1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/c2compiler.hpp"
  36 #include "opto/callGenerator.hpp"
  37 #include "opto/castnode.hpp"
  38 #include "opto/cfgnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/countbitsnode.hpp"
  41 #include "opto/intrinsicnode.hpp"
  42 #include "opto/idealKit.hpp"
  43 #include "opto/mathexactnode.hpp"
  44 #include "opto/movenode.hpp"
  45 #include "opto/mulnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/rootnode.hpp"
  51 #include "opto/subnode.hpp"
  52 #include "prims/nativeLookup.hpp"
  53 #include "prims/unsafe.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #ifdef TRACE_HAVE_INTRINSICS
  56 #include "trace/traceMacros.hpp"
  57 #endif
  58 
  59 class LibraryIntrinsic : public InlineCallGenerator {
  60   // Extend the set of intrinsics known to the runtime:
  61  public:
  62  private:
  63   bool             _is_virtual;
  64   bool             _does_virtual_dispatch;
  65   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  66   int8_t           _last_predicate; // Last generated predicate
  67   vmIntrinsics::ID _intrinsic_id;
  68 
  69  public:
  70   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  71     : InlineCallGenerator(m),
  72       _is_virtual(is_virtual),
  73       _does_virtual_dispatch(does_virtual_dispatch),
  74       _predicates_count((int8_t)predicates_count),
  75       _last_predicate((int8_t)-1),
  76       _intrinsic_id(id)
  77   {
  78   }
  79   virtual bool is_intrinsic() const { return true; }
  80   virtual bool is_virtual()   const { return _is_virtual; }
  81   virtual bool is_predicated() const { return _predicates_count > 0; }
  82   virtual int  predicates_count() const { return _predicates_count; }
  83   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  84   virtual JVMState* generate(JVMState* jvms);
  85   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  86   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  87 };
  88 
  89 
  90 // Local helper class for LibraryIntrinsic:
  91 class LibraryCallKit : public GraphKit {
  92  private:
  93   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  94   Node*             _result;        // the result node, if any
  95   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  96 
  97   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
  98 
  99  public:
 100   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 101     : GraphKit(jvms),
 102       _intrinsic(intrinsic),
 103       _result(NULL)
 104   {
 105     // Check if this is a root compile.  In that case we don't have a caller.
 106     if (!jvms->has_method()) {
 107       _reexecute_sp = sp();
 108     } else {
 109       // Find out how many arguments the interpreter needs when deoptimizing
 110       // and save the stack pointer value so it can used by uncommon_trap.
 111       // We find the argument count by looking at the declared signature.
 112       bool ignored_will_link;
 113       ciSignature* declared_signature = NULL;
 114       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 115       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 116       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 117     }
 118   }
 119 
 120   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 121 
 122   ciMethod*         caller()    const    { return jvms()->method(); }
 123   int               bci()       const    { return jvms()->bci(); }
 124   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 125   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 126   ciMethod*         callee()    const    { return _intrinsic->method(); }
 127 
 128   bool  try_to_inline(int predicate);
 129   Node* try_to_predicate(int predicate);
 130 
 131   void push_result() {
 132     // Push the result onto the stack.
 133     if (!stopped() && result() != NULL) {
 134       BasicType bt = result()->bottom_type()->basic_type();
 135       push_node(bt, result());
 136     }
 137   }
 138 
 139  private:
 140   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 141     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 142   }
 143 
 144   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 145   void  set_result(RegionNode* region, PhiNode* value);
 146   Node*     result() { return _result; }
 147 
 148   virtual int reexecute_sp() { return _reexecute_sp; }
 149 
 150   // Helper functions to inline natives
 151   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 152   Node* generate_slow_guard(Node* test, RegionNode* region);
 153   Node* generate_fair_guard(Node* test, RegionNode* region);
 154   Node* generate_negative_guard(Node* index, RegionNode* region,
 155                                 // resulting CastII of index:
 156                                 Node* *pos_index = NULL);
 157   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 158                              Node* array_length,
 159                              RegionNode* region);
 160   void  generate_string_range_check(Node* array, Node* offset,
 161                                     Node* length, bool char_count);
 162   Node* generate_current_thread(Node* &tls_output);
 163   Node* load_mirror_from_klass(Node* klass);
 164   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 165                                       RegionNode* region, int null_path,
 166                                       int offset);
 167   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 168                                RegionNode* region, int null_path) {
 169     int offset = java_lang_Class::klass_offset_in_bytes();
 170     return load_klass_from_mirror_common(mirror, never_see_null,
 171                                          region, null_path,
 172                                          offset);
 173   }
 174   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 175                                      RegionNode* region, int null_path) {
 176     int offset = java_lang_Class::array_klass_offset_in_bytes();
 177     return load_klass_from_mirror_common(mirror, never_see_null,
 178                                          region, null_path,
 179                                          offset);
 180   }
 181   Node* generate_access_flags_guard(Node* kls,
 182                                     int modifier_mask, int modifier_bits,
 183                                     RegionNode* region);
 184   Node* generate_interface_guard(Node* kls, RegionNode* region);
 185   Node* generate_array_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, false, false);
 187   }
 188   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 189     return generate_array_guard_common(kls, region, false, true);
 190   }
 191   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 192     return generate_array_guard_common(kls, region, true, false);
 193   }
 194   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 195     return generate_array_guard_common(kls, region, true, true);
 196   }
 197   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 198                                     bool obj_array, bool not_array);
 199   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 200   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 201                                      bool is_virtual = false, bool is_static = false);
 202   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 203     return generate_method_call(method_id, false, true);
 204   }
 205   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 206     return generate_method_call(method_id, true, false);
 207   }
 208   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 209   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 210 
 211   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 213   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 214   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 215   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 216                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_indexOfChar();
 218   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 219   bool inline_string_toBytesU();
 220   bool inline_string_getCharsU();
 221   bool inline_string_copy(bool compress);
 222   bool inline_string_char_access(bool is_store);
 223   Node* round_double_node(Node* n);
 224   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 225   bool inline_math_native(vmIntrinsics::ID id);
 226   bool inline_math(vmIntrinsics::ID id);
 227   template <typename OverflowOp>
 228   bool inline_math_overflow(Node* arg1, Node* arg2);
 229   void inline_math_mathExact(Node* math, Node* test);
 230   bool inline_math_addExactI(bool is_increment);
 231   bool inline_math_addExactL(bool is_increment);
 232   bool inline_math_multiplyExactI();
 233   bool inline_math_multiplyExactL();
 234   bool inline_math_multiplyHigh();
 235   bool inline_math_negateExactI();
 236   bool inline_math_negateExactL();
 237   bool inline_math_subtractExactI(bool is_decrement);
 238   bool inline_math_subtractExactL(bool is_decrement);
 239   bool inline_min_max(vmIntrinsics::ID id);
 240   bool inline_notify(vmIntrinsics::ID id);
 241   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 242   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 243   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 244   Node* make_unsafe_address(Node*& base, Node* offset, BasicType type = T_ILLEGAL, bool can_cast = false);
 245   // Helper for inline_unsafe_access.
 246   // Generates the guards that check whether the result of
 247   // Unsafe.getObject should be recorded in an SATB log buffer.
 248   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 249 
 250   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 251   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 252   static bool klass_needs_init_guard(Node* kls);
 253   bool inline_unsafe_allocate();
 254   bool inline_unsafe_newArray(bool uninitialized);
 255   bool inline_unsafe_copyMemory();
 256   bool inline_native_currentThread();
 257 
 258   bool inline_native_time_funcs(address method, const char* funcName);
 259 #ifdef TRACE_HAVE_INTRINSICS
 260   bool inline_native_classID();
 261   bool inline_native_getBufferWriter();
 262 #endif
 263   bool inline_native_isInterrupted();
 264   bool inline_native_Class_query(vmIntrinsics::ID id);
 265   bool inline_native_subtype_check();
 266   bool inline_native_getLength();
 267   bool inline_array_copyOf(bool is_copyOfRange);
 268   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 269   bool inline_preconditions_checkIndex();
 270   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 271   bool inline_native_clone(bool is_virtual);
 272   bool inline_native_Reflection_getCallerClass();
 273   // Helper function for inlining native object hash method
 274   bool inline_native_hashcode(bool is_virtual, bool is_static);
 275   bool inline_native_getClass();
 276 
 277   // Helper functions for inlining arraycopy
 278   bool inline_arraycopy();
 279   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 280                                                 RegionNode* slow_region);
 281   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 282   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 283                                       uint new_idx);
 284 
 285   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 286   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 287   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 288   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 289   bool inline_unsafe_fence(vmIntrinsics::ID id);
 290   bool inline_onspinwait();
 291   bool inline_fp_conversions(vmIntrinsics::ID id);
 292   bool inline_number_methods(vmIntrinsics::ID id);
 293   bool inline_reference_get();
 294   bool inline_Class_cast();
 295   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 296   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 297   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 298   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 299   Node* inline_counterMode_AESCrypt_predicate();
 300   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 301   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 302   bool inline_ghash_processBlocks();
 303   bool inline_sha_implCompress(vmIntrinsics::ID id);
 304   bool inline_digestBase_implCompressMB(int predicate);
 305   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 306                                  bool long_state, address stubAddr, const char *stubName,
 307                                  Node* src_start, Node* ofs, Node* limit);
 308   Node* get_state_from_sha_object(Node *sha_object);
 309   Node* get_state_from_sha5_object(Node *sha_object);
 310   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 311   bool inline_encodeISOArray();
 312   bool inline_updateCRC32();
 313   bool inline_updateBytesCRC32();
 314   bool inline_updateByteBufferCRC32();
 315   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 316   bool inline_updateBytesCRC32C();
 317   bool inline_updateDirectByteBufferCRC32C();
 318   bool inline_updateBytesAdler32();
 319   bool inline_updateByteBufferAdler32();
 320   bool inline_multiplyToLen();
 321   bool inline_hasNegatives();
 322   bool inline_squareToLen();
 323   bool inline_mulAdd();
 324   bool inline_montgomeryMultiply();
 325   bool inline_montgomerySquare();
 326   bool inline_vectorizedMismatch();
 327   bool inline_fma(vmIntrinsics::ID id);
 328 
 329   bool inline_profileBoolean();
 330   bool inline_isCompileConstant();
 331   void clear_upper_avx() {
 332 #ifdef X86
 333     if (UseAVX >= 2) {
 334       C->set_clear_upper_avx(true);
 335     }
 336 #endif
 337   }
 338 };
 339 
 340 //---------------------------make_vm_intrinsic----------------------------
 341 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 342   vmIntrinsics::ID id = m->intrinsic_id();
 343   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 344 
 345   if (!m->is_loaded()) {
 346     // Do not attempt to inline unloaded methods.
 347     return NULL;
 348   }
 349 
 350   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 351   bool is_available = false;
 352 
 353   {
 354     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 355     // the compiler must transition to '_thread_in_vm' state because both
 356     // methods access VM-internal data.
 357     VM_ENTRY_MARK;
 358     methodHandle mh(THREAD, m->get_Method());
 359     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 360                    !C->directive()->is_intrinsic_disabled(mh) &&
 361                    !vmIntrinsics::is_disabled_by_flags(mh);
 362 
 363   }
 364 
 365   if (is_available) {
 366     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 367     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 368     return new LibraryIntrinsic(m, is_virtual,
 369                                 vmIntrinsics::predicates_needed(id),
 370                                 vmIntrinsics::does_virtual_dispatch(id),
 371                                 (vmIntrinsics::ID) id);
 372   } else {
 373     return NULL;
 374   }
 375 }
 376 
 377 //----------------------register_library_intrinsics-----------------------
 378 // Initialize this file's data structures, for each Compile instance.
 379 void Compile::register_library_intrinsics() {
 380   // Nothing to do here.
 381 }
 382 
 383 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 384   LibraryCallKit kit(jvms, this);
 385   Compile* C = kit.C;
 386   int nodes = C->unique();
 387 #ifndef PRODUCT
 388   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 389     char buf[1000];
 390     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 391     tty->print_cr("Intrinsic %s", str);
 392   }
 393 #endif
 394   ciMethod* callee = kit.callee();
 395   const int bci    = kit.bci();
 396 
 397   // Try to inline the intrinsic.
 398   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 399       kit.try_to_inline(_last_predicate)) {
 400     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 401                                           : "(intrinsic)";
 402     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 403     if (C->print_intrinsics() || C->print_inlining()) {
 404       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 405     }
 406     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 407     if (C->log()) {
 408       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 409                      vmIntrinsics::name_at(intrinsic_id()),
 410                      (is_virtual() ? " virtual='1'" : ""),
 411                      C->unique() - nodes);
 412     }
 413     // Push the result from the inlined method onto the stack.
 414     kit.push_result();
 415     C->print_inlining_update(this);
 416     return kit.transfer_exceptions_into_jvms();
 417   }
 418 
 419   // The intrinsic bailed out
 420   if (jvms->has_method()) {
 421     // Not a root compile.
 422     const char* msg;
 423     if (callee->intrinsic_candidate()) {
 424       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 425     } else {
 426       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 427                          : "failed to inline (intrinsic), method not annotated";
 428     }
 429     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 430     if (C->print_intrinsics() || C->print_inlining()) {
 431       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 432     }
 433   } else {
 434     // Root compile
 435     ResourceMark rm;
 436     stringStream msg_stream;
 437     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 438                      vmIntrinsics::name_at(intrinsic_id()),
 439                      is_virtual() ? " (virtual)" : "", bci);
 440     const char *msg = msg_stream.as_string();
 441     log_debug(jit, inlining)("%s", msg);
 442     if (C->print_intrinsics() || C->print_inlining()) {
 443       tty->print("%s", msg);
 444     }
 445   }
 446   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 447   C->print_inlining_update(this);
 448   return NULL;
 449 }
 450 
 451 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 452   LibraryCallKit kit(jvms, this);
 453   Compile* C = kit.C;
 454   int nodes = C->unique();
 455   _last_predicate = predicate;
 456 #ifndef PRODUCT
 457   assert(is_predicated() && predicate < predicates_count(), "sanity");
 458   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 459     char buf[1000];
 460     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 461     tty->print_cr("Predicate for intrinsic %s", str);
 462   }
 463 #endif
 464   ciMethod* callee = kit.callee();
 465   const int bci    = kit.bci();
 466 
 467   Node* slow_ctl = kit.try_to_predicate(predicate);
 468   if (!kit.failing()) {
 469     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 470                                           : "(intrinsic, predicate)";
 471     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 472     if (C->print_intrinsics() || C->print_inlining()) {
 473       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 474     }
 475     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 476     if (C->log()) {
 477       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 478                      vmIntrinsics::name_at(intrinsic_id()),
 479                      (is_virtual() ? " virtual='1'" : ""),
 480                      C->unique() - nodes);
 481     }
 482     return slow_ctl; // Could be NULL if the check folds.
 483   }
 484 
 485   // The intrinsic bailed out
 486   if (jvms->has_method()) {
 487     // Not a root compile.
 488     const char* msg = "failed to generate predicate for intrinsic";
 489     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 490     if (C->print_intrinsics() || C->print_inlining()) {
 491       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 492     }
 493   } else {
 494     // Root compile
 495     ResourceMark rm;
 496     stringStream msg_stream;
 497     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 498                      vmIntrinsics::name_at(intrinsic_id()),
 499                      is_virtual() ? " (virtual)" : "", bci);
 500     const char *msg = msg_stream.as_string();
 501     log_debug(jit, inlining)("%s", msg);
 502     if (C->print_intrinsics() || C->print_inlining()) {
 503       C->print_inlining_stream()->print("%s", msg);
 504     }
 505   }
 506   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 507   return NULL;
 508 }
 509 
 510 bool LibraryCallKit::try_to_inline(int predicate) {
 511   // Handle symbolic names for otherwise undistinguished boolean switches:
 512   const bool is_store       = true;
 513   const bool is_compress    = true;
 514   const bool is_static      = true;
 515   const bool is_volatile    = true;
 516 
 517   if (!jvms()->has_method()) {
 518     // Root JVMState has a null method.
 519     assert(map()->memory()->Opcode() == Op_Parm, "");
 520     // Insert the memory aliasing node
 521     set_all_memory(reset_memory());
 522   }
 523   assert(merged_memory(), "");
 524 
 525 
 526   switch (intrinsic_id()) {
 527   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 528   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 529   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 530 
 531   case vmIntrinsics::_dsin:
 532   case vmIntrinsics::_dcos:
 533   case vmIntrinsics::_dtan:
 534   case vmIntrinsics::_dabs:
 535   case vmIntrinsics::_datan2:
 536   case vmIntrinsics::_dsqrt:
 537   case vmIntrinsics::_dexp:
 538   case vmIntrinsics::_dlog:
 539   case vmIntrinsics::_dlog10:
 540   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 541 
 542   case vmIntrinsics::_min:
 543   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 544 
 545   case vmIntrinsics::_notify:
 546   case vmIntrinsics::_notifyAll:
 547     if (InlineNotify) {
 548       return inline_notify(intrinsic_id());
 549     }
 550     return false;
 551 
 552   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 553   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 554   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 555   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 556   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 557   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 558   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 559   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 560   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 561   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 562   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 563   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 564   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 565 
 566   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 567 
 568   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 569   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 570   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 571   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 572 
 573   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 574   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 575   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 576   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 577   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 578   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 579   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 580 
 581   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 582   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 583 
 584   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 585   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 586   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 587   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 588 
 589   case vmIntrinsics::_compressStringC:
 590   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 591   case vmIntrinsics::_inflateStringC:
 592   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 593 
 594   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 595   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 596   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 597   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 598   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 599   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 600   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 601   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 602   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 603 
 604   case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 605   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 606   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 607   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 608   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 609   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 610   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 611   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 612   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 613 
 614   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 615   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 616   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 617   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 618   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 619   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 620   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 621   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 622   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 623 
 624   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 625   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 626   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 627   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 628   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 629   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 630   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 631   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 632   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 633 
 634   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 635   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 636   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 637   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 638 
 639   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 640   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 641   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 642   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 643 
 644   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 645   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 646   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 647   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 648   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 649   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 650   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 651   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 652   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 653 
 654   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 655   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 656   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 657   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 658   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 659   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 660   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 661   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 662   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 663 
 664   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 665   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 666   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 667   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 668   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 669   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 670   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 671   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 672   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 673 
 674   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 675   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 676   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 677   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 678   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 679   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 680   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 681   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 682   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 683 
 684   case vmIntrinsics::_compareAndSetObject:              return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 685   case vmIntrinsics::_compareAndSetByte:                return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 686   case vmIntrinsics::_compareAndSetShort:               return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 687   case vmIntrinsics::_compareAndSetInt:                 return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 688   case vmIntrinsics::_compareAndSetLong:                return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 689 
 690   case vmIntrinsics::_weakCompareAndSetObjectPlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 691   case vmIntrinsics::_weakCompareAndSetObjectAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 692   case vmIntrinsics::_weakCompareAndSetObjectRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 693   case vmIntrinsics::_weakCompareAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 694   case vmIntrinsics::_weakCompareAndSetBytePlain:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 695   case vmIntrinsics::_weakCompareAndSetByteAcquire:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 696   case vmIntrinsics::_weakCompareAndSetByteRelease:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 697   case vmIntrinsics::_weakCompareAndSetByte:            return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 698   case vmIntrinsics::_weakCompareAndSetShortPlain:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 699   case vmIntrinsics::_weakCompareAndSetShortAcquire:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 700   case vmIntrinsics::_weakCompareAndSetShortRelease:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 701   case vmIntrinsics::_weakCompareAndSetShort:           return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 702   case vmIntrinsics::_weakCompareAndSetIntPlain:        return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 703   case vmIntrinsics::_weakCompareAndSetIntAcquire:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 704   case vmIntrinsics::_weakCompareAndSetIntRelease:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 705   case vmIntrinsics::_weakCompareAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 706   case vmIntrinsics::_weakCompareAndSetLongPlain:       return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 707   case vmIntrinsics::_weakCompareAndSetLongAcquire:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 708   case vmIntrinsics::_weakCompareAndSetLongRelease:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 709   case vmIntrinsics::_weakCompareAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 710 
 711   case vmIntrinsics::_compareAndExchangeObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 712   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 713   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 714   case vmIntrinsics::_compareAndExchangeByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 715   case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 716   case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 717   case vmIntrinsics::_compareAndExchangeShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 718   case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 719   case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 720   case vmIntrinsics::_compareAndExchangeInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 721   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 722   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 723   case vmIntrinsics::_compareAndExchangeLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 724   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 725   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 726 
 727   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 728   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 729   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 730   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 731 
 732   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 733   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 734   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 735   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 736   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 737 
 738   case vmIntrinsics::_loadFence:
 739   case vmIntrinsics::_storeFence:
 740   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 741 
 742   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 743 
 744   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 745   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 746 
 747 #ifdef TRACE_HAVE_INTRINSICS
 748   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 749   case vmIntrinsics::_getClassId:               return inline_native_classID();
 750   case vmIntrinsics::_getBufferWriter:          return inline_native_getBufferWriter();
 751 #endif
 752   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 753   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 754   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 755   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 756   case vmIntrinsics::_getLength:                return inline_native_getLength();
 757   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 758   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 759   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 760   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 761   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 762   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 763 
 764   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 765   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 766 
 767   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 768 
 769   case vmIntrinsics::_isInstance:
 770   case vmIntrinsics::_getModifiers:
 771   case vmIntrinsics::_isInterface:
 772   case vmIntrinsics::_isArray:
 773   case vmIntrinsics::_isPrimitive:
 774   case vmIntrinsics::_getSuperclass:
 775   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 776 
 777   case vmIntrinsics::_floatToRawIntBits:
 778   case vmIntrinsics::_floatToIntBits:
 779   case vmIntrinsics::_intBitsToFloat:
 780   case vmIntrinsics::_doubleToRawLongBits:
 781   case vmIntrinsics::_doubleToLongBits:
 782   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 783 
 784   case vmIntrinsics::_numberOfLeadingZeros_i:
 785   case vmIntrinsics::_numberOfLeadingZeros_l:
 786   case vmIntrinsics::_numberOfTrailingZeros_i:
 787   case vmIntrinsics::_numberOfTrailingZeros_l:
 788   case vmIntrinsics::_bitCount_i:
 789   case vmIntrinsics::_bitCount_l:
 790   case vmIntrinsics::_reverseBytes_i:
 791   case vmIntrinsics::_reverseBytes_l:
 792   case vmIntrinsics::_reverseBytes_s:
 793   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 794 
 795   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 796 
 797   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 798 
 799   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 800 
 801   case vmIntrinsics::_aescrypt_encryptBlock:
 802   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 803 
 804   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 805   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 806     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 807 
 808   case vmIntrinsics::_counterMode_AESCrypt:
 809     return inline_counterMode_AESCrypt(intrinsic_id());
 810 
 811   case vmIntrinsics::_sha_implCompress:
 812   case vmIntrinsics::_sha2_implCompress:
 813   case vmIntrinsics::_sha5_implCompress:
 814     return inline_sha_implCompress(intrinsic_id());
 815 
 816   case vmIntrinsics::_digestBase_implCompressMB:
 817     return inline_digestBase_implCompressMB(predicate);
 818 
 819   case vmIntrinsics::_multiplyToLen:
 820     return inline_multiplyToLen();
 821 
 822   case vmIntrinsics::_squareToLen:
 823     return inline_squareToLen();
 824 
 825   case vmIntrinsics::_mulAdd:
 826     return inline_mulAdd();
 827 
 828   case vmIntrinsics::_montgomeryMultiply:
 829     return inline_montgomeryMultiply();
 830   case vmIntrinsics::_montgomerySquare:
 831     return inline_montgomerySquare();
 832 
 833   case vmIntrinsics::_vectorizedMismatch:
 834     return inline_vectorizedMismatch();
 835 
 836   case vmIntrinsics::_ghash_processBlocks:
 837     return inline_ghash_processBlocks();
 838 
 839   case vmIntrinsics::_encodeISOArray:
 840   case vmIntrinsics::_encodeByteISOArray:
 841     return inline_encodeISOArray();
 842 
 843   case vmIntrinsics::_updateCRC32:
 844     return inline_updateCRC32();
 845   case vmIntrinsics::_updateBytesCRC32:
 846     return inline_updateBytesCRC32();
 847   case vmIntrinsics::_updateByteBufferCRC32:
 848     return inline_updateByteBufferCRC32();
 849 
 850   case vmIntrinsics::_updateBytesCRC32C:
 851     return inline_updateBytesCRC32C();
 852   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 853     return inline_updateDirectByteBufferCRC32C();
 854 
 855   case vmIntrinsics::_updateBytesAdler32:
 856     return inline_updateBytesAdler32();
 857   case vmIntrinsics::_updateByteBufferAdler32:
 858     return inline_updateByteBufferAdler32();
 859 
 860   case vmIntrinsics::_profileBoolean:
 861     return inline_profileBoolean();
 862   case vmIntrinsics::_isCompileConstant:
 863     return inline_isCompileConstant();
 864 
 865   case vmIntrinsics::_hasNegatives:
 866     return inline_hasNegatives();
 867 
 868   case vmIntrinsics::_fmaD:
 869   case vmIntrinsics::_fmaF:
 870     return inline_fma(intrinsic_id());
 871 
 872   default:
 873     // If you get here, it may be that someone has added a new intrinsic
 874     // to the list in vmSymbols.hpp without implementing it here.
 875 #ifndef PRODUCT
 876     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 877       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 878                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 879     }
 880 #endif
 881     return false;
 882   }
 883 }
 884 
 885 Node* LibraryCallKit::try_to_predicate(int predicate) {
 886   if (!jvms()->has_method()) {
 887     // Root JVMState has a null method.
 888     assert(map()->memory()->Opcode() == Op_Parm, "");
 889     // Insert the memory aliasing node
 890     set_all_memory(reset_memory());
 891   }
 892   assert(merged_memory(), "");
 893 
 894   switch (intrinsic_id()) {
 895   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 896     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 897   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 898     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 899   case vmIntrinsics::_counterMode_AESCrypt:
 900     return inline_counterMode_AESCrypt_predicate();
 901   case vmIntrinsics::_digestBase_implCompressMB:
 902     return inline_digestBase_implCompressMB_predicate(predicate);
 903 
 904   default:
 905     // If you get here, it may be that someone has added a new intrinsic
 906     // to the list in vmSymbols.hpp without implementing it here.
 907 #ifndef PRODUCT
 908     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 909       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 910                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 911     }
 912 #endif
 913     Node* slow_ctl = control();
 914     set_control(top()); // No fast path instrinsic
 915     return slow_ctl;
 916   }
 917 }
 918 
 919 //------------------------------set_result-------------------------------
 920 // Helper function for finishing intrinsics.
 921 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 922   record_for_igvn(region);
 923   set_control(_gvn.transform(region));
 924   set_result( _gvn.transform(value));
 925   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 926 }
 927 
 928 //------------------------------generate_guard---------------------------
 929 // Helper function for generating guarded fast-slow graph structures.
 930 // The given 'test', if true, guards a slow path.  If the test fails
 931 // then a fast path can be taken.  (We generally hope it fails.)
 932 // In all cases, GraphKit::control() is updated to the fast path.
 933 // The returned value represents the control for the slow path.
 934 // The return value is never 'top'; it is either a valid control
 935 // or NULL if it is obvious that the slow path can never be taken.
 936 // Also, if region and the slow control are not NULL, the slow edge
 937 // is appended to the region.
 938 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 939   if (stopped()) {
 940     // Already short circuited.
 941     return NULL;
 942   }
 943 
 944   // Build an if node and its projections.
 945   // If test is true we take the slow path, which we assume is uncommon.
 946   if (_gvn.type(test) == TypeInt::ZERO) {
 947     // The slow branch is never taken.  No need to build this guard.
 948     return NULL;
 949   }
 950 
 951   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 952 
 953   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 954   if (if_slow == top()) {
 955     // The slow branch is never taken.  No need to build this guard.
 956     return NULL;
 957   }
 958 
 959   if (region != NULL)
 960     region->add_req(if_slow);
 961 
 962   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 963   set_control(if_fast);
 964 
 965   return if_slow;
 966 }
 967 
 968 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 969   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 970 }
 971 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 972   return generate_guard(test, region, PROB_FAIR);
 973 }
 974 
 975 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 976                                                      Node* *pos_index) {
 977   if (stopped())
 978     return NULL;                // already stopped
 979   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 980     return NULL;                // index is already adequately typed
 981   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 982   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 983   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 984   if (is_neg != NULL && pos_index != NULL) {
 985     // Emulate effect of Parse::adjust_map_after_if.
 986     Node* ccast = new CastIINode(index, TypeInt::POS);
 987     ccast->set_req(0, control());
 988     (*pos_index) = _gvn.transform(ccast);
 989   }
 990   return is_neg;
 991 }
 992 
 993 // Make sure that 'position' is a valid limit index, in [0..length].
 994 // There are two equivalent plans for checking this:
 995 //   A. (offset + copyLength)  unsigned<=  arrayLength
 996 //   B. offset  <=  (arrayLength - copyLength)
 997 // We require that all of the values above, except for the sum and
 998 // difference, are already known to be non-negative.
 999 // Plan A is robust in the face of overflow, if offset and copyLength
1000 // are both hugely positive.
1001 //
1002 // Plan B is less direct and intuitive, but it does not overflow at
1003 // all, since the difference of two non-negatives is always
1004 // representable.  Whenever Java methods must perform the equivalent
1005 // check they generally use Plan B instead of Plan A.
1006 // For the moment we use Plan A.
1007 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1008                                                   Node* subseq_length,
1009                                                   Node* array_length,
1010                                                   RegionNode* region) {
1011   if (stopped())
1012     return NULL;                // already stopped
1013   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1014   if (zero_offset && subseq_length->eqv_uncast(array_length))
1015     return NULL;                // common case of whole-array copy
1016   Node* last = subseq_length;
1017   if (!zero_offset)             // last += offset
1018     last = _gvn.transform(new AddINode(last, offset));
1019   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1020   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1021   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1022   return is_over;
1023 }
1024 
1025 // Emit range checks for the given String.value byte array
1026 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1027   if (stopped()) {
1028     return; // already stopped
1029   }
1030   RegionNode* bailout = new RegionNode(1);
1031   record_for_igvn(bailout);
1032   if (char_count) {
1033     // Convert char count to byte count
1034     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1035   }
1036 
1037   // Offset and count must not be negative
1038   generate_negative_guard(offset, bailout);
1039   generate_negative_guard(count, bailout);
1040   // Offset + count must not exceed length of array
1041   generate_limit_guard(offset, count, load_array_length(array), bailout);
1042 
1043   if (bailout->req() > 1) {
1044     PreserveJVMState pjvms(this);
1045     set_control(_gvn.transform(bailout));
1046     uncommon_trap(Deoptimization::Reason_intrinsic,
1047                   Deoptimization::Action_maybe_recompile);
1048   }
1049 }
1050 
1051 //--------------------------generate_current_thread--------------------
1052 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1053   ciKlass*    thread_klass = env()->Thread_klass();
1054   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1055   Node* thread = _gvn.transform(new ThreadLocalNode());
1056   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1057   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1058   tls_output = thread;
1059   return threadObj;
1060 }
1061 
1062 
1063 //------------------------------make_string_method_node------------------------
1064 // Helper method for String intrinsic functions. This version is called with
1065 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1066 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1067 // containing the lengths of str1 and str2.
1068 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1069   Node* result = NULL;
1070   switch (opcode) {
1071   case Op_StrIndexOf:
1072     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1073                                 str1_start, cnt1, str2_start, cnt2, ae);
1074     break;
1075   case Op_StrComp:
1076     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1077                              str1_start, cnt1, str2_start, cnt2, ae);
1078     break;
1079   case Op_StrEquals:
1080     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1081     // Use the constant length if there is one because optimized match rule may exist.
1082     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1083                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1084     break;
1085   default:
1086     ShouldNotReachHere();
1087     return NULL;
1088   }
1089 
1090   // All these intrinsics have checks.
1091   C->set_has_split_ifs(true); // Has chance for split-if optimization
1092   clear_upper_avx();
1093 
1094   return _gvn.transform(result);
1095 }
1096 
1097 //------------------------------inline_string_compareTo------------------------
1098 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1099   Node* arg1 = argument(0);
1100   Node* arg2 = argument(1);
1101 
1102   // Get start addr and length of first argument
1103   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1104   Node* arg1_cnt    = load_array_length(arg1);
1105 
1106   // Get start addr and length of second argument
1107   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1108   Node* arg2_cnt    = load_array_length(arg2);
1109 
1110   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1111   set_result(result);
1112   return true;
1113 }
1114 
1115 //------------------------------inline_string_equals------------------------
1116 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1117   Node* arg1 = argument(0);
1118   Node* arg2 = argument(1);
1119 
1120   // paths (plus control) merge
1121   RegionNode* region = new RegionNode(3);
1122   Node* phi = new PhiNode(region, TypeInt::BOOL);
1123 
1124   if (!stopped()) {
1125     // Get start addr and length of first argument
1126     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1127     Node* arg1_cnt    = load_array_length(arg1);
1128 
1129     // Get start addr and length of second argument
1130     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1131     Node* arg2_cnt    = load_array_length(arg2);
1132 
1133     // Check for arg1_cnt != arg2_cnt
1134     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1135     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1136     Node* if_ne = generate_slow_guard(bol, NULL);
1137     if (if_ne != NULL) {
1138       phi->init_req(2, intcon(0));
1139       region->init_req(2, if_ne);
1140     }
1141 
1142     // Check for count == 0 is done by assembler code for StrEquals.
1143 
1144     if (!stopped()) {
1145       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1146       phi->init_req(1, equals);
1147       region->init_req(1, control());
1148     }
1149   }
1150 
1151   // post merge
1152   set_control(_gvn.transform(region));
1153   record_for_igvn(region);
1154 
1155   set_result(_gvn.transform(phi));
1156   return true;
1157 }
1158 
1159 //------------------------------inline_array_equals----------------------------
1160 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1161   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1162   Node* arg1 = argument(0);
1163   Node* arg2 = argument(1);
1164 
1165   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1166   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1167   clear_upper_avx();
1168 
1169   return true;
1170 }
1171 
1172 //------------------------------inline_hasNegatives------------------------------
1173 bool LibraryCallKit::inline_hasNegatives() {
1174   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1175     return false;
1176   }
1177 
1178   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1179   // no receiver since it is static method
1180   Node* ba         = argument(0);
1181   Node* offset     = argument(1);
1182   Node* len        = argument(2);
1183 
1184   // Range checks
1185   generate_string_range_check(ba, offset, len, false);
1186   if (stopped()) {
1187     return true;
1188   }
1189   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1190   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1191   set_result(_gvn.transform(result));
1192   return true;
1193 }
1194 
1195 bool LibraryCallKit::inline_preconditions_checkIndex() {
1196   Node* index = argument(0);
1197   Node* length = argument(1);
1198   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1199     return false;
1200   }
1201 
1202   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1203   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1204 
1205   {
1206     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1207     uncommon_trap(Deoptimization::Reason_intrinsic,
1208                   Deoptimization::Action_make_not_entrant);
1209   }
1210 
1211   if (stopped()) {
1212     return false;
1213   }
1214 
1215   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1216   BoolTest::mask btest = BoolTest::lt;
1217   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1218   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1219   _gvn.set_type(rc, rc->Value(&_gvn));
1220   if (!rc_bool->is_Con()) {
1221     record_for_igvn(rc);
1222   }
1223   set_control(_gvn.transform(new IfTrueNode(rc)));
1224   {
1225     PreserveJVMState pjvms(this);
1226     set_control(_gvn.transform(new IfFalseNode(rc)));
1227     uncommon_trap(Deoptimization::Reason_range_check,
1228                   Deoptimization::Action_make_not_entrant);
1229   }
1230 
1231   if (stopped()) {
1232     return false;
1233   }
1234 
1235   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1236   result->set_req(0, control());
1237   result = _gvn.transform(result);
1238   set_result(result);
1239   replace_in_map(index, result);
1240   clear_upper_avx();
1241   return true;
1242 }
1243 
1244 //------------------------------inline_string_indexOf------------------------
1245 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1246   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1247     return false;
1248   }
1249   Node* src = argument(0);
1250   Node* tgt = argument(1);
1251 
1252   // Make the merge point
1253   RegionNode* result_rgn = new RegionNode(4);
1254   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1255 
1256   // Get start addr and length of source string
1257   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1258   Node* src_count = load_array_length(src);
1259 
1260   // Get start addr and length of substring
1261   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1262   Node* tgt_count = load_array_length(tgt);
1263 
1264   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1265     // Divide src size by 2 if String is UTF16 encoded
1266     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1267   }
1268   if (ae == StrIntrinsicNode::UU) {
1269     // Divide substring size by 2 if String is UTF16 encoded
1270     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1271   }
1272 
1273   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1274   if (result != NULL) {
1275     result_phi->init_req(3, result);
1276     result_rgn->init_req(3, control());
1277   }
1278   set_control(_gvn.transform(result_rgn));
1279   record_for_igvn(result_rgn);
1280   set_result(_gvn.transform(result_phi));
1281 
1282   return true;
1283 }
1284 
1285 //-----------------------------inline_string_indexOf-----------------------
1286 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1287   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1288     return false;
1289   }
1290   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1291     return false;
1292   }
1293   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1294   Node* src         = argument(0); // byte[]
1295   Node* src_count   = argument(1); // char count
1296   Node* tgt         = argument(2); // byte[]
1297   Node* tgt_count   = argument(3); // char count
1298   Node* from_index  = argument(4); // char index
1299 
1300   // Multiply byte array index by 2 if String is UTF16 encoded
1301   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1302   src_count = _gvn.transform(new SubINode(src_count, from_index));
1303   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1304   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1305 
1306   // Range checks
1307   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1308   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1309   if (stopped()) {
1310     return true;
1311   }
1312 
1313   RegionNode* region = new RegionNode(5);
1314   Node* phi = new PhiNode(region, TypeInt::INT);
1315 
1316   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1317   if (result != NULL) {
1318     // The result is index relative to from_index if substring was found, -1 otherwise.
1319     // Generate code which will fold into cmove.
1320     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1321     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1322 
1323     Node* if_lt = generate_slow_guard(bol, NULL);
1324     if (if_lt != NULL) {
1325       // result == -1
1326       phi->init_req(3, result);
1327       region->init_req(3, if_lt);
1328     }
1329     if (!stopped()) {
1330       result = _gvn.transform(new AddINode(result, from_index));
1331       phi->init_req(4, result);
1332       region->init_req(4, control());
1333     }
1334   }
1335 
1336   set_control(_gvn.transform(region));
1337   record_for_igvn(region);
1338   set_result(_gvn.transform(phi));
1339   clear_upper_avx();
1340 
1341   return true;
1342 }
1343 
1344 // Create StrIndexOfNode with fast path checks
1345 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1346                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1347   // Check for substr count > string count
1348   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1349   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1350   Node* if_gt = generate_slow_guard(bol, NULL);
1351   if (if_gt != NULL) {
1352     phi->init_req(1, intcon(-1));
1353     region->init_req(1, if_gt);
1354   }
1355   if (!stopped()) {
1356     // Check for substr count == 0
1357     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1358     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1359     Node* if_zero = generate_slow_guard(bol, NULL);
1360     if (if_zero != NULL) {
1361       phi->init_req(2, intcon(0));
1362       region->init_req(2, if_zero);
1363     }
1364   }
1365   if (!stopped()) {
1366     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1367   }
1368   return NULL;
1369 }
1370 
1371 //-----------------------------inline_string_indexOfChar-----------------------
1372 bool LibraryCallKit::inline_string_indexOfChar() {
1373   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1374     return false;
1375   }
1376   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1377     return false;
1378   }
1379   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1380   Node* src         = argument(0); // byte[]
1381   Node* tgt         = argument(1); // tgt is int ch
1382   Node* from_index  = argument(2);
1383   Node* max         = argument(3);
1384 
1385   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1386   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1387   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1388 
1389   // Range checks
1390   generate_string_range_check(src, src_offset, src_count, true);
1391   if (stopped()) {
1392     return true;
1393   }
1394 
1395   RegionNode* region = new RegionNode(3);
1396   Node* phi = new PhiNode(region, TypeInt::INT);
1397 
1398   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1399   C->set_has_split_ifs(true); // Has chance for split-if optimization
1400   _gvn.transform(result);
1401 
1402   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1403   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1404 
1405   Node* if_lt = generate_slow_guard(bol, NULL);
1406   if (if_lt != NULL) {
1407     // result == -1
1408     phi->init_req(2, result);
1409     region->init_req(2, if_lt);
1410   }
1411   if (!stopped()) {
1412     result = _gvn.transform(new AddINode(result, from_index));
1413     phi->init_req(1, result);
1414     region->init_req(1, control());
1415   }
1416   set_control(_gvn.transform(region));
1417   record_for_igvn(region);
1418   set_result(_gvn.transform(phi));
1419 
1420   return true;
1421 }
1422 //---------------------------inline_string_copy---------------------
1423 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1424 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1425 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1426 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1427 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1428 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1429 bool LibraryCallKit::inline_string_copy(bool compress) {
1430   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1431     return false;
1432   }
1433   int nargs = 5;  // 2 oops, 3 ints
1434   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1435 
1436   Node* src         = argument(0);
1437   Node* src_offset  = argument(1);
1438   Node* dst         = argument(2);
1439   Node* dst_offset  = argument(3);
1440   Node* length      = argument(4);
1441 
1442   // Check for allocation before we add nodes that would confuse
1443   // tightly_coupled_allocation()
1444   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1445 
1446   // Figure out the size and type of the elements we will be copying.
1447   const Type* src_type = src->Value(&_gvn);
1448   const Type* dst_type = dst->Value(&_gvn);
1449   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1450   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1451   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1452          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1453          "Unsupported array types for inline_string_copy");
1454 
1455   // Convert char[] offsets to byte[] offsets
1456   bool convert_src = (compress && src_elem == T_BYTE);
1457   bool convert_dst = (!compress && dst_elem == T_BYTE);
1458   if (convert_src) {
1459     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1460   } else if (convert_dst) {
1461     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1462   }
1463 
1464   // Range checks
1465   generate_string_range_check(src, src_offset, length, convert_src);
1466   generate_string_range_check(dst, dst_offset, length, convert_dst);
1467   if (stopped()) {
1468     return true;
1469   }
1470 
1471   Node* src_start = array_element_address(src, src_offset, src_elem);
1472   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1473   // 'src_start' points to src array + scaled offset
1474   // 'dst_start' points to dst array + scaled offset
1475   Node* count = NULL;
1476   if (compress) {
1477     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1478   } else {
1479     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1480   }
1481 
1482   if (alloc != NULL) {
1483     if (alloc->maybe_set_complete(&_gvn)) {
1484       // "You break it, you buy it."
1485       InitializeNode* init = alloc->initialization();
1486       assert(init->is_complete(), "we just did this");
1487       init->set_complete_with_arraycopy();
1488       assert(dst->is_CheckCastPP(), "sanity");
1489       assert(dst->in(0)->in(0) == init, "dest pinned");
1490     }
1491     // Do not let stores that initialize this object be reordered with
1492     // a subsequent store that would make this object accessible by
1493     // other threads.
1494     // Record what AllocateNode this StoreStore protects so that
1495     // escape analysis can go from the MemBarStoreStoreNode to the
1496     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1497     // based on the escape status of the AllocateNode.
1498     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1499   }
1500   if (compress) {
1501     set_result(_gvn.transform(count));
1502   }
1503   clear_upper_avx();
1504 
1505   return true;
1506 }
1507 
1508 #ifdef _LP64
1509 #define XTOP ,top() /*additional argument*/
1510 #else  //_LP64
1511 #define XTOP        /*no additional argument*/
1512 #endif //_LP64
1513 
1514 //------------------------inline_string_toBytesU--------------------------
1515 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1516 bool LibraryCallKit::inline_string_toBytesU() {
1517   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1518     return false;
1519   }
1520   // Get the arguments.
1521   Node* value     = argument(0);
1522   Node* offset    = argument(1);
1523   Node* length    = argument(2);
1524 
1525   Node* newcopy = NULL;
1526 
1527   // Set the original stack and the reexecute bit for the interpreter to reexecute
1528   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1529   { PreserveReexecuteState preexecs(this);
1530     jvms()->set_should_reexecute(true);
1531 
1532     // Check if a null path was taken unconditionally.
1533     value = null_check(value);
1534 
1535     RegionNode* bailout = new RegionNode(1);
1536     record_for_igvn(bailout);
1537 
1538     // Range checks
1539     generate_negative_guard(offset, bailout);
1540     generate_negative_guard(length, bailout);
1541     generate_limit_guard(offset, length, load_array_length(value), bailout);
1542     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1543     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1544 
1545     if (bailout->req() > 1) {
1546       PreserveJVMState pjvms(this);
1547       set_control(_gvn.transform(bailout));
1548       uncommon_trap(Deoptimization::Reason_intrinsic,
1549                     Deoptimization::Action_maybe_recompile);
1550     }
1551     if (stopped()) {
1552       return true;
1553     }
1554 
1555     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1556     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1557     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1558     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1559 
1560     // Calculate starting addresses.
1561     Node* src_start = array_element_address(value, offset, T_CHAR);
1562     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1563 
1564     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1565     const TypeInt* toffset = gvn().type(offset)->is_int();
1566     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1567 
1568     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1569     const char* copyfunc_name = "arraycopy";
1570     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1571     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1572                       OptoRuntime::fast_arraycopy_Type(),
1573                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1574                       src_start, dst_start, ConvI2X(length) XTOP);
1575     // Do not let reads from the cloned object float above the arraycopy.
1576     if (alloc != NULL) {
1577       if (alloc->maybe_set_complete(&_gvn)) {
1578         // "You break it, you buy it."
1579         InitializeNode* init = alloc->initialization();
1580         assert(init->is_complete(), "we just did this");
1581         init->set_complete_with_arraycopy();
1582         assert(newcopy->is_CheckCastPP(), "sanity");
1583         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1584       }
1585       // Do not let stores that initialize this object be reordered with
1586       // a subsequent store that would make this object accessible by
1587       // other threads.
1588       // Record what AllocateNode this StoreStore protects so that
1589       // escape analysis can go from the MemBarStoreStoreNode to the
1590       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1591       // based on the escape status of the AllocateNode.
1592       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1593     } else {
1594       insert_mem_bar(Op_MemBarCPUOrder);
1595     }
1596   } // original reexecute is set back here
1597 
1598   C->set_has_split_ifs(true); // Has chance for split-if optimization
1599   if (!stopped()) {
1600     set_result(newcopy);
1601   }
1602   clear_upper_avx();
1603 
1604   return true;
1605 }
1606 
1607 //------------------------inline_string_getCharsU--------------------------
1608 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1609 bool LibraryCallKit::inline_string_getCharsU() {
1610   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1611     return false;
1612   }
1613 
1614   // Get the arguments.
1615   Node* src       = argument(0);
1616   Node* src_begin = argument(1);
1617   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1618   Node* dst       = argument(3);
1619   Node* dst_begin = argument(4);
1620 
1621   // Check for allocation before we add nodes that would confuse
1622   // tightly_coupled_allocation()
1623   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1624 
1625   // Check if a null path was taken unconditionally.
1626   src = null_check(src);
1627   dst = null_check(dst);
1628   if (stopped()) {
1629     return true;
1630   }
1631 
1632   // Get length and convert char[] offset to byte[] offset
1633   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1634   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1635 
1636   // Range checks
1637   generate_string_range_check(src, src_begin, length, true);
1638   generate_string_range_check(dst, dst_begin, length, false);
1639   if (stopped()) {
1640     return true;
1641   }
1642 
1643   if (!stopped()) {
1644     // Calculate starting addresses.
1645     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1646     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1647 
1648     // Check if array addresses are aligned to HeapWordSize
1649     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1650     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1651     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1652                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1653 
1654     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1655     const char* copyfunc_name = "arraycopy";
1656     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1657     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1658                       OptoRuntime::fast_arraycopy_Type(),
1659                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1660                       src_start, dst_start, ConvI2X(length) XTOP);
1661     // Do not let reads from the cloned object float above the arraycopy.
1662     if (alloc != NULL) {
1663       if (alloc->maybe_set_complete(&_gvn)) {
1664         // "You break it, you buy it."
1665         InitializeNode* init = alloc->initialization();
1666         assert(init->is_complete(), "we just did this");
1667         init->set_complete_with_arraycopy();
1668         assert(dst->is_CheckCastPP(), "sanity");
1669         assert(dst->in(0)->in(0) == init, "dest pinned");
1670       }
1671       // Do not let stores that initialize this object be reordered with
1672       // a subsequent store that would make this object accessible by
1673       // other threads.
1674       // Record what AllocateNode this StoreStore protects so that
1675       // escape analysis can go from the MemBarStoreStoreNode to the
1676       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1677       // based on the escape status of the AllocateNode.
1678       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1679     } else {
1680       insert_mem_bar(Op_MemBarCPUOrder);
1681     }
1682   }
1683 
1684   C->set_has_split_ifs(true); // Has chance for split-if optimization
1685   return true;
1686 }
1687 
1688 //----------------------inline_string_char_access----------------------------
1689 // Store/Load char to/from byte[] array.
1690 // static void StringUTF16.putChar(byte[] val, int index, int c)
1691 // static char StringUTF16.getChar(byte[] val, int index)
1692 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1693   Node* value  = argument(0);
1694   Node* index  = argument(1);
1695   Node* ch = is_store ? argument(2) : NULL;
1696 
1697   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1698   // correctly requires matched array shapes.
1699   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1700           "sanity: byte[] and char[] bases agree");
1701   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1702           "sanity: byte[] and char[] scales agree");
1703 
1704   // Bail when getChar over constants is requested: constant folding would
1705   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1706   // Java method would constant fold nicely instead.
1707   if (!is_store && value->is_Con() && index->is_Con()) {
1708     return false;
1709   }
1710 
1711   Node* adr = array_element_address(value, index, T_CHAR);
1712   if (adr->is_top()) {
1713     return false;
1714   }
1715   if (is_store) {
1716     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1717                            false, false, true /* mismatched */);
1718   } else {
1719     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1720                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1721     set_result(ch);
1722   }
1723   return true;
1724 }
1725 
1726 //--------------------------round_double_node--------------------------------
1727 // Round a double node if necessary.
1728 Node* LibraryCallKit::round_double_node(Node* n) {
1729   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1730     n = _gvn.transform(new RoundDoubleNode(0, n));
1731   return n;
1732 }
1733 
1734 //------------------------------inline_math-----------------------------------
1735 // public static double Math.abs(double)
1736 // public static double Math.sqrt(double)
1737 // public static double Math.log(double)
1738 // public static double Math.log10(double)
1739 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1740   Node* arg = round_double_node(argument(0));
1741   Node* n = NULL;
1742   switch (id) {
1743   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1744   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1745   default:  fatal_unexpected_iid(id);  break;
1746   }
1747   set_result(_gvn.transform(n));
1748   return true;
1749 }
1750 
1751 //------------------------------runtime_math-----------------------------
1752 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1753   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1754          "must be (DD)D or (D)D type");
1755 
1756   // Inputs
1757   Node* a = round_double_node(argument(0));
1758   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1759 
1760   const TypePtr* no_memory_effects = NULL;
1761   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1762                                  no_memory_effects,
1763                                  a, top(), b, b ? top() : NULL);
1764   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1765 #ifdef ASSERT
1766   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1767   assert(value_top == top(), "second value must be top");
1768 #endif
1769 
1770   set_result(value);
1771   return true;
1772 }
1773 
1774 //------------------------------inline_math_native-----------------------------
1775 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1776 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1777   switch (id) {
1778     // These intrinsics are not properly supported on all hardware
1779   case vmIntrinsics::_dsin:
1780     return StubRoutines::dsin() != NULL ?
1781       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1782       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1783   case vmIntrinsics::_dcos:
1784     return StubRoutines::dcos() != NULL ?
1785       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1786       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1787   case vmIntrinsics::_dtan:
1788     return StubRoutines::dtan() != NULL ?
1789       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1790       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1791   case vmIntrinsics::_dlog:
1792     return StubRoutines::dlog() != NULL ?
1793       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1794       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1795   case vmIntrinsics::_dlog10:
1796     return StubRoutines::dlog10() != NULL ?
1797       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1798       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1799 
1800     // These intrinsics are supported on all hardware
1801   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1802   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1803 
1804   case vmIntrinsics::_dexp:
1805     return StubRoutines::dexp() != NULL ?
1806       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1807       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1808   case vmIntrinsics::_dpow: {
1809     Node* exp = round_double_node(argument(2));
1810     const TypeD* d = _gvn.type(exp)->isa_double_constant();
1811     if (d != NULL && d->getd() == 2.0) {
1812       // Special case: pow(x, 2.0) => x * x
1813       Node* base = round_double_node(argument(0));
1814       set_result(_gvn.transform(new MulDNode(base, base)));
1815       return true;
1816     }
1817     return StubRoutines::dexp() != NULL ?
1818       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1819       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1820   }
1821 #undef FN_PTR
1822 
1823    // These intrinsics are not yet correctly implemented
1824   case vmIntrinsics::_datan2:
1825     return false;
1826 
1827   default:
1828     fatal_unexpected_iid(id);
1829     return false;
1830   }
1831 }
1832 
1833 static bool is_simple_name(Node* n) {
1834   return (n->req() == 1         // constant
1835           || (n->is_Type() && n->as_Type()->type()->singleton())
1836           || n->is_Proj()       // parameter or return value
1837           || n->is_Phi()        // local of some sort
1838           );
1839 }
1840 
1841 //----------------------------inline_notify-----------------------------------*
1842 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1843   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1844   address func;
1845   if (id == vmIntrinsics::_notify) {
1846     func = OptoRuntime::monitor_notify_Java();
1847   } else {
1848     func = OptoRuntime::monitor_notifyAll_Java();
1849   }
1850   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1851   make_slow_call_ex(call, env()->Throwable_klass(), false);
1852   return true;
1853 }
1854 
1855 
1856 //----------------------------inline_min_max-----------------------------------
1857 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1858   set_result(generate_min_max(id, argument(0), argument(1)));
1859   return true;
1860 }
1861 
1862 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1863   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1864   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1865   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1866   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1867 
1868   {
1869     PreserveJVMState pjvms(this);
1870     PreserveReexecuteState preexecs(this);
1871     jvms()->set_should_reexecute(true);
1872 
1873     set_control(slow_path);
1874     set_i_o(i_o());
1875 
1876     uncommon_trap(Deoptimization::Reason_intrinsic,
1877                   Deoptimization::Action_none);
1878   }
1879 
1880   set_control(fast_path);
1881   set_result(math);
1882 }
1883 
1884 template <typename OverflowOp>
1885 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1886   typedef typename OverflowOp::MathOp MathOp;
1887 
1888   MathOp* mathOp = new MathOp(arg1, arg2);
1889   Node* operation = _gvn.transform( mathOp );
1890   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1891   inline_math_mathExact(operation, ofcheck);
1892   return true;
1893 }
1894 
1895 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1896   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1897 }
1898 
1899 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1900   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1901 }
1902 
1903 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1904   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1905 }
1906 
1907 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1908   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1909 }
1910 
1911 bool LibraryCallKit::inline_math_negateExactI() {
1912   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1913 }
1914 
1915 bool LibraryCallKit::inline_math_negateExactL() {
1916   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1917 }
1918 
1919 bool LibraryCallKit::inline_math_multiplyExactI() {
1920   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1921 }
1922 
1923 bool LibraryCallKit::inline_math_multiplyExactL() {
1924   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1925 }
1926 
1927 bool LibraryCallKit::inline_math_multiplyHigh() {
1928   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
1929   return true;
1930 }
1931 
1932 Node*
1933 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1934   // These are the candidate return value:
1935   Node* xvalue = x0;
1936   Node* yvalue = y0;
1937 
1938   if (xvalue == yvalue) {
1939     return xvalue;
1940   }
1941 
1942   bool want_max = (id == vmIntrinsics::_max);
1943 
1944   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1945   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1946   if (txvalue == NULL || tyvalue == NULL)  return top();
1947   // This is not really necessary, but it is consistent with a
1948   // hypothetical MaxINode::Value method:
1949   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1950 
1951   // %%% This folding logic should (ideally) be in a different place.
1952   // Some should be inside IfNode, and there to be a more reliable
1953   // transformation of ?: style patterns into cmoves.  We also want
1954   // more powerful optimizations around cmove and min/max.
1955 
1956   // Try to find a dominating comparison of these guys.
1957   // It can simplify the index computation for Arrays.copyOf
1958   // and similar uses of System.arraycopy.
1959   // First, compute the normalized version of CmpI(x, y).
1960   int   cmp_op = Op_CmpI;
1961   Node* xkey = xvalue;
1962   Node* ykey = yvalue;
1963   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1964   if (ideal_cmpxy->is_Cmp()) {
1965     // E.g., if we have CmpI(length - offset, count),
1966     // it might idealize to CmpI(length, count + offset)
1967     cmp_op = ideal_cmpxy->Opcode();
1968     xkey = ideal_cmpxy->in(1);
1969     ykey = ideal_cmpxy->in(2);
1970   }
1971 
1972   // Start by locating any relevant comparisons.
1973   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1974   Node* cmpxy = NULL;
1975   Node* cmpyx = NULL;
1976   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1977     Node* cmp = start_from->fast_out(k);
1978     if (cmp->outcnt() > 0 &&            // must have prior uses
1979         cmp->in(0) == NULL &&           // must be context-independent
1980         cmp->Opcode() == cmp_op) {      // right kind of compare
1981       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1982       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1983     }
1984   }
1985 
1986   const int NCMPS = 2;
1987   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1988   int cmpn;
1989   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1990     if (cmps[cmpn] != NULL)  break;     // find a result
1991   }
1992   if (cmpn < NCMPS) {
1993     // Look for a dominating test that tells us the min and max.
1994     int depth = 0;                // Limit search depth for speed
1995     Node* dom = control();
1996     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1997       if (++depth >= 100)  break;
1998       Node* ifproj = dom;
1999       if (!ifproj->is_Proj())  continue;
2000       Node* iff = ifproj->in(0);
2001       if (!iff->is_If())  continue;
2002       Node* bol = iff->in(1);
2003       if (!bol->is_Bool())  continue;
2004       Node* cmp = bol->in(1);
2005       if (cmp == NULL)  continue;
2006       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2007         if (cmps[cmpn] == cmp)  break;
2008       if (cmpn == NCMPS)  continue;
2009       BoolTest::mask btest = bol->as_Bool()->_test._test;
2010       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2011       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2012       // At this point, we know that 'x btest y' is true.
2013       switch (btest) {
2014       case BoolTest::eq:
2015         // They are proven equal, so we can collapse the min/max.
2016         // Either value is the answer.  Choose the simpler.
2017         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2018           return yvalue;
2019         return xvalue;
2020       case BoolTest::lt:          // x < y
2021       case BoolTest::le:          // x <= y
2022         return (want_max ? yvalue : xvalue);
2023       case BoolTest::gt:          // x > y
2024       case BoolTest::ge:          // x >= y
2025         return (want_max ? xvalue : yvalue);
2026       default:
2027         break;
2028       }
2029     }
2030   }
2031 
2032   // We failed to find a dominating test.
2033   // Let's pick a test that might GVN with prior tests.
2034   Node*          best_bol   = NULL;
2035   BoolTest::mask best_btest = BoolTest::illegal;
2036   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2037     Node* cmp = cmps[cmpn];
2038     if (cmp == NULL)  continue;
2039     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2040       Node* bol = cmp->fast_out(j);
2041       if (!bol->is_Bool())  continue;
2042       BoolTest::mask btest = bol->as_Bool()->_test._test;
2043       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2044       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2045       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2046         best_bol   = bol->as_Bool();
2047         best_btest = btest;
2048       }
2049     }
2050   }
2051 
2052   Node* answer_if_true  = NULL;
2053   Node* answer_if_false = NULL;
2054   switch (best_btest) {
2055   default:
2056     if (cmpxy == NULL)
2057       cmpxy = ideal_cmpxy;
2058     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2059     // and fall through:
2060   case BoolTest::lt:          // x < y
2061   case BoolTest::le:          // x <= y
2062     answer_if_true  = (want_max ? yvalue : xvalue);
2063     answer_if_false = (want_max ? xvalue : yvalue);
2064     break;
2065   case BoolTest::gt:          // x > y
2066   case BoolTest::ge:          // x >= y
2067     answer_if_true  = (want_max ? xvalue : yvalue);
2068     answer_if_false = (want_max ? yvalue : xvalue);
2069     break;
2070   }
2071 
2072   jint hi, lo;
2073   if (want_max) {
2074     // We can sharpen the minimum.
2075     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2076     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2077   } else {
2078     // We can sharpen the maximum.
2079     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2080     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2081   }
2082 
2083   // Use a flow-free graph structure, to avoid creating excess control edges
2084   // which could hinder other optimizations.
2085   // Since Math.min/max is often used with arraycopy, we want
2086   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2087   Node* cmov = CMoveNode::make(NULL, best_bol,
2088                                answer_if_false, answer_if_true,
2089                                TypeInt::make(lo, hi, widen));
2090 
2091   return _gvn.transform(cmov);
2092 
2093   /*
2094   // This is not as desirable as it may seem, since Min and Max
2095   // nodes do not have a full set of optimizations.
2096   // And they would interfere, anyway, with 'if' optimizations
2097   // and with CMoveI canonical forms.
2098   switch (id) {
2099   case vmIntrinsics::_min:
2100     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2101   case vmIntrinsics::_max:
2102     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2103   default:
2104     ShouldNotReachHere();
2105   }
2106   */
2107 }
2108 
2109 inline int
2110 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2111   const TypePtr* base_type = TypePtr::NULL_PTR;
2112   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2113   if (base_type == NULL) {
2114     // Unknown type.
2115     return Type::AnyPtr;
2116   } else if (base_type == TypePtr::NULL_PTR) {
2117     // Since this is a NULL+long form, we have to switch to a rawptr.
2118     base   = _gvn.transform(new CastX2PNode(offset));
2119     offset = MakeConX(0);
2120     return Type::RawPtr;
2121   } else if (base_type->base() == Type::RawPtr) {
2122     return Type::RawPtr;
2123   } else if (base_type->isa_oopptr()) {
2124     // Base is never null => always a heap address.
2125     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2126       return Type::OopPtr;
2127     }
2128     // Offset is small => always a heap address.
2129     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2130     if (offset_type != NULL &&
2131         base_type->offset() == 0 &&     // (should always be?)
2132         offset_type->_lo >= 0 &&
2133         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2134       return Type::OopPtr;
2135     } else if (type == T_OBJECT) {
2136       // off heap access to an oop doesn't make any sense. Has to be on
2137       // heap.
2138       return Type::OopPtr;
2139     }
2140     // Otherwise, it might either be oop+off or NULL+addr.
2141     return Type::AnyPtr;
2142   } else {
2143     // No information:
2144     return Type::AnyPtr;
2145   }
2146 }
2147 
2148 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2149   Node* uncasted_base = base;
2150   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2151   if (kind == Type::RawPtr) {
2152     return basic_plus_adr(top(), uncasted_base, offset);
2153   } else if (kind == Type::AnyPtr) {
2154     assert(base == uncasted_base, "unexpected base change");
2155     if (can_cast) {
2156       if (!_gvn.type(base)->speculative_maybe_null() &&
2157           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2158         // According to profiling, this access is always on
2159         // heap. Casting the base to not null and thus avoiding membars
2160         // around the access should allow better optimizations
2161         Node* null_ctl = top();
2162         base = null_check_oop(base, &null_ctl, true, true, true);
2163         assert(null_ctl->is_top(), "no null control here");
2164         return basic_plus_adr(base, offset);
2165       } else if (_gvn.type(base)->speculative_always_null() &&
2166                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2167         // According to profiling, this access is always off
2168         // heap.
2169         base = null_assert(base);
2170         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2171         offset = MakeConX(0);
2172         return basic_plus_adr(top(), raw_base, offset);
2173       }
2174     }
2175     // We don't know if it's an on heap or off heap access. Fall back
2176     // to raw memory access.
2177     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2178     return basic_plus_adr(top(), raw, offset);
2179   } else {
2180     assert(base == uncasted_base, "unexpected base change");
2181     // We know it's an on heap access so base can't be null
2182     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2183       base = must_be_not_null(base, true);
2184     }
2185     return basic_plus_adr(base, offset);
2186   }
2187 }
2188 
2189 //--------------------------inline_number_methods-----------------------------
2190 // inline int     Integer.numberOfLeadingZeros(int)
2191 // inline int        Long.numberOfLeadingZeros(long)
2192 //
2193 // inline int     Integer.numberOfTrailingZeros(int)
2194 // inline int        Long.numberOfTrailingZeros(long)
2195 //
2196 // inline int     Integer.bitCount(int)
2197 // inline int        Long.bitCount(long)
2198 //
2199 // inline char  Character.reverseBytes(char)
2200 // inline short     Short.reverseBytes(short)
2201 // inline int     Integer.reverseBytes(int)
2202 // inline long       Long.reverseBytes(long)
2203 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2204   Node* arg = argument(0);
2205   Node* n = NULL;
2206   switch (id) {
2207   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2208   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2209   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2210   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2211   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2212   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2213   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2214   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2215   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2216   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2217   default:  fatal_unexpected_iid(id);  break;
2218   }
2219   set_result(_gvn.transform(n));
2220   return true;
2221 }
2222 
2223 //----------------------------inline_unsafe_access----------------------------
2224 
2225 // Helper that guards and inserts a pre-barrier.
2226 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2227                                         Node* pre_val, bool need_mem_bar) {
2228   // We could be accessing the referent field of a reference object. If so, when G1
2229   // is enabled, we need to log the value in the referent field in an SATB buffer.
2230   // This routine performs some compile time filters and generates suitable
2231   // runtime filters that guard the pre-barrier code.
2232   // Also add memory barrier for non volatile load from the referent field
2233   // to prevent commoning of loads across safepoint.
2234   if (!UseG1GC && !need_mem_bar)
2235     return;
2236 
2237   // Some compile time checks.
2238 
2239   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2240   const TypeX* otype = offset->find_intptr_t_type();
2241   if (otype != NULL && otype->is_con() &&
2242       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2243     // Constant offset but not the reference_offset so just return
2244     return;
2245   }
2246 
2247   // We only need to generate the runtime guards for instances.
2248   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2249   if (btype != NULL) {
2250     if (btype->isa_aryptr()) {
2251       // Array type so nothing to do
2252       return;
2253     }
2254 
2255     const TypeInstPtr* itype = btype->isa_instptr();
2256     if (itype != NULL) {
2257       // Can the klass of base_oop be statically determined to be
2258       // _not_ a sub-class of Reference and _not_ Object?
2259       ciKlass* klass = itype->klass();
2260       if ( klass->is_loaded() &&
2261           !klass->is_subtype_of(env()->Reference_klass()) &&
2262           !env()->Object_klass()->is_subtype_of(klass)) {
2263         return;
2264       }
2265     }
2266   }
2267 
2268   // The compile time filters did not reject base_oop/offset so
2269   // we need to generate the following runtime filters
2270   //
2271   // if (offset == java_lang_ref_Reference::_reference_offset) {
2272   //   if (instance_of(base, java.lang.ref.Reference)) {
2273   //     pre_barrier(_, pre_val, ...);
2274   //   }
2275   // }
2276 
2277   float likely   = PROB_LIKELY(  0.999);
2278   float unlikely = PROB_UNLIKELY(0.999);
2279 
2280   IdealKit ideal(this);
2281 #define __ ideal.
2282 
2283   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2284 
2285   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2286       // Update graphKit memory and control from IdealKit.
2287       sync_kit(ideal);
2288 
2289       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2290       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2291 
2292       // Update IdealKit memory and control from graphKit.
2293       __ sync_kit(this);
2294 
2295       Node* one = __ ConI(1);
2296       // is_instof == 0 if base_oop == NULL
2297       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2298 
2299         // Update graphKit from IdeakKit.
2300         sync_kit(ideal);
2301 
2302         // Use the pre-barrier to record the value in the referent field
2303         pre_barrier(false /* do_load */,
2304                     __ ctrl(),
2305                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2306                     pre_val /* pre_val */,
2307                     T_OBJECT);
2308         if (need_mem_bar) {
2309           // Add memory barrier to prevent commoning reads from this field
2310           // across safepoint since GC can change its value.
2311           insert_mem_bar(Op_MemBarCPUOrder);
2312         }
2313         // Update IdealKit from graphKit.
2314         __ sync_kit(this);
2315 
2316       } __ end_if(); // _ref_type != ref_none
2317   } __ end_if(); // offset == referent_offset
2318 
2319   // Final sync IdealKit and GraphKit.
2320   final_sync(ideal);
2321 #undef __
2322 }
2323 
2324 
2325 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2326   // Attempt to infer a sharper value type from the offset and base type.
2327   ciKlass* sharpened_klass = NULL;
2328 
2329   // See if it is an instance field, with an object type.
2330   if (alias_type->field() != NULL) {
2331     if (alias_type->field()->type()->is_klass()) {
2332       sharpened_klass = alias_type->field()->type()->as_klass();
2333     }
2334   }
2335 
2336   // See if it is a narrow oop array.
2337   if (adr_type->isa_aryptr()) {
2338     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2339       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2340       if (elem_type != NULL) {
2341         sharpened_klass = elem_type->klass();
2342       }
2343     }
2344   }
2345 
2346   // The sharpened class might be unloaded if there is no class loader
2347   // contraint in place.
2348   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2349     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2350 
2351 #ifndef PRODUCT
2352     if (C->print_intrinsics() || C->print_inlining()) {
2353       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2354       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2355     }
2356 #endif
2357     // Sharpen the value type.
2358     return tjp;
2359   }
2360   return NULL;
2361 }
2362 
2363 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2364   if (callee()->is_static())  return false;  // caller must have the capability!
2365   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2366   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2367   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2368 
2369 #ifndef PRODUCT
2370   {
2371     ResourceMark rm;
2372     // Check the signatures.
2373     ciSignature* sig = callee()->signature();
2374 #ifdef ASSERT
2375     if (!is_store) {
2376       // Object getObject(Object base, int/long offset), etc.
2377       BasicType rtype = sig->return_type()->basic_type();
2378       assert(rtype == type, "getter must return the expected value");
2379       assert(sig->count() == 2, "oop getter has 2 arguments");
2380       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2381       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2382     } else {
2383       // void putObject(Object base, int/long offset, Object x), etc.
2384       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2385       assert(sig->count() == 3, "oop putter has 3 arguments");
2386       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2387       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2388       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2389       assert(vtype == type, "putter must accept the expected value");
2390     }
2391 #endif // ASSERT
2392  }
2393 #endif //PRODUCT
2394 
2395   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2396 
2397   Node* receiver = argument(0);  // type: oop
2398 
2399   // Build address expression.
2400   Node* adr;
2401   Node* heap_base_oop = top();
2402   Node* offset = top();
2403   Node* val;
2404 
2405   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2406   Node* base = argument(1);  // type: oop
2407   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2408   offset = argument(2);  // type: long
2409   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2410   // to be plain byte offsets, which are also the same as those accepted
2411   // by oopDesc::field_addr.
2412   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2413          "fieldOffset must be byte-scaled");
2414   // 32-bit machines ignore the high half!
2415   offset = ConvL2X(offset);
2416   adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2417 
2418   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2419     heap_base_oop = base;
2420   } else if (type == T_OBJECT) {
2421     return false; // off-heap oop accesses are not supported
2422   }
2423 
2424   // Can base be NULL? Otherwise, always on-heap access.
2425   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2426 
2427   val = is_store ? argument(4) : NULL;
2428 
2429   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2430 
2431   // Try to categorize the address.
2432   Compile::AliasType* alias_type = C->alias_type(adr_type);
2433   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2434 
2435   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2436       alias_type->adr_type() == TypeAryPtr::RANGE) {
2437     return false; // not supported
2438   }
2439 
2440   bool mismatched = false;
2441   BasicType bt = alias_type->basic_type();
2442   if (bt != T_ILLEGAL) {
2443     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2444     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2445       // Alias type doesn't differentiate between byte[] and boolean[]).
2446       // Use address type to get the element type.
2447       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2448     }
2449     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2450       // accessing an array field with getObject is not a mismatch
2451       bt = T_OBJECT;
2452     }
2453     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2454       // Don't intrinsify mismatched object accesses
2455       return false;
2456     }
2457     mismatched = (bt != type);
2458   } else if (alias_type->adr_type()->isa_oopptr()) {
2459     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2460   }
2461 
2462   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2463 
2464   // First guess at the value type.
2465   const Type *value_type = Type::get_const_basic_type(type);
2466 
2467   // We will need memory barriers unless we can determine a unique
2468   // alias category for this reference.  (Note:  If for some reason
2469   // the barriers get omitted and the unsafe reference begins to "pollute"
2470   // the alias analysis of the rest of the graph, either Compile::can_alias
2471   // or Compile::must_alias will throw a diagnostic assert.)
2472   bool need_mem_bar = false;
2473   switch (kind) {
2474       case Relaxed:
2475           need_mem_bar = (mismatched && !adr_type->isa_aryptr()) || can_access_non_heap;
2476           break;
2477       case Opaque:
2478           // Opaque uses CPUOrder membars for protection against code movement.
2479       case Acquire:
2480       case Release:
2481       case Volatile:
2482           need_mem_bar = true;
2483           break;
2484       default:
2485           ShouldNotReachHere();
2486   }
2487 
2488   // Some accesses require access atomicity for all types, notably longs and doubles.
2489   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2490   bool requires_atomic_access = false;
2491   switch (kind) {
2492       case Relaxed:
2493           requires_atomic_access = AlwaysAtomicAccesses;
2494           break;
2495       case Opaque:
2496           // Opaque accesses are atomic.
2497       case Acquire:
2498       case Release:
2499       case Volatile:
2500           requires_atomic_access = true;
2501           break;
2502       default:
2503           ShouldNotReachHere();
2504   }
2505 
2506   // Figure out the memory ordering.
2507   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2508   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2509 
2510   // If we are reading the value of the referent field of a Reference
2511   // object (either by using Unsafe directly or through reflection)
2512   // then, if G1 is enabled, we need to record the referent in an
2513   // SATB log buffer using the pre-barrier mechanism.
2514   // Also we need to add memory barrier to prevent commoning reads
2515   // from this field across safepoint since GC can change its value.
2516   bool need_read_barrier = !is_store &&
2517                            offset != top() && heap_base_oop != top();
2518 
2519   if (!is_store && type == T_OBJECT) {
2520     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2521     if (tjp != NULL) {
2522       value_type = tjp;
2523     }
2524   }
2525 
2526   receiver = null_check(receiver);
2527   if (stopped()) {
2528     return true;
2529   }
2530   // Heap pointers get a null-check from the interpreter,
2531   // as a courtesy.  However, this is not guaranteed by Unsafe,
2532   // and it is not possible to fully distinguish unintended nulls
2533   // from intended ones in this API.
2534 
2535   // We need to emit leading and trailing CPU membars (see below) in
2536   // addition to memory membars for special access modes. This is a little
2537   // too strong, but avoids the need to insert per-alias-type
2538   // volatile membars (for stores; compare Parse::do_put_xxx), which
2539   // we cannot do effectively here because we probably only have a
2540   // rough approximation of type.
2541 
2542   switch(kind) {
2543     case Relaxed:
2544     case Opaque:
2545     case Acquire:
2546       break;
2547     case Release:
2548     case Volatile:
2549       if (is_store) {
2550         insert_mem_bar(Op_MemBarRelease);
2551       } else {
2552         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2553           insert_mem_bar(Op_MemBarVolatile);
2554         }
2555       }
2556       break;
2557     default:
2558       ShouldNotReachHere();
2559   }
2560 
2561   // Memory barrier to prevent normal and 'unsafe' accesses from
2562   // bypassing each other.  Happens after null checks, so the
2563   // exception paths do not take memory state from the memory barrier,
2564   // so there's no problems making a strong assert about mixing users
2565   // of safe & unsafe memory.
2566   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2567 
2568   if (!is_store) {
2569     Node* p = NULL;
2570     // Try to constant fold a load from a constant field
2571     ciField* field = alias_type->field();
2572     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2573       // final or stable field
2574       p = make_constant_from_field(field, heap_base_oop);
2575     }
2576     if (p == NULL) {
2577       // To be valid, unsafe loads may depend on other conditions than
2578       // the one that guards them: pin the Load node
2579       LoadNode::ControlDependency dep = LoadNode::Pinned;
2580       Node* ctrl = control();
2581       // non volatile loads may be able to float
2582       if (!need_mem_bar && adr_type->isa_instptr()) {
2583         assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
2584         intptr_t offset = Type::OffsetBot;
2585         AddPNode::Ideal_base_and_offset(adr, &_gvn, offset);
2586         if (offset >= 0) {
2587           int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
2588           if (offset < s) {
2589             // Guaranteed to be a valid access, no need to pin it
2590             dep = LoadNode::DependsOnlyOnTest;
2591             ctrl = NULL;
2592           }
2593         }
2594       }
2595       p = make_load(ctrl, adr, value_type, type, adr_type, mo, dep, requires_atomic_access, unaligned, mismatched);
2596       // load value
2597       switch (type) {
2598       case T_BOOLEAN:
2599       {
2600         // Normalize the value returned by getBoolean in the following cases
2601         if (mismatched ||
2602             heap_base_oop == top() ||                            // - heap_base_oop is NULL or
2603             (can_access_non_heap && alias_type->field() == NULL) // - heap_base_oop is potentially NULL
2604                                                                  //   and the unsafe access is made to large offset
2605                                                                  //   (i.e., larger than the maximum offset necessary for any
2606                                                                  //   field access)
2607             ) {
2608           IdealKit ideal = IdealKit(this);
2609 #define __ ideal.
2610           IdealVariable normalized_result(ideal);
2611           __ declarations_done();
2612           __ set(normalized_result, p);
2613           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2614           __ set(normalized_result, ideal.ConI(1));
2615           ideal.end_if();
2616           final_sync(ideal);
2617           p = __ value(normalized_result);
2618 #undef __
2619         }
2620       }
2621       case T_CHAR:
2622       case T_BYTE:
2623       case T_SHORT:
2624       case T_INT:
2625       case T_LONG:
2626       case T_FLOAT:
2627       case T_DOUBLE:
2628         break;
2629       case T_OBJECT:
2630         if (need_read_barrier) {
2631           // We do not require a mem bar inside pre_barrier if need_mem_bar
2632           // is set: the barriers would be emitted by us.
2633           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2634         }
2635         break;
2636       case T_ADDRESS:
2637         // Cast to an int type.
2638         p = _gvn.transform(new CastP2XNode(NULL, p));
2639         p = ConvX2UL(p);
2640         break;
2641       default:
2642         fatal("unexpected type %d: %s", type, type2name(type));
2643         break;
2644       }
2645     }
2646     // The load node has the control of the preceding MemBarCPUOrder.  All
2647     // following nodes will have the control of the MemBarCPUOrder inserted at
2648     // the end of this method.  So, pushing the load onto the stack at a later
2649     // point is fine.
2650     set_result(p);
2651   } else {
2652     // place effect of store into memory
2653     switch (type) {
2654     case T_DOUBLE:
2655       val = dstore_rounding(val);
2656       break;
2657     case T_ADDRESS:
2658       // Repackage the long as a pointer.
2659       val = ConvL2X(val);
2660       val = _gvn.transform(new CastX2PNode(val));
2661       break;
2662     default:
2663       break;
2664     }
2665 
2666     if (type == T_OBJECT) {
2667       store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2668     } else {
2669       store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2670     }
2671   }
2672 
2673   switch(kind) {
2674     case Relaxed:
2675     case Opaque:
2676     case Release:
2677       break;
2678     case Acquire:
2679     case Volatile:
2680       if (!is_store) {
2681         insert_mem_bar(Op_MemBarAcquire);
2682       } else {
2683         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2684           insert_mem_bar(Op_MemBarVolatile);
2685         }
2686       }
2687       break;
2688     default:
2689       ShouldNotReachHere();
2690   }
2691 
2692   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2693 
2694   return true;
2695 }
2696 
2697 //----------------------------inline_unsafe_load_store----------------------------
2698 // This method serves a couple of different customers (depending on LoadStoreKind):
2699 //
2700 // LS_cmp_swap:
2701 //
2702 //   boolean compareAndSetObject(Object o, long offset, Object expected, Object x);
2703 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2704 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2705 //
2706 // LS_cmp_swap_weak:
2707 //
2708 //   boolean weakCompareAndSetObject(       Object o, long offset, Object expected, Object x);
2709 //   boolean weakCompareAndSetObjectPlain(  Object o, long offset, Object expected, Object x);
2710 //   boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x);
2711 //   boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x);
2712 //
2713 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2714 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2715 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2716 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2717 //
2718 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2719 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2720 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2721 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2722 //
2723 // LS_cmp_exchange:
2724 //
2725 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2726 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2727 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2728 //
2729 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2730 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2731 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2732 //
2733 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2734 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2735 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2736 //
2737 // LS_get_add:
2738 //
2739 //   int  getAndAddInt( Object o, long offset, int  delta)
2740 //   long getAndAddLong(Object o, long offset, long delta)
2741 //
2742 // LS_get_set:
2743 //
2744 //   int    getAndSet(Object o, long offset, int    newValue)
2745 //   long   getAndSet(Object o, long offset, long   newValue)
2746 //   Object getAndSet(Object o, long offset, Object newValue)
2747 //
2748 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2749   // This basic scheme here is the same as inline_unsafe_access, but
2750   // differs in enough details that combining them would make the code
2751   // overly confusing.  (This is a true fact! I originally combined
2752   // them, but even I was confused by it!) As much code/comments as
2753   // possible are retained from inline_unsafe_access though to make
2754   // the correspondences clearer. - dl
2755 
2756   if (callee()->is_static())  return false;  // caller must have the capability!
2757 
2758 #ifndef PRODUCT
2759   BasicType rtype;
2760   {
2761     ResourceMark rm;
2762     // Check the signatures.
2763     ciSignature* sig = callee()->signature();
2764     rtype = sig->return_type()->basic_type();
2765     switch(kind) {
2766       case LS_get_add:
2767       case LS_get_set: {
2768       // Check the signatures.
2769 #ifdef ASSERT
2770       assert(rtype == type, "get and set must return the expected type");
2771       assert(sig->count() == 3, "get and set has 3 arguments");
2772       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2773       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2774       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2775       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2776 #endif // ASSERT
2777         break;
2778       }
2779       case LS_cmp_swap:
2780       case LS_cmp_swap_weak: {
2781       // Check the signatures.
2782 #ifdef ASSERT
2783       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2784       assert(sig->count() == 4, "CAS has 4 arguments");
2785       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2786       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2787 #endif // ASSERT
2788         break;
2789       }
2790       case LS_cmp_exchange: {
2791       // Check the signatures.
2792 #ifdef ASSERT
2793       assert(rtype == type, "CAS must return the expected type");
2794       assert(sig->count() == 4, "CAS has 4 arguments");
2795       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2796       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2797 #endif // ASSERT
2798         break;
2799       }
2800       default:
2801         ShouldNotReachHere();
2802     }
2803   }
2804 #endif //PRODUCT
2805 
2806   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2807 
2808   // Get arguments:
2809   Node* receiver = NULL;
2810   Node* base     = NULL;
2811   Node* offset   = NULL;
2812   Node* oldval   = NULL;
2813   Node* newval   = NULL;
2814   switch(kind) {
2815     case LS_cmp_swap:
2816     case LS_cmp_swap_weak:
2817     case LS_cmp_exchange: {
2818       const bool two_slot_type = type2size[type] == 2;
2819       receiver = argument(0);  // type: oop
2820       base     = argument(1);  // type: oop
2821       offset   = argument(2);  // type: long
2822       oldval   = argument(4);  // type: oop, int, or long
2823       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2824       break;
2825     }
2826     case LS_get_add:
2827     case LS_get_set: {
2828       receiver = argument(0);  // type: oop
2829       base     = argument(1);  // type: oop
2830       offset   = argument(2);  // type: long
2831       oldval   = NULL;
2832       newval   = argument(4);  // type: oop, int, or long
2833       break;
2834     }
2835     default:
2836       ShouldNotReachHere();
2837   }
2838 
2839   // Build field offset expression.
2840   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2841   // to be plain byte offsets, which are also the same as those accepted
2842   // by oopDesc::field_addr.
2843   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2844   // 32-bit machines ignore the high half of long offsets
2845   offset = ConvL2X(offset);
2846   Node* adr = make_unsafe_address(base, offset, type, false);
2847   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2848 
2849   Compile::AliasType* alias_type = C->alias_type(adr_type);
2850   BasicType bt = alias_type->basic_type();
2851   if (bt != T_ILLEGAL &&
2852       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2853     // Don't intrinsify mismatched object accesses.
2854     return false;
2855   }
2856 
2857   // For CAS, unlike inline_unsafe_access, there seems no point in
2858   // trying to refine types. Just use the coarse types here.
2859   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2860   const Type *value_type = Type::get_const_basic_type(type);
2861 
2862   switch (kind) {
2863     case LS_get_set:
2864     case LS_cmp_exchange: {
2865       if (type == T_OBJECT) {
2866         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2867         if (tjp != NULL) {
2868           value_type = tjp;
2869         }
2870       }
2871       break;
2872     }
2873     case LS_cmp_swap:
2874     case LS_cmp_swap_weak:
2875     case LS_get_add:
2876       break;
2877     default:
2878       ShouldNotReachHere();
2879   }
2880 
2881   // Null check receiver.
2882   receiver = null_check(receiver);
2883   if (stopped()) {
2884     return true;
2885   }
2886 
2887   int alias_idx = C->get_alias_index(adr_type);
2888 
2889   // Memory-model-wise, a LoadStore acts like a little synchronized
2890   // block, so needs barriers on each side.  These don't translate
2891   // into actual barriers on most machines, but we still need rest of
2892   // compiler to respect ordering.
2893 
2894   switch (access_kind) {
2895     case Relaxed:
2896     case Acquire:
2897       break;
2898     case Release:
2899       insert_mem_bar(Op_MemBarRelease);
2900       break;
2901     case Volatile:
2902       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2903         insert_mem_bar(Op_MemBarVolatile);
2904       } else {
2905         insert_mem_bar(Op_MemBarRelease);
2906       }
2907       break;
2908     default:
2909       ShouldNotReachHere();
2910   }
2911   insert_mem_bar(Op_MemBarCPUOrder);
2912 
2913   // Figure out the memory ordering.
2914   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2915 
2916   // 4984716: MemBars must be inserted before this
2917   //          memory node in order to avoid a false
2918   //          dependency which will confuse the scheduler.
2919   Node *mem = memory(alias_idx);
2920 
2921   // For now, we handle only those cases that actually exist: ints,
2922   // longs, and Object. Adding others should be straightforward.
2923   Node* load_store = NULL;
2924   switch(type) {
2925   case T_BYTE:
2926     switch(kind) {
2927       case LS_get_add:
2928         load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2929         break;
2930       case LS_get_set:
2931         load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2932         break;
2933       case LS_cmp_swap_weak:
2934         load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2935         break;
2936       case LS_cmp_swap:
2937         load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2938         break;
2939       case LS_cmp_exchange:
2940         load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2941         break;
2942       default:
2943         ShouldNotReachHere();
2944     }
2945     break;
2946   case T_SHORT:
2947     switch(kind) {
2948       case LS_get_add:
2949         load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2950         break;
2951       case LS_get_set:
2952         load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2953         break;
2954       case LS_cmp_swap_weak:
2955         load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2956         break;
2957       case LS_cmp_swap:
2958         load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2959         break;
2960       case LS_cmp_exchange:
2961         load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2962         break;
2963       default:
2964         ShouldNotReachHere();
2965     }
2966     break;
2967   case T_INT:
2968     switch(kind) {
2969       case LS_get_add:
2970         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2971         break;
2972       case LS_get_set:
2973         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2974         break;
2975       case LS_cmp_swap_weak:
2976         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2977         break;
2978       case LS_cmp_swap:
2979         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2980         break;
2981       case LS_cmp_exchange:
2982         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2983         break;
2984       default:
2985         ShouldNotReachHere();
2986     }
2987     break;
2988   case T_LONG:
2989     switch(kind) {
2990       case LS_get_add:
2991         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2992         break;
2993       case LS_get_set:
2994         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2995         break;
2996       case LS_cmp_swap_weak:
2997         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2998         break;
2999       case LS_cmp_swap:
3000         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
3001         break;
3002       case LS_cmp_exchange:
3003         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
3004         break;
3005       default:
3006         ShouldNotReachHere();
3007     }
3008     break;
3009   case T_OBJECT:
3010     // Transformation of a value which could be NULL pointer (CastPP #NULL)
3011     // could be delayed during Parse (for example, in adjust_map_after_if()).
3012     // Execute transformation here to avoid barrier generation in such case.
3013     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3014       newval = _gvn.makecon(TypePtr::NULL_PTR);
3015 
3016     // Reference stores need a store barrier.
3017     switch(kind) {
3018       case LS_get_set: {
3019         // If pre-barrier must execute before the oop store, old value will require do_load here.
3020         if (!can_move_pre_barrier()) {
3021           pre_barrier(true /* do_load*/,
3022                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
3023                       NULL /* pre_val*/,
3024                       T_OBJECT);
3025         } // Else move pre_barrier to use load_store value, see below.
3026         break;
3027       }
3028       case LS_cmp_swap_weak:
3029       case LS_cmp_swap:
3030       case LS_cmp_exchange: {
3031         // Same as for newval above:
3032         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3033           oldval = _gvn.makecon(TypePtr::NULL_PTR);
3034         }
3035         // The only known value which might get overwritten is oldval.
3036         pre_barrier(false /* do_load */,
3037                     control(), NULL, NULL, max_juint, NULL, NULL,
3038                     oldval /* pre_val */,
3039                     T_OBJECT);
3040         break;
3041       }
3042       default:
3043         ShouldNotReachHere();
3044     }
3045 
3046 #ifdef _LP64
3047     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3048       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3049 
3050       switch(kind) {
3051         case LS_get_set:
3052           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
3053           break;
3054         case LS_cmp_swap_weak: {
3055           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3056           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3057           break;
3058         }
3059         case LS_cmp_swap: {
3060           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3061           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3062           break;
3063         }
3064         case LS_cmp_exchange: {
3065           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3066           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
3067           break;
3068         }
3069         default:
3070           ShouldNotReachHere();
3071       }
3072     } else
3073 #endif
3074     switch (kind) {
3075       case LS_get_set:
3076         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3077         break;
3078       case LS_cmp_swap_weak:
3079         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3080         break;
3081       case LS_cmp_swap:
3082         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3083         break;
3084       case LS_cmp_exchange:
3085         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
3086         break;
3087       default:
3088         ShouldNotReachHere();
3089     }
3090 
3091     // Emit the post barrier only when the actual store happened. This makes sense
3092     // to check only for LS_cmp_* that can fail to set the value.
3093     // LS_cmp_exchange does not produce any branches by default, so there is no
3094     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3095     // CompareAndExchange and move branches here, it would make sense to conditionalize
3096     // post_barriers for LS_cmp_exchange as well.
3097     //
3098     // CAS success path is marked more likely since we anticipate this is a performance
3099     // critical path, while CAS failure path can use the penalty for going through unlikely
3100     // path as backoff. Which is still better than doing a store barrier there.
3101     switch (kind) {
3102       case LS_get_set:
3103       case LS_cmp_exchange: {
3104         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3105         break;
3106       }
3107       case LS_cmp_swap_weak:
3108       case LS_cmp_swap: {
3109         IdealKit ideal(this);
3110         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3111           sync_kit(ideal);
3112           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3113           ideal.sync_kit(this);
3114         } ideal.end_if();
3115         final_sync(ideal);
3116         break;
3117       }
3118       default:
3119         ShouldNotReachHere();
3120     }
3121     break;
3122   default:
3123     fatal("unexpected type %d: %s", type, type2name(type));
3124     break;
3125   }
3126 
3127   // SCMemProjNodes represent the memory state of a LoadStore. Their
3128   // main role is to prevent LoadStore nodes from being optimized away
3129   // when their results aren't used.
3130   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3131   set_memory(proj, alias_idx);
3132 
3133   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3134 #ifdef _LP64
3135     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3136       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3137     }
3138 #endif
3139     if (can_move_pre_barrier() && kind == LS_get_set) {
3140       // Don't need to load pre_val. The old value is returned by load_store.
3141       // The pre_barrier can execute after the xchg as long as no safepoint
3142       // gets inserted between them.
3143       pre_barrier(false /* do_load */,
3144                   control(), NULL, NULL, max_juint, NULL, NULL,
3145                   load_store /* pre_val */,
3146                   T_OBJECT);
3147     }
3148   }
3149 
3150   // Add the trailing membar surrounding the access
3151   insert_mem_bar(Op_MemBarCPUOrder);
3152 
3153   switch (access_kind) {
3154     case Relaxed:
3155     case Release:
3156       break; // do nothing
3157     case Acquire:
3158     case Volatile:
3159       insert_mem_bar(Op_MemBarAcquire);
3160       // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3161       break;
3162     default:
3163       ShouldNotReachHere();
3164   }
3165 
3166   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3167   set_result(load_store);
3168   return true;
3169 }
3170 
3171 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3172   MemNode::MemOrd mo = MemNode::unset;
3173   switch(kind) {
3174     case Opaque:
3175     case Relaxed:  mo = MemNode::unordered; break;
3176     case Acquire:  mo = MemNode::acquire;   break;
3177     case Release:  mo = MemNode::release;   break;
3178     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3179     default:
3180       ShouldNotReachHere();
3181   }
3182   guarantee(mo != MemNode::unset, "Should select memory ordering");
3183   return mo;
3184 }
3185 
3186 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3187   MemNode::MemOrd mo = MemNode::unset;
3188   switch(kind) {
3189     case Opaque:
3190     case Relaxed:  mo = MemNode::unordered; break;
3191     case Acquire:  mo = MemNode::acquire;   break;
3192     case Release:  mo = MemNode::release;   break;
3193     case Volatile: mo = MemNode::seqcst;    break;
3194     default:
3195       ShouldNotReachHere();
3196   }
3197   guarantee(mo != MemNode::unset, "Should select memory ordering");
3198   return mo;
3199 }
3200 
3201 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3202   // Regardless of form, don't allow previous ld/st to move down,
3203   // then issue acquire, release, or volatile mem_bar.
3204   insert_mem_bar(Op_MemBarCPUOrder);
3205   switch(id) {
3206     case vmIntrinsics::_loadFence:
3207       insert_mem_bar(Op_LoadFence);
3208       return true;
3209     case vmIntrinsics::_storeFence:
3210       insert_mem_bar(Op_StoreFence);
3211       return true;
3212     case vmIntrinsics::_fullFence:
3213       insert_mem_bar(Op_MemBarVolatile);
3214       return true;
3215     default:
3216       fatal_unexpected_iid(id);
3217       return false;
3218   }
3219 }
3220 
3221 bool LibraryCallKit::inline_onspinwait() {
3222   insert_mem_bar(Op_OnSpinWait);
3223   return true;
3224 }
3225 
3226 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3227   if (!kls->is_Con()) {
3228     return true;
3229   }
3230   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3231   if (klsptr == NULL) {
3232     return true;
3233   }
3234   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3235   // don't need a guard for a klass that is already initialized
3236   return !ik->is_initialized();
3237 }
3238 
3239 //----------------------------inline_unsafe_allocate---------------------------
3240 // public native Object Unsafe.allocateInstance(Class<?> cls);
3241 bool LibraryCallKit::inline_unsafe_allocate() {
3242   if (callee()->is_static())  return false;  // caller must have the capability!
3243 
3244   null_check_receiver();  // null-check, then ignore
3245   Node* cls = null_check(argument(1));
3246   if (stopped())  return true;
3247 
3248   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3249   kls = null_check(kls);
3250   if (stopped())  return true;  // argument was like int.class
3251 
3252   Node* test = NULL;
3253   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3254     // Note:  The argument might still be an illegal value like
3255     // Serializable.class or Object[].class.   The runtime will handle it.
3256     // But we must make an explicit check for initialization.
3257     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3258     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3259     // can generate code to load it as unsigned byte.
3260     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3261     Node* bits = intcon(InstanceKlass::fully_initialized);
3262     test = _gvn.transform(new SubINode(inst, bits));
3263     // The 'test' is non-zero if we need to take a slow path.
3264   }
3265 
3266   Node* obj = new_instance(kls, test);
3267   set_result(obj);
3268   return true;
3269 }
3270 
3271 //------------------------inline_native_time_funcs--------------
3272 // inline code for System.currentTimeMillis() and System.nanoTime()
3273 // these have the same type and signature
3274 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3275   const TypeFunc* tf = OptoRuntime::void_long_Type();
3276   const TypePtr* no_memory_effects = NULL;
3277   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3278   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3279 #ifdef ASSERT
3280   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3281   assert(value_top == top(), "second value must be top");
3282 #endif
3283   set_result(value);
3284   return true;
3285 }
3286 
3287 #ifdef TRACE_HAVE_INTRINSICS
3288 
3289 /*
3290 * oop -> myklass
3291 * myklass->trace_id |= USED
3292 * return myklass->trace_id & ~0x3
3293 */
3294 bool LibraryCallKit::inline_native_classID() {
3295   Node* cls = null_check(argument(0), T_OBJECT);
3296   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3297   kls = null_check(kls, T_OBJECT);
3298 
3299   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3300   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3301   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3302 
3303   Node* clsused = longcon(0x01l); // set the class bit
3304   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3305   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3306   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3307 
3308 #ifdef TRACE_ID_META_BITS
3309   Node* mbits = longcon(~TRACE_ID_META_BITS);
3310   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
3311 #endif
3312 #ifdef TRACE_ID_CLASS_SHIFT
3313   Node* cbits = intcon(TRACE_ID_CLASS_SHIFT);
3314   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
3315 #endif
3316 
3317   set_result(tvalue);
3318   return true;
3319 
3320 }
3321 
3322 bool LibraryCallKit::inline_native_getBufferWriter() {
3323   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3324 
3325   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3326                                   in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET)
3327                                   );
3328 
3329   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3330 
3331   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3332   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3333 
3334   IfNode* iff_jobj_null =
3335     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3336 
3337   enum { _normal_path = 1,
3338          _null_path = 2,
3339          PATH_LIMIT };
3340 
3341   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3342   PhiNode*    result_val = new PhiNode(result_rgn, TypePtr::BOTTOM);
3343 
3344   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3345   result_rgn->init_req(_null_path, jobj_is_null);
3346   result_val->init_req(_null_path, null());
3347 
3348   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3349   result_rgn->init_req(_normal_path, jobj_is_not_null);
3350 
3351   Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3352   result_val->init_req(_normal_path, res);
3353 
3354   set_result(result_rgn, result_val);
3355 
3356   return true;
3357 }
3358 
3359 #endif
3360 
3361 //------------------------inline_native_currentThread------------------
3362 bool LibraryCallKit::inline_native_currentThread() {
3363   Node* junk = NULL;
3364   set_result(generate_current_thread(junk));
3365   return true;
3366 }
3367 
3368 //------------------------inline_native_isInterrupted------------------
3369 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3370 bool LibraryCallKit::inline_native_isInterrupted() {
3371   // Add a fast path to t.isInterrupted(clear_int):
3372   //   (t == Thread.current() &&
3373   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3374   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3375   // So, in the common case that the interrupt bit is false,
3376   // we avoid making a call into the VM.  Even if the interrupt bit
3377   // is true, if the clear_int argument is false, we avoid the VM call.
3378   // However, if the receiver is not currentThread, we must call the VM,
3379   // because there must be some locking done around the operation.
3380 
3381   // We only go to the fast case code if we pass two guards.
3382   // Paths which do not pass are accumulated in the slow_region.
3383 
3384   enum {
3385     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3386     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3387     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3388     PATH_LIMIT
3389   };
3390 
3391   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3392   // out of the function.
3393   insert_mem_bar(Op_MemBarCPUOrder);
3394 
3395   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3396   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3397 
3398   RegionNode* slow_region = new RegionNode(1);
3399   record_for_igvn(slow_region);
3400 
3401   // (a) Receiving thread must be the current thread.
3402   Node* rec_thr = argument(0);
3403   Node* tls_ptr = NULL;
3404   Node* cur_thr = generate_current_thread(tls_ptr);
3405   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3406   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3407 
3408   generate_slow_guard(bol_thr, slow_region);
3409 
3410   // (b) Interrupt bit on TLS must be false.
3411   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3412   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3413   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3414 
3415   // Set the control input on the field _interrupted read to prevent it floating up.
3416   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3417   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3418   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3419 
3420   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3421 
3422   // First fast path:  if (!TLS._interrupted) return false;
3423   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3424   result_rgn->init_req(no_int_result_path, false_bit);
3425   result_val->init_req(no_int_result_path, intcon(0));
3426 
3427   // drop through to next case
3428   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3429 
3430 #ifndef _WINDOWS
3431   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3432   Node* clr_arg = argument(1);
3433   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3434   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3435   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3436 
3437   // Second fast path:  ... else if (!clear_int) return true;
3438   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3439   result_rgn->init_req(no_clear_result_path, false_arg);
3440   result_val->init_req(no_clear_result_path, intcon(1));
3441 
3442   // drop through to next case
3443   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3444 #else
3445   // To return true on Windows you must read the _interrupted field
3446   // and check the event state i.e. take the slow path.
3447 #endif // _WINDOWS
3448 
3449   // (d) Otherwise, go to the slow path.
3450   slow_region->add_req(control());
3451   set_control( _gvn.transform(slow_region));
3452 
3453   if (stopped()) {
3454     // There is no slow path.
3455     result_rgn->init_req(slow_result_path, top());
3456     result_val->init_req(slow_result_path, top());
3457   } else {
3458     // non-virtual because it is a private non-static
3459     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3460 
3461     Node* slow_val = set_results_for_java_call(slow_call);
3462     // this->control() comes from set_results_for_java_call
3463 
3464     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3465     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3466 
3467     // These two phis are pre-filled with copies of of the fast IO and Memory
3468     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3469     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3470 
3471     result_rgn->init_req(slow_result_path, control());
3472     result_io ->init_req(slow_result_path, i_o());
3473     result_mem->init_req(slow_result_path, reset_memory());
3474     result_val->init_req(slow_result_path, slow_val);
3475 
3476     set_all_memory(_gvn.transform(result_mem));
3477     set_i_o(       _gvn.transform(result_io));
3478   }
3479 
3480   C->set_has_split_ifs(true); // Has chance for split-if optimization
3481   set_result(result_rgn, result_val);
3482   return true;
3483 }
3484 
3485 //---------------------------load_mirror_from_klass----------------------------
3486 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3487 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3488   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3489   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3490   return make_load(NULL, load, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3491 }
3492 
3493 //-----------------------load_klass_from_mirror_common-------------------------
3494 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3495 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3496 // and branch to the given path on the region.
3497 // If never_see_null, take an uncommon trap on null, so we can optimistically
3498 // compile for the non-null case.
3499 // If the region is NULL, force never_see_null = true.
3500 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3501                                                     bool never_see_null,
3502                                                     RegionNode* region,
3503                                                     int null_path,
3504                                                     int offset) {
3505   if (region == NULL)  never_see_null = true;
3506   Node* p = basic_plus_adr(mirror, offset);
3507   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3508   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3509   Node* null_ctl = top();
3510   kls = null_check_oop(kls, &null_ctl, never_see_null);
3511   if (region != NULL) {
3512     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3513     region->init_req(null_path, null_ctl);
3514   } else {
3515     assert(null_ctl == top(), "no loose ends");
3516   }
3517   return kls;
3518 }
3519 
3520 //--------------------(inline_native_Class_query helpers)---------------------
3521 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3522 // Fall through if (mods & mask) == bits, take the guard otherwise.
3523 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3524   // Branch around if the given klass has the given modifier bit set.
3525   // Like generate_guard, adds a new path onto the region.
3526   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3527   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3528   Node* mask = intcon(modifier_mask);
3529   Node* bits = intcon(modifier_bits);
3530   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3531   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3532   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3533   return generate_fair_guard(bol, region);
3534 }
3535 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3536   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3537 }
3538 
3539 //-------------------------inline_native_Class_query-------------------
3540 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3541   const Type* return_type = TypeInt::BOOL;
3542   Node* prim_return_value = top();  // what happens if it's a primitive class?
3543   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3544   bool expect_prim = false;     // most of these guys expect to work on refs
3545 
3546   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3547 
3548   Node* mirror = argument(0);
3549   Node* obj    = top();
3550 
3551   switch (id) {
3552   case vmIntrinsics::_isInstance:
3553     // nothing is an instance of a primitive type
3554     prim_return_value = intcon(0);
3555     obj = argument(1);
3556     break;
3557   case vmIntrinsics::_getModifiers:
3558     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3559     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3560     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3561     break;
3562   case vmIntrinsics::_isInterface:
3563     prim_return_value = intcon(0);
3564     break;
3565   case vmIntrinsics::_isArray:
3566     prim_return_value = intcon(0);
3567     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3568     break;
3569   case vmIntrinsics::_isPrimitive:
3570     prim_return_value = intcon(1);
3571     expect_prim = true;  // obviously
3572     break;
3573   case vmIntrinsics::_getSuperclass:
3574     prim_return_value = null();
3575     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3576     break;
3577   case vmIntrinsics::_getClassAccessFlags:
3578     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3579     return_type = TypeInt::INT;  // not bool!  6297094
3580     break;
3581   default:
3582     fatal_unexpected_iid(id);
3583     break;
3584   }
3585 
3586   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3587   if (mirror_con == NULL)  return false;  // cannot happen?
3588 
3589 #ifndef PRODUCT
3590   if (C->print_intrinsics() || C->print_inlining()) {
3591     ciType* k = mirror_con->java_mirror_type();
3592     if (k) {
3593       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3594       k->print_name();
3595       tty->cr();
3596     }
3597   }
3598 #endif
3599 
3600   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3601   RegionNode* region = new RegionNode(PATH_LIMIT);
3602   record_for_igvn(region);
3603   PhiNode* phi = new PhiNode(region, return_type);
3604 
3605   // The mirror will never be null of Reflection.getClassAccessFlags, however
3606   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3607   // if it is. See bug 4774291.
3608 
3609   // For Reflection.getClassAccessFlags(), the null check occurs in
3610   // the wrong place; see inline_unsafe_access(), above, for a similar
3611   // situation.
3612   mirror = null_check(mirror);
3613   // If mirror or obj is dead, only null-path is taken.
3614   if (stopped())  return true;
3615 
3616   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3617 
3618   // Now load the mirror's klass metaobject, and null-check it.
3619   // Side-effects region with the control path if the klass is null.
3620   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3621   // If kls is null, we have a primitive mirror.
3622   phi->init_req(_prim_path, prim_return_value);
3623   if (stopped()) { set_result(region, phi); return true; }
3624   bool safe_for_replace = (region->in(_prim_path) == top());
3625 
3626   Node* p;  // handy temp
3627   Node* null_ctl;
3628 
3629   // Now that we have the non-null klass, we can perform the real query.
3630   // For constant classes, the query will constant-fold in LoadNode::Value.
3631   Node* query_value = top();
3632   switch (id) {
3633   case vmIntrinsics::_isInstance:
3634     // nothing is an instance of a primitive type
3635     query_value = gen_instanceof(obj, kls, safe_for_replace);
3636     break;
3637 
3638   case vmIntrinsics::_getModifiers:
3639     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3640     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3641     break;
3642 
3643   case vmIntrinsics::_isInterface:
3644     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3645     if (generate_interface_guard(kls, region) != NULL)
3646       // A guard was added.  If the guard is taken, it was an interface.
3647       phi->add_req(intcon(1));
3648     // If we fall through, it's a plain class.
3649     query_value = intcon(0);
3650     break;
3651 
3652   case vmIntrinsics::_isArray:
3653     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3654     if (generate_array_guard(kls, region) != NULL)
3655       // A guard was added.  If the guard is taken, it was an array.
3656       phi->add_req(intcon(1));
3657     // If we fall through, it's a plain class.
3658     query_value = intcon(0);
3659     break;
3660 
3661   case vmIntrinsics::_isPrimitive:
3662     query_value = intcon(0); // "normal" path produces false
3663     break;
3664 
3665   case vmIntrinsics::_getSuperclass:
3666     // The rules here are somewhat unfortunate, but we can still do better
3667     // with random logic than with a JNI call.
3668     // Interfaces store null or Object as _super, but must report null.
3669     // Arrays store an intermediate super as _super, but must report Object.
3670     // Other types can report the actual _super.
3671     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3672     if (generate_interface_guard(kls, region) != NULL)
3673       // A guard was added.  If the guard is taken, it was an interface.
3674       phi->add_req(null());
3675     if (generate_array_guard(kls, region) != NULL)
3676       // A guard was added.  If the guard is taken, it was an array.
3677       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3678     // If we fall through, it's a plain class.  Get its _super.
3679     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3680     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3681     null_ctl = top();
3682     kls = null_check_oop(kls, &null_ctl);
3683     if (null_ctl != top()) {
3684       // If the guard is taken, Object.superClass is null (both klass and mirror).
3685       region->add_req(null_ctl);
3686       phi   ->add_req(null());
3687     }
3688     if (!stopped()) {
3689       query_value = load_mirror_from_klass(kls);
3690     }
3691     break;
3692 
3693   case vmIntrinsics::_getClassAccessFlags:
3694     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3695     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3696     break;
3697 
3698   default:
3699     fatal_unexpected_iid(id);
3700     break;
3701   }
3702 
3703   // Fall-through is the normal case of a query to a real class.
3704   phi->init_req(1, query_value);
3705   region->init_req(1, control());
3706 
3707   C->set_has_split_ifs(true); // Has chance for split-if optimization
3708   set_result(region, phi);
3709   return true;
3710 }
3711 
3712 //-------------------------inline_Class_cast-------------------
3713 bool LibraryCallKit::inline_Class_cast() {
3714   Node* mirror = argument(0); // Class
3715   Node* obj    = argument(1);
3716   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3717   if (mirror_con == NULL) {
3718     return false;  // dead path (mirror->is_top()).
3719   }
3720   if (obj == NULL || obj->is_top()) {
3721     return false;  // dead path
3722   }
3723   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3724 
3725   // First, see if Class.cast() can be folded statically.
3726   // java_mirror_type() returns non-null for compile-time Class constants.
3727   ciType* tm = mirror_con->java_mirror_type();
3728   if (tm != NULL && tm->is_klass() &&
3729       tp != NULL && tp->klass() != NULL) {
3730     if (!tp->klass()->is_loaded()) {
3731       // Don't use intrinsic when class is not loaded.
3732       return false;
3733     } else {
3734       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3735       if (static_res == Compile::SSC_always_true) {
3736         // isInstance() is true - fold the code.
3737         set_result(obj);
3738         return true;
3739       } else if (static_res == Compile::SSC_always_false) {
3740         // Don't use intrinsic, have to throw ClassCastException.
3741         // If the reference is null, the non-intrinsic bytecode will
3742         // be optimized appropriately.
3743         return false;
3744       }
3745     }
3746   }
3747 
3748   // Bailout intrinsic and do normal inlining if exception path is frequent.
3749   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3750     return false;
3751   }
3752 
3753   // Generate dynamic checks.
3754   // Class.cast() is java implementation of _checkcast bytecode.
3755   // Do checkcast (Parse::do_checkcast()) optimizations here.
3756 
3757   mirror = null_check(mirror);
3758   // If mirror is dead, only null-path is taken.
3759   if (stopped()) {
3760     return true;
3761   }
3762 
3763   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3764   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3765   RegionNode* region = new RegionNode(PATH_LIMIT);
3766   record_for_igvn(region);
3767 
3768   // Now load the mirror's klass metaobject, and null-check it.
3769   // If kls is null, we have a primitive mirror and
3770   // nothing is an instance of a primitive type.
3771   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3772 
3773   Node* res = top();
3774   if (!stopped()) {
3775     Node* bad_type_ctrl = top();
3776     // Do checkcast optimizations.
3777     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3778     region->init_req(_bad_type_path, bad_type_ctrl);
3779   }
3780   if (region->in(_prim_path) != top() ||
3781       region->in(_bad_type_path) != top()) {
3782     // Let Interpreter throw ClassCastException.
3783     PreserveJVMState pjvms(this);
3784     set_control(_gvn.transform(region));
3785     uncommon_trap(Deoptimization::Reason_intrinsic,
3786                   Deoptimization::Action_maybe_recompile);
3787   }
3788   if (!stopped()) {
3789     set_result(res);
3790   }
3791   return true;
3792 }
3793 
3794 
3795 //--------------------------inline_native_subtype_check------------------------
3796 // This intrinsic takes the JNI calls out of the heart of
3797 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3798 bool LibraryCallKit::inline_native_subtype_check() {
3799   // Pull both arguments off the stack.
3800   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3801   args[0] = argument(0);
3802   args[1] = argument(1);
3803   Node* klasses[2];             // corresponding Klasses: superk, subk
3804   klasses[0] = klasses[1] = top();
3805 
3806   enum {
3807     // A full decision tree on {superc is prim, subc is prim}:
3808     _prim_0_path = 1,           // {P,N} => false
3809                                 // {P,P} & superc!=subc => false
3810     _prim_same_path,            // {P,P} & superc==subc => true
3811     _prim_1_path,               // {N,P} => false
3812     _ref_subtype_path,          // {N,N} & subtype check wins => true
3813     _both_ref_path,             // {N,N} & subtype check loses => false
3814     PATH_LIMIT
3815   };
3816 
3817   RegionNode* region = new RegionNode(PATH_LIMIT);
3818   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3819   record_for_igvn(region);
3820 
3821   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3822   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3823   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3824 
3825   // First null-check both mirrors and load each mirror's klass metaobject.
3826   int which_arg;
3827   for (which_arg = 0; which_arg <= 1; which_arg++) {
3828     Node* arg = args[which_arg];
3829     arg = null_check(arg);
3830     if (stopped())  break;
3831     args[which_arg] = arg;
3832 
3833     Node* p = basic_plus_adr(arg, class_klass_offset);
3834     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3835     klasses[which_arg] = _gvn.transform(kls);
3836   }
3837 
3838   // Having loaded both klasses, test each for null.
3839   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3840   for (which_arg = 0; which_arg <= 1; which_arg++) {
3841     Node* kls = klasses[which_arg];
3842     Node* null_ctl = top();
3843     kls = null_check_oop(kls, &null_ctl, never_see_null);
3844     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3845     region->init_req(prim_path, null_ctl);
3846     if (stopped())  break;
3847     klasses[which_arg] = kls;
3848   }
3849 
3850   if (!stopped()) {
3851     // now we have two reference types, in klasses[0..1]
3852     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3853     Node* superk = klasses[0];  // the receiver
3854     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3855     // now we have a successful reference subtype check
3856     region->set_req(_ref_subtype_path, control());
3857   }
3858 
3859   // If both operands are primitive (both klasses null), then
3860   // we must return true when they are identical primitives.
3861   // It is convenient to test this after the first null klass check.
3862   set_control(region->in(_prim_0_path)); // go back to first null check
3863   if (!stopped()) {
3864     // Since superc is primitive, make a guard for the superc==subc case.
3865     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3866     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3867     generate_guard(bol_eq, region, PROB_FAIR);
3868     if (region->req() == PATH_LIMIT+1) {
3869       // A guard was added.  If the added guard is taken, superc==subc.
3870       region->swap_edges(PATH_LIMIT, _prim_same_path);
3871       region->del_req(PATH_LIMIT);
3872     }
3873     region->set_req(_prim_0_path, control()); // Not equal after all.
3874   }
3875 
3876   // these are the only paths that produce 'true':
3877   phi->set_req(_prim_same_path,   intcon(1));
3878   phi->set_req(_ref_subtype_path, intcon(1));
3879 
3880   // pull together the cases:
3881   assert(region->req() == PATH_LIMIT, "sane region");
3882   for (uint i = 1; i < region->req(); i++) {
3883     Node* ctl = region->in(i);
3884     if (ctl == NULL || ctl == top()) {
3885       region->set_req(i, top());
3886       phi   ->set_req(i, top());
3887     } else if (phi->in(i) == NULL) {
3888       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3889     }
3890   }
3891 
3892   set_control(_gvn.transform(region));
3893   set_result(_gvn.transform(phi));
3894   return true;
3895 }
3896 
3897 //---------------------generate_array_guard_common------------------------
3898 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3899                                                   bool obj_array, bool not_array) {
3900 
3901   if (stopped()) {
3902     return NULL;
3903   }
3904 
3905   // If obj_array/non_array==false/false:
3906   // Branch around if the given klass is in fact an array (either obj or prim).
3907   // If obj_array/non_array==false/true:
3908   // Branch around if the given klass is not an array klass of any kind.
3909   // If obj_array/non_array==true/true:
3910   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3911   // If obj_array/non_array==true/false:
3912   // Branch around if the kls is an oop array (Object[] or subtype)
3913   //
3914   // Like generate_guard, adds a new path onto the region.
3915   jint  layout_con = 0;
3916   Node* layout_val = get_layout_helper(kls, layout_con);
3917   if (layout_val == NULL) {
3918     bool query = (obj_array
3919                   ? Klass::layout_helper_is_objArray(layout_con)
3920                   : Klass::layout_helper_is_array(layout_con));
3921     if (query == not_array) {
3922       return NULL;                       // never a branch
3923     } else {                             // always a branch
3924       Node* always_branch = control();
3925       if (region != NULL)
3926         region->add_req(always_branch);
3927       set_control(top());
3928       return always_branch;
3929     }
3930   }
3931   // Now test the correct condition.
3932   jint  nval = (obj_array
3933                 ? (jint)(Klass::_lh_array_tag_type_value
3934                    <<    Klass::_lh_array_tag_shift)
3935                 : Klass::_lh_neutral_value);
3936   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3937   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3938   // invert the test if we are looking for a non-array
3939   if (not_array)  btest = BoolTest(btest).negate();
3940   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3941   return generate_fair_guard(bol, region);
3942 }
3943 
3944 
3945 //-----------------------inline_native_newArray--------------------------
3946 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3947 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3948 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3949   Node* mirror;
3950   Node* count_val;
3951   if (uninitialized) {
3952     mirror    = argument(1);
3953     count_val = argument(2);
3954   } else {
3955     mirror    = argument(0);
3956     count_val = argument(1);
3957   }
3958 
3959   mirror = null_check(mirror);
3960   // If mirror or obj is dead, only null-path is taken.
3961   if (stopped())  return true;
3962 
3963   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3964   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3965   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3966   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3967   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3968 
3969   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3970   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3971                                                   result_reg, _slow_path);
3972   Node* normal_ctl   = control();
3973   Node* no_array_ctl = result_reg->in(_slow_path);
3974 
3975   // Generate code for the slow case.  We make a call to newArray().
3976   set_control(no_array_ctl);
3977   if (!stopped()) {
3978     // Either the input type is void.class, or else the
3979     // array klass has not yet been cached.  Either the
3980     // ensuing call will throw an exception, or else it
3981     // will cache the array klass for next time.
3982     PreserveJVMState pjvms(this);
3983     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3984     Node* slow_result = set_results_for_java_call(slow_call);
3985     // this->control() comes from set_results_for_java_call
3986     result_reg->set_req(_slow_path, control());
3987     result_val->set_req(_slow_path, slow_result);
3988     result_io ->set_req(_slow_path, i_o());
3989     result_mem->set_req(_slow_path, reset_memory());
3990   }
3991 
3992   set_control(normal_ctl);
3993   if (!stopped()) {
3994     // Normal case:  The array type has been cached in the java.lang.Class.
3995     // The following call works fine even if the array type is polymorphic.
3996     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3997     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3998     result_reg->init_req(_normal_path, control());
3999     result_val->init_req(_normal_path, obj);
4000     result_io ->init_req(_normal_path, i_o());
4001     result_mem->init_req(_normal_path, reset_memory());
4002 
4003     if (uninitialized) {
4004       // Mark the allocation so that zeroing is skipped
4005       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
4006       alloc->maybe_set_complete(&_gvn);
4007     }
4008   }
4009 
4010   // Return the combined state.
4011   set_i_o(        _gvn.transform(result_io)  );
4012   set_all_memory( _gvn.transform(result_mem));
4013 
4014   C->set_has_split_ifs(true); // Has chance for split-if optimization
4015   set_result(result_reg, result_val);
4016   return true;
4017 }
4018 
4019 //----------------------inline_native_getLength--------------------------
4020 // public static native int java.lang.reflect.Array.getLength(Object array);
4021 bool LibraryCallKit::inline_native_getLength() {
4022   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4023 
4024   Node* array = null_check(argument(0));
4025   // If array is dead, only null-path is taken.
4026   if (stopped())  return true;
4027 
4028   // Deoptimize if it is a non-array.
4029   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
4030 
4031   if (non_array != NULL) {
4032     PreserveJVMState pjvms(this);
4033     set_control(non_array);
4034     uncommon_trap(Deoptimization::Reason_intrinsic,
4035                   Deoptimization::Action_maybe_recompile);
4036   }
4037 
4038   // If control is dead, only non-array-path is taken.
4039   if (stopped())  return true;
4040 
4041   // The works fine even if the array type is polymorphic.
4042   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4043   Node* result = load_array_length(array);
4044 
4045   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4046   set_result(result);
4047   return true;
4048 }
4049 
4050 //------------------------inline_array_copyOf----------------------------
4051 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4052 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4053 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4054   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4055 
4056   // Get the arguments.
4057   Node* original          = argument(0);
4058   Node* start             = is_copyOfRange? argument(1): intcon(0);
4059   Node* end               = is_copyOfRange? argument(2): argument(1);
4060   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4061 
4062   Node* newcopy = NULL;
4063 
4064   // Set the original stack and the reexecute bit for the interpreter to reexecute
4065   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4066   { PreserveReexecuteState preexecs(this);
4067     jvms()->set_should_reexecute(true);
4068 
4069     array_type_mirror = null_check(array_type_mirror);
4070     original          = null_check(original);
4071 
4072     // Check if a null path was taken unconditionally.
4073     if (stopped())  return true;
4074 
4075     Node* orig_length = load_array_length(original);
4076 
4077     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
4078     klass_node = null_check(klass_node);
4079 
4080     RegionNode* bailout = new RegionNode(1);
4081     record_for_igvn(bailout);
4082 
4083     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4084     // Bail out if that is so.
4085     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4086     if (not_objArray != NULL) {
4087       // Improve the klass node's type from the new optimistic assumption:
4088       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4089       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4090       Node* cast = new CastPPNode(klass_node, akls);
4091       cast->init_req(0, control());
4092       klass_node = _gvn.transform(cast);
4093     }
4094 
4095     // Bail out if either start or end is negative.
4096     generate_negative_guard(start, bailout, &start);
4097     generate_negative_guard(end,   bailout, &end);
4098 
4099     Node* length = end;
4100     if (_gvn.type(start) != TypeInt::ZERO) {
4101       length = _gvn.transform(new SubINode(end, start));
4102     }
4103 
4104     // Bail out if length is negative.
4105     // Without this the new_array would throw
4106     // NegativeArraySizeException but IllegalArgumentException is what
4107     // should be thrown
4108     generate_negative_guard(length, bailout, &length);
4109 
4110     if (bailout->req() > 1) {
4111       PreserveJVMState pjvms(this);
4112       set_control(_gvn.transform(bailout));
4113       uncommon_trap(Deoptimization::Reason_intrinsic,
4114                     Deoptimization::Action_maybe_recompile);
4115     }
4116 
4117     if (!stopped()) {
4118       // How many elements will we copy from the original?
4119       // The answer is MinI(orig_length - start, length).
4120       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4121       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4122 
4123       // Generate a direct call to the right arraycopy function(s).
4124       // We know the copy is disjoint but we might not know if the
4125       // oop stores need checking.
4126       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4127       // This will fail a store-check if x contains any non-nulls.
4128 
4129       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4130       // loads/stores but it is legal only if we're sure the
4131       // Arrays.copyOf would succeed. So we need all input arguments
4132       // to the copyOf to be validated, including that the copy to the
4133       // new array won't trigger an ArrayStoreException. That subtype
4134       // check can be optimized if we know something on the type of
4135       // the input array from type speculation.
4136       if (_gvn.type(klass_node)->singleton()) {
4137         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
4138         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
4139 
4140         int test = C->static_subtype_check(superk, subk);
4141         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4142           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4143           if (t_original->speculative_type() != NULL) {
4144             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4145           }
4146         }
4147       }
4148 
4149       bool validated = false;
4150       // Reason_class_check rather than Reason_intrinsic because we
4151       // want to intrinsify even if this traps.
4152       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4153         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4154                                                    klass_node);
4155 
4156         if (not_subtype_ctrl != top()) {
4157           PreserveJVMState pjvms(this);
4158           set_control(not_subtype_ctrl);
4159           uncommon_trap(Deoptimization::Reason_class_check,
4160                         Deoptimization::Action_make_not_entrant);
4161           assert(stopped(), "Should be stopped");
4162         }
4163         validated = true;
4164       }
4165 
4166       if (!stopped()) {
4167         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4168 
4169         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4170                                                 load_object_klass(original), klass_node);
4171         if (!is_copyOfRange) {
4172           ac->set_copyof(validated);
4173         } else {
4174           ac->set_copyofrange(validated);
4175         }
4176         Node* n = _gvn.transform(ac);
4177         if (n == ac) {
4178           ac->connect_outputs(this);
4179         } else {
4180           assert(validated, "shouldn't transform if all arguments not validated");
4181           set_all_memory(n);
4182         }
4183       }
4184     }
4185   } // original reexecute is set back here
4186 
4187   C->set_has_split_ifs(true); // Has chance for split-if optimization
4188   if (!stopped()) {
4189     set_result(newcopy);
4190   }
4191   return true;
4192 }
4193 
4194 
4195 //----------------------generate_virtual_guard---------------------------
4196 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4197 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4198                                              RegionNode* slow_region) {
4199   ciMethod* method = callee();
4200   int vtable_index = method->vtable_index();
4201   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4202          "bad index %d", vtable_index);
4203   // Get the Method* out of the appropriate vtable entry.
4204   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4205                      vtable_index*vtableEntry::size_in_bytes() +
4206                      vtableEntry::method_offset_in_bytes();
4207   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4208   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4209 
4210   // Compare the target method with the expected method (e.g., Object.hashCode).
4211   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4212 
4213   Node* native_call = makecon(native_call_addr);
4214   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4215   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4216 
4217   return generate_slow_guard(test_native, slow_region);
4218 }
4219 
4220 //-----------------------generate_method_call----------------------------
4221 // Use generate_method_call to make a slow-call to the real
4222 // method if the fast path fails.  An alternative would be to
4223 // use a stub like OptoRuntime::slow_arraycopy_Java.
4224 // This only works for expanding the current library call,
4225 // not another intrinsic.  (E.g., don't use this for making an
4226 // arraycopy call inside of the copyOf intrinsic.)
4227 CallJavaNode*
4228 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4229   // When compiling the intrinsic method itself, do not use this technique.
4230   guarantee(callee() != C->method(), "cannot make slow-call to self");
4231 
4232   ciMethod* method = callee();
4233   // ensure the JVMS we have will be correct for this call
4234   guarantee(method_id == method->intrinsic_id(), "must match");
4235 
4236   const TypeFunc* tf = TypeFunc::make(method);
4237   CallJavaNode* slow_call;
4238   if (is_static) {
4239     assert(!is_virtual, "");
4240     slow_call = new CallStaticJavaNode(C, tf,
4241                            SharedRuntime::get_resolve_static_call_stub(),
4242                            method, bci());
4243   } else if (is_virtual) {
4244     null_check_receiver();
4245     int vtable_index = Method::invalid_vtable_index;
4246     if (UseInlineCaches) {
4247       // Suppress the vtable call
4248     } else {
4249       // hashCode and clone are not a miranda methods,
4250       // so the vtable index is fixed.
4251       // No need to use the linkResolver to get it.
4252        vtable_index = method->vtable_index();
4253        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4254               "bad index %d", vtable_index);
4255     }
4256     slow_call = new CallDynamicJavaNode(tf,
4257                           SharedRuntime::get_resolve_virtual_call_stub(),
4258                           method, vtable_index, bci());
4259   } else {  // neither virtual nor static:  opt_virtual
4260     null_check_receiver();
4261     slow_call = new CallStaticJavaNode(C, tf,
4262                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4263                                 method, bci());
4264     slow_call->set_optimized_virtual(true);
4265   }
4266   set_arguments_for_java_call(slow_call);
4267   set_edges_for_java_call(slow_call);
4268   return slow_call;
4269 }
4270 
4271 
4272 /**
4273  * Build special case code for calls to hashCode on an object. This call may
4274  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4275  * slightly different code.
4276  */
4277 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4278   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4279   assert(!(is_virtual && is_static), "either virtual, special, or static");
4280 
4281   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4282 
4283   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4284   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4285   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4286   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4287   Node* obj = NULL;
4288   if (!is_static) {
4289     // Check for hashing null object
4290     obj = null_check_receiver();
4291     if (stopped())  return true;        // unconditionally null
4292     result_reg->init_req(_null_path, top());
4293     result_val->init_req(_null_path, top());
4294   } else {
4295     // Do a null check, and return zero if null.
4296     // System.identityHashCode(null) == 0
4297     obj = argument(0);
4298     Node* null_ctl = top();
4299     obj = null_check_oop(obj, &null_ctl);
4300     result_reg->init_req(_null_path, null_ctl);
4301     result_val->init_req(_null_path, _gvn.intcon(0));
4302   }
4303 
4304   // Unconditionally null?  Then return right away.
4305   if (stopped()) {
4306     set_control( result_reg->in(_null_path));
4307     if (!stopped())
4308       set_result(result_val->in(_null_path));
4309     return true;
4310   }
4311 
4312   // We only go to the fast case code if we pass a number of guards.  The
4313   // paths which do not pass are accumulated in the slow_region.
4314   RegionNode* slow_region = new RegionNode(1);
4315   record_for_igvn(slow_region);
4316 
4317   // If this is a virtual call, we generate a funny guard.  We pull out
4318   // the vtable entry corresponding to hashCode() from the target object.
4319   // If the target method which we are calling happens to be the native
4320   // Object hashCode() method, we pass the guard.  We do not need this
4321   // guard for non-virtual calls -- the caller is known to be the native
4322   // Object hashCode().
4323   if (is_virtual) {
4324     // After null check, get the object's klass.
4325     Node* obj_klass = load_object_klass(obj);
4326     generate_virtual_guard(obj_klass, slow_region);
4327   }
4328 
4329   // Get the header out of the object, use LoadMarkNode when available
4330   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4331   // The control of the load must be NULL. Otherwise, the load can move before
4332   // the null check after castPP removal.
4333   Node* no_ctrl = NULL;
4334   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4335 
4336   // Test the header to see if it is unlocked.
4337   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4338   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4339   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4340   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4341   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4342 
4343   generate_slow_guard(test_unlocked, slow_region);
4344 
4345   // Get the hash value and check to see that it has been properly assigned.
4346   // We depend on hash_mask being at most 32 bits and avoid the use of
4347   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4348   // vm: see markOop.hpp.
4349   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4350   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4351   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4352   // This hack lets the hash bits live anywhere in the mark object now, as long
4353   // as the shift drops the relevant bits into the low 32 bits.  Note that
4354   // Java spec says that HashCode is an int so there's no point in capturing
4355   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4356   hshifted_header      = ConvX2I(hshifted_header);
4357   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4358 
4359   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4360   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4361   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4362 
4363   generate_slow_guard(test_assigned, slow_region);
4364 
4365   Node* init_mem = reset_memory();
4366   // fill in the rest of the null path:
4367   result_io ->init_req(_null_path, i_o());
4368   result_mem->init_req(_null_path, init_mem);
4369 
4370   result_val->init_req(_fast_path, hash_val);
4371   result_reg->init_req(_fast_path, control());
4372   result_io ->init_req(_fast_path, i_o());
4373   result_mem->init_req(_fast_path, init_mem);
4374 
4375   // Generate code for the slow case.  We make a call to hashCode().
4376   set_control(_gvn.transform(slow_region));
4377   if (!stopped()) {
4378     // No need for PreserveJVMState, because we're using up the present state.
4379     set_all_memory(init_mem);
4380     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4381     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4382     Node* slow_result = set_results_for_java_call(slow_call);
4383     // this->control() comes from set_results_for_java_call
4384     result_reg->init_req(_slow_path, control());
4385     result_val->init_req(_slow_path, slow_result);
4386     result_io  ->set_req(_slow_path, i_o());
4387     result_mem ->set_req(_slow_path, reset_memory());
4388   }
4389 
4390   // Return the combined state.
4391   set_i_o(        _gvn.transform(result_io)  );
4392   set_all_memory( _gvn.transform(result_mem));
4393 
4394   set_result(result_reg, result_val);
4395   return true;
4396 }
4397 
4398 //---------------------------inline_native_getClass----------------------------
4399 // public final native Class<?> java.lang.Object.getClass();
4400 //
4401 // Build special case code for calls to getClass on an object.
4402 bool LibraryCallKit::inline_native_getClass() {
4403   Node* obj = null_check_receiver();
4404   if (stopped())  return true;
4405   set_result(load_mirror_from_klass(load_object_klass(obj)));
4406   return true;
4407 }
4408 
4409 //-----------------inline_native_Reflection_getCallerClass---------------------
4410 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4411 //
4412 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4413 //
4414 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4415 // in that it must skip particular security frames and checks for
4416 // caller sensitive methods.
4417 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4418 #ifndef PRODUCT
4419   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4420     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4421   }
4422 #endif
4423 
4424   if (!jvms()->has_method()) {
4425 #ifndef PRODUCT
4426     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4427       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4428     }
4429 #endif
4430     return false;
4431   }
4432 
4433   // Walk back up the JVM state to find the caller at the required
4434   // depth.
4435   JVMState* caller_jvms = jvms();
4436 
4437   // Cf. JVM_GetCallerClass
4438   // NOTE: Start the loop at depth 1 because the current JVM state does
4439   // not include the Reflection.getCallerClass() frame.
4440   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4441     ciMethod* m = caller_jvms->method();
4442     switch (n) {
4443     case 0:
4444       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4445       break;
4446     case 1:
4447       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4448       if (!m->caller_sensitive()) {
4449 #ifndef PRODUCT
4450         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4451           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4452         }
4453 #endif
4454         return false;  // bail-out; let JVM_GetCallerClass do the work
4455       }
4456       break;
4457     default:
4458       if (!m->is_ignored_by_security_stack_walk()) {
4459         // We have reached the desired frame; return the holder class.
4460         // Acquire method holder as java.lang.Class and push as constant.
4461         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4462         ciInstance* caller_mirror = caller_klass->java_mirror();
4463         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4464 
4465 #ifndef PRODUCT
4466         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4467           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4468           tty->print_cr("  JVM state at this point:");
4469           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4470             ciMethod* m = jvms()->of_depth(i)->method();
4471             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4472           }
4473         }
4474 #endif
4475         return true;
4476       }
4477       break;
4478     }
4479   }
4480 
4481 #ifndef PRODUCT
4482   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4483     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4484     tty->print_cr("  JVM state at this point:");
4485     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4486       ciMethod* m = jvms()->of_depth(i)->method();
4487       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4488     }
4489   }
4490 #endif
4491 
4492   return false;  // bail-out; let JVM_GetCallerClass do the work
4493 }
4494 
4495 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4496   Node* arg = argument(0);
4497   Node* result = NULL;
4498 
4499   switch (id) {
4500   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4501   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4502   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4503   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4504 
4505   case vmIntrinsics::_doubleToLongBits: {
4506     // two paths (plus control) merge in a wood
4507     RegionNode *r = new RegionNode(3);
4508     Node *phi = new PhiNode(r, TypeLong::LONG);
4509 
4510     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4511     // Build the boolean node
4512     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4513 
4514     // Branch either way.
4515     // NaN case is less traveled, which makes all the difference.
4516     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4517     Node *opt_isnan = _gvn.transform(ifisnan);
4518     assert( opt_isnan->is_If(), "Expect an IfNode");
4519     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4520     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4521 
4522     set_control(iftrue);
4523 
4524     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4525     Node *slow_result = longcon(nan_bits); // return NaN
4526     phi->init_req(1, _gvn.transform( slow_result ));
4527     r->init_req(1, iftrue);
4528 
4529     // Else fall through
4530     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4531     set_control(iffalse);
4532 
4533     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4534     r->init_req(2, iffalse);
4535 
4536     // Post merge
4537     set_control(_gvn.transform(r));
4538     record_for_igvn(r);
4539 
4540     C->set_has_split_ifs(true); // Has chance for split-if optimization
4541     result = phi;
4542     assert(result->bottom_type()->isa_long(), "must be");
4543     break;
4544   }
4545 
4546   case vmIntrinsics::_floatToIntBits: {
4547     // two paths (plus control) merge in a wood
4548     RegionNode *r = new RegionNode(3);
4549     Node *phi = new PhiNode(r, TypeInt::INT);
4550 
4551     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4552     // Build the boolean node
4553     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4554 
4555     // Branch either way.
4556     // NaN case is less traveled, which makes all the difference.
4557     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4558     Node *opt_isnan = _gvn.transform(ifisnan);
4559     assert( opt_isnan->is_If(), "Expect an IfNode");
4560     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4561     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4562 
4563     set_control(iftrue);
4564 
4565     static const jint nan_bits = 0x7fc00000;
4566     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4567     phi->init_req(1, _gvn.transform( slow_result ));
4568     r->init_req(1, iftrue);
4569 
4570     // Else fall through
4571     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4572     set_control(iffalse);
4573 
4574     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4575     r->init_req(2, iffalse);
4576 
4577     // Post merge
4578     set_control(_gvn.transform(r));
4579     record_for_igvn(r);
4580 
4581     C->set_has_split_ifs(true); // Has chance for split-if optimization
4582     result = phi;
4583     assert(result->bottom_type()->isa_int(), "must be");
4584     break;
4585   }
4586 
4587   default:
4588     fatal_unexpected_iid(id);
4589     break;
4590   }
4591   set_result(_gvn.transform(result));
4592   return true;
4593 }
4594 
4595 //----------------------inline_unsafe_copyMemory-------------------------
4596 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4597 bool LibraryCallKit::inline_unsafe_copyMemory() {
4598   if (callee()->is_static())  return false;  // caller must have the capability!
4599   null_check_receiver();  // null-check receiver
4600   if (stopped())  return true;
4601 
4602   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4603 
4604   Node* src_ptr =         argument(1);   // type: oop
4605   Node* src_off = ConvL2X(argument(2));  // type: long
4606   Node* dst_ptr =         argument(4);   // type: oop
4607   Node* dst_off = ConvL2X(argument(5));  // type: long
4608   Node* size    = ConvL2X(argument(7));  // type: long
4609 
4610   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4611          "fieldOffset must be byte-scaled");
4612 
4613   Node* src = make_unsafe_address(src_ptr, src_off);
4614   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4615 
4616   // Conservatively insert a memory barrier on all memory slices.
4617   // Do not let writes of the copy source or destination float below the copy.
4618   insert_mem_bar(Op_MemBarCPUOrder);
4619 
4620   // Call it.  Note that the length argument is not scaled.
4621   make_runtime_call(RC_LEAF|RC_NO_FP,
4622                     OptoRuntime::fast_arraycopy_Type(),
4623                     StubRoutines::unsafe_arraycopy(),
4624                     "unsafe_arraycopy",
4625                     TypeRawPtr::BOTTOM,
4626                     src, dst, size XTOP);
4627 
4628   // Do not let reads of the copy destination float above the copy.
4629   insert_mem_bar(Op_MemBarCPUOrder);
4630 
4631   return true;
4632 }
4633 
4634 //------------------------clone_coping-----------------------------------
4635 // Helper function for inline_native_clone.
4636 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4637   assert(obj_size != NULL, "");
4638   Node* raw_obj = alloc_obj->in(1);
4639   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4640 
4641   AllocateNode* alloc = NULL;
4642   if (ReduceBulkZeroing) {
4643     // We will be completely responsible for initializing this object -
4644     // mark Initialize node as complete.
4645     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4646     // The object was just allocated - there should be no any stores!
4647     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4648     // Mark as complete_with_arraycopy so that on AllocateNode
4649     // expansion, we know this AllocateNode is initialized by an array
4650     // copy and a StoreStore barrier exists after the array copy.
4651     alloc->initialization()->set_complete_with_arraycopy();
4652   }
4653 
4654   // Copy the fastest available way.
4655   // TODO: generate fields copies for small objects instead.
4656   Node* src  = obj;
4657   Node* dest = alloc_obj;
4658   Node* size = _gvn.transform(obj_size);
4659 
4660   // Exclude the header but include array length to copy by 8 bytes words.
4661   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4662   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4663                             instanceOopDesc::base_offset_in_bytes();
4664   // base_off:
4665   // 8  - 32-bit VM
4666   // 12 - 64-bit VM, compressed klass
4667   // 16 - 64-bit VM, normal klass
4668   if (base_off % BytesPerLong != 0) {
4669     assert(UseCompressedClassPointers, "");
4670     if (is_array) {
4671       // Exclude length to copy by 8 bytes words.
4672       base_off += sizeof(int);
4673     } else {
4674       // Include klass to copy by 8 bytes words.
4675       base_off = instanceOopDesc::klass_offset_in_bytes();
4676     }
4677     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4678   }
4679   src  = basic_plus_adr(src,  base_off);
4680   dest = basic_plus_adr(dest, base_off);
4681 
4682   // Compute the length also, if needed:
4683   Node* countx = size;
4684   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4685   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4686 
4687   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4688 
4689   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false, false);
4690   ac->set_clonebasic();
4691   Node* n = _gvn.transform(ac);
4692   if (n == ac) {
4693     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4694   } else {
4695     set_all_memory(n);
4696   }
4697 
4698   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4699   if (card_mark) {
4700     assert(!is_array, "");
4701     // Put in store barrier for any and all oops we are sticking
4702     // into this object.  (We could avoid this if we could prove
4703     // that the object type contains no oop fields at all.)
4704     Node* no_particular_value = NULL;
4705     Node* no_particular_field = NULL;
4706     int raw_adr_idx = Compile::AliasIdxRaw;
4707     post_barrier(control(),
4708                  memory(raw_adr_type),
4709                  alloc_obj,
4710                  no_particular_field,
4711                  raw_adr_idx,
4712                  no_particular_value,
4713                  T_OBJECT,
4714                  false);
4715   }
4716 
4717   // Do not let reads from the cloned object float above the arraycopy.
4718   if (alloc != NULL) {
4719     // Do not let stores that initialize this object be reordered with
4720     // a subsequent store that would make this object accessible by
4721     // other threads.
4722     // Record what AllocateNode this StoreStore protects so that
4723     // escape analysis can go from the MemBarStoreStoreNode to the
4724     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4725     // based on the escape status of the AllocateNode.
4726     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4727   } else {
4728     insert_mem_bar(Op_MemBarCPUOrder);
4729   }
4730 }
4731 
4732 //------------------------inline_native_clone----------------------------
4733 // protected native Object java.lang.Object.clone();
4734 //
4735 // Here are the simple edge cases:
4736 //  null receiver => normal trap
4737 //  virtual and clone was overridden => slow path to out-of-line clone
4738 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4739 //
4740 // The general case has two steps, allocation and copying.
4741 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4742 //
4743 // Copying also has two cases, oop arrays and everything else.
4744 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4745 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4746 //
4747 // These steps fold up nicely if and when the cloned object's klass
4748 // can be sharply typed as an object array, a type array, or an instance.
4749 //
4750 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4751   PhiNode* result_val;
4752 
4753   // Set the reexecute bit for the interpreter to reexecute
4754   // the bytecode that invokes Object.clone if deoptimization happens.
4755   { PreserveReexecuteState preexecs(this);
4756     jvms()->set_should_reexecute(true);
4757 
4758     Node* obj = null_check_receiver();
4759     if (stopped())  return true;
4760 
4761     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4762 
4763     // If we are going to clone an instance, we need its exact type to
4764     // know the number and types of fields to convert the clone to
4765     // loads/stores. Maybe a speculative type can help us.
4766     if (!obj_type->klass_is_exact() &&
4767         obj_type->speculative_type() != NULL &&
4768         obj_type->speculative_type()->is_instance_klass()) {
4769       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4770       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4771           !spec_ik->has_injected_fields()) {
4772         ciKlass* k = obj_type->klass();
4773         if (!k->is_instance_klass() ||
4774             k->as_instance_klass()->is_interface() ||
4775             k->as_instance_klass()->has_subklass()) {
4776           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4777         }
4778       }
4779     }
4780 
4781     Node* obj_klass = load_object_klass(obj);
4782     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4783     const TypeOopPtr*   toop   = ((tklass != NULL)
4784                                 ? tklass->as_instance_type()
4785                                 : TypeInstPtr::NOTNULL);
4786 
4787     // Conservatively insert a memory barrier on all memory slices.
4788     // Do not let writes into the original float below the clone.
4789     insert_mem_bar(Op_MemBarCPUOrder);
4790 
4791     // paths into result_reg:
4792     enum {
4793       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4794       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4795       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4796       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4797       PATH_LIMIT
4798     };
4799     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4800     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4801     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4802     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4803     record_for_igvn(result_reg);
4804 
4805     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4806     int raw_adr_idx = Compile::AliasIdxRaw;
4807 
4808     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4809     if (array_ctl != NULL) {
4810       // It's an array.
4811       PreserveJVMState pjvms(this);
4812       set_control(array_ctl);
4813       Node* obj_length = load_array_length(obj);
4814       Node* obj_size  = NULL;
4815       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4816 
4817       if (!use_ReduceInitialCardMarks()) {
4818         // If it is an oop array, it requires very special treatment,
4819         // because card marking is required on each card of the array.
4820         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4821         if (is_obja != NULL) {
4822           PreserveJVMState pjvms2(this);
4823           set_control(is_obja);
4824           // Generate a direct call to the right arraycopy function(s).
4825           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4826           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4827           ac->set_cloneoop();
4828           Node* n = _gvn.transform(ac);
4829           assert(n == ac, "cannot disappear");
4830           ac->connect_outputs(this);
4831 
4832           result_reg->init_req(_objArray_path, control());
4833           result_val->init_req(_objArray_path, alloc_obj);
4834           result_i_o ->set_req(_objArray_path, i_o());
4835           result_mem ->set_req(_objArray_path, reset_memory());
4836         }
4837       }
4838       // Otherwise, there are no card marks to worry about.
4839       // (We can dispense with card marks if we know the allocation
4840       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4841       //  causes the non-eden paths to take compensating steps to
4842       //  simulate a fresh allocation, so that no further
4843       //  card marks are required in compiled code to initialize
4844       //  the object.)
4845 
4846       if (!stopped()) {
4847         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4848 
4849         // Present the results of the copy.
4850         result_reg->init_req(_array_path, control());
4851         result_val->init_req(_array_path, alloc_obj);
4852         result_i_o ->set_req(_array_path, i_o());
4853         result_mem ->set_req(_array_path, reset_memory());
4854       }
4855     }
4856 
4857     // We only go to the instance fast case code if we pass a number of guards.
4858     // The paths which do not pass are accumulated in the slow_region.
4859     RegionNode* slow_region = new RegionNode(1);
4860     record_for_igvn(slow_region);
4861     if (!stopped()) {
4862       // It's an instance (we did array above).  Make the slow-path tests.
4863       // If this is a virtual call, we generate a funny guard.  We grab
4864       // the vtable entry corresponding to clone() from the target object.
4865       // If the target method which we are calling happens to be the
4866       // Object clone() method, we pass the guard.  We do not need this
4867       // guard for non-virtual calls; the caller is known to be the native
4868       // Object clone().
4869       if (is_virtual) {
4870         generate_virtual_guard(obj_klass, slow_region);
4871       }
4872 
4873       // The object must be easily cloneable and must not have a finalizer.
4874       // Both of these conditions may be checked in a single test.
4875       // We could optimize the test further, but we don't care.
4876       generate_access_flags_guard(obj_klass,
4877                                   // Test both conditions:
4878                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4879                                   // Must be cloneable but not finalizer:
4880                                   JVM_ACC_IS_CLONEABLE_FAST,
4881                                   slow_region);
4882     }
4883 
4884     if (!stopped()) {
4885       // It's an instance, and it passed the slow-path tests.
4886       PreserveJVMState pjvms(this);
4887       Node* obj_size  = NULL;
4888       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4889       // is reexecuted if deoptimization occurs and there could be problems when merging
4890       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4891       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4892 
4893       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4894 
4895       // Present the results of the slow call.
4896       result_reg->init_req(_instance_path, control());
4897       result_val->init_req(_instance_path, alloc_obj);
4898       result_i_o ->set_req(_instance_path, i_o());
4899       result_mem ->set_req(_instance_path, reset_memory());
4900     }
4901 
4902     // Generate code for the slow case.  We make a call to clone().
4903     set_control(_gvn.transform(slow_region));
4904     if (!stopped()) {
4905       PreserveJVMState pjvms(this);
4906       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4907       Node* slow_result = set_results_for_java_call(slow_call);
4908       // this->control() comes from set_results_for_java_call
4909       result_reg->init_req(_slow_path, control());
4910       result_val->init_req(_slow_path, slow_result);
4911       result_i_o ->set_req(_slow_path, i_o());
4912       result_mem ->set_req(_slow_path, reset_memory());
4913     }
4914 
4915     // Return the combined state.
4916     set_control(    _gvn.transform(result_reg));
4917     set_i_o(        _gvn.transform(result_i_o));
4918     set_all_memory( _gvn.transform(result_mem));
4919   } // original reexecute is set back here
4920 
4921   set_result(_gvn.transform(result_val));
4922   return true;
4923 }
4924 
4925 // If we have a tighly coupled allocation, the arraycopy may take care
4926 // of the array initialization. If one of the guards we insert between
4927 // the allocation and the arraycopy causes a deoptimization, an
4928 // unitialized array will escape the compiled method. To prevent that
4929 // we set the JVM state for uncommon traps between the allocation and
4930 // the arraycopy to the state before the allocation so, in case of
4931 // deoptimization, we'll reexecute the allocation and the
4932 // initialization.
4933 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4934   if (alloc != NULL) {
4935     ciMethod* trap_method = alloc->jvms()->method();
4936     int trap_bci = alloc->jvms()->bci();
4937 
4938     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4939           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4940       // Make sure there's no store between the allocation and the
4941       // arraycopy otherwise visible side effects could be rexecuted
4942       // in case of deoptimization and cause incorrect execution.
4943       bool no_interfering_store = true;
4944       Node* mem = alloc->in(TypeFunc::Memory);
4945       if (mem->is_MergeMem()) {
4946         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4947           Node* n = mms.memory();
4948           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4949             assert(n->is_Store(), "what else?");
4950             no_interfering_store = false;
4951             break;
4952           }
4953         }
4954       } else {
4955         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4956           Node* n = mms.memory();
4957           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4958             assert(n->is_Store(), "what else?");
4959             no_interfering_store = false;
4960             break;
4961           }
4962         }
4963       }
4964 
4965       if (no_interfering_store) {
4966         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4967         uint size = alloc->req();
4968         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4969         old_jvms->set_map(sfpt);
4970         for (uint i = 0; i < size; i++) {
4971           sfpt->init_req(i, alloc->in(i));
4972         }
4973         // re-push array length for deoptimization
4974         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4975         old_jvms->set_sp(old_jvms->sp()+1);
4976         old_jvms->set_monoff(old_jvms->monoff()+1);
4977         old_jvms->set_scloff(old_jvms->scloff()+1);
4978         old_jvms->set_endoff(old_jvms->endoff()+1);
4979         old_jvms->set_should_reexecute(true);
4980 
4981         sfpt->set_i_o(map()->i_o());
4982         sfpt->set_memory(map()->memory());
4983         sfpt->set_control(map()->control());
4984 
4985         JVMState* saved_jvms = jvms();
4986         saved_reexecute_sp = _reexecute_sp;
4987 
4988         set_jvms(sfpt->jvms());
4989         _reexecute_sp = jvms()->sp();
4990 
4991         return saved_jvms;
4992       }
4993     }
4994   }
4995   return NULL;
4996 }
4997 
4998 // In case of a deoptimization, we restart execution at the
4999 // allocation, allocating a new array. We would leave an uninitialized
5000 // array in the heap that GCs wouldn't expect. Move the allocation
5001 // after the traps so we don't allocate the array if we
5002 // deoptimize. This is possible because tightly_coupled_allocation()
5003 // guarantees there's no observer of the allocated array at this point
5004 // and the control flow is simple enough.
5005 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
5006                                                     int saved_reexecute_sp, uint new_idx) {
5007   if (saved_jvms != NULL && !stopped()) {
5008     assert(alloc != NULL, "only with a tightly coupled allocation");
5009     // restore JVM state to the state at the arraycopy
5010     saved_jvms->map()->set_control(map()->control());
5011     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
5012     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
5013     // If we've improved the types of some nodes (null check) while
5014     // emitting the guards, propagate them to the current state
5015     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
5016     set_jvms(saved_jvms);
5017     _reexecute_sp = saved_reexecute_sp;
5018 
5019     // Remove the allocation from above the guards
5020     CallProjections callprojs;
5021     alloc->extract_projections(&callprojs, true);
5022     InitializeNode* init = alloc->initialization();
5023     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5024     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5025     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5026     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5027 
5028     // move the allocation here (after the guards)
5029     _gvn.hash_delete(alloc);
5030     alloc->set_req(TypeFunc::Control, control());
5031     alloc->set_req(TypeFunc::I_O, i_o());
5032     Node *mem = reset_memory();
5033     set_all_memory(mem);
5034     alloc->set_req(TypeFunc::Memory, mem);
5035     set_control(init->proj_out_or_null(TypeFunc::Control));
5036     set_i_o(callprojs.fallthrough_ioproj);
5037 
5038     // Update memory as done in GraphKit::set_output_for_allocation()
5039     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5040     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5041     if (ary_type->isa_aryptr() && length_type != NULL) {
5042       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5043     }
5044     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5045     int            elemidx  = C->get_alias_index(telemref);
5046     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5047     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5048 
5049     Node* allocx = _gvn.transform(alloc);
5050     assert(allocx == alloc, "where has the allocation gone?");
5051     assert(dest->is_CheckCastPP(), "not an allocation result?");
5052 
5053     _gvn.hash_delete(dest);
5054     dest->set_req(0, control());
5055     Node* destx = _gvn.transform(dest);
5056     assert(destx == dest, "where has the allocation result gone?");
5057   }
5058 }
5059 
5060 
5061 //------------------------------inline_arraycopy-----------------------
5062 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5063 //                                                      Object dest, int destPos,
5064 //                                                      int length);
5065 bool LibraryCallKit::inline_arraycopy() {
5066   // Get the arguments.
5067   Node* src         = argument(0);  // type: oop
5068   Node* src_offset  = argument(1);  // type: int
5069   Node* dest        = argument(2);  // type: oop
5070   Node* dest_offset = argument(3);  // type: int
5071   Node* length      = argument(4);  // type: int
5072 
5073   uint new_idx = C->unique();
5074 
5075   // Check for allocation before we add nodes that would confuse
5076   // tightly_coupled_allocation()
5077   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
5078 
5079   int saved_reexecute_sp = -1;
5080   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5081   // See arraycopy_restore_alloc_state() comment
5082   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5083   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
5084   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
5085   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
5086 
5087   // The following tests must be performed
5088   // (1) src and dest are arrays.
5089   // (2) src and dest arrays must have elements of the same BasicType
5090   // (3) src and dest must not be null.
5091   // (4) src_offset must not be negative.
5092   // (5) dest_offset must not be negative.
5093   // (6) length must not be negative.
5094   // (7) src_offset + length must not exceed length of src.
5095   // (8) dest_offset + length must not exceed length of dest.
5096   // (9) each element of an oop array must be assignable
5097 
5098   // (3) src and dest must not be null.
5099   // always do this here because we need the JVM state for uncommon traps
5100   Node* null_ctl = top();
5101   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
5102   assert(null_ctl->is_top(), "no null control here");
5103   dest = null_check(dest, T_ARRAY);
5104 
5105   if (!can_emit_guards) {
5106     // if saved_jvms == NULL and alloc != NULL, we don't emit any
5107     // guards but the arraycopy node could still take advantage of a
5108     // tightly allocated allocation. tightly_coupled_allocation() is
5109     // called again to make sure it takes the null check above into
5110     // account: the null check is mandatory and if it caused an
5111     // uncommon trap to be emitted then the allocation can't be
5112     // considered tightly coupled in this context.
5113     alloc = tightly_coupled_allocation(dest, NULL);
5114   }
5115 
5116   bool validated = false;
5117 
5118   const Type* src_type  = _gvn.type(src);
5119   const Type* dest_type = _gvn.type(dest);
5120   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5121   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5122 
5123   // Do we have the type of src?
5124   bool has_src = (top_src != NULL && top_src->klass() != NULL);
5125   // Do we have the type of dest?
5126   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5127   // Is the type for src from speculation?
5128   bool src_spec = false;
5129   // Is the type for dest from speculation?
5130   bool dest_spec = false;
5131 
5132   if ((!has_src || !has_dest) && can_emit_guards) {
5133     // We don't have sufficient type information, let's see if
5134     // speculative types can help. We need to have types for both src
5135     // and dest so that it pays off.
5136 
5137     // Do we already have or could we have type information for src
5138     bool could_have_src = has_src;
5139     // Do we already have or could we have type information for dest
5140     bool could_have_dest = has_dest;
5141 
5142     ciKlass* src_k = NULL;
5143     if (!has_src) {
5144       src_k = src_type->speculative_type_not_null();
5145       if (src_k != NULL && src_k->is_array_klass()) {
5146         could_have_src = true;
5147       }
5148     }
5149 
5150     ciKlass* dest_k = NULL;
5151     if (!has_dest) {
5152       dest_k = dest_type->speculative_type_not_null();
5153       if (dest_k != NULL && dest_k->is_array_klass()) {
5154         could_have_dest = true;
5155       }
5156     }
5157 
5158     if (could_have_src && could_have_dest) {
5159       // This is going to pay off so emit the required guards
5160       if (!has_src) {
5161         src = maybe_cast_profiled_obj(src, src_k, true);
5162         src_type  = _gvn.type(src);
5163         top_src  = src_type->isa_aryptr();
5164         has_src = (top_src != NULL && top_src->klass() != NULL);
5165         src_spec = true;
5166       }
5167       if (!has_dest) {
5168         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5169         dest_type  = _gvn.type(dest);
5170         top_dest  = dest_type->isa_aryptr();
5171         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5172         dest_spec = true;
5173       }
5174     }
5175   }
5176 
5177   if (has_src && has_dest && can_emit_guards) {
5178     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5179     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5180     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5181     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5182 
5183     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5184       // If both arrays are object arrays then having the exact types
5185       // for both will remove the need for a subtype check at runtime
5186       // before the call and may make it possible to pick a faster copy
5187       // routine (without a subtype check on every element)
5188       // Do we have the exact type of src?
5189       bool could_have_src = src_spec;
5190       // Do we have the exact type of dest?
5191       bool could_have_dest = dest_spec;
5192       ciKlass* src_k = top_src->klass();
5193       ciKlass* dest_k = top_dest->klass();
5194       if (!src_spec) {
5195         src_k = src_type->speculative_type_not_null();
5196         if (src_k != NULL && src_k->is_array_klass()) {
5197           could_have_src = true;
5198         }
5199       }
5200       if (!dest_spec) {
5201         dest_k = dest_type->speculative_type_not_null();
5202         if (dest_k != NULL && dest_k->is_array_klass()) {
5203           could_have_dest = true;
5204         }
5205       }
5206       if (could_have_src && could_have_dest) {
5207         // If we can have both exact types, emit the missing guards
5208         if (could_have_src && !src_spec) {
5209           src = maybe_cast_profiled_obj(src, src_k, true);
5210         }
5211         if (could_have_dest && !dest_spec) {
5212           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5213         }
5214       }
5215     }
5216   }
5217 
5218   ciMethod* trap_method = method();
5219   int trap_bci = bci();
5220   if (saved_jvms != NULL) {
5221     trap_method = alloc->jvms()->method();
5222     trap_bci = alloc->jvms()->bci();
5223   }
5224 
5225   bool negative_length_guard_generated = false;
5226 
5227   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5228       can_emit_guards &&
5229       !src->is_top() && !dest->is_top()) {
5230     // validate arguments: enables transformation the ArrayCopyNode
5231     validated = true;
5232 
5233     RegionNode* slow_region = new RegionNode(1);
5234     record_for_igvn(slow_region);
5235 
5236     // (1) src and dest are arrays.
5237     generate_non_array_guard(load_object_klass(src), slow_region);
5238     generate_non_array_guard(load_object_klass(dest), slow_region);
5239 
5240     // (2) src and dest arrays must have elements of the same BasicType
5241     // done at macro expansion or at Ideal transformation time
5242 
5243     // (4) src_offset must not be negative.
5244     generate_negative_guard(src_offset, slow_region);
5245 
5246     // (5) dest_offset must not be negative.
5247     generate_negative_guard(dest_offset, slow_region);
5248 
5249     // (7) src_offset + length must not exceed length of src.
5250     generate_limit_guard(src_offset, length,
5251                          load_array_length(src),
5252                          slow_region);
5253 
5254     // (8) dest_offset + length must not exceed length of dest.
5255     generate_limit_guard(dest_offset, length,
5256                          load_array_length(dest),
5257                          slow_region);
5258 
5259     // (6) length must not be negative.
5260     // This is also checked in generate_arraycopy() during macro expansion, but
5261     // we also have to check it here for the case where the ArrayCopyNode will
5262     // be eliminated by Escape Analysis.
5263     if (EliminateAllocations) {
5264       generate_negative_guard(length, slow_region);
5265       negative_length_guard_generated = true;
5266     }
5267 
5268     // (9) each element of an oop array must be assignable
5269     Node* src_klass  = load_object_klass(src);
5270     Node* dest_klass = load_object_klass(dest);
5271     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5272 
5273     if (not_subtype_ctrl != top()) {
5274       PreserveJVMState pjvms(this);
5275       set_control(not_subtype_ctrl);
5276       uncommon_trap(Deoptimization::Reason_intrinsic,
5277                     Deoptimization::Action_make_not_entrant);
5278       assert(stopped(), "Should be stopped");
5279     }
5280     {
5281       PreserveJVMState pjvms(this);
5282       set_control(_gvn.transform(slow_region));
5283       uncommon_trap(Deoptimization::Reason_intrinsic,
5284                     Deoptimization::Action_make_not_entrant);
5285       assert(stopped(), "Should be stopped");
5286     }
5287 
5288     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5289     const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
5290     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5291   }
5292 
5293   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
5294 
5295   if (stopped()) {
5296     return true;
5297   }
5298 
5299   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
5300                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5301                                           // so the compiler has a chance to eliminate them: during macro expansion,
5302                                           // we have to set their control (CastPP nodes are eliminated).
5303                                           load_object_klass(src), load_object_klass(dest),
5304                                           load_array_length(src), load_array_length(dest));
5305 
5306   ac->set_arraycopy(validated);
5307 
5308   Node* n = _gvn.transform(ac);
5309   if (n == ac) {
5310     ac->connect_outputs(this);
5311   } else {
5312     assert(validated, "shouldn't transform if all arguments not validated");
5313     set_all_memory(n);
5314   }
5315   clear_upper_avx();
5316 
5317 
5318   return true;
5319 }
5320 
5321 
5322 // Helper function which determines if an arraycopy immediately follows
5323 // an allocation, with no intervening tests or other escapes for the object.
5324 AllocateArrayNode*
5325 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5326                                            RegionNode* slow_region) {
5327   if (stopped())             return NULL;  // no fast path
5328   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5329 
5330   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5331   if (alloc == NULL)  return NULL;
5332 
5333   Node* rawmem = memory(Compile::AliasIdxRaw);
5334   // Is the allocation's memory state untouched?
5335   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5336     // Bail out if there have been raw-memory effects since the allocation.
5337     // (Example:  There might have been a call or safepoint.)
5338     return NULL;
5339   }
5340   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5341   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5342     return NULL;
5343   }
5344 
5345   // There must be no unexpected observers of this allocation.
5346   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5347     Node* obs = ptr->fast_out(i);
5348     if (obs != this->map()) {
5349       return NULL;
5350     }
5351   }
5352 
5353   // This arraycopy must unconditionally follow the allocation of the ptr.
5354   Node* alloc_ctl = ptr->in(0);
5355   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5356 
5357   Node* ctl = control();
5358   while (ctl != alloc_ctl) {
5359     // There may be guards which feed into the slow_region.
5360     // Any other control flow means that we might not get a chance
5361     // to finish initializing the allocated object.
5362     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5363       IfNode* iff = ctl->in(0)->as_If();
5364       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
5365       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5366       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5367         ctl = iff->in(0);       // This test feeds the known slow_region.
5368         continue;
5369       }
5370       // One more try:  Various low-level checks bottom out in
5371       // uncommon traps.  If the debug-info of the trap omits
5372       // any reference to the allocation, as we've already
5373       // observed, then there can be no objection to the trap.
5374       bool found_trap = false;
5375       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5376         Node* obs = not_ctl->fast_out(j);
5377         if (obs->in(0) == not_ctl && obs->is_Call() &&
5378             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5379           found_trap = true; break;
5380         }
5381       }
5382       if (found_trap) {
5383         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5384         continue;
5385       }
5386     }
5387     return NULL;
5388   }
5389 
5390   // If we get this far, we have an allocation which immediately
5391   // precedes the arraycopy, and we can take over zeroing the new object.
5392   // The arraycopy will finish the initialization, and provide
5393   // a new control state to which we will anchor the destination pointer.
5394 
5395   return alloc;
5396 }
5397 
5398 //-------------inline_encodeISOArray-----------------------------------
5399 // encode char[] to byte[] in ISO_8859_1
5400 bool LibraryCallKit::inline_encodeISOArray() {
5401   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5402   // no receiver since it is static method
5403   Node *src         = argument(0);
5404   Node *src_offset  = argument(1);
5405   Node *dst         = argument(2);
5406   Node *dst_offset  = argument(3);
5407   Node *length      = argument(4);
5408 
5409   const Type* src_type = src->Value(&_gvn);
5410   const Type* dst_type = dst->Value(&_gvn);
5411   const TypeAryPtr* top_src = src_type->isa_aryptr();
5412   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5413   if (top_src  == NULL || top_src->klass()  == NULL ||
5414       top_dest == NULL || top_dest->klass() == NULL) {
5415     // failed array check
5416     return false;
5417   }
5418 
5419   // Figure out the size and type of the elements we will be copying.
5420   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5421   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5422   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5423     return false;
5424   }
5425 
5426   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5427   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5428   // 'src_start' points to src array + scaled offset
5429   // 'dst_start' points to dst array + scaled offset
5430 
5431   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5432   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5433   enc = _gvn.transform(enc);
5434   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5435   set_memory(res_mem, mtype);
5436   set_result(enc);
5437   clear_upper_avx();
5438 
5439   return true;
5440 }
5441 
5442 //-------------inline_multiplyToLen-----------------------------------
5443 bool LibraryCallKit::inline_multiplyToLen() {
5444   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5445 
5446   address stubAddr = StubRoutines::multiplyToLen();
5447   if (stubAddr == NULL) {
5448     return false; // Intrinsic's stub is not implemented on this platform
5449   }
5450   const char* stubName = "multiplyToLen";
5451 
5452   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5453 
5454   // no receiver because it is a static method
5455   Node* x    = argument(0);
5456   Node* xlen = argument(1);
5457   Node* y    = argument(2);
5458   Node* ylen = argument(3);
5459   Node* z    = argument(4);
5460 
5461   const Type* x_type = x->Value(&_gvn);
5462   const Type* y_type = y->Value(&_gvn);
5463   const TypeAryPtr* top_x = x_type->isa_aryptr();
5464   const TypeAryPtr* top_y = y_type->isa_aryptr();
5465   if (top_x  == NULL || top_x->klass()  == NULL ||
5466       top_y == NULL || top_y->klass() == NULL) {
5467     // failed array check
5468     return false;
5469   }
5470 
5471   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5472   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5473   if (x_elem != T_INT || y_elem != T_INT) {
5474     return false;
5475   }
5476 
5477   // Set the original stack and the reexecute bit for the interpreter to reexecute
5478   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5479   // on the return from z array allocation in runtime.
5480   { PreserveReexecuteState preexecs(this);
5481     jvms()->set_should_reexecute(true);
5482 
5483     Node* x_start = array_element_address(x, intcon(0), x_elem);
5484     Node* y_start = array_element_address(y, intcon(0), y_elem);
5485     // 'x_start' points to x array + scaled xlen
5486     // 'y_start' points to y array + scaled ylen
5487 
5488     // Allocate the result array
5489     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5490     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5491     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5492 
5493     IdealKit ideal(this);
5494 
5495 #define __ ideal.
5496      Node* one = __ ConI(1);
5497      Node* zero = __ ConI(0);
5498      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5499      __ set(need_alloc, zero);
5500      __ set(z_alloc, z);
5501      __ if_then(z, BoolTest::eq, null()); {
5502        __ increment (need_alloc, one);
5503      } __ else_(); {
5504        // Update graphKit memory and control from IdealKit.
5505        sync_kit(ideal);
5506        Node* zlen_arg = load_array_length(z);
5507        // Update IdealKit memory and control from graphKit.
5508        __ sync_kit(this);
5509        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5510          __ increment (need_alloc, one);
5511        } __ end_if();
5512      } __ end_if();
5513 
5514      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5515        // Update graphKit memory and control from IdealKit.
5516        sync_kit(ideal);
5517        Node * narr = new_array(klass_node, zlen, 1);
5518        // Update IdealKit memory and control from graphKit.
5519        __ sync_kit(this);
5520        __ set(z_alloc, narr);
5521      } __ end_if();
5522 
5523      sync_kit(ideal);
5524      z = __ value(z_alloc);
5525      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5526      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5527      // Final sync IdealKit and GraphKit.
5528      final_sync(ideal);
5529 #undef __
5530 
5531     Node* z_start = array_element_address(z, intcon(0), T_INT);
5532 
5533     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5534                                    OptoRuntime::multiplyToLen_Type(),
5535                                    stubAddr, stubName, TypePtr::BOTTOM,
5536                                    x_start, xlen, y_start, ylen, z_start, zlen);
5537   } // original reexecute is set back here
5538 
5539   C->set_has_split_ifs(true); // Has chance for split-if optimization
5540   set_result(z);
5541   return true;
5542 }
5543 
5544 //-------------inline_squareToLen------------------------------------
5545 bool LibraryCallKit::inline_squareToLen() {
5546   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5547 
5548   address stubAddr = StubRoutines::squareToLen();
5549   if (stubAddr == NULL) {
5550     return false; // Intrinsic's stub is not implemented on this platform
5551   }
5552   const char* stubName = "squareToLen";
5553 
5554   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5555 
5556   Node* x    = argument(0);
5557   Node* len  = argument(1);
5558   Node* z    = argument(2);
5559   Node* zlen = argument(3);
5560 
5561   const Type* x_type = x->Value(&_gvn);
5562   const Type* z_type = z->Value(&_gvn);
5563   const TypeAryPtr* top_x = x_type->isa_aryptr();
5564   const TypeAryPtr* top_z = z_type->isa_aryptr();
5565   if (top_x  == NULL || top_x->klass()  == NULL ||
5566       top_z  == NULL || top_z->klass()  == NULL) {
5567     // failed array check
5568     return false;
5569   }
5570 
5571   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5572   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5573   if (x_elem != T_INT || z_elem != T_INT) {
5574     return false;
5575   }
5576 
5577 
5578   Node* x_start = array_element_address(x, intcon(0), x_elem);
5579   Node* z_start = array_element_address(z, intcon(0), z_elem);
5580 
5581   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5582                                   OptoRuntime::squareToLen_Type(),
5583                                   stubAddr, stubName, TypePtr::BOTTOM,
5584                                   x_start, len, z_start, zlen);
5585 
5586   set_result(z);
5587   return true;
5588 }
5589 
5590 //-------------inline_mulAdd------------------------------------------
5591 bool LibraryCallKit::inline_mulAdd() {
5592   assert(UseMulAddIntrinsic, "not implemented on this platform");
5593 
5594   address stubAddr = StubRoutines::mulAdd();
5595   if (stubAddr == NULL) {
5596     return false; // Intrinsic's stub is not implemented on this platform
5597   }
5598   const char* stubName = "mulAdd";
5599 
5600   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5601 
5602   Node* out      = argument(0);
5603   Node* in       = argument(1);
5604   Node* offset   = argument(2);
5605   Node* len      = argument(3);
5606   Node* k        = argument(4);
5607 
5608   const Type* out_type = out->Value(&_gvn);
5609   const Type* in_type = in->Value(&_gvn);
5610   const TypeAryPtr* top_out = out_type->isa_aryptr();
5611   const TypeAryPtr* top_in = in_type->isa_aryptr();
5612   if (top_out  == NULL || top_out->klass()  == NULL ||
5613       top_in == NULL || top_in->klass() == NULL) {
5614     // failed array check
5615     return false;
5616   }
5617 
5618   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5619   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5620   if (out_elem != T_INT || in_elem != T_INT) {
5621     return false;
5622   }
5623 
5624   Node* outlen = load_array_length(out);
5625   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5626   Node* out_start = array_element_address(out, intcon(0), out_elem);
5627   Node* in_start = array_element_address(in, intcon(0), in_elem);
5628 
5629   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5630                                   OptoRuntime::mulAdd_Type(),
5631                                   stubAddr, stubName, TypePtr::BOTTOM,
5632                                   out_start,in_start, new_offset, len, k);
5633   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5634   set_result(result);
5635   return true;
5636 }
5637 
5638 //-------------inline_montgomeryMultiply-----------------------------------
5639 bool LibraryCallKit::inline_montgomeryMultiply() {
5640   address stubAddr = StubRoutines::montgomeryMultiply();
5641   if (stubAddr == NULL) {
5642     return false; // Intrinsic's stub is not implemented on this platform
5643   }
5644 
5645   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5646   const char* stubName = "montgomery_multiply";
5647 
5648   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5649 
5650   Node* a    = argument(0);
5651   Node* b    = argument(1);
5652   Node* n    = argument(2);
5653   Node* len  = argument(3);
5654   Node* inv  = argument(4);
5655   Node* m    = argument(6);
5656 
5657   const Type* a_type = a->Value(&_gvn);
5658   const TypeAryPtr* top_a = a_type->isa_aryptr();
5659   const Type* b_type = b->Value(&_gvn);
5660   const TypeAryPtr* top_b = b_type->isa_aryptr();
5661   const Type* n_type = a->Value(&_gvn);
5662   const TypeAryPtr* top_n = n_type->isa_aryptr();
5663   const Type* m_type = a->Value(&_gvn);
5664   const TypeAryPtr* top_m = m_type->isa_aryptr();
5665   if (top_a  == NULL || top_a->klass()  == NULL ||
5666       top_b == NULL || top_b->klass()  == NULL ||
5667       top_n == NULL || top_n->klass()  == NULL ||
5668       top_m == NULL || top_m->klass()  == NULL) {
5669     // failed array check
5670     return false;
5671   }
5672 
5673   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5674   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5675   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5676   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5677   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5678     return false;
5679   }
5680 
5681   // Make the call
5682   {
5683     Node* a_start = array_element_address(a, intcon(0), a_elem);
5684     Node* b_start = array_element_address(b, intcon(0), b_elem);
5685     Node* n_start = array_element_address(n, intcon(0), n_elem);
5686     Node* m_start = array_element_address(m, intcon(0), m_elem);
5687 
5688     Node* call = make_runtime_call(RC_LEAF,
5689                                    OptoRuntime::montgomeryMultiply_Type(),
5690                                    stubAddr, stubName, TypePtr::BOTTOM,
5691                                    a_start, b_start, n_start, len, inv, top(),
5692                                    m_start);
5693     set_result(m);
5694   }
5695 
5696   return true;
5697 }
5698 
5699 bool LibraryCallKit::inline_montgomerySquare() {
5700   address stubAddr = StubRoutines::montgomerySquare();
5701   if (stubAddr == NULL) {
5702     return false; // Intrinsic's stub is not implemented on this platform
5703   }
5704 
5705   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5706   const char* stubName = "montgomery_square";
5707 
5708   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5709 
5710   Node* a    = argument(0);
5711   Node* n    = argument(1);
5712   Node* len  = argument(2);
5713   Node* inv  = argument(3);
5714   Node* m    = argument(5);
5715 
5716   const Type* a_type = a->Value(&_gvn);
5717   const TypeAryPtr* top_a = a_type->isa_aryptr();
5718   const Type* n_type = a->Value(&_gvn);
5719   const TypeAryPtr* top_n = n_type->isa_aryptr();
5720   const Type* m_type = a->Value(&_gvn);
5721   const TypeAryPtr* top_m = m_type->isa_aryptr();
5722   if (top_a  == NULL || top_a->klass()  == NULL ||
5723       top_n == NULL || top_n->klass()  == NULL ||
5724       top_m == NULL || top_m->klass()  == NULL) {
5725     // failed array check
5726     return false;
5727   }
5728 
5729   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5730   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5731   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5732   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5733     return false;
5734   }
5735 
5736   // Make the call
5737   {
5738     Node* a_start = array_element_address(a, intcon(0), a_elem);
5739     Node* n_start = array_element_address(n, intcon(0), n_elem);
5740     Node* m_start = array_element_address(m, intcon(0), m_elem);
5741 
5742     Node* call = make_runtime_call(RC_LEAF,
5743                                    OptoRuntime::montgomerySquare_Type(),
5744                                    stubAddr, stubName, TypePtr::BOTTOM,
5745                                    a_start, n_start, len, inv, top(),
5746                                    m_start);
5747     set_result(m);
5748   }
5749 
5750   return true;
5751 }
5752 
5753 //-------------inline_vectorizedMismatch------------------------------
5754 bool LibraryCallKit::inline_vectorizedMismatch() {
5755   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5756 
5757   address stubAddr = StubRoutines::vectorizedMismatch();
5758   if (stubAddr == NULL) {
5759     return false; // Intrinsic's stub is not implemented on this platform
5760   }
5761   const char* stubName = "vectorizedMismatch";
5762   int size_l = callee()->signature()->size();
5763   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5764 
5765   Node* obja = argument(0);
5766   Node* aoffset = argument(1);
5767   Node* objb = argument(3);
5768   Node* boffset = argument(4);
5769   Node* length = argument(6);
5770   Node* scale = argument(7);
5771 
5772   const Type* a_type = obja->Value(&_gvn);
5773   const Type* b_type = objb->Value(&_gvn);
5774   const TypeAryPtr* top_a = a_type->isa_aryptr();
5775   const TypeAryPtr* top_b = b_type->isa_aryptr();
5776   if (top_a == NULL || top_a->klass() == NULL ||
5777     top_b == NULL || top_b->klass() == NULL) {
5778     // failed array check
5779     return false;
5780   }
5781 
5782   Node* call;
5783   jvms()->set_should_reexecute(true);
5784 
5785   Node* obja_adr = make_unsafe_address(obja, aoffset);
5786   Node* objb_adr = make_unsafe_address(objb, boffset);
5787 
5788   call = make_runtime_call(RC_LEAF,
5789     OptoRuntime::vectorizedMismatch_Type(),
5790     stubAddr, stubName, TypePtr::BOTTOM,
5791     obja_adr, objb_adr, length, scale);
5792 
5793   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5794   set_result(result);
5795   return true;
5796 }
5797 
5798 /**
5799  * Calculate CRC32 for byte.
5800  * int java.util.zip.CRC32.update(int crc, int b)
5801  */
5802 bool LibraryCallKit::inline_updateCRC32() {
5803   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5804   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5805   // no receiver since it is static method
5806   Node* crc  = argument(0); // type: int
5807   Node* b    = argument(1); // type: int
5808 
5809   /*
5810    *    int c = ~ crc;
5811    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5812    *    b = b ^ (c >>> 8);
5813    *    crc = ~b;
5814    */
5815 
5816   Node* M1 = intcon(-1);
5817   crc = _gvn.transform(new XorINode(crc, M1));
5818   Node* result = _gvn.transform(new XorINode(crc, b));
5819   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5820 
5821   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5822   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5823   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5824   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5825 
5826   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5827   result = _gvn.transform(new XorINode(crc, result));
5828   result = _gvn.transform(new XorINode(result, M1));
5829   set_result(result);
5830   return true;
5831 }
5832 
5833 /**
5834  * Calculate CRC32 for byte[] array.
5835  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5836  */
5837 bool LibraryCallKit::inline_updateBytesCRC32() {
5838   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5839   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5840   // no receiver since it is static method
5841   Node* crc     = argument(0); // type: int
5842   Node* src     = argument(1); // type: oop
5843   Node* offset  = argument(2); // type: int
5844   Node* length  = argument(3); // type: int
5845 
5846   const Type* src_type = src->Value(&_gvn);
5847   const TypeAryPtr* top_src = src_type->isa_aryptr();
5848   if (top_src  == NULL || top_src->klass()  == NULL) {
5849     // failed array check
5850     return false;
5851   }
5852 
5853   // Figure out the size and type of the elements we will be copying.
5854   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5855   if (src_elem != T_BYTE) {
5856     return false;
5857   }
5858 
5859   // 'src_start' points to src array + scaled offset
5860   Node* src_start = array_element_address(src, offset, src_elem);
5861 
5862   // We assume that range check is done by caller.
5863   // TODO: generate range check (offset+length < src.length) in debug VM.
5864 
5865   // Call the stub.
5866   address stubAddr = StubRoutines::updateBytesCRC32();
5867   const char *stubName = "updateBytesCRC32";
5868 
5869   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5870                                  stubAddr, stubName, TypePtr::BOTTOM,
5871                                  crc, src_start, length);
5872   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5873   set_result(result);
5874   return true;
5875 }
5876 
5877 /**
5878  * Calculate CRC32 for ByteBuffer.
5879  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5880  */
5881 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5882   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5883   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5884   // no receiver since it is static method
5885   Node* crc     = argument(0); // type: int
5886   Node* src     = argument(1); // type: long
5887   Node* offset  = argument(3); // type: int
5888   Node* length  = argument(4); // type: int
5889 
5890   src = ConvL2X(src);  // adjust Java long to machine word
5891   Node* base = _gvn.transform(new CastX2PNode(src));
5892   offset = ConvI2X(offset);
5893 
5894   // 'src_start' points to src array + scaled offset
5895   Node* src_start = basic_plus_adr(top(), base, offset);
5896 
5897   // Call the stub.
5898   address stubAddr = StubRoutines::updateBytesCRC32();
5899   const char *stubName = "updateBytesCRC32";
5900 
5901   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5902                                  stubAddr, stubName, TypePtr::BOTTOM,
5903                                  crc, src_start, length);
5904   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5905   set_result(result);
5906   return true;
5907 }
5908 
5909 //------------------------------get_table_from_crc32c_class-----------------------
5910 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5911   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5912   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5913 
5914   return table;
5915 }
5916 
5917 //------------------------------inline_updateBytesCRC32C-----------------------
5918 //
5919 // Calculate CRC32C for byte[] array.
5920 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5921 //
5922 bool LibraryCallKit::inline_updateBytesCRC32C() {
5923   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5924   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5925   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5926   // no receiver since it is a static method
5927   Node* crc     = argument(0); // type: int
5928   Node* src     = argument(1); // type: oop
5929   Node* offset  = argument(2); // type: int
5930   Node* end     = argument(3); // type: int
5931 
5932   Node* length = _gvn.transform(new SubINode(end, offset));
5933 
5934   const Type* src_type = src->Value(&_gvn);
5935   const TypeAryPtr* top_src = src_type->isa_aryptr();
5936   if (top_src  == NULL || top_src->klass()  == NULL) {
5937     // failed array check
5938     return false;
5939   }
5940 
5941   // Figure out the size and type of the elements we will be copying.
5942   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5943   if (src_elem != T_BYTE) {
5944     return false;
5945   }
5946 
5947   // 'src_start' points to src array + scaled offset
5948   Node* src_start = array_element_address(src, offset, src_elem);
5949 
5950   // static final int[] byteTable in class CRC32C
5951   Node* table = get_table_from_crc32c_class(callee()->holder());
5952   Node* table_start = array_element_address(table, intcon(0), T_INT);
5953 
5954   // We assume that range check is done by caller.
5955   // TODO: generate range check (offset+length < src.length) in debug VM.
5956 
5957   // Call the stub.
5958   address stubAddr = StubRoutines::updateBytesCRC32C();
5959   const char *stubName = "updateBytesCRC32C";
5960 
5961   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5962                                  stubAddr, stubName, TypePtr::BOTTOM,
5963                                  crc, src_start, length, table_start);
5964   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5965   set_result(result);
5966   return true;
5967 }
5968 
5969 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5970 //
5971 // Calculate CRC32C for DirectByteBuffer.
5972 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5973 //
5974 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5975   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5976   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5977   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5978   // no receiver since it is a static method
5979   Node* crc     = argument(0); // type: int
5980   Node* src     = argument(1); // type: long
5981   Node* offset  = argument(3); // type: int
5982   Node* end     = argument(4); // type: int
5983 
5984   Node* length = _gvn.transform(new SubINode(end, offset));
5985 
5986   src = ConvL2X(src);  // adjust Java long to machine word
5987   Node* base = _gvn.transform(new CastX2PNode(src));
5988   offset = ConvI2X(offset);
5989 
5990   // 'src_start' points to src array + scaled offset
5991   Node* src_start = basic_plus_adr(top(), base, offset);
5992 
5993   // static final int[] byteTable in class CRC32C
5994   Node* table = get_table_from_crc32c_class(callee()->holder());
5995   Node* table_start = array_element_address(table, intcon(0), T_INT);
5996 
5997   // Call the stub.
5998   address stubAddr = StubRoutines::updateBytesCRC32C();
5999   const char *stubName = "updateBytesCRC32C";
6000 
6001   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6002                                  stubAddr, stubName, TypePtr::BOTTOM,
6003                                  crc, src_start, length, table_start);
6004   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6005   set_result(result);
6006   return true;
6007 }
6008 
6009 //------------------------------inline_updateBytesAdler32----------------------
6010 //
6011 // Calculate Adler32 checksum for byte[] array.
6012 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6013 //
6014 bool LibraryCallKit::inline_updateBytesAdler32() {
6015   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
6016   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6017   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6018   // no receiver since it is static method
6019   Node* crc     = argument(0); // type: int
6020   Node* src     = argument(1); // type: oop
6021   Node* offset  = argument(2); // type: int
6022   Node* length  = argument(3); // type: int
6023 
6024   const Type* src_type = src->Value(&_gvn);
6025   const TypeAryPtr* top_src = src_type->isa_aryptr();
6026   if (top_src  == NULL || top_src->klass()  == NULL) {
6027     // failed array check
6028     return false;
6029   }
6030 
6031   // Figure out the size and type of the elements we will be copying.
6032   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6033   if (src_elem != T_BYTE) {
6034     return false;
6035   }
6036 
6037   // 'src_start' points to src array + scaled offset
6038   Node* src_start = array_element_address(src, offset, src_elem);
6039 
6040   // We assume that range check is done by caller.
6041   // TODO: generate range check (offset+length < src.length) in debug VM.
6042 
6043   // Call the stub.
6044   address stubAddr = StubRoutines::updateBytesAdler32();
6045   const char *stubName = "updateBytesAdler32";
6046 
6047   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6048                                  stubAddr, stubName, TypePtr::BOTTOM,
6049                                  crc, src_start, length);
6050   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6051   set_result(result);
6052   return true;
6053 }
6054 
6055 //------------------------------inline_updateByteBufferAdler32---------------
6056 //
6057 // Calculate Adler32 checksum for DirectByteBuffer.
6058 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6059 //
6060 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6061   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
6062   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6063   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6064   // no receiver since it is static method
6065   Node* crc     = argument(0); // type: int
6066   Node* src     = argument(1); // type: long
6067   Node* offset  = argument(3); // type: int
6068   Node* length  = argument(4); // type: int
6069 
6070   src = ConvL2X(src);  // adjust Java long to machine word
6071   Node* base = _gvn.transform(new CastX2PNode(src));
6072   offset = ConvI2X(offset);
6073 
6074   // 'src_start' points to src array + scaled offset
6075   Node* src_start = basic_plus_adr(top(), base, offset);
6076 
6077   // Call the stub.
6078   address stubAddr = StubRoutines::updateBytesAdler32();
6079   const char *stubName = "updateBytesAdler32";
6080 
6081   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6082                                  stubAddr, stubName, TypePtr::BOTTOM,
6083                                  crc, src_start, length);
6084 
6085   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6086   set_result(result);
6087   return true;
6088 }
6089 
6090 //----------------------------inline_reference_get----------------------------
6091 // public T java.lang.ref.Reference.get();
6092 bool LibraryCallKit::inline_reference_get() {
6093   const int referent_offset = java_lang_ref_Reference::referent_offset;
6094   guarantee(referent_offset > 0, "should have already been set");
6095 
6096   // Get the argument:
6097   Node* reference_obj = null_check_receiver();
6098   if (stopped()) return true;
6099 
6100   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6101 
6102   ciInstanceKlass* klass = env()->Object_klass();
6103   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6104 
6105   Node* no_ctrl = NULL;
6106   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6107 
6108   // Use the pre-barrier to record the value in the referent field
6109   pre_barrier(false /* do_load */,
6110               control(),
6111               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6112               result /* pre_val */,
6113               T_OBJECT);
6114 
6115   // Add memory barrier to prevent commoning reads from this field
6116   // across safepoint since GC can change its value.
6117   insert_mem_bar(Op_MemBarCPUOrder);
6118 
6119   set_result(result);
6120   return true;
6121 }
6122 
6123 
6124 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6125                                               bool is_exact=true, bool is_static=false,
6126                                               ciInstanceKlass * fromKls=NULL) {
6127   if (fromKls == NULL) {
6128     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6129     assert(tinst != NULL, "obj is null");
6130     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6131     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6132     fromKls = tinst->klass()->as_instance_klass();
6133   } else {
6134     assert(is_static, "only for static field access");
6135   }
6136   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6137                                               ciSymbol::make(fieldTypeString),
6138                                               is_static);
6139 
6140   assert (field != NULL, "undefined field");
6141   if (field == NULL) return (Node *) NULL;
6142 
6143   if (is_static) {
6144     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6145     fromObj = makecon(tip);
6146   }
6147 
6148   // Next code  copied from Parse::do_get_xxx():
6149 
6150   // Compute address and memory type.
6151   int offset  = field->offset_in_bytes();
6152   bool is_vol = field->is_volatile();
6153   ciType* field_klass = field->type();
6154   assert(field_klass->is_loaded(), "should be loaded");
6155   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6156   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6157   BasicType bt = field->layout_type();
6158 
6159   // Build the resultant type of the load
6160   const Type *type;
6161   if (bt == T_OBJECT) {
6162     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6163   } else {
6164     type = Type::get_const_basic_type(bt);
6165   }
6166 
6167   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6168     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6169   }
6170   // Build the load.
6171   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6172   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6173   // If reference is volatile, prevent following memory ops from
6174   // floating up past the volatile read.  Also prevents commoning
6175   // another volatile read.
6176   if (is_vol) {
6177     // Memory barrier includes bogus read of value to force load BEFORE membar
6178     insert_mem_bar(Op_MemBarAcquire, loadedField);
6179   }
6180   return loadedField;
6181 }
6182 
6183 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6184                                                  bool is_exact = true, bool is_static = false,
6185                                                  ciInstanceKlass * fromKls = NULL) {
6186   if (fromKls == NULL) {
6187     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6188     assert(tinst != NULL, "obj is null");
6189     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6190     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6191     fromKls = tinst->klass()->as_instance_klass();
6192   }
6193   else {
6194     assert(is_static, "only for static field access");
6195   }
6196   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6197     ciSymbol::make(fieldTypeString),
6198     is_static);
6199 
6200   assert(field != NULL, "undefined field");
6201   assert(!field->is_volatile(), "not defined for volatile fields");
6202 
6203   if (is_static) {
6204     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6205     fromObj = makecon(tip);
6206   }
6207 
6208   // Next code  copied from Parse::do_get_xxx():
6209 
6210   // Compute address and memory type.
6211   int offset = field->offset_in_bytes();
6212   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6213 
6214   return adr;
6215 }
6216 
6217 //------------------------------inline_aescrypt_Block-----------------------
6218 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6219   address stubAddr = NULL;
6220   const char *stubName;
6221   assert(UseAES, "need AES instruction support");
6222 
6223   switch(id) {
6224   case vmIntrinsics::_aescrypt_encryptBlock:
6225     stubAddr = StubRoutines::aescrypt_encryptBlock();
6226     stubName = "aescrypt_encryptBlock";
6227     break;
6228   case vmIntrinsics::_aescrypt_decryptBlock:
6229     stubAddr = StubRoutines::aescrypt_decryptBlock();
6230     stubName = "aescrypt_decryptBlock";
6231     break;
6232   default:
6233     break;
6234   }
6235   if (stubAddr == NULL) return false;
6236 
6237   Node* aescrypt_object = argument(0);
6238   Node* src             = argument(1);
6239   Node* src_offset      = argument(2);
6240   Node* dest            = argument(3);
6241   Node* dest_offset     = argument(4);
6242 
6243   // (1) src and dest are arrays.
6244   const Type* src_type = src->Value(&_gvn);
6245   const Type* dest_type = dest->Value(&_gvn);
6246   const TypeAryPtr* top_src = src_type->isa_aryptr();
6247   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6248   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6249 
6250   // for the quick and dirty code we will skip all the checks.
6251   // we are just trying to get the call to be generated.
6252   Node* src_start  = src;
6253   Node* dest_start = dest;
6254   if (src_offset != NULL || dest_offset != NULL) {
6255     assert(src_offset != NULL && dest_offset != NULL, "");
6256     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6257     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6258   }
6259 
6260   // now need to get the start of its expanded key array
6261   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6262   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6263   if (k_start == NULL) return false;
6264 
6265   if (Matcher::pass_original_key_for_aes()) {
6266     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6267     // compatibility issues between Java key expansion and SPARC crypto instructions
6268     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6269     if (original_k_start == NULL) return false;
6270 
6271     // Call the stub.
6272     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6273                       stubAddr, stubName, TypePtr::BOTTOM,
6274                       src_start, dest_start, k_start, original_k_start);
6275   } else {
6276     // Call the stub.
6277     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6278                       stubAddr, stubName, TypePtr::BOTTOM,
6279                       src_start, dest_start, k_start);
6280   }
6281 
6282   return true;
6283 }
6284 
6285 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6286 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6287   address stubAddr = NULL;
6288   const char *stubName = NULL;
6289 
6290   assert(UseAES, "need AES instruction support");
6291 
6292   switch(id) {
6293   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6294     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6295     stubName = "cipherBlockChaining_encryptAESCrypt";
6296     break;
6297   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6298     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6299     stubName = "cipherBlockChaining_decryptAESCrypt";
6300     break;
6301   default:
6302     break;
6303   }
6304   if (stubAddr == NULL) return false;
6305 
6306   Node* cipherBlockChaining_object = argument(0);
6307   Node* src                        = argument(1);
6308   Node* src_offset                 = argument(2);
6309   Node* len                        = argument(3);
6310   Node* dest                       = argument(4);
6311   Node* dest_offset                = argument(5);
6312 
6313   // (1) src and dest are arrays.
6314   const Type* src_type = src->Value(&_gvn);
6315   const Type* dest_type = dest->Value(&_gvn);
6316   const TypeAryPtr* top_src = src_type->isa_aryptr();
6317   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6318   assert (top_src  != NULL && top_src->klass()  != NULL
6319           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6320 
6321   // checks are the responsibility of the caller
6322   Node* src_start  = src;
6323   Node* dest_start = dest;
6324   if (src_offset != NULL || dest_offset != NULL) {
6325     assert(src_offset != NULL && dest_offset != NULL, "");
6326     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6327     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6328   }
6329 
6330   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6331   // (because of the predicated logic executed earlier).
6332   // so we cast it here safely.
6333   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6334 
6335   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6336   if (embeddedCipherObj == NULL) return false;
6337 
6338   // cast it to what we know it will be at runtime
6339   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6340   assert(tinst != NULL, "CBC obj is null");
6341   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6342   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6343   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6344 
6345   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6346   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6347   const TypeOopPtr* xtype = aklass->as_instance_type();
6348   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6349   aescrypt_object = _gvn.transform(aescrypt_object);
6350 
6351   // we need to get the start of the aescrypt_object's expanded key array
6352   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6353   if (k_start == NULL) return false;
6354 
6355   // similarly, get the start address of the r vector
6356   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6357   if (objRvec == NULL) return false;
6358   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6359 
6360   Node* cbcCrypt;
6361   if (Matcher::pass_original_key_for_aes()) {
6362     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6363     // compatibility issues between Java key expansion and SPARC crypto instructions
6364     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6365     if (original_k_start == NULL) return false;
6366 
6367     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6368     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6369                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6370                                  stubAddr, stubName, TypePtr::BOTTOM,
6371                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6372   } else {
6373     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6374     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6375                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6376                                  stubAddr, stubName, TypePtr::BOTTOM,
6377                                  src_start, dest_start, k_start, r_start, len);
6378   }
6379 
6380   // return cipher length (int)
6381   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6382   set_result(retvalue);
6383   return true;
6384 }
6385 
6386 //------------------------------inline_counterMode_AESCrypt-----------------------
6387 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6388   assert(UseAES, "need AES instruction support");
6389   if (!UseAESCTRIntrinsics) return false;
6390 
6391   address stubAddr = NULL;
6392   const char *stubName = NULL;
6393   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6394     stubAddr = StubRoutines::counterMode_AESCrypt();
6395     stubName = "counterMode_AESCrypt";
6396   }
6397   if (stubAddr == NULL) return false;
6398 
6399   Node* counterMode_object = argument(0);
6400   Node* src = argument(1);
6401   Node* src_offset = argument(2);
6402   Node* len = argument(3);
6403   Node* dest = argument(4);
6404   Node* dest_offset = argument(5);
6405 
6406   // (1) src and dest are arrays.
6407   const Type* src_type = src->Value(&_gvn);
6408   const Type* dest_type = dest->Value(&_gvn);
6409   const TypeAryPtr* top_src = src_type->isa_aryptr();
6410   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6411   assert(top_src != NULL && top_src->klass() != NULL &&
6412          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6413 
6414   // checks are the responsibility of the caller
6415   Node* src_start = src;
6416   Node* dest_start = dest;
6417   if (src_offset != NULL || dest_offset != NULL) {
6418     assert(src_offset != NULL && dest_offset != NULL, "");
6419     src_start = array_element_address(src, src_offset, T_BYTE);
6420     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6421   }
6422 
6423   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6424   // (because of the predicated logic executed earlier).
6425   // so we cast it here safely.
6426   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6427   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6428   if (embeddedCipherObj == NULL) return false;
6429   // cast it to what we know it will be at runtime
6430   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6431   assert(tinst != NULL, "CTR obj is null");
6432   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6433   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6434   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6435   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6436   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6437   const TypeOopPtr* xtype = aklass->as_instance_type();
6438   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6439   aescrypt_object = _gvn.transform(aescrypt_object);
6440   // we need to get the start of the aescrypt_object's expanded key array
6441   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6442   if (k_start == NULL) return false;
6443   // similarly, get the start address of the r vector
6444   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6445   if (obj_counter == NULL) return false;
6446   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6447 
6448   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6449   if (saved_encCounter == NULL) return false;
6450   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6451   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6452 
6453   Node* ctrCrypt;
6454   if (Matcher::pass_original_key_for_aes()) {
6455     // no SPARC version for AES/CTR intrinsics now.
6456     return false;
6457   }
6458   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6459   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6460                                OptoRuntime::counterMode_aescrypt_Type(),
6461                                stubAddr, stubName, TypePtr::BOTTOM,
6462                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6463 
6464   // return cipher length (int)
6465   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6466   set_result(retvalue);
6467   return true;
6468 }
6469 
6470 //------------------------------get_key_start_from_aescrypt_object-----------------------
6471 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6472 #if defined(PPC64) || defined(S390)
6473   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6474   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6475   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6476   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6477   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6478   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6479   if (objSessionK == NULL) {
6480     return (Node *) NULL;
6481   }
6482   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6483 #else
6484   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6485 #endif // PPC64
6486   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6487   if (objAESCryptKey == NULL) return (Node *) NULL;
6488 
6489   // now have the array, need to get the start address of the K array
6490   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6491   return k_start;
6492 }
6493 
6494 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6495 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6496   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6497   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6498   if (objAESCryptKey == NULL) return (Node *) NULL;
6499 
6500   // now have the array, need to get the start address of the lastKey array
6501   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6502   return original_k_start;
6503 }
6504 
6505 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6506 // Return node representing slow path of predicate check.
6507 // the pseudo code we want to emulate with this predicate is:
6508 // for encryption:
6509 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6510 // for decryption:
6511 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6512 //    note cipher==plain is more conservative than the original java code but that's OK
6513 //
6514 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6515   // The receiver was checked for NULL already.
6516   Node* objCBC = argument(0);
6517 
6518   // Load embeddedCipher field of CipherBlockChaining object.
6519   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6520 
6521   // get AESCrypt klass for instanceOf check
6522   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6523   // will have same classloader as CipherBlockChaining object
6524   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6525   assert(tinst != NULL, "CBCobj is null");
6526   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6527 
6528   // we want to do an instanceof comparison against the AESCrypt class
6529   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6530   if (!klass_AESCrypt->is_loaded()) {
6531     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6532     Node* ctrl = control();
6533     set_control(top()); // no regular fast path
6534     return ctrl;
6535   }
6536   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6537 
6538   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6539   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6540   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6541 
6542   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6543 
6544   // for encryption, we are done
6545   if (!decrypting)
6546     return instof_false;  // even if it is NULL
6547 
6548   // for decryption, we need to add a further check to avoid
6549   // taking the intrinsic path when cipher and plain are the same
6550   // see the original java code for why.
6551   RegionNode* region = new RegionNode(3);
6552   region->init_req(1, instof_false);
6553   Node* src = argument(1);
6554   Node* dest = argument(4);
6555   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6556   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6557   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6558   region->init_req(2, src_dest_conjoint);
6559 
6560   record_for_igvn(region);
6561   return _gvn.transform(region);
6562 }
6563 
6564 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6565 // Return node representing slow path of predicate check.
6566 // the pseudo code we want to emulate with this predicate is:
6567 // for encryption:
6568 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6569 // for decryption:
6570 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6571 //    note cipher==plain is more conservative than the original java code but that's OK
6572 //
6573 
6574 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6575   // The receiver was checked for NULL already.
6576   Node* objCTR = argument(0);
6577 
6578   // Load embeddedCipher field of CipherBlockChaining object.
6579   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6580 
6581   // get AESCrypt klass for instanceOf check
6582   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6583   // will have same classloader as CipherBlockChaining object
6584   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6585   assert(tinst != NULL, "CTRobj is null");
6586   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6587 
6588   // we want to do an instanceof comparison against the AESCrypt class
6589   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6590   if (!klass_AESCrypt->is_loaded()) {
6591     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6592     Node* ctrl = control();
6593     set_control(top()); // no regular fast path
6594     return ctrl;
6595   }
6596 
6597   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6598   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6599   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6600   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6601   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6602 
6603   return instof_false; // even if it is NULL
6604 }
6605 
6606 //------------------------------inline_ghash_processBlocks
6607 bool LibraryCallKit::inline_ghash_processBlocks() {
6608   address stubAddr;
6609   const char *stubName;
6610   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6611 
6612   stubAddr = StubRoutines::ghash_processBlocks();
6613   stubName = "ghash_processBlocks";
6614 
6615   Node* data           = argument(0);
6616   Node* offset         = argument(1);
6617   Node* len            = argument(2);
6618   Node* state          = argument(3);
6619   Node* subkeyH        = argument(4);
6620 
6621   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6622   assert(state_start, "state is NULL");
6623   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6624   assert(subkeyH_start, "subkeyH is NULL");
6625   Node* data_start  = array_element_address(data, offset, T_BYTE);
6626   assert(data_start, "data is NULL");
6627 
6628   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6629                                   OptoRuntime::ghash_processBlocks_Type(),
6630                                   stubAddr, stubName, TypePtr::BOTTOM,
6631                                   state_start, subkeyH_start, data_start, len);
6632   return true;
6633 }
6634 
6635 //------------------------------inline_sha_implCompress-----------------------
6636 //
6637 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6638 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6639 //
6640 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6641 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6642 //
6643 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6644 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6645 //
6646 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6647   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6648 
6649   Node* sha_obj = argument(0);
6650   Node* src     = argument(1); // type oop
6651   Node* ofs     = argument(2); // type int
6652 
6653   const Type* src_type = src->Value(&_gvn);
6654   const TypeAryPtr* top_src = src_type->isa_aryptr();
6655   if (top_src  == NULL || top_src->klass()  == NULL) {
6656     // failed array check
6657     return false;
6658   }
6659   // Figure out the size and type of the elements we will be copying.
6660   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6661   if (src_elem != T_BYTE) {
6662     return false;
6663   }
6664   // 'src_start' points to src array + offset
6665   Node* src_start = array_element_address(src, ofs, src_elem);
6666   Node* state = NULL;
6667   address stubAddr;
6668   const char *stubName;
6669 
6670   switch(id) {
6671   case vmIntrinsics::_sha_implCompress:
6672     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6673     state = get_state_from_sha_object(sha_obj);
6674     stubAddr = StubRoutines::sha1_implCompress();
6675     stubName = "sha1_implCompress";
6676     break;
6677   case vmIntrinsics::_sha2_implCompress:
6678     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6679     state = get_state_from_sha_object(sha_obj);
6680     stubAddr = StubRoutines::sha256_implCompress();
6681     stubName = "sha256_implCompress";
6682     break;
6683   case vmIntrinsics::_sha5_implCompress:
6684     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6685     state = get_state_from_sha5_object(sha_obj);
6686     stubAddr = StubRoutines::sha512_implCompress();
6687     stubName = "sha512_implCompress";
6688     break;
6689   default:
6690     fatal_unexpected_iid(id);
6691     return false;
6692   }
6693   if (state == NULL) return false;
6694 
6695   // Call the stub.
6696   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6697                                  stubAddr, stubName, TypePtr::BOTTOM,
6698                                  src_start, state);
6699 
6700   return true;
6701 }
6702 
6703 //------------------------------inline_digestBase_implCompressMB-----------------------
6704 //
6705 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6706 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6707 //
6708 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6709   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6710          "need SHA1/SHA256/SHA512 instruction support");
6711   assert((uint)predicate < 3, "sanity");
6712   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6713 
6714   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6715   Node* src            = argument(1); // byte[] array
6716   Node* ofs            = argument(2); // type int
6717   Node* limit          = argument(3); // type int
6718 
6719   const Type* src_type = src->Value(&_gvn);
6720   const TypeAryPtr* top_src = src_type->isa_aryptr();
6721   if (top_src  == NULL || top_src->klass()  == NULL) {
6722     // failed array check
6723     return false;
6724   }
6725   // Figure out the size and type of the elements we will be copying.
6726   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6727   if (src_elem != T_BYTE) {
6728     return false;
6729   }
6730   // 'src_start' points to src array + offset
6731   Node* src_start = array_element_address(src, ofs, src_elem);
6732 
6733   const char* klass_SHA_name = NULL;
6734   const char* stub_name = NULL;
6735   address     stub_addr = NULL;
6736   bool        long_state = false;
6737 
6738   switch (predicate) {
6739   case 0:
6740     if (UseSHA1Intrinsics) {
6741       klass_SHA_name = "sun/security/provider/SHA";
6742       stub_name = "sha1_implCompressMB";
6743       stub_addr = StubRoutines::sha1_implCompressMB();
6744     }
6745     break;
6746   case 1:
6747     if (UseSHA256Intrinsics) {
6748       klass_SHA_name = "sun/security/provider/SHA2";
6749       stub_name = "sha256_implCompressMB";
6750       stub_addr = StubRoutines::sha256_implCompressMB();
6751     }
6752     break;
6753   case 2:
6754     if (UseSHA512Intrinsics) {
6755       klass_SHA_name = "sun/security/provider/SHA5";
6756       stub_name = "sha512_implCompressMB";
6757       stub_addr = StubRoutines::sha512_implCompressMB();
6758       long_state = true;
6759     }
6760     break;
6761   default:
6762     fatal("unknown SHA intrinsic predicate: %d", predicate);
6763   }
6764   if (klass_SHA_name != NULL) {
6765     // get DigestBase klass to lookup for SHA klass
6766     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6767     assert(tinst != NULL, "digestBase_obj is not instance???");
6768     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6769 
6770     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6771     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6772     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6773     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6774   }
6775   return false;
6776 }
6777 //------------------------------inline_sha_implCompressMB-----------------------
6778 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6779                                                bool long_state, address stubAddr, const char *stubName,
6780                                                Node* src_start, Node* ofs, Node* limit) {
6781   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6782   const TypeOopPtr* xtype = aklass->as_instance_type();
6783   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6784   sha_obj = _gvn.transform(sha_obj);
6785 
6786   Node* state;
6787   if (long_state) {
6788     state = get_state_from_sha5_object(sha_obj);
6789   } else {
6790     state = get_state_from_sha_object(sha_obj);
6791   }
6792   if (state == NULL) return false;
6793 
6794   // Call the stub.
6795   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6796                                  OptoRuntime::digestBase_implCompressMB_Type(),
6797                                  stubAddr, stubName, TypePtr::BOTTOM,
6798                                  src_start, state, ofs, limit);
6799   // return ofs (int)
6800   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6801   set_result(result);
6802 
6803   return true;
6804 }
6805 
6806 //------------------------------get_state_from_sha_object-----------------------
6807 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6808   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6809   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6810   if (sha_state == NULL) return (Node *) NULL;
6811 
6812   // now have the array, need to get the start address of the state array
6813   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6814   return state;
6815 }
6816 
6817 //------------------------------get_state_from_sha5_object-----------------------
6818 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6819   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6820   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6821   if (sha_state == NULL) return (Node *) NULL;
6822 
6823   // now have the array, need to get the start address of the state array
6824   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6825   return state;
6826 }
6827 
6828 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6829 // Return node representing slow path of predicate check.
6830 // the pseudo code we want to emulate with this predicate is:
6831 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6832 //
6833 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6834   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6835          "need SHA1/SHA256/SHA512 instruction support");
6836   assert((uint)predicate < 3, "sanity");
6837 
6838   // The receiver was checked for NULL already.
6839   Node* digestBaseObj = argument(0);
6840 
6841   // get DigestBase klass for instanceOf check
6842   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6843   assert(tinst != NULL, "digestBaseObj is null");
6844   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6845 
6846   const char* klass_SHA_name = NULL;
6847   switch (predicate) {
6848   case 0:
6849     if (UseSHA1Intrinsics) {
6850       // we want to do an instanceof comparison against the SHA class
6851       klass_SHA_name = "sun/security/provider/SHA";
6852     }
6853     break;
6854   case 1:
6855     if (UseSHA256Intrinsics) {
6856       // we want to do an instanceof comparison against the SHA2 class
6857       klass_SHA_name = "sun/security/provider/SHA2";
6858     }
6859     break;
6860   case 2:
6861     if (UseSHA512Intrinsics) {
6862       // we want to do an instanceof comparison against the SHA5 class
6863       klass_SHA_name = "sun/security/provider/SHA5";
6864     }
6865     break;
6866   default:
6867     fatal("unknown SHA intrinsic predicate: %d", predicate);
6868   }
6869 
6870   ciKlass* klass_SHA = NULL;
6871   if (klass_SHA_name != NULL) {
6872     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6873   }
6874   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6875     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6876     Node* ctrl = control();
6877     set_control(top()); // no intrinsic path
6878     return ctrl;
6879   }
6880   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6881 
6882   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6883   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6884   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6885   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6886 
6887   return instof_false;  // even if it is NULL
6888 }
6889 
6890 //-------------inline_fma-----------------------------------
6891 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6892   Node *a = NULL;
6893   Node *b = NULL;
6894   Node *c = NULL;
6895   Node* result = NULL;
6896   switch (id) {
6897   case vmIntrinsics::_fmaD:
6898     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6899     // no receiver since it is static method
6900     a = round_double_node(argument(0));
6901     b = round_double_node(argument(2));
6902     c = round_double_node(argument(4));
6903     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6904     break;
6905   case vmIntrinsics::_fmaF:
6906     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6907     a = argument(0);
6908     b = argument(1);
6909     c = argument(2);
6910     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6911     break;
6912   default:
6913     fatal_unexpected_iid(id);  break;
6914   }
6915   set_result(result);
6916   return true;
6917 }
6918 
6919 bool LibraryCallKit::inline_profileBoolean() {
6920   Node* counts = argument(1);
6921   const TypeAryPtr* ary = NULL;
6922   ciArray* aobj = NULL;
6923   if (counts->is_Con()
6924       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6925       && (aobj = ary->const_oop()->as_array()) != NULL
6926       && (aobj->length() == 2)) {
6927     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6928     jint false_cnt = aobj->element_value(0).as_int();
6929     jint  true_cnt = aobj->element_value(1).as_int();
6930 
6931     if (C->log() != NULL) {
6932       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6933                      false_cnt, true_cnt);
6934     }
6935 
6936     if (false_cnt + true_cnt == 0) {
6937       // According to profile, never executed.
6938       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6939                           Deoptimization::Action_reinterpret);
6940       return true;
6941     }
6942 
6943     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6944     // is a number of each value occurrences.
6945     Node* result = argument(0);
6946     if (false_cnt == 0 || true_cnt == 0) {
6947       // According to profile, one value has been never seen.
6948       int expected_val = (false_cnt == 0) ? 1 : 0;
6949 
6950       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6951       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6952 
6953       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6954       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6955       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6956 
6957       { // Slow path: uncommon trap for never seen value and then reexecute
6958         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6959         // the value has been seen at least once.
6960         PreserveJVMState pjvms(this);
6961         PreserveReexecuteState preexecs(this);
6962         jvms()->set_should_reexecute(true);
6963 
6964         set_control(slow_path);
6965         set_i_o(i_o());
6966 
6967         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6968                             Deoptimization::Action_reinterpret);
6969       }
6970       // The guard for never seen value enables sharpening of the result and
6971       // returning a constant. It allows to eliminate branches on the same value
6972       // later on.
6973       set_control(fast_path);
6974       result = intcon(expected_val);
6975     }
6976     // Stop profiling.
6977     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6978     // By replacing method body with profile data (represented as ProfileBooleanNode
6979     // on IR level) we effectively disable profiling.
6980     // It enables full speed execution once optimized code is generated.
6981     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6982     C->record_for_igvn(profile);
6983     set_result(profile);
6984     return true;
6985   } else {
6986     // Continue profiling.
6987     // Profile data isn't available at the moment. So, execute method's bytecode version.
6988     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6989     // is compiled and counters aren't available since corresponding MethodHandle
6990     // isn't a compile-time constant.
6991     return false;
6992   }
6993 }
6994 
6995 bool LibraryCallKit::inline_isCompileConstant() {
6996   Node* n = argument(0);
6997   set_result(n->is_Con() ? intcon(1) : intcon(0));
6998   return true;
6999 }