1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
  26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
  27 
  28 #include "runtime/globals.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include <new>
  33 
  34 class AllocFailStrategy {
  35 public:
  36   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
  37 };
  38 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
  39 
  40 // For convenience and documentation of intended use, classes in the virtual machine
  41 // may be subclassed by one of the following allocation classes. These provide default
  42 // operator new and delete functions.  If not subclassed with the following,
  43 // the global operator new may not be used and will give a fatal error at runtime.
  44 // Note: std::malloc and std::free should never called directly.
  45 
  46 //
  47 // For objects allocated in the resource area (see resourceArea.hpp).
  48 // - ResourceObj
  49 //
  50 // For objects allocated in the C-heap (managed by: free & malloc and tracked with NMT)
  51 // - CHeapObj
  52 //
  53 // For objects allocated on the stack.
  54 // - StackObj
  55 //
  56 // For classes used as name spaces.
  57 // - AllStatic
  58 //
  59 // For classes in Metaspace (class data)
  60 // - MetaspaceObj
  61 //
  62 // The printable subclasses are used for debugging and define virtual
  63 // member functions for printing. Classes that avoid allocating the
  64 // vtbl entries in the objects should therefore not be the printable
  65 // subclasses.
  66 //
  67 // The following macros and function should be used to allocate memory
  68 // directly in the resource area or in the C-heap, The _OBJ variants
  69 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
  70 // objects which are not inherited from CHeapObj, note constructor and
  71 // destructor are not called. The preferable way to allocate objects
  72 // is using the new operator.
  73 //
  74 // WARNING: The array variant must only be used for a homogenous array
  75 // where all objects are of the exact type specified. If subtypes are
  76 // stored in the array then must pay attention to calling destructors
  77 // at needed.
  78 //
  79 //   NEW_RESOURCE_ARRAY(type, size)
  80 //   NEW_RESOURCE_OBJ(type)
  81 //   NEW_C_HEAP_ARRAY(type, size)
  82 //   NEW_C_HEAP_OBJ(type, memflags)
  83 //   FREE_C_HEAP_ARRAY(type, old)
  84 //   FREE_C_HEAP_OBJ(objname, type, memflags)
  85 //   char* AllocateHeap(size_t size, const char* name);
  86 //   void  FreeHeap(void* p);
  87 //
  88 
  89 // In non product mode we introduce a super class for all allocation classes
  90 // that supports printing.
  91 // We avoid the superclass in product mode since some C++ compilers add
  92 // a word overhead for empty super classes, also this has a vptr for print functions.
  93 
  94 #ifdef PRODUCT
  95 #define ALLOCATION_SUPER_CLASS_SPEC
  96 #else
  97 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
  98 class AllocatedObj {
  99  public:
 100   // Printing support
 101   void print() const;
 102   void print_value() const;
 103 
 104   virtual void print_on(outputStream* st) const;
 105   virtual void print_value_on(outputStream* st) const;
 106 };
 107 #endif
 108 
 109 
 110 /*
 111  * Memory types
 112  */
 113 enum MemoryType {
 114   // Memory type by sub systems. It occupies lower byte.
 115   mtJavaHeap          = 0x00,  // Java heap
 116   mtClass             = 0x01,  // memory class for Java classes
 117   mtThread            = 0x02,  // memory for thread objects
 118   mtThreadStack       = 0x03,
 119   mtCode              = 0x04,  // memory for generated code
 120   mtGC                = 0x05,  // memory for GC
 121   mtCompiler          = 0x06,  // memory for compiler
 122   mtInternal          = 0x07,  // memory used by VM, but does not belong to
 123                                  // any of above categories, and not used for
 124                                  // native memory tracking
 125   mtOther             = 0x08,  // memory not used by VM
 126   mtSymbol            = 0x09,  // symbol
 127   mtNMT               = 0x0A,  // memory used by native memory tracking
 128   mtClassShared       = 0x0B,  // class data sharing
 129   mtChunk             = 0x0C,  // chunk that holds content of arenas
 130   mtTest              = 0x0D,  // Test type for verifying NMT
 131   mtTracing           = 0x0E,  // memory used for Tracing
 132   mtLogging           = 0x0F,  // memory for logging
 133   mtArguments         = 0x10,  // memory for argument processing
 134   mtModule            = 0x11,  // memory for module processing
 135   mtNone              = 0x12,  // undefined
 136   mt_number_of_types  = 0x13   // number of memory types (mtDontTrack
 137                                  // is not included as validate type)
 138 };
 139 
 140 typedef MemoryType MEMFLAGS;
 141 
 142 
 143 #if INCLUDE_NMT
 144 
 145 extern bool NMT_track_callsite;
 146 
 147 #else
 148 
 149 const bool NMT_track_callsite = false;
 150 
 151 #endif // INCLUDE_NMT
 152 
 153 class NativeCallStack;
 154 
 155 
 156 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 157  public:
 158   NOINLINE void* operator new(size_t size, const NativeCallStack& stack) throw();
 159   NOINLINE void* operator new(size_t size) throw();
 160   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
 161                                const NativeCallStack& stack) throw();
 162   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant)
 163                                throw();
 164   NOINLINE void* operator new [](size_t size, const NativeCallStack& stack) throw();
 165   NOINLINE void* operator new [](size_t size) throw();
 166   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 167                                const NativeCallStack& stack) throw();
 168   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant)
 169                                throw();
 170   void  operator delete(void* p);
 171   void  operator delete [] (void* p);
 172 };
 173 
 174 // Base class for objects allocated on the stack only.
 175 // Calling new or delete will result in fatal error.
 176 
 177 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 178  private:
 179   void* operator new(size_t size) throw();
 180   void* operator new [](size_t size) throw();
 181 #ifdef __IBMCPP__
 182  public:
 183 #endif
 184   void  operator delete(void* p);
 185   void  operator delete [](void* p);
 186 };
 187 
 188 // Base class for objects stored in Metaspace.
 189 // Calling delete will result in fatal error.
 190 //
 191 // Do not inherit from something with a vptr because this class does
 192 // not introduce one.  This class is used to allocate both shared read-only
 193 // and shared read-write classes.
 194 //
 195 
 196 class ClassLoaderData;
 197 class MetaspaceClosure;
 198 
 199 class MetaspaceObj {
 200   friend class MetaspaceShared;
 201   // When CDS is enabled, all shared metaspace objects are mapped
 202   // into a single contiguous memory block, so we can use these
 203   // two pointers to quickly determine if something is in the
 204   // shared metaspace.
 205   //
 206   // When CDS is not enabled, both pointers are set to NULL.
 207   static void* _shared_metaspace_base; // (inclusive) low address
 208   static void* _shared_metaspace_top;  // (exclusive) high address
 209 
 210  public:
 211   bool is_metaspace_object() const;
 212   bool is_shared() const {
 213     // If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
 214     // both be NULL and all values of p will be rejected quickly.
 215     return (((void*)this) < _shared_metaspace_top && ((void*)this) >= _shared_metaspace_base);
 216   }
 217   void print_address_on(outputStream* st) const;  // nonvirtual address printing
 218 
 219 #define METASPACE_OBJ_TYPES_DO(f) \
 220   f(Class) \
 221   f(Symbol) \
 222   f(TypeArrayU1) \
 223   f(TypeArrayU2) \
 224   f(TypeArrayU4) \
 225   f(TypeArrayU8) \
 226   f(TypeArrayOther) \
 227   f(Method) \
 228   f(ConstMethod) \
 229   f(MethodData) \
 230   f(ConstantPool) \
 231   f(ConstantPoolCache) \
 232   f(Annotations) \
 233   f(MethodCounters)
 234 
 235 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
 236 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
 237 
 238   enum Type {
 239     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
 240     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
 241     _number_of_types
 242   };
 243 
 244   static const char * type_name(Type type) {
 245     switch(type) {
 246     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
 247     default:
 248       ShouldNotReachHere();
 249       return NULL;
 250     }
 251   }
 252 
 253   static MetaspaceObj::Type array_type(size_t elem_size) {
 254     switch (elem_size) {
 255     case 1: return TypeArrayU1Type;
 256     case 2: return TypeArrayU2Type;
 257     case 4: return TypeArrayU4Type;
 258     case 8: return TypeArrayU8Type;
 259     default:
 260       return TypeArrayOtherType;
 261     }
 262   }
 263 
 264   void* operator new(size_t size, ClassLoaderData* loader_data,
 265                      size_t word_size,
 266                      Type type, Thread* thread) throw();
 267                      // can't use TRAPS from this header file.
 268   void operator delete(void* p) { ShouldNotCallThis(); }
 269 
 270   // Declare a *static* method with the same signature in any subclass of MetaspaceObj
 271   // that should be read-only by default. See symbol.hpp for an example. This function
 272   // is used by the templates in metaspaceClosure.hpp
 273   static bool is_read_only_by_default() { return false; }
 274 };
 275 
 276 // Base class for classes that constitute name spaces.
 277 
 278 class Arena;
 279 
 280 class AllStatic {
 281  public:
 282   AllStatic()  { ShouldNotCallThis(); }
 283   ~AllStatic() { ShouldNotCallThis(); }
 284 };
 285 
 286 
 287 extern char* resource_allocate_bytes(size_t size,
 288     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 289 extern char* resource_allocate_bytes(Thread* thread, size_t size,
 290     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 291 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
 292     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 293 extern void resource_free_bytes( char *old, size_t size );
 294 
 295 //----------------------------------------------------------------------
 296 // Base class for objects allocated in the resource area per default.
 297 // Optionally, objects may be allocated on the C heap with
 298 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 299 // ResourceObj's can be allocated within other objects, but don't use
 300 // new or delete (allocation_type is unknown).  If new is used to allocate,
 301 // use delete to deallocate.
 302 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 303  public:
 304   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
 305   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
 306 #ifdef ASSERT
 307  private:
 308   // When this object is allocated on stack the new() operator is not
 309   // called but garbage on stack may look like a valid allocation_type.
 310   // Store negated 'this' pointer when new() is called to distinguish cases.
 311   // Use second array's element for verification value to distinguish garbage.
 312   uintptr_t _allocation_t[2];
 313   bool is_type_set() const;
 314  public:
 315   allocation_type get_allocation_type() const;
 316   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
 317   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
 318   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
 319   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
 320   ResourceObj(); // default constructor
 321   ResourceObj(const ResourceObj& r); // default copy constructor
 322   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
 323   ~ResourceObj();
 324 #endif // ASSERT
 325 
 326  public:
 327   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
 328   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
 329   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
 330       allocation_type type, MEMFLAGS flags) throw();
 331   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 332       allocation_type type, MEMFLAGS flags) throw();
 333 
 334   void* operator new(size_t size, Arena *arena) throw();
 335 
 336   void* operator new [](size_t size, Arena *arena) throw();
 337 
 338   void* operator new(size_t size) throw() {
 339       address res = (address)resource_allocate_bytes(size);
 340       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 341       return res;
 342   }
 343 
 344   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
 345       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 346       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 347       return res;
 348   }
 349 
 350   void* operator new [](size_t size) throw() {
 351       address res = (address)resource_allocate_bytes(size);
 352       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 353       return res;
 354   }
 355 
 356   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
 357       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 358       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 359       return res;
 360   }
 361 
 362   void  operator delete(void* p);
 363   void  operator delete [](void* p);
 364 };
 365 
 366 // One of the following macros must be used when allocating an array
 367 // or object to determine whether it should reside in the C heap on in
 368 // the resource area.
 369 
 370 #define NEW_RESOURCE_ARRAY(type, size)\
 371   (type*) resource_allocate_bytes((size) * sizeof(type))
 372 
 373 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
 374   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 375 
 376 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 377   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 378 
 379 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
 380   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 381 
 382 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 383   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
 384 
 385 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
 386   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
 387                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 388 
 389 #define FREE_RESOURCE_ARRAY(type, old, size)\
 390   resource_free_bytes((char*)(old), (size) * sizeof(type))
 391 
 392 #define FREE_FAST(old)\
 393     /* nop */
 394 
 395 #define NEW_RESOURCE_OBJ(type)\
 396   NEW_RESOURCE_ARRAY(type, 1)
 397 
 398 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
 399   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
 400 
 401 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
 402   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
 403 
 404 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
 405   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
 406 
 407 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
 408   (type*) (AllocateHeap((size) * sizeof(type), memflags))
 409 
 410 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
 411   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
 412 
 413 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
 414   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
 415 
 416 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
 417   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
 418 
 419 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
 420   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
 421 
 422 #define FREE_C_HEAP_ARRAY(type, old) \
 423   FreeHeap((char*)(old))
 424 
 425 // allocate type in heap without calling ctor
 426 #define NEW_C_HEAP_OBJ(type, memflags)\
 427   NEW_C_HEAP_ARRAY(type, 1, memflags)
 428 
 429 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
 430   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
 431 
 432 // deallocate obj of type in heap without calling dtor
 433 #define FREE_C_HEAP_OBJ(objname)\
 434   FreeHeap((char*)objname);
 435 
 436 // for statistics
 437 #ifndef PRODUCT
 438 class AllocStats : StackObj {
 439   julong start_mallocs, start_frees;
 440   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 441  public:
 442   AllocStats();
 443 
 444   julong num_mallocs();    // since creation of receiver
 445   julong alloc_bytes();
 446   julong num_frees();
 447   julong free_bytes();
 448   julong resource_bytes();
 449   void   print();
 450 };
 451 #endif
 452 
 453 
 454 //------------------------------ReallocMark---------------------------------
 455 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 456 // ReallocMark, which is declared in the same scope as the reallocated
 457 // pointer.  Any operation that could __potentially__ cause a reallocation
 458 // should check the ReallocMark.
 459 class ReallocMark: public StackObj {
 460 protected:
 461   NOT_PRODUCT(int _nesting;)
 462 
 463 public:
 464   ReallocMark()   PRODUCT_RETURN;
 465   void check()    PRODUCT_RETURN;
 466 };
 467 
 468 // Helper class to allocate arrays that may become large.
 469 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
 470 // and uses mapped memory for larger allocations.
 471 // Most OS mallocs do something similar but Solaris malloc does not revert
 472 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
 473 // is set so that we always use malloc except for Solaris where we set the
 474 // limit to get mapped memory.
 475 template <class E>
 476 class ArrayAllocator : public AllStatic {
 477  private:
 478   static bool should_use_malloc(size_t length);
 479 
 480   static E* allocate_malloc(size_t length, MEMFLAGS flags);
 481   static E* allocate_mmap(size_t length, MEMFLAGS flags);
 482 
 483   static void free_malloc(E* addr, size_t length);
 484   static void free_mmap(E* addr, size_t length);
 485 
 486  public:
 487   static E* allocate(size_t length, MEMFLAGS flags);
 488   static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
 489   static void free(E* addr, size_t length);
 490 };
 491 
 492 // Uses mmaped memory for all allocations. All allocations are initially
 493 // zero-filled. No pre-touching.
 494 template <class E>
 495 class MmapArrayAllocator : public AllStatic {
 496  private:
 497   static size_t size_for(size_t length);
 498 
 499  public:
 500   static E* allocate_or_null(size_t length, MEMFLAGS flags);
 501   static E* allocate(size_t length, MEMFLAGS flags);
 502   static void free(E* addr, size_t length);
 503 };
 504 
 505 // Uses malloc:ed memory for all allocations.
 506 template <class E>
 507 class MallocArrayAllocator : public AllStatic {
 508  public:
 509   static size_t size_for(size_t length);
 510 
 511   static E* allocate(size_t length, MEMFLAGS flags);
 512   static void free(E* addr, size_t length);
 513 };
 514 
 515 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP