1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/markOop.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/atomic.hpp"
  32 #include "runtime/handles.inline.hpp"
  33 #include "runtime/interfaceSupport.inline.hpp"
  34 #include "runtime/mutexLocker.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/objectMonitor.inline.hpp"
  37 #include "runtime/orderAccess.inline.hpp"
  38 #include "runtime/osThread.hpp"
  39 #include "runtime/safepointMechanism.inline.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 #include "services/threadService.hpp"
  43 #include "trace/tracing.hpp"
  44 #include "trace/traceMacros.hpp"
  45 #include "utilities/dtrace.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/preserveException.hpp"
  48 
  49 #ifdef DTRACE_ENABLED
  50 
  51 // Only bother with this argument setup if dtrace is available
  52 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  53 
  54 
  55 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  56   char* bytes = NULL;                                                      \
  57   int len = 0;                                                             \
  58   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  59   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  60   if (klassname != NULL) {                                                 \
  61     bytes = (char*)klassname->bytes();                                     \
  62     len = klassname->utf8_length();                                        \
  63   }
  64 
  65 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  66   {                                                                        \
  67     if (DTraceMonitorProbes) {                                             \
  68       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  69       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  70                            (monitor), bytes, len, (millis));               \
  71     }                                                                      \
  72   }
  73 
  74 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  75 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  76 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  77 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  78 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  79 
  80 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  81   {                                                                        \
  82     if (DTraceMonitorProbes) {                                             \
  83       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  84       HOTSPOT_MONITOR_##probe(jtid,                                        \
  85                               (uintptr_t)(monitor), bytes, len);           \
  86     }                                                                      \
  87   }
  88 
  89 #else //  ndef DTRACE_ENABLED
  90 
  91 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  92 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  93 
  94 #endif // ndef DTRACE_ENABLED
  95 
  96 // Tunables ...
  97 // The knob* variables are effectively final.  Once set they should
  98 // never be modified hence.  Consider using __read_mostly with GCC.
  99 
 100 int ObjectMonitor::Knob_ExitRelease = 0;
 101 int ObjectMonitor::Knob_Verbose     = 0;
 102 int ObjectMonitor::Knob_VerifyInUse = 0;
 103 int ObjectMonitor::Knob_VerifyMatch = 0;
 104 int ObjectMonitor::Knob_SpinLimit   = 5000;    // derived by an external tool -
 105 static int Knob_ReportSettings      = 0;
 106 
 107 static int Knob_SpinBase            = 0;       // Floor AKA SpinMin
 108 static int Knob_SpinBackOff         = 0;       // spin-loop backoff
 109 static int Knob_CASPenalty          = -1;      // Penalty for failed CAS
 110 static int Knob_OXPenalty           = -1;      // Penalty for observed _owner change
 111 static int Knob_SpinSetSucc         = 1;       // spinners set the _succ field
 112 static int Knob_SpinEarly           = 1;
 113 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 114 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 115 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 116 static int Knob_Bonus               = 100;     // spin success bonus
 117 static int Knob_BonusB              = 100;     // spin success bonus
 118 static int Knob_Penalty             = 200;     // spin failure penalty
 119 static int Knob_Poverty             = 1000;
 120 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 121 static int Knob_FixedSpin           = 0;
 122 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 123 static int Knob_UsePause            = 1;
 124 static int Knob_ExitPolicy          = 0;
 125 static int Knob_PreSpin             = 10;      // 20-100 likely better
 126 static int Knob_ResetEvent          = 0;
 127 static int BackOffMask              = 0;
 128 
 129 static int Knob_FastHSSEC           = 0;
 130 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 131 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 132 static volatile int InitDone        = 0;
 133 
 134 // -----------------------------------------------------------------------------
 135 // Theory of operations -- Monitors lists, thread residency, etc:
 136 //
 137 // * A thread acquires ownership of a monitor by successfully
 138 //   CAS()ing the _owner field from null to non-null.
 139 //
 140 // * Invariant: A thread appears on at most one monitor list --
 141 //   cxq, EntryList or WaitSet -- at any one time.
 142 //
 143 // * Contending threads "push" themselves onto the cxq with CAS
 144 //   and then spin/park.
 145 //
 146 // * After a contending thread eventually acquires the lock it must
 147 //   dequeue itself from either the EntryList or the cxq.
 148 //
 149 // * The exiting thread identifies and unparks an "heir presumptive"
 150 //   tentative successor thread on the EntryList.  Critically, the
 151 //   exiting thread doesn't unlink the successor thread from the EntryList.
 152 //   After having been unparked, the wakee will recontend for ownership of
 153 //   the monitor.   The successor (wakee) will either acquire the lock or
 154 //   re-park itself.
 155 //
 156 //   Succession is provided for by a policy of competitive handoff.
 157 //   The exiting thread does _not_ grant or pass ownership to the
 158 //   successor thread.  (This is also referred to as "handoff" succession").
 159 //   Instead the exiting thread releases ownership and possibly wakes
 160 //   a successor, so the successor can (re)compete for ownership of the lock.
 161 //   If the EntryList is empty but the cxq is populated the exiting
 162 //   thread will drain the cxq into the EntryList.  It does so by
 163 //   by detaching the cxq (installing null with CAS) and folding
 164 //   the threads from the cxq into the EntryList.  The EntryList is
 165 //   doubly linked, while the cxq is singly linked because of the
 166 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 167 //
 168 // * Concurrency invariants:
 169 //
 170 //   -- only the monitor owner may access or mutate the EntryList.
 171 //      The mutex property of the monitor itself protects the EntryList
 172 //      from concurrent interference.
 173 //   -- Only the monitor owner may detach the cxq.
 174 //
 175 // * The monitor entry list operations avoid locks, but strictly speaking
 176 //   they're not lock-free.  Enter is lock-free, exit is not.
 177 //   For a description of 'Methods and apparatus providing non-blocking access
 178 //   to a resource,' see U.S. Pat. No. 7844973.
 179 //
 180 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 181 //   detaching thread.  This mechanism is immune from the ABA corruption.
 182 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 183 //
 184 // * Taken together, the cxq and the EntryList constitute or form a
 185 //   single logical queue of threads stalled trying to acquire the lock.
 186 //   We use two distinct lists to improve the odds of a constant-time
 187 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 188 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 189 //   A key desideratum is to minimize queue & monitor metadata manipulation
 190 //   that occurs while holding the monitor lock -- that is, we want to
 191 //   minimize monitor lock holds times.  Note that even a small amount of
 192 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 193 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 194 //   locks and monitor metadata.
 195 //
 196 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 197 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 198 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 199 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 200 //
 201 //   The EntryList is ordered by the prevailing queue discipline and
 202 //   can be organized in any convenient fashion, such as a doubly-linked list or
 203 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 204 //   to operate in constant-time.  If we need a priority queue then something akin
 205 //   to Solaris' sleepq would work nicely.  Viz.,
 206 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 207 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 208 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 209 //   EntryList accordingly.
 210 //
 211 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 212 //   somewhat similar to an elevator-scan.
 213 //
 214 // * The monitor synchronization subsystem avoids the use of native
 215 //   synchronization primitives except for the narrow platform-specific
 216 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 217 //   the semantics of park-unpark.  Put another way, this monitor implementation
 218 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 219 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 220 //   underlying OS manages the READY<->RUN transitions.
 221 //
 222 // * Waiting threads reside on the WaitSet list -- wait() puts
 223 //   the caller onto the WaitSet.
 224 //
 225 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 226 //   either the EntryList or cxq.  Subsequent exit() operations will
 227 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 228 //   it's likely the notifyee would simply impale itself on the lock held
 229 //   by the notifier.
 230 //
 231 // * An interesting alternative is to encode cxq as (List,LockByte) where
 232 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 233 //   variable, like _recursions, in the scheme.  The threads or Events that form
 234 //   the list would have to be aligned in 256-byte addresses.  A thread would
 235 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 236 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 237 //   Note that is is *not* word-tearing, but it does presume that full-word
 238 //   CAS operations are coherent with intermix with STB operations.  That's true
 239 //   on most common processors.
 240 //
 241 // * See also http://blogs.sun.com/dave
 242 
 243 
 244 void* ObjectMonitor::operator new (size_t size) throw() {
 245   return AllocateHeap(size, mtInternal);
 246 }
 247 void* ObjectMonitor::operator new[] (size_t size) throw() {
 248   return operator new (size);
 249 }
 250 void ObjectMonitor::operator delete(void* p) {
 251   FreeHeap(p);
 252 }
 253 void ObjectMonitor::operator delete[] (void *p) {
 254   operator delete(p);
 255 }
 256 
 257 // -----------------------------------------------------------------------------
 258 // Enter support
 259 
 260 void ObjectMonitor::enter(TRAPS) {
 261   // The following code is ordered to check the most common cases first
 262   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 263   Thread * const Self = THREAD;
 264 
 265   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 266   if (cur == NULL) {
 267     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 268     assert(_recursions == 0, "invariant");
 269     assert(_owner == Self, "invariant");
 270     return;
 271   }
 272 
 273   if (cur == Self) {
 274     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 275     _recursions++;
 276     return;
 277   }
 278 
 279   if (Self->is_lock_owned ((address)cur)) {
 280     assert(_recursions == 0, "internal state error");
 281     _recursions = 1;
 282     // Commute owner from a thread-specific on-stack BasicLockObject address to
 283     // a full-fledged "Thread *".
 284     _owner = Self;
 285     return;
 286   }
 287 
 288   // We've encountered genuine contention.
 289   assert(Self->_Stalled == 0, "invariant");
 290   Self->_Stalled = intptr_t(this);
 291 
 292   // Try one round of spinning *before* enqueueing Self
 293   // and before going through the awkward and expensive state
 294   // transitions.  The following spin is strictly optional ...
 295   // Note that if we acquire the monitor from an initial spin
 296   // we forgo posting JVMTI events and firing DTRACE probes.
 297   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 298     assert(_owner == Self, "invariant");
 299     assert(_recursions == 0, "invariant");
 300     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 301     Self->_Stalled = 0;
 302     return;
 303   }
 304 
 305   assert(_owner != Self, "invariant");
 306   assert(_succ != Self, "invariant");
 307   assert(Self->is_Java_thread(), "invariant");
 308   JavaThread * jt = (JavaThread *) Self;
 309   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 310   assert(jt->thread_state() != _thread_blocked, "invariant");
 311   assert(this->object() != NULL, "invariant");
 312   assert(_count >= 0, "invariant");
 313 
 314   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 315   // Ensure the object-monitor relationship remains stable while there's contention.
 316   Atomic::inc(&_count);
 317 
 318   EventJavaMonitorEnter event;
 319 
 320   { // Change java thread status to indicate blocked on monitor enter.
 321     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 322 
 323     Self->set_current_pending_monitor(this);
 324 
 325     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 326     if (JvmtiExport::should_post_monitor_contended_enter()) {
 327       JvmtiExport::post_monitor_contended_enter(jt, this);
 328 
 329       // The current thread does not yet own the monitor and does not
 330       // yet appear on any queues that would get it made the successor.
 331       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 332       // handler cannot accidentally consume an unpark() meant for the
 333       // ParkEvent associated with this ObjectMonitor.
 334     }
 335 
 336     OSThreadContendState osts(Self->osthread());
 337     ThreadBlockInVM tbivm(jt);
 338 
 339     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 340     for (;;) {
 341       jt->set_suspend_equivalent();
 342       // cleared by handle_special_suspend_equivalent_condition()
 343       // or java_suspend_self()
 344 
 345       EnterI(THREAD);
 346 
 347       if (!ExitSuspendEquivalent(jt)) break;
 348 
 349       // We have acquired the contended monitor, but while we were
 350       // waiting another thread suspended us. We don't want to enter
 351       // the monitor while suspended because that would surprise the
 352       // thread that suspended us.
 353       //
 354       _recursions = 0;
 355       _succ = NULL;
 356       exit(false, Self);
 357 
 358       jt->java_suspend_self();
 359     }
 360     Self->set_current_pending_monitor(NULL);
 361 
 362     // We cleared the pending monitor info since we've just gotten past
 363     // the enter-check-for-suspend dance and we now own the monitor free
 364     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 365     // destructor can go to a safepoint at the end of this block. If we
 366     // do a thread dump during that safepoint, then this thread will show
 367     // as having "-locked" the monitor, but the OS and java.lang.Thread
 368     // states will still report that the thread is blocked trying to
 369     // acquire it.
 370   }
 371 
 372   Atomic::dec(&_count);
 373   assert(_count >= 0, "invariant");
 374   Self->_Stalled = 0;
 375 
 376   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 377   assert(_recursions == 0, "invariant");
 378   assert(_owner == Self, "invariant");
 379   assert(_succ != Self, "invariant");
 380   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 381 
 382   // The thread -- now the owner -- is back in vm mode.
 383   // Report the glorious news via TI,DTrace and jvmstat.
 384   // The probe effect is non-trivial.  All the reportage occurs
 385   // while we hold the monitor, increasing the length of the critical
 386   // section.  Amdahl's parallel speedup law comes vividly into play.
 387   //
 388   // Another option might be to aggregate the events (thread local or
 389   // per-monitor aggregation) and defer reporting until a more opportune
 390   // time -- such as next time some thread encounters contention but has
 391   // yet to acquire the lock.  While spinning that thread could
 392   // spinning we could increment JVMStat counters, etc.
 393 
 394   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 395   if (JvmtiExport::should_post_monitor_contended_entered()) {
 396     JvmtiExport::post_monitor_contended_entered(jt, this);
 397 
 398     // The current thread already owns the monitor and is not going to
 399     // call park() for the remainder of the monitor enter protocol. So
 400     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 401     // event handler consumed an unpark() issued by the thread that
 402     // just exited the monitor.
 403   }
 404 
 405   if (event.should_commit()) {
 406     event.set_monitorClass(((oop)this->object())->klass());
 407     event.set_previousOwner((TYPE_THREAD)_previous_owner_tid);
 408     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 409     event.commit();
 410   }
 411 
 412   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 413 }
 414 
 415 
 416 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 417 // Callers must compensate as needed.
 418 
 419 int ObjectMonitor::TryLock(Thread * Self) {
 420   void * own = _owner;
 421   if (own != NULL) return 0;
 422   if (Atomic::replace_if_null(Self, &_owner)) {
 423     // Either guarantee _recursions == 0 or set _recursions = 0.
 424     assert(_recursions == 0, "invariant");
 425     assert(_owner == Self, "invariant");
 426     return 1;
 427   }
 428   // The lock had been free momentarily, but we lost the race to the lock.
 429   // Interference -- the CAS failed.
 430   // We can either return -1 or retry.
 431   // Retry doesn't make as much sense because the lock was just acquired.
 432   return -1;
 433 }
 434 
 435 #define MAX_RECHECK_INTERVAL 1000
 436 
 437 void ObjectMonitor::EnterI(TRAPS) {
 438   Thread * const Self = THREAD;
 439   assert(Self->is_Java_thread(), "invariant");
 440   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 441 
 442   // Try the lock - TATAS
 443   if (TryLock (Self) > 0) {
 444     assert(_succ != Self, "invariant");
 445     assert(_owner == Self, "invariant");
 446     assert(_Responsible != Self, "invariant");
 447     return;
 448   }
 449 
 450   DeferredInitialize();
 451 
 452   // We try one round of spinning *before* enqueueing Self.
 453   //
 454   // If the _owner is ready but OFFPROC we could use a YieldTo()
 455   // operation to donate the remainder of this thread's quantum
 456   // to the owner.  This has subtle but beneficial affinity
 457   // effects.
 458 
 459   if (TrySpin (Self) > 0) {
 460     assert(_owner == Self, "invariant");
 461     assert(_succ != Self, "invariant");
 462     assert(_Responsible != Self, "invariant");
 463     return;
 464   }
 465 
 466   // The Spin failed -- Enqueue and park the thread ...
 467   assert(_succ != Self, "invariant");
 468   assert(_owner != Self, "invariant");
 469   assert(_Responsible != Self, "invariant");
 470 
 471   // Enqueue "Self" on ObjectMonitor's _cxq.
 472   //
 473   // Node acts as a proxy for Self.
 474   // As an aside, if were to ever rewrite the synchronization code mostly
 475   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 476   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 477   // as well as eliminate a subset of ABA issues.
 478   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 479 
 480   ObjectWaiter node(Self);
 481   Self->_ParkEvent->reset();
 482   node._prev   = (ObjectWaiter *) 0xBAD;
 483   node.TState  = ObjectWaiter::TS_CXQ;
 484 
 485   // Push "Self" onto the front of the _cxq.
 486   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 487   // Note that spinning tends to reduce the rate at which threads
 488   // enqueue and dequeue on EntryList|cxq.
 489   ObjectWaiter * nxt;
 490   for (;;) {
 491     node._next = nxt = _cxq;
 492     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 493 
 494     // Interference - the CAS failed because _cxq changed.  Just retry.
 495     // As an optional optimization we retry the lock.
 496     if (TryLock (Self) > 0) {
 497       assert(_succ != Self, "invariant");
 498       assert(_owner == Self, "invariant");
 499       assert(_Responsible != Self, "invariant");
 500       return;
 501     }
 502   }
 503 
 504   // Check for cxq|EntryList edge transition to non-null.  This indicates
 505   // the onset of contention.  While contention persists exiting threads
 506   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 507   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 508   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 509   // arrange for one of the contending thread to use a timed park() operations
 510   // to detect and recover from the race.  (Stranding is form of progress failure
 511   // where the monitor is unlocked but all the contending threads remain parked).
 512   // That is, at least one of the contended threads will periodically poll _owner.
 513   // One of the contending threads will become the designated "Responsible" thread.
 514   // The Responsible thread uses a timed park instead of a normal indefinite park
 515   // operation -- it periodically wakes and checks for and recovers from potential
 516   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 517   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 518   // be responsible for a monitor.
 519   //
 520   // Currently, one of the contended threads takes on the added role of "Responsible".
 521   // A viable alternative would be to use a dedicated "stranding checker" thread
 522   // that periodically iterated over all the threads (or active monitors) and unparked
 523   // successors where there was risk of stranding.  This would help eliminate the
 524   // timer scalability issues we see on some platforms as we'd only have one thread
 525   // -- the checker -- parked on a timer.
 526 
 527   if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 528     // Try to assume the role of responsible thread for the monitor.
 529     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 530     Atomic::replace_if_null(Self, &_Responsible);
 531   }
 532 
 533   // The lock might have been released while this thread was occupied queueing
 534   // itself onto _cxq.  To close the race and avoid "stranding" and
 535   // progress-liveness failure we must resample-retry _owner before parking.
 536   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 537   // In this case the ST-MEMBAR is accomplished with CAS().
 538   //
 539   // TODO: Defer all thread state transitions until park-time.
 540   // Since state transitions are heavy and inefficient we'd like
 541   // to defer the state transitions until absolutely necessary,
 542   // and in doing so avoid some transitions ...
 543 
 544   TEVENT(Inflated enter - Contention);
 545   int nWakeups = 0;
 546   int recheckInterval = 1;
 547 
 548   for (;;) {
 549 
 550     if (TryLock(Self) > 0) break;
 551     assert(_owner != Self, "invariant");
 552 
 553     if ((SyncFlags & 2) && _Responsible == NULL) {
 554       Atomic::replace_if_null(Self, &_Responsible);
 555     }
 556 
 557     // park self
 558     if (_Responsible == Self || (SyncFlags & 1)) {
 559       TEVENT(Inflated enter - park TIMED);
 560       Self->_ParkEvent->park((jlong) recheckInterval);
 561       // Increase the recheckInterval, but clamp the value.
 562       recheckInterval *= 8;
 563       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 564         recheckInterval = MAX_RECHECK_INTERVAL;
 565       }
 566     } else {
 567       TEVENT(Inflated enter - park UNTIMED);
 568       Self->_ParkEvent->park();
 569     }
 570 
 571     if (TryLock(Self) > 0) break;
 572 
 573     // The lock is still contested.
 574     // Keep a tally of the # of futile wakeups.
 575     // Note that the counter is not protected by a lock or updated by atomics.
 576     // That is by design - we trade "lossy" counters which are exposed to
 577     // races during updates for a lower probe effect.
 578     TEVENT(Inflated enter - Futile wakeup);
 579     // This PerfData object can be used in parallel with a safepoint.
 580     // See the work around in PerfDataManager::destroy().
 581     OM_PERFDATA_OP(FutileWakeups, inc());
 582     ++nWakeups;
 583 
 584     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 585     // We can defer clearing _succ until after the spin completes
 586     // TrySpin() must tolerate being called with _succ == Self.
 587     // Try yet another round of adaptive spinning.
 588     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 589 
 590     // We can find that we were unpark()ed and redesignated _succ while
 591     // we were spinning.  That's harmless.  If we iterate and call park(),
 592     // park() will consume the event and return immediately and we'll
 593     // just spin again.  This pattern can repeat, leaving _succ to simply
 594     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 595     // Alternately, we can sample fired() here, and if set, forgo spinning
 596     // in the next iteration.
 597 
 598     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 599       Self->_ParkEvent->reset();
 600       OrderAccess::fence();
 601     }
 602     if (_succ == Self) _succ = NULL;
 603 
 604     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 605     OrderAccess::fence();
 606   }
 607 
 608   // Egress :
 609   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 610   // Normally we'll find Self on the EntryList .
 611   // From the perspective of the lock owner (this thread), the
 612   // EntryList is stable and cxq is prepend-only.
 613   // The head of cxq is volatile but the interior is stable.
 614   // In addition, Self.TState is stable.
 615 
 616   assert(_owner == Self, "invariant");
 617   assert(object() != NULL, "invariant");
 618   // I'd like to write:
 619   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 620   // but as we're at a safepoint that's not safe.
 621 
 622   UnlinkAfterAcquire(Self, &node);
 623   if (_succ == Self) _succ = NULL;
 624 
 625   assert(_succ != Self, "invariant");
 626   if (_Responsible == Self) {
 627     _Responsible = NULL;
 628     OrderAccess::fence(); // Dekker pivot-point
 629 
 630     // We may leave threads on cxq|EntryList without a designated
 631     // "Responsible" thread.  This is benign.  When this thread subsequently
 632     // exits the monitor it can "see" such preexisting "old" threads --
 633     // threads that arrived on the cxq|EntryList before the fence, above --
 634     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 635     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 636     // non-null and elect a new "Responsible" timer thread.
 637     //
 638     // This thread executes:
 639     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 640     //    LD cxq|EntryList               (in subsequent exit)
 641     //
 642     // Entering threads in the slow/contended path execute:
 643     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 644     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 645     //
 646     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 647     // exit operation from floating above the ST Responsible=null.
 648   }
 649 
 650   // We've acquired ownership with CAS().
 651   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 652   // But since the CAS() this thread may have also stored into _succ,
 653   // EntryList, cxq or Responsible.  These meta-data updates must be
 654   // visible __before this thread subsequently drops the lock.
 655   // Consider what could occur if we didn't enforce this constraint --
 656   // STs to monitor meta-data and user-data could reorder with (become
 657   // visible after) the ST in exit that drops ownership of the lock.
 658   // Some other thread could then acquire the lock, but observe inconsistent
 659   // or old monitor meta-data and heap data.  That violates the JMM.
 660   // To that end, the 1-0 exit() operation must have at least STST|LDST
 661   // "release" barrier semantics.  Specifically, there must be at least a
 662   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 663   // the lock.   The barrier ensures that changes to monitor meta-data and data
 664   // protected by the lock will be visible before we release the lock, and
 665   // therefore before some other thread (CPU) has a chance to acquire the lock.
 666   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 667   //
 668   // Critically, any prior STs to _succ or EntryList must be visible before
 669   // the ST of null into _owner in the *subsequent* (following) corresponding
 670   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 671   // execute a serializing instruction.
 672 
 673   if (SyncFlags & 8) {
 674     OrderAccess::fence();
 675   }
 676   return;
 677 }
 678 
 679 // ReenterI() is a specialized inline form of the latter half of the
 680 // contended slow-path from EnterI().  We use ReenterI() only for
 681 // monitor reentry in wait().
 682 //
 683 // In the future we should reconcile EnterI() and ReenterI(), adding
 684 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 685 // loop accordingly.
 686 
 687 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 688   assert(Self != NULL, "invariant");
 689   assert(SelfNode != NULL, "invariant");
 690   assert(SelfNode->_thread == Self, "invariant");
 691   assert(_waiters > 0, "invariant");
 692   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 693   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 694   JavaThread * jt = (JavaThread *) Self;
 695 
 696   int nWakeups = 0;
 697   for (;;) {
 698     ObjectWaiter::TStates v = SelfNode->TState;
 699     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 700     assert(_owner != Self, "invariant");
 701 
 702     if (TryLock(Self) > 0) break;
 703     if (TrySpin(Self) > 0) break;
 704 
 705     TEVENT(Wait Reentry - parking);
 706 
 707     // State transition wrappers around park() ...
 708     // ReenterI() wisely defers state transitions until
 709     // it's clear we must park the thread.
 710     {
 711       OSThreadContendState osts(Self->osthread());
 712       ThreadBlockInVM tbivm(jt);
 713 
 714       // cleared by handle_special_suspend_equivalent_condition()
 715       // or java_suspend_self()
 716       jt->set_suspend_equivalent();
 717       if (SyncFlags & 1) {
 718         Self->_ParkEvent->park((jlong)MAX_RECHECK_INTERVAL);
 719       } else {
 720         Self->_ParkEvent->park();
 721       }
 722 
 723       // were we externally suspended while we were waiting?
 724       for (;;) {
 725         if (!ExitSuspendEquivalent(jt)) break;
 726         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 727         jt->java_suspend_self();
 728         jt->set_suspend_equivalent();
 729       }
 730     }
 731 
 732     // Try again, but just so we distinguish between futile wakeups and
 733     // successful wakeups.  The following test isn't algorithmically
 734     // necessary, but it helps us maintain sensible statistics.
 735     if (TryLock(Self) > 0) break;
 736 
 737     // The lock is still contested.
 738     // Keep a tally of the # of futile wakeups.
 739     // Note that the counter is not protected by a lock or updated by atomics.
 740     // That is by design - we trade "lossy" counters which are exposed to
 741     // races during updates for a lower probe effect.
 742     TEVENT(Wait Reentry - futile wakeup);
 743     ++nWakeups;
 744 
 745     // Assuming this is not a spurious wakeup we'll normally
 746     // find that _succ == Self.
 747     if (_succ == Self) _succ = NULL;
 748 
 749     // Invariant: after clearing _succ a contending thread
 750     // *must* retry  _owner before parking.
 751     OrderAccess::fence();
 752 
 753     // This PerfData object can be used in parallel with a safepoint.
 754     // See the work around in PerfDataManager::destroy().
 755     OM_PERFDATA_OP(FutileWakeups, inc());
 756   }
 757 
 758   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 759   // Normally we'll find Self on the EntryList.
 760   // Unlinking from the EntryList is constant-time and atomic-free.
 761   // From the perspective of the lock owner (this thread), the
 762   // EntryList is stable and cxq is prepend-only.
 763   // The head of cxq is volatile but the interior is stable.
 764   // In addition, Self.TState is stable.
 765 
 766   assert(_owner == Self, "invariant");
 767   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 768   UnlinkAfterAcquire(Self, SelfNode);
 769   if (_succ == Self) _succ = NULL;
 770   assert(_succ != Self, "invariant");
 771   SelfNode->TState = ObjectWaiter::TS_RUN;
 772   OrderAccess::fence();      // see comments at the end of EnterI()
 773 }
 774 
 775 // By convention we unlink a contending thread from EntryList|cxq immediately
 776 // after the thread acquires the lock in ::enter().  Equally, we could defer
 777 // unlinking the thread until ::exit()-time.
 778 
 779 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 780   assert(_owner == Self, "invariant");
 781   assert(SelfNode->_thread == Self, "invariant");
 782 
 783   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 784     // Normal case: remove Self from the DLL EntryList .
 785     // This is a constant-time operation.
 786     ObjectWaiter * nxt = SelfNode->_next;
 787     ObjectWaiter * prv = SelfNode->_prev;
 788     if (nxt != NULL) nxt->_prev = prv;
 789     if (prv != NULL) prv->_next = nxt;
 790     if (SelfNode == _EntryList) _EntryList = nxt;
 791     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 792     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 793     TEVENT(Unlink from EntryList);
 794   } else {
 795     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 796     // Inopportune interleaving -- Self is still on the cxq.
 797     // This usually means the enqueue of self raced an exiting thread.
 798     // Normally we'll find Self near the front of the cxq, so
 799     // dequeueing is typically fast.  If needbe we can accelerate
 800     // this with some MCS/CHL-like bidirectional list hints and advisory
 801     // back-links so dequeueing from the interior will normally operate
 802     // in constant-time.
 803     // Dequeue Self from either the head (with CAS) or from the interior
 804     // with a linear-time scan and normal non-atomic memory operations.
 805     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 806     // and then unlink Self from EntryList.  We have to drain eventually,
 807     // so it might as well be now.
 808 
 809     ObjectWaiter * v = _cxq;
 810     assert(v != NULL, "invariant");
 811     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 812       // The CAS above can fail from interference IFF a "RAT" arrived.
 813       // In that case Self must be in the interior and can no longer be
 814       // at the head of cxq.
 815       if (v == SelfNode) {
 816         assert(_cxq != v, "invariant");
 817         v = _cxq;          // CAS above failed - start scan at head of list
 818       }
 819       ObjectWaiter * p;
 820       ObjectWaiter * q = NULL;
 821       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 822         q = p;
 823         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 824       }
 825       assert(v != SelfNode, "invariant");
 826       assert(p == SelfNode, "Node not found on cxq");
 827       assert(p != _cxq, "invariant");
 828       assert(q != NULL, "invariant");
 829       assert(q->_next == p, "invariant");
 830       q->_next = p->_next;
 831     }
 832     TEVENT(Unlink from cxq);
 833   }
 834 
 835 #ifdef ASSERT
 836   // Diagnostic hygiene ...
 837   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 838   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 839   SelfNode->TState = ObjectWaiter::TS_RUN;
 840 #endif
 841 }
 842 
 843 // -----------------------------------------------------------------------------
 844 // Exit support
 845 //
 846 // exit()
 847 // ~~~~~~
 848 // Note that the collector can't reclaim the objectMonitor or deflate
 849 // the object out from underneath the thread calling ::exit() as the
 850 // thread calling ::exit() never transitions to a stable state.
 851 // This inhibits GC, which in turn inhibits asynchronous (and
 852 // inopportune) reclamation of "this".
 853 //
 854 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 855 // There's one exception to the claim above, however.  EnterI() can call
 856 // exit() to drop a lock if the acquirer has been externally suspended.
 857 // In that case exit() is called with _thread_state as _thread_blocked,
 858 // but the monitor's _count field is > 0, which inhibits reclamation.
 859 //
 860 // 1-0 exit
 861 // ~~~~~~~~
 862 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 863 // the fast-path operators have been optimized so the common ::exit()
 864 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 865 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 866 // greatly improves latency -- MEMBAR and CAS having considerable local
 867 // latency on modern processors -- but at the cost of "stranding".  Absent the
 868 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 869 // ::enter() path, resulting in the entering thread being stranding
 870 // and a progress-liveness failure.   Stranding is extremely rare.
 871 // We use timers (timed park operations) & periodic polling to detect
 872 // and recover from stranding.  Potentially stranded threads periodically
 873 // wake up and poll the lock.  See the usage of the _Responsible variable.
 874 //
 875 // The CAS() in enter provides for safety and exclusion, while the CAS or
 876 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 877 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 878 // We detect and recover from stranding with timers.
 879 //
 880 // If a thread transiently strands it'll park until (a) another
 881 // thread acquires the lock and then drops the lock, at which time the
 882 // exiting thread will notice and unpark the stranded thread, or, (b)
 883 // the timer expires.  If the lock is high traffic then the stranding latency
 884 // will be low due to (a).  If the lock is low traffic then the odds of
 885 // stranding are lower, although the worst-case stranding latency
 886 // is longer.  Critically, we don't want to put excessive load in the
 887 // platform's timer subsystem.  We want to minimize both the timer injection
 888 // rate (timers created/sec) as well as the number of timers active at
 889 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 890 // the integral of the # of active timers at any instant over time).
 891 // Both impinge on OS scalability.  Given that, at most one thread parked on
 892 // a monitor will use a timer.
 893 //
 894 // There is also the risk of a futile wake-up. If we drop the lock
 895 // another thread can reacquire the lock immediately, and we can
 896 // then wake a thread unnecessarily. This is benign, and we've
 897 // structured the code so the windows are short and the frequency
 898 // of such futile wakups is low.
 899 
 900 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 901   Thread * const Self = THREAD;
 902   if (THREAD != _owner) {
 903     if (THREAD->is_lock_owned((address) _owner)) {
 904       // Transmute _owner from a BasicLock pointer to a Thread address.
 905       // We don't need to hold _mutex for this transition.
 906       // Non-null to Non-null is safe as long as all readers can
 907       // tolerate either flavor.
 908       assert(_recursions == 0, "invariant");
 909       _owner = THREAD;
 910       _recursions = 0;
 911     } else {
 912       // Apparent unbalanced locking ...
 913       // Naively we'd like to throw IllegalMonitorStateException.
 914       // As a practical matter we can neither allocate nor throw an
 915       // exception as ::exit() can be called from leaf routines.
 916       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 917       // Upon deeper reflection, however, in a properly run JVM the only
 918       // way we should encounter this situation is in the presence of
 919       // unbalanced JNI locking. TODO: CheckJNICalls.
 920       // See also: CR4414101
 921       TEVENT(Exit - Throw IMSX);
 922       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 923       return;
 924     }
 925   }
 926 
 927   if (_recursions != 0) {
 928     _recursions--;        // this is simple recursive enter
 929     TEVENT(Inflated exit - recursive);
 930     return;
 931   }
 932 
 933   // Invariant: after setting Responsible=null an thread must execute
 934   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 935   if ((SyncFlags & 4) == 0) {
 936     _Responsible = NULL;
 937   }
 938 
 939 #if INCLUDE_TRACE
 940   // get the owner's thread id for the MonitorEnter event
 941   // if it is enabled and the thread isn't suspended
 942   if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 943     _previous_owner_tid = THREAD_TRACE_ID(Self);
 944   }
 945 #endif
 946 
 947   for (;;) {
 948     assert(THREAD == _owner, "invariant");
 949 
 950     if (Knob_ExitPolicy == 0) {
 951       // release semantics: prior loads and stores from within the critical section
 952       // must not float (reorder) past the following store that drops the lock.
 953       // On SPARC that requires MEMBAR #loadstore|#storestore.
 954       // But of course in TSO #loadstore|#storestore is not required.
 955       // I'd like to write one of the following:
 956       // A.  OrderAccess::release() ; _owner = NULL
 957       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 958       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 959       // store into a _dummy variable.  That store is not needed, but can result
 960       // in massive wasteful coherency traffic on classic SMP systems.
 961       // Instead, I use release_store(), which is implemented as just a simple
 962       // ST on x64, x86 and SPARC.
 963       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 964       OrderAccess::storeload();                        // See if we need to wake a successor
 965       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 966         TEVENT(Inflated exit - simple egress);
 967         return;
 968       }
 969       TEVENT(Inflated exit - complex egress);
 970       // Other threads are blocked trying to acquire the lock.
 971 
 972       // Normally the exiting thread is responsible for ensuring succession,
 973       // but if other successors are ready or other entering threads are spinning
 974       // then this thread can simply store NULL into _owner and exit without
 975       // waking a successor.  The existence of spinners or ready successors
 976       // guarantees proper succession (liveness).  Responsibility passes to the
 977       // ready or running successors.  The exiting thread delegates the duty.
 978       // More precisely, if a successor already exists this thread is absolved
 979       // of the responsibility of waking (unparking) one.
 980       //
 981       // The _succ variable is critical to reducing futile wakeup frequency.
 982       // _succ identifies the "heir presumptive" thread that has been made
 983       // ready (unparked) but that has not yet run.  We need only one such
 984       // successor thread to guarantee progress.
 985       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 986       // section 3.3 "Futile Wakeup Throttling" for details.
 987       //
 988       // Note that spinners in Enter() also set _succ non-null.
 989       // In the current implementation spinners opportunistically set
 990       // _succ so that exiting threads might avoid waking a successor.
 991       // Another less appealing alternative would be for the exiting thread
 992       // to drop the lock and then spin briefly to see if a spinner managed
 993       // to acquire the lock.  If so, the exiting thread could exit
 994       // immediately without waking a successor, otherwise the exiting
 995       // thread would need to dequeue and wake a successor.
 996       // (Note that we'd need to make the post-drop spin short, but no
 997       // shorter than the worst-case round-trip cache-line migration time.
 998       // The dropped lock needs to become visible to the spinner, and then
 999       // the acquisition of the lock by the spinner must become visible to
1000       // the exiting thread).
1001 
1002       // It appears that an heir-presumptive (successor) must be made ready.
1003       // Only the current lock owner can manipulate the EntryList or
1004       // drain _cxq, so we need to reacquire the lock.  If we fail
1005       // to reacquire the lock the responsibility for ensuring succession
1006       // falls to the new owner.
1007       //
1008       if (!Atomic::replace_if_null(THREAD, &_owner)) {
1009         return;
1010       }
1011       TEVENT(Exit - Reacquired);
1012     } else {
1013       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1014         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
1015         OrderAccess::storeload();
1016         // Ratify the previously observed values.
1017         if (_cxq == NULL || _succ != NULL) {
1018           TEVENT(Inflated exit - simple egress);
1019           return;
1020         }
1021 
1022         // inopportune interleaving -- the exiting thread (this thread)
1023         // in the fast-exit path raced an entering thread in the slow-enter
1024         // path.
1025         // We have two choices:
1026         // A.  Try to reacquire the lock.
1027         //     If the CAS() fails return immediately, otherwise
1028         //     we either restart/rerun the exit operation, or simply
1029         //     fall-through into the code below which wakes a successor.
1030         // B.  If the elements forming the EntryList|cxq are TSM
1031         //     we could simply unpark() the lead thread and return
1032         //     without having set _succ.
1033         if (!Atomic::replace_if_null(THREAD, &_owner)) {
1034           TEVENT(Inflated exit - reacquired succeeded);
1035           return;
1036         }
1037         TEVENT(Inflated exit - reacquired failed);
1038       } else {
1039         TEVENT(Inflated exit - complex egress);
1040       }
1041     }
1042 
1043     guarantee(_owner == THREAD, "invariant");
1044 
1045     ObjectWaiter * w = NULL;
1046     int QMode = Knob_QMode;
1047 
1048     if (QMode == 2 && _cxq != NULL) {
1049       // QMode == 2 : cxq has precedence over EntryList.
1050       // Try to directly wake a successor from the cxq.
1051       // If successful, the successor will need to unlink itself from cxq.
1052       w = _cxq;
1053       assert(w != NULL, "invariant");
1054       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1055       ExitEpilog(Self, w);
1056       return;
1057     }
1058 
1059     if (QMode == 3 && _cxq != NULL) {
1060       // Aggressively drain cxq into EntryList at the first opportunity.
1061       // This policy ensure that recently-run threads live at the head of EntryList.
1062       // Drain _cxq into EntryList - bulk transfer.
1063       // First, detach _cxq.
1064       // The following loop is tantamount to: w = swap(&cxq, NULL)
1065       w = _cxq;
1066       for (;;) {
1067         assert(w != NULL, "Invariant");
1068         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1069         if (u == w) break;
1070         w = u;
1071       }
1072       assert(w != NULL, "invariant");
1073 
1074       ObjectWaiter * q = NULL;
1075       ObjectWaiter * p;
1076       for (p = w; p != NULL; p = p->_next) {
1077         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1078         p->TState = ObjectWaiter::TS_ENTER;
1079         p->_prev = q;
1080         q = p;
1081       }
1082 
1083       // Append the RATs to the EntryList
1084       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1085       ObjectWaiter * Tail;
1086       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1087            Tail = Tail->_next)
1088         /* empty */;
1089       if (Tail == NULL) {
1090         _EntryList = w;
1091       } else {
1092         Tail->_next = w;
1093         w->_prev = Tail;
1094       }
1095 
1096       // Fall thru into code that tries to wake a successor from EntryList
1097     }
1098 
1099     if (QMode == 4 && _cxq != NULL) {
1100       // Aggressively drain cxq into EntryList at the first opportunity.
1101       // This policy ensure that recently-run threads live at the head of EntryList.
1102 
1103       // Drain _cxq into EntryList - bulk transfer.
1104       // First, detach _cxq.
1105       // The following loop is tantamount to: w = swap(&cxq, NULL)
1106       w = _cxq;
1107       for (;;) {
1108         assert(w != NULL, "Invariant");
1109         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1110         if (u == w) break;
1111         w = u;
1112       }
1113       assert(w != NULL, "invariant");
1114 
1115       ObjectWaiter * q = NULL;
1116       ObjectWaiter * p;
1117       for (p = w; p != NULL; p = p->_next) {
1118         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1119         p->TState = ObjectWaiter::TS_ENTER;
1120         p->_prev = q;
1121         q = p;
1122       }
1123 
1124       // Prepend the RATs to the EntryList
1125       if (_EntryList != NULL) {
1126         q->_next = _EntryList;
1127         _EntryList->_prev = q;
1128       }
1129       _EntryList = w;
1130 
1131       // Fall thru into code that tries to wake a successor from EntryList
1132     }
1133 
1134     w = _EntryList;
1135     if (w != NULL) {
1136       // I'd like to write: guarantee (w->_thread != Self).
1137       // But in practice an exiting thread may find itself on the EntryList.
1138       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1139       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1140       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1141       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1142       // release the lock "O".  T2 resumes immediately after the ST of null into
1143       // _owner, above.  T2 notices that the EntryList is populated, so it
1144       // reacquires the lock and then finds itself on the EntryList.
1145       // Given all that, we have to tolerate the circumstance where "w" is
1146       // associated with Self.
1147       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1148       ExitEpilog(Self, w);
1149       return;
1150     }
1151 
1152     // If we find that both _cxq and EntryList are null then just
1153     // re-run the exit protocol from the top.
1154     w = _cxq;
1155     if (w == NULL) continue;
1156 
1157     // Drain _cxq into EntryList - bulk transfer.
1158     // First, detach _cxq.
1159     // The following loop is tantamount to: w = swap(&cxq, NULL)
1160     for (;;) {
1161       assert(w != NULL, "Invariant");
1162       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1163       if (u == w) break;
1164       w = u;
1165     }
1166     TEVENT(Inflated exit - drain cxq into EntryList);
1167 
1168     assert(w != NULL, "invariant");
1169     assert(_EntryList == NULL, "invariant");
1170 
1171     // Convert the LIFO SLL anchored by _cxq into a DLL.
1172     // The list reorganization step operates in O(LENGTH(w)) time.
1173     // It's critical that this step operate quickly as
1174     // "Self" still holds the outer-lock, restricting parallelism
1175     // and effectively lengthening the critical section.
1176     // Invariant: s chases t chases u.
1177     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1178     // we have faster access to the tail.
1179 
1180     if (QMode == 1) {
1181       // QMode == 1 : drain cxq to EntryList, reversing order
1182       // We also reverse the order of the list.
1183       ObjectWaiter * s = NULL;
1184       ObjectWaiter * t = w;
1185       ObjectWaiter * u = NULL;
1186       while (t != NULL) {
1187         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1188         t->TState = ObjectWaiter::TS_ENTER;
1189         u = t->_next;
1190         t->_prev = u;
1191         t->_next = s;
1192         s = t;
1193         t = u;
1194       }
1195       _EntryList  = s;
1196       assert(s != NULL, "invariant");
1197     } else {
1198       // QMode == 0 or QMode == 2
1199       _EntryList = w;
1200       ObjectWaiter * q = NULL;
1201       ObjectWaiter * p;
1202       for (p = w; p != NULL; p = p->_next) {
1203         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1204         p->TState = ObjectWaiter::TS_ENTER;
1205         p->_prev = q;
1206         q = p;
1207       }
1208     }
1209 
1210     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1211     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1212 
1213     // See if we can abdicate to a spinner instead of waking a thread.
1214     // A primary goal of the implementation is to reduce the
1215     // context-switch rate.
1216     if (_succ != NULL) continue;
1217 
1218     w = _EntryList;
1219     if (w != NULL) {
1220       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1221       ExitEpilog(Self, w);
1222       return;
1223     }
1224   }
1225 }
1226 
1227 // ExitSuspendEquivalent:
1228 // A faster alternate to handle_special_suspend_equivalent_condition()
1229 //
1230 // handle_special_suspend_equivalent_condition() unconditionally
1231 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1232 // operations have high latency.  Note that in ::enter() we call HSSEC
1233 // while holding the monitor, so we effectively lengthen the critical sections.
1234 //
1235 // There are a number of possible solutions:
1236 //
1237 // A.  To ameliorate the problem we might also defer state transitions
1238 //     to as late as possible -- just prior to parking.
1239 //     Given that, we'd call HSSEC after having returned from park(),
1240 //     but before attempting to acquire the monitor.  This is only a
1241 //     partial solution.  It avoids calling HSSEC while holding the
1242 //     monitor (good), but it still increases successor reacquisition latency --
1243 //     the interval between unparking a successor and the time the successor
1244 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1245 //     If we use this technique we can also avoid EnterI()-exit() loop
1246 //     in ::enter() where we iteratively drop the lock and then attempt
1247 //     to reacquire it after suspending.
1248 //
1249 // B.  In the future we might fold all the suspend bits into a
1250 //     composite per-thread suspend flag and then update it with CAS().
1251 //     Alternately, a Dekker-like mechanism with multiple variables
1252 //     would suffice:
1253 //       ST Self->_suspend_equivalent = false
1254 //       MEMBAR
1255 //       LD Self_>_suspend_flags
1256 //
1257 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1258 // with a more efficient implementation, the need to use "FastHSSEC" has
1259 // decreased. - Dave
1260 
1261 
1262 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1263   const int Mode = Knob_FastHSSEC;
1264   if (Mode && !jSelf->is_external_suspend()) {
1265     assert(jSelf->is_suspend_equivalent(), "invariant");
1266     jSelf->clear_suspend_equivalent();
1267     if (2 == Mode) OrderAccess::storeload();
1268     if (!jSelf->is_external_suspend()) return false;
1269     // We raced a suspension -- fall thru into the slow path
1270     TEVENT(ExitSuspendEquivalent - raced);
1271     jSelf->set_suspend_equivalent();
1272   }
1273   return jSelf->handle_special_suspend_equivalent_condition();
1274 }
1275 
1276 
1277 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1278   assert(_owner == Self, "invariant");
1279 
1280   // Exit protocol:
1281   // 1. ST _succ = wakee
1282   // 2. membar #loadstore|#storestore;
1283   // 2. ST _owner = NULL
1284   // 3. unpark(wakee)
1285 
1286   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1287   ParkEvent * Trigger = Wakee->_event;
1288 
1289   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1290   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1291   // out-of-scope (non-extant).
1292   Wakee  = NULL;
1293 
1294   // Drop the lock
1295   OrderAccess::release_store(&_owner, (void*)NULL);
1296   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1297 
1298   if (SafepointMechanism::poll(Self)) {
1299     TEVENT(unpark before SAFEPOINT);
1300   }
1301 
1302   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1303   Trigger->unpark();
1304 
1305   // Maintain stats and report events to JVMTI
1306   OM_PERFDATA_OP(Parks, inc());
1307 }
1308 
1309 
1310 // -----------------------------------------------------------------------------
1311 // Class Loader deadlock handling.
1312 //
1313 // complete_exit exits a lock returning recursion count
1314 // complete_exit/reenter operate as a wait without waiting
1315 // complete_exit requires an inflated monitor
1316 // The _owner field is not always the Thread addr even with an
1317 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1318 // thread due to contention.
1319 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1320   Thread * const Self = THREAD;
1321   assert(Self->is_Java_thread(), "Must be Java thread!");
1322   JavaThread *jt = (JavaThread *)THREAD;
1323 
1324   DeferredInitialize();
1325 
1326   if (THREAD != _owner) {
1327     if (THREAD->is_lock_owned ((address)_owner)) {
1328       assert(_recursions == 0, "internal state error");
1329       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1330       _recursions = 0;
1331     }
1332   }
1333 
1334   guarantee(Self == _owner, "complete_exit not owner");
1335   intptr_t save = _recursions; // record the old recursion count
1336   _recursions = 0;        // set the recursion level to be 0
1337   exit(true, Self);           // exit the monitor
1338   guarantee(_owner != Self, "invariant");
1339   return save;
1340 }
1341 
1342 // reenter() enters a lock and sets recursion count
1343 // complete_exit/reenter operate as a wait without waiting
1344 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1345   Thread * const Self = THREAD;
1346   assert(Self->is_Java_thread(), "Must be Java thread!");
1347   JavaThread *jt = (JavaThread *)THREAD;
1348 
1349   guarantee(_owner != Self, "reenter already owner");
1350   enter(THREAD);       // enter the monitor
1351   guarantee(_recursions == 0, "reenter recursion");
1352   _recursions = recursions;
1353   return;
1354 }
1355 
1356 
1357 // -----------------------------------------------------------------------------
1358 // A macro is used below because there may already be a pending
1359 // exception which should not abort the execution of the routines
1360 // which use this (which is why we don't put this into check_slow and
1361 // call it with a CHECK argument).
1362 
1363 #define CHECK_OWNER()                                                       \
1364   do {                                                                      \
1365     if (THREAD != _owner) {                                                 \
1366       if (THREAD->is_lock_owned((address) _owner)) {                        \
1367         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1368         _recursions = 0;                                                    \
1369       } else {                                                              \
1370         TEVENT(Throw IMSX);                                                 \
1371         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1372       }                                                                     \
1373     }                                                                       \
1374   } while (false)
1375 
1376 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1377 // TODO-FIXME: remove check_slow() -- it's likely dead.
1378 
1379 void ObjectMonitor::check_slow(TRAPS) {
1380   TEVENT(check_slow - throw IMSX);
1381   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1382   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1383 }
1384 
1385 static int Adjust(volatile int * adr, int dx) {
1386   int v;
1387   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1388   return v;
1389 }
1390 
1391 // helper method for posting a monitor wait event
1392 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1393                                             jlong notifier_tid,
1394                                             jlong timeout,
1395                                             bool timedout) {
1396   assert(event != NULL, "invariant");
1397   event->set_monitorClass(((oop)this->object())->klass());
1398   event->set_timeout(timeout);
1399   event->set_address((TYPE_ADDRESS)this->object_addr());
1400   event->set_notifier(notifier_tid);
1401   event->set_timedOut(timedout);
1402   event->commit();
1403 }
1404 
1405 // -----------------------------------------------------------------------------
1406 // Wait/Notify/NotifyAll
1407 //
1408 // Note: a subset of changes to ObjectMonitor::wait()
1409 // will need to be replicated in complete_exit
1410 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1411   Thread * const Self = THREAD;
1412   assert(Self->is_Java_thread(), "Must be Java thread!");
1413   JavaThread *jt = (JavaThread *)THREAD;
1414 
1415   DeferredInitialize();
1416 
1417   // Throw IMSX or IEX.
1418   CHECK_OWNER();
1419 
1420   EventJavaMonitorWait event;
1421 
1422   // check for a pending interrupt
1423   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1424     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1425     if (JvmtiExport::should_post_monitor_waited()) {
1426       // Note: 'false' parameter is passed here because the
1427       // wait was not timed out due to thread interrupt.
1428       JvmtiExport::post_monitor_waited(jt, this, false);
1429 
1430       // In this short circuit of the monitor wait protocol, the
1431       // current thread never drops ownership of the monitor and
1432       // never gets added to the wait queue so the current thread
1433       // cannot be made the successor. This means that the
1434       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1435       // consume an unpark() meant for the ParkEvent associated with
1436       // this ObjectMonitor.
1437     }
1438     if (event.should_commit()) {
1439       post_monitor_wait_event(&event, 0, millis, false);
1440     }
1441     TEVENT(Wait - Throw IEX);
1442     THROW(vmSymbols::java_lang_InterruptedException());
1443     return;
1444   }
1445 
1446   TEVENT(Wait);
1447 
1448   assert(Self->_Stalled == 0, "invariant");
1449   Self->_Stalled = intptr_t(this);
1450   jt->set_current_waiting_monitor(this);
1451 
1452   // create a node to be put into the queue
1453   // Critically, after we reset() the event but prior to park(), we must check
1454   // for a pending interrupt.
1455   ObjectWaiter node(Self);
1456   node.TState = ObjectWaiter::TS_WAIT;
1457   Self->_ParkEvent->reset();
1458   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1459 
1460   // Enter the waiting queue, which is a circular doubly linked list in this case
1461   // but it could be a priority queue or any data structure.
1462   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1463   // by the the owner of the monitor *except* in the case where park()
1464   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1465   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1466 
1467   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1468   AddWaiter(&node);
1469   Thread::SpinRelease(&_WaitSetLock);
1470 
1471   if ((SyncFlags & 4) == 0) {
1472     _Responsible = NULL;
1473   }
1474   intptr_t save = _recursions; // record the old recursion count
1475   _waiters++;                  // increment the number of waiters
1476   _recursions = 0;             // set the recursion level to be 1
1477   exit(true, Self);                    // exit the monitor
1478   guarantee(_owner != Self, "invariant");
1479 
1480   // The thread is on the WaitSet list - now park() it.
1481   // On MP systems it's conceivable that a brief spin before we park
1482   // could be profitable.
1483   //
1484   // TODO-FIXME: change the following logic to a loop of the form
1485   //   while (!timeout && !interrupted && _notified == 0) park()
1486 
1487   int ret = OS_OK;
1488   int WasNotified = 0;
1489   { // State transition wrappers
1490     OSThread* osthread = Self->osthread();
1491     OSThreadWaitState osts(osthread, true);
1492     {
1493       ThreadBlockInVM tbivm(jt);
1494       // Thread is in thread_blocked state and oop access is unsafe.
1495       jt->set_suspend_equivalent();
1496 
1497       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1498         // Intentionally empty
1499       } else if (node._notified == 0) {
1500         if (millis <= 0) {
1501           Self->_ParkEvent->park();
1502         } else {
1503           ret = Self->_ParkEvent->park(millis);
1504         }
1505       }
1506 
1507       // were we externally suspended while we were waiting?
1508       if (ExitSuspendEquivalent (jt)) {
1509         // TODO-FIXME: add -- if succ == Self then succ = null.
1510         jt->java_suspend_self();
1511       }
1512 
1513     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1514 
1515     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1516     // from the WaitSet to the EntryList.
1517     // See if we need to remove Node from the WaitSet.
1518     // We use double-checked locking to avoid grabbing _WaitSetLock
1519     // if the thread is not on the wait queue.
1520     //
1521     // Note that we don't need a fence before the fetch of TState.
1522     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1523     // written by the is thread. (perhaps the fetch might even be satisfied
1524     // by a look-aside into the processor's own store buffer, although given
1525     // the length of the code path between the prior ST and this load that's
1526     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1527     // then we'll acquire the lock and then re-fetch a fresh TState value.
1528     // That is, we fail toward safety.
1529 
1530     if (node.TState == ObjectWaiter::TS_WAIT) {
1531       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1532       if (node.TState == ObjectWaiter::TS_WAIT) {
1533         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1534         assert(node._notified == 0, "invariant");
1535         node.TState = ObjectWaiter::TS_RUN;
1536       }
1537       Thread::SpinRelease(&_WaitSetLock);
1538     }
1539 
1540     // The thread is now either on off-list (TS_RUN),
1541     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1542     // The Node's TState variable is stable from the perspective of this thread.
1543     // No other threads will asynchronously modify TState.
1544     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1545     OrderAccess::loadload();
1546     if (_succ == Self) _succ = NULL;
1547     WasNotified = node._notified;
1548 
1549     // Reentry phase -- reacquire the monitor.
1550     // re-enter contended monitor after object.wait().
1551     // retain OBJECT_WAIT state until re-enter successfully completes
1552     // Thread state is thread_in_vm and oop access is again safe,
1553     // although the raw address of the object may have changed.
1554     // (Don't cache naked oops over safepoints, of course).
1555 
1556     // post monitor waited event. Note that this is past-tense, we are done waiting.
1557     if (JvmtiExport::should_post_monitor_waited()) {
1558       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1559 
1560       if (node._notified != 0 && _succ == Self) {
1561         // In this part of the monitor wait-notify-reenter protocol it
1562         // is possible (and normal) for another thread to do a fastpath
1563         // monitor enter-exit while this thread is still trying to get
1564         // to the reenter portion of the protocol.
1565         //
1566         // The ObjectMonitor was notified and the current thread is
1567         // the successor which also means that an unpark() has already
1568         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1569         // consume the unpark() that was done when the successor was
1570         // set because the same ParkEvent is shared between Java
1571         // monitors and JVM/TI RawMonitors (for now).
1572         //
1573         // We redo the unpark() to ensure forward progress, i.e., we
1574         // don't want all pending threads hanging (parked) with none
1575         // entering the unlocked monitor.
1576         node._event->unpark();
1577       }
1578     }
1579 
1580     if (event.should_commit()) {
1581       post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1582     }
1583 
1584     OrderAccess::fence();
1585 
1586     assert(Self->_Stalled != 0, "invariant");
1587     Self->_Stalled = 0;
1588 
1589     assert(_owner != Self, "invariant");
1590     ObjectWaiter::TStates v = node.TState;
1591     if (v == ObjectWaiter::TS_RUN) {
1592       enter(Self);
1593     } else {
1594       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1595       ReenterI(Self, &node);
1596       node.wait_reenter_end(this);
1597     }
1598 
1599     // Self has reacquired the lock.
1600     // Lifecycle - the node representing Self must not appear on any queues.
1601     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1602     // want residual elements associated with this thread left on any lists.
1603     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1604     assert(_owner == Self, "invariant");
1605     assert(_succ != Self, "invariant");
1606   } // OSThreadWaitState()
1607 
1608   jt->set_current_waiting_monitor(NULL);
1609 
1610   guarantee(_recursions == 0, "invariant");
1611   _recursions = save;     // restore the old recursion count
1612   _waiters--;             // decrement the number of waiters
1613 
1614   // Verify a few postconditions
1615   assert(_owner == Self, "invariant");
1616   assert(_succ != Self, "invariant");
1617   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1618 
1619   if (SyncFlags & 32) {
1620     OrderAccess::fence();
1621   }
1622 
1623   // check if the notification happened
1624   if (!WasNotified) {
1625     // no, it could be timeout or Thread.interrupt() or both
1626     // check for interrupt event, otherwise it is timeout
1627     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1628       TEVENT(Wait - throw IEX from epilog);
1629       THROW(vmSymbols::java_lang_InterruptedException());
1630     }
1631   }
1632 
1633   // NOTE: Spurious wake up will be consider as timeout.
1634   // Monitor notify has precedence over thread interrupt.
1635 }
1636 
1637 
1638 // Consider:
1639 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1640 // then instead of transferring a thread from the WaitSet to the EntryList
1641 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1642 
1643 void ObjectMonitor::INotify(Thread * Self) {
1644   const int policy = Knob_MoveNotifyee;
1645 
1646   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1647   ObjectWaiter * iterator = DequeueWaiter();
1648   if (iterator != NULL) {
1649     TEVENT(Notify1 - Transfer);
1650     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1651     guarantee(iterator->_notified == 0, "invariant");
1652     // Disposition - what might we do with iterator ?
1653     // a.  add it directly to the EntryList - either tail (policy == 1)
1654     //     or head (policy == 0).
1655     // b.  push it onto the front of the _cxq (policy == 2).
1656     // For now we use (b).
1657     if (policy != 4) {
1658       iterator->TState = ObjectWaiter::TS_ENTER;
1659     }
1660     iterator->_notified = 1;
1661     iterator->_notifier_tid = THREAD_TRACE_ID(Self);
1662 
1663     ObjectWaiter * list = _EntryList;
1664     if (list != NULL) {
1665       assert(list->_prev == NULL, "invariant");
1666       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1667       assert(list != iterator, "invariant");
1668     }
1669 
1670     if (policy == 0) {       // prepend to EntryList
1671       if (list == NULL) {
1672         iterator->_next = iterator->_prev = NULL;
1673         _EntryList = iterator;
1674       } else {
1675         list->_prev = iterator;
1676         iterator->_next = list;
1677         iterator->_prev = NULL;
1678         _EntryList = iterator;
1679       }
1680     } else if (policy == 1) {      // append to EntryList
1681       if (list == NULL) {
1682         iterator->_next = iterator->_prev = NULL;
1683         _EntryList = iterator;
1684       } else {
1685         // CONSIDER:  finding the tail currently requires a linear-time walk of
1686         // the EntryList.  We can make tail access constant-time by converting to
1687         // a CDLL instead of using our current DLL.
1688         ObjectWaiter * tail;
1689         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1690         assert(tail != NULL && tail->_next == NULL, "invariant");
1691         tail->_next = iterator;
1692         iterator->_prev = tail;
1693         iterator->_next = NULL;
1694       }
1695     } else if (policy == 2) {      // prepend to cxq
1696       if (list == NULL) {
1697         iterator->_next = iterator->_prev = NULL;
1698         _EntryList = iterator;
1699       } else {
1700         iterator->TState = ObjectWaiter::TS_CXQ;
1701         for (;;) {
1702           ObjectWaiter * front = _cxq;
1703           iterator->_next = front;
1704           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1705             break;
1706           }
1707         }
1708       }
1709     } else if (policy == 3) {      // append to cxq
1710       iterator->TState = ObjectWaiter::TS_CXQ;
1711       for (;;) {
1712         ObjectWaiter * tail = _cxq;
1713         if (tail == NULL) {
1714           iterator->_next = NULL;
1715           if (Atomic::replace_if_null(iterator, &_cxq)) {
1716             break;
1717           }
1718         } else {
1719           while (tail->_next != NULL) tail = tail->_next;
1720           tail->_next = iterator;
1721           iterator->_prev = tail;
1722           iterator->_next = NULL;
1723           break;
1724         }
1725       }
1726     } else {
1727       ParkEvent * ev = iterator->_event;
1728       iterator->TState = ObjectWaiter::TS_RUN;
1729       OrderAccess::fence();
1730       ev->unpark();
1731     }
1732 
1733     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1734     // move the add-to-EntryList operation, above, outside the critical section
1735     // protected by _WaitSetLock.  In practice that's not useful.  With the
1736     // exception of  wait() timeouts and interrupts the monitor owner
1737     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1738     // on _WaitSetLock so it's not profitable to reduce the length of the
1739     // critical section.
1740 
1741     if (policy < 4) {
1742       iterator->wait_reenter_begin(this);
1743     }
1744   }
1745   Thread::SpinRelease(&_WaitSetLock);
1746 }
1747 
1748 // Consider: a not-uncommon synchronization bug is to use notify() when
1749 // notifyAll() is more appropriate, potentially resulting in stranded
1750 // threads; this is one example of a lost wakeup. A useful diagnostic
1751 // option is to force all notify() operations to behave as notifyAll().
1752 //
1753 // Note: We can also detect many such problems with a "minimum wait".
1754 // When the "minimum wait" is set to a small non-zero timeout value
1755 // and the program does not hang whereas it did absent "minimum wait",
1756 // that suggests a lost wakeup bug. The '-XX:SyncFlags=1' option uses
1757 // a "minimum wait" for all park() operations; see the recheckInterval
1758 // variable and MAX_RECHECK_INTERVAL.
1759 
1760 void ObjectMonitor::notify(TRAPS) {
1761   CHECK_OWNER();
1762   if (_WaitSet == NULL) {
1763     TEVENT(Empty-Notify);
1764     return;
1765   }
1766   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1767   INotify(THREAD);
1768   OM_PERFDATA_OP(Notifications, inc(1));
1769 }
1770 
1771 
1772 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1773 // from the waitset to the EntryList. This could be done more efficiently with a
1774 // single bulk transfer but in practice it's not time-critical. Beware too,
1775 // that in prepend-mode we invert the order of the waiters. Let's say that the
1776 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1777 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1778 
1779 void ObjectMonitor::notifyAll(TRAPS) {
1780   CHECK_OWNER();
1781   if (_WaitSet == NULL) {
1782     TEVENT(Empty-NotifyAll);
1783     return;
1784   }
1785 
1786   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1787   int tally = 0;
1788   while (_WaitSet != NULL) {
1789     tally++;
1790     INotify(THREAD);
1791   }
1792 
1793   OM_PERFDATA_OP(Notifications, inc(tally));
1794 }
1795 
1796 // -----------------------------------------------------------------------------
1797 // Adaptive Spinning Support
1798 //
1799 // Adaptive spin-then-block - rational spinning
1800 //
1801 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1802 // algorithm.  On high order SMP systems it would be better to start with
1803 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1804 // a contending thread could enqueue itself on the cxq and then spin locally
1805 // on a thread-specific variable such as its ParkEvent._Event flag.
1806 // That's left as an exercise for the reader.  Note that global spinning is
1807 // not problematic on Niagara, as the L2 cache serves the interconnect and
1808 // has both low latency and massive bandwidth.
1809 //
1810 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1811 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1812 // (duration) or we can fix the count at approximately the duration of
1813 // a context switch and vary the frequency.   Of course we could also
1814 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1815 // For a description of 'Adaptive spin-then-block mutual exclusion in
1816 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1817 //
1818 // This implementation varies the duration "D", where D varies with
1819 // the success rate of recent spin attempts. (D is capped at approximately
1820 // length of a round-trip context switch).  The success rate for recent
1821 // spin attempts is a good predictor of the success rate of future spin
1822 // attempts.  The mechanism adapts automatically to varying critical
1823 // section length (lock modality), system load and degree of parallelism.
1824 // D is maintained per-monitor in _SpinDuration and is initialized
1825 // optimistically.  Spin frequency is fixed at 100%.
1826 //
1827 // Note that _SpinDuration is volatile, but we update it without locks
1828 // or atomics.  The code is designed so that _SpinDuration stays within
1829 // a reasonable range even in the presence of races.  The arithmetic
1830 // operations on _SpinDuration are closed over the domain of legal values,
1831 // so at worst a race will install and older but still legal value.
1832 // At the very worst this introduces some apparent non-determinism.
1833 // We might spin when we shouldn't or vice-versa, but since the spin
1834 // count are relatively short, even in the worst case, the effect is harmless.
1835 //
1836 // Care must be taken that a low "D" value does not become an
1837 // an absorbing state.  Transient spinning failures -- when spinning
1838 // is overall profitable -- should not cause the system to converge
1839 // on low "D" values.  We want spinning to be stable and predictable
1840 // and fairly responsive to change and at the same time we don't want
1841 // it to oscillate, become metastable, be "too" non-deterministic,
1842 // or converge on or enter undesirable stable absorbing states.
1843 //
1844 // We implement a feedback-based control system -- using past behavior
1845 // to predict future behavior.  We face two issues: (a) if the
1846 // input signal is random then the spin predictor won't provide optimal
1847 // results, and (b) if the signal frequency is too high then the control
1848 // system, which has some natural response lag, will "chase" the signal.
1849 // (b) can arise from multimodal lock hold times.  Transient preemption
1850 // can also result in apparent bimodal lock hold times.
1851 // Although sub-optimal, neither condition is particularly harmful, as
1852 // in the worst-case we'll spin when we shouldn't or vice-versa.
1853 // The maximum spin duration is rather short so the failure modes aren't bad.
1854 // To be conservative, I've tuned the gain in system to bias toward
1855 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1856 // "rings" or oscillates between spinning and not spinning.  This happens
1857 // when spinning is just on the cusp of profitability, however, so the
1858 // situation is not dire.  The state is benign -- there's no need to add
1859 // hysteresis control to damp the transition rate between spinning and
1860 // not spinning.
1861 
1862 // Spinning: Fixed frequency (100%), vary duration
1863 int ObjectMonitor::TrySpin(Thread * Self) {
1864   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1865   int ctr = Knob_FixedSpin;
1866   if (ctr != 0) {
1867     while (--ctr >= 0) {
1868       if (TryLock(Self) > 0) return 1;
1869       SpinPause();
1870     }
1871     return 0;
1872   }
1873 
1874   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1875     if (TryLock(Self) > 0) {
1876       // Increase _SpinDuration ...
1877       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1878       // Raising _SpurDuration to the poverty line is key.
1879       int x = _SpinDuration;
1880       if (x < Knob_SpinLimit) {
1881         if (x < Knob_Poverty) x = Knob_Poverty;
1882         _SpinDuration = x + Knob_BonusB;
1883       }
1884       return 1;
1885     }
1886     SpinPause();
1887   }
1888 
1889   // Admission control - verify preconditions for spinning
1890   //
1891   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1892   // becoming an absorbing state.  Put another way, we spin briefly to
1893   // sample, just in case the system load, parallelism, contention, or lock
1894   // modality changed.
1895   //
1896   // Consider the following alternative:
1897   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1898   // spin attempt.  "Periodically" might mean after a tally of
1899   // the # of failed spin attempts (or iterations) reaches some threshold.
1900   // This takes us into the realm of 1-out-of-N spinning, where we
1901   // hold the duration constant but vary the frequency.
1902 
1903   ctr = _SpinDuration;
1904   if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
1905   if (ctr <= 0) return 0;
1906 
1907   if (Knob_SuccRestrict && _succ != NULL) return 0;
1908   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1909     TEVENT(Spin abort - notrunnable [TOP]);
1910     return 0;
1911   }
1912 
1913   int MaxSpin = Knob_MaxSpinners;
1914   if (MaxSpin >= 0) {
1915     if (_Spinner > MaxSpin) {
1916       TEVENT(Spin abort -- too many spinners);
1917       return 0;
1918     }
1919     // Slightly racy, but benign ...
1920     Adjust(&_Spinner, 1);
1921   }
1922 
1923   // We're good to spin ... spin ingress.
1924   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1925   // when preparing to LD...CAS _owner, etc and the CAS is likely
1926   // to succeed.
1927   int hits    = 0;
1928   int msk     = 0;
1929   int caspty  = Knob_CASPenalty;
1930   int oxpty   = Knob_OXPenalty;
1931   int sss     = Knob_SpinSetSucc;
1932   if (sss && _succ == NULL) _succ = Self;
1933   Thread * prv = NULL;
1934 
1935   // There are three ways to exit the following loop:
1936   // 1.  A successful spin where this thread has acquired the lock.
1937   // 2.  Spin failure with prejudice
1938   // 3.  Spin failure without prejudice
1939 
1940   while (--ctr >= 0) {
1941 
1942     // Periodic polling -- Check for pending GC
1943     // Threads may spin while they're unsafe.
1944     // We don't want spinning threads to delay the JVM from reaching
1945     // a stop-the-world safepoint or to steal cycles from GC.
1946     // If we detect a pending safepoint we abort in order that
1947     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1948     // this thread, if safe, doesn't steal cycles from GC.
1949     // This is in keeping with the "no loitering in runtime" rule.
1950     // We periodically check to see if there's a safepoint pending.
1951     if ((ctr & 0xFF) == 0) {
1952       if (SafepointMechanism::poll(Self)) {
1953         TEVENT(Spin: safepoint);
1954         goto Abort;           // abrupt spin egress
1955       }
1956       if (Knob_UsePause & 1) SpinPause();
1957     }
1958 
1959     if (Knob_UsePause & 2) SpinPause();
1960 
1961     // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
1962     // This is useful on classic SMP systems, but is of less utility on
1963     // N1-style CMT platforms.
1964     //
1965     // Trade-off: lock acquisition latency vs coherency bandwidth.
1966     // Lock hold times are typically short.  A histogram
1967     // of successful spin attempts shows that we usually acquire
1968     // the lock early in the spin.  That suggests we want to
1969     // sample _owner frequently in the early phase of the spin,
1970     // but then back-off and sample less frequently as the spin
1971     // progresses.  The back-off makes a good citizen on SMP big
1972     // SMP systems.  Oversampling _owner can consume excessive
1973     // coherency bandwidth.  Relatedly, if we _oversample _owner we
1974     // can inadvertently interfere with the the ST m->owner=null.
1975     // executed by the lock owner.
1976     if (ctr & msk) continue;
1977     ++hits;
1978     if ((hits & 0xF) == 0) {
1979       // The 0xF, above, corresponds to the exponent.
1980       // Consider: (msk+1)|msk
1981       msk = ((msk << 2)|3) & BackOffMask;
1982     }
1983 
1984     // Probe _owner with TATAS
1985     // If this thread observes the monitor transition or flicker
1986     // from locked to unlocked to locked, then the odds that this
1987     // thread will acquire the lock in this spin attempt go down
1988     // considerably.  The same argument applies if the CAS fails
1989     // or if we observe _owner change from one non-null value to
1990     // another non-null value.   In such cases we might abort
1991     // the spin without prejudice or apply a "penalty" to the
1992     // spin count-down variable "ctr", reducing it by 100, say.
1993 
1994     Thread * ox = (Thread *) _owner;
1995     if (ox == NULL) {
1996       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1997       if (ox == NULL) {
1998         // The CAS succeeded -- this thread acquired ownership
1999         // Take care of some bookkeeping to exit spin state.
2000         if (sss && _succ == Self) {
2001           _succ = NULL;
2002         }
2003         if (MaxSpin > 0) Adjust(&_Spinner, -1);
2004 
2005         // Increase _SpinDuration :
2006         // The spin was successful (profitable) so we tend toward
2007         // longer spin attempts in the future.
2008         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2009         // If we acquired the lock early in the spin cycle it
2010         // makes sense to increase _SpinDuration proportionally.
2011         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2012         int x = _SpinDuration;
2013         if (x < Knob_SpinLimit) {
2014           if (x < Knob_Poverty) x = Knob_Poverty;
2015           _SpinDuration = x + Knob_Bonus;
2016         }
2017         return 1;
2018       }
2019 
2020       // The CAS failed ... we can take any of the following actions:
2021       // * penalize: ctr -= Knob_CASPenalty
2022       // * exit spin with prejudice -- goto Abort;
2023       // * exit spin without prejudice.
2024       // * Since CAS is high-latency, retry again immediately.
2025       prv = ox;
2026       TEVENT(Spin: cas failed);
2027       if (caspty == -2) break;
2028       if (caspty == -1) goto Abort;
2029       ctr -= caspty;
2030       continue;
2031     }
2032 
2033     // Did lock ownership change hands ?
2034     if (ox != prv && prv != NULL) {
2035       TEVENT(spin: Owner changed)
2036       if (oxpty == -2) break;
2037       if (oxpty == -1) goto Abort;
2038       ctr -= oxpty;
2039     }
2040     prv = ox;
2041 
2042     // Abort the spin if the owner is not executing.
2043     // The owner must be executing in order to drop the lock.
2044     // Spinning while the owner is OFFPROC is idiocy.
2045     // Consider: ctr -= RunnablePenalty ;
2046     if (Knob_OState && NotRunnable (Self, ox)) {
2047       TEVENT(Spin abort - notrunnable);
2048       goto Abort;
2049     }
2050     if (sss && _succ == NULL) _succ = Self;
2051   }
2052 
2053   // Spin failed with prejudice -- reduce _SpinDuration.
2054   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2055   // AIMD is globally stable.
2056   TEVENT(Spin failure);
2057   {
2058     int x = _SpinDuration;
2059     if (x > 0) {
2060       // Consider an AIMD scheme like: x -= (x >> 3) + 100
2061       // This is globally sample and tends to damp the response.
2062       x -= Knob_Penalty;
2063       if (x < 0) x = 0;
2064       _SpinDuration = x;
2065     }
2066   }
2067 
2068  Abort:
2069   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
2070   if (sss && _succ == Self) {
2071     _succ = NULL;
2072     // Invariant: after setting succ=null a contending thread
2073     // must recheck-retry _owner before parking.  This usually happens
2074     // in the normal usage of TrySpin(), but it's safest
2075     // to make TrySpin() as foolproof as possible.
2076     OrderAccess::fence();
2077     if (TryLock(Self) > 0) return 1;
2078   }
2079   return 0;
2080 }
2081 
2082 // NotRunnable() -- informed spinning
2083 //
2084 // Don't bother spinning if the owner is not eligible to drop the lock.
2085 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2086 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2087 // The thread must be runnable in order to drop the lock in timely fashion.
2088 // If the _owner is not runnable then spinning will not likely be
2089 // successful (profitable).
2090 //
2091 // Beware -- the thread referenced by _owner could have died
2092 // so a simply fetch from _owner->_thread_state might trap.
2093 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2094 // Because of the lifecycle issues the schedctl and _thread_state values
2095 // observed by NotRunnable() might be garbage.  NotRunnable must
2096 // tolerate this and consider the observed _thread_state value
2097 // as advisory.
2098 //
2099 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2100 // a thread pointer.
2101 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2102 // with the LSB of _owner.  Another option would be to probablistically probe
2103 // the putative _owner->TypeTag value.
2104 //
2105 // Checking _thread_state isn't perfect.  Even if the thread is
2106 // in_java it might be blocked on a page-fault or have been preempted
2107 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2108 // with schedctl.sc_state gives us a good picture of what the
2109 // thread is doing, however.
2110 //
2111 // TODO: check schedctl.sc_state.
2112 // We'll need to use SafeFetch32() to read from the schedctl block.
2113 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2114 //
2115 // The return value from NotRunnable() is *advisory* -- the
2116 // result is based on sampling and is not necessarily coherent.
2117 // The caller must tolerate false-negative and false-positive errors.
2118 // Spinning, in general, is probabilistic anyway.
2119 
2120 
2121 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2122   // Check ox->TypeTag == 2BAD.
2123   if (ox == NULL) return 0;
2124 
2125   // Avoid transitive spinning ...
2126   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2127   // Immediately after T1 acquires L it's possible that T2, also
2128   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2129   // This occurs transiently after T1 acquired L but before
2130   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2131   // its spin in this circumstance.
2132   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2133 
2134   if (BlockedOn == 1) return 1;
2135   if (BlockedOn != 0) {
2136     return BlockedOn != intptr_t(this) && _owner == ox;
2137   }
2138 
2139   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2140   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2141   // consider also: jst != _thread_in_Java -- but that's overspecific.
2142   return jst == _thread_blocked || jst == _thread_in_native;
2143 }
2144 
2145 
2146 // -----------------------------------------------------------------------------
2147 // WaitSet management ...
2148 
2149 ObjectWaiter::ObjectWaiter(Thread* thread) {
2150   _next     = NULL;
2151   _prev     = NULL;
2152   _notified = 0;
2153   _notifier_tid = 0;
2154   TState    = TS_RUN;
2155   _thread   = thread;
2156   _event    = thread->_ParkEvent;
2157   _active   = false;
2158   assert(_event != NULL, "invariant");
2159 }
2160 
2161 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2162   JavaThread *jt = (JavaThread *)this->_thread;
2163   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2164 }
2165 
2166 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2167   JavaThread *jt = (JavaThread *)this->_thread;
2168   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2169 }
2170 
2171 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2172   assert(node != NULL, "should not add NULL node");
2173   assert(node->_prev == NULL, "node already in list");
2174   assert(node->_next == NULL, "node already in list");
2175   // put node at end of queue (circular doubly linked list)
2176   if (_WaitSet == NULL) {
2177     _WaitSet = node;
2178     node->_prev = node;
2179     node->_next = node;
2180   } else {
2181     ObjectWaiter* head = _WaitSet;
2182     ObjectWaiter* tail = head->_prev;
2183     assert(tail->_next == head, "invariant check");
2184     tail->_next = node;
2185     head->_prev = node;
2186     node->_next = head;
2187     node->_prev = tail;
2188   }
2189 }
2190 
2191 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2192   // dequeue the very first waiter
2193   ObjectWaiter* waiter = _WaitSet;
2194   if (waiter) {
2195     DequeueSpecificWaiter(waiter);
2196   }
2197   return waiter;
2198 }
2199 
2200 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2201   assert(node != NULL, "should not dequeue NULL node");
2202   assert(node->_prev != NULL, "node already removed from list");
2203   assert(node->_next != NULL, "node already removed from list");
2204   // when the waiter has woken up because of interrupt,
2205   // timeout or other spurious wake-up, dequeue the
2206   // waiter from waiting list
2207   ObjectWaiter* next = node->_next;
2208   if (next == node) {
2209     assert(node->_prev == node, "invariant check");
2210     _WaitSet = NULL;
2211   } else {
2212     ObjectWaiter* prev = node->_prev;
2213     assert(prev->_next == node, "invariant check");
2214     assert(next->_prev == node, "invariant check");
2215     next->_prev = prev;
2216     prev->_next = next;
2217     if (_WaitSet == node) {
2218       _WaitSet = next;
2219     }
2220   }
2221   node->_next = NULL;
2222   node->_prev = NULL;
2223 }
2224 
2225 // -----------------------------------------------------------------------------
2226 // PerfData support
2227 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2228 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2229 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2230 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2231 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2232 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2233 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2234 
2235 // One-shot global initialization for the sync subsystem.
2236 // We could also defer initialization and initialize on-demand
2237 // the first time we call inflate().  Initialization would
2238 // be protected - like so many things - by the MonitorCache_lock.
2239 
2240 void ObjectMonitor::Initialize() {
2241   static int InitializationCompleted = 0;
2242   assert(InitializationCompleted == 0, "invariant");
2243   InitializationCompleted = 1;
2244   if (UsePerfData) {
2245     EXCEPTION_MARK;
2246 #define NEWPERFCOUNTER(n)                                                \
2247   {                                                                      \
2248     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2249                                         CHECK);                          \
2250   }
2251 #define NEWPERFVARIABLE(n)                                                \
2252   {                                                                       \
2253     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2254                                          CHECK);                          \
2255   }
2256     NEWPERFCOUNTER(_sync_Inflations);
2257     NEWPERFCOUNTER(_sync_Deflations);
2258     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2259     NEWPERFCOUNTER(_sync_FutileWakeups);
2260     NEWPERFCOUNTER(_sync_Parks);
2261     NEWPERFCOUNTER(_sync_Notifications);
2262     NEWPERFVARIABLE(_sync_MonExtant);
2263 #undef NEWPERFCOUNTER
2264 #undef NEWPERFVARIABLE
2265   }
2266 }
2267 
2268 static char * kvGet(char * kvList, const char * Key) {
2269   if (kvList == NULL) return NULL;
2270   size_t n = strlen(Key);
2271   char * Search;
2272   for (Search = kvList; *Search; Search += strlen(Search) + 1) {
2273     if (strncmp (Search, Key, n) == 0) {
2274       if (Search[n] == '=') return Search + n + 1;
2275       if (Search[n] == 0)   return(char *) "1";
2276     }
2277   }
2278   return NULL;
2279 }
2280 
2281 static int kvGetInt(char * kvList, const char * Key, int Default) {
2282   char * v = kvGet(kvList, Key);
2283   int rslt = v ? ::strtol(v, NULL, 0) : Default;
2284   if (Knob_ReportSettings && v != NULL) {
2285     tty->print_cr("INFO: SyncKnob: %s %d(%d)", Key, rslt, Default) ;
2286     tty->flush();
2287   }
2288   return rslt;
2289 }
2290 
2291 void ObjectMonitor::DeferredInitialize() {
2292   if (InitDone > 0) return;
2293   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2294     while (InitDone != 1) /* empty */;
2295     return;
2296   }
2297 
2298   // One-shot global initialization ...
2299   // The initialization is idempotent, so we don't need locks.
2300   // In the future consider doing this via os::init_2().
2301   // SyncKnobs consist of <Key>=<Value> pairs in the style
2302   // of environment variables.  Start by converting ':' to NUL.
2303 
2304   if (SyncKnobs == NULL) SyncKnobs = "";
2305 
2306   size_t sz = strlen(SyncKnobs);
2307   char * knobs = (char *) os::malloc(sz + 2, mtInternal);
2308   if (knobs == NULL) {
2309     vm_exit_out_of_memory(sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs");
2310     guarantee(0, "invariant");
2311   }
2312   strcpy(knobs, SyncKnobs);
2313   knobs[sz+1] = 0;
2314   for (char * p = knobs; *p; p++) {
2315     if (*p == ':') *p = 0;
2316   }
2317 
2318   #define SETKNOB(x) { Knob_##x = kvGetInt(knobs, #x, Knob_##x); }
2319   SETKNOB(ReportSettings);
2320   SETKNOB(ExitRelease);
2321   SETKNOB(Verbose);
2322   SETKNOB(VerifyInUse);
2323   SETKNOB(VerifyMatch);
2324   SETKNOB(FixedSpin);
2325   SETKNOB(SpinLimit);
2326   SETKNOB(SpinBase);
2327   SETKNOB(SpinBackOff);
2328   SETKNOB(CASPenalty);
2329   SETKNOB(OXPenalty);
2330   SETKNOB(SpinSetSucc);
2331   SETKNOB(SuccEnabled);
2332   SETKNOB(SuccRestrict);
2333   SETKNOB(Penalty);
2334   SETKNOB(Bonus);
2335   SETKNOB(BonusB);
2336   SETKNOB(Poverty);
2337   SETKNOB(SpinAfterFutile);
2338   SETKNOB(UsePause);
2339   SETKNOB(SpinEarly);
2340   SETKNOB(OState);
2341   SETKNOB(MaxSpinners);
2342   SETKNOB(PreSpin);
2343   SETKNOB(ExitPolicy);
2344   SETKNOB(QMode);
2345   SETKNOB(ResetEvent);
2346   SETKNOB(MoveNotifyee);
2347   SETKNOB(FastHSSEC);
2348   #undef SETKNOB
2349 
2350   if (Knob_Verbose) {
2351     sanity_checks();
2352   }
2353 
2354   if (os::is_MP()) {
2355     BackOffMask = (1 << Knob_SpinBackOff) - 1;
2356     if (Knob_ReportSettings) {
2357       tty->print_cr("INFO: BackOffMask=0x%X", BackOffMask);
2358     }
2359     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2360   } else {
2361     Knob_SpinLimit = 0;
2362     Knob_SpinBase  = 0;
2363     Knob_PreSpin   = 0;
2364     Knob_FixedSpin = -1;
2365   }
2366 
2367   os::free(knobs);
2368   OrderAccess::fence();
2369   InitDone = 1;
2370 }
2371 
2372 void ObjectMonitor::sanity_checks() {
2373   int error_cnt = 0;
2374   int warning_cnt = 0;
2375   bool verbose = Knob_Verbose != 0 NOT_PRODUCT(|| VerboseInternalVMTests);
2376 
2377   if (verbose) {
2378     tty->print_cr("INFO: sizeof(ObjectMonitor)=" SIZE_FORMAT,
2379                   sizeof(ObjectMonitor));
2380     tty->print_cr("INFO: sizeof(PaddedEnd<ObjectMonitor>)=" SIZE_FORMAT,
2381                   sizeof(PaddedEnd<ObjectMonitor>));
2382   }
2383 
2384   uint cache_line_size = VM_Version::L1_data_cache_line_size();
2385   if (verbose) {
2386     tty->print_cr("INFO: L1_data_cache_line_size=%u", cache_line_size);
2387   }
2388 
2389   ObjectMonitor dummy;
2390   u_char *addr_begin  = (u_char*)&dummy;
2391   u_char *addr_header = (u_char*)&dummy._header;
2392   u_char *addr_owner  = (u_char*)&dummy._owner;
2393 
2394   uint offset_header = (uint)(addr_header - addr_begin);
2395   if (verbose) tty->print_cr("INFO: offset(_header)=%u", offset_header);
2396 
2397   uint offset_owner = (uint)(addr_owner - addr_begin);
2398   if (verbose) tty->print_cr("INFO: offset(_owner)=%u", offset_owner);
2399 
2400   if ((uint)(addr_header - addr_begin) != 0) {
2401     tty->print_cr("ERROR: offset(_header) must be zero (0).");
2402     error_cnt++;
2403   }
2404 
2405   if (cache_line_size != 0) {
2406     // We were able to determine the L1 data cache line size so
2407     // do some cache line specific sanity checks
2408 
2409     if ((offset_owner - offset_header) < cache_line_size) {
2410       tty->print_cr("WARNING: the _header and _owner fields are closer "
2411                     "than a cache line which permits false sharing.");
2412       warning_cnt++;
2413     }
2414 
2415     if ((sizeof(PaddedEnd<ObjectMonitor>) % cache_line_size) != 0) {
2416       tty->print_cr("WARNING: PaddedEnd<ObjectMonitor> size is not a "
2417                     "multiple of a cache line which permits false sharing.");
2418       warning_cnt++;
2419     }
2420   }
2421 
2422   ObjectSynchronizer::sanity_checks(verbose, cache_line_size, &error_cnt,
2423                                     &warning_cnt);
2424 
2425   if (verbose || error_cnt != 0 || warning_cnt != 0) {
2426     tty->print_cr("INFO: error_cnt=%d", error_cnt);
2427     tty->print_cr("INFO: warning_cnt=%d", warning_cnt);
2428   }
2429 
2430   guarantee(error_cnt == 0,
2431             "Fatal error(s) found in ObjectMonitor::sanity_checks()");
2432 }
2433 
2434 #ifndef PRODUCT
2435 void ObjectMonitor_test() {
2436   ObjectMonitor::sanity_checks();
2437 }
2438 #endif