1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
  26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
  27 
  28 #include "runtime/globals.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include <new>
  33 
  34 class AllocFailStrategy {
  35 public:
  36   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
  37 };
  38 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
  39 
  40 // All classes in the virtual machine must be subclassed
  41 // by one of the following allocation classes:
  42 //
  43 // For objects allocated in the resource area (see resourceArea.hpp).
  44 // - ResourceObj
  45 //
  46 // For objects allocated in the C-heap (managed by: free & malloc).
  47 // - CHeapObj
  48 //
  49 // For objects allocated on the stack.
  50 // - StackObj
  51 //
  52 // For embedded objects.
  53 // - ValueObj
  54 //
  55 // For classes used as name spaces.
  56 // - AllStatic
  57 //
  58 // For classes in Metaspace (class data)
  59 // - MetaspaceObj
  60 //
  61 // The printable subclasses are used for debugging and define virtual
  62 // member functions for printing. Classes that avoid allocating the
  63 // vtbl entries in the objects should therefore not be the printable
  64 // subclasses.
  65 //
  66 // The following macros and function should be used to allocate memory
  67 // directly in the resource area or in the C-heap, The _OBJ variants
  68 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
  69 // objects which are not inherited from CHeapObj, note constructor and
  70 // destructor are not called. The preferable way to allocate objects
  71 // is using the new operator.
  72 //
  73 // WARNING: The array variant must only be used for a homogenous array
  74 // where all objects are of the exact type specified. If subtypes are
  75 // stored in the array then must pay attention to calling destructors
  76 // at needed.
  77 //
  78 //   NEW_RESOURCE_ARRAY(type, size)
  79 //   NEW_RESOURCE_OBJ(type)
  80 //   NEW_C_HEAP_ARRAY(type, size)
  81 //   NEW_C_HEAP_OBJ(type, memflags)
  82 //   FREE_C_HEAP_ARRAY(type, old)
  83 //   FREE_C_HEAP_OBJ(objname, type, memflags)
  84 //   char* AllocateHeap(size_t size, const char* name);
  85 //   void  FreeHeap(void* p);
  86 //
  87 // C-heap allocation can be traced using +PrintHeapAllocation.
  88 // malloc and free should therefore never called directly.
  89 
  90 // Base class for objects allocated in the C-heap.
  91 
  92 // In non product mode we introduce a super class for all allocation classes
  93 // that supports printing.
  94 // We avoid the superclass in product mode since some C++ compilers add
  95 // a word overhead for empty super classes.
  96 
  97 #ifdef PRODUCT
  98 #define ALLOCATION_SUPER_CLASS_SPEC
  99 #else
 100 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
 101 class AllocatedObj {
 102  public:
 103   // Printing support
 104   void print() const;
 105   void print_value() const;
 106 
 107   virtual void print_on(outputStream* st) const;
 108   virtual void print_value_on(outputStream* st) const;
 109 };
 110 #endif
 111 
 112 
 113 /*
 114  * Memory types
 115  */
 116 enum MemoryType {
 117   // Memory type by sub systems. It occupies lower byte.
 118   mtJavaHeap          = 0x00,  // Java heap
 119   mtClass             = 0x01,  // memory class for Java classes
 120   mtThread            = 0x02,  // memory for thread objects
 121   mtThreadStack       = 0x03,
 122   mtCode              = 0x04,  // memory for generated code
 123   mtGC                = 0x05,  // memory for GC
 124   mtCompiler          = 0x06,  // memory for compiler
 125   mtInternal          = 0x07,  // memory used by VM, but does not belong to
 126                                  // any of above categories, and not used for
 127                                  // native memory tracking
 128   mtOther             = 0x08,  // memory not used by VM
 129   mtSymbol            = 0x09,  // symbol
 130   mtNMT               = 0x0A,  // memory used by native memory tracking
 131   mtClassShared       = 0x0B,  // class data sharing
 132   mtChunk             = 0x0C,  // chunk that holds content of arenas
 133   mtTest              = 0x0D,  // Test type for verifying NMT
 134   mtTracing           = 0x0E,  // memory used for Tracing
 135   mtLogging           = 0x0F,  // memory for logging
 136   mtArguments         = 0x10,  // memory for argument processing
 137   mtModule            = 0x11,  // memory for module processing
 138   mtNone              = 0x12,  // undefined
 139   mt_number_of_types  = 0x13   // number of memory types (mtDontTrack
 140                                  // is not included as validate type)
 141 };
 142 
 143 typedef MemoryType MEMFLAGS;
 144 
 145 
 146 #if INCLUDE_NMT
 147 
 148 extern bool NMT_track_callsite;
 149 
 150 #else
 151 
 152 const bool NMT_track_callsite = false;
 153 
 154 #endif // INCLUDE_NMT
 155 
 156 class NativeCallStack;
 157 
 158 
 159 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 160  public:
 161   NOINLINE void* operator new(size_t size, const NativeCallStack& stack) throw();
 162   NOINLINE void* operator new(size_t size) throw();
 163   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
 164                                const NativeCallStack& stack) throw();
 165   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant)
 166                                throw();
 167   NOINLINE void* operator new [](size_t size, const NativeCallStack& stack) throw();
 168   NOINLINE void* operator new [](size_t size) throw();
 169   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 170                                const NativeCallStack& stack) throw();
 171   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant)
 172                                throw();
 173   void  operator delete(void* p);
 174   void  operator delete [] (void* p);
 175 };
 176 
 177 // Base class for objects allocated on the stack only.
 178 // Calling new or delete will result in fatal error.
 179 
 180 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 181  private:
 182   void* operator new(size_t size) throw();
 183   void* operator new [](size_t size) throw();
 184 #ifdef __IBMCPP__
 185  public:
 186 #endif
 187   void  operator delete(void* p);
 188   void  operator delete [](void* p);
 189 };
 190 
 191 // Base class for objects used as value objects.
 192 // Calling new or delete will result in fatal error.
 193 //
 194 // Portability note: Certain compilers (e.g. gcc) will
 195 // always make classes bigger if it has a superclass, even
 196 // if the superclass does not have any virtual methods or
 197 // instance fields. The HotSpot implementation relies on this
 198 // not to happen. So never make a ValueObj class a direct subclass
 199 // like this:
 200 //
 201 //   class A {
 202 //     ...
 203 //   }
 204 //
 205 // be defined as a an empty string "".
 206 //
 207 class _ValueObj {
 208  private:
 209   void* operator new(size_t size) throw();
 210   void  operator delete(void* p);
 211   void* operator new [](size_t size) throw();
 212   void  operator delete [](void* p);
 213 };
 214 
 215 
 216 // Base class for objects stored in Metaspace.
 217 // Calling delete will result in fatal error.
 218 //
 219 // Do not inherit from something with a vptr because this class does
 220 // not introduce one.  This class is used to allocate both shared read-only
 221 // and shared read-write classes.
 222 //
 223 
 224 class ClassLoaderData;
 225 class MetaspaceClosure;
 226 
 227 class MetaspaceObj {
 228   friend class MetaspaceShared;
 229   // When CDS is enabled, all shared metaspace objects are mapped
 230   // into a single contiguous memory block, so we can use these
 231   // two pointers to quickly determine if something is in the
 232   // shared metaspace.
 233   //
 234   // When CDS is not enabled, both pointers are set to NULL.
 235   static void* _shared_metaspace_base; // (inclusive) low address
 236   static void* _shared_metaspace_top;  // (exclusive) high address
 237 
 238  public:
 239   bool is_metaspace_object() const;
 240   bool is_shared() const {
 241     // If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
 242     // both be NULL and all values of p will be rejected quickly.
 243     return (((void*)this) < _shared_metaspace_top && ((void*)this) >= _shared_metaspace_base);
 244   }
 245   void print_address_on(outputStream* st) const;  // nonvirtual address printing
 246 
 247 #define METASPACE_OBJ_TYPES_DO(f) \
 248   f(Class) \
 249   f(Symbol) \
 250   f(TypeArrayU1) \
 251   f(TypeArrayU2) \
 252   f(TypeArrayU4) \
 253   f(TypeArrayU8) \
 254   f(TypeArrayOther) \
 255   f(Method) \
 256   f(ConstMethod) \
 257   f(MethodData) \
 258   f(ConstantPool) \
 259   f(ConstantPoolCache) \
 260   f(Annotations) \
 261   f(MethodCounters)
 262 
 263 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
 264 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
 265 
 266   enum Type {
 267     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
 268     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
 269     _number_of_types
 270   };
 271 
 272   static const char * type_name(Type type) {
 273     switch(type) {
 274     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
 275     default:
 276       ShouldNotReachHere();
 277       return NULL;
 278     }
 279   }
 280 
 281   static MetaspaceObj::Type array_type(size_t elem_size) {
 282     switch (elem_size) {
 283     case 1: return TypeArrayU1Type;
 284     case 2: return TypeArrayU2Type;
 285     case 4: return TypeArrayU4Type;
 286     case 8: return TypeArrayU8Type;
 287     default:
 288       return TypeArrayOtherType;
 289     }
 290   }
 291 
 292   void* operator new(size_t size, ClassLoaderData* loader_data,
 293                      size_t word_size,
 294                      Type type, Thread* thread) throw();
 295                      // can't use TRAPS from this header file.
 296   void operator delete(void* p) { ShouldNotCallThis(); }
 297 
 298   // Declare a *static* method with the same signature in any subclass of MetaspaceObj
 299   // that should be read-only by default. See symbol.hpp for an example. This function
 300   // is used by the templates in metaspaceClosure.hpp
 301   static bool is_read_only_by_default() { return false; }
 302 };
 303 
 304 // Base class for classes that constitute name spaces.
 305 
 306 class Arena;
 307 
 308 class AllStatic {
 309  public:
 310   AllStatic()  { ShouldNotCallThis(); }
 311   ~AllStatic() { ShouldNotCallThis(); }
 312 };
 313 
 314 
 315 extern char* resource_allocate_bytes(size_t size,
 316     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 317 extern char* resource_allocate_bytes(Thread* thread, size_t size,
 318     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 319 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
 320     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 321 extern void resource_free_bytes( char *old, size_t size );
 322 
 323 //----------------------------------------------------------------------
 324 // Base class for objects allocated in the resource area per default.
 325 // Optionally, objects may be allocated on the C heap with
 326 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 327 // ResourceObj's can be allocated within other objects, but don't use
 328 // new or delete (allocation_type is unknown).  If new is used to allocate,
 329 // use delete to deallocate.
 330 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 331  public:
 332   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
 333   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
 334 #ifdef ASSERT
 335  private:
 336   // When this object is allocated on stack the new() operator is not
 337   // called but garbage on stack may look like a valid allocation_type.
 338   // Store negated 'this' pointer when new() is called to distinguish cases.
 339   // Use second array's element for verification value to distinguish garbage.
 340   uintptr_t _allocation_t[2];
 341   bool is_type_set() const;
 342  public:
 343   allocation_type get_allocation_type() const;
 344   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
 345   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
 346   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
 347   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
 348   ResourceObj(); // default constructor
 349   ResourceObj(const ResourceObj& r); // default copy constructor
 350   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
 351   ~ResourceObj();
 352 #endif // ASSERT
 353 
 354  public:
 355   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
 356   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
 357   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
 358       allocation_type type, MEMFLAGS flags) throw();
 359   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 360       allocation_type type, MEMFLAGS flags) throw();
 361 
 362   void* operator new(size_t size, Arena *arena) throw();
 363 
 364   void* operator new [](size_t size, Arena *arena) throw();
 365 
 366   void* operator new(size_t size) throw() {
 367       address res = (address)resource_allocate_bytes(size);
 368       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 369       return res;
 370   }
 371 
 372   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
 373       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 374       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 375       return res;
 376   }
 377 
 378   void* operator new [](size_t size) throw() {
 379       address res = (address)resource_allocate_bytes(size);
 380       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 381       return res;
 382   }
 383 
 384   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
 385       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 386       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 387       return res;
 388   }
 389 
 390   void  operator delete(void* p);
 391   void  operator delete [](void* p);
 392 };
 393 
 394 // One of the following macros must be used when allocating an array
 395 // or object to determine whether it should reside in the C heap on in
 396 // the resource area.
 397 
 398 #define NEW_RESOURCE_ARRAY(type, size)\
 399   (type*) resource_allocate_bytes((size) * sizeof(type))
 400 
 401 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
 402   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 403 
 404 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 405   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 406 
 407 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
 408   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 409 
 410 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 411   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
 412 
 413 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
 414   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
 415                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 416 
 417 #define FREE_RESOURCE_ARRAY(type, old, size)\
 418   resource_free_bytes((char*)(old), (size) * sizeof(type))
 419 
 420 #define FREE_FAST(old)\
 421     /* nop */
 422 
 423 #define NEW_RESOURCE_OBJ(type)\
 424   NEW_RESOURCE_ARRAY(type, 1)
 425 
 426 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
 427   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
 428 
 429 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
 430   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
 431 
 432 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
 433   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
 434 
 435 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
 436   (type*) (AllocateHeap((size) * sizeof(type), memflags))
 437 
 438 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
 439   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
 440 
 441 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
 442   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
 443 
 444 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
 445   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
 446 
 447 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
 448   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
 449 
 450 #define FREE_C_HEAP_ARRAY(type, old) \
 451   FreeHeap((char*)(old))
 452 
 453 // allocate type in heap without calling ctor
 454 #define NEW_C_HEAP_OBJ(type, memflags)\
 455   NEW_C_HEAP_ARRAY(type, 1, memflags)
 456 
 457 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
 458   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
 459 
 460 // deallocate obj of type in heap without calling dtor
 461 #define FREE_C_HEAP_OBJ(objname)\
 462   FreeHeap((char*)objname);
 463 
 464 // for statistics
 465 #ifndef PRODUCT
 466 class AllocStats : StackObj {
 467   julong start_mallocs, start_frees;
 468   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 469  public:
 470   AllocStats();
 471 
 472   julong num_mallocs();    // since creation of receiver
 473   julong alloc_bytes();
 474   julong num_frees();
 475   julong free_bytes();
 476   julong resource_bytes();
 477   void   print();
 478 };
 479 #endif
 480 
 481 
 482 //------------------------------ReallocMark---------------------------------
 483 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 484 // ReallocMark, which is declared in the same scope as the reallocated
 485 // pointer.  Any operation that could __potentially__ cause a reallocation
 486 // should check the ReallocMark.
 487 class ReallocMark: public StackObj {
 488 protected:
 489   NOT_PRODUCT(int _nesting;)
 490 
 491 public:
 492   ReallocMark()   PRODUCT_RETURN;
 493   void check()    PRODUCT_RETURN;
 494 };
 495 
 496 // Helper class to allocate arrays that may become large.
 497 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
 498 // and uses mapped memory for larger allocations.
 499 // Most OS mallocs do something similar but Solaris malloc does not revert
 500 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
 501 // is set so that we always use malloc except for Solaris where we set the
 502 // limit to get mapped memory.
 503 template <class E>
 504 class ArrayAllocator : public AllStatic {
 505  private:
 506   static bool should_use_malloc(size_t length);
 507 
 508   static E* allocate_malloc(size_t length, MEMFLAGS flags);
 509   static E* allocate_mmap(size_t length, MEMFLAGS flags);
 510 
 511   static void free_malloc(E* addr, size_t length);
 512   static void free_mmap(E* addr, size_t length);
 513 
 514  public:
 515   static E* allocate(size_t length, MEMFLAGS flags);
 516   static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
 517   static void free(E* addr, size_t length);
 518 };
 519 
 520 // Uses mmaped memory for all allocations. All allocations are initially
 521 // zero-filled. No pre-touching.
 522 template <class E>
 523 class MmapArrayAllocator : public AllStatic {
 524  private:
 525   static size_t size_for(size_t length);
 526 
 527  public:
 528   static E* allocate_or_null(size_t length, MEMFLAGS flags);
 529   static E* allocate(size_t length, MEMFLAGS flags);
 530   static void free(E* addr, size_t length);
 531 };
 532 
 533 // Uses malloc:ed memory for all allocations.
 534 template <class E>
 535 class MallocArrayAllocator : public AllStatic {
 536  public:
 537   static size_t size_for(size_t length);
 538 
 539   static E* allocate(size_t length, MEMFLAGS flags);
 540   static void free(E* addr, size_t length);
 541 };
 542 
 543 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP