1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/heapRegion.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/typeArrayOop.inline.hpp"
  51 #include "opto/ad.hpp"
  52 #include "opto/addnode.hpp"
  53 #include "opto/callnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/graphKit.hpp"
  56 #include "opto/machnode.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/handles.inline.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/vframe.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "runtime/vframe_hp.hpp"
  72 #include "utilities/copy.hpp"
  73 #include "utilities/preserveException.hpp"
  74 
  75 
  76 // For debugging purposes:
  77 //  To force FullGCALot inside a runtime function, add the following two lines
  78 //
  79 //  Universe::release_fullgc_alot_dummy();
  80 //  MarkSweep::invoke(0, "Debugging");
  81 //
  82 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  83 
  84 
  85 
  86 
  87 // Compiled code entry points
  88 address OptoRuntime::_new_instance_Java                           = NULL;
  89 address OptoRuntime::_new_array_Java                              = NULL;
  90 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  91 address OptoRuntime::_multianewarray2_Java                        = NULL;
  92 address OptoRuntime::_multianewarray3_Java                        = NULL;
  93 address OptoRuntime::_multianewarray4_Java                        = NULL;
  94 address OptoRuntime::_multianewarray5_Java                        = NULL;
  95 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  96 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  97 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  98 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  99 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 100 address OptoRuntime::_monitor_notify_Java                         = NULL;
 101 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 102 address OptoRuntime::_rethrow_Java                                = NULL;
 103 
 104 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 105 address OptoRuntime::_register_finalizer_Java                     = NULL;
 106 
 107 ExceptionBlob* OptoRuntime::_exception_blob;
 108 
 109 // This should be called in an assertion at the start of OptoRuntime routines
 110 // which are entered from compiled code (all of them)
 111 #ifdef ASSERT
 112 static bool check_compiled_frame(JavaThread* thread) {
 113   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 114   RegisterMap map(thread, false);
 115   frame caller = thread->last_frame().sender(&map);
 116   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 117   return true;
 118 }
 119 #endif // ASSERT
 120 
 121 
 122 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 123   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 124   if (var == NULL) { return false; }
 125 
 126 bool OptoRuntime::generate(ciEnv* env) {
 127 
 128   generate_exception_blob();
 129 
 130   // Note: tls: Means fetching the return oop out of the thread-local storage
 131   //
 132   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 133   // -------------------------------------------------------------------------------------------------------------------------------
 134   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 135   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 136   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 137   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 138   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 139   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 141   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 142   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 143   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 144   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 145   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 146   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 147   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 148 
 149   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 150   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 151 
 152   return true;
 153 }
 154 
 155 #undef gen
 156 
 157 
 158 // Helper method to do generation of RunTimeStub's
 159 address OptoRuntime::generate_stub( ciEnv* env,
 160                                     TypeFunc_generator gen, address C_function,
 161                                     const char *name, int is_fancy_jump,
 162                                     bool pass_tls,
 163                                     bool save_argument_registers,
 164                                     bool return_pc) {
 165 
 166   // Matching the default directive, we currently have no method to match.
 167   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 168   ResourceMark rm;
 169   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 170   DirectivesStack::release(directive);
 171   return  C.stub_entry_point();
 172 }
 173 
 174 const char* OptoRuntime::stub_name(address entry) {
 175 #ifndef PRODUCT
 176   CodeBlob* cb = CodeCache::find_blob(entry);
 177   RuntimeStub* rs =(RuntimeStub *)cb;
 178   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 179   return rs->name();
 180 #else
 181   // Fast implementation for product mode (maybe it should be inlined too)
 182   return "runtime stub";
 183 #endif
 184 }
 185 
 186 
 187 //=============================================================================
 188 // Opto compiler runtime routines
 189 //=============================================================================
 190 
 191 
 192 //=============================allocation======================================
 193 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 194 // and try allocation again.
 195 
 196 // object allocation
 197 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 198   JRT_BLOCK;
 199 #ifndef PRODUCT
 200   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 201 #endif
 202   assert(check_compiled_frame(thread), "incorrect caller");
 203 
 204   // These checks are cheap to make and support reflective allocation.
 205   int lh = klass->layout_helper();
 206   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 207     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 208     klass->check_valid_for_instantiation(false, THREAD);
 209     if (!HAS_PENDING_EXCEPTION) {
 210       InstanceKlass::cast(klass)->initialize(THREAD);
 211     }
 212   }
 213 
 214   if (!HAS_PENDING_EXCEPTION) {
 215     // Scavenge and allocate an instance.
 216     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 217     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 218     thread->set_vm_result(result);
 219 
 220     // Pass oops back through thread local storage.  Our apparent type to Java
 221     // is that we return an oop, but we can block on exit from this routine and
 222     // a GC can trash the oop in C's return register.  The generated stub will
 223     // fetch the oop from TLS after any possible GC.
 224   }
 225 
 226   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 227   JRT_BLOCK_END;
 228 
 229   // inform GC that we won't do card marks for initializing writes.
 230   SharedRuntime::on_slowpath_allocation_exit(thread);
 231 JRT_END
 232 
 233 
 234 // array allocation
 235 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 236   JRT_BLOCK;
 237 #ifndef PRODUCT
 238   SharedRuntime::_new_array_ctr++;            // new array requires GC
 239 #endif
 240   assert(check_compiled_frame(thread), "incorrect caller");
 241 
 242   // Scavenge and allocate an instance.
 243   oop result;
 244 
 245   if (array_type->is_typeArray_klass()) {
 246     // The oopFactory likes to work with the element type.
 247     // (We could bypass the oopFactory, since it doesn't add much value.)
 248     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 249     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 250   } else {
 251     // Although the oopFactory likes to work with the elem_type,
 252     // the compiler prefers the array_type, since it must already have
 253     // that latter value in hand for the fast path.
 254     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 255     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 256     result = oopFactory::new_objArray(elem_type, len, THREAD);
 257   }
 258 
 259   // Pass oops back through thread local storage.  Our apparent type to Java
 260   // is that we return an oop, but we can block on exit from this routine and
 261   // a GC can trash the oop in C's return register.  The generated stub will
 262   // fetch the oop from TLS after any possible GC.
 263   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 264   thread->set_vm_result(result);
 265   JRT_BLOCK_END;
 266 
 267   // inform GC that we won't do card marks for initializing writes.
 268   SharedRuntime::on_slowpath_allocation_exit(thread);
 269 JRT_END
 270 
 271 // array allocation without zeroing
 272 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 273   JRT_BLOCK;
 274 #ifndef PRODUCT
 275   SharedRuntime::_new_array_ctr++;            // new array requires GC
 276 #endif
 277   assert(check_compiled_frame(thread), "incorrect caller");
 278 
 279   // Scavenge and allocate an instance.
 280   oop result;
 281 
 282   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 283   // The oopFactory likes to work with the element type.
 284   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 285   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 286 
 287   // Pass oops back through thread local storage.  Our apparent type to Java
 288   // is that we return an oop, but we can block on exit from this routine and
 289   // a GC can trash the oop in C's return register.  The generated stub will
 290   // fetch the oop from TLS after any possible GC.
 291   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 292   thread->set_vm_result(result);
 293   JRT_BLOCK_END;
 294 
 295 
 296   // inform GC that we won't do card marks for initializing writes.
 297   SharedRuntime::on_slowpath_allocation_exit(thread);
 298 
 299   oop result = thread->vm_result();
 300   if ((len > 0) && (result != NULL) &&
 301       is_deoptimized_caller_frame(thread)) {
 302     // Zero array here if the caller is deoptimized.
 303     int size = ((typeArrayOop)result)->object_size();
 304     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 305     const size_t hs = arrayOopDesc::header_size(elem_type);
 306     // Align to next 8 bytes to avoid trashing arrays's length.
 307     const size_t aligned_hs = align_object_offset(hs);
 308     HeapWord* obj = (HeapWord*)result;
 309     if (aligned_hs > hs) {
 310       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 311     }
 312     // Optimized zeroing.
 313     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 314   }
 315 
 316 JRT_END
 317 
 318 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 319 
 320 // multianewarray for 2 dimensions
 321 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 322 #ifndef PRODUCT
 323   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 324 #endif
 325   assert(check_compiled_frame(thread), "incorrect caller");
 326   assert(elem_type->is_klass(), "not a class");
 327   jint dims[2];
 328   dims[0] = len1;
 329   dims[1] = len2;
 330   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 331   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 332   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 333   thread->set_vm_result(obj);
 334 JRT_END
 335 
 336 // multianewarray for 3 dimensions
 337 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 338 #ifndef PRODUCT
 339   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 340 #endif
 341   assert(check_compiled_frame(thread), "incorrect caller");
 342   assert(elem_type->is_klass(), "not a class");
 343   jint dims[3];
 344   dims[0] = len1;
 345   dims[1] = len2;
 346   dims[2] = len3;
 347   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 348   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 349   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 350   thread->set_vm_result(obj);
 351 JRT_END
 352 
 353 // multianewarray for 4 dimensions
 354 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 355 #ifndef PRODUCT
 356   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 357 #endif
 358   assert(check_compiled_frame(thread), "incorrect caller");
 359   assert(elem_type->is_klass(), "not a class");
 360   jint dims[4];
 361   dims[0] = len1;
 362   dims[1] = len2;
 363   dims[2] = len3;
 364   dims[3] = len4;
 365   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 366   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 367   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 368   thread->set_vm_result(obj);
 369 JRT_END
 370 
 371 // multianewarray for 5 dimensions
 372 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 373 #ifndef PRODUCT
 374   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 375 #endif
 376   assert(check_compiled_frame(thread), "incorrect caller");
 377   assert(elem_type->is_klass(), "not a class");
 378   jint dims[5];
 379   dims[0] = len1;
 380   dims[1] = len2;
 381   dims[2] = len3;
 382   dims[3] = len4;
 383   dims[4] = len5;
 384   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 385   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 386   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 387   thread->set_vm_result(obj);
 388 JRT_END
 389 
 390 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 391   assert(check_compiled_frame(thread), "incorrect caller");
 392   assert(elem_type->is_klass(), "not a class");
 393   assert(oop(dims)->is_typeArray(), "not an array");
 394 
 395   ResourceMark rm;
 396   jint len = dims->length();
 397   assert(len > 0, "Dimensions array should contain data");
 398   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 399   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 400   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 401 
 402   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 403   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 404   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 405   thread->set_vm_result(obj);
 406 JRT_END
 407 
 408 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 409 
 410   // Very few notify/notifyAll operations find any threads on the waitset, so
 411   // the dominant fast-path is to simply return.
 412   // Relatedly, it's critical that notify/notifyAll be fast in order to
 413   // reduce lock hold times.
 414   if (!SafepointSynchronize::is_synchronizing()) {
 415     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 416       return;
 417     }
 418   }
 419 
 420   // This is the case the fast-path above isn't provisioned to handle.
 421   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 422   // (The fast-path is just a degenerate variant of the slow-path).
 423   // Perform the dreaded state transition and pass control into the slow-path.
 424   JRT_BLOCK;
 425   Handle h_obj(THREAD, obj);
 426   ObjectSynchronizer::notify(h_obj, CHECK);
 427   JRT_BLOCK_END;
 428 JRT_END
 429 
 430 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 431 
 432   if (!SafepointSynchronize::is_synchronizing() ) {
 433     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 434       return;
 435     }
 436   }
 437 
 438   // This is the case the fast-path above isn't provisioned to handle.
 439   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 440   // (The fast-path is just a degenerate variant of the slow-path).
 441   // Perform the dreaded state transition and pass control into the slow-path.
 442   JRT_BLOCK;
 443   Handle h_obj(THREAD, obj);
 444   ObjectSynchronizer::notifyall(h_obj, CHECK);
 445   JRT_BLOCK_END;
 446 JRT_END
 447 
 448 const TypeFunc *OptoRuntime::new_instance_Type() {
 449   // create input type (domain)
 450   const Type **fields = TypeTuple::fields(1);
 451   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 452   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 453 
 454   // create result type (range)
 455   fields = TypeTuple::fields(1);
 456   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 457 
 458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 459 
 460   return TypeFunc::make(domain, range);
 461 }
 462 
 463 
 464 const TypeFunc *OptoRuntime::athrow_Type() {
 465   // create input type (domain)
 466   const Type **fields = TypeTuple::fields(1);
 467   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 468   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 469 
 470   // create result type (range)
 471   fields = TypeTuple::fields(0);
 472 
 473   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 474 
 475   return TypeFunc::make(domain, range);
 476 }
 477 
 478 
 479 const TypeFunc *OptoRuntime::new_array_Type() {
 480   // create input type (domain)
 481   const Type **fields = TypeTuple::fields(2);
 482   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 483   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 484   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 485 
 486   // create result type (range)
 487   fields = TypeTuple::fields(1);
 488   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 489 
 490   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 491 
 492   return TypeFunc::make(domain, range);
 493 }
 494 
 495 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 496   // create input type (domain)
 497   const int nargs = ndim + 1;
 498   const Type **fields = TypeTuple::fields(nargs);
 499   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 500   for( int i = 1; i < nargs; i++ )
 501     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 502   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 503 
 504   // create result type (range)
 505   fields = TypeTuple::fields(1);
 506   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 507   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 508 
 509   return TypeFunc::make(domain, range);
 510 }
 511 
 512 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 513   return multianewarray_Type(2);
 514 }
 515 
 516 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 517   return multianewarray_Type(3);
 518 }
 519 
 520 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 521   return multianewarray_Type(4);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 525   return multianewarray_Type(5);
 526 }
 527 
 528 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 529   // create input type (domain)
 530   const Type **fields = TypeTuple::fields(2);
 531   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 532   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 533   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 534 
 535   // create result type (range)
 536   fields = TypeTuple::fields(1);
 537   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 538   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 539 
 540   return TypeFunc::make(domain, range);
 541 }
 542 
 543 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 544   const Type **fields = TypeTuple::fields(2);
 545   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 546   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 547   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 548 
 549   // create result type (range)
 550   fields = TypeTuple::fields(0);
 551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 552 
 553   return TypeFunc::make(domain, range);
 554 }
 555 
 556 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 557 
 558   const Type **fields = TypeTuple::fields(2);
 559   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 560   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 561   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 562 
 563   // create result type (range)
 564   fields = TypeTuple::fields(0);
 565   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 566 
 567   return TypeFunc::make(domain, range);
 568 }
 569 
 570 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 571   // create input type (domain)
 572   const Type **fields = TypeTuple::fields(1);
 573   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 574   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 575 
 576   // create result type (range)
 577   fields = TypeTuple::fields(0);
 578   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 579 
 580   return TypeFunc::make(domain, range);
 581 }
 582 
 583 //-----------------------------------------------------------------------------
 584 // Monitor Handling
 585 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 586   // create input type (domain)
 587   const Type **fields = TypeTuple::fields(2);
 588   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 589   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 590   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 591 
 592   // create result type (range)
 593   fields = TypeTuple::fields(0);
 594 
 595   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 596 
 597   return TypeFunc::make(domain,range);
 598 }
 599 
 600 
 601 //-----------------------------------------------------------------------------
 602 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 603   // create input type (domain)
 604   const Type **fields = TypeTuple::fields(3);
 605   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 606   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 607   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 608   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 609 
 610   // create result type (range)
 611   fields = TypeTuple::fields(0);
 612 
 613   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 614 
 615   return TypeFunc::make(domain, range);
 616 }
 617 
 618 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 619   // create input type (domain)
 620   const Type **fields = TypeTuple::fields(1);
 621   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 622   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 623 
 624   // create result type (range)
 625   fields = TypeTuple::fields(0);
 626   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 627   return TypeFunc::make(domain, range);
 628 }
 629 
 630 const TypeFunc* OptoRuntime::flush_windows_Type() {
 631   // create input type (domain)
 632   const Type** fields = TypeTuple::fields(1);
 633   fields[TypeFunc::Parms+0] = NULL; // void
 634   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 635 
 636   // create result type
 637   fields = TypeTuple::fields(1);
 638   fields[TypeFunc::Parms+0] = NULL; // void
 639   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 640 
 641   return TypeFunc::make(domain, range);
 642 }
 643 
 644 const TypeFunc* OptoRuntime::l2f_Type() {
 645   // create input type (domain)
 646   const Type **fields = TypeTuple::fields(2);
 647   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 648   fields[TypeFunc::Parms+1] = Type::HALF;
 649   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 650 
 651   // create result type (range)
 652   fields = TypeTuple::fields(1);
 653   fields[TypeFunc::Parms+0] = Type::FLOAT;
 654   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 655 
 656   return TypeFunc::make(domain, range);
 657 }
 658 
 659 const TypeFunc* OptoRuntime::modf_Type() {
 660   const Type **fields = TypeTuple::fields(2);
 661   fields[TypeFunc::Parms+0] = Type::FLOAT;
 662   fields[TypeFunc::Parms+1] = Type::FLOAT;
 663   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 664 
 665   // create result type (range)
 666   fields = TypeTuple::fields(1);
 667   fields[TypeFunc::Parms+0] = Type::FLOAT;
 668 
 669   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 670 
 671   return TypeFunc::make(domain, range);
 672 }
 673 
 674 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 675   // create input type (domain)
 676   const Type **fields = TypeTuple::fields(2);
 677   // Symbol* name of class to be loaded
 678   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 679   fields[TypeFunc::Parms+1] = Type::HALF;
 680   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 681 
 682   // create result type (range)
 683   fields = TypeTuple::fields(2);
 684   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 685   fields[TypeFunc::Parms+1] = Type::HALF;
 686   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 687 
 688   return TypeFunc::make(domain, range);
 689 }
 690 
 691 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 692   const Type **fields = TypeTuple::fields(4);
 693   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 694   fields[TypeFunc::Parms+1] = Type::HALF;
 695   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 696   fields[TypeFunc::Parms+3] = Type::HALF;
 697   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 698 
 699   // create result type (range)
 700   fields = TypeTuple::fields(2);
 701   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 702   fields[TypeFunc::Parms+1] = Type::HALF;
 703   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 704 
 705   return TypeFunc::make(domain, range);
 706 }
 707 
 708 //-------------- currentTimeMillis, currentTimeNanos, etc
 709 
 710 const TypeFunc* OptoRuntime::void_long_Type() {
 711   // create input type (domain)
 712   const Type **fields = TypeTuple::fields(0);
 713   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 714 
 715   // create result type (range)
 716   fields = TypeTuple::fields(2);
 717   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 718   fields[TypeFunc::Parms+1] = Type::HALF;
 719   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 720 
 721   return TypeFunc::make(domain, range);
 722 }
 723 
 724 // arraycopy stub variations:
 725 enum ArrayCopyType {
 726   ac_fast,                      // void(ptr, ptr, size_t)
 727   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 728   ac_slow,                      // void(ptr, int, ptr, int, int)
 729   ac_generic                    //  int(ptr, int, ptr, int, int)
 730 };
 731 
 732 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 733   // create input type (domain)
 734   int num_args      = (act == ac_fast ? 3 : 5);
 735   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 736   int argcnt = num_args;
 737   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 738   const Type** fields = TypeTuple::fields(argcnt);
 739   int argp = TypeFunc::Parms;
 740   fields[argp++] = TypePtr::NOTNULL;    // src
 741   if (num_size_args == 0) {
 742     fields[argp++] = TypeInt::INT;      // src_pos
 743   }
 744   fields[argp++] = TypePtr::NOTNULL;    // dest
 745   if (num_size_args == 0) {
 746     fields[argp++] = TypeInt::INT;      // dest_pos
 747     fields[argp++] = TypeInt::INT;      // length
 748   }
 749   while (num_size_args-- > 0) {
 750     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 751     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 752   }
 753   if (act == ac_checkcast) {
 754     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 755   }
 756   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 757   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 758 
 759   // create result type if needed
 760   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 761   fields = TypeTuple::fields(1);
 762   if (retcnt == 0)
 763     fields[TypeFunc::Parms+0] = NULL; // void
 764   else
 765     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 766   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 767   return TypeFunc::make(domain, range);
 768 }
 769 
 770 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 771   // This signature is simple:  Two base pointers and a size_t.
 772   return make_arraycopy_Type(ac_fast);
 773 }
 774 
 775 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 776   // An extension of fast_arraycopy_Type which adds type checking.
 777   return make_arraycopy_Type(ac_checkcast);
 778 }
 779 
 780 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 781   // This signature is exactly the same as System.arraycopy.
 782   // There are no intptr_t (int/long) arguments.
 783   return make_arraycopy_Type(ac_slow);
 784 }
 785 
 786 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 787   // This signature is like System.arraycopy, except that it returns status.
 788   return make_arraycopy_Type(ac_generic);
 789 }
 790 
 791 
 792 const TypeFunc* OptoRuntime::array_fill_Type() {
 793   const Type** fields;
 794   int argp = TypeFunc::Parms;
 795   // create input type (domain): pointer, int, size_t
 796   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 797   fields[argp++] = TypePtr::NOTNULL;
 798   fields[argp++] = TypeInt::INT;
 799   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 800   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 801   const TypeTuple *domain = TypeTuple::make(argp, fields);
 802 
 803   // create result type
 804   fields = TypeTuple::fields(1);
 805   fields[TypeFunc::Parms+0] = NULL; // void
 806   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 807 
 808   return TypeFunc::make(domain, range);
 809 }
 810 
 811 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 812 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 813   // create input type (domain)
 814   int num_args      = 3;
 815   if (Matcher::pass_original_key_for_aes()) {
 816     num_args = 4;
 817   }
 818   int argcnt = num_args;
 819   const Type** fields = TypeTuple::fields(argcnt);
 820   int argp = TypeFunc::Parms;
 821   fields[argp++] = TypePtr::NOTNULL;    // src
 822   fields[argp++] = TypePtr::NOTNULL;    // dest
 823   fields[argp++] = TypePtr::NOTNULL;    // k array
 824   if (Matcher::pass_original_key_for_aes()) {
 825     fields[argp++] = TypePtr::NOTNULL;    // original k array
 826   }
 827   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 828   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 829 
 830   // no result type needed
 831   fields = TypeTuple::fields(1);
 832   fields[TypeFunc::Parms+0] = NULL; // void
 833   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 834   return TypeFunc::make(domain, range);
 835 }
 836 
 837 /**
 838  * int updateBytesCRC32(int crc, byte* b, int len)
 839  */
 840 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 841   // create input type (domain)
 842   int num_args      = 3;
 843   int argcnt = num_args;
 844   const Type** fields = TypeTuple::fields(argcnt);
 845   int argp = TypeFunc::Parms;
 846   fields[argp++] = TypeInt::INT;        // crc
 847   fields[argp++] = TypePtr::NOTNULL;    // src
 848   fields[argp++] = TypeInt::INT;        // len
 849   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 850   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 851 
 852   // result type needed
 853   fields = TypeTuple::fields(1);
 854   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 855   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 856   return TypeFunc::make(domain, range);
 857 }
 858 
 859 /**
 860  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 861  */
 862 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 863   // create input type (domain)
 864   int num_args      = 4;
 865   int argcnt = num_args;
 866   const Type** fields = TypeTuple::fields(argcnt);
 867   int argp = TypeFunc::Parms;
 868   fields[argp++] = TypeInt::INT;        // crc
 869   fields[argp++] = TypePtr::NOTNULL;    // buf
 870   fields[argp++] = TypeInt::INT;        // len
 871   fields[argp++] = TypePtr::NOTNULL;    // table
 872   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 873   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 874 
 875   // result type needed
 876   fields = TypeTuple::fields(1);
 877   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 878   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 879   return TypeFunc::make(domain, range);
 880 }
 881 
 882 /**
 883 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 884 */
 885 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 886   // create input type (domain)
 887   int num_args      = 3;
 888   int argcnt = num_args;
 889   const Type** fields = TypeTuple::fields(argcnt);
 890   int argp = TypeFunc::Parms;
 891   fields[argp++] = TypeInt::INT;        // crc
 892   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 893   fields[argp++] = TypeInt::INT;        // len
 894   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 895   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 896 
 897   // result type needed
 898   fields = TypeTuple::fields(1);
 899   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 900   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 901   return TypeFunc::make(domain, range);
 902 }
 903 
 904 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 905 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 906   // create input type (domain)
 907   int num_args      = 5;
 908   if (Matcher::pass_original_key_for_aes()) {
 909     num_args = 6;
 910   }
 911   int argcnt = num_args;
 912   const Type** fields = TypeTuple::fields(argcnt);
 913   int argp = TypeFunc::Parms;
 914   fields[argp++] = TypePtr::NOTNULL;    // src
 915   fields[argp++] = TypePtr::NOTNULL;    // dest
 916   fields[argp++] = TypePtr::NOTNULL;    // k array
 917   fields[argp++] = TypePtr::NOTNULL;    // r array
 918   fields[argp++] = TypeInt::INT;        // src len
 919   if (Matcher::pass_original_key_for_aes()) {
 920     fields[argp++] = TypePtr::NOTNULL;    // original k array
 921   }
 922   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 923   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 924 
 925   // returning cipher len (int)
 926   fields = TypeTuple::fields(1);
 927   fields[TypeFunc::Parms+0] = TypeInt::INT;
 928   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 929   return TypeFunc::make(domain, range);
 930 }
 931 
 932 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 933 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 934   // create input type (domain)
 935   int num_args = 7;
 936   if (Matcher::pass_original_key_for_aes()) {
 937     num_args = 8;
 938   }
 939   int argcnt = num_args;
 940   const Type** fields = TypeTuple::fields(argcnt);
 941   int argp = TypeFunc::Parms;
 942   fields[argp++] = TypePtr::NOTNULL; // src
 943   fields[argp++] = TypePtr::NOTNULL; // dest
 944   fields[argp++] = TypePtr::NOTNULL; // k array
 945   fields[argp++] = TypePtr::NOTNULL; // counter array
 946   fields[argp++] = TypeInt::INT; // src len
 947   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 948   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 949   if (Matcher::pass_original_key_for_aes()) {
 950     fields[argp++] = TypePtr::NOTNULL; // original k array
 951   }
 952   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 953   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 954   // returning cipher len (int)
 955   fields = TypeTuple::fields(1);
 956   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 957   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 958   return TypeFunc::make(domain, range);
 959 }
 960 
 961 /*
 962  * void implCompress(byte[] buf, int ofs)
 963  */
 964 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 965   // create input type (domain)
 966   int num_args = 2;
 967   int argcnt = num_args;
 968   const Type** fields = TypeTuple::fields(argcnt);
 969   int argp = TypeFunc::Parms;
 970   fields[argp++] = TypePtr::NOTNULL; // buf
 971   fields[argp++] = TypePtr::NOTNULL; // state
 972   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 973   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 974 
 975   // no result type needed
 976   fields = TypeTuple::fields(1);
 977   fields[TypeFunc::Parms+0] = NULL; // void
 978   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 979   return TypeFunc::make(domain, range);
 980 }
 981 
 982 /*
 983  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 984  */
 985 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 986   // create input type (domain)
 987   int num_args = 4;
 988   int argcnt = num_args;
 989   const Type** fields = TypeTuple::fields(argcnt);
 990   int argp = TypeFunc::Parms;
 991   fields[argp++] = TypePtr::NOTNULL; // buf
 992   fields[argp++] = TypePtr::NOTNULL; // state
 993   fields[argp++] = TypeInt::INT;     // ofs
 994   fields[argp++] = TypeInt::INT;     // limit
 995   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 996   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 997 
 998   // returning ofs (int)
 999   fields = TypeTuple::fields(1);
1000   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1001   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1002   return TypeFunc::make(domain, range);
1003 }
1004 
1005 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1006   // create input type (domain)
1007   int num_args      = 6;
1008   int argcnt = num_args;
1009   const Type** fields = TypeTuple::fields(argcnt);
1010   int argp = TypeFunc::Parms;
1011   fields[argp++] = TypePtr::NOTNULL;    // x
1012   fields[argp++] = TypeInt::INT;        // xlen
1013   fields[argp++] = TypePtr::NOTNULL;    // y
1014   fields[argp++] = TypeInt::INT;        // ylen
1015   fields[argp++] = TypePtr::NOTNULL;    // z
1016   fields[argp++] = TypeInt::INT;        // zlen
1017   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1018   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1019 
1020   // no result type needed
1021   fields = TypeTuple::fields(1);
1022   fields[TypeFunc::Parms+0] = NULL;
1023   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1024   return TypeFunc::make(domain, range);
1025 }
1026 
1027 const TypeFunc* OptoRuntime::squareToLen_Type() {
1028   // create input type (domain)
1029   int num_args      = 4;
1030   int argcnt = num_args;
1031   const Type** fields = TypeTuple::fields(argcnt);
1032   int argp = TypeFunc::Parms;
1033   fields[argp++] = TypePtr::NOTNULL;    // x
1034   fields[argp++] = TypeInt::INT;        // len
1035   fields[argp++] = TypePtr::NOTNULL;    // z
1036   fields[argp++] = TypeInt::INT;        // zlen
1037   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1038   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1039 
1040   // no result type needed
1041   fields = TypeTuple::fields(1);
1042   fields[TypeFunc::Parms+0] = NULL;
1043   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1044   return TypeFunc::make(domain, range);
1045 }
1046 
1047 // for mulAdd calls, 2 pointers and 3 ints, returning int
1048 const TypeFunc* OptoRuntime::mulAdd_Type() {
1049   // create input type (domain)
1050   int num_args      = 5;
1051   int argcnt = num_args;
1052   const Type** fields = TypeTuple::fields(argcnt);
1053   int argp = TypeFunc::Parms;
1054   fields[argp++] = TypePtr::NOTNULL;    // out
1055   fields[argp++] = TypePtr::NOTNULL;    // in
1056   fields[argp++] = TypeInt::INT;        // offset
1057   fields[argp++] = TypeInt::INT;        // len
1058   fields[argp++] = TypeInt::INT;        // k
1059   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1060   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1061 
1062   // returning carry (int)
1063   fields = TypeTuple::fields(1);
1064   fields[TypeFunc::Parms+0] = TypeInt::INT;
1065   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1066   return TypeFunc::make(domain, range);
1067 }
1068 
1069 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1070   // create input type (domain)
1071   int num_args      = 7;
1072   int argcnt = num_args;
1073   const Type** fields = TypeTuple::fields(argcnt);
1074   int argp = TypeFunc::Parms;
1075   fields[argp++] = TypePtr::NOTNULL;    // a
1076   fields[argp++] = TypePtr::NOTNULL;    // b
1077   fields[argp++] = TypePtr::NOTNULL;    // n
1078   fields[argp++] = TypeInt::INT;        // len
1079   fields[argp++] = TypeLong::LONG;      // inv
1080   fields[argp++] = Type::HALF;
1081   fields[argp++] = TypePtr::NOTNULL;    // result
1082   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1083   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1084 
1085   // result type needed
1086   fields = TypeTuple::fields(1);
1087   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1088 
1089   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1090   return TypeFunc::make(domain, range);
1091 }
1092 
1093 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1094   // create input type (domain)
1095   int num_args      = 6;
1096   int argcnt = num_args;
1097   const Type** fields = TypeTuple::fields(argcnt);
1098   int argp = TypeFunc::Parms;
1099   fields[argp++] = TypePtr::NOTNULL;    // a
1100   fields[argp++] = TypePtr::NOTNULL;    // n
1101   fields[argp++] = TypeInt::INT;        // len
1102   fields[argp++] = TypeLong::LONG;      // inv
1103   fields[argp++] = Type::HALF;
1104   fields[argp++] = TypePtr::NOTNULL;    // result
1105   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1106   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1107 
1108   // result type needed
1109   fields = TypeTuple::fields(1);
1110   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1111 
1112   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1113   return TypeFunc::make(domain, range);
1114 }
1115 
1116 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1117   // create input type (domain)
1118   int num_args = 4;
1119   int argcnt = num_args;
1120   const Type** fields = TypeTuple::fields(argcnt);
1121   int argp = TypeFunc::Parms;
1122   fields[argp++] = TypePtr::NOTNULL;    // obja
1123   fields[argp++] = TypePtr::NOTNULL;    // objb
1124   fields[argp++] = TypeInt::INT;        // length, number of elements
1125   fields[argp++] = TypeInt::INT;        // log2scale, element size
1126   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1127   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1128 
1129   //return mismatch index (int)
1130   fields = TypeTuple::fields(1);
1131   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1132   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1133   return TypeFunc::make(domain, range);
1134 }
1135 
1136 // GHASH block processing
1137 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1138     int argcnt = 4;
1139 
1140     const Type** fields = TypeTuple::fields(argcnt);
1141     int argp = TypeFunc::Parms;
1142     fields[argp++] = TypePtr::NOTNULL;    // state
1143     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1144     fields[argp++] = TypePtr::NOTNULL;    // data
1145     fields[argp++] = TypeInt::INT;        // blocks
1146     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1147     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1148 
1149     // result type needed
1150     fields = TypeTuple::fields(1);
1151     fields[TypeFunc::Parms+0] = NULL; // void
1152     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1153     return TypeFunc::make(domain, range);
1154 }
1155 
1156 //------------- Interpreter state access for on stack replacement
1157 const TypeFunc* OptoRuntime::osr_end_Type() {
1158   // create input type (domain)
1159   const Type **fields = TypeTuple::fields(1);
1160   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1161   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1162 
1163   // create result type
1164   fields = TypeTuple::fields(1);
1165   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1166   fields[TypeFunc::Parms+0] = NULL; // void
1167   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1168   return TypeFunc::make(domain, range);
1169 }
1170 
1171 //-------------- methodData update helpers
1172 
1173 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1174   // create input type (domain)
1175   const Type **fields = TypeTuple::fields(2);
1176   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1177   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1178   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1179 
1180   // create result type
1181   fields = TypeTuple::fields(1);
1182   fields[TypeFunc::Parms+0] = NULL; // void
1183   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1184   return TypeFunc::make(domain,range);
1185 }
1186 
1187 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1188   if (receiver == NULL) return;
1189   Klass* receiver_klass = receiver->klass();
1190 
1191   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1192   int empty_row = -1;           // free row, if any is encountered
1193 
1194   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1195   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1196     // if (vc->receiver(row) == receiver_klass)
1197     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1198     intptr_t row_recv = *(mdp + receiver_off);
1199     if (row_recv == (intptr_t) receiver_klass) {
1200       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1201       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1202       *(mdp + count_off) += DataLayout::counter_increment;
1203       return;
1204     } else if (row_recv == 0) {
1205       // else if (vc->receiver(row) == NULL)
1206       empty_row = (int) row;
1207     }
1208   }
1209 
1210   if (empty_row != -1) {
1211     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1212     // vc->set_receiver(empty_row, receiver_klass);
1213     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1214     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1215     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1216     *(mdp + count_off) = DataLayout::counter_increment;
1217   } else {
1218     // Receiver did not match any saved receiver and there is no empty row for it.
1219     // Increment total counter to indicate polymorphic case.
1220     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1221     *count_p += DataLayout::counter_increment;
1222   }
1223 JRT_END
1224 
1225 //-------------------------------------------------------------------------------------
1226 // register policy
1227 
1228 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1229   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1230   switch (register_save_policy[reg]) {
1231     case 'C': return false; //SOC
1232     case 'E': return true ; //SOE
1233     case 'N': return false; //NS
1234     case 'A': return false; //AS
1235   }
1236   ShouldNotReachHere();
1237   return false;
1238 }
1239 
1240 //-----------------------------------------------------------------------
1241 // Exceptions
1242 //
1243 
1244 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1245 
1246 // The method is an entry that is always called by a C++ method not
1247 // directly from compiled code. Compiled code will call the C++ method following.
1248 // We can't allow async exception to be installed during  exception processing.
1249 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1250 
1251   // Do not confuse exception_oop with pending_exception. The exception_oop
1252   // is only used to pass arguments into the method. Not for general
1253   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1254   // the runtime stubs checks this on exit.
1255   assert(thread->exception_oop() != NULL, "exception oop is found");
1256   address handler_address = NULL;
1257 
1258   Handle exception(thread, thread->exception_oop());
1259   address pc = thread->exception_pc();
1260 
1261   // Clear out the exception oop and pc since looking up an
1262   // exception handler can cause class loading, which might throw an
1263   // exception and those fields are expected to be clear during
1264   // normal bytecode execution.
1265   thread->clear_exception_oop_and_pc();
1266 
1267   LogTarget(Info, exceptions) lt;
1268   if (lt.is_enabled()) {
1269     ResourceMark rm;
1270     LogStream ls(lt);
1271     trace_exception(&ls, exception(), pc, "");
1272   }
1273 
1274   // for AbortVMOnException flag
1275   Exceptions::debug_check_abort(exception);
1276 
1277 #ifdef ASSERT
1278   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1279     // should throw an exception here
1280     ShouldNotReachHere();
1281   }
1282 #endif
1283 
1284   // new exception handling: this method is entered only from adapters
1285   // exceptions from compiled java methods are handled in compiled code
1286   // using rethrow node
1287 
1288   nm = CodeCache::find_nmethod(pc);
1289   assert(nm != NULL, "No NMethod found");
1290   if (nm->is_native_method()) {
1291     fatal("Native method should not have path to exception handling");
1292   } else {
1293     // we are switching to old paradigm: search for exception handler in caller_frame
1294     // instead in exception handler of caller_frame.sender()
1295 
1296     if (JvmtiExport::can_post_on_exceptions()) {
1297       // "Full-speed catching" is not necessary here,
1298       // since we're notifying the VM on every catch.
1299       // Force deoptimization and the rest of the lookup
1300       // will be fine.
1301       deoptimize_caller_frame(thread);
1302     }
1303 
1304     // Check the stack guard pages.  If enabled, look for handler in this frame;
1305     // otherwise, forcibly unwind the frame.
1306     //
1307     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1308     bool force_unwind = !thread->reguard_stack();
1309     bool deopting = false;
1310     if (nm->is_deopt_pc(pc)) {
1311       deopting = true;
1312       RegisterMap map(thread, false);
1313       frame deoptee = thread->last_frame().sender(&map);
1314       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1315       // Adjust the pc back to the original throwing pc
1316       pc = deoptee.pc();
1317     }
1318 
1319     // If we are forcing an unwind because of stack overflow then deopt is
1320     // irrelevant since we are throwing the frame away anyway.
1321 
1322     if (deopting && !force_unwind) {
1323       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1324     } else {
1325 
1326       handler_address =
1327         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1328 
1329       if (handler_address == NULL) {
1330         bool recursive_exception = false;
1331         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1332         assert (handler_address != NULL, "must have compiled handler");
1333         // Update the exception cache only when the unwind was not forced
1334         // and there didn't happen another exception during the computation of the
1335         // compiled exception handler. Checking for exception oop equality is not
1336         // sufficient because some exceptions are pre-allocated and reused.
1337         if (!force_unwind && !recursive_exception) {
1338           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1339         }
1340       } else {
1341 #ifdef ASSERT
1342         bool recursive_exception = false;
1343         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1344         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1345                  p2i(handler_address), p2i(computed_address));
1346 #endif
1347       }
1348     }
1349 
1350     thread->set_exception_pc(pc);
1351     thread->set_exception_handler_pc(handler_address);
1352 
1353     // Check if the exception PC is a MethodHandle call site.
1354     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1355   }
1356 
1357   // Restore correct return pc.  Was saved above.
1358   thread->set_exception_oop(exception());
1359   return handler_address;
1360 
1361 JRT_END
1362 
1363 // We are entering here from exception_blob
1364 // If there is a compiled exception handler in this method, we will continue there;
1365 // otherwise we will unwind the stack and continue at the caller of top frame method
1366 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1367 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1368 // we looked up the handler for has been deoptimized in the meantime. If it has been
1369 // we must not use the handler and instead return the deopt blob.
1370 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1371 //
1372 // We are in Java not VM and in debug mode we have a NoHandleMark
1373 //
1374 #ifndef PRODUCT
1375   SharedRuntime::_find_handler_ctr++;          // find exception handler
1376 #endif
1377   debug_only(NoHandleMark __hm;)
1378   nmethod* nm = NULL;
1379   address handler_address = NULL;
1380   {
1381     // Enter the VM
1382 
1383     ResetNoHandleMark rnhm;
1384     handler_address = handle_exception_C_helper(thread, nm);
1385   }
1386 
1387   // Back in java: Use no oops, DON'T safepoint
1388 
1389   // Now check to see if the handler we are returning is in a now
1390   // deoptimized frame
1391 
1392   if (nm != NULL) {
1393     RegisterMap map(thread, false);
1394     frame caller = thread->last_frame().sender(&map);
1395 #ifdef ASSERT
1396     assert(caller.is_compiled_frame(), "must be");
1397 #endif // ASSERT
1398     if (caller.is_deoptimized_frame()) {
1399       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1400     }
1401   }
1402   return handler_address;
1403 }
1404 
1405 //------------------------------rethrow----------------------------------------
1406 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1407 // is either throwing or rethrowing an exception.  The callee-save registers
1408 // have been restored, synchronized objects have been unlocked and the callee
1409 // stack frame has been removed.  The return address was passed in.
1410 // Exception oop is passed as the 1st argument.  This routine is then called
1411 // from the stub.  On exit, we know where to jump in the caller's code.
1412 // After this C code exits, the stub will pop his frame and end in a jump
1413 // (instead of a return).  We enter the caller's default handler.
1414 //
1415 // This must be JRT_LEAF:
1416 //     - caller will not change its state as we cannot block on exit,
1417 //       therefore raw_exception_handler_for_return_address is all it takes
1418 //       to handle deoptimized blobs
1419 //
1420 // However, there needs to be a safepoint check in the middle!  So compiled
1421 // safepoints are completely watertight.
1422 //
1423 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1424 //
1425 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1426 //
1427 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1428 #ifndef PRODUCT
1429   SharedRuntime::_rethrow_ctr++;               // count rethrows
1430 #endif
1431   assert (exception != NULL, "should have thrown a NULLPointerException");
1432 #ifdef ASSERT
1433   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1434     // should throw an exception here
1435     ShouldNotReachHere();
1436   }
1437 #endif
1438 
1439   thread->set_vm_result(exception);
1440   // Frame not compiled (handles deoptimization blob)
1441   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1442 }
1443 
1444 
1445 const TypeFunc *OptoRuntime::rethrow_Type() {
1446   // create input type (domain)
1447   const Type **fields = TypeTuple::fields(1);
1448   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1449   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1450 
1451   // create result type (range)
1452   fields = TypeTuple::fields(1);
1453   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1454   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1455 
1456   return TypeFunc::make(domain, range);
1457 }
1458 
1459 
1460 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1461   // Deoptimize the caller before continuing, as the compiled
1462   // exception handler table may not be valid.
1463   if (!StressCompiledExceptionHandlers && doit) {
1464     deoptimize_caller_frame(thread);
1465   }
1466 }
1467 
1468 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1469   // Called from within the owner thread, so no need for safepoint
1470   RegisterMap reg_map(thread);
1471   frame stub_frame = thread->last_frame();
1472   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1473   frame caller_frame = stub_frame.sender(&reg_map);
1474 
1475   // Deoptimize the caller frame.
1476   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1477 }
1478 
1479 
1480 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1481   // Called from within the owner thread, so no need for safepoint
1482   RegisterMap reg_map(thread);
1483   frame stub_frame = thread->last_frame();
1484   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1485   frame caller_frame = stub_frame.sender(&reg_map);
1486   return caller_frame.is_deoptimized_frame();
1487 }
1488 
1489 
1490 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1491   // create input type (domain)
1492   const Type **fields = TypeTuple::fields(1);
1493   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1494   // // The JavaThread* is passed to each routine as the last argument
1495   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1496   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1497 
1498   // create result type (range)
1499   fields = TypeTuple::fields(0);
1500 
1501   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1502 
1503   return TypeFunc::make(domain,range);
1504 }
1505 
1506 
1507 //-----------------------------------------------------------------------------
1508 // Dtrace support.  entry and exit probes have the same signature
1509 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1510   // create input type (domain)
1511   const Type **fields = TypeTuple::fields(2);
1512   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1513   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1514   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1515 
1516   // create result type (range)
1517   fields = TypeTuple::fields(0);
1518 
1519   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1520 
1521   return TypeFunc::make(domain,range);
1522 }
1523 
1524 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1525   // create input type (domain)
1526   const Type **fields = TypeTuple::fields(2);
1527   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1528   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1529 
1530   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1531 
1532   // create result type (range)
1533   fields = TypeTuple::fields(0);
1534 
1535   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1536 
1537   return TypeFunc::make(domain,range);
1538 }
1539 
1540 
1541 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1542   assert(oopDesc::is_oop(obj), "must be a valid oop");
1543   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1544   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1545 JRT_END
1546 
1547 //-----------------------------------------------------------------------------
1548 
1549 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1550 
1551 //
1552 // dump the collected NamedCounters.
1553 //
1554 void OptoRuntime::print_named_counters() {
1555   int total_lock_count = 0;
1556   int eliminated_lock_count = 0;
1557 
1558   NamedCounter* c = _named_counters;
1559   while (c) {
1560     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1561       int count = c->count();
1562       if (count > 0) {
1563         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1564         if (Verbose) {
1565           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1566         }
1567         total_lock_count += count;
1568         if (eliminated) {
1569           eliminated_lock_count += count;
1570         }
1571       }
1572     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1573       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1574       if (blc->nonzero()) {
1575         tty->print_cr("%s", c->name());
1576         blc->print_on(tty);
1577       }
1578 #if INCLUDE_RTM_OPT
1579     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1580       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1581       if (rlc->nonzero()) {
1582         tty->print_cr("%s", c->name());
1583         rlc->print_on(tty);
1584       }
1585 #endif
1586     }
1587     c = c->next();
1588   }
1589   if (total_lock_count > 0) {
1590     tty->print_cr("dynamic locks: %d", total_lock_count);
1591     if (eliminated_lock_count) {
1592       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1593                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1594     }
1595   }
1596 }
1597 
1598 //
1599 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1600 //  name which consists of method@line for the inlining tree.
1601 //
1602 
1603 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1604   int max_depth = youngest_jvms->depth();
1605 
1606   // Visit scopes from youngest to oldest.
1607   bool first = true;
1608   stringStream st;
1609   for (int depth = max_depth; depth >= 1; depth--) {
1610     JVMState* jvms = youngest_jvms->of_depth(depth);
1611     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1612     if (!first) {
1613       st.print(" ");
1614     } else {
1615       first = false;
1616     }
1617     int bci = jvms->bci();
1618     if (bci < 0) bci = 0;
1619     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1620     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1621   }
1622   NamedCounter* c;
1623   if (tag == NamedCounter::BiasedLockingCounter) {
1624     c = new BiasedLockingNamedCounter(st.as_string());
1625   } else if (tag == NamedCounter::RTMLockingCounter) {
1626     c = new RTMLockingNamedCounter(st.as_string());
1627   } else {
1628     c = new NamedCounter(st.as_string(), tag);
1629   }
1630 
1631   // atomically add the new counter to the head of the list.  We only
1632   // add counters so this is safe.
1633   NamedCounter* head;
1634   do {
1635     c->set_next(NULL);
1636     head = _named_counters;
1637     c->set_next(head);
1638   } while (Atomic::cmpxchg(c, &_named_counters, head) != head);
1639   return c;
1640 }
1641 
1642 int trace_exception_counter = 0;
1643 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1644   trace_exception_counter++;
1645   stringStream tempst;
1646 
1647   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1648   exception_oop->print_value_on(&tempst);
1649   tempst.print(" in ");
1650   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1651   if (blob->is_compiled()) {
1652     CompiledMethod* cm = blob->as_compiled_method_or_null();
1653     cm->method()->print_value_on(&tempst);
1654   } else if (blob->is_runtime_stub()) {
1655     tempst.print("<runtime-stub>");
1656   } else {
1657     tempst.print("<unknown>");
1658   }
1659   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1660   tempst.print("]");
1661 
1662   st->print_raw_cr(tempst.as_string());
1663 }