x->has_index()) {
2100     log2_scale = x->log2_scale();
2101   }
2102 
2103   assert(!x->has_index() || idx.value() == x->index(), "should match");
2104 
2105   LIR_Opr base_op = base.result();
2106   LIR_Opr index_op = idx.result();
2107 #ifndef _LP64
2108   if (base_op->type() == T_LONG) {
2109     base_op = new_register(T_INT);
2110     __ convert(Bytecodes::_l2i, base.result(), base_op);
2111   }
2112   if (x->has_index()) {
2113     if (index_op->type() == T_LONG) {
2114       LIR_Opr long_index_op = index_op;
2115       if (index_op->is_constant()) {
2116         long_index_op = new_register(T_LONG);
2117         __ move(index_op, long_index_op);
2118       }
2119       index_op = new_register(T_INT);
2120       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2121     } else {
2122       assert(x->index()->type()->tag() == intTag, "must be");
2123     }
2124   }
2125   // At this point base and index should be all ints.
2126   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2127   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2128 #else
2129   if (x->has_index()) {
2130     if (index_op->type() == T_INT) {
2131       if (!index_op->is_constant()) {
2132         index_op = new_register(T_LONG);
2133         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2134       }
2135     } else {
2136       assert(index_op->type() == T_LONG, "must be");
2137       if (index_op->is_constant()) {
2138         index_op = new_register(T_LONG);
2139         __ move(idx.result(), index_op);
2140       }
2141     }
2142   }
2143   // At this point base is a long non-constant
2144   // Index is a long register or a int constant.
2145   // We allow the constant to stay an int because that would allow us a more compact encoding by
2146   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2147   // move it into a register first.
2148   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2149   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2150                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2151 #endif
2152 
2153   BasicType dst_type = x->basic_type();
2154 
2155   LIR_Address* addr;
2156   if (index_op->is_constant()) {
2157     assert(log2_scale == 0, "must not have a scale");
2158     assert(index_op->type() == T_INT, "only int constants supported");
2159     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2160   } else {
2161 #ifdef X86
2162     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2163 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2164     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2165 #else
2166     if (index_op->is_illegal() || log2_scale == 0) {
2167       addr = new LIR_Address(base_op, index_op, dst_type);
2168     } else {
2169       LIR_Opr tmp = new_pointer_register();
2170       __ shift_left(index_op, log2_scale, tmp);
2171       addr = new LIR_Address(base_op, tmp, dst_type);
2172     }
2173 #endif
2174   }
2175 
2176   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2177     __ unaligned_move(addr, reg);
2178   } else {
2179     if (dst_type == T_OBJECT && x->is_wide()) {
2180       __ move_wide(addr, reg);
2181     } else {
2182       __ move(addr, reg);
2183     }
2184   }
2185 }
2186 
2187 
2188 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2189   int  log2_scale = 0;
2190   BasicType type = x->basic_type();
2191 
2192   if (x->has_index()) {
2193     log2_scale = x->log2_scale();
2194   }
2195 
2196   LIRItem base(x->base(), this);
2197   LIRItem value(x->value(), this);
2198   LIRItem idx(this);
2199 
2200   base.load_item();
2201   if (x->has_index()) {
2202     idx.set_instruction(x->index());
2203     idx.load_item();
2204   }
2205 
2206   if (type == T_BYTE || type == T_BOOLEAN) {
2207     value.load_byte_item();
2208   } else {
2209     value.load_item();
2210   }
2211 
2212   set_no_result(x);
2213 
2214   LIR_Opr base_op = base.result();
2215   LIR_Opr index_op = idx.result();
2216 
2217 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2218   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2219 #else
2220 #ifndef _LP64
2221   if (base_op->type() == T_LONG) {
2222     base_op = new_register(T_INT);
2223     __ convert(Bytecodes::_l2i, base.result(), base_op);
2224   }
2225   if (x->has_index()) {
2226     if (index_op->type() == T_LONG) {
2227       index_op = new_register(T_INT);
2228       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2229     }
2230   }
2231   // At this point base and index should be all ints and not constants
2232   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2233   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2234 #else
2235   if (x->has_index()) {
2236     if (index_op->type() == T_INT) {
2237       index_op = new_register(T_LONG);
2238       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2239     }
2240   }
2241   // At this point base and index are long and non-constant
2242   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2243   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2244 #endif
2245 
2246   if (log2_scale != 0) {
2247     // temporary fix (platform dependent code without shift on Intel would be better)
2248     // TODO: ARM also allows embedded shift in the address
2249     LIR_Opr tmp = new_pointer_register();
2250     if (TwoOperandLIRForm) {
2251       __ move(index_op, tmp);
2252       index_op = tmp;
2253     }
2254     __ shift_left(index_op, log2_scale, tmp);
2255     if (!TwoOperandLIRForm) {
2256       index_op = tmp;
2257     }
2258   }
2259 
2260   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2261 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2262   __ move(value.result(), addr);
2263 }
2264 
2265 
2266 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2267   BasicType type = x->basic_type();
2268   LIRItem src(x->object(), this);
2269   LIRItem off(x->offset(), this);
2270 
2271   off.load_item();
2272   src.load_item();
2273 
2274   LIR_Opr value = rlock_result(x, x->basic_type());
2275 
2276   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2277     __ membar();
2278   }
2279 
2280   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2281 
2282 #if INCLUDE_ALL_GCS
2283   // We might be reading the value of the referent field of a
2284   // Reference object in order to attach it back to the live
2285   // object graph. If G1 is enabled then we need to record
2286   // the value that is being returned in an SATB log buffer.
2287   //
2288   // We need to generate code similar to the following...
2289   //
2290   // if (offset == java_lang_ref_Reference::referent_offset) {
2291   //   if (src != NULL) {
2292   //     if (klass(src)->reference_type() != REF_NONE) {
2293   //       pre_barrier(..., value, ...);
2294   //     }
2295   //   }
2296   // }
2297 
2298   if (UseG1GC && type == T_OBJECT) {
2299     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2300     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2301     bool gen_source_check = true;    // Assume we need to check the src object for null.
2302     bool gen_type_check = true;      // Assume we need to check the reference_type.
2303 
2304     if (off.is_constant()) {
2305       jlong off_con = (off.type()->is_int() ?
2306                         (jlong) off.get_jint_constant() :
2307                         off.get_jlong_constant());
2308 
2309 
2310       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2311         // The constant offset is something other than referent_offset.
2312         // We can skip generating/checking the remaining guards and
2313         // skip generation of the code stub.
2314         gen_pre_barrier = false;
2315       } else {
2316         // The constant offset is the same as referent_offset -
2317         // we do not need to generate a runtime offset check.
2318         gen_offset_check = false;
2319       }
2320     }
2321 
2322     // We don't need to generate stub if the source object is an array
2323     if (gen_pre_barrier && src.type()->is_array()) {
2324       gen_pre_barrier = false;
2325     }
2326 
2327     if (gen_pre_barrier) {
2328       // We still need to continue with the checks.
2329       if (src.is_constant()) {
2330         ciObject* src_con = src.get_jobject_constant();
2331         guarantee(src_con != NULL, "no source constant");
2332 
2333         if (src_con->is_null_object()) {
2334           // The constant src object is null - We can skip
2335           // generating the code stub.
2336           gen_pre_barrier = false;
2337         } else {
2338           // Non-null constant source object. We still have to generate
2339           // the slow stub - but we don't need to generate the runtime
2340           // null object check.
2341           gen_source_check = false;
2342         }
2343       }
2344     }
2345     if (gen_pre_barrier && !PatchALot) {
2346       // Can the klass of object be statically determined to be
2347       // a sub-class of Reference?
2348       ciType* type = src.value()->declared_type();
2349       if ((type != NULL) && type->is_loaded()) {
2350         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2351           gen_type_check = false;
2352         } else if (type->is_klass() &&
2353                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2354           // Not Reference and not Object klass.
2355           gen_pre_barrier = false;
2356         }
2357       }
2358     }
2359 
2360     if (gen_pre_barrier) {
2361       LabelObj* Lcont = new LabelObj();
2362 
2363       // We can have generate one runtime check here. Let's start with
2364       // the offset check.
2365       if (gen_offset_check) {
2366         // if (offset != referent_offset) -> continue
2367         // If offset is an int then we can do the comparison with the
2368         // referent_offset constant; otherwise we need to move
2369         // referent_offset into a temporary register and generate
2370         // a reg-reg compare.
2371 
2372         LIR_Opr referent_off;
2373 
2374         if (off.type()->is_int()) {
2375           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2376         } else {
2377           assert(off.type()->is_long(), "what else?");
2378           referent_off = new_register(T_LONG);
2379           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2380         }
2381         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2382         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2383       }
2384       if (gen_source_check) {
2385         // offset is a const and equals referent offset
2386         // if (source == null) -> continue
2387         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2388         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2389       }
2390       LIR_Opr src_klass = new_register(T_OBJECT);
2391       if (gen_type_check) {
2392         // We have determined that offset == referent_offset && src != null.
2393         // if (src->_klass->_reference_type == REF_NONE) -> continue
2394         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2395         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2396         LIR_Opr reference_type = new_register(T_INT);
2397         __ move(reference_type_addr, reference_type);
2398         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2399         __ branch(lir_cond_equal, T_INT, Lcont->label());
2400       }
2401       {
2402         // We have determined that src->_klass->_reference_type != REF_NONE
2403         // so register the value in the referent field with the pre-barrier.
2404         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2405                     value  /* pre_val */,
2406                     false  /* do_load */,
2407                     false  /* patch */,
2408                     NULL   /* info */);
2409       }
2410       __ branch_destination(Lcont->label());
2411     }
2412   }
2413 #endif // INCLUDE_ALL_GCS
2414 
2415   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2416 
2417   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2418   if (type == T_BOOLEAN) {
2419     LabelObj* equalZeroLabel = new LabelObj();
2420     __ cmp(lir_cond_equal, value, 0);
2421     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2422     __ move(LIR_OprFact::intConst(1), value);
2423     __ branch_destination(equalZeroLabel->label());
2424   }
2425 }
2426 
2427 
2428 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2429   BasicType type = x->basic_type();
2430   LIRItem src(x->object(), this);
2431   LIRItem off(x->offset(), this);
2432   LIRItem data(x->value(), this);
2433 
2434   src.load_item();
2435   if (type == T_BOOLEAN || type == T_BYTE) {
2436     data.load_byte_item();
2437   } else {
2438     data.load_item();
2439   }
2440   off.load_item();
2441 
2442   set_no_result(x);
2443 
2444   if (x->is_volatile() && os::is_MP()) __ membar_release();
2445   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2446   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2447 }
2448 
2449 
2450 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2451   int lng = x->length();
2452 
2453   for (int i = 0; i < lng; i++) {
2454     SwitchRange* one_range = x->at(i);
2455     int low_key = one_range->low_key();
2456     int high_key = one_range->high_key();
2457     BlockBegin* dest = one_range->sux();
2458     if (low_key == high_key) {
2459       __ cmp(lir_cond_equal, value, low_key);
2460       __ branch(lir_cond_equal, T_INT, dest);
2461     } else if (high_key - low_key == 1) {
2462       __ cmp(lir_cond_equal, value, low_key);
2463       __ branch(lir_cond_equal, T_INT, dest);
2464       __ cmp(lir_cond_equal, value, high_key);
2465       __ branch(lir_cond_equal, T_INT, dest);
2466     } else {
2467       LabelObj* L = new LabelObj();
2468       __ cmp(lir_cond_less, value, low_key);
2469       __ branch(lir_cond_less, T_INT, L->label());
2470       __ cmp(lir_cond_lessEqual, value, high_key);
2471       __ branch(lir_cond_lessEqual, T_INT, dest);
2472       __ branch_destination(L->label());
2473     }
2474   }
2475   __ jump(default_sux);
2476 }
2477 
2478 
2479 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2480   SwitchRangeList* res = new SwitchRangeList();
2481   int len = x->length();
2482   if (len > 0) {
2483     BlockBegin* sux = x->sux_at(0);
2484     int key = x->lo_key();
2485     BlockBegin* default_sux = x->default_sux();
2486     SwitchRange* range = new SwitchRange(key, sux);
2487     for (int i = 0; i < len; i++, key++) {
2488       BlockBegin* new_sux = x->sux_at(i);
2489       if (sux == new_sux) {
2490         // still in same range
2491         range->set_high_key(key);
2492       } else {
2493         // skip tests which explicitly dispatch to the default
2494         if (sux != default_sux) {
2495           res->append(range);
2496         }
2497         range = new SwitchRange(key, new_sux);
2498       }
2499       sux = new_sux;
2500     }
2501     if (res->length() == 0 || res->last() != range)  res->append(range);
2502   }
2503   return res;
2504 }
2505 
2506 
2507 // we expect the keys to be sorted by increasing value
2508 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2509   SwitchRangeList* res = new SwitchRangeList();
2510   int len = x->length();
2511   if (len > 0) {
2512     BlockBegin* default_sux = x->default_sux();
2513     int key = x->key_at(0);
2514     BlockBegin* sux = x->sux_at(0);
2515     SwitchRange* range = new SwitchRange(key, sux);
2516     for (int i = 1; i < len; i++) {
2517       int new_key = x->key_at(i);
2518       BlockBegin* new_sux = x->sux_at(i);
2519       if (key+1 == new_key && sux == new_sux) {
2520         // still in same range
2521         range->set_high_key(new_key);
2522       } else {
2523         // skip tests which explicitly dispatch to the default
2524         if (range->sux() != default_sux) {
2525           res->append(range);
2526         }
2527         range = new SwitchRange(new_key, new_sux);
2528       }
2529       key = new_key;
2530       sux = new_sux;
2531     }
2532     if (res->length() == 0 || res->last() != range)  res->append(range);
2533   }
2534   return res;
2535 }
2536 
2537 
2538 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2539   LIRItem tag(x->tag(), this);
2540   tag.load_item();
2541   set_no_result(x);
2542 
2543   if (x->is_safepoint()) {
2544     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2545   }
2546 
2547   // move values into phi locations
2548   move_to_phi(x->state());
2549 
2550   int lo_key = x->lo_key();
2551   int hi_key = x->hi_key();
2552   int len = x->length();
2553   LIR_Opr value = tag.result();
2554   if (UseTableRanges) {
2555     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2556   } else {
2557     for (int i = 0; i < len; i++) {
2558       __ cmp(lir_cond_equal, value, i + lo_key);
2559       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2560     }
2561     __ jump(x->default_sux());
2562   }
2563 }
2564 
2565 
2566 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2567   LIRItem tag(x->tag(), this);
2568   tag.load_item();
2569   set_no_result(x);
2570 
2571   if (x->is_safepoint()) {
2572     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2573   }
2574 
2575   // move values into phi locations
2576   move_to_phi(x->state());
2577 
2578   LIR_Opr value = tag.result();
2579   if (UseTableRanges) {
2580     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2581   } else {
2582     int len = x->length();
2583     for (int i = 0; i < len; i++) {
2584       __ cmp(lir_cond_equal, value, x->key_at(i));
2585       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2586     }
2587     __ jump(x->default_sux());
2588   }
2589 }
2590 
2591 
2592 void LIRGenerator::do_Goto(Goto* x) {
2593   set_no_result(x);
2594 
2595   if (block()->next()->as_OsrEntry()) {
2596     // need to free up storage used for OSR entry point
2597     LIR_Opr osrBuffer = block()->next()->operand();
2598     BasicTypeList signature;
2599     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2600     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2601     __ move(osrBuffer, cc->args()->at(0));
2602     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2603                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2604   }
2605 
2606   if (x->is_safepoint()) {
2607     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2608 
2609     // increment backedge counter if needed
2610     CodeEmitInfo* info = state_for(x, state);
2611     increment_backedge_counter(info, x->profiled_bci());
2612     CodeEmitInfo* safepoint_info = state_for(x, state);
2613     __ safepoint(safepoint_poll_register(), safepoint_info);
2614   }
2615 
2616   // Gotos can be folded Ifs, handle this case.
2617   if (x->should_profile()) {
2618     ciMethod* method = x->profiled_method();
2619     assert(method != NULL, "method should be set if branch is profiled");
2620     ciMethodData* md = method->method_data_or_null();
2621     assert(md != NULL, "Sanity");
2622     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2623     assert(data != NULL, "must have profiling data");
2624     int offset;
2625     if (x->direction() == Goto::taken) {
2626       assert(data->is_BranchData(), "need BranchData for two-way branches");
2627       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2628     } else if (x->direction() == Goto::not_taken) {
2629       assert(data->is_BranchData(), "need BranchData for two-way branches");
2630       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2631     } else {
2632       assert(data->is_JumpData(), "need JumpData for branches");
2633       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2634     }
2635     LIR_Opr md_reg = new_register(T_METADATA);
2636     __ metadata2reg(md->constant_encoding(), md_reg);
2637 
2638     increment_counter(new LIR_Address(md_reg, offset,
2639                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2640   }
2641 
2642   // emit phi-instruction move after safepoint since this simplifies
2643   // describing the state as the safepoint.
2644   move_to_phi(x->state());
2645 
2646   __ jump(x->default_sux());
2647 }
2648 
2649 /**
2650  * Emit profiling code if needed for arguments, parameters, return value types
2651  *
2652  * @param md                    MDO the code will update at runtime
2653  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2654  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2655  * @param profiled_k            current profile
2656  * @param obj                   IR node for the object to be profiled
2657  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2658  *                              Set once we find an update to make and use for next ones.
2659  * @param not_null              true if we know obj cannot be null
2660  * @param signature_at_call_k   signature at call for obj
2661  * @param callee_signature_k    signature of callee for obj
2662  *                              at call and callee signatures differ at method handle call
2663  * @return                      the only klass we know will ever be seen at this profile point
2664  */
2665 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2666                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2667                                     ciKlass* callee_signature_k) {
2668   ciKlass* result = NULL;
2669   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2670   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2671   // known not to be null or null bit already set and already set to
2672   // unknown: nothing we can do to improve profiling
2673   if (!do_null && !do_update) {
2674     return result;
2675   }
2676 
2677   ciKlass* exact_klass = NULL;
2678   Compilation* comp = Compilation::current();
2679   if (do_update) {
2680     // try to find exact type, using CHA if possible, so that loading
2681     // the klass from the object can be avoided
2682     ciType* type = obj->exact_type();
2683     if (type == NULL) {
2684       type = obj->declared_type();
2685       type = comp->cha_exact_type(type);
2686     }
2687     assert(type == NULL || type->is_klass(), "type should be class");
2688     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2689 
2690     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2691   }
2692 
2693   if (!do_null && !do_update) {
2694     return result;
2695   }
2696 
2697   ciKlass* exact_signature_k = NULL;
2698   if (do_update) {
2699     // Is the type from the signature exact (the only one possible)?
2700     exact_signature_k = signature_at_call_k->exact_klass();
2701     if (exact_signature_k == NULL) {
2702       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2703     } else {
2704       result = exact_signature_k;
2705       // Known statically. No need to emit any code: prevent
2706       // LIR_Assembler::emit_profile_type() from emitting useless code
2707       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2708     }
2709     // exact_klass and exact_signature_k can be both non NULL but
2710     // different if exact_klass is loaded after the ciObject for
2711     // exact_signature_k is created.
2712     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2713       // sometimes the type of the signature is better than the best type
2714       // the compiler has
2715       exact_klass = exact_signature_k;
2716     }
2717     if (callee_signature_k != NULL &&
2718         callee_signature_k != signature_at_call_k) {
2719       ciKlass* improved_klass = callee_signature_k->exact_klass();
2720       if (improved_klass == NULL) {
2721         improved_klass = comp->cha_exact_type(callee_signature_k);
2722       }
2723       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2724         exact_klass = exact_signature_k;
2725       }
2726     }
2727     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2728   }
2729 
2730   if (!do_null && !do_update) {
2731     return result;
2732   }
2733 
2734   if (mdp == LIR_OprFact::illegalOpr) {
2735     mdp = new_register(T_METADATA);
2736     __ metadata2reg(md->constant_encoding(), mdp);
2737     if (md_base_offset != 0) {
2738       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2739       mdp = new_pointer_register();
2740       __ leal(LIR_OprFact::address(base_type_address), mdp);
2741     }
2742   }
2743   LIRItem value(obj, this);
2744   value.load_item();
2745   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2746                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2747   return result;
2748 }
2749 
2750 // profile parameters on entry to the root of the compilation
2751 void LIRGenerator::profile_parameters(Base* x) {
2752   if (compilation()->profile_parameters()) {
2753     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2754     ciMethodData* md = scope()->method()->method_data_or_null();
2755     assert(md != NULL, "Sanity");
2756 
2757     if (md->parameters_type_data() != NULL) {
2758       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2759       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2760       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2761       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2762         LIR_Opr src = args->at(i);
2763         assert(!src->is_illegal(), "check");
2764         BasicType t = src->type();
2765         if (t == T_OBJECT || t == T_ARRAY) {
2766           intptr_t profiled_k = parameters->type(j);
2767           Local* local = x->state()->local_at(java_index)->as_Local();
2768           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2769                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2770                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2771           // If the profile is known statically set it once for all and do not emit any code
2772           if (exact != NULL) {
2773             md->set_parameter_type(j, exact);
2774           }
2775           j++;
2776         }
2777         java_index += type2size[t];
2778       }
2779     }
2780   }
2781 }
2782 
2783 void LIRGenerator::do_Base(Base* x) {
2784   __ std_entry(LIR_OprFact::illegalOpr);
2785   // Emit moves from physical registers / stack slots to virtual registers
2786   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2787   IRScope* irScope = compilation()->hir()->top_scope();
2788   int java_index = 0;
2789   for (int i = 0; i < args->length(); i++) {
2790     LIR_Opr src = args->at(i);
2791     assert(!src->is_illegal(), "check");
2792     BasicType t = src->type();
2793 
2794     // Types which are smaller than int are passed as int, so
2795     // correct the type which passed.
2796     switch (t) {
2797     case T_BYTE:
2798     case T_BOOLEAN:
2799     case T_SHORT:
2800     case T_CHAR:
2801       t = T_INT;
2802       break;
2803     default:
2804       break;
2805     }
2806 
2807     LIR_Opr dest = new_register(t);
2808     __ move(src, dest);
2809 
2810     // Assign new location to Local instruction for this local
2811     Local* local = x->state()->local_at(java_index)->as_Local();
2812     assert(local != NULL, "Locals for incoming arguments must have been created");
2813 #ifndef __SOFTFP__
2814     // The java calling convention passes double as long and float as int.
2815     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2816 #endif // __SOFTFP__
2817     local->set_operand(dest);
2818     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2819     java_index += type2size[t];
2820   }
2821 
2822   if (compilation()->env()->dtrace_method_probes()) {
2823     BasicTypeList signature;
2824     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2825     signature.append(T_METADATA); // Method*
2826     LIR_OprList* args = new LIR_OprList();
2827     args->append(getThreadPointer());
2828     LIR_Opr meth = new_register(T_METADATA);
2829     __ metadata2reg(method()->constant_encoding(), meth);
2830     args->append(meth);
2831     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2832   }
2833 
2834   if (method()->is_synchronized()) {
2835     LIR_Opr obj;
2836     if (method()->is_static()) {
2837       obj = new_register(T_OBJECT);
2838       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2839     } else {
2840       Local* receiver = x->state()->local_at(0)->as_Local();
2841       assert(receiver != NULL, "must already exist");
2842       obj = receiver->operand();
2843     }
2844     assert(obj->is_valid(), "must be valid");
2845 
2846     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2847       LIR_Opr lock = syncLockOpr();
2848       __ load_stack_address_monitor(0, lock);
2849 
2850       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2851       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2852 
2853       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2854       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2855     }
2856   }
2857   if (compilation()->age_code()) {
2858     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2859     decrement_age(info);
2860   }
2861   // increment invocation counters if needed
2862   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2863     profile_parameters(x);
2864     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2865     increment_invocation_counter(info);
2866   }
2867 
2868   // all blocks with a successor must end with an unconditional jump
2869   // to the successor even if they are consecutive
2870   __ jump(x->default_sux());
2871 }
2872 
2873 
2874 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2875   // construct our frame and model the production of incoming pointer
2876   // to the OSR buffer.
2877   __ osr_entry(LIR_Assembler::osrBufferPointer());
2878   LIR_Opr result = rlock_result(x);
2879   __ move(LIR_Assembler::osrBufferPointer(), result);
2880 }
2881 
2882 
2883 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2884   assert(args->length() == arg_list->length(),
2885          "args=%d, arg_list=%d", args->length(), arg_list->length());
2886   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2887     LIRItem* param = args->at(i);
2888     LIR_Opr loc = arg_list->at(i);
2889     if (loc->is_register()) {
2890       param->load_item_force(loc);
2891     } else {
2892       LIR_Address* addr = loc->as_address_ptr();
2893       param->load_for_store(addr->type());
2894       if (addr->type() == T_OBJECT) {
2895         __ move_wide(param->result(), addr);
2896       } else
2897         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2898           __ unaligned_move(param->result(), addr);
2899         } else {
2900           __ move(param->result(), addr);
2901         }
2902     }
2903   }
2904 
2905   if (x->has_receiver()) {
2906     LIRItem* receiver = args->at(0);
2907     LIR_Opr loc = arg_list->at(0);
2908     if (loc->is_register()) {
2909       receiver->load_item_force(loc);
2910     } else {
2911       assert(loc->is_address(), "just checking");
2912       receiver->load_for_store(T_OBJECT);
2913       __ move_wide(receiver->result(), loc->as_address_ptr());
2914     }
2915   }
2916 }
2917 
2918 
2919 // Visits all arguments, returns appropriate items without loading them
2920 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2921   LIRItemList* argument_items = new LIRItemList();
2922   if (x->has_receiver()) {
2923     LIRItem* receiver = new LIRItem(x->receiver(), this);
2924     argument_items->append(receiver);
2925   }
2926   for (int i = 0; i < x->number_of_arguments(); i++) {
2927     LIRItem* param = new LIRItem(x->argument_at(i), this);
2928     argument_items->append(param);
2929   }
2930   return argument_items;
2931 }
2932 
2933 
2934 // The invoke with receiver has following phases:
2935 //   a) traverse and load/lock receiver;
2936 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2937 //   c) push receiver on stack
2938 //   d) load each of the items and push on stack
2939 //   e) unlock receiver
2940 //   f) move receiver into receiver-register %o0
2941 //   g) lock result registers and emit call operation
2942 //
2943 // Before issuing a call, we must spill-save all values on stack
2944 // that are in caller-save register. "spill-save" moves those registers
2945 // either in a free callee-save register or spills them if no free
2946 // callee save register is available.
2947 //
2948 // The problem is where to invoke spill-save.
2949 // - if invoked between e) and f), we may lock callee save
2950 //   register in "spill-save" that destroys the receiver register
2951 //   before f) is executed
2952 // - if we rearrange f) to be earlier (by loading %o0) it
2953 //   may destroy a value on the stack that is currently in %o0
2954 //   and is waiting to be spilled
2955 // - if we keep the receiver locked while doing spill-save,
2956 //   we cannot spill it as it is spill-locked
2957 //
2958 void LIRGenerator::do_Invoke(Invoke* x) {
2959   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2960 
2961   LIR_OprList* arg_list = cc->args();
2962   LIRItemList* args = invoke_visit_arguments(x);
2963   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2964 
2965   // setup result register
2966   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2967   if (x->type() != voidType) {
2968     result_register = result_register_for(x->type());
2969   }
2970 
2971   CodeEmitInfo* info = state_for(x, x->state());
2972 
2973   invoke_load_arguments(x, args, arg_list);
2974 
2975   if (x->has_receiver()) {
2976     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2977     receiver = args->at(0)->result();
2978   }
2979 
2980   // emit invoke code
2981   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2982 
2983   // JSR 292
2984   // Preserve the SP over MethodHandle call sites, if needed.
2985   ciMethod* target = x->target();
2986   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2987                                   target->is_method_handle_intrinsic() ||
2988                                   target->is_compiled_lambda_form());
2989   if (is_method_handle_invoke) {
2990     info->set_is_method_handle_invoke(true);
2991     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2992         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2993     }
2994   }
2995 
2996   switch (x->code()) {
2997     case Bytecodes::_invokestatic:
2998       __ call_static(target, result_register,
2999                      SharedRuntime::get_resolve_static_call_stub(),
3000                      arg_list, info);
3001       break;
3002     case Bytecodes::_invokespecial:
3003     case Bytecodes::_invokevirtual:
3004     case Bytecodes::_invokeinterface:
3005       // for loaded and final (method or class) target we still produce an inline cache,
3006       // in order to be able to call mixed mode
3007       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3008         __ call_opt_virtual(target, receiver, result_register,
3009                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3010                             arg_list, info);
3011       } else if (x->vtable_index() < 0) {
3012         __ call_icvirtual(target, receiver, result_register,
3013                           SharedRuntime::get_resolve_virtual_call_stub(),
3014                           arg_list, info);
3015       } else {
3016         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3017         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3018         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3019       }
3020       break;
3021     case Bytecodes::_invokedynamic: {
3022       __ call_dynamic(target, receiver, result_register,
3023                       SharedRuntime::get_resolve_static_call_stub(),
3024                       arg_list, info);
3025       break;
3026     }
3027     default:
3028       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3029       break;
3030   }
3031 
3032   // JSR 292
3033   // Restore the SP after MethodHandle call sites, if needed.
3034   if (is_method_handle_invoke
3035       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3036     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3037   }
3038 
3039   if (x->type()->is_float() || x->type()->is_double()) {
3040     // Force rounding of results from non-strictfp when in strictfp
3041     // scope (or when we don't know the strictness of the callee, to
3042     // be safe.)
3043     if (method()->is_strict()) {
3044       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3045         result_register = round_item(result_register);
3046       }
3047     }
3048   }
3049 
3050   if (result_register->is_valid()) {
3051     LIR_Opr result = rlock_result(x);
3052     __ move(result_register, result);
3053   }
3054 }
3055 
3056 
3057 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3058   assert(x->number_of_arguments() == 1, "wrong type");
3059   LIRItem value       (x->argument_at(0), this);
3060   LIR_Opr reg = rlock_result(x);
3061   value.load_item();
3062   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3063   __ move(tmp, reg);
3064 }
3065 
3066 
3067 
3068 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3069 void LIRGenerator::do_IfOp(IfOp* x) {
3070 #ifdef ASSERT
3071   {
3072     ValueTag xtag = x->x()->type()->tag();
3073     ValueTag ttag = x->tval()->type()->tag();
3074     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3075     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3076     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3077   }
3078 #endif
3079 
3080   LIRItem left(x->x(), this);
3081   LIRItem right(x->y(), this);
3082   left.load_item();
3083   if (can_inline_as_constant(right.value())) {
3084     right.dont_load_item();
3085   } else {
3086     right.load_item();
3087   }
3088 
3089   LIRItem t_val(x->tval(), this);
3090   LIRItem f_val(x->fval(), this);
3091   t_val.dont_load_item();
3092   f_val.dont_load_item();
3093   LIR_Opr reg = rlock_result(x);
3094 
3095   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3096   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3097 }
3098 
3099 #ifdef TRACE_HAVE_INTRINSICS
3100 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3101   CodeEmitInfo* info = state_for(x);
3102   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3103 
3104   assert(info != NULL, "must have info");
3105   LIRItem arg(x->argument_at(0), this);
3106 
3107   arg.load_item();
3108   LIR_Opr klass = new_register(T_METADATA);
3109   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3110   LIR_Opr id = new_register(T_LONG);
3111   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3112   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3113 
3114   __ move(trace_id_addr, id);
3115   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3116   __ store(id, trace_id_addr);
3117 
3118 #ifdef TRACE_ID_META_BITS
3119   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3120 #endif
3121 #ifdef TRACE_ID_CLASS_SHIFT
3122   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3123 #endif
3124 
3125   __ move(id, rlock_result(x));
3126 }
3127 
3128 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3129   LabelObj* L_end = new LabelObj();
3130 
3131   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3132                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3133                                            T_OBJECT);
3134   LIR_Opr result = rlock_result(x);
3135   __ move_wide(jobj_addr, result);
3136   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3137   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3138   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3139 
3140   __ branch_destination(L_end->label());
3141 }
3142 
3143 #endif
3144 
3145 
3146 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3147   assert(x->number_of_arguments() == 0, "wrong type");
3148   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3149   BasicTypeList signature;
3150   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3151   LIR_Opr reg = result_register_for(x->type());
3152   __ call_runtime_leaf(routine, getThreadTemp(),
3153                        reg, new LIR_OprList());
3154   LIR_Opr result = rlock_result(x);
3155   __ move(reg, result);
3156 }
3157 
3158 
3159 
3160 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3161   switch (x->id()) {
3162   case vmIntrinsics::_intBitsToFloat      :
3163   case vmIntrinsics::_doubleToRawLongBits :
3164   case vmIntrinsics::_longBitsToDouble    :
3165   case vmIntrinsics::_floatToRawIntBits   : {
3166     do_FPIntrinsics(x);
3167     break;
3168   }
3169 
3170 #ifdef TRACE_HAVE_INTRINSICS
3171   case vmIntrinsics::_getClassId:
3172     do_ClassIDIntrinsic(x);
3173     break;
3174   case vmIntrinsics::_getBufferWriter:
3175     do_getBufferWriter(x);
3176     break;
3177   case vmIntrinsics::_counterTime:
3178     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3179     break;
3180 #endif
3181 
3182   case vmIntrinsics::_currentTimeMillis:
3183     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3184     break;
3185 
3186   case vmIntrinsics::_nanoTime:
3187     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3188     break;
3189 
3190   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3191   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3192   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3193   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3194   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3195 
3196   case vmIntrinsics::_dlog:           // fall through
3197   case vmIntrinsics::_dlog10:         // fall through
3198   case vmIntrinsics::_dabs:           // fall through
3199   case vmIntrinsics::_dsqrt:          // fall through
3200   case vmIntrinsics::_dtan:           // fall through
3201   case vmIntrinsics::_dsin :          // fall through
3202   case vmIntrinsics::_dcos :          // fall through
3203   case vmIntrinsics::_dexp :          // fall through
3204   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3205   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3206 
3207   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3208   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3209 
3210   // java.nio.Buffer.checkIndex
3211   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3212 
3213   case vmIntrinsics::_compareAndSetObject:
3214     do_CompareAndSwap(x, objectType);
3215     break;
3216   case vmIntrinsics::_compareAndSetInt:
3217     do_CompareAndSwap(x, intType);
3218     break;
3219   case vmIntrinsics::_compareAndSetLong:
3220     do_CompareAndSwap(x, longType);
3221     break;
3222 
3223   case vmIntrinsics::_loadFence :
3224     if (os::is_MP()) __ membar_acquire();
3225     break;
3226   case vmIntrinsics::_storeFence:
3227     if (os::is_MP()) __ membar_release();
3228     break;
3229   case vmIntrinsics::_fullFence :
3230     if (os::is_MP()) __ membar();
3231     break;
3232   case vmIntrinsics::_onSpinWait:
3233     __ on_spin_wait();
3234     break;
3235   case vmIntrinsics::_Reference_get:
3236     do_Reference_get(x);
3237     break;
3238 
3239   case vmIntrinsics::_updateCRC32:
3240   case vmIntrinsics::_updateBytesCRC32:
3241   case vmIntrinsics::_updateByteBufferCRC32:
3242     do_update_CRC32(x);
3243     break;
3244 
3245   case vmIntrinsics::_updateBytesCRC32C:
3246   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3247     do_update_CRC32C(x);
3248     break;
3249 
3250   case vmIntrinsics::_vectorizedMismatch:
3251     do_vectorizedMismatch(x);
3252     break;
3253 
3254   default: ShouldNotReachHere(); break;
3255   }
3256 }
3257 
3258 void LIRGenerator::profile_arguments(ProfileCall* x) {
3259   if (compilation()->profile_arguments()) {
3260     int bci = x->bci_of_invoke();
3261     ciMethodData* md = x->method()->method_data_or_null();
3262     ciProfileData* data = md->bci_to_data(bci);
3263     if (data != NULL) {
3264       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3265           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3266         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3267         int base_offset = md->byte_offset_of_slot(data, extra);
3268         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3269         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3270 
3271         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3272         int start = 0;
3273         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3274         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3275           // first argument is not profiled at call (method handle invoke)
3276           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3277           start = 1;
3278         }
3279         ciSignature* callee_signature = x->callee()->signature();
3280         // method handle call to virtual method
3281         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3282         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3283 
3284         bool ignored_will_link;
3285         ciSignature* signature_at_call = NULL;
3286         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3287         ciSignatureStream signature_at_call_stream(signature_at_call);
3288 
3289         // if called through method handle invoke, some arguments may have been popped
3290         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3291           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3292           ciKlass* exact = profile_type(md, base_offset, off,
3293               args->type(i), x->profiled_arg_at(i+start), mdp,
3294               !x->arg_needs_null_check(i+start),
3295               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3296           if (exact != NULL) {
3297             md->set_argument_type(bci, i, exact);
3298           }
3299         }
3300       } else {
3301 #ifdef ASSERT
3302         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3303         int n = x->nb_profiled_args();
3304         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3305             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3306             "only at JSR292 bytecodes");
3307 #endif
3308       }
3309     }
3310   }
3311 }
3312 
3313 // profile parameters on entry to an inlined method
3314 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3315   if (compilation()->profile_parameters() && x->inlined()) {
3316     ciMethodData* md = x->callee()->method_data_or_null();
3317     if (md != NULL) {
3318       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3319       if (parameters_type_data != NULL) {
3320         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3321         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3322         bool has_receiver = !x->callee()->is_static();
3323         ciSignature* sig = x->callee()->signature();
3324         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3325         int i = 0; // to iterate on the Instructions
3326         Value arg = x->recv();
3327         bool not_null = false;
3328         int bci = x->bci_of_invoke();
3329         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3330         // The first parameter is the receiver so that's what we start
3331         // with if it exists. One exception is method handle call to
3332         // virtual method: the receiver is in the args list
3333         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3334           i = 1;
3335           arg = x->profiled_arg_at(0);
3336           not_null = !x->arg_needs_null_check(0);
3337         }
3338         int k = 0; // to iterate on the profile data
3339         for (;;) {
3340           intptr_t profiled_k = parameters->type(k);
3341           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3342                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3343                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3344           // If the profile is known statically set it once for all and do not emit any code
3345           if (exact != NULL) {
3346             md->set_parameter_type(k, exact);
3347           }
3348           k++;
3349           if (k >= parameters_type_data->number_of_parameters()) {
3350 #ifdef ASSERT
3351             int extra = 0;
3352             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3353                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3354                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3355               extra += 1;
3356             }
3357             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3358 #endif
3359             break;
3360           }
3361           arg = x->profiled_arg_at(i);
3362           not_null = !x->arg_needs_null_check(i);
3363           i++;
3364         }
3365       }
3366     }
3367   }
3368 }
3369 
3370 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3371   // Need recv in a temporary register so it interferes with the other temporaries
3372   LIR_Opr recv = LIR_OprFact::illegalOpr;
3373   LIR_Opr mdo = new_register(T_OBJECT);
3374   // tmp is used to hold the counters on SPARC
3375   LIR_Opr tmp = new_pointer_register();
3376 
3377   if (x->nb_profiled_args() > 0) {
3378     profile_arguments(x);
3379   }
3380 
3381   // profile parameters on inlined method entry including receiver
3382   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3383     profile_parameters_at_call(x);
3384   }
3385 
3386   if (x->recv() != NULL) {
3387     LIRItem value(x->recv(), this);
3388     value.load_item();
3389     recv = new_register(T_OBJECT);
3390     __ move(value.result(), recv);
3391   }
3392   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3393 }
3394 
3395 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3396   int bci = x->bci_of_invoke();
3397   ciMethodData* md = x->method()->method_data_or_null();
3398   ciProfileData* data = md->bci_to_data(bci);
3399   if (data != NULL) {
3400     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3401     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3402     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3403 
3404     bool ignored_will_link;
3405     ciSignature* signature_at_call = NULL;
3406     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3407 
3408     // The offset within the MDO of the entry to update may be too large
3409     // to be used in load/store instructions on some platforms. So have
3410     // profile_type() compute the address of the profile in a register.
3411     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3412         ret->type(), x->ret(), mdp,
3413         !x->needs_null_check(),
3414         signature_at_call->return_type()->as_klass(),
3415         x->callee()->signature()->return_type()->as_klass());
3416     if (exact != NULL) {
3417       md->set_return_type(bci, exact);
3418     }
3419   }
3420 }
3421 
3422 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3423   // We can safely ignore accessors here, since c2 will inline them anyway,
3424   // accessors are also always mature.
3425   if (!x->inlinee()->is_accessor()) {
3426     CodeEmitInfo* info = state_for(x, x->state(), true);
3427     // Notify the runtime very infrequently only to take care of counter overflows
3428     int freq_log = Tier23InlineeNotifyFreqLog;
3429     double scale;
3430     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3431       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3432     }
3433     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3434   }
3435 }
3436 
3437 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3438   int freq_log = 0;
3439   int level = compilation()->env()->comp_level();
3440   if (level == CompLevel_limited_profile) {
3441     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3442   } else if (level == CompLevel_full_profile) {
3443     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3444   } else {
3445     ShouldNotReachHere();
3446   }
3447   // Increment the appropriate invocation/backedge counter and notify the runtime.
3448   double scale;
3449   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3450     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3451   }
3452   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3453 }
3454 
3455 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3456   ciMethod* method = info->scope()->method();
3457   MethodCounters* mc_adr = method->ensure_method_counters();
3458   if (mc_adr != NULL) {
3459     LIR_Opr mc = new_pointer_register();
3460     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3461     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3462     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3463     LIR_Opr result = new_register(T_INT);
3464     __ load(counter, result);
3465     __ sub(result, LIR_OprFact::intConst(1), result);
3466     __ store(result, counter);
3467     // DeoptimizeStub will reexecute from the current state in code info.
3468     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3469                                          Deoptimization::Action_make_not_entrant);
3470     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3471     __ branch(lir_cond_lessEqual, T_INT, deopt);
3472   }
3473 }
3474 
3475 
3476 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3477                                                 ciMethod *method, int frequency,
3478                                                 int bci, bool backedge, bool notify) {
3479   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3480   int level = _compilation->env()->comp_level();
3481   assert(level > CompLevel_simple, "Shouldn't be here");
3482 
3483   int offset = -1;
3484   LIR_Opr counter_holder = NULL;
3485   if (level == CompLevel_limited_profile) {
3486     MethodCounters* counters_adr = method->ensure_method_counters();
3487     if (counters_adr == NULL) {
3488       bailout("method counters allocation failed");
3489       return;
3490     }
3491     counter_holder = new_pointer_register();
3492     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3493     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3494                                  MethodCounters::invocation_counter_offset());
3495   } else if (level == CompLevel_full_profile) {
3496     counter_holder = new_register(T_METADATA);
3497     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3498                                  MethodData::invocation_counter_offset());
3499     ciMethodData* md = method->method_data_or_null();
3500     assert(md != NULL, "Sanity");
3501     __ metadata2reg(md->constant_encoding(), counter_holder);
3502   } else {
3503     ShouldNotReachHere();
3504   }
3505   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3506   LIR_Opr result = new_register(T_INT);
3507   __ load(counter, result);
3508   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3509   __ store(result, counter);
3510   if (notify && (!backedge || UseOnStackReplacement)) {
3511     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3512     // The bci for info can point to cmp for if's we want the if bci
3513     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3514     int freq = frequency << InvocationCounter::count_shift;
3515     if (freq == 0) {
3516       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3517     } else {
3518       LIR_Opr mask = load_immediate(freq, T_INT);
3519       __ logical_and(result, mask, result);
3520       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3521       __ branch(lir_cond_equal, T_INT, overflow);
3522     }
3523     __ branch_destination(overflow->continuation());
3524   }
3525 }
3526 
3527 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3528   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3529   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3530 
3531   if (x->pass_thread()) {
3532     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3533     args->append(getThreadPointer());
3534   }
3535 
3536   for (int i = 0; i < x->number_of_arguments(); i++) {
3537     Value a = x->argument_at(i);
3538     LIRItem* item = new LIRItem(a, this);
3539     item->load_item();
3540     args->append(item->result());
3541     signature->append(as_BasicType(a->type()));
3542   }
3543 
3544   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3545   if (x->type() == voidType) {
3546     set_no_result(x);
3547   } else {
3548     __ move(result, rlock_result(x));
3549   }
3550 }
3551 
3552 #ifdef ASSERT
3553 void LIRGenerator::do_Assert(Assert *x) {
3554   ValueTag tag = x->x()->type()->tag();
3555   If::Condition cond = x->cond();
3556 
3557   LIRItem xitem(x->x(), this);
3558   LIRItem yitem(x->y(), this);
3559   LIRItem* xin = &xitem;
3560   LIRItem* yin = &yitem;
3561 
3562   assert(tag == intTag, "Only integer assertions are valid!");
3563 
3564   xin->load_item();
3565   yin->dont_load_item();
3566 
3567   set_no_result(x);
3568 
3569   LIR_Opr left = xin->result();
3570   LIR_Opr right = yin->result();
3571 
3572   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3573 }
3574 #endif
3575 
3576 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3577 
3578 
3579   Instruction *a = x->x();
3580   Instruction *b = x->y();
3581   if (!a || StressRangeCheckElimination) {
3582     assert(!b || StressRangeCheckElimination, "B must also be null");
3583 
3584     CodeEmitInfo *info = state_for(x, x->state());
3585     CodeStub* stub = new PredicateFailedStub(info);
3586 
3587     __ jump(stub);
3588   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3589     int a_int = a->type()->as_IntConstant()->value();
3590     int b_int = b->type()->as_IntConstant()->value();
3591 
3592     bool ok = false;
3593 
3594     switch(x->cond()) {
3595       case Instruction::eql: ok = (a_int == b_int); break;
3596       case Instruction::neq: ok = (a_int != b_int); break;
3597       case Instruction::lss: ok = (a_int < b_int); break;
3598       case Instruction::leq: ok = (a_int <= b_int); break;
3599       case Instruction::gtr: ok = (a_int > b_int); break;
3600       case Instruction::geq: ok = (a_int >= b_int); break;
3601       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3602       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3603       default: ShouldNotReachHere();
3604     }
3605 
3606     if (ok) {
3607 
3608       CodeEmitInfo *info = state_for(x, x->state());
3609       CodeStub* stub = new PredicateFailedStub(info);
3610 
3611       __ jump(stub);
3612     }
3613   } else {
3614 
3615     ValueTag tag = x->x()->type()->tag();
3616     If::Condition cond = x->cond();
3617     LIRItem xitem(x->x(), this);
3618     LIRItem yitem(x->y(), this);
3619     LIRItem* xin = &xitem;
3620     LIRItem* yin = &yitem;
3621 
3622     assert(tag == intTag, "Only integer deoptimizations are valid!");
3623 
3624     xin->load_item();
3625     yin->dont_load_item();
3626     set_no_result(x);
3627 
3628     LIR_Opr left = xin->result();
3629     LIR_Opr right = yin->result();
3630 
3631     CodeEmitInfo *info = state_for(x, x->state());
3632     CodeStub* stub = new PredicateFailedStub(info);
3633 
3634     __ cmp(lir_cond(cond), left, right);
3635     __ branch(lir_cond(cond), right->type(), stub);
3636   }
3637 }
3638 
3639 
3640 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3641   LIRItemList args(1);
3642   LIRItem value(arg1, this);
3643   args.append(&value);
3644   BasicTypeList signature;
3645   signature.append(as_BasicType(arg1->type()));
3646 
3647   return call_runtime(&signature, &args, entry, result_type, info);
3648 }
3649 
3650 
3651 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3652   LIRItemList args(2);
3653   LIRItem value1(arg1, this);
3654   LIRItem value2(arg2, this);
3655   args.append(&value1);
3656   args.append(&value2);
3657   BasicTypeList signature;
3658   signature.append(as_BasicType(arg1->type()));
3659   signature.append(as_BasicType(arg2->type()));
3660 
3661   return call_runtime(&signature, &args, entry, result_type, info);
3662 }
3663 
3664 
3665 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3666                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3667   // get a result register
3668   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3669   LIR_Opr result = LIR_OprFact::illegalOpr;
3670   if (result_type->tag() != voidTag) {
3671     result = new_register(result_type);
3672     phys_reg = result_register_for(result_type);
3673   }
3674 
3675   // move the arguments into the correct location
3676   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3677   assert(cc->length() == args->length(), "argument mismatch");
3678   for (int i = 0; i < args->length(); i++) {
3679     LIR_Opr arg = args->at(i);
3680     LIR_Opr loc = cc->at(i);
3681     if (loc->is_register()) {
3682       __ move(arg, loc);
3683     } else {
3684       LIR_Address* addr = loc->as_address_ptr();
3685 //           if (!can_store_as_constant(arg)) {
3686 //             LIR_Opr tmp = new_register(arg->type());
3687 //             __ move(arg, tmp);
3688 //             arg = tmp;
3689 //           }
3690       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3691         __ unaligned_move(arg, addr);
3692       } else {
3693         __ move(arg, addr);
3694       }
3695     }
3696   }
3697 
3698   if (info) {
3699     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3700   } else {
3701     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3702   }
3703   if (result->is_valid()) {
3704     __ move(phys_reg, result);
3705   }
3706   return result;
3707 }
3708 
3709 
3710 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3711                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3712   // get a result register
3713   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3714   LIR_Opr result = LIR_OprFact::illegalOpr;
3715   if (result_type->tag() != voidTag) {
3716     result = new_register(result_type);
3717     phys_reg = result_register_for(result_type);
3718   }
3719 
3720   // move the arguments into the correct location
3721   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3722 
3723   assert(cc->length() == args->length(), "argument mismatch");
3724   for (int i = 0; i < args->length(); i++) {
3725     LIRItem* arg = args->at(i);
3726     LIR_Opr loc = cc->at(i);
3727     if (loc->is_register()) {
3728       arg->load_item_force(loc);
3729     } else {
3730       LIR_Address* addr = loc->as_address_ptr();
3731       arg->load_for_store(addr->type());
3732       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3733         __ unaligned_move(arg->result(), addr);
3734       } else {
3735         __ move(arg->result(), addr);
3736       }
3737     }
3738   }
3739 
3740   if (info) {
3741     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3742   } else {
3743     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3744   }
3745   if (result->is_valid()) {
3746     __ move(phys_reg, result);
3747   }
3748   return result;
3749 }
3750 
3751 void LIRGenerator::do_MemBar(MemBar* x) {
3752   if (os::is_MP()) {
3753     LIR_Code code = x->code();
3754     switch(code) {
3755       case lir_membar_acquire   : __ membar_acquire(); break;
3756       case lir_membar_release   : __ membar_release(); break;
3757       case lir_membar           : __ membar(); break;
3758       case lir_membar_loadload  : __ membar_loadload(); break;
3759       case lir_membar_storestore: __ membar_storestore(); break;
3760       case lir_membar_loadstore : __ membar_loadstore(); break;
3761       case lir_membar_storeload : __ membar_storeload(); break;
3762       default                   : ShouldNotReachHere(); break;
3763     }
3764   }
3765 }
3766 
3767 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3768   if (x->check_boolean()) {
3769     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3770     if (TwoOperandLIRForm) {
3771       __ move(value, value_fixed);
3772       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3773     } else {
3774       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3775     }
3776     LIR_Opr klass = new_register(T_METADATA);
3777     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3778     null_check_info = NULL;
3779     LIR_Opr layout = new_register(T_INT);
3780     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3781     int diffbit = Klass::layout_helper_boolean_diffbit();
3782     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3783     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3784     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3785     value = value_fixed;
3786   }
3787   return value;
3788 }
--- EOF ---