1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/cardTableBarrierSet.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/interfaceSupport.inline.hpp"
  39 #include "runtime/jniHandles.inline.hpp"
  40 #include "runtime/safepointMechanism.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 #define __ _masm->
  44 
  45 
  46 //------------------------------------------------------------
  47 
  48 
  49 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  50   if (opr->is_constant()) {
  51     LIR_Const* constant = opr->as_constant_ptr();
  52     switch (constant->type()) {
  53       case T_INT: {
  54         jint value = constant->as_jint();
  55         return Assembler::is_simm13(value);
  56       }
  57 
  58       default:
  59         return false;
  60     }
  61   }
  62   return false;
  63 }
  64 
  65 
  66 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  67   switch (op->code()) {
  68     case lir_null_check:
  69     return true;
  70 
  71 
  72     case lir_add:
  73     case lir_ushr:
  74     case lir_shr:
  75     case lir_shl:
  76       // integer shifts and adds are always one instruction
  77       return op->result_opr()->is_single_cpu();
  78 
  79 
  80     case lir_move: {
  81       LIR_Op1* op1 = op->as_Op1();
  82       LIR_Opr src = op1->in_opr();
  83       LIR_Opr dst = op1->result_opr();
  84 
  85       if (src == dst) {
  86         NEEDS_CLEANUP;
  87         // this works around a problem where moves with the same src and dst
  88         // end up in the delay slot and then the assembler swallows the mov
  89         // since it has no effect and then it complains because the delay slot
  90         // is empty.  returning false stops the optimizer from putting this in
  91         // the delay slot
  92         return false;
  93       }
  94 
  95       // don't put moves involving oops into the delay slot since the VerifyOops code
  96       // will make it much larger than a single instruction.
  97       if (VerifyOops) {
  98         return false;
  99       }
 100 
 101       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
 102           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 103         return false;
 104       }
 105 
 106       if (UseCompressedOops) {
 107         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
 108         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
 109       }
 110 
 111       if (UseCompressedClassPointers) {
 112         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
 113             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
 114       }
 115 
 116       if (dst->is_register()) {
 117         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 118           return !PatchALot;
 119         } else if (src->is_single_stack()) {
 120           return true;
 121         }
 122       }
 123 
 124       if (src->is_register()) {
 125         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 126           return !PatchALot;
 127         } else if (dst->is_single_stack()) {
 128           return true;
 129         }
 130       }
 131 
 132       if (dst->is_register() &&
 133           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 134            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 135         return true;
 136       }
 137 
 138       return false;
 139     }
 140 
 141     default:
 142       return false;
 143   }
 144   ShouldNotReachHere();
 145 }
 146 
 147 
 148 LIR_Opr LIR_Assembler::receiverOpr() {
 149   return FrameMap::O0_oop_opr;
 150 }
 151 
 152 
 153 LIR_Opr LIR_Assembler::osrBufferPointer() {
 154   return FrameMap::I0_opr;
 155 }
 156 
 157 
 158 int LIR_Assembler::initial_frame_size_in_bytes() const {
 159   return in_bytes(frame_map()->framesize_in_bytes());
 160 }
 161 
 162 
 163 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 164 // we fetch the class of the receiver (O0) and compare it with the cached class.
 165 // If they do not match we jump to slow case.
 166 int LIR_Assembler::check_icache() {
 167   int offset = __ offset();
 168   __ inline_cache_check(O0, G5_inline_cache_reg);
 169   return offset;
 170 }
 171 
 172 
 173 void LIR_Assembler::osr_entry() {
 174   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 175   //
 176   //   1. Create a new compiled activation.
 177   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 178   //      at the osr_bci; it is not initialized.
 179   //   3. Jump to the continuation address in compiled code to resume execution.
 180 
 181   // OSR entry point
 182   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 183   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 184   ValueStack* entry_state = osr_entry->end()->state();
 185   int number_of_locks = entry_state->locks_size();
 186 
 187   // Create a frame for the compiled activation.
 188   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 189 
 190   // OSR buffer is
 191   //
 192   // locals[nlocals-1..0]
 193   // monitors[number_of_locks-1..0]
 194   //
 195   // locals is a direct copy of the interpreter frame so in the osr buffer
 196   // so first slot in the local array is the last local from the interpreter
 197   // and last slot is local[0] (receiver) from the interpreter
 198   //
 199   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 200   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 201   // in the interpreter frame (the method lock if a sync method)
 202 
 203   // Initialize monitors in the compiled activation.
 204   //   I0: pointer to osr buffer
 205   //
 206   // All other registers are dead at this point and the locals will be
 207   // copied into place by code emitted in the IR.
 208 
 209   Register OSR_buf = osrBufferPointer()->as_register();
 210   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 211     int monitor_offset = BytesPerWord * method()->max_locals() +
 212       (2 * BytesPerWord) * (number_of_locks - 1);
 213     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 214     // the OSR buffer using 2 word entries: first the lock and then
 215     // the oop.
 216     for (int i = 0; i < number_of_locks; i++) {
 217       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 218 #ifdef ASSERT
 219       // verify the interpreter's monitor has a non-null object
 220       {
 221         Label L;
 222         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 223         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
 224         __ stop("locked object is NULL");
 225         __ bind(L);
 226       }
 227 #endif // ASSERT
 228       // Copy the lock field into the compiled activation.
 229       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 230       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 231       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 232       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 233     }
 234   }
 235 }
 236 
 237 
 238 // --------------------------------------------------------------------------------------------
 239 
 240 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 241   if (!GenerateSynchronizationCode) return;
 242 
 243   Register obj_reg = obj_opr->as_register();
 244   Register lock_reg = lock_opr->as_register();
 245 
 246   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 247   Register reg = mon_addr.base();
 248   int offset = mon_addr.disp();
 249   // compute pointer to BasicLock
 250   if (mon_addr.is_simm13()) {
 251     __ add(reg, offset, lock_reg);
 252   }
 253   else {
 254     __ set(offset, lock_reg);
 255     __ add(reg, lock_reg, lock_reg);
 256   }
 257   // unlock object
 258   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 259   // _slow_case_stubs->append(slow_case);
 260   // temporary fix: must be created after exceptionhandler, therefore as call stub
 261   _slow_case_stubs->append(slow_case);
 262   if (UseFastLocking) {
 263     // try inlined fast unlocking first, revert to slow locking if it fails
 264     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 265     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 266     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 267   } else {
 268     // always do slow unlocking
 269     // note: the slow unlocking code could be inlined here, however if we use
 270     //       slow unlocking, speed doesn't matter anyway and this solution is
 271     //       simpler and requires less duplicated code - additionally, the
 272     //       slow unlocking code is the same in either case which simplifies
 273     //       debugging
 274     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 275     __ delayed()->nop();
 276   }
 277   // done
 278   __ bind(*slow_case->continuation());
 279 }
 280 
 281 
 282 int LIR_Assembler::emit_exception_handler() {
 283   // if the last instruction is a call (typically to do a throw which
 284   // is coming at the end after block reordering) the return address
 285   // must still point into the code area in order to avoid assertion
 286   // failures when searching for the corresponding bci => add a nop
 287   // (was bug 5/14/1999 - gri)
 288   __ nop();
 289 
 290   // generate code for exception handler
 291   ciMethod* method = compilation()->method();
 292 
 293   address handler_base = __ start_a_stub(exception_handler_size());
 294 
 295   if (handler_base == NULL) {
 296     // not enough space left for the handler
 297     bailout("exception handler overflow");
 298     return -1;
 299   }
 300 
 301   int offset = code_offset();
 302 
 303   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 304   __ delayed()->nop();
 305   __ should_not_reach_here();
 306   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 307   __ end_a_stub();
 308 
 309   return offset;
 310 }
 311 
 312 
 313 // Emit the code to remove the frame from the stack in the exception
 314 // unwind path.
 315 int LIR_Assembler::emit_unwind_handler() {
 316 #ifndef PRODUCT
 317   if (CommentedAssembly) {
 318     _masm->block_comment("Unwind handler");
 319   }
 320 #endif
 321 
 322   int offset = code_offset();
 323 
 324   // Fetch the exception from TLS and clear out exception related thread state
 325   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 326   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 327   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 328 
 329   __ bind(_unwind_handler_entry);
 330   __ verify_not_null_oop(O0);
 331   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 332     __ mov(O0, I0);  // Preserve the exception
 333   }
 334 
 335   // Preform needed unlocking
 336   MonitorExitStub* stub = NULL;
 337   if (method()->is_synchronized()) {
 338     monitor_address(0, FrameMap::I1_opr);
 339     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 340     __ unlock_object(I3, I2, I1, *stub->entry());
 341     __ bind(*stub->continuation());
 342   }
 343 
 344   if (compilation()->env()->dtrace_method_probes()) {
 345     __ mov(G2_thread, O0);
 346     __ save_thread(I1); // need to preserve thread in G2 across
 347                         // runtime call
 348     metadata2reg(method()->constant_encoding(), O1);
 349     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 350     __ delayed()->nop();
 351     __ restore_thread(I1);
 352   }
 353 
 354   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 355     __ mov(I0, O0);  // Restore the exception
 356   }
 357 
 358   // dispatch to the unwind logic
 359   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 360   __ delayed()->nop();
 361 
 362   // Emit the slow path assembly
 363   if (stub != NULL) {
 364     stub->emit_code(this);
 365   }
 366 
 367   return offset;
 368 }
 369 
 370 
 371 int LIR_Assembler::emit_deopt_handler() {
 372   // if the last instruction is a call (typically to do a throw which
 373   // is coming at the end after block reordering) the return address
 374   // must still point into the code area in order to avoid assertion
 375   // failures when searching for the corresponding bci => add a nop
 376   // (was bug 5/14/1999 - gri)
 377   __ nop();
 378 
 379   // generate code for deopt handler
 380   ciMethod* method = compilation()->method();
 381   address handler_base = __ start_a_stub(deopt_handler_size());
 382   if (handler_base == NULL) {
 383     // not enough space left for the handler
 384     bailout("deopt handler overflow");
 385     return -1;
 386   }
 387 
 388   int offset = code_offset();
 389   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 390   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 391   __ delayed()->nop();
 392   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 393   __ end_a_stub();
 394 
 395   return offset;
 396 }
 397 
 398 
 399 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 400   if (o == NULL) {
 401     __ set(NULL_WORD, reg);
 402   } else {
 403 #ifdef ASSERT
 404     {
 405       ThreadInVMfromNative tiv(JavaThread::current());
 406       assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
 407     }
 408 #endif
 409     int oop_index = __ oop_recorder()->find_index(o);
 410     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 411     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 412   }
 413 }
 414 
 415 
 416 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 417   // Allocate a new index in table to hold the object once it's been patched
 418   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
 419   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
 420 
 421   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 422   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 423   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 424   // NULL will be dynamically patched later and the patched value may be large.  We must
 425   // therefore generate the sethi/add as a placeholders
 426   __ patchable_set(addrlit, reg);
 427 
 428   patching_epilog(patch, lir_patch_normal, reg, info);
 429 }
 430 
 431 
 432 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
 433   __ set_metadata_constant(o, reg);
 434 }
 435 
 436 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
 437   // Allocate a new index in table to hold the klass once it's been patched
 438   int index = __ oop_recorder()->allocate_metadata_index(NULL);
 439   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 440   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
 441   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
 442   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 443   // NULL will be dynamically patched later and the patched value may be large.  We must
 444   // therefore generate the sethi/add as a placeholders
 445   __ patchable_set(addrlit, reg);
 446 
 447   patching_epilog(patch, lir_patch_normal, reg, info);
 448 }
 449 
 450 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 451   switch (op->code()) {
 452     case lir_idiv:
 453     case lir_irem:  // Both idiv & irem are handled after the switch (below).
 454       break;
 455     case lir_fmaf:
 456       __ fmadd(FloatRegisterImpl::S,
 457                op->in_opr1()->as_float_reg(),
 458                op->in_opr2()->as_float_reg(),
 459                op->in_opr3()->as_float_reg(),
 460                op->result_opr()->as_float_reg());
 461       return;
 462     case lir_fmad:
 463       __ fmadd(FloatRegisterImpl::D,
 464                op->in_opr1()->as_double_reg(),
 465                op->in_opr2()->as_double_reg(),
 466                op->in_opr3()->as_double_reg(),
 467                op->result_opr()->as_double_reg());
 468       return;
 469     default:
 470       ShouldNotReachHere();
 471       break;
 472   }
 473 
 474   // Handle idiv & irem:
 475 
 476   Register Rdividend = op->in_opr1()->as_register();
 477   Register Rdivisor  = noreg;
 478   Register Rscratch  = op->in_opr3()->as_register();
 479   Register Rresult   = op->result_opr()->as_register();
 480   int divisor = -1;
 481 
 482   if (op->in_opr2()->is_register()) {
 483     Rdivisor = op->in_opr2()->as_register();
 484   } else {
 485     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 486     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 487   }
 488 
 489   assert(Rdividend != Rscratch, "");
 490   assert(Rdivisor  != Rscratch, "");
 491   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 492 
 493   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 494     // convert division by a power of two into some shifts and logical operations
 495     if (op->code() == lir_idiv) {
 496       if (divisor == 2) {
 497         __ srl(Rdividend, 31, Rscratch);
 498       } else {
 499         __ sra(Rdividend, 31, Rscratch);
 500         __ and3(Rscratch, divisor - 1, Rscratch);
 501       }
 502       __ add(Rdividend, Rscratch, Rscratch);
 503       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 504       return;
 505     } else {
 506       if (divisor == 2) {
 507         __ srl(Rdividend, 31, Rscratch);
 508       } else {
 509         __ sra(Rdividend, 31, Rscratch);
 510         __ and3(Rscratch, divisor - 1,Rscratch);
 511       }
 512       __ add(Rdividend, Rscratch, Rscratch);
 513       __ andn(Rscratch, divisor - 1,Rscratch);
 514       __ sub(Rdividend, Rscratch, Rresult);
 515       return;
 516     }
 517   }
 518 
 519   __ sra(Rdividend, 31, Rscratch);
 520   __ wry(Rscratch);
 521 
 522   add_debug_info_for_div0_here(op->info());
 523 
 524   if (Rdivisor != noreg) {
 525     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 526   } else {
 527     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 528     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 529   }
 530 
 531   Label skip;
 532   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 533   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 534   __ bind(skip);
 535 
 536   if (op->code() == lir_irem) {
 537     if (Rdivisor != noreg) {
 538       __ smul(Rscratch, Rdivisor, Rscratch);
 539     } else {
 540       __ smul(Rscratch, divisor, Rscratch);
 541     }
 542     __ sub(Rdividend, Rscratch, Rresult);
 543   }
 544 }
 545 
 546 
 547 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 548 #ifdef ASSERT
 549   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 550   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 551   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 552 #endif
 553   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 554 
 555   if (op->cond() == lir_cond_always) {
 556     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 557   } else if (op->code() == lir_cond_float_branch) {
 558     assert(op->ublock() != NULL, "must have unordered successor");
 559     bool is_unordered = (op->ublock() == op->block());
 560     Assembler::Condition acond;
 561     switch (op->cond()) {
 562       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 563       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 564       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 565       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 566       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 567       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 568       default :                         ShouldNotReachHere();
 569     }
 570     __ fb( acond, false, Assembler::pn, *(op->label()));
 571   } else {
 572     assert (op->code() == lir_branch, "just checking");
 573 
 574     Assembler::Condition acond;
 575     switch (op->cond()) {
 576       case lir_cond_equal:        acond = Assembler::equal;                break;
 577       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 578       case lir_cond_less:         acond = Assembler::less;                 break;
 579       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 580       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 581       case lir_cond_greater:      acond = Assembler::greater;              break;
 582       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 583       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 584       default:                         ShouldNotReachHere();
 585     };
 586 
 587     // sparc has different condition codes for testing 32-bit
 588     // vs. 64-bit values.  We could always test xcc is we could
 589     // guarantee that 32-bit loads always sign extended but that isn't
 590     // true and since sign extension isn't free, it would impose a
 591     // slight cost.
 592     if  (op->type() == T_INT) {
 593       __ br(acond, false, Assembler::pn, *(op->label()));
 594     } else
 595       __ brx(acond, false, Assembler::pn, *(op->label()));
 596   }
 597   // The peephole pass fills the delay slot
 598 }
 599 
 600 
 601 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 602   Bytecodes::Code code = op->bytecode();
 603   LIR_Opr dst = op->result_opr();
 604 
 605   switch(code) {
 606     case Bytecodes::_i2l: {
 607       Register rlo  = dst->as_register_lo();
 608       Register rhi  = dst->as_register_hi();
 609       Register rval = op->in_opr()->as_register();
 610       __ sra(rval, 0, rlo);
 611       break;
 612     }
 613     case Bytecodes::_i2d:
 614     case Bytecodes::_i2f: {
 615       bool is_double = (code == Bytecodes::_i2d);
 616       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 617       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 618       FloatRegister rsrc = op->in_opr()->as_float_reg();
 619       if (rsrc != rdst) {
 620         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 621       }
 622       __ fitof(w, rdst, rdst);
 623       break;
 624     }
 625     case Bytecodes::_f2i:{
 626       FloatRegister rsrc = op->in_opr()->as_float_reg();
 627       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 628       Label L;
 629       // result must be 0 if value is NaN; test by comparing value to itself
 630       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 631       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 632       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 633       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 634       // move integer result from float register to int register
 635       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 636       __ bind (L);
 637       break;
 638     }
 639     case Bytecodes::_l2i: {
 640       Register rlo  = op->in_opr()->as_register_lo();
 641       Register rhi  = op->in_opr()->as_register_hi();
 642       Register rdst = dst->as_register();
 643       __ sra(rlo, 0, rdst);
 644       break;
 645     }
 646     case Bytecodes::_d2f:
 647     case Bytecodes::_f2d: {
 648       bool is_double = (code == Bytecodes::_f2d);
 649       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 650       LIR_Opr val = op->in_opr();
 651       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 652       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 653       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 654       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 655       __ ftof(vw, dw, rval, rdst);
 656       break;
 657     }
 658     case Bytecodes::_i2s:
 659     case Bytecodes::_i2b: {
 660       Register rval = op->in_opr()->as_register();
 661       Register rdst = dst->as_register();
 662       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 663       __ sll (rval, shift, rdst);
 664       __ sra (rdst, shift, rdst);
 665       break;
 666     }
 667     case Bytecodes::_i2c: {
 668       Register rval = op->in_opr()->as_register();
 669       Register rdst = dst->as_register();
 670       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 671       __ sll (rval, shift, rdst);
 672       __ srl (rdst, shift, rdst);
 673       break;
 674     }
 675 
 676     default: ShouldNotReachHere();
 677   }
 678 }
 679 
 680 
 681 void LIR_Assembler::align_call(LIR_Code) {
 682   // do nothing since all instructions are word aligned on sparc
 683 }
 684 
 685 
 686 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 687   __ call(op->addr(), rtype);
 688   // The peephole pass fills the delay slot, add_call_info is done in
 689   // LIR_Assembler::emit_delay.
 690 }
 691 
 692 
 693 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 694   __ ic_call(op->addr(), false);
 695   // The peephole pass fills the delay slot, add_call_info is done in
 696   // LIR_Assembler::emit_delay.
 697 }
 698 
 699 
 700 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 701   add_debug_info_for_null_check_here(op->info());
 702   __ load_klass(O0, G3_scratch);
 703   if (Assembler::is_simm13(op->vtable_offset())) {
 704     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 705   } else {
 706     // This will generate 2 instructions
 707     __ set(op->vtable_offset(), G5_method);
 708     // ld_ptr, set_hi, set
 709     __ ld_ptr(G3_scratch, G5_method, G5_method);
 710   }
 711   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
 712   __ callr(G3_scratch, G0);
 713   // the peephole pass fills the delay slot
 714 }
 715 
 716 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 717   int store_offset;
 718   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 719     assert(base != O7, "destroying register");
 720     assert(!unaligned, "can't handle this");
 721     // for offsets larger than a simm13 we setup the offset in O7
 722     __ set(offset, O7);
 723     store_offset = store(from_reg, base, O7, type, wide);
 724   } else {
 725     if (type == T_ARRAY || type == T_OBJECT) {
 726       __ verify_oop(from_reg->as_register());
 727     }
 728     store_offset = code_offset();
 729     switch (type) {
 730       case T_BOOLEAN: // fall through
 731       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 732       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 733       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 734       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 735       case T_LONG  :
 736         if (unaligned || PatchALot) {
 737           // Don't use O7 here because it may be equal to 'base' (see LIR_Assembler::reg2mem)
 738           assert(G3_scratch != base, "can't handle this");
 739           assert(G3_scratch != from_reg->as_register_lo(), "can't handle this");
 740           __ srax(from_reg->as_register_lo(), 32, G3_scratch);
 741           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 742           __ stw(G3_scratch,                 base, offset + hi_word_offset_in_bytes);
 743         } else {
 744           __ stx(from_reg->as_register_lo(), base, offset);
 745         }
 746         break;
 747       case T_ADDRESS:
 748       case T_METADATA:
 749         __ st_ptr(from_reg->as_register(), base, offset);
 750         break;
 751       case T_ARRAY : // fall through
 752       case T_OBJECT:
 753         {
 754           if (UseCompressedOops && !wide) {
 755             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 756             store_offset = code_offset();
 757             __ stw(G3_scratch, base, offset);
 758           } else {
 759             __ st_ptr(from_reg->as_register(), base, offset);
 760           }
 761           break;
 762         }
 763 
 764       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 765       case T_DOUBLE:
 766         {
 767           FloatRegister reg = from_reg->as_double_reg();
 768           // split unaligned stores
 769           if (unaligned || PatchALot) {
 770             assert(Assembler::is_simm13(offset + 4), "must be");
 771             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 772             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 773           } else {
 774             __ stf(FloatRegisterImpl::D, reg, base, offset);
 775           }
 776           break;
 777         }
 778       default      : ShouldNotReachHere();
 779     }
 780   }
 781   return store_offset;
 782 }
 783 
 784 
 785 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 786   if (type == T_ARRAY || type == T_OBJECT) {
 787     __ verify_oop(from_reg->as_register());
 788   }
 789   int store_offset = code_offset();
 790   switch (type) {
 791     case T_BOOLEAN: // fall through
 792     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 793     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 794     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 795     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 796     case T_LONG  :
 797       __ stx(from_reg->as_register_lo(), base, disp);
 798       break;
 799     case T_ADDRESS:
 800       __ st_ptr(from_reg->as_register(), base, disp);
 801       break;
 802     case T_ARRAY : // fall through
 803     case T_OBJECT:
 804       {
 805         if (UseCompressedOops && !wide) {
 806           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 807           store_offset = code_offset();
 808           __ stw(G3_scratch, base, disp);
 809         } else {
 810           __ st_ptr(from_reg->as_register(), base, disp);
 811         }
 812         break;
 813       }
 814     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 815     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 816     default      : ShouldNotReachHere();
 817   }
 818   return store_offset;
 819 }
 820 
 821 
 822 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 823   int load_offset;
 824   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 825     assert(base != O7, "destroying register");
 826     assert(!unaligned, "can't handle this");
 827     // for offsets larger than a simm13 we setup the offset in O7
 828     __ set(offset, O7);
 829     load_offset = load(base, O7, to_reg, type, wide);
 830   } else {
 831     load_offset = code_offset();
 832     switch(type) {
 833       case T_BOOLEAN: // fall through
 834       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 835       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 836       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 837       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 838       case T_LONG  :
 839         if (!unaligned && !PatchALot) {
 840           __ ldx(base, offset, to_reg->as_register_lo());
 841         } else {
 842           assert(base != to_reg->as_register_lo(), "can't handle this");
 843           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 844           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 845           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 846           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 847           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 848         }
 849         break;
 850       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
 851       case T_ADDRESS:
 852         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
 853           __ lduw(base, offset, to_reg->as_register());
 854           __ decode_klass_not_null(to_reg->as_register());
 855         } else
 856         {
 857           __ ld_ptr(base, offset, to_reg->as_register());
 858         }
 859         break;
 860       case T_ARRAY : // fall through
 861       case T_OBJECT:
 862         {
 863           if (UseCompressedOops && !wide) {
 864             __ lduw(base, offset, to_reg->as_register());
 865             __ decode_heap_oop(to_reg->as_register());
 866           } else {
 867             __ ld_ptr(base, offset, to_reg->as_register());
 868           }
 869           break;
 870         }
 871       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 872       case T_DOUBLE:
 873         {
 874           FloatRegister reg = to_reg->as_double_reg();
 875           // split unaligned loads
 876           if (unaligned || PatchALot) {
 877             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 878             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 879           } else {
 880             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 881           }
 882           break;
 883         }
 884       default      : ShouldNotReachHere();
 885     }
 886     if (type == T_ARRAY || type == T_OBJECT) {
 887       __ verify_oop(to_reg->as_register());
 888     }
 889   }
 890   return load_offset;
 891 }
 892 
 893 
 894 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 895   int load_offset = code_offset();
 896   switch(type) {
 897     case T_BOOLEAN: // fall through
 898     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
 899     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
 900     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
 901     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
 902     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
 903     case T_ARRAY : // fall through
 904     case T_OBJECT:
 905       {
 906           if (UseCompressedOops && !wide) {
 907             __ lduw(base, disp, to_reg->as_register());
 908             __ decode_heap_oop(to_reg->as_register());
 909           } else {
 910             __ ld_ptr(base, disp, to_reg->as_register());
 911           }
 912           break;
 913       }
 914     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
 915     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
 916     case T_LONG  :
 917       __ ldx(base, disp, to_reg->as_register_lo());
 918       break;
 919     default      : ShouldNotReachHere();
 920   }
 921   if (type == T_ARRAY || type == T_OBJECT) {
 922     __ verify_oop(to_reg->as_register());
 923   }
 924   return load_offset;
 925 }
 926 
 927 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 928   LIR_Const* c = src->as_constant_ptr();
 929   switch (c->type()) {
 930     case T_INT:
 931     case T_FLOAT: {
 932       Register src_reg = O7;
 933       int value = c->as_jint_bits();
 934       if (value == 0) {
 935         src_reg = G0;
 936       } else {
 937         __ set(value, O7);
 938       }
 939       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 940       __ stw(src_reg, addr.base(), addr.disp());
 941       break;
 942     }
 943     case T_ADDRESS: {
 944       Register src_reg = O7;
 945       int value = c->as_jint_bits();
 946       if (value == 0) {
 947         src_reg = G0;
 948       } else {
 949         __ set(value, O7);
 950       }
 951       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 952       __ st_ptr(src_reg, addr.base(), addr.disp());
 953       break;
 954     }
 955     case T_OBJECT: {
 956       Register src_reg = O7;
 957       jobject2reg(c->as_jobject(), src_reg);
 958       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 959       __ st_ptr(src_reg, addr.base(), addr.disp());
 960       break;
 961     }
 962     case T_LONG:
 963     case T_DOUBLE: {
 964       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
 965 
 966       Register tmp = O7;
 967       int value_lo = c->as_jint_lo_bits();
 968       if (value_lo == 0) {
 969         tmp = G0;
 970       } else {
 971         __ set(value_lo, O7);
 972       }
 973       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
 974       int value_hi = c->as_jint_hi_bits();
 975       if (value_hi == 0) {
 976         tmp = G0;
 977       } else {
 978         __ set(value_hi, O7);
 979       }
 980       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
 981       break;
 982     }
 983     default:
 984       Unimplemented();
 985   }
 986 }
 987 
 988 
 989 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 990   LIR_Const* c = src->as_constant_ptr();
 991   LIR_Address* addr     = dest->as_address_ptr();
 992   Register base = addr->base()->as_pointer_register();
 993   int offset = -1;
 994 
 995   switch (c->type()) {
 996     case T_FLOAT: type = T_INT; // Float constants are stored by int store instructions.
 997     case T_INT:
 998     case T_ADDRESS: {
 999       LIR_Opr tmp = FrameMap::O7_opr;
1000       int value = c->as_jint_bits();
1001       if (value == 0) {
1002         tmp = FrameMap::G0_opr;
1003       } else if (Assembler::is_simm13(value)) {
1004         __ set(value, O7);
1005       }
1006       if (addr->index()->is_valid()) {
1007         assert(addr->disp() == 0, "must be zero");
1008         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1009       } else {
1010         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1011         offset = store(tmp, base, addr->disp(), type, wide, false);
1012       }
1013       break;
1014     }
1015     case T_LONG:
1016     case T_DOUBLE: {
1017       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1018       assert(Assembler::is_simm13(addr->disp()) &&
1019              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1020 
1021       LIR_Opr tmp = FrameMap::O7_opr;
1022       int value_lo = c->as_jint_lo_bits();
1023       if (value_lo == 0) {
1024         tmp = FrameMap::G0_opr;
1025       } else {
1026         __ set(value_lo, O7);
1027       }
1028       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1029       int value_hi = c->as_jint_hi_bits();
1030       if (value_hi == 0) {
1031         tmp = FrameMap::G0_opr;
1032       } else {
1033         __ set(value_hi, O7);
1034       }
1035       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1036       break;
1037     }
1038     case T_OBJECT: {
1039       jobject obj = c->as_jobject();
1040       LIR_Opr tmp;
1041       if (obj == NULL) {
1042         tmp = FrameMap::G0_opr;
1043       } else {
1044         tmp = FrameMap::O7_opr;
1045         jobject2reg(c->as_jobject(), O7);
1046       }
1047       // handle either reg+reg or reg+disp address
1048       if (addr->index()->is_valid()) {
1049         assert(addr->disp() == 0, "must be zero");
1050         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1051       } else {
1052         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1053         offset = store(tmp, base, addr->disp(), type, wide, false);
1054       }
1055 
1056       break;
1057     }
1058     default:
1059       Unimplemented();
1060   }
1061   if (info != NULL) {
1062     assert(offset != -1, "offset should've been set");
1063     add_debug_info_for_null_check(offset, info);
1064   }
1065 }
1066 
1067 
1068 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1069   LIR_Const* c = src->as_constant_ptr();
1070   LIR_Opr to_reg = dest;
1071 
1072   switch (c->type()) {
1073     case T_INT:
1074     case T_ADDRESS:
1075       {
1076         jint con = c->as_jint();
1077         if (to_reg->is_single_cpu()) {
1078           assert(patch_code == lir_patch_none, "no patching handled here");
1079           __ set(con, to_reg->as_register());
1080         } else {
1081           ShouldNotReachHere();
1082           assert(to_reg->is_single_fpu(), "wrong register kind");
1083 
1084           __ set(con, O7);
1085           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1086           __ st(O7, temp_slot);
1087           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1088         }
1089       }
1090       break;
1091 
1092     case T_LONG:
1093       {
1094         jlong con = c->as_jlong();
1095 
1096         if (to_reg->is_double_cpu()) {
1097           __ set(con,  to_reg->as_register_lo());
1098         } else if (to_reg->is_single_cpu()) {
1099           __ set(con, to_reg->as_register());
1100         } else {
1101           ShouldNotReachHere();
1102           assert(to_reg->is_double_fpu(), "wrong register kind");
1103           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1104           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1105           __ set(low(con),  O7);
1106           __ st(O7, temp_slot_lo);
1107           __ set(high(con), O7);
1108           __ st(O7, temp_slot_hi);
1109           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1110         }
1111       }
1112       break;
1113 
1114     case T_OBJECT:
1115       {
1116         if (patch_code == lir_patch_none) {
1117           jobject2reg(c->as_jobject(), to_reg->as_register());
1118         } else {
1119           jobject2reg_with_patching(to_reg->as_register(), info);
1120         }
1121       }
1122       break;
1123 
1124     case T_METADATA:
1125       {
1126         if (patch_code == lir_patch_none) {
1127           metadata2reg(c->as_metadata(), to_reg->as_register());
1128         } else {
1129           klass2reg_with_patching(to_reg->as_register(), info);
1130         }
1131       }
1132       break;
1133 
1134     case T_FLOAT:
1135       {
1136         address const_addr = __ float_constant(c->as_jfloat());
1137         if (const_addr == NULL) {
1138           bailout("const section overflow");
1139           break;
1140         }
1141         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1142         AddressLiteral const_addrlit(const_addr, rspec);
1143         if (to_reg->is_single_fpu()) {
1144           __ patchable_sethi(const_addrlit, O7);
1145           __ relocate(rspec);
1146           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1147 
1148         } else {
1149           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1150 
1151           __ set(const_addrlit, O7);
1152           __ ld(O7, 0, to_reg->as_register());
1153         }
1154       }
1155       break;
1156 
1157     case T_DOUBLE:
1158       {
1159         address const_addr = __ double_constant(c->as_jdouble());
1160         if (const_addr == NULL) {
1161           bailout("const section overflow");
1162           break;
1163         }
1164         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1165 
1166         if (to_reg->is_double_fpu()) {
1167           AddressLiteral const_addrlit(const_addr, rspec);
1168           __ patchable_sethi(const_addrlit, O7);
1169           __ relocate(rspec);
1170           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1171         } else {
1172           assert(to_reg->is_double_cpu(), "Must be a long register.");
1173           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1174         }
1175 
1176       }
1177       break;
1178 
1179     default:
1180       ShouldNotReachHere();
1181   }
1182 }
1183 
1184 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1185   Register reg = addr->base()->as_pointer_register();
1186   LIR_Opr index = addr->index();
1187   if (index->is_illegal()) {
1188     return Address(reg, addr->disp());
1189   } else {
1190     assert (addr->disp() == 0, "unsupported address mode");
1191     return Address(reg, index->as_pointer_register());
1192   }
1193 }
1194 
1195 
1196 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1197   switch (type) {
1198     case T_INT:
1199     case T_FLOAT: {
1200       Register tmp = O7;
1201       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1202       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1203       __ lduw(from.base(), from.disp(), tmp);
1204       __ stw(tmp, to.base(), to.disp());
1205       break;
1206     }
1207     case T_ADDRESS:
1208     case T_OBJECT: {
1209       Register tmp = O7;
1210       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1211       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1212       __ ld_ptr(from.base(), from.disp(), tmp);
1213       __ st_ptr(tmp, to.base(), to.disp());
1214       break;
1215     }
1216     case T_LONG:
1217     case T_DOUBLE: {
1218       Register tmp = O7;
1219       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1220       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1221       __ lduw(from.base(), from.disp(), tmp);
1222       __ stw(tmp, to.base(), to.disp());
1223       __ lduw(from.base(), from.disp() + 4, tmp);
1224       __ stw(tmp, to.base(), to.disp() + 4);
1225       break;
1226     }
1227 
1228     default:
1229       ShouldNotReachHere();
1230   }
1231 }
1232 
1233 
1234 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1235   Address base = as_Address(addr);
1236   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1237 }
1238 
1239 
1240 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1241   Address base = as_Address(addr);
1242   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1243 }
1244 
1245 
1246 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1247                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1248 
1249   assert(type != T_METADATA, "load of metadata ptr not supported");
1250   LIR_Address* addr = src_opr->as_address_ptr();
1251   LIR_Opr to_reg = dest;
1252 
1253   Register src = addr->base()->as_pointer_register();
1254   Register disp_reg = noreg;
1255   int disp_value = addr->disp();
1256   bool needs_patching = (patch_code != lir_patch_none);
1257 
1258   if (addr->base()->type() == T_OBJECT) {
1259     __ verify_oop(src);
1260   }
1261 
1262   PatchingStub* patch = NULL;
1263   if (needs_patching) {
1264     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1265     assert(!to_reg->is_double_cpu() ||
1266            patch_code == lir_patch_none ||
1267            patch_code == lir_patch_normal, "patching doesn't match register");
1268   }
1269 
1270   if (addr->index()->is_illegal()) {
1271     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1272       if (needs_patching) {
1273         __ patchable_set(0, O7);
1274       } else {
1275         __ set(disp_value, O7);
1276       }
1277       disp_reg = O7;
1278     }
1279   } else if (unaligned || PatchALot) {
1280     __ add(src, addr->index()->as_pointer_register(), O7);
1281     src = O7;
1282   } else {
1283     disp_reg = addr->index()->as_pointer_register();
1284     assert(disp_value == 0, "can't handle 3 operand addresses");
1285   }
1286 
1287   // remember the offset of the load.  The patching_epilog must be done
1288   // before the call to add_debug_info, otherwise the PcDescs don't get
1289   // entered in increasing order.
1290   int offset = code_offset();
1291 
1292   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1293   if (disp_reg == noreg) {
1294     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1295   } else {
1296     assert(!unaligned, "can't handle this");
1297     offset = load(src, disp_reg, to_reg, type, wide);
1298   }
1299 
1300   if (patch != NULL) {
1301     patching_epilog(patch, patch_code, src, info);
1302   }
1303   if (info != NULL) add_debug_info_for_null_check(offset, info);
1304 }
1305 
1306 
1307 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1308   Address addr;
1309   if (src->is_single_word()) {
1310     addr = frame_map()->address_for_slot(src->single_stack_ix());
1311   } else if (src->is_double_word())  {
1312     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1313   }
1314 
1315   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1316   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1317 }
1318 
1319 
1320 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1321   Address addr;
1322   if (dest->is_single_word()) {
1323     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1324   } else if (dest->is_double_word())  {
1325     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1326   }
1327   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1328   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1329 }
1330 
1331 
1332 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1333   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1334     if (from_reg->is_double_fpu()) {
1335       // double to double moves
1336       assert(to_reg->is_double_fpu(), "should match");
1337       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1338     } else {
1339       // float to float moves
1340       assert(to_reg->is_single_fpu(), "should match");
1341       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1342     }
1343   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1344     if (from_reg->is_double_cpu()) {
1345       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1346     } else if (to_reg->is_double_cpu()) {
1347       // int to int moves
1348       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1349     } else {
1350       // int to int moves
1351       __ mov(from_reg->as_register(), to_reg->as_register());
1352     }
1353   } else {
1354     ShouldNotReachHere();
1355   }
1356   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1357     __ verify_oop(to_reg->as_register());
1358   }
1359 }
1360 
1361 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1362                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1363                             bool wide, bool unaligned) {
1364   assert(type != T_METADATA, "store of metadata ptr not supported");
1365   LIR_Address* addr = dest->as_address_ptr();
1366 
1367   Register src = addr->base()->as_pointer_register();
1368   Register disp_reg = noreg;
1369   int disp_value = addr->disp();
1370   bool needs_patching = (patch_code != lir_patch_none);
1371 
1372   if (addr->base()->is_oop_register()) {
1373     __ verify_oop(src);
1374   }
1375 
1376   PatchingStub* patch = NULL;
1377   if (needs_patching) {
1378     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1379     assert(!from_reg->is_double_cpu() ||
1380            patch_code == lir_patch_none ||
1381            patch_code == lir_patch_normal, "patching doesn't match register");
1382   }
1383 
1384   if (addr->index()->is_illegal()) {
1385     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1386       if (needs_patching) {
1387         __ patchable_set(0, O7);
1388       } else {
1389         __ set(disp_value, O7);
1390       }
1391       disp_reg = O7;
1392     }
1393   } else if (unaligned || PatchALot) {
1394     __ add(src, addr->index()->as_pointer_register(), O7);
1395     src = O7;
1396   } else {
1397     disp_reg = addr->index()->as_pointer_register();
1398     assert(disp_value == 0, "can't handle 3 operand addresses");
1399   }
1400 
1401   // remember the offset of the store.  The patching_epilog must be done
1402   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1403   // entered in increasing order.
1404   int offset;
1405 
1406   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1407   if (disp_reg == noreg) {
1408     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1409   } else {
1410     assert(!unaligned, "can't handle this");
1411     offset = store(from_reg, src, disp_reg, type, wide);
1412   }
1413 
1414   if (patch != NULL) {
1415     patching_epilog(patch, patch_code, src, info);
1416   }
1417 
1418   if (info != NULL) add_debug_info_for_null_check(offset, info);
1419 }
1420 
1421 
1422 void LIR_Assembler::return_op(LIR_Opr result) {
1423   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1424     __ reserved_stack_check();
1425   }
1426   if (SafepointMechanism::uses_thread_local_poll()) {
1427     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), L0);
1428   } else {
1429     __ set((intptr_t)os::get_polling_page(), L0);
1430   }
1431   __ relocate(relocInfo::poll_return_type);
1432   __ ld_ptr(L0, 0, G0);
1433   __ ret();
1434   __ delayed()->restore();
1435 }
1436 
1437 
1438 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1439   if (SafepointMechanism::uses_thread_local_poll()) {
1440     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), tmp->as_register());
1441   } else {
1442     __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1443   }
1444   if (info != NULL) {
1445     add_debug_info_for_branch(info);
1446   }
1447   int offset = __ offset();
1448 
1449   __ relocate(relocInfo::poll_type);
1450   __ ld_ptr(tmp->as_register(), 0, G0);
1451   return offset;
1452 }
1453 
1454 
1455 void LIR_Assembler::emit_static_call_stub() {
1456   address call_pc = __ pc();
1457   address stub = __ start_a_stub(call_stub_size());
1458   if (stub == NULL) {
1459     bailout("static call stub overflow");
1460     return;
1461   }
1462 
1463   int start = __ offset();
1464   __ relocate(static_stub_Relocation::spec(call_pc));
1465 
1466   __ set_metadata(NULL, G5);
1467   // must be set to -1 at code generation time
1468   AddressLiteral addrlit(-1);
1469   __ jump_to(addrlit, G3);
1470   __ delayed()->nop();
1471 
1472   assert(__ offset() - start <= call_stub_size(), "stub too big");
1473   __ end_a_stub();
1474 }
1475 
1476 
1477 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1478   if (opr1->is_single_fpu()) {
1479     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1480   } else if (opr1->is_double_fpu()) {
1481     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1482   } else if (opr1->is_single_cpu()) {
1483     if (opr2->is_constant()) {
1484       switch (opr2->as_constant_ptr()->type()) {
1485         case T_INT:
1486           { jint con = opr2->as_constant_ptr()->as_jint();
1487             if (Assembler::is_simm13(con)) {
1488               __ cmp(opr1->as_register(), con);
1489             } else {
1490               __ set(con, O7);
1491               __ cmp(opr1->as_register(), O7);
1492             }
1493           }
1494           break;
1495 
1496         case T_OBJECT:
1497           // there are only equal/notequal comparisions on objects
1498           { jobject con = opr2->as_constant_ptr()->as_jobject();
1499             if (con == NULL) {
1500               __ cmp(opr1->as_register(), 0);
1501             } else {
1502               jobject2reg(con, O7);
1503               __ cmp(opr1->as_register(), O7);
1504             }
1505           }
1506           break;
1507 
1508         default:
1509           ShouldNotReachHere();
1510           break;
1511       }
1512     } else {
1513       if (opr2->is_address()) {
1514         LIR_Address * addr = opr2->as_address_ptr();
1515         BasicType type = addr->type();
1516         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1517         else                    __ ld(as_Address(addr), O7);
1518         __ cmp(opr1->as_register(), O7);
1519       } else {
1520         __ cmp(opr1->as_register(), opr2->as_register());
1521       }
1522     }
1523   } else if (opr1->is_double_cpu()) {
1524     Register xlo = opr1->as_register_lo();
1525     Register xhi = opr1->as_register_hi();
1526     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1527       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1528       __ orcc(xhi, G0, G0);
1529     } else if (opr2->is_register()) {
1530       Register ylo = opr2->as_register_lo();
1531       Register yhi = opr2->as_register_hi();
1532       __ cmp(xlo, ylo);
1533     } else {
1534       ShouldNotReachHere();
1535     }
1536   } else if (opr1->is_address()) {
1537     LIR_Address * addr = opr1->as_address_ptr();
1538     BasicType type = addr->type();
1539     assert (opr2->is_constant(), "Checking");
1540     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1541     else                    __ ld(as_Address(addr), O7);
1542     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1543   } else {
1544     ShouldNotReachHere();
1545   }
1546 }
1547 
1548 
1549 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1550   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1551     bool is_unordered_less = (code == lir_ucmp_fd2i);
1552     if (left->is_single_fpu()) {
1553       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1554     } else if (left->is_double_fpu()) {
1555       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1556     } else {
1557       ShouldNotReachHere();
1558     }
1559   } else if (code == lir_cmp_l2i) {
1560     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1561   } else {
1562     ShouldNotReachHere();
1563   }
1564 }
1565 
1566 
1567 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1568   Assembler::Condition acond;
1569   switch (condition) {
1570     case lir_cond_equal:        acond = Assembler::equal;        break;
1571     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1572     case lir_cond_less:         acond = Assembler::less;         break;
1573     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1574     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1575     case lir_cond_greater:      acond = Assembler::greater;      break;
1576     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1577     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1578     default:                         ShouldNotReachHere();
1579   };
1580 
1581   if (opr1->is_constant() && opr1->type() == T_INT) {
1582     Register dest = result->as_register();
1583     // load up first part of constant before branch
1584     // and do the rest in the delay slot.
1585     if (!Assembler::is_simm13(opr1->as_jint())) {
1586       __ sethi(opr1->as_jint(), dest);
1587     }
1588   } else if (opr1->is_constant()) {
1589     const2reg(opr1, result, lir_patch_none, NULL);
1590   } else if (opr1->is_register()) {
1591     reg2reg(opr1, result);
1592   } else if (opr1->is_stack()) {
1593     stack2reg(opr1, result, result->type());
1594   } else {
1595     ShouldNotReachHere();
1596   }
1597   Label skip;
1598     if  (type == T_INT) {
1599       __ br(acond, false, Assembler::pt, skip);
1600     } else {
1601       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1602     }
1603   if (opr1->is_constant() && opr1->type() == T_INT) {
1604     Register dest = result->as_register();
1605     if (Assembler::is_simm13(opr1->as_jint())) {
1606       __ delayed()->or3(G0, opr1->as_jint(), dest);
1607     } else {
1608       // the sethi has been done above, so just put in the low 10 bits
1609       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1610     }
1611   } else {
1612     // can't do anything useful in the delay slot
1613     __ delayed()->nop();
1614   }
1615   if (opr2->is_constant()) {
1616     const2reg(opr2, result, lir_patch_none, NULL);
1617   } else if (opr2->is_register()) {
1618     reg2reg(opr2, result);
1619   } else if (opr2->is_stack()) {
1620     stack2reg(opr2, result, result->type());
1621   } else {
1622     ShouldNotReachHere();
1623   }
1624   __ bind(skip);
1625 }
1626 
1627 
1628 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1629   assert(info == NULL, "unused on this code path");
1630   assert(left->is_register(), "wrong items state");
1631   assert(dest->is_register(), "wrong items state");
1632 
1633   if (right->is_register()) {
1634     if (dest->is_float_kind()) {
1635 
1636       FloatRegister lreg, rreg, res;
1637       FloatRegisterImpl::Width w;
1638       if (right->is_single_fpu()) {
1639         w = FloatRegisterImpl::S;
1640         lreg = left->as_float_reg();
1641         rreg = right->as_float_reg();
1642         res  = dest->as_float_reg();
1643       } else {
1644         w = FloatRegisterImpl::D;
1645         lreg = left->as_double_reg();
1646         rreg = right->as_double_reg();
1647         res  = dest->as_double_reg();
1648       }
1649 
1650       switch (code) {
1651         case lir_add: __ fadd(w, lreg, rreg, res); break;
1652         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1653         case lir_mul: // fall through
1654         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1655         case lir_div: // fall through
1656         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1657         default: ShouldNotReachHere();
1658       }
1659 
1660     } else if (dest->is_double_cpu()) {
1661       Register dst_lo = dest->as_register_lo();
1662       Register op1_lo = left->as_pointer_register();
1663       Register op2_lo = right->as_pointer_register();
1664 
1665       switch (code) {
1666         case lir_add:
1667           __ add(op1_lo, op2_lo, dst_lo);
1668           break;
1669 
1670         case lir_sub:
1671           __ sub(op1_lo, op2_lo, dst_lo);
1672           break;
1673 
1674         default: ShouldNotReachHere();
1675       }
1676     } else {
1677       assert (right->is_single_cpu(), "Just Checking");
1678 
1679       Register lreg = left->as_register();
1680       Register res  = dest->as_register();
1681       Register rreg = right->as_register();
1682       switch (code) {
1683         case lir_add:  __ add  (lreg, rreg, res); break;
1684         case lir_sub:  __ sub  (lreg, rreg, res); break;
1685         case lir_mul:  __ mulx (lreg, rreg, res); break;
1686         default: ShouldNotReachHere();
1687       }
1688     }
1689   } else {
1690     assert (right->is_constant(), "must be constant");
1691 
1692     if (dest->is_single_cpu()) {
1693       Register lreg = left->as_register();
1694       Register res  = dest->as_register();
1695       int    simm13 = right->as_constant_ptr()->as_jint();
1696 
1697       switch (code) {
1698         case lir_add:  __ add  (lreg, simm13, res); break;
1699         case lir_sub:  __ sub  (lreg, simm13, res); break;
1700         case lir_mul:  __ mulx (lreg, simm13, res); break;
1701         default: ShouldNotReachHere();
1702       }
1703     } else {
1704       Register lreg = left->as_pointer_register();
1705       Register res  = dest->as_register_lo();
1706       long con = right->as_constant_ptr()->as_jlong();
1707       assert(Assembler::is_simm13(con), "must be simm13");
1708 
1709       switch (code) {
1710         case lir_add:  __ add  (lreg, (int)con, res); break;
1711         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1712         case lir_mul:  __ mulx (lreg, (int)con, res); break;
1713         default: ShouldNotReachHere();
1714       }
1715     }
1716   }
1717 }
1718 
1719 
1720 void LIR_Assembler::fpop() {
1721   // do nothing
1722 }
1723 
1724 
1725 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1726   switch (code) {
1727     case lir_tan: {
1728       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1729       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1730       break;
1731     }
1732     case lir_sqrt: {
1733       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1734       FloatRegister src_reg = value->as_double_reg();
1735       FloatRegister dst_reg = dest->as_double_reg();
1736       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1737       break;
1738     }
1739     case lir_abs: {
1740       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1741       FloatRegister src_reg = value->as_double_reg();
1742       FloatRegister dst_reg = dest->as_double_reg();
1743       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1744       break;
1745     }
1746     default: {
1747       ShouldNotReachHere();
1748       break;
1749     }
1750   }
1751 }
1752 
1753 
1754 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1755   if (right->is_constant()) {
1756     if (dest->is_single_cpu()) {
1757       int simm13 = right->as_constant_ptr()->as_jint();
1758       switch (code) {
1759         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1760         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1761         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1762         default: ShouldNotReachHere();
1763       }
1764     } else {
1765       long c = right->as_constant_ptr()->as_jlong();
1766       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1767       int simm13 = (int)c;
1768       switch (code) {
1769         case lir_logic_and:
1770           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1771           break;
1772 
1773         case lir_logic_or:
1774           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1775           break;
1776 
1777         case lir_logic_xor:
1778           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1779           break;
1780 
1781         default: ShouldNotReachHere();
1782       }
1783     }
1784   } else {
1785     assert(right->is_register(), "right should be in register");
1786 
1787     if (dest->is_single_cpu()) {
1788       switch (code) {
1789         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1790         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1791         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1792         default: ShouldNotReachHere();
1793       }
1794     } else {
1795       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1796                                                                         left->as_register_lo();
1797       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1798                                                                           right->as_register_lo();
1799 
1800       switch (code) {
1801         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1802         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1803         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1804         default: ShouldNotReachHere();
1805       }
1806     }
1807   }
1808 }
1809 
1810 
1811 int LIR_Assembler::shift_amount(BasicType t) {
1812   int elem_size = type2aelembytes(t);
1813   switch (elem_size) {
1814     case 1 : return 0;
1815     case 2 : return 1;
1816     case 4 : return 2;
1817     case 8 : return 3;
1818   }
1819   ShouldNotReachHere();
1820   return -1;
1821 }
1822 
1823 
1824 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1825   assert(exceptionOop->as_register() == Oexception, "should match");
1826   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
1827 
1828   info->add_register_oop(exceptionOop);
1829 
1830   // reuse the debug info from the safepoint poll for the throw op itself
1831   address pc_for_athrow  = __ pc();
1832   int pc_for_athrow_offset = __ offset();
1833   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1834   __ set(pc_for_athrow, Oissuing_pc, rspec);
1835   add_call_info(pc_for_athrow_offset, info); // for exception handler
1836 
1837   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
1838   __ delayed()->nop();
1839 }
1840 
1841 
1842 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1843   assert(exceptionOop->as_register() == Oexception, "should match");
1844 
1845   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
1846   __ delayed()->nop();
1847 }
1848 
1849 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1850   Register src = op->src()->as_register();
1851   Register dst = op->dst()->as_register();
1852   Register src_pos = op->src_pos()->as_register();
1853   Register dst_pos = op->dst_pos()->as_register();
1854   Register length  = op->length()->as_register();
1855   Register tmp = op->tmp()->as_register();
1856   Register tmp2 = O7;
1857 
1858   int flags = op->flags();
1859   ciArrayKlass* default_type = op->expected_type();
1860   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1861   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1862 
1863   // higher 32bits must be null
1864   __ sra(dst_pos, 0, dst_pos);
1865   __ sra(src_pos, 0, src_pos);
1866   __ sra(length, 0, length);
1867 
1868   // set up the arraycopy stub information
1869   ArrayCopyStub* stub = op->stub();
1870 
1871   // always do stub if no type information is available.  it's ok if
1872   // the known type isn't loaded since the code sanity checks
1873   // in debug mode and the type isn't required when we know the exact type
1874   // also check that the type is an array type.
1875   if (op->expected_type() == NULL) {
1876     __ mov(src,     O0);
1877     __ mov(src_pos, O1);
1878     __ mov(dst,     O2);
1879     __ mov(dst_pos, O3);
1880     __ mov(length,  O4);
1881     address copyfunc_addr = StubRoutines::generic_arraycopy();
1882 
1883     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
1884       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
1885     } else {
1886 #ifndef PRODUCT
1887       if (PrintC1Statistics) {
1888         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1889         __ inc_counter(counter, G1, G3);
1890       }
1891 #endif
1892       __ call_VM_leaf(tmp, copyfunc_addr);
1893     }
1894 
1895     if (copyfunc_addr != NULL) {
1896       __ xor3(O0, -1, tmp);
1897       __ sub(length, tmp, length);
1898       __ add(src_pos, tmp, src_pos);
1899       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1900       __ delayed()->add(dst_pos, tmp, dst_pos);
1901     } else {
1902       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1903       __ delayed()->nop();
1904     }
1905     __ bind(*stub->continuation());
1906     return;
1907   }
1908 
1909   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
1910 
1911   // make sure src and dst are non-null and load array length
1912   if (flags & LIR_OpArrayCopy::src_null_check) {
1913     __ tst(src);
1914     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1915     __ delayed()->nop();
1916   }
1917 
1918   if (flags & LIR_OpArrayCopy::dst_null_check) {
1919     __ tst(dst);
1920     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1921     __ delayed()->nop();
1922   }
1923 
1924   // If the compiler was not able to prove that exact type of the source or the destination
1925   // of the arraycopy is an array type, check at runtime if the source or the destination is
1926   // an instance type.
1927   if (flags & LIR_OpArrayCopy::type_check) {
1928     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
1929       __ load_klass(dst, tmp);
1930       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1931       __ cmp(tmp2, Klass::_lh_neutral_value);
1932       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1933       __ delayed()->nop();
1934     }
1935 
1936     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
1937       __ load_klass(src, tmp);
1938       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1939       __ cmp(tmp2, Klass::_lh_neutral_value);
1940       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1941       __ delayed()->nop();
1942     }
1943   }
1944 
1945   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1946     // test src_pos register
1947     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
1948     __ delayed()->nop();
1949   }
1950 
1951   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1952     // test dst_pos register
1953     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
1954     __ delayed()->nop();
1955   }
1956 
1957   if (flags & LIR_OpArrayCopy::length_positive_check) {
1958     // make sure length isn't negative
1959     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
1960     __ delayed()->nop();
1961   }
1962 
1963   if (flags & LIR_OpArrayCopy::src_range_check) {
1964     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
1965     __ add(length, src_pos, tmp);
1966     __ cmp(tmp2, tmp);
1967     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1968     __ delayed()->nop();
1969   }
1970 
1971   if (flags & LIR_OpArrayCopy::dst_range_check) {
1972     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
1973     __ add(length, dst_pos, tmp);
1974     __ cmp(tmp2, tmp);
1975     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1976     __ delayed()->nop();
1977   }
1978 
1979   int shift = shift_amount(basic_type);
1980 
1981   if (flags & LIR_OpArrayCopy::type_check) {
1982     // We don't know the array types are compatible
1983     if (basic_type != T_OBJECT) {
1984       // Simple test for basic type arrays
1985       if (UseCompressedClassPointers) {
1986         // We don't need decode because we just need to compare
1987         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
1988         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1989         __ cmp(tmp, tmp2);
1990         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1991       } else {
1992         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
1993         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1994         __ cmp(tmp, tmp2);
1995         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1996       }
1997       __ delayed()->nop();
1998     } else {
1999       // For object arrays, if src is a sub class of dst then we can
2000       // safely do the copy.
2001       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2002 
2003       Label cont, slow;
2004       assert_different_registers(tmp, tmp2, G3, G1);
2005 
2006       __ load_klass(src, G3);
2007       __ load_klass(dst, G1);
2008 
2009       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2010 
2011       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2012       __ delayed()->nop();
2013 
2014       __ cmp(G3, 0);
2015       if (copyfunc_addr != NULL) { // use stub if available
2016         // src is not a sub class of dst so we have to do a
2017         // per-element check.
2018         __ br(Assembler::notEqual, false, Assembler::pt, cont);
2019         __ delayed()->nop();
2020 
2021         __ bind(slow);
2022 
2023         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2024         if ((flags & mask) != mask) {
2025           // Check that at least both of them object arrays.
2026           assert(flags & mask, "one of the two should be known to be an object array");
2027 
2028           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2029             __ load_klass(src, tmp);
2030           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2031             __ load_klass(dst, tmp);
2032           }
2033           int lh_offset = in_bytes(Klass::layout_helper_offset());
2034 
2035           __ lduw(tmp, lh_offset, tmp2);
2036 
2037           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2038           __ set(objArray_lh, tmp);
2039           __ cmp(tmp, tmp2);
2040           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2041           __ delayed()->nop();
2042         }
2043 
2044         Register src_ptr = O0;
2045         Register dst_ptr = O1;
2046         Register len     = O2;
2047         Register chk_off = O3;
2048         Register super_k = O4;
2049 
2050         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2051         if (shift == 0) {
2052           __ add(src_ptr, src_pos, src_ptr);
2053         } else {
2054           __ sll(src_pos, shift, tmp);
2055           __ add(src_ptr, tmp, src_ptr);
2056         }
2057 
2058         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2059         if (shift == 0) {
2060           __ add(dst_ptr, dst_pos, dst_ptr);
2061         } else {
2062           __ sll(dst_pos, shift, tmp);
2063           __ add(dst_ptr, tmp, dst_ptr);
2064         }
2065         __ mov(length, len);
2066         __ load_klass(dst, tmp);
2067 
2068         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2069         __ ld_ptr(tmp, ek_offset, super_k);
2070 
2071         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2072         __ lduw(super_k, sco_offset, chk_off);
2073 
2074         __ call_VM_leaf(tmp, copyfunc_addr);
2075 
2076 #ifndef PRODUCT
2077         if (PrintC1Statistics) {
2078           Label failed;
2079           __ br_notnull_short(O0, Assembler::pn, failed);
2080           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2081           __ bind(failed);
2082         }
2083 #endif
2084 
2085         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2086         __ delayed()->xor3(O0, -1, tmp);
2087 
2088 #ifndef PRODUCT
2089         if (PrintC1Statistics) {
2090           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2091         }
2092 #endif
2093 
2094         __ sub(length, tmp, length);
2095         __ add(src_pos, tmp, src_pos);
2096         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2097         __ delayed()->add(dst_pos, tmp, dst_pos);
2098 
2099         __ bind(cont);
2100       } else {
2101         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2102         __ delayed()->nop();
2103         __ bind(cont);
2104       }
2105     }
2106   }
2107 
2108 #ifdef ASSERT
2109   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2110     // Sanity check the known type with the incoming class.  For the
2111     // primitive case the types must match exactly with src.klass and
2112     // dst.klass each exactly matching the default type.  For the
2113     // object array case, if no type check is needed then either the
2114     // dst type is exactly the expected type and the src type is a
2115     // subtype which we can't check or src is the same array as dst
2116     // but not necessarily exactly of type default_type.
2117     Label known_ok, halt;
2118     metadata2reg(op->expected_type()->constant_encoding(), tmp);
2119     if (UseCompressedClassPointers) {
2120       // tmp holds the default type. It currently comes uncompressed after the
2121       // load of a constant, so encode it.
2122       __ encode_klass_not_null(tmp);
2123       // load the raw value of the dst klass, since we will be comparing
2124       // uncompressed values directly.
2125       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2126       if (basic_type != T_OBJECT) {
2127         __ cmp(tmp, tmp2);
2128         __ br(Assembler::notEqual, false, Assembler::pn, halt);
2129         // load the raw value of the src klass.
2130         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2131         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2132       } else {
2133         __ cmp(tmp, tmp2);
2134         __ br(Assembler::equal, false, Assembler::pn, known_ok);
2135         __ delayed()->cmp(src, dst);
2136         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2137         __ delayed()->nop();
2138       }
2139     } else {
2140       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2141       if (basic_type != T_OBJECT) {
2142         __ cmp(tmp, tmp2);
2143         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2144         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2145         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2146       } else {
2147         __ cmp(tmp, tmp2);
2148         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2149         __ delayed()->cmp(src, dst);
2150         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2151         __ delayed()->nop();
2152       }
2153     }
2154     __ bind(halt);
2155     __ stop("incorrect type information in arraycopy");
2156     __ bind(known_ok);
2157   }
2158 #endif
2159 
2160 #ifndef PRODUCT
2161   if (PrintC1Statistics) {
2162     address counter = Runtime1::arraycopy_count_address(basic_type);
2163     __ inc_counter(counter, G1, G3);
2164   }
2165 #endif
2166 
2167   Register src_ptr = O0;
2168   Register dst_ptr = O1;
2169   Register len     = O2;
2170 
2171   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2172   if (shift == 0) {
2173     __ add(src_ptr, src_pos, src_ptr);
2174   } else {
2175     __ sll(src_pos, shift, tmp);
2176     __ add(src_ptr, tmp, src_ptr);
2177   }
2178 
2179   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2180   if (shift == 0) {
2181     __ add(dst_ptr, dst_pos, dst_ptr);
2182   } else {
2183     __ sll(dst_pos, shift, tmp);
2184     __ add(dst_ptr, tmp, dst_ptr);
2185   }
2186 
2187   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2188   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2189   const char *name;
2190   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2191 
2192   // arraycopy stubs takes a length in number of elements, so don't scale it.
2193   __ mov(length, len);
2194   __ call_VM_leaf(tmp, entry);
2195 
2196   __ bind(*stub->continuation());
2197 }
2198 
2199 
2200 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2201   if (dest->is_single_cpu()) {
2202     if (left->type() == T_OBJECT) {
2203       switch (code) {
2204         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2205         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2206         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2207         default: ShouldNotReachHere();
2208       }
2209     } else
2210       switch (code) {
2211         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2212         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2213         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2214         default: ShouldNotReachHere();
2215       }
2216   } else {
2217     switch (code) {
2218       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2219       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2220       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2221       default: ShouldNotReachHere();
2222     }
2223   }
2224 }
2225 
2226 
2227 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2228   if (left->type() == T_OBJECT) {
2229     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2230     Register l = left->as_register();
2231     Register d = dest->as_register_lo();
2232     switch (code) {
2233       case lir_shl:  __ sllx  (l, count, d); break;
2234       case lir_shr:  __ srax  (l, count, d); break;
2235       case lir_ushr: __ srlx  (l, count, d); break;
2236       default: ShouldNotReachHere();
2237     }
2238     return;
2239   }
2240 
2241   if (dest->is_single_cpu()) {
2242     count = count & 0x1F; // Java spec
2243     switch (code) {
2244       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2245       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2246       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2247       default: ShouldNotReachHere();
2248     }
2249   } else if (dest->is_double_cpu()) {
2250     count = count & 63; // Java spec
2251     switch (code) {
2252       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2253       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2254       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2255       default: ShouldNotReachHere();
2256     }
2257   } else {
2258     ShouldNotReachHere();
2259   }
2260 }
2261 
2262 
2263 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2264   assert(op->tmp1()->as_register()  == G1 &&
2265          op->tmp2()->as_register()  == G3 &&
2266          op->tmp3()->as_register()  == G4 &&
2267          op->obj()->as_register()   == O0 &&
2268          op->klass()->as_register() == G5, "must be");
2269   if (op->init_check()) {
2270     add_debug_info_for_null_check_here(op->stub()->info());
2271     __ ldub(op->klass()->as_register(),
2272           in_bytes(InstanceKlass::init_state_offset()),
2273           op->tmp1()->as_register());
2274     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2275     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2276     __ delayed()->nop();
2277   }
2278   __ allocate_object(op->obj()->as_register(),
2279                      op->tmp1()->as_register(),
2280                      op->tmp2()->as_register(),
2281                      op->tmp3()->as_register(),
2282                      op->header_size(),
2283                      op->object_size(),
2284                      op->klass()->as_register(),
2285                      *op->stub()->entry());
2286   __ bind(*op->stub()->continuation());
2287   __ verify_oop(op->obj()->as_register());
2288 }
2289 
2290 
2291 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2292   assert(op->tmp1()->as_register()  == G1 &&
2293          op->tmp2()->as_register()  == G3 &&
2294          op->tmp3()->as_register()  == G4 &&
2295          op->tmp4()->as_register()  == O1 &&
2296          op->klass()->as_register() == G5, "must be");
2297 
2298   __ signx(op->len()->as_register());
2299   if (UseSlowPath ||
2300       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2301       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2302     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2303     __ delayed()->nop();
2304   } else {
2305     __ allocate_array(op->obj()->as_register(),
2306                       op->len()->as_register(),
2307                       op->tmp1()->as_register(),
2308                       op->tmp2()->as_register(),
2309                       op->tmp3()->as_register(),
2310                       arrayOopDesc::header_size(op->type()),
2311                       type2aelembytes(op->type()),
2312                       op->klass()->as_register(),
2313                       *op->stub()->entry());
2314   }
2315   __ bind(*op->stub()->continuation());
2316 }
2317 
2318 
2319 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2320                                         ciMethodData *md, ciProfileData *data,
2321                                         Register recv, Register tmp1, Label* update_done) {
2322   uint i;
2323   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2324     Label next_test;
2325     // See if the receiver is receiver[n].
2326     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2327                           mdo_offset_bias);
2328     __ ld_ptr(receiver_addr, tmp1);
2329     __ verify_klass_ptr(tmp1);
2330     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2331     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2332                       mdo_offset_bias);
2333     __ ld_ptr(data_addr, tmp1);
2334     __ add(tmp1, DataLayout::counter_increment, tmp1);
2335     __ st_ptr(tmp1, data_addr);
2336     __ ba(*update_done);
2337     __ delayed()->nop();
2338     __ bind(next_test);
2339   }
2340 
2341   // Didn't find receiver; find next empty slot and fill it in
2342   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2343     Label next_test;
2344     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2345                       mdo_offset_bias);
2346     __ ld_ptr(recv_addr, tmp1);
2347     __ br_notnull_short(tmp1, Assembler::pt, next_test);
2348     __ st_ptr(recv, recv_addr);
2349     __ set(DataLayout::counter_increment, tmp1);
2350     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2351               mdo_offset_bias);
2352     __ ba(*update_done);
2353     __ delayed()->nop();
2354     __ bind(next_test);
2355   }
2356 }
2357 
2358 
2359 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2360                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2361   md = method->method_data_or_null();
2362   assert(md != NULL, "Sanity");
2363   data = md->bci_to_data(bci);
2364   assert(data != NULL,       "need data for checkcast");
2365   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2366   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2367     // The offset is large so bias the mdo by the base of the slot so
2368     // that the ld can use simm13s to reference the slots of the data
2369     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2370   }
2371 }
2372 
2373 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2374   // we always need a stub for the failure case.
2375   CodeStub* stub = op->stub();
2376   Register obj = op->object()->as_register();
2377   Register k_RInfo = op->tmp1()->as_register();
2378   Register klass_RInfo = op->tmp2()->as_register();
2379   Register dst = op->result_opr()->as_register();
2380   Register Rtmp1 = op->tmp3()->as_register();
2381   ciKlass* k = op->klass();
2382 
2383 
2384   if (obj == k_RInfo) {
2385     k_RInfo = klass_RInfo;
2386     klass_RInfo = obj;
2387   }
2388 
2389   ciMethodData* md;
2390   ciProfileData* data;
2391   int mdo_offset_bias = 0;
2392   if (op->should_profile()) {
2393     ciMethod* method = op->profiled_method();
2394     assert(method != NULL, "Should have method");
2395     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2396 
2397     Label not_null;
2398     __ br_notnull_short(obj, Assembler::pn, not_null);
2399     Register mdo      = k_RInfo;
2400     Register data_val = Rtmp1;
2401     metadata2reg(md->constant_encoding(), mdo);
2402     if (mdo_offset_bias > 0) {
2403       __ set(mdo_offset_bias, data_val);
2404       __ add(mdo, data_val, mdo);
2405     }
2406     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2407     __ ldub(flags_addr, data_val);
2408     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2409     __ stb(data_val, flags_addr);
2410     __ ba(*obj_is_null);
2411     __ delayed()->nop();
2412     __ bind(not_null);
2413   } else {
2414     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2415     __ delayed()->nop();
2416   }
2417 
2418   Label profile_cast_failure, profile_cast_success;
2419   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2420   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2421 
2422   // patching may screw with our temporaries on sparc,
2423   // so let's do it before loading the class
2424   if (k->is_loaded()) {
2425     metadata2reg(k->constant_encoding(), k_RInfo);
2426   } else {
2427     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2428   }
2429   assert(obj != k_RInfo, "must be different");
2430 
2431   // get object class
2432   // not a safepoint as obj null check happens earlier
2433   __ load_klass(obj, klass_RInfo);
2434   if (op->fast_check()) {
2435     assert_different_registers(klass_RInfo, k_RInfo);
2436     __ cmp(k_RInfo, klass_RInfo);
2437     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2438     __ delayed()->nop();
2439   } else {
2440     bool need_slow_path = true;
2441     if (k->is_loaded()) {
2442       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2443         need_slow_path = false;
2444       // perform the fast part of the checking logic
2445       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2446                                        (need_slow_path ? success_target : NULL),
2447                                        failure_target, NULL,
2448                                        RegisterOrConstant(k->super_check_offset()));
2449     } else {
2450       // perform the fast part of the checking logic
2451       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2452                                        failure_target, NULL);
2453     }
2454     if (need_slow_path) {
2455       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2456       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2457       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2458       __ delayed()->nop();
2459       __ cmp(G3, 0);
2460       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2461       __ delayed()->nop();
2462       // Fall through to success case
2463     }
2464   }
2465 
2466   if (op->should_profile()) {
2467     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2468     assert_different_registers(obj, mdo, recv, tmp1);
2469     __ bind(profile_cast_success);
2470     metadata2reg(md->constant_encoding(), mdo);
2471     if (mdo_offset_bias > 0) {
2472       __ set(mdo_offset_bias, tmp1);
2473       __ add(mdo, tmp1, mdo);
2474     }
2475     __ load_klass(obj, recv);
2476     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2477     // Jump over the failure case
2478     __ ba(*success);
2479     __ delayed()->nop();
2480     // Cast failure case
2481     __ bind(profile_cast_failure);
2482     metadata2reg(md->constant_encoding(), mdo);
2483     if (mdo_offset_bias > 0) {
2484       __ set(mdo_offset_bias, tmp1);
2485       __ add(mdo, tmp1, mdo);
2486     }
2487     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2488     __ ld_ptr(data_addr, tmp1);
2489     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2490     __ st_ptr(tmp1, data_addr);
2491     __ ba(*failure);
2492     __ delayed()->nop();
2493   }
2494   __ ba(*success);
2495   __ delayed()->nop();
2496 }
2497 
2498 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2499   LIR_Code code = op->code();
2500   if (code == lir_store_check) {
2501     Register value = op->object()->as_register();
2502     Register array = op->array()->as_register();
2503     Register k_RInfo = op->tmp1()->as_register();
2504     Register klass_RInfo = op->tmp2()->as_register();
2505     Register Rtmp1 = op->tmp3()->as_register();
2506 
2507     __ verify_oop(value);
2508     CodeStub* stub = op->stub();
2509     // check if it needs to be profiled
2510     ciMethodData* md;
2511     ciProfileData* data;
2512     int mdo_offset_bias = 0;
2513     if (op->should_profile()) {
2514       ciMethod* method = op->profiled_method();
2515       assert(method != NULL, "Should have method");
2516       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2517     }
2518     Label profile_cast_success, profile_cast_failure, done;
2519     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2520     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2521 
2522     if (op->should_profile()) {
2523       Label not_null;
2524       __ br_notnull_short(value, Assembler::pn, not_null);
2525       Register mdo      = k_RInfo;
2526       Register data_val = Rtmp1;
2527       metadata2reg(md->constant_encoding(), mdo);
2528       if (mdo_offset_bias > 0) {
2529         __ set(mdo_offset_bias, data_val);
2530         __ add(mdo, data_val, mdo);
2531       }
2532       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2533       __ ldub(flags_addr, data_val);
2534       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2535       __ stb(data_val, flags_addr);
2536       __ ba_short(done);
2537       __ bind(not_null);
2538     } else {
2539       __ br_null_short(value, Assembler::pn, done);
2540     }
2541     add_debug_info_for_null_check_here(op->info_for_exception());
2542     __ load_klass(array, k_RInfo);
2543     __ load_klass(value, klass_RInfo);
2544 
2545     // get instance klass
2546     __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
2547     // perform the fast part of the checking logic
2548     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2549 
2550     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2551     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2552     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2553     __ delayed()->nop();
2554     __ cmp(G3, 0);
2555     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2556     __ delayed()->nop();
2557     // fall through to the success case
2558 
2559     if (op->should_profile()) {
2560       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2561       assert_different_registers(value, mdo, recv, tmp1);
2562       __ bind(profile_cast_success);
2563       metadata2reg(md->constant_encoding(), mdo);
2564       if (mdo_offset_bias > 0) {
2565         __ set(mdo_offset_bias, tmp1);
2566         __ add(mdo, tmp1, mdo);
2567       }
2568       __ load_klass(value, recv);
2569       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2570       __ ba_short(done);
2571       // Cast failure case
2572       __ bind(profile_cast_failure);
2573       metadata2reg(md->constant_encoding(), mdo);
2574       if (mdo_offset_bias > 0) {
2575         __ set(mdo_offset_bias, tmp1);
2576         __ add(mdo, tmp1, mdo);
2577       }
2578       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2579       __ ld_ptr(data_addr, tmp1);
2580       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2581       __ st_ptr(tmp1, data_addr);
2582       __ ba(*stub->entry());
2583       __ delayed()->nop();
2584     }
2585     __ bind(done);
2586   } else if (code == lir_checkcast) {
2587     Register obj = op->object()->as_register();
2588     Register dst = op->result_opr()->as_register();
2589     Label success;
2590     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2591     __ bind(success);
2592     __ mov(obj, dst);
2593   } else if (code == lir_instanceof) {
2594     Register obj = op->object()->as_register();
2595     Register dst = op->result_opr()->as_register();
2596     Label success, failure, done;
2597     emit_typecheck_helper(op, &success, &failure, &failure);
2598     __ bind(failure);
2599     __ set(0, dst);
2600     __ ba_short(done);
2601     __ bind(success);
2602     __ set(1, dst);
2603     __ bind(done);
2604   } else {
2605     ShouldNotReachHere();
2606   }
2607 
2608 }
2609 
2610 
2611 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2612   if (op->code() == lir_cas_long) {
2613     assert(VM_Version::supports_cx8(), "wrong machine");
2614     Register addr = op->addr()->as_pointer_register();
2615     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2616     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2617     Register new_value_lo = op->new_value()->as_register_lo();
2618     Register new_value_hi = op->new_value()->as_register_hi();
2619     Register t1 = op->tmp1()->as_register();
2620     Register t2 = op->tmp2()->as_register();
2621     __ mov(cmp_value_lo, t1);
2622     __ mov(new_value_lo, t2);
2623     // perform the compare and swap operation
2624     __ casx(addr, t1, t2);
2625     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2626     // overwritten with the original value in "addr" and will be equal to t1.
2627     __ cmp(t1, t2);
2628   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2629     Register addr = op->addr()->as_pointer_register();
2630     Register cmp_value = op->cmp_value()->as_register();
2631     Register new_value = op->new_value()->as_register();
2632     Register t1 = op->tmp1()->as_register();
2633     Register t2 = op->tmp2()->as_register();
2634     __ mov(cmp_value, t1);
2635     __ mov(new_value, t2);
2636     if (op->code() == lir_cas_obj) {
2637       if (UseCompressedOops) {
2638         __ encode_heap_oop(t1);
2639         __ encode_heap_oop(t2);
2640         __ cas(addr, t1, t2);
2641       } else {
2642         __ cas_ptr(addr, t1, t2);
2643       }
2644     } else {
2645       __ cas(addr, t1, t2);
2646     }
2647     __ cmp(t1, t2);
2648   } else {
2649     Unimplemented();
2650   }
2651 }
2652 
2653 void LIR_Assembler::set_24bit_FPU() {
2654   Unimplemented();
2655 }
2656 
2657 
2658 void LIR_Assembler::reset_FPU() {
2659   Unimplemented();
2660 }
2661 
2662 
2663 void LIR_Assembler::breakpoint() {
2664   __ breakpoint_trap();
2665 }
2666 
2667 
2668 void LIR_Assembler::push(LIR_Opr opr) {
2669   Unimplemented();
2670 }
2671 
2672 
2673 void LIR_Assembler::pop(LIR_Opr opr) {
2674   Unimplemented();
2675 }
2676 
2677 
2678 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2679   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2680   Register dst = dst_opr->as_register();
2681   Register reg = mon_addr.base();
2682   int offset = mon_addr.disp();
2683   // compute pointer to BasicLock
2684   if (mon_addr.is_simm13()) {
2685     __ add(reg, offset, dst);
2686   } else {
2687     __ set(offset, dst);
2688     __ add(dst, reg, dst);
2689   }
2690 }
2691 
2692 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2693   assert(op->crc()->is_single_cpu(),  "crc must be register");
2694   assert(op->val()->is_single_cpu(),  "byte value must be register");
2695   assert(op->result_opr()->is_single_cpu(), "result must be register");
2696   Register crc = op->crc()->as_register();
2697   Register val = op->val()->as_register();
2698   Register table = op->result_opr()->as_register();
2699   Register res   = op->result_opr()->as_register();
2700 
2701   assert_different_registers(val, crc, table);
2702 
2703   __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
2704   __ not1(crc);
2705   __ clruwu(crc);
2706   __ update_byte_crc32(crc, val, table);
2707   __ not1(crc);
2708 
2709   __ mov(crc, res);
2710 }
2711 
2712 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2713   Register obj = op->obj_opr()->as_register();
2714   Register hdr = op->hdr_opr()->as_register();
2715   Register lock = op->lock_opr()->as_register();
2716 
2717   // obj may not be an oop
2718   if (op->code() == lir_lock) {
2719     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2720     if (UseFastLocking) {
2721       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2722       // add debug info for NullPointerException only if one is possible
2723       if (op->info() != NULL) {
2724         add_debug_info_for_null_check_here(op->info());
2725       }
2726       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2727     } else {
2728       // always do slow locking
2729       // note: the slow locking code could be inlined here, however if we use
2730       //       slow locking, speed doesn't matter anyway and this solution is
2731       //       simpler and requires less duplicated code - additionally, the
2732       //       slow locking code is the same in either case which simplifies
2733       //       debugging
2734       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2735       __ delayed()->nop();
2736     }
2737   } else {
2738     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2739     if (UseFastLocking) {
2740       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2741       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2742     } else {
2743       // always do slow unlocking
2744       // note: the slow unlocking code could be inlined here, however if we use
2745       //       slow unlocking, speed doesn't matter anyway and this solution is
2746       //       simpler and requires less duplicated code - additionally, the
2747       //       slow unlocking code is the same in either case which simplifies
2748       //       debugging
2749       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2750       __ delayed()->nop();
2751     }
2752   }
2753   __ bind(*op->stub()->continuation());
2754 }
2755 
2756 
2757 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2758   ciMethod* method = op->profiled_method();
2759   int bci          = op->profiled_bci();
2760   ciMethod* callee = op->profiled_callee();
2761 
2762   // Update counter for all call types
2763   ciMethodData* md = method->method_data_or_null();
2764   assert(md != NULL, "Sanity");
2765   ciProfileData* data = md->bci_to_data(bci);
2766   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2767   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2768   Register mdo  = op->mdo()->as_register();
2769   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2770   Register tmp1 = op->tmp1()->as_register_lo();
2771   metadata2reg(md->constant_encoding(), mdo);
2772   int mdo_offset_bias = 0;
2773   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2774                             data->size_in_bytes())) {
2775     // The offset is large so bias the mdo by the base of the slot so
2776     // that the ld can use simm13s to reference the slots of the data
2777     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2778     __ set(mdo_offset_bias, O7);
2779     __ add(mdo, O7, mdo);
2780   }
2781 
2782   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2783   // Perform additional virtual call profiling for invokevirtual and
2784   // invokeinterface bytecodes
2785   if (op->should_profile_receiver_type()) {
2786     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2787     Register recv = op->recv()->as_register();
2788     assert_different_registers(mdo, tmp1, recv);
2789     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2790     ciKlass* known_klass = op->known_holder();
2791     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2792       // We know the type that will be seen at this call site; we can
2793       // statically update the MethodData* rather than needing to do
2794       // dynamic tests on the receiver type
2795 
2796       // NOTE: we should probably put a lock around this search to
2797       // avoid collisions by concurrent compilations
2798       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2799       uint i;
2800       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2801         ciKlass* receiver = vc_data->receiver(i);
2802         if (known_klass->equals(receiver)) {
2803           Address data_addr(mdo, md->byte_offset_of_slot(data,
2804                                                          VirtualCallData::receiver_count_offset(i)) -
2805                             mdo_offset_bias);
2806           __ ld_ptr(data_addr, tmp1);
2807           __ add(tmp1, DataLayout::counter_increment, tmp1);
2808           __ st_ptr(tmp1, data_addr);
2809           return;
2810         }
2811       }
2812 
2813       // Receiver type not found in profile data; select an empty slot
2814 
2815       // Note that this is less efficient than it should be because it
2816       // always does a write to the receiver part of the
2817       // VirtualCallData rather than just the first time
2818       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2819         ciKlass* receiver = vc_data->receiver(i);
2820         if (receiver == NULL) {
2821           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2822                             mdo_offset_bias);
2823           metadata2reg(known_klass->constant_encoding(), tmp1);
2824           __ st_ptr(tmp1, recv_addr);
2825           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2826                             mdo_offset_bias);
2827           __ ld_ptr(data_addr, tmp1);
2828           __ add(tmp1, DataLayout::counter_increment, tmp1);
2829           __ st_ptr(tmp1, data_addr);
2830           return;
2831         }
2832       }
2833     } else {
2834       __ load_klass(recv, recv);
2835       Label update_done;
2836       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2837       // Receiver did not match any saved receiver and there is no empty row for it.
2838       // Increment total counter to indicate polymorphic case.
2839       __ ld_ptr(counter_addr, tmp1);
2840       __ add(tmp1, DataLayout::counter_increment, tmp1);
2841       __ st_ptr(tmp1, counter_addr);
2842 
2843       __ bind(update_done);
2844     }
2845   } else {
2846     // Static call
2847     __ ld_ptr(counter_addr, tmp1);
2848     __ add(tmp1, DataLayout::counter_increment, tmp1);
2849     __ st_ptr(tmp1, counter_addr);
2850   }
2851 }
2852 
2853 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2854   Register obj = op->obj()->as_register();
2855   Register tmp1 = op->tmp()->as_pointer_register();
2856   Register tmp2 = G1;
2857   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2858   ciKlass* exact_klass = op->exact_klass();
2859   intptr_t current_klass = op->current_klass();
2860   bool not_null = op->not_null();
2861   bool no_conflict = op->no_conflict();
2862 
2863   Label update, next, none;
2864 
2865   bool do_null = !not_null;
2866   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2867   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2868 
2869   assert(do_null || do_update, "why are we here?");
2870   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2871 
2872   __ verify_oop(obj);
2873 
2874   if (tmp1 != obj) {
2875     __ mov(obj, tmp1);
2876   }
2877   if (do_null) {
2878     __ br_notnull_short(tmp1, Assembler::pt, update);
2879     if (!TypeEntries::was_null_seen(current_klass)) {
2880       __ ld_ptr(mdo_addr, tmp1);
2881       __ or3(tmp1, TypeEntries::null_seen, tmp1);
2882       __ st_ptr(tmp1, mdo_addr);
2883     }
2884     if (do_update) {
2885       __ ba(next);
2886       __ delayed()->nop();
2887     }
2888 #ifdef ASSERT
2889   } else {
2890     __ br_notnull_short(tmp1, Assembler::pt, update);
2891     __ stop("unexpect null obj");
2892 #endif
2893   }
2894 
2895   __ bind(update);
2896 
2897   if (do_update) {
2898 #ifdef ASSERT
2899     if (exact_klass != NULL) {
2900       Label ok;
2901       __ load_klass(tmp1, tmp1);
2902       metadata2reg(exact_klass->constant_encoding(), tmp2);
2903       __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
2904       __ stop("exact klass and actual klass differ");
2905       __ bind(ok);
2906     }
2907 #endif
2908 
2909     Label do_update;
2910     __ ld_ptr(mdo_addr, tmp2);
2911 
2912     if (!no_conflict) {
2913       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2914         if (exact_klass != NULL) {
2915           metadata2reg(exact_klass->constant_encoding(), tmp1);
2916         } else {
2917           __ load_klass(tmp1, tmp1);
2918         }
2919 
2920         __ xor3(tmp1, tmp2, tmp1);
2921         __ btst(TypeEntries::type_klass_mask, tmp1);
2922         // klass seen before, nothing to do. The unknown bit may have been
2923         // set already but no need to check.
2924         __ brx(Assembler::zero, false, Assembler::pt, next);
2925         __ delayed()->
2926 
2927            btst(TypeEntries::type_unknown, tmp1);
2928         // already unknown. Nothing to do anymore.
2929         __ brx(Assembler::notZero, false, Assembler::pt, next);
2930 
2931         if (TypeEntries::is_type_none(current_klass)) {
2932           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2933           __ brx(Assembler::zero, true, Assembler::pt, do_update);
2934           // first time here. Set profile type.
2935           __ delayed()->or3(tmp2, tmp1, tmp2);
2936         } else {
2937           __ delayed()->nop();
2938         }
2939       } else {
2940         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2941                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2942 
2943         __ btst(TypeEntries::type_unknown, tmp2);
2944         // already unknown. Nothing to do anymore.
2945         __ brx(Assembler::notZero, false, Assembler::pt, next);
2946         __ delayed()->nop();
2947       }
2948 
2949       // different than before. Cannot keep accurate profile.
2950       __ or3(tmp2, TypeEntries::type_unknown, tmp2);
2951     } else {
2952       // There's a single possible klass at this profile point
2953       assert(exact_klass != NULL, "should be");
2954       if (TypeEntries::is_type_none(current_klass)) {
2955         metadata2reg(exact_klass->constant_encoding(), tmp1);
2956         __ xor3(tmp1, tmp2, tmp1);
2957         __ btst(TypeEntries::type_klass_mask, tmp1);
2958         __ brx(Assembler::zero, false, Assembler::pt, next);
2959 #ifdef ASSERT
2960 
2961         {
2962           Label ok;
2963           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2964           __ brx(Assembler::zero, true, Assembler::pt, ok);
2965           __ delayed()->nop();
2966 
2967           __ stop("unexpected profiling mismatch");
2968           __ bind(ok);
2969         }
2970         // first time here. Set profile type.
2971         __ or3(tmp2, tmp1, tmp2);
2972 #else
2973         // first time here. Set profile type.
2974         __ delayed()->or3(tmp2, tmp1, tmp2);
2975 #endif
2976 
2977       } else {
2978         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2979                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2980 
2981         // already unknown. Nothing to do anymore.
2982         __ btst(TypeEntries::type_unknown, tmp2);
2983         __ brx(Assembler::notZero, false, Assembler::pt, next);
2984         __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
2985       }
2986     }
2987 
2988     __ bind(do_update);
2989     __ st_ptr(tmp2, mdo_addr);
2990 
2991     __ bind(next);
2992   }
2993 }
2994 
2995 void LIR_Assembler::align_backward_branch_target() {
2996   __ align(OptoLoopAlignment);
2997 }
2998 
2999 
3000 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3001   // make sure we are expecting a delay
3002   // this has the side effect of clearing the delay state
3003   // so we can use _masm instead of _masm->delayed() to do the
3004   // code generation.
3005   __ delayed();
3006 
3007   // make sure we only emit one instruction
3008   int offset = code_offset();
3009   op->delay_op()->emit_code(this);
3010 #ifdef ASSERT
3011   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3012     op->delay_op()->print();
3013   }
3014   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3015          "only one instruction can go in a delay slot");
3016 #endif
3017 
3018   // we may also be emitting the call info for the instruction
3019   // which we are the delay slot of.
3020   CodeEmitInfo* call_info = op->call_info();
3021   if (call_info) {
3022     add_call_info(code_offset(), call_info);
3023   }
3024 
3025   if (VerifyStackAtCalls) {
3026     _masm->sub(FP, SP, O7);
3027     _masm->cmp(O7, initial_frame_size_in_bytes());
3028     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3029   }
3030 }
3031 
3032 
3033 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3034   assert(left->is_register(), "can only handle registers");
3035 
3036   if (left->is_single_cpu()) {
3037     __ neg(left->as_register(), dest->as_register());
3038   } else if (left->is_single_fpu()) {
3039     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3040   } else if (left->is_double_fpu()) {
3041     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3042   } else {
3043     assert (left->is_double_cpu(), "Must be a long");
3044     Register Rlow = left->as_register_lo();
3045     Register Rhi = left->as_register_hi();
3046     __ sub(G0, Rlow, dest->as_register_lo());
3047   }
3048 }
3049 
3050 
3051 void LIR_Assembler::fxch(int i) {
3052   Unimplemented();
3053 }
3054 
3055 void LIR_Assembler::fld(int i) {
3056   Unimplemented();
3057 }
3058 
3059 void LIR_Assembler::ffree(int i) {
3060   Unimplemented();
3061 }
3062 
3063 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3064                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3065 
3066   // if tmp is invalid, then the function being called doesn't destroy the thread
3067   if (tmp->is_valid()) {
3068     __ save_thread(tmp->as_pointer_register());
3069   }
3070   __ call(dest, relocInfo::runtime_call_type);
3071   __ delayed()->nop();
3072   if (info != NULL) {
3073     add_call_info_here(info);
3074   }
3075   if (tmp->is_valid()) {
3076     __ restore_thread(tmp->as_pointer_register());
3077   }
3078 
3079 #ifdef ASSERT
3080   __ verify_thread();
3081 #endif // ASSERT
3082 }
3083 
3084 
3085 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3086   ShouldNotReachHere();
3087 
3088   NEEDS_CLEANUP;
3089   if (type == T_LONG) {
3090     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3091 
3092     // (extended to allow indexed as well as constant displaced for JSR-166)
3093     Register idx = noreg; // contains either constant offset or index
3094 
3095     int disp = mem_addr->disp();
3096     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3097       if (!Assembler::is_simm13(disp)) {
3098         idx = O7;
3099         __ set(disp, idx);
3100       }
3101     } else {
3102       assert(disp == 0, "not both indexed and disp");
3103       idx = mem_addr->index()->as_register();
3104     }
3105 
3106     int null_check_offset = -1;
3107 
3108     Register base = mem_addr->base()->as_register();
3109     if (src->is_register() && dest->is_address()) {
3110       // G4 is high half, G5 is low half
3111       // clear the top bits of G5, and scale up G4
3112       __ srl (src->as_register_lo(),  0, G5);
3113       __ sllx(src->as_register_hi(), 32, G4);
3114       // combine the two halves into the 64 bits of G4
3115       __ or3(G4, G5, G4);
3116       null_check_offset = __ offset();
3117       if (idx == noreg) {
3118         __ stx(G4, base, disp);
3119       } else {
3120         __ stx(G4, base, idx);
3121       }
3122     } else if (src->is_address() && dest->is_register()) {
3123       null_check_offset = __ offset();
3124       if (idx == noreg) {
3125         __ ldx(base, disp, G5);
3126       } else {
3127         __ ldx(base, idx, G5);
3128       }
3129       __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3130       __ mov (G5, dest->as_register_lo());     // copy low half into lo
3131     } else {
3132       Unimplemented();
3133     }
3134     if (info != NULL) {
3135       add_debug_info_for_null_check(null_check_offset, info);
3136     }
3137 
3138   } else {
3139     // use normal move for all other volatiles since they don't need
3140     // special handling to remain atomic.
3141     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3142   }
3143 }
3144 
3145 void LIR_Assembler::membar() {
3146   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3147   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3148 }
3149 
3150 void LIR_Assembler::membar_acquire() {
3151   // no-op on TSO
3152 }
3153 
3154 void LIR_Assembler::membar_release() {
3155   // no-op on TSO
3156 }
3157 
3158 void LIR_Assembler::membar_loadload() {
3159   // no-op
3160   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3161 }
3162 
3163 void LIR_Assembler::membar_storestore() {
3164   // no-op
3165   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3166 }
3167 
3168 void LIR_Assembler::membar_loadstore() {
3169   // no-op
3170   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3171 }
3172 
3173 void LIR_Assembler::membar_storeload() {
3174   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3175 }
3176 
3177 void LIR_Assembler::on_spin_wait() {
3178   Unimplemented();
3179 }
3180 
3181 // Pack two sequential registers containing 32 bit values
3182 // into a single 64 bit register.
3183 // src and src->successor() are packed into dst
3184 // src and dst may be the same register.
3185 // Note: src is destroyed
3186 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3187   Register rs = src->as_register();
3188   Register rd = dst->as_register_lo();
3189   __ sllx(rs, 32, rs);
3190   __ srl(rs->successor(), 0, rs->successor());
3191   __ or3(rs, rs->successor(), rd);
3192 }
3193 
3194 // Unpack a 64 bit value in a register into
3195 // two sequential registers.
3196 // src is unpacked into dst and dst->successor()
3197 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3198   Register rs = src->as_register_lo();
3199   Register rd = dst->as_register_hi();
3200   assert_different_registers(rs, rd, rd->successor());
3201   __ srlx(rs, 32, rd);
3202   __ srl (rs,  0, rd->successor());
3203 }
3204 
3205 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3206   const LIR_Address* addr = addr_opr->as_address_ptr();
3207   assert(addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
3208   const Register dest_reg = dest->as_pointer_register();
3209   const Register base_reg = addr->base()->as_pointer_register();
3210 
3211   if (Assembler::is_simm13(addr->disp())) {
3212     if (addr->index()->is_valid()) {
3213       const Register index_reg = addr->index()->as_pointer_register();
3214       assert(index_reg != G3_scratch, "invariant");
3215       __ add(base_reg, addr->disp(), G3_scratch);
3216       __ add(index_reg, G3_scratch, dest_reg);
3217     } else {
3218       __ add(base_reg, addr->disp(), dest_reg);
3219     }
3220   } else {
3221     __ set(addr->disp(), G3_scratch);
3222     if (addr->index()->is_valid()) {
3223       const Register index_reg = addr->index()->as_pointer_register();
3224       assert(index_reg != G3_scratch, "invariant");
3225       __ add(index_reg, G3_scratch, G3_scratch);
3226     }
3227     __ add(base_reg, G3_scratch, dest_reg);
3228   }
3229 }
3230 
3231 
3232 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3233   assert(result_reg->is_register(), "check");
3234   __ mov(G2_thread, result_reg->as_register());
3235 }
3236 
3237 #ifdef ASSERT
3238 // emit run-time assertion
3239 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3240   assert(op->code() == lir_assert, "must be");
3241 
3242   if (op->in_opr1()->is_valid()) {
3243     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3244     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3245   } else {
3246     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3247     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3248   }
3249 
3250   Label ok;
3251   if (op->condition() != lir_cond_always) {
3252     Assembler::Condition acond;
3253     switch (op->condition()) {
3254       case lir_cond_equal:        acond = Assembler::equal;                break;
3255       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
3256       case lir_cond_less:         acond = Assembler::less;                 break;
3257       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
3258       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
3259       case lir_cond_greater:      acond = Assembler::greater;              break;
3260       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
3261       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
3262       default:                         ShouldNotReachHere();
3263     };
3264     __ br(acond, false, Assembler::pt, ok);
3265     __ delayed()->nop();
3266   }
3267   if (op->halt()) {
3268     const char* str = __ code_string(op->msg());
3269     __ stop(str);
3270   } else {
3271     breakpoint();
3272   }
3273   __ bind(ok);
3274 }
3275 #endif
3276 
3277 void LIR_Assembler::peephole(LIR_List* lir) {
3278   LIR_OpList* inst = lir->instructions_list();
3279   for (int i = 0; i < inst->length(); i++) {
3280     LIR_Op* op = inst->at(i);
3281     switch (op->code()) {
3282       case lir_cond_float_branch:
3283       case lir_branch: {
3284         LIR_OpBranch* branch = op->as_OpBranch();
3285         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3286         LIR_Op* delay_op = NULL;
3287         // we'd like to be able to pull following instructions into
3288         // this slot but we don't know enough to do it safely yet so
3289         // only optimize block to block control flow.
3290         if (LIRFillDelaySlots && branch->block()) {
3291           LIR_Op* prev = inst->at(i - 1);
3292           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3293             // swap previous instruction into delay slot
3294             inst->at_put(i - 1, op);
3295             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3296 #ifndef PRODUCT
3297             if (LIRTracePeephole) {
3298               tty->print_cr("delayed");
3299               inst->at(i - 1)->print();
3300               inst->at(i)->print();
3301               tty->cr();
3302             }
3303 #endif
3304             continue;
3305           }
3306         }
3307 
3308         if (!delay_op) {
3309           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3310         }
3311         inst->insert_before(i + 1, delay_op);
3312         break;
3313       }
3314       case lir_static_call:
3315       case lir_virtual_call:
3316       case lir_icvirtual_call:
3317       case lir_optvirtual_call:
3318       case lir_dynamic_call: {
3319         LIR_Op* prev = inst->at(i - 1);
3320         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3321             (op->code() != lir_virtual_call ||
3322              !prev->result_opr()->is_single_cpu() ||
3323              prev->result_opr()->as_register() != O0) &&
3324             LIR_Assembler::is_single_instruction(prev)) {
3325           // Only moves without info can be put into the delay slot.
3326           // Also don't allow the setup of the receiver in the delay
3327           // slot for vtable calls.
3328           inst->at_put(i - 1, op);
3329           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3330 #ifndef PRODUCT
3331           if (LIRTracePeephole) {
3332             tty->print_cr("delayed");
3333             inst->at(i - 1)->print();
3334             inst->at(i)->print();
3335             tty->cr();
3336           }
3337 #endif
3338         } else {
3339           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3340           inst->insert_before(i + 1, delay_op);
3341           i++;
3342         }
3343         break;
3344       }
3345     }
3346   }
3347 }
3348 
3349 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3350   LIR_Address* addr = src->as_address_ptr();
3351 
3352   assert(data == dest, "swap uses only 2 operands");
3353   assert (code == lir_xchg, "no xadd on sparc");
3354 
3355   if (data->type() == T_INT) {
3356     __ swap(as_Address(addr), data->as_register());
3357   } else if (data->is_oop()) {
3358     Register obj = data->as_register();
3359     Register narrow = tmp->as_register();
3360     assert(UseCompressedOops, "swap is 32bit only");
3361     __ encode_heap_oop(obj, narrow);
3362     __ swap(as_Address(addr), narrow);
3363     __ decode_heap_oop(narrow, obj);
3364   } else {
3365     ShouldNotReachHere();
3366   }
3367 }
3368 
3369 #undef __