1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/cardTableBarrierSet.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/interfaceSupport.inline.hpp"
  40 #include "runtime/jniHandles.inline.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 #define __ _masm->
  45 
  46 
  47 //------------------------------------------------------------
  48 
  49 
  50 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  51   if (opr->is_constant()) {
  52     LIR_Const* constant = opr->as_constant_ptr();
  53     switch (constant->type()) {
  54       case T_INT: {
  55         jint value = constant->as_jint();
  56         return Assembler::is_simm13(value);
  57       }
  58 
  59       default:
  60         return false;
  61     }
  62   }
  63   return false;
  64 }
  65 
  66 
  67 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  68   switch (op->code()) {
  69     case lir_null_check:
  70     return true;
  71 
  72 
  73     case lir_add:
  74     case lir_ushr:
  75     case lir_shr:
  76     case lir_shl:
  77       // integer shifts and adds are always one instruction
  78       return op->result_opr()->is_single_cpu();
  79 
  80 
  81     case lir_move: {
  82       LIR_Op1* op1 = op->as_Op1();
  83       LIR_Opr src = op1->in_opr();
  84       LIR_Opr dst = op1->result_opr();
  85 
  86       if (src == dst) {
  87         NEEDS_CLEANUP;
  88         // this works around a problem where moves with the same src and dst
  89         // end up in the delay slot and then the assembler swallows the mov
  90         // since it has no effect and then it complains because the delay slot
  91         // is empty.  returning false stops the optimizer from putting this in
  92         // the delay slot
  93         return false;
  94       }
  95 
  96       // don't put moves involving oops into the delay slot since the VerifyOops code
  97       // will make it much larger than a single instruction.
  98       if (VerifyOops) {
  99         return false;
 100       }
 101 
 102       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
 103           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 104         return false;
 105       }
 106 
 107       if (UseCompressedOops) {
 108         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
 109         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
 110       }
 111 
 112       if (UseCompressedClassPointers) {
 113         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
 114             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
 115       }
 116 
 117       if (dst->is_register()) {
 118         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 119           return !PatchALot;
 120         } else if (src->is_single_stack()) {
 121           return true;
 122         }
 123       }
 124 
 125       if (src->is_register()) {
 126         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 127           return !PatchALot;
 128         } else if (dst->is_single_stack()) {
 129           return true;
 130         }
 131       }
 132 
 133       if (dst->is_register() &&
 134           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 135            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 136         return true;
 137       }
 138 
 139       return false;
 140     }
 141 
 142     default:
 143       return false;
 144   }
 145   ShouldNotReachHere();
 146 }
 147 
 148 
 149 LIR_Opr LIR_Assembler::receiverOpr() {
 150   return FrameMap::O0_oop_opr;
 151 }
 152 
 153 
 154 LIR_Opr LIR_Assembler::osrBufferPointer() {
 155   return FrameMap::I0_opr;
 156 }
 157 
 158 
 159 int LIR_Assembler::initial_frame_size_in_bytes() const {
 160   return in_bytes(frame_map()->framesize_in_bytes());
 161 }
 162 
 163 
 164 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 165 // we fetch the class of the receiver (O0) and compare it with the cached class.
 166 // If they do not match we jump to slow case.
 167 int LIR_Assembler::check_icache() {
 168   int offset = __ offset();
 169   __ inline_cache_check(O0, G5_inline_cache_reg);
 170   return offset;
 171 }
 172 
 173 
 174 void LIR_Assembler::osr_entry() {
 175   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 176   //
 177   //   1. Create a new compiled activation.
 178   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 179   //      at the osr_bci; it is not initialized.
 180   //   3. Jump to the continuation address in compiled code to resume execution.
 181 
 182   // OSR entry point
 183   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 184   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 185   ValueStack* entry_state = osr_entry->end()->state();
 186   int number_of_locks = entry_state->locks_size();
 187 
 188   // Create a frame for the compiled activation.
 189   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 190 
 191   // OSR buffer is
 192   //
 193   // locals[nlocals-1..0]
 194   // monitors[number_of_locks-1..0]
 195   //
 196   // locals is a direct copy of the interpreter frame so in the osr buffer
 197   // so first slot in the local array is the last local from the interpreter
 198   // and last slot is local[0] (receiver) from the interpreter
 199   //
 200   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 201   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 202   // in the interpreter frame (the method lock if a sync method)
 203 
 204   // Initialize monitors in the compiled activation.
 205   //   I0: pointer to osr buffer
 206   //
 207   // All other registers are dead at this point and the locals will be
 208   // copied into place by code emitted in the IR.
 209 
 210   Register OSR_buf = osrBufferPointer()->as_register();
 211   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 212     int monitor_offset = BytesPerWord * method()->max_locals() +
 213       (2 * BytesPerWord) * (number_of_locks - 1);
 214     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 215     // the OSR buffer using 2 word entries: first the lock and then
 216     // the oop.
 217     for (int i = 0; i < number_of_locks; i++) {
 218       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 219 #ifdef ASSERT
 220       // verify the interpreter's monitor has a non-null object
 221       {
 222         Label L;
 223         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 224         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
 225         __ stop("locked object is NULL");
 226         __ bind(L);
 227       }
 228 #endif // ASSERT
 229       // Copy the lock field into the compiled activation.
 230       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 231       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 232       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 233       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 234     }
 235   }
 236 }
 237 
 238 
 239 // --------------------------------------------------------------------------------------------
 240 
 241 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 242   if (!GenerateSynchronizationCode) return;
 243 
 244   Register obj_reg = obj_opr->as_register();
 245   Register lock_reg = lock_opr->as_register();
 246 
 247   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 248   Register reg = mon_addr.base();
 249   int offset = mon_addr.disp();
 250   // compute pointer to BasicLock
 251   if (mon_addr.is_simm13()) {
 252     __ add(reg, offset, lock_reg);
 253   }
 254   else {
 255     __ set(offset, lock_reg);
 256     __ add(reg, lock_reg, lock_reg);
 257   }
 258   // unlock object
 259   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 260   // _slow_case_stubs->append(slow_case);
 261   // temporary fix: must be created after exceptionhandler, therefore as call stub
 262   _slow_case_stubs->append(slow_case);
 263   if (UseFastLocking) {
 264     // try inlined fast unlocking first, revert to slow locking if it fails
 265     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 266     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 267     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 268   } else {
 269     // always do slow unlocking
 270     // note: the slow unlocking code could be inlined here, however if we use
 271     //       slow unlocking, speed doesn't matter anyway and this solution is
 272     //       simpler and requires less duplicated code - additionally, the
 273     //       slow unlocking code is the same in either case which simplifies
 274     //       debugging
 275     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 276     __ delayed()->nop();
 277   }
 278   // done
 279   __ bind(*slow_case->continuation());
 280 }
 281 
 282 
 283 int LIR_Assembler::emit_exception_handler() {
 284   // if the last instruction is a call (typically to do a throw which
 285   // is coming at the end after block reordering) the return address
 286   // must still point into the code area in order to avoid assertion
 287   // failures when searching for the corresponding bci => add a nop
 288   // (was bug 5/14/1999 - gri)
 289   __ nop();
 290 
 291   // generate code for exception handler
 292   ciMethod* method = compilation()->method();
 293 
 294   address handler_base = __ start_a_stub(exception_handler_size());
 295 
 296   if (handler_base == NULL) {
 297     // not enough space left for the handler
 298     bailout("exception handler overflow");
 299     return -1;
 300   }
 301 
 302   int offset = code_offset();
 303 
 304   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 305   __ delayed()->nop();
 306   __ should_not_reach_here();
 307   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 308   __ end_a_stub();
 309 
 310   return offset;
 311 }
 312 
 313 
 314 // Emit the code to remove the frame from the stack in the exception
 315 // unwind path.
 316 int LIR_Assembler::emit_unwind_handler() {
 317 #ifndef PRODUCT
 318   if (CommentedAssembly) {
 319     _masm->block_comment("Unwind handler");
 320   }
 321 #endif
 322 
 323   int offset = code_offset();
 324 
 325   // Fetch the exception from TLS and clear out exception related thread state
 326   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 327   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 328   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 329 
 330   __ bind(_unwind_handler_entry);
 331   __ verify_not_null_oop(O0);
 332   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 333     __ mov(O0, I0);  // Preserve the exception
 334   }
 335 
 336   // Preform needed unlocking
 337   MonitorExitStub* stub = NULL;
 338   if (method()->is_synchronized()) {
 339     monitor_address(0, FrameMap::I1_opr);
 340     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 341     __ unlock_object(I3, I2, I1, *stub->entry());
 342     __ bind(*stub->continuation());
 343   }
 344 
 345   if (compilation()->env()->dtrace_method_probes()) {
 346     __ mov(G2_thread, O0);
 347     __ save_thread(I1); // need to preserve thread in G2 across
 348                         // runtime call
 349     metadata2reg(method()->constant_encoding(), O1);
 350     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 351     __ delayed()->nop();
 352     __ restore_thread(I1);
 353   }
 354 
 355   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 356     __ mov(I0, O0);  // Restore the exception
 357   }
 358 
 359   // dispatch to the unwind logic
 360   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 361   __ delayed()->nop();
 362 
 363   // Emit the slow path assembly
 364   if (stub != NULL) {
 365     stub->emit_code(this);
 366   }
 367 
 368   return offset;
 369 }
 370 
 371 
 372 int LIR_Assembler::emit_deopt_handler() {
 373   // if the last instruction is a call (typically to do a throw which
 374   // is coming at the end after block reordering) the return address
 375   // must still point into the code area in order to avoid assertion
 376   // failures when searching for the corresponding bci => add a nop
 377   // (was bug 5/14/1999 - gri)
 378   __ nop();
 379 
 380   // generate code for deopt handler
 381   ciMethod* method = compilation()->method();
 382   address handler_base = __ start_a_stub(deopt_handler_size());
 383   if (handler_base == NULL) {
 384     // not enough space left for the handler
 385     bailout("deopt handler overflow");
 386     return -1;
 387   }
 388 
 389   int offset = code_offset();
 390   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 391   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 392   __ delayed()->nop();
 393   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 394   __ end_a_stub();
 395 
 396   return offset;
 397 }
 398 
 399 
 400 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 401   if (o == NULL) {
 402     __ set(NULL_WORD, reg);
 403   } else {
 404 #ifdef ASSERT
 405     {
 406       ThreadInVMfromNative tiv(JavaThread::current());
 407       assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
 408     }
 409 #endif
 410     int oop_index = __ oop_recorder()->find_index(o);
 411     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 412     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 413   }
 414 }
 415 
 416 
 417 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 418   // Allocate a new index in table to hold the object once it's been patched
 419   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
 420   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
 421 
 422   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 423   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 424   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 425   // NULL will be dynamically patched later and the patched value may be large.  We must
 426   // therefore generate the sethi/add as a placeholders
 427   __ patchable_set(addrlit, reg);
 428 
 429   patching_epilog(patch, lir_patch_normal, reg, info);
 430 }
 431 
 432 
 433 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
 434   __ set_metadata_constant(o, reg);
 435 }
 436 
 437 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
 438   // Allocate a new index in table to hold the klass once it's been patched
 439   int index = __ oop_recorder()->allocate_metadata_index(NULL);
 440   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 441   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
 442   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
 443   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 444   // NULL will be dynamically patched later and the patched value may be large.  We must
 445   // therefore generate the sethi/add as a placeholders
 446   __ patchable_set(addrlit, reg);
 447 
 448   patching_epilog(patch, lir_patch_normal, reg, info);
 449 }
 450 
 451 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 452   switch (op->code()) {
 453     case lir_idiv:
 454     case lir_irem:  // Both idiv & irem are handled after the switch (below).
 455       break;
 456     case lir_fmaf:
 457       __ fmadd(FloatRegisterImpl::S,
 458                op->in_opr1()->as_float_reg(),
 459                op->in_opr2()->as_float_reg(),
 460                op->in_opr3()->as_float_reg(),
 461                op->result_opr()->as_float_reg());
 462       return;
 463     case lir_fmad:
 464       __ fmadd(FloatRegisterImpl::D,
 465                op->in_opr1()->as_double_reg(),
 466                op->in_opr2()->as_double_reg(),
 467                op->in_opr3()->as_double_reg(),
 468                op->result_opr()->as_double_reg());
 469       return;
 470     default:
 471       ShouldNotReachHere();
 472       break;
 473   }
 474 
 475   // Handle idiv & irem:
 476 
 477   Register Rdividend = op->in_opr1()->as_register();
 478   Register Rdivisor  = noreg;
 479   Register Rscratch  = op->in_opr3()->as_register();
 480   Register Rresult   = op->result_opr()->as_register();
 481   int divisor = -1;
 482 
 483   if (op->in_opr2()->is_register()) {
 484     Rdivisor = op->in_opr2()->as_register();
 485   } else {
 486     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 487     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 488   }
 489 
 490   assert(Rdividend != Rscratch, "");
 491   assert(Rdivisor  != Rscratch, "");
 492   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 493 
 494   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 495     // convert division by a power of two into some shifts and logical operations
 496     if (op->code() == lir_idiv) {
 497       if (divisor == 2) {
 498         __ srl(Rdividend, 31, Rscratch);
 499       } else {
 500         __ sra(Rdividend, 31, Rscratch);
 501         __ and3(Rscratch, divisor - 1, Rscratch);
 502       }
 503       __ add(Rdividend, Rscratch, Rscratch);
 504       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 505       return;
 506     } else {
 507       if (divisor == 2) {
 508         __ srl(Rdividend, 31, Rscratch);
 509       } else {
 510         __ sra(Rdividend, 31, Rscratch);
 511         __ and3(Rscratch, divisor - 1,Rscratch);
 512       }
 513       __ add(Rdividend, Rscratch, Rscratch);
 514       __ andn(Rscratch, divisor - 1,Rscratch);
 515       __ sub(Rdividend, Rscratch, Rresult);
 516       return;
 517     }
 518   }
 519 
 520   __ sra(Rdividend, 31, Rscratch);
 521   __ wry(Rscratch);
 522 
 523   add_debug_info_for_div0_here(op->info());
 524 
 525   if (Rdivisor != noreg) {
 526     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 527   } else {
 528     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 529     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 530   }
 531 
 532   Label skip;
 533   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 534   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 535   __ bind(skip);
 536 
 537   if (op->code() == lir_irem) {
 538     if (Rdivisor != noreg) {
 539       __ smul(Rscratch, Rdivisor, Rscratch);
 540     } else {
 541       __ smul(Rscratch, divisor, Rscratch);
 542     }
 543     __ sub(Rdividend, Rscratch, Rresult);
 544   }
 545 }
 546 
 547 
 548 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 549 #ifdef ASSERT
 550   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 551   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 552   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 553 #endif
 554   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 555 
 556   if (op->cond() == lir_cond_always) {
 557     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 558   } else if (op->code() == lir_cond_float_branch) {
 559     assert(op->ublock() != NULL, "must have unordered successor");
 560     bool is_unordered = (op->ublock() == op->block());
 561     Assembler::Condition acond;
 562     switch (op->cond()) {
 563       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 564       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 565       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 566       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 567       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 568       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 569       default :                         ShouldNotReachHere();
 570     }
 571     __ fb( acond, false, Assembler::pn, *(op->label()));
 572   } else {
 573     assert (op->code() == lir_branch, "just checking");
 574 
 575     Assembler::Condition acond;
 576     switch (op->cond()) {
 577       case lir_cond_equal:        acond = Assembler::equal;                break;
 578       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 579       case lir_cond_less:         acond = Assembler::less;                 break;
 580       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 581       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 582       case lir_cond_greater:      acond = Assembler::greater;              break;
 583       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 584       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 585       default:                         ShouldNotReachHere();
 586     };
 587 
 588     // sparc has different condition codes for testing 32-bit
 589     // vs. 64-bit values.  We could always test xcc is we could
 590     // guarantee that 32-bit loads always sign extended but that isn't
 591     // true and since sign extension isn't free, it would impose a
 592     // slight cost.
 593     if  (op->type() == T_INT) {
 594       __ br(acond, false, Assembler::pn, *(op->label()));
 595     } else
 596       __ brx(acond, false, Assembler::pn, *(op->label()));
 597   }
 598   // The peephole pass fills the delay slot
 599 }
 600 
 601 
 602 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 603   Bytecodes::Code code = op->bytecode();
 604   LIR_Opr dst = op->result_opr();
 605 
 606   switch(code) {
 607     case Bytecodes::_i2l: {
 608       Register rlo  = dst->as_register_lo();
 609       Register rhi  = dst->as_register_hi();
 610       Register rval = op->in_opr()->as_register();
 611       __ sra(rval, 0, rlo);
 612       break;
 613     }
 614     case Bytecodes::_i2d:
 615     case Bytecodes::_i2f: {
 616       bool is_double = (code == Bytecodes::_i2d);
 617       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 618       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 619       FloatRegister rsrc = op->in_opr()->as_float_reg();
 620       if (rsrc != rdst) {
 621         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 622       }
 623       __ fitof(w, rdst, rdst);
 624       break;
 625     }
 626     case Bytecodes::_f2i:{
 627       FloatRegister rsrc = op->in_opr()->as_float_reg();
 628       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 629       Label L;
 630       // result must be 0 if value is NaN; test by comparing value to itself
 631       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 632       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 633       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 634       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 635       // move integer result from float register to int register
 636       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 637       __ bind (L);
 638       break;
 639     }
 640     case Bytecodes::_l2i: {
 641       Register rlo  = op->in_opr()->as_register_lo();
 642       Register rhi  = op->in_opr()->as_register_hi();
 643       Register rdst = dst->as_register();
 644       __ sra(rlo, 0, rdst);
 645       break;
 646     }
 647     case Bytecodes::_d2f:
 648     case Bytecodes::_f2d: {
 649       bool is_double = (code == Bytecodes::_f2d);
 650       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 651       LIR_Opr val = op->in_opr();
 652       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 653       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 654       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 655       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 656       __ ftof(vw, dw, rval, rdst);
 657       break;
 658     }
 659     case Bytecodes::_i2s:
 660     case Bytecodes::_i2b: {
 661       Register rval = op->in_opr()->as_register();
 662       Register rdst = dst->as_register();
 663       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 664       __ sll (rval, shift, rdst);
 665       __ sra (rdst, shift, rdst);
 666       break;
 667     }
 668     case Bytecodes::_i2c: {
 669       Register rval = op->in_opr()->as_register();
 670       Register rdst = dst->as_register();
 671       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 672       __ sll (rval, shift, rdst);
 673       __ srl (rdst, shift, rdst);
 674       break;
 675     }
 676 
 677     default: ShouldNotReachHere();
 678   }
 679 }
 680 
 681 
 682 void LIR_Assembler::align_call(LIR_Code) {
 683   // do nothing since all instructions are word aligned on sparc
 684 }
 685 
 686 
 687 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 688   __ call(op->addr(), rtype);
 689   // The peephole pass fills the delay slot, add_call_info is done in
 690   // LIR_Assembler::emit_delay.
 691 }
 692 
 693 
 694 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 695   __ ic_call(op->addr(), false);
 696   // The peephole pass fills the delay slot, add_call_info is done in
 697   // LIR_Assembler::emit_delay.
 698 }
 699 
 700 
 701 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 702   add_debug_info_for_null_check_here(op->info());
 703   __ load_klass(O0, G3_scratch);
 704   if (Assembler::is_simm13(op->vtable_offset())) {
 705     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 706   } else {
 707     // This will generate 2 instructions
 708     __ set(op->vtable_offset(), G5_method);
 709     // ld_ptr, set_hi, set
 710     __ ld_ptr(G3_scratch, G5_method, G5_method);
 711   }
 712   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
 713   __ callr(G3_scratch, G0);
 714   // the peephole pass fills the delay slot
 715 }
 716 
 717 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 718   int store_offset;
 719   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 720     assert(base != O7, "destroying register");
 721     assert(!unaligned, "can't handle this");
 722     // for offsets larger than a simm13 we setup the offset in O7
 723     __ set(offset, O7);
 724     store_offset = store(from_reg, base, O7, type, wide);
 725   } else {
 726     if (type == T_ARRAY || type == T_OBJECT) {
 727       __ verify_oop(from_reg->as_register());
 728     }
 729     store_offset = code_offset();
 730     switch (type) {
 731       case T_BOOLEAN: // fall through
 732       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 733       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 734       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 735       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 736       case T_LONG  :
 737         if (unaligned || PatchALot) {
 738           // Don't use O7 here because it may be equal to 'base' (see LIR_Assembler::reg2mem)
 739           assert(G3_scratch != base, "can't handle this");
 740           assert(G3_scratch != from_reg->as_register_lo(), "can't handle this");
 741           __ srax(from_reg->as_register_lo(), 32, G3_scratch);
 742           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 743           __ stw(G3_scratch,                 base, offset + hi_word_offset_in_bytes);
 744         } else {
 745           __ stx(from_reg->as_register_lo(), base, offset);
 746         }
 747         break;
 748       case T_ADDRESS:
 749       case T_METADATA:
 750         __ st_ptr(from_reg->as_register(), base, offset);
 751         break;
 752       case T_ARRAY : // fall through
 753       case T_OBJECT:
 754         {
 755           if (UseCompressedOops && !wide) {
 756             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 757             store_offset = code_offset();
 758             __ stw(G3_scratch, base, offset);
 759           } else {
 760             __ st_ptr(from_reg->as_register(), base, offset);
 761           }
 762           break;
 763         }
 764 
 765       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 766       case T_DOUBLE:
 767         {
 768           FloatRegister reg = from_reg->as_double_reg();
 769           // split unaligned stores
 770           if (unaligned || PatchALot) {
 771             assert(Assembler::is_simm13(offset + 4), "must be");
 772             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 773             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 774           } else {
 775             __ stf(FloatRegisterImpl::D, reg, base, offset);
 776           }
 777           break;
 778         }
 779       default      : ShouldNotReachHere();
 780     }
 781   }
 782   return store_offset;
 783 }
 784 
 785 
 786 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 787   if (type == T_ARRAY || type == T_OBJECT) {
 788     __ verify_oop(from_reg->as_register());
 789   }
 790   int store_offset = code_offset();
 791   switch (type) {
 792     case T_BOOLEAN: // fall through
 793     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 794     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 795     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 796     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 797     case T_LONG  :
 798       __ stx(from_reg->as_register_lo(), base, disp);
 799       break;
 800     case T_ADDRESS:
 801       __ st_ptr(from_reg->as_register(), base, disp);
 802       break;
 803     case T_ARRAY : // fall through
 804     case T_OBJECT:
 805       {
 806         if (UseCompressedOops && !wide) {
 807           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 808           store_offset = code_offset();
 809           __ stw(G3_scratch, base, disp);
 810         } else {
 811           __ st_ptr(from_reg->as_register(), base, disp);
 812         }
 813         break;
 814       }
 815     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 816     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 817     default      : ShouldNotReachHere();
 818   }
 819   return store_offset;
 820 }
 821 
 822 
 823 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 824   int load_offset;
 825   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 826     assert(base != O7, "destroying register");
 827     assert(!unaligned, "can't handle this");
 828     // for offsets larger than a simm13 we setup the offset in O7
 829     __ set(offset, O7);
 830     load_offset = load(base, O7, to_reg, type, wide);
 831   } else {
 832     load_offset = code_offset();
 833     switch(type) {
 834       case T_BOOLEAN: // fall through
 835       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 836       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 837       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 838       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 839       case T_LONG  :
 840         if (!unaligned && !PatchALot) {
 841           __ ldx(base, offset, to_reg->as_register_lo());
 842         } else {
 843           assert(base != to_reg->as_register_lo(), "can't handle this");
 844           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 845           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 846           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 847           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 848           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 849         }
 850         break;
 851       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
 852       case T_ADDRESS:
 853         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
 854           __ lduw(base, offset, to_reg->as_register());
 855           __ decode_klass_not_null(to_reg->as_register());
 856         } else
 857         {
 858           __ ld_ptr(base, offset, to_reg->as_register());
 859         }
 860         break;
 861       case T_ARRAY : // fall through
 862       case T_OBJECT:
 863         {
 864           if (UseCompressedOops && !wide) {
 865             __ lduw(base, offset, to_reg->as_register());
 866             __ decode_heap_oop(to_reg->as_register());
 867           } else {
 868             __ ld_ptr(base, offset, to_reg->as_register());
 869           }
 870           break;
 871         }
 872       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 873       case T_DOUBLE:
 874         {
 875           FloatRegister reg = to_reg->as_double_reg();
 876           // split unaligned loads
 877           if (unaligned || PatchALot) {
 878             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 879             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 880           } else {
 881             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 882           }
 883           break;
 884         }
 885       default      : ShouldNotReachHere();
 886     }
 887     if (type == T_ARRAY || type == T_OBJECT) {
 888       __ verify_oop(to_reg->as_register());
 889     }
 890   }
 891   return load_offset;
 892 }
 893 
 894 
 895 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 896   int load_offset = code_offset();
 897   switch(type) {
 898     case T_BOOLEAN: // fall through
 899     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
 900     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
 901     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
 902     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
 903     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
 904     case T_ARRAY : // fall through
 905     case T_OBJECT:
 906       {
 907           if (UseCompressedOops && !wide) {
 908             __ lduw(base, disp, to_reg->as_register());
 909             __ decode_heap_oop(to_reg->as_register());
 910           } else {
 911             __ ld_ptr(base, disp, to_reg->as_register());
 912           }
 913           break;
 914       }
 915     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
 916     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
 917     case T_LONG  :
 918       __ ldx(base, disp, to_reg->as_register_lo());
 919       break;
 920     default      : ShouldNotReachHere();
 921   }
 922   if (type == T_ARRAY || type == T_OBJECT) {
 923     __ verify_oop(to_reg->as_register());
 924   }
 925   return load_offset;
 926 }
 927 
 928 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 929   LIR_Const* c = src->as_constant_ptr();
 930   switch (c->type()) {
 931     case T_INT:
 932     case T_FLOAT: {
 933       Register src_reg = O7;
 934       int value = c->as_jint_bits();
 935       if (value == 0) {
 936         src_reg = G0;
 937       } else {
 938         __ set(value, O7);
 939       }
 940       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 941       __ stw(src_reg, addr.base(), addr.disp());
 942       break;
 943     }
 944     case T_ADDRESS: {
 945       Register src_reg = O7;
 946       int value = c->as_jint_bits();
 947       if (value == 0) {
 948         src_reg = G0;
 949       } else {
 950         __ set(value, O7);
 951       }
 952       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 953       __ st_ptr(src_reg, addr.base(), addr.disp());
 954       break;
 955     }
 956     case T_OBJECT: {
 957       Register src_reg = O7;
 958       jobject2reg(c->as_jobject(), src_reg);
 959       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 960       __ st_ptr(src_reg, addr.base(), addr.disp());
 961       break;
 962     }
 963     case T_LONG:
 964     case T_DOUBLE: {
 965       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
 966 
 967       Register tmp = O7;
 968       int value_lo = c->as_jint_lo_bits();
 969       if (value_lo == 0) {
 970         tmp = G0;
 971       } else {
 972         __ set(value_lo, O7);
 973       }
 974       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
 975       int value_hi = c->as_jint_hi_bits();
 976       if (value_hi == 0) {
 977         tmp = G0;
 978       } else {
 979         __ set(value_hi, O7);
 980       }
 981       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
 982       break;
 983     }
 984     default:
 985       Unimplemented();
 986   }
 987 }
 988 
 989 
 990 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 991   LIR_Const* c = src->as_constant_ptr();
 992   LIR_Address* addr     = dest->as_address_ptr();
 993   Register base = addr->base()->as_pointer_register();
 994   int offset = -1;
 995 
 996   switch (c->type()) {
 997     case T_FLOAT: type = T_INT; // Float constants are stored by int store instructions.
 998     case T_INT:
 999     case T_ADDRESS: {
1000       LIR_Opr tmp = FrameMap::O7_opr;
1001       int value = c->as_jint_bits();
1002       if (value == 0) {
1003         tmp = FrameMap::G0_opr;
1004       } else if (Assembler::is_simm13(value)) {
1005         __ set(value, O7);
1006       }
1007       if (addr->index()->is_valid()) {
1008         assert(addr->disp() == 0, "must be zero");
1009         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1010       } else {
1011         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1012         offset = store(tmp, base, addr->disp(), type, wide, false);
1013       }
1014       break;
1015     }
1016     case T_LONG:
1017     case T_DOUBLE: {
1018       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1019       assert(Assembler::is_simm13(addr->disp()) &&
1020              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1021 
1022       LIR_Opr tmp = FrameMap::O7_opr;
1023       int value_lo = c->as_jint_lo_bits();
1024       if (value_lo == 0) {
1025         tmp = FrameMap::G0_opr;
1026       } else {
1027         __ set(value_lo, O7);
1028       }
1029       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1030       int value_hi = c->as_jint_hi_bits();
1031       if (value_hi == 0) {
1032         tmp = FrameMap::G0_opr;
1033       } else {
1034         __ set(value_hi, O7);
1035       }
1036       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1037       break;
1038     }
1039     case T_OBJECT: {
1040       jobject obj = c->as_jobject();
1041       LIR_Opr tmp;
1042       if (obj == NULL) {
1043         tmp = FrameMap::G0_opr;
1044       } else {
1045         tmp = FrameMap::O7_opr;
1046         jobject2reg(c->as_jobject(), O7);
1047       }
1048       // handle either reg+reg or reg+disp address
1049       if (addr->index()->is_valid()) {
1050         assert(addr->disp() == 0, "must be zero");
1051         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1052       } else {
1053         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1054         offset = store(tmp, base, addr->disp(), type, wide, false);
1055       }
1056 
1057       break;
1058     }
1059     default:
1060       Unimplemented();
1061   }
1062   if (info != NULL) {
1063     assert(offset != -1, "offset should've been set");
1064     add_debug_info_for_null_check(offset, info);
1065   }
1066 }
1067 
1068 
1069 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1070   LIR_Const* c = src->as_constant_ptr();
1071   LIR_Opr to_reg = dest;
1072 
1073   switch (c->type()) {
1074     case T_INT:
1075     case T_ADDRESS:
1076       {
1077         jint con = c->as_jint();
1078         if (to_reg->is_single_cpu()) {
1079           assert(patch_code == lir_patch_none, "no patching handled here");
1080           __ set(con, to_reg->as_register());
1081         } else {
1082           ShouldNotReachHere();
1083           assert(to_reg->is_single_fpu(), "wrong register kind");
1084 
1085           __ set(con, O7);
1086           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1087           __ st(O7, temp_slot);
1088           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1089         }
1090       }
1091       break;
1092 
1093     case T_LONG:
1094       {
1095         jlong con = c->as_jlong();
1096 
1097         if (to_reg->is_double_cpu()) {
1098           __ set(con,  to_reg->as_register_lo());
1099         } else if (to_reg->is_single_cpu()) {
1100           __ set(con, to_reg->as_register());
1101         } else {
1102           ShouldNotReachHere();
1103           assert(to_reg->is_double_fpu(), "wrong register kind");
1104           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1105           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1106           __ set(low(con),  O7);
1107           __ st(O7, temp_slot_lo);
1108           __ set(high(con), O7);
1109           __ st(O7, temp_slot_hi);
1110           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1111         }
1112       }
1113       break;
1114 
1115     case T_OBJECT:
1116       {
1117         if (patch_code == lir_patch_none) {
1118           jobject2reg(c->as_jobject(), to_reg->as_register());
1119         } else {
1120           jobject2reg_with_patching(to_reg->as_register(), info);
1121         }
1122       }
1123       break;
1124 
1125     case T_METADATA:
1126       {
1127         if (patch_code == lir_patch_none) {
1128           metadata2reg(c->as_metadata(), to_reg->as_register());
1129         } else {
1130           klass2reg_with_patching(to_reg->as_register(), info);
1131         }
1132       }
1133       break;
1134 
1135     case T_FLOAT:
1136       {
1137         address const_addr = __ float_constant(c->as_jfloat());
1138         if (const_addr == NULL) {
1139           bailout("const section overflow");
1140           break;
1141         }
1142         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1143         AddressLiteral const_addrlit(const_addr, rspec);
1144         if (to_reg->is_single_fpu()) {
1145           __ patchable_sethi(const_addrlit, O7);
1146           __ relocate(rspec);
1147           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1148 
1149         } else {
1150           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1151 
1152           __ set(const_addrlit, O7);
1153           __ ld(O7, 0, to_reg->as_register());
1154         }
1155       }
1156       break;
1157 
1158     case T_DOUBLE:
1159       {
1160         address const_addr = __ double_constant(c->as_jdouble());
1161         if (const_addr == NULL) {
1162           bailout("const section overflow");
1163           break;
1164         }
1165         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1166 
1167         if (to_reg->is_double_fpu()) {
1168           AddressLiteral const_addrlit(const_addr, rspec);
1169           __ patchable_sethi(const_addrlit, O7);
1170           __ relocate(rspec);
1171           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1172         } else {
1173           assert(to_reg->is_double_cpu(), "Must be a long register.");
1174           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1175         }
1176 
1177       }
1178       break;
1179 
1180     default:
1181       ShouldNotReachHere();
1182   }
1183 }
1184 
1185 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1186   Register reg = addr->base()->as_pointer_register();
1187   LIR_Opr index = addr->index();
1188   if (index->is_illegal()) {
1189     return Address(reg, addr->disp());
1190   } else {
1191     assert (addr->disp() == 0, "unsupported address mode");
1192     return Address(reg, index->as_pointer_register());
1193   }
1194 }
1195 
1196 
1197 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1198   switch (type) {
1199     case T_INT:
1200     case T_FLOAT: {
1201       Register tmp = O7;
1202       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1203       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1204       __ lduw(from.base(), from.disp(), tmp);
1205       __ stw(tmp, to.base(), to.disp());
1206       break;
1207     }
1208     case T_ADDRESS:
1209     case T_OBJECT: {
1210       Register tmp = O7;
1211       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1212       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1213       __ ld_ptr(from.base(), from.disp(), tmp);
1214       __ st_ptr(tmp, to.base(), to.disp());
1215       break;
1216     }
1217     case T_LONG:
1218     case T_DOUBLE: {
1219       Register tmp = O7;
1220       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1221       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1222       __ lduw(from.base(), from.disp(), tmp);
1223       __ stw(tmp, to.base(), to.disp());
1224       __ lduw(from.base(), from.disp() + 4, tmp);
1225       __ stw(tmp, to.base(), to.disp() + 4);
1226       break;
1227     }
1228 
1229     default:
1230       ShouldNotReachHere();
1231   }
1232 }
1233 
1234 
1235 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1236   Address base = as_Address(addr);
1237   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1238 }
1239 
1240 
1241 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1242   Address base = as_Address(addr);
1243   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1244 }
1245 
1246 
1247 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1248                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1249 
1250   assert(type != T_METADATA, "load of metadata ptr not supported");
1251   LIR_Address* addr = src_opr->as_address_ptr();
1252   LIR_Opr to_reg = dest;
1253 
1254   Register src = addr->base()->as_pointer_register();
1255   Register disp_reg = noreg;
1256   int disp_value = addr->disp();
1257   bool needs_patching = (patch_code != lir_patch_none);
1258 
1259   if (addr->base()->type() == T_OBJECT) {
1260     __ verify_oop(src);
1261   }
1262 
1263   PatchingStub* patch = NULL;
1264   if (needs_patching) {
1265     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1266     assert(!to_reg->is_double_cpu() ||
1267            patch_code == lir_patch_none ||
1268            patch_code == lir_patch_normal, "patching doesn't match register");
1269   }
1270 
1271   if (addr->index()->is_illegal()) {
1272     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1273       if (needs_patching) {
1274         __ patchable_set(0, O7);
1275       } else {
1276         __ set(disp_value, O7);
1277       }
1278       disp_reg = O7;
1279     }
1280   } else if (unaligned || PatchALot) {
1281     __ add(src, addr->index()->as_pointer_register(), O7);
1282     src = O7;
1283   } else {
1284     disp_reg = addr->index()->as_pointer_register();
1285     assert(disp_value == 0, "can't handle 3 operand addresses");
1286   }
1287 
1288   // remember the offset of the load.  The patching_epilog must be done
1289   // before the call to add_debug_info, otherwise the PcDescs don't get
1290   // entered in increasing order.
1291   int offset = code_offset();
1292 
1293   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1294   if (disp_reg == noreg) {
1295     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1296   } else {
1297     assert(!unaligned, "can't handle this");
1298     offset = load(src, disp_reg, to_reg, type, wide);
1299   }
1300 
1301   if (patch != NULL) {
1302     patching_epilog(patch, patch_code, src, info);
1303   }
1304   if (info != NULL) add_debug_info_for_null_check(offset, info);
1305 }
1306 
1307 
1308 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1309   Address addr;
1310   if (src->is_single_word()) {
1311     addr = frame_map()->address_for_slot(src->single_stack_ix());
1312   } else if (src->is_double_word())  {
1313     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1314   }
1315 
1316   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1317   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1318 }
1319 
1320 
1321 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1322   Address addr;
1323   if (dest->is_single_word()) {
1324     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1325   } else if (dest->is_double_word())  {
1326     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1327   }
1328   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1329   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1330 }
1331 
1332 
1333 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1334   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1335     if (from_reg->is_double_fpu()) {
1336       // double to double moves
1337       assert(to_reg->is_double_fpu(), "should match");
1338       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1339     } else {
1340       // float to float moves
1341       assert(to_reg->is_single_fpu(), "should match");
1342       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1343     }
1344   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1345     if (from_reg->is_double_cpu()) {
1346       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1347     } else if (to_reg->is_double_cpu()) {
1348       // int to int moves
1349       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1350     } else {
1351       // int to int moves
1352       __ mov(from_reg->as_register(), to_reg->as_register());
1353     }
1354   } else {
1355     ShouldNotReachHere();
1356   }
1357   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1358     __ verify_oop(to_reg->as_register());
1359   }
1360 }
1361 
1362 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1363                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1364                             bool wide, bool unaligned) {
1365   assert(type != T_METADATA, "store of metadata ptr not supported");
1366   LIR_Address* addr = dest->as_address_ptr();
1367 
1368   Register src = addr->base()->as_pointer_register();
1369   Register disp_reg = noreg;
1370   int disp_value = addr->disp();
1371   bool needs_patching = (patch_code != lir_patch_none);
1372 
1373   if (addr->base()->is_oop_register()) {
1374     __ verify_oop(src);
1375   }
1376 
1377   PatchingStub* patch = NULL;
1378   if (needs_patching) {
1379     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1380     assert(!from_reg->is_double_cpu() ||
1381            patch_code == lir_patch_none ||
1382            patch_code == lir_patch_normal, "patching doesn't match register");
1383   }
1384 
1385   if (addr->index()->is_illegal()) {
1386     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1387       if (needs_patching) {
1388         __ patchable_set(0, O7);
1389       } else {
1390         __ set(disp_value, O7);
1391       }
1392       disp_reg = O7;
1393     }
1394   } else if (unaligned || PatchALot) {
1395     __ add(src, addr->index()->as_pointer_register(), O7);
1396     src = O7;
1397   } else {
1398     disp_reg = addr->index()->as_pointer_register();
1399     assert(disp_value == 0, "can't handle 3 operand addresses");
1400   }
1401 
1402   // remember the offset of the store.  The patching_epilog must be done
1403   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1404   // entered in increasing order.
1405   int offset;
1406 
1407   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1408   if (disp_reg == noreg) {
1409     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1410   } else {
1411     assert(!unaligned, "can't handle this");
1412     offset = store(from_reg, src, disp_reg, type, wide);
1413   }
1414 
1415   if (patch != NULL) {
1416     patching_epilog(patch, patch_code, src, info);
1417   }
1418 
1419   if (info != NULL) add_debug_info_for_null_check(offset, info);
1420 }
1421 
1422 
1423 void LIR_Assembler::return_op(LIR_Opr result) {
1424   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1425     __ reserved_stack_check();
1426   }
1427   if (SafepointMechanism::uses_thread_local_poll()) {
1428     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), L0);
1429   } else {
1430     __ set((intptr_t)os::get_polling_page(), L0);
1431   }
1432   __ relocate(relocInfo::poll_return_type);
1433   __ ld_ptr(L0, 0, G0);
1434   __ ret();
1435   __ delayed()->restore();
1436 }
1437 
1438 
1439 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1440   if (SafepointMechanism::uses_thread_local_poll()) {
1441     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), tmp->as_register());
1442   } else {
1443     __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1444   }
1445   if (info != NULL) {
1446     add_debug_info_for_branch(info);
1447   }
1448   int offset = __ offset();
1449 
1450   __ relocate(relocInfo::poll_type);
1451   __ ld_ptr(tmp->as_register(), 0, G0);
1452   return offset;
1453 }
1454 
1455 
1456 void LIR_Assembler::emit_static_call_stub() {
1457   address call_pc = __ pc();
1458   address stub = __ start_a_stub(call_stub_size());
1459   if (stub == NULL) {
1460     bailout("static call stub overflow");
1461     return;
1462   }
1463 
1464   int start = __ offset();
1465   __ relocate(static_stub_Relocation::spec(call_pc));
1466 
1467   __ set_metadata(NULL, G5);
1468   // must be set to -1 at code generation time
1469   AddressLiteral addrlit(-1);
1470   __ jump_to(addrlit, G3);
1471   __ delayed()->nop();
1472 
1473   assert(__ offset() - start <= call_stub_size(), "stub too big");
1474   __ end_a_stub();
1475 }
1476 
1477 
1478 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1479   if (opr1->is_single_fpu()) {
1480     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1481   } else if (opr1->is_double_fpu()) {
1482     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1483   } else if (opr1->is_single_cpu()) {
1484     if (opr2->is_constant()) {
1485       switch (opr2->as_constant_ptr()->type()) {
1486         case T_INT:
1487           { jint con = opr2->as_constant_ptr()->as_jint();
1488             if (Assembler::is_simm13(con)) {
1489               __ cmp(opr1->as_register(), con);
1490             } else {
1491               __ set(con, O7);
1492               __ cmp(opr1->as_register(), O7);
1493             }
1494           }
1495           break;
1496 
1497         case T_OBJECT:
1498           // there are only equal/notequal comparisions on objects
1499           { jobject con = opr2->as_constant_ptr()->as_jobject();
1500             if (con == NULL) {
1501               __ cmp(opr1->as_register(), 0);
1502             } else {
1503               jobject2reg(con, O7);
1504               __ cmp(opr1->as_register(), O7);
1505             }
1506           }
1507           break;
1508 
1509         default:
1510           ShouldNotReachHere();
1511           break;
1512       }
1513     } else {
1514       if (opr2->is_address()) {
1515         LIR_Address * addr = opr2->as_address_ptr();
1516         BasicType type = addr->type();
1517         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1518         else                    __ ld(as_Address(addr), O7);
1519         __ cmp(opr1->as_register(), O7);
1520       } else {
1521         __ cmp(opr1->as_register(), opr2->as_register());
1522       }
1523     }
1524   } else if (opr1->is_double_cpu()) {
1525     Register xlo = opr1->as_register_lo();
1526     Register xhi = opr1->as_register_hi();
1527     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1528       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1529       __ orcc(xhi, G0, G0);
1530     } else if (opr2->is_register()) {
1531       Register ylo = opr2->as_register_lo();
1532       Register yhi = opr2->as_register_hi();
1533       __ cmp(xlo, ylo);
1534     } else {
1535       ShouldNotReachHere();
1536     }
1537   } else if (opr1->is_address()) {
1538     LIR_Address * addr = opr1->as_address_ptr();
1539     BasicType type = addr->type();
1540     assert (opr2->is_constant(), "Checking");
1541     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1542     else                    __ ld(as_Address(addr), O7);
1543     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1544   } else {
1545     ShouldNotReachHere();
1546   }
1547 }
1548 
1549 
1550 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1551   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1552     bool is_unordered_less = (code == lir_ucmp_fd2i);
1553     if (left->is_single_fpu()) {
1554       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1555     } else if (left->is_double_fpu()) {
1556       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1557     } else {
1558       ShouldNotReachHere();
1559     }
1560   } else if (code == lir_cmp_l2i) {
1561     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1562   } else {
1563     ShouldNotReachHere();
1564   }
1565 }
1566 
1567 
1568 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1569   Assembler::Condition acond;
1570   switch (condition) {
1571     case lir_cond_equal:        acond = Assembler::equal;        break;
1572     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1573     case lir_cond_less:         acond = Assembler::less;         break;
1574     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1575     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1576     case lir_cond_greater:      acond = Assembler::greater;      break;
1577     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1578     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1579     default:                         ShouldNotReachHere();
1580   };
1581 
1582   if (opr1->is_constant() && opr1->type() == T_INT) {
1583     Register dest = result->as_register();
1584     // load up first part of constant before branch
1585     // and do the rest in the delay slot.
1586     if (!Assembler::is_simm13(opr1->as_jint())) {
1587       __ sethi(opr1->as_jint(), dest);
1588     }
1589   } else if (opr1->is_constant()) {
1590     const2reg(opr1, result, lir_patch_none, NULL);
1591   } else if (opr1->is_register()) {
1592     reg2reg(opr1, result);
1593   } else if (opr1->is_stack()) {
1594     stack2reg(opr1, result, result->type());
1595   } else {
1596     ShouldNotReachHere();
1597   }
1598   Label skip;
1599     if  (type == T_INT) {
1600       __ br(acond, false, Assembler::pt, skip);
1601     } else {
1602       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1603     }
1604   if (opr1->is_constant() && opr1->type() == T_INT) {
1605     Register dest = result->as_register();
1606     if (Assembler::is_simm13(opr1->as_jint())) {
1607       __ delayed()->or3(G0, opr1->as_jint(), dest);
1608     } else {
1609       // the sethi has been done above, so just put in the low 10 bits
1610       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1611     }
1612   } else {
1613     // can't do anything useful in the delay slot
1614     __ delayed()->nop();
1615   }
1616   if (opr2->is_constant()) {
1617     const2reg(opr2, result, lir_patch_none, NULL);
1618   } else if (opr2->is_register()) {
1619     reg2reg(opr2, result);
1620   } else if (opr2->is_stack()) {
1621     stack2reg(opr2, result, result->type());
1622   } else {
1623     ShouldNotReachHere();
1624   }
1625   __ bind(skip);
1626 }
1627 
1628 
1629 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1630   assert(info == NULL, "unused on this code path");
1631   assert(left->is_register(), "wrong items state");
1632   assert(dest->is_register(), "wrong items state");
1633 
1634   if (right->is_register()) {
1635     if (dest->is_float_kind()) {
1636 
1637       FloatRegister lreg, rreg, res;
1638       FloatRegisterImpl::Width w;
1639       if (right->is_single_fpu()) {
1640         w = FloatRegisterImpl::S;
1641         lreg = left->as_float_reg();
1642         rreg = right->as_float_reg();
1643         res  = dest->as_float_reg();
1644       } else {
1645         w = FloatRegisterImpl::D;
1646         lreg = left->as_double_reg();
1647         rreg = right->as_double_reg();
1648         res  = dest->as_double_reg();
1649       }
1650 
1651       switch (code) {
1652         case lir_add: __ fadd(w, lreg, rreg, res); break;
1653         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1654         case lir_mul: // fall through
1655         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1656         case lir_div: // fall through
1657         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1658         default: ShouldNotReachHere();
1659       }
1660 
1661     } else if (dest->is_double_cpu()) {
1662       Register dst_lo = dest->as_register_lo();
1663       Register op1_lo = left->as_pointer_register();
1664       Register op2_lo = right->as_pointer_register();
1665 
1666       switch (code) {
1667         case lir_add:
1668           __ add(op1_lo, op2_lo, dst_lo);
1669           break;
1670 
1671         case lir_sub:
1672           __ sub(op1_lo, op2_lo, dst_lo);
1673           break;
1674 
1675         default: ShouldNotReachHere();
1676       }
1677     } else {
1678       assert (right->is_single_cpu(), "Just Checking");
1679 
1680       Register lreg = left->as_register();
1681       Register res  = dest->as_register();
1682       Register rreg = right->as_register();
1683       switch (code) {
1684         case lir_add:  __ add  (lreg, rreg, res); break;
1685         case lir_sub:  __ sub  (lreg, rreg, res); break;
1686         case lir_mul:  __ mulx (lreg, rreg, res); break;
1687         default: ShouldNotReachHere();
1688       }
1689     }
1690   } else {
1691     assert (right->is_constant(), "must be constant");
1692 
1693     if (dest->is_single_cpu()) {
1694       Register lreg = left->as_register();
1695       Register res  = dest->as_register();
1696       int    simm13 = right->as_constant_ptr()->as_jint();
1697 
1698       switch (code) {
1699         case lir_add:  __ add  (lreg, simm13, res); break;
1700         case lir_sub:  __ sub  (lreg, simm13, res); break;
1701         case lir_mul:  __ mulx (lreg, simm13, res); break;
1702         default: ShouldNotReachHere();
1703       }
1704     } else {
1705       Register lreg = left->as_pointer_register();
1706       Register res  = dest->as_register_lo();
1707       long con = right->as_constant_ptr()->as_jlong();
1708       assert(Assembler::is_simm13(con), "must be simm13");
1709 
1710       switch (code) {
1711         case lir_add:  __ add  (lreg, (int)con, res); break;
1712         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1713         case lir_mul:  __ mulx (lreg, (int)con, res); break;
1714         default: ShouldNotReachHere();
1715       }
1716     }
1717   }
1718 }
1719 
1720 
1721 void LIR_Assembler::fpop() {
1722   // do nothing
1723 }
1724 
1725 
1726 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1727   switch (code) {
1728     case lir_tan: {
1729       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1730       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1731       break;
1732     }
1733     case lir_sqrt: {
1734       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1735       FloatRegister src_reg = value->as_double_reg();
1736       FloatRegister dst_reg = dest->as_double_reg();
1737       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1738       break;
1739     }
1740     case lir_abs: {
1741       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1742       FloatRegister src_reg = value->as_double_reg();
1743       FloatRegister dst_reg = dest->as_double_reg();
1744       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1745       break;
1746     }
1747     default: {
1748       ShouldNotReachHere();
1749       break;
1750     }
1751   }
1752 }
1753 
1754 
1755 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1756   if (right->is_constant()) {
1757     if (dest->is_single_cpu()) {
1758       int simm13 = right->as_constant_ptr()->as_jint();
1759       switch (code) {
1760         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1761         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1762         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1763         default: ShouldNotReachHere();
1764       }
1765     } else {
1766       long c = right->as_constant_ptr()->as_jlong();
1767       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1768       int simm13 = (int)c;
1769       switch (code) {
1770         case lir_logic_and:
1771           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1772           break;
1773 
1774         case lir_logic_or:
1775           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1776           break;
1777 
1778         case lir_logic_xor:
1779           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1780           break;
1781 
1782         default: ShouldNotReachHere();
1783       }
1784     }
1785   } else {
1786     assert(right->is_register(), "right should be in register");
1787 
1788     if (dest->is_single_cpu()) {
1789       switch (code) {
1790         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1791         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1792         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1793         default: ShouldNotReachHere();
1794       }
1795     } else {
1796       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1797                                                                         left->as_register_lo();
1798       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1799                                                                           right->as_register_lo();
1800 
1801       switch (code) {
1802         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1803         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1804         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1805         default: ShouldNotReachHere();
1806       }
1807     }
1808   }
1809 }
1810 
1811 
1812 int LIR_Assembler::shift_amount(BasicType t) {
1813   int elem_size = type2aelembytes(t);
1814   switch (elem_size) {
1815     case 1 : return 0;
1816     case 2 : return 1;
1817     case 4 : return 2;
1818     case 8 : return 3;
1819   }
1820   ShouldNotReachHere();
1821   return -1;
1822 }
1823 
1824 
1825 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1826   assert(exceptionOop->as_register() == Oexception, "should match");
1827   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
1828 
1829   info->add_register_oop(exceptionOop);
1830 
1831   // reuse the debug info from the safepoint poll for the throw op itself
1832   address pc_for_athrow  = __ pc();
1833   int pc_for_athrow_offset = __ offset();
1834   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1835   __ set(pc_for_athrow, Oissuing_pc, rspec);
1836   add_call_info(pc_for_athrow_offset, info); // for exception handler
1837 
1838   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
1839   __ delayed()->nop();
1840 }
1841 
1842 
1843 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1844   assert(exceptionOop->as_register() == Oexception, "should match");
1845 
1846   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
1847   __ delayed()->nop();
1848 }
1849 
1850 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1851   Register src = op->src()->as_register();
1852   Register dst = op->dst()->as_register();
1853   Register src_pos = op->src_pos()->as_register();
1854   Register dst_pos = op->dst_pos()->as_register();
1855   Register length  = op->length()->as_register();
1856   Register tmp = op->tmp()->as_register();
1857   Register tmp2 = O7;
1858 
1859   int flags = op->flags();
1860   ciArrayKlass* default_type = op->expected_type();
1861   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1862   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1863 
1864   // higher 32bits must be null
1865   __ sra(dst_pos, 0, dst_pos);
1866   __ sra(src_pos, 0, src_pos);
1867   __ sra(length, 0, length);
1868 
1869   // set up the arraycopy stub information
1870   ArrayCopyStub* stub = op->stub();
1871 
1872   // always do stub if no type information is available.  it's ok if
1873   // the known type isn't loaded since the code sanity checks
1874   // in debug mode and the type isn't required when we know the exact type
1875   // also check that the type is an array type.
1876   if (op->expected_type() == NULL) {
1877     __ mov(src,     O0);
1878     __ mov(src_pos, O1);
1879     __ mov(dst,     O2);
1880     __ mov(dst_pos, O3);
1881     __ mov(length,  O4);
1882     address copyfunc_addr = StubRoutines::generic_arraycopy();
1883 
1884     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
1885       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
1886     } else {
1887 #ifndef PRODUCT
1888       if (PrintC1Statistics) {
1889         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1890         __ inc_counter(counter, G1, G3);
1891       }
1892 #endif
1893       __ call_VM_leaf(tmp, copyfunc_addr);
1894     }
1895 
1896     if (copyfunc_addr != NULL) {
1897       __ xor3(O0, -1, tmp);
1898       __ sub(length, tmp, length);
1899       __ add(src_pos, tmp, src_pos);
1900       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1901       __ delayed()->add(dst_pos, tmp, dst_pos);
1902     } else {
1903       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1904       __ delayed()->nop();
1905     }
1906     __ bind(*stub->continuation());
1907     return;
1908   }
1909 
1910   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
1911 
1912   // make sure src and dst are non-null and load array length
1913   if (flags & LIR_OpArrayCopy::src_null_check) {
1914     __ tst(src);
1915     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1916     __ delayed()->nop();
1917   }
1918 
1919   if (flags & LIR_OpArrayCopy::dst_null_check) {
1920     __ tst(dst);
1921     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1922     __ delayed()->nop();
1923   }
1924 
1925   // If the compiler was not able to prove that exact type of the source or the destination
1926   // of the arraycopy is an array type, check at runtime if the source or the destination is
1927   // an instance type.
1928   if (flags & LIR_OpArrayCopy::type_check) {
1929     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
1930       __ load_klass(dst, tmp);
1931       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1932       __ cmp(tmp2, Klass::_lh_neutral_value);
1933       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1934       __ delayed()->nop();
1935     }
1936 
1937     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
1938       __ load_klass(src, tmp);
1939       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1940       __ cmp(tmp2, Klass::_lh_neutral_value);
1941       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1942       __ delayed()->nop();
1943     }
1944   }
1945 
1946   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1947     // test src_pos register
1948     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
1949     __ delayed()->nop();
1950   }
1951 
1952   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1953     // test dst_pos register
1954     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
1955     __ delayed()->nop();
1956   }
1957 
1958   if (flags & LIR_OpArrayCopy::length_positive_check) {
1959     // make sure length isn't negative
1960     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
1961     __ delayed()->nop();
1962   }
1963 
1964   if (flags & LIR_OpArrayCopy::src_range_check) {
1965     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
1966     __ add(length, src_pos, tmp);
1967     __ cmp(tmp2, tmp);
1968     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1969     __ delayed()->nop();
1970   }
1971 
1972   if (flags & LIR_OpArrayCopy::dst_range_check) {
1973     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
1974     __ add(length, dst_pos, tmp);
1975     __ cmp(tmp2, tmp);
1976     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1977     __ delayed()->nop();
1978   }
1979 
1980   int shift = shift_amount(basic_type);
1981 
1982   if (flags & LIR_OpArrayCopy::type_check) {
1983     // We don't know the array types are compatible
1984     if (basic_type != T_OBJECT) {
1985       // Simple test for basic type arrays
1986       if (UseCompressedClassPointers) {
1987         // We don't need decode because we just need to compare
1988         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
1989         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1990         __ cmp(tmp, tmp2);
1991         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1992       } else {
1993         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
1994         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1995         __ cmp(tmp, tmp2);
1996         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1997       }
1998       __ delayed()->nop();
1999     } else {
2000       // For object arrays, if src is a sub class of dst then we can
2001       // safely do the copy.
2002       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2003 
2004       Label cont, slow;
2005       assert_different_registers(tmp, tmp2, G3, G1);
2006 
2007       __ load_klass(src, G3);
2008       __ load_klass(dst, G1);
2009 
2010       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2011 
2012       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2013       __ delayed()->nop();
2014 
2015       __ cmp(G3, 0);
2016       if (copyfunc_addr != NULL) { // use stub if available
2017         // src is not a sub class of dst so we have to do a
2018         // per-element check.
2019         __ br(Assembler::notEqual, false, Assembler::pt, cont);
2020         __ delayed()->nop();
2021 
2022         __ bind(slow);
2023 
2024         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2025         if ((flags & mask) != mask) {
2026           // Check that at least both of them object arrays.
2027           assert(flags & mask, "one of the two should be known to be an object array");
2028 
2029           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2030             __ load_klass(src, tmp);
2031           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2032             __ load_klass(dst, tmp);
2033           }
2034           int lh_offset = in_bytes(Klass::layout_helper_offset());
2035 
2036           __ lduw(tmp, lh_offset, tmp2);
2037 
2038           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2039           __ set(objArray_lh, tmp);
2040           __ cmp(tmp, tmp2);
2041           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2042           __ delayed()->nop();
2043         }
2044 
2045         Register src_ptr = O0;
2046         Register dst_ptr = O1;
2047         Register len     = O2;
2048         Register chk_off = O3;
2049         Register super_k = O4;
2050 
2051         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2052         if (shift == 0) {
2053           __ add(src_ptr, src_pos, src_ptr);
2054         } else {
2055           __ sll(src_pos, shift, tmp);
2056           __ add(src_ptr, tmp, src_ptr);
2057         }
2058 
2059         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2060         if (shift == 0) {
2061           __ add(dst_ptr, dst_pos, dst_ptr);
2062         } else {
2063           __ sll(dst_pos, shift, tmp);
2064           __ add(dst_ptr, tmp, dst_ptr);
2065         }
2066         __ mov(length, len);
2067         __ load_klass(dst, tmp);
2068 
2069         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2070         __ ld_ptr(tmp, ek_offset, super_k);
2071 
2072         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2073         __ lduw(super_k, sco_offset, chk_off);
2074 
2075         __ call_VM_leaf(tmp, copyfunc_addr);
2076 
2077 #ifndef PRODUCT
2078         if (PrintC1Statistics) {
2079           Label failed;
2080           __ br_notnull_short(O0, Assembler::pn, failed);
2081           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2082           __ bind(failed);
2083         }
2084 #endif
2085 
2086         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2087         __ delayed()->xor3(O0, -1, tmp);
2088 
2089 #ifndef PRODUCT
2090         if (PrintC1Statistics) {
2091           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2092         }
2093 #endif
2094 
2095         __ sub(length, tmp, length);
2096         __ add(src_pos, tmp, src_pos);
2097         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2098         __ delayed()->add(dst_pos, tmp, dst_pos);
2099 
2100         __ bind(cont);
2101       } else {
2102         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2103         __ delayed()->nop();
2104         __ bind(cont);
2105       }
2106     }
2107   }
2108 
2109 #ifdef ASSERT
2110   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2111     // Sanity check the known type with the incoming class.  For the
2112     // primitive case the types must match exactly with src.klass and
2113     // dst.klass each exactly matching the default type.  For the
2114     // object array case, if no type check is needed then either the
2115     // dst type is exactly the expected type and the src type is a
2116     // subtype which we can't check or src is the same array as dst
2117     // but not necessarily exactly of type default_type.
2118     Label known_ok, halt;
2119     metadata2reg(op->expected_type()->constant_encoding(), tmp);
2120     if (UseCompressedClassPointers) {
2121       // tmp holds the default type. It currently comes uncompressed after the
2122       // load of a constant, so encode it.
2123       __ encode_klass_not_null(tmp);
2124       // load the raw value of the dst klass, since we will be comparing
2125       // uncompressed values directly.
2126       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2127       if (basic_type != T_OBJECT) {
2128         __ cmp(tmp, tmp2);
2129         __ br(Assembler::notEqual, false, Assembler::pn, halt);
2130         // load the raw value of the src klass.
2131         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2132         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2133       } else {
2134         __ cmp(tmp, tmp2);
2135         __ br(Assembler::equal, false, Assembler::pn, known_ok);
2136         __ delayed()->cmp(src, dst);
2137         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2138         __ delayed()->nop();
2139       }
2140     } else {
2141       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2142       if (basic_type != T_OBJECT) {
2143         __ cmp(tmp, tmp2);
2144         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2145         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2146         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2147       } else {
2148         __ cmp(tmp, tmp2);
2149         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2150         __ delayed()->cmp(src, dst);
2151         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2152         __ delayed()->nop();
2153       }
2154     }
2155     __ bind(halt);
2156     __ stop("incorrect type information in arraycopy");
2157     __ bind(known_ok);
2158   }
2159 #endif
2160 
2161 #ifndef PRODUCT
2162   if (PrintC1Statistics) {
2163     address counter = Runtime1::arraycopy_count_address(basic_type);
2164     __ inc_counter(counter, G1, G3);
2165   }
2166 #endif
2167 
2168   Register src_ptr = O0;
2169   Register dst_ptr = O1;
2170   Register len     = O2;
2171 
2172   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2173   if (shift == 0) {
2174     __ add(src_ptr, src_pos, src_ptr);
2175   } else {
2176     __ sll(src_pos, shift, tmp);
2177     __ add(src_ptr, tmp, src_ptr);
2178   }
2179 
2180   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2181   if (shift == 0) {
2182     __ add(dst_ptr, dst_pos, dst_ptr);
2183   } else {
2184     __ sll(dst_pos, shift, tmp);
2185     __ add(dst_ptr, tmp, dst_ptr);
2186   }
2187 
2188   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2189   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2190   const char *name;
2191   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2192 
2193   // arraycopy stubs takes a length in number of elements, so don't scale it.
2194   __ mov(length, len);
2195   __ call_VM_leaf(tmp, entry);
2196 
2197   __ bind(*stub->continuation());
2198 }
2199 
2200 
2201 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2202   if (dest->is_single_cpu()) {
2203     if (left->type() == T_OBJECT) {
2204       switch (code) {
2205         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2206         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2207         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2208         default: ShouldNotReachHere();
2209       }
2210     } else
2211       switch (code) {
2212         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2213         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2214         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2215         default: ShouldNotReachHere();
2216       }
2217   } else {
2218     switch (code) {
2219       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2220       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2221       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2222       default: ShouldNotReachHere();
2223     }
2224   }
2225 }
2226 
2227 
2228 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2229   if (left->type() == T_OBJECT) {
2230     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2231     Register l = left->as_register();
2232     Register d = dest->as_register_lo();
2233     switch (code) {
2234       case lir_shl:  __ sllx  (l, count, d); break;
2235       case lir_shr:  __ srax  (l, count, d); break;
2236       case lir_ushr: __ srlx  (l, count, d); break;
2237       default: ShouldNotReachHere();
2238     }
2239     return;
2240   }
2241 
2242   if (dest->is_single_cpu()) {
2243     count = count & 0x1F; // Java spec
2244     switch (code) {
2245       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2246       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2247       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2248       default: ShouldNotReachHere();
2249     }
2250   } else if (dest->is_double_cpu()) {
2251     count = count & 63; // Java spec
2252     switch (code) {
2253       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2254       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2255       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2256       default: ShouldNotReachHere();
2257     }
2258   } else {
2259     ShouldNotReachHere();
2260   }
2261 }
2262 
2263 
2264 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2265   assert(op->tmp1()->as_register()  == G1 &&
2266          op->tmp2()->as_register()  == G3 &&
2267          op->tmp3()->as_register()  == G4 &&
2268          op->obj()->as_register()   == O0 &&
2269          op->klass()->as_register() == G5, "must be");
2270   if (op->init_check()) {
2271     add_debug_info_for_null_check_here(op->stub()->info());
2272     __ ldub(op->klass()->as_register(),
2273           in_bytes(InstanceKlass::init_state_offset()),
2274           op->tmp1()->as_register());
2275     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2276     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2277     __ delayed()->nop();
2278   }
2279   __ allocate_object(op->obj()->as_register(),
2280                      op->tmp1()->as_register(),
2281                      op->tmp2()->as_register(),
2282                      op->tmp3()->as_register(),
2283                      op->header_size(),
2284                      op->object_size(),
2285                      op->klass()->as_register(),
2286                      *op->stub()->entry());
2287   __ bind(*op->stub()->continuation());
2288   __ verify_oop(op->obj()->as_register());
2289 }
2290 
2291 
2292 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2293   assert(op->tmp1()->as_register()  == G1 &&
2294          op->tmp2()->as_register()  == G3 &&
2295          op->tmp3()->as_register()  == G4 &&
2296          op->tmp4()->as_register()  == O1 &&
2297          op->klass()->as_register() == G5, "must be");
2298 
2299   __ signx(op->len()->as_register());
2300   if (UseSlowPath ||
2301       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2302       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2303     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2304     __ delayed()->nop();
2305   } else {
2306     __ allocate_array(op->obj()->as_register(),
2307                       op->len()->as_register(),
2308                       op->tmp1()->as_register(),
2309                       op->tmp2()->as_register(),
2310                       op->tmp3()->as_register(),
2311                       arrayOopDesc::header_size(op->type()),
2312                       type2aelembytes(op->type()),
2313                       op->klass()->as_register(),
2314                       *op->stub()->entry());
2315   }
2316   __ bind(*op->stub()->continuation());
2317 }
2318 
2319 
2320 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2321                                         ciMethodData *md, ciProfileData *data,
2322                                         Register recv, Register tmp1, Label* update_done) {
2323   uint i;
2324   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2325     Label next_test;
2326     // See if the receiver is receiver[n].
2327     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2328                           mdo_offset_bias);
2329     __ ld_ptr(receiver_addr, tmp1);
2330     __ verify_klass_ptr(tmp1);
2331     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2332     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2333                       mdo_offset_bias);
2334     __ ld_ptr(data_addr, tmp1);
2335     __ add(tmp1, DataLayout::counter_increment, tmp1);
2336     __ st_ptr(tmp1, data_addr);
2337     __ ba(*update_done);
2338     __ delayed()->nop();
2339     __ bind(next_test);
2340   }
2341 
2342   // Didn't find receiver; find next empty slot and fill it in
2343   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2344     Label next_test;
2345     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2346                       mdo_offset_bias);
2347     __ ld_ptr(recv_addr, tmp1);
2348     __ br_notnull_short(tmp1, Assembler::pt, next_test);
2349     __ st_ptr(recv, recv_addr);
2350     __ set(DataLayout::counter_increment, tmp1);
2351     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2352               mdo_offset_bias);
2353     __ ba(*update_done);
2354     __ delayed()->nop();
2355     __ bind(next_test);
2356   }
2357 }
2358 
2359 
2360 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2361                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2362   md = method->method_data_or_null();
2363   assert(md != NULL, "Sanity");
2364   data = md->bci_to_data(bci);
2365   assert(data != NULL,       "need data for checkcast");
2366   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2367   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2368     // The offset is large so bias the mdo by the base of the slot so
2369     // that the ld can use simm13s to reference the slots of the data
2370     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2371   }
2372 }
2373 
2374 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2375   // we always need a stub for the failure case.
2376   CodeStub* stub = op->stub();
2377   Register obj = op->object()->as_register();
2378   Register k_RInfo = op->tmp1()->as_register();
2379   Register klass_RInfo = op->tmp2()->as_register();
2380   Register dst = op->result_opr()->as_register();
2381   Register Rtmp1 = op->tmp3()->as_register();
2382   ciKlass* k = op->klass();
2383 
2384 
2385   if (obj == k_RInfo) {
2386     k_RInfo = klass_RInfo;
2387     klass_RInfo = obj;
2388   }
2389 
2390   ciMethodData* md;
2391   ciProfileData* data;
2392   int mdo_offset_bias = 0;
2393   if (op->should_profile()) {
2394     ciMethod* method = op->profiled_method();
2395     assert(method != NULL, "Should have method");
2396     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2397 
2398     Label not_null;
2399     __ br_notnull_short(obj, Assembler::pn, not_null);
2400     Register mdo      = k_RInfo;
2401     Register data_val = Rtmp1;
2402     metadata2reg(md->constant_encoding(), mdo);
2403     if (mdo_offset_bias > 0) {
2404       __ set(mdo_offset_bias, data_val);
2405       __ add(mdo, data_val, mdo);
2406     }
2407     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2408     __ ldub(flags_addr, data_val);
2409     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2410     __ stb(data_val, flags_addr);
2411     __ ba(*obj_is_null);
2412     __ delayed()->nop();
2413     __ bind(not_null);
2414   } else {
2415     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2416     __ delayed()->nop();
2417   }
2418 
2419   Label profile_cast_failure, profile_cast_success;
2420   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2421   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2422 
2423   // patching may screw with our temporaries on sparc,
2424   // so let's do it before loading the class
2425   if (k->is_loaded()) {
2426     metadata2reg(k->constant_encoding(), k_RInfo);
2427   } else {
2428     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2429   }
2430   assert(obj != k_RInfo, "must be different");
2431 
2432   // get object class
2433   // not a safepoint as obj null check happens earlier
2434   __ load_klass(obj, klass_RInfo);
2435   if (op->fast_check()) {
2436     assert_different_registers(klass_RInfo, k_RInfo);
2437     __ cmp(k_RInfo, klass_RInfo);
2438     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2439     __ delayed()->nop();
2440   } else {
2441     bool need_slow_path = true;
2442     if (k->is_loaded()) {
2443       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2444         need_slow_path = false;
2445       // perform the fast part of the checking logic
2446       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2447                                        (need_slow_path ? success_target : NULL),
2448                                        failure_target, NULL,
2449                                        RegisterOrConstant(k->super_check_offset()));
2450     } else {
2451       // perform the fast part of the checking logic
2452       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2453                                        failure_target, NULL);
2454     }
2455     if (need_slow_path) {
2456       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2457       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2458       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2459       __ delayed()->nop();
2460       __ cmp(G3, 0);
2461       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2462       __ delayed()->nop();
2463       // Fall through to success case
2464     }
2465   }
2466 
2467   if (op->should_profile()) {
2468     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2469     assert_different_registers(obj, mdo, recv, tmp1);
2470     __ bind(profile_cast_success);
2471     metadata2reg(md->constant_encoding(), mdo);
2472     if (mdo_offset_bias > 0) {
2473       __ set(mdo_offset_bias, tmp1);
2474       __ add(mdo, tmp1, mdo);
2475     }
2476     __ load_klass(obj, recv);
2477     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2478     // Jump over the failure case
2479     __ ba(*success);
2480     __ delayed()->nop();
2481     // Cast failure case
2482     __ bind(profile_cast_failure);
2483     metadata2reg(md->constant_encoding(), mdo);
2484     if (mdo_offset_bias > 0) {
2485       __ set(mdo_offset_bias, tmp1);
2486       __ add(mdo, tmp1, mdo);
2487     }
2488     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2489     __ ld_ptr(data_addr, tmp1);
2490     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2491     __ st_ptr(tmp1, data_addr);
2492     __ ba(*failure);
2493     __ delayed()->nop();
2494   }
2495   __ ba(*success);
2496   __ delayed()->nop();
2497 }
2498 
2499 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2500   LIR_Code code = op->code();
2501   if (code == lir_store_check) {
2502     Register value = op->object()->as_register();
2503     Register array = op->array()->as_register();
2504     Register k_RInfo = op->tmp1()->as_register();
2505     Register klass_RInfo = op->tmp2()->as_register();
2506     Register Rtmp1 = op->tmp3()->as_register();
2507 
2508     __ verify_oop(value);
2509     CodeStub* stub = op->stub();
2510     // check if it needs to be profiled
2511     ciMethodData* md;
2512     ciProfileData* data;
2513     int mdo_offset_bias = 0;
2514     if (op->should_profile()) {
2515       ciMethod* method = op->profiled_method();
2516       assert(method != NULL, "Should have method");
2517       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2518     }
2519     Label profile_cast_success, profile_cast_failure, done;
2520     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2521     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2522 
2523     if (op->should_profile()) {
2524       Label not_null;
2525       __ br_notnull_short(value, Assembler::pn, not_null);
2526       Register mdo      = k_RInfo;
2527       Register data_val = Rtmp1;
2528       metadata2reg(md->constant_encoding(), mdo);
2529       if (mdo_offset_bias > 0) {
2530         __ set(mdo_offset_bias, data_val);
2531         __ add(mdo, data_val, mdo);
2532       }
2533       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2534       __ ldub(flags_addr, data_val);
2535       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2536       __ stb(data_val, flags_addr);
2537       __ ba_short(done);
2538       __ bind(not_null);
2539     } else {
2540       __ br_null_short(value, Assembler::pn, done);
2541     }
2542     add_debug_info_for_null_check_here(op->info_for_exception());
2543     __ load_klass(array, k_RInfo);
2544     __ load_klass(value, klass_RInfo);
2545 
2546     // get instance klass
2547     __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
2548     // perform the fast part of the checking logic
2549     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2550 
2551     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2552     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2553     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2554     __ delayed()->nop();
2555     __ cmp(G3, 0);
2556     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2557     __ delayed()->nop();
2558     // fall through to the success case
2559 
2560     if (op->should_profile()) {
2561       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2562       assert_different_registers(value, mdo, recv, tmp1);
2563       __ bind(profile_cast_success);
2564       metadata2reg(md->constant_encoding(), mdo);
2565       if (mdo_offset_bias > 0) {
2566         __ set(mdo_offset_bias, tmp1);
2567         __ add(mdo, tmp1, mdo);
2568       }
2569       __ load_klass(value, recv);
2570       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2571       __ ba_short(done);
2572       // Cast failure case
2573       __ bind(profile_cast_failure);
2574       metadata2reg(md->constant_encoding(), mdo);
2575       if (mdo_offset_bias > 0) {
2576         __ set(mdo_offset_bias, tmp1);
2577         __ add(mdo, tmp1, mdo);
2578       }
2579       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2580       __ ld_ptr(data_addr, tmp1);
2581       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2582       __ st_ptr(tmp1, data_addr);
2583       __ ba(*stub->entry());
2584       __ delayed()->nop();
2585     }
2586     __ bind(done);
2587   } else if (code == lir_checkcast) {
2588     Register obj = op->object()->as_register();
2589     Register dst = op->result_opr()->as_register();
2590     Label success;
2591     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2592     __ bind(success);
2593     __ mov(obj, dst);
2594   } else if (code == lir_instanceof) {
2595     Register obj = op->object()->as_register();
2596     Register dst = op->result_opr()->as_register();
2597     Label success, failure, done;
2598     emit_typecheck_helper(op, &success, &failure, &failure);
2599     __ bind(failure);
2600     __ set(0, dst);
2601     __ ba_short(done);
2602     __ bind(success);
2603     __ set(1, dst);
2604     __ bind(done);
2605   } else {
2606     ShouldNotReachHere();
2607   }
2608 
2609 }
2610 
2611 
2612 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2613   if (op->code() == lir_cas_long) {
2614     assert(VM_Version::supports_cx8(), "wrong machine");
2615     Register addr = op->addr()->as_pointer_register();
2616     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2617     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2618     Register new_value_lo = op->new_value()->as_register_lo();
2619     Register new_value_hi = op->new_value()->as_register_hi();
2620     Register t1 = op->tmp1()->as_register();
2621     Register t2 = op->tmp2()->as_register();
2622     __ mov(cmp_value_lo, t1);
2623     __ mov(new_value_lo, t2);
2624     // perform the compare and swap operation
2625     __ casx(addr, t1, t2);
2626     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2627     // overwritten with the original value in "addr" and will be equal to t1.
2628     __ cmp(t1, t2);
2629   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2630     Register addr = op->addr()->as_pointer_register();
2631     Register cmp_value = op->cmp_value()->as_register();
2632     Register new_value = op->new_value()->as_register();
2633     Register t1 = op->tmp1()->as_register();
2634     Register t2 = op->tmp2()->as_register();
2635     __ mov(cmp_value, t1);
2636     __ mov(new_value, t2);
2637     if (op->code() == lir_cas_obj) {
2638       if (UseCompressedOops) {
2639         __ encode_heap_oop(t1);
2640         __ encode_heap_oop(t2);
2641         __ cas(addr, t1, t2);
2642       } else {
2643         __ cas_ptr(addr, t1, t2);
2644       }
2645     } else {
2646       __ cas(addr, t1, t2);
2647     }
2648     __ cmp(t1, t2);
2649   } else {
2650     Unimplemented();
2651   }
2652 }
2653 
2654 void LIR_Assembler::set_24bit_FPU() {
2655   Unimplemented();
2656 }
2657 
2658 
2659 void LIR_Assembler::reset_FPU() {
2660   Unimplemented();
2661 }
2662 
2663 
2664 void LIR_Assembler::breakpoint() {
2665   __ breakpoint_trap();
2666 }
2667 
2668 
2669 void LIR_Assembler::push(LIR_Opr opr) {
2670   Unimplemented();
2671 }
2672 
2673 
2674 void LIR_Assembler::pop(LIR_Opr opr) {
2675   Unimplemented();
2676 }
2677 
2678 
2679 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2680   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2681   Register dst = dst_opr->as_register();
2682   Register reg = mon_addr.base();
2683   int offset = mon_addr.disp();
2684   // compute pointer to BasicLock
2685   if (mon_addr.is_simm13()) {
2686     __ add(reg, offset, dst);
2687   } else {
2688     __ set(offset, dst);
2689     __ add(dst, reg, dst);
2690   }
2691 }
2692 
2693 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2694   assert(op->crc()->is_single_cpu(),  "crc must be register");
2695   assert(op->val()->is_single_cpu(),  "byte value must be register");
2696   assert(op->result_opr()->is_single_cpu(), "result must be register");
2697   Register crc = op->crc()->as_register();
2698   Register val = op->val()->as_register();
2699   Register table = op->result_opr()->as_register();
2700   Register res   = op->result_opr()->as_register();
2701 
2702   assert_different_registers(val, crc, table);
2703 
2704   __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
2705   __ not1(crc);
2706   __ clruwu(crc);
2707   __ update_byte_crc32(crc, val, table);
2708   __ not1(crc);
2709 
2710   __ mov(crc, res);
2711 }
2712 
2713 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2714   Register obj = op->obj_opr()->as_register();
2715   Register hdr = op->hdr_opr()->as_register();
2716   Register lock = op->lock_opr()->as_register();
2717 
2718   // obj may not be an oop
2719   if (op->code() == lir_lock) {
2720     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2721     if (UseFastLocking) {
2722       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2723       // add debug info for NullPointerException only if one is possible
2724       if (op->info() != NULL) {
2725         add_debug_info_for_null_check_here(op->info());
2726       }
2727       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2728     } else {
2729       // always do slow locking
2730       // note: the slow locking code could be inlined here, however if we use
2731       //       slow locking, speed doesn't matter anyway and this solution is
2732       //       simpler and requires less duplicated code - additionally, the
2733       //       slow locking code is the same in either case which simplifies
2734       //       debugging
2735       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2736       __ delayed()->nop();
2737     }
2738   } else {
2739     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2740     if (UseFastLocking) {
2741       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2742       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2743     } else {
2744       // always do slow unlocking
2745       // note: the slow unlocking code could be inlined here, however if we use
2746       //       slow unlocking, speed doesn't matter anyway and this solution is
2747       //       simpler and requires less duplicated code - additionally, the
2748       //       slow unlocking code is the same in either case which simplifies
2749       //       debugging
2750       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2751       __ delayed()->nop();
2752     }
2753   }
2754   __ bind(*op->stub()->continuation());
2755 }
2756 
2757 
2758 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2759   ciMethod* method = op->profiled_method();
2760   int bci          = op->profiled_bci();
2761   ciMethod* callee = op->profiled_callee();
2762 
2763   // Update counter for all call types
2764   ciMethodData* md = method->method_data_or_null();
2765   assert(md != NULL, "Sanity");
2766   ciProfileData* data = md->bci_to_data(bci);
2767   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2768   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2769   Register mdo  = op->mdo()->as_register();
2770   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2771   Register tmp1 = op->tmp1()->as_register_lo();
2772   metadata2reg(md->constant_encoding(), mdo);
2773   int mdo_offset_bias = 0;
2774   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2775                             data->size_in_bytes())) {
2776     // The offset is large so bias the mdo by the base of the slot so
2777     // that the ld can use simm13s to reference the slots of the data
2778     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2779     __ set(mdo_offset_bias, O7);
2780     __ add(mdo, O7, mdo);
2781   }
2782 
2783   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2784   // Perform additional virtual call profiling for invokevirtual and
2785   // invokeinterface bytecodes
2786   if (op->should_profile_receiver_type()) {
2787     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2788     Register recv = op->recv()->as_register();
2789     assert_different_registers(mdo, tmp1, recv);
2790     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2791     ciKlass* known_klass = op->known_holder();
2792     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2793       // We know the type that will be seen at this call site; we can
2794       // statically update the MethodData* rather than needing to do
2795       // dynamic tests on the receiver type
2796 
2797       // NOTE: we should probably put a lock around this search to
2798       // avoid collisions by concurrent compilations
2799       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2800       uint i;
2801       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2802         ciKlass* receiver = vc_data->receiver(i);
2803         if (known_klass->equals(receiver)) {
2804           Address data_addr(mdo, md->byte_offset_of_slot(data,
2805                                                          VirtualCallData::receiver_count_offset(i)) -
2806                             mdo_offset_bias);
2807           __ ld_ptr(data_addr, tmp1);
2808           __ add(tmp1, DataLayout::counter_increment, tmp1);
2809           __ st_ptr(tmp1, data_addr);
2810           return;
2811         }
2812       }
2813 
2814       // Receiver type not found in profile data; select an empty slot
2815 
2816       // Note that this is less efficient than it should be because it
2817       // always does a write to the receiver part of the
2818       // VirtualCallData rather than just the first time
2819       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2820         ciKlass* receiver = vc_data->receiver(i);
2821         if (receiver == NULL) {
2822           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2823                             mdo_offset_bias);
2824           metadata2reg(known_klass->constant_encoding(), tmp1);
2825           __ st_ptr(tmp1, recv_addr);
2826           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2827                             mdo_offset_bias);
2828           __ ld_ptr(data_addr, tmp1);
2829           __ add(tmp1, DataLayout::counter_increment, tmp1);
2830           __ st_ptr(tmp1, data_addr);
2831           return;
2832         }
2833       }
2834     } else {
2835       __ load_klass(recv, recv);
2836       Label update_done;
2837       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2838       // Receiver did not match any saved receiver and there is no empty row for it.
2839       // Increment total counter to indicate polymorphic case.
2840       __ ld_ptr(counter_addr, tmp1);
2841       __ add(tmp1, DataLayout::counter_increment, tmp1);
2842       __ st_ptr(tmp1, counter_addr);
2843 
2844       __ bind(update_done);
2845     }
2846   } else {
2847     // Static call
2848     __ ld_ptr(counter_addr, tmp1);
2849     __ add(tmp1, DataLayout::counter_increment, tmp1);
2850     __ st_ptr(tmp1, counter_addr);
2851   }
2852 }
2853 
2854 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2855   Register obj = op->obj()->as_register();
2856   Register tmp1 = op->tmp()->as_pointer_register();
2857   Register tmp2 = G1;
2858   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2859   ciKlass* exact_klass = op->exact_klass();
2860   intptr_t current_klass = op->current_klass();
2861   bool not_null = op->not_null();
2862   bool no_conflict = op->no_conflict();
2863 
2864   Label update, next, none;
2865 
2866   bool do_null = !not_null;
2867   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2868   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2869 
2870   assert(do_null || do_update, "why are we here?");
2871   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2872 
2873   __ verify_oop(obj);
2874 
2875   if (tmp1 != obj) {
2876     __ mov(obj, tmp1);
2877   }
2878   if (do_null) {
2879     __ br_notnull_short(tmp1, Assembler::pt, update);
2880     if (!TypeEntries::was_null_seen(current_klass)) {
2881       __ ld_ptr(mdo_addr, tmp1);
2882       __ or3(tmp1, TypeEntries::null_seen, tmp1);
2883       __ st_ptr(tmp1, mdo_addr);
2884     }
2885     if (do_update) {
2886       __ ba(next);
2887       __ delayed()->nop();
2888     }
2889 #ifdef ASSERT
2890   } else {
2891     __ br_notnull_short(tmp1, Assembler::pt, update);
2892     __ stop("unexpect null obj");
2893 #endif
2894   }
2895 
2896   __ bind(update);
2897 
2898   if (do_update) {
2899 #ifdef ASSERT
2900     if (exact_klass != NULL) {
2901       Label ok;
2902       __ load_klass(tmp1, tmp1);
2903       metadata2reg(exact_klass->constant_encoding(), tmp2);
2904       __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
2905       __ stop("exact klass and actual klass differ");
2906       __ bind(ok);
2907     }
2908 #endif
2909 
2910     Label do_update;
2911     __ ld_ptr(mdo_addr, tmp2);
2912 
2913     if (!no_conflict) {
2914       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2915         if (exact_klass != NULL) {
2916           metadata2reg(exact_klass->constant_encoding(), tmp1);
2917         } else {
2918           __ load_klass(tmp1, tmp1);
2919         }
2920 
2921         __ xor3(tmp1, tmp2, tmp1);
2922         __ btst(TypeEntries::type_klass_mask, tmp1);
2923         // klass seen before, nothing to do. The unknown bit may have been
2924         // set already but no need to check.
2925         __ brx(Assembler::zero, false, Assembler::pt, next);
2926         __ delayed()->
2927 
2928            btst(TypeEntries::type_unknown, tmp1);
2929         // already unknown. Nothing to do anymore.
2930         __ brx(Assembler::notZero, false, Assembler::pt, next);
2931 
2932         if (TypeEntries::is_type_none(current_klass)) {
2933           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2934           __ brx(Assembler::zero, true, Assembler::pt, do_update);
2935           // first time here. Set profile type.
2936           __ delayed()->or3(tmp2, tmp1, tmp2);
2937         } else {
2938           __ delayed()->nop();
2939         }
2940       } else {
2941         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2942                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2943 
2944         __ btst(TypeEntries::type_unknown, tmp2);
2945         // already unknown. Nothing to do anymore.
2946         __ brx(Assembler::notZero, false, Assembler::pt, next);
2947         __ delayed()->nop();
2948       }
2949 
2950       // different than before. Cannot keep accurate profile.
2951       __ or3(tmp2, TypeEntries::type_unknown, tmp2);
2952     } else {
2953       // There's a single possible klass at this profile point
2954       assert(exact_klass != NULL, "should be");
2955       if (TypeEntries::is_type_none(current_klass)) {
2956         metadata2reg(exact_klass->constant_encoding(), tmp1);
2957         __ xor3(tmp1, tmp2, tmp1);
2958         __ btst(TypeEntries::type_klass_mask, tmp1);
2959         __ brx(Assembler::zero, false, Assembler::pt, next);
2960 #ifdef ASSERT
2961 
2962         {
2963           Label ok;
2964           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2965           __ brx(Assembler::zero, true, Assembler::pt, ok);
2966           __ delayed()->nop();
2967 
2968           __ stop("unexpected profiling mismatch");
2969           __ bind(ok);
2970         }
2971         // first time here. Set profile type.
2972         __ or3(tmp2, tmp1, tmp2);
2973 #else
2974         // first time here. Set profile type.
2975         __ delayed()->or3(tmp2, tmp1, tmp2);
2976 #endif
2977 
2978       } else {
2979         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2980                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2981 
2982         // already unknown. Nothing to do anymore.
2983         __ btst(TypeEntries::type_unknown, tmp2);
2984         __ brx(Assembler::notZero, false, Assembler::pt, next);
2985         __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
2986       }
2987     }
2988 
2989     __ bind(do_update);
2990     __ st_ptr(tmp2, mdo_addr);
2991 
2992     __ bind(next);
2993   }
2994 }
2995 
2996 void LIR_Assembler::align_backward_branch_target() {
2997   __ align(OptoLoopAlignment);
2998 }
2999 
3000 
3001 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3002   // make sure we are expecting a delay
3003   // this has the side effect of clearing the delay state
3004   // so we can use _masm instead of _masm->delayed() to do the
3005   // code generation.
3006   __ delayed();
3007 
3008   // make sure we only emit one instruction
3009   int offset = code_offset();
3010   op->delay_op()->emit_code(this);
3011 #ifdef ASSERT
3012   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3013     op->delay_op()->print();
3014   }
3015   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3016          "only one instruction can go in a delay slot");
3017 #endif
3018 
3019   // we may also be emitting the call info for the instruction
3020   // which we are the delay slot of.
3021   CodeEmitInfo* call_info = op->call_info();
3022   if (call_info) {
3023     add_call_info(code_offset(), call_info);
3024   }
3025 
3026   if (VerifyStackAtCalls) {
3027     _masm->sub(FP, SP, O7);
3028     _masm->cmp(O7, initial_frame_size_in_bytes());
3029     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3030   }
3031 }
3032 
3033 
3034 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3035   assert(left->is_register(), "can only handle registers");
3036 
3037   if (left->is_single_cpu()) {
3038     __ neg(left->as_register(), dest->as_register());
3039   } else if (left->is_single_fpu()) {
3040     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3041   } else if (left->is_double_fpu()) {
3042     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3043   } else {
3044     assert (left->is_double_cpu(), "Must be a long");
3045     Register Rlow = left->as_register_lo();
3046     Register Rhi = left->as_register_hi();
3047     __ sub(G0, Rlow, dest->as_register_lo());
3048   }
3049 }
3050 
3051 
3052 void LIR_Assembler::fxch(int i) {
3053   Unimplemented();
3054 }
3055 
3056 void LIR_Assembler::fld(int i) {
3057   Unimplemented();
3058 }
3059 
3060 void LIR_Assembler::ffree(int i) {
3061   Unimplemented();
3062 }
3063 
3064 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3065                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3066 
3067   // if tmp is invalid, then the function being called doesn't destroy the thread
3068   if (tmp->is_valid()) {
3069     __ save_thread(tmp->as_pointer_register());
3070   }
3071   __ call(dest, relocInfo::runtime_call_type);
3072   __ delayed()->nop();
3073   if (info != NULL) {
3074     add_call_info_here(info);
3075   }
3076   if (tmp->is_valid()) {
3077     __ restore_thread(tmp->as_pointer_register());
3078   }
3079 
3080 #ifdef ASSERT
3081   __ verify_thread();
3082 #endif // ASSERT
3083 }
3084 
3085 
3086 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3087   ShouldNotReachHere();
3088 
3089   NEEDS_CLEANUP;
3090   if (type == T_LONG) {
3091     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3092 
3093     // (extended to allow indexed as well as constant displaced for JSR-166)
3094     Register idx = noreg; // contains either constant offset or index
3095 
3096     int disp = mem_addr->disp();
3097     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3098       if (!Assembler::is_simm13(disp)) {
3099         idx = O7;
3100         __ set(disp, idx);
3101       }
3102     } else {
3103       assert(disp == 0, "not both indexed and disp");
3104       idx = mem_addr->index()->as_register();
3105     }
3106 
3107     int null_check_offset = -1;
3108 
3109     Register base = mem_addr->base()->as_register();
3110     if (src->is_register() && dest->is_address()) {
3111       // G4 is high half, G5 is low half
3112       // clear the top bits of G5, and scale up G4
3113       __ srl (src->as_register_lo(),  0, G5);
3114       __ sllx(src->as_register_hi(), 32, G4);
3115       // combine the two halves into the 64 bits of G4
3116       __ or3(G4, G5, G4);
3117       null_check_offset = __ offset();
3118       if (idx == noreg) {
3119         __ stx(G4, base, disp);
3120       } else {
3121         __ stx(G4, base, idx);
3122       }
3123     } else if (src->is_address() && dest->is_register()) {
3124       null_check_offset = __ offset();
3125       if (idx == noreg) {
3126         __ ldx(base, disp, G5);
3127       } else {
3128         __ ldx(base, idx, G5);
3129       }
3130       __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3131       __ mov (G5, dest->as_register_lo());     // copy low half into lo
3132     } else {
3133       Unimplemented();
3134     }
3135     if (info != NULL) {
3136       add_debug_info_for_null_check(null_check_offset, info);
3137     }
3138 
3139   } else {
3140     // use normal move for all other volatiles since they don't need
3141     // special handling to remain atomic.
3142     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3143   }
3144 }
3145 
3146 void LIR_Assembler::membar() {
3147   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3148   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3149 }
3150 
3151 void LIR_Assembler::membar_acquire() {
3152   // no-op on TSO
3153 }
3154 
3155 void LIR_Assembler::membar_release() {
3156   // no-op on TSO
3157 }
3158 
3159 void LIR_Assembler::membar_loadload() {
3160   // no-op
3161   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3162 }
3163 
3164 void LIR_Assembler::membar_storestore() {
3165   // no-op
3166   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3167 }
3168 
3169 void LIR_Assembler::membar_loadstore() {
3170   // no-op
3171   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3172 }
3173 
3174 void LIR_Assembler::membar_storeload() {
3175   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3176 }
3177 
3178 void LIR_Assembler::on_spin_wait() {
3179   Unimplemented();
3180 }
3181 
3182 // Pack two sequential registers containing 32 bit values
3183 // into a single 64 bit register.
3184 // src and src->successor() are packed into dst
3185 // src and dst may be the same register.
3186 // Note: src is destroyed
3187 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3188   Register rs = src->as_register();
3189   Register rd = dst->as_register_lo();
3190   __ sllx(rs, 32, rs);
3191   __ srl(rs->successor(), 0, rs->successor());
3192   __ or3(rs, rs->successor(), rd);
3193 }
3194 
3195 // Unpack a 64 bit value in a register into
3196 // two sequential registers.
3197 // src is unpacked into dst and dst->successor()
3198 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3199   Register rs = src->as_register_lo();
3200   Register rd = dst->as_register_hi();
3201   assert_different_registers(rs, rd, rd->successor());
3202   __ srlx(rs, 32, rd);
3203   __ srl (rs,  0, rd->successor());
3204 }
3205 
3206 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3207   const LIR_Address* addr = addr_opr->as_address_ptr();
3208   assert(addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
3209   const Register dest_reg = dest->as_pointer_register();
3210   const Register base_reg = addr->base()->as_pointer_register();
3211 
3212   if (Assembler::is_simm13(addr->disp())) {
3213     if (addr->index()->is_valid()) {
3214       const Register index_reg = addr->index()->as_pointer_register();
3215       assert(index_reg != G3_scratch, "invariant");
3216       __ add(base_reg, addr->disp(), G3_scratch);
3217       __ add(index_reg, G3_scratch, dest_reg);
3218     } else {
3219       __ add(base_reg, addr->disp(), dest_reg);
3220     }
3221   } else {
3222     __ set(addr->disp(), G3_scratch);
3223     if (addr->index()->is_valid()) {
3224       const Register index_reg = addr->index()->as_pointer_register();
3225       assert(index_reg != G3_scratch, "invariant");
3226       __ add(index_reg, G3_scratch, G3_scratch);
3227     }
3228     __ add(base_reg, G3_scratch, dest_reg);
3229   }
3230 }
3231 
3232 
3233 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3234   assert(result_reg->is_register(), "check");
3235   __ mov(G2_thread, result_reg->as_register());
3236 }
3237 
3238 #ifdef ASSERT
3239 // emit run-time assertion
3240 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3241   assert(op->code() == lir_assert, "must be");
3242 
3243   if (op->in_opr1()->is_valid()) {
3244     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3245     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3246   } else {
3247     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3248     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3249   }
3250 
3251   Label ok;
3252   if (op->condition() != lir_cond_always) {
3253     Assembler::Condition acond;
3254     switch (op->condition()) {
3255       case lir_cond_equal:        acond = Assembler::equal;                break;
3256       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
3257       case lir_cond_less:         acond = Assembler::less;                 break;
3258       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
3259       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
3260       case lir_cond_greater:      acond = Assembler::greater;              break;
3261       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
3262       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
3263       default:                         ShouldNotReachHere();
3264     };
3265     __ br(acond, false, Assembler::pt, ok);
3266     __ delayed()->nop();
3267   }
3268   if (op->halt()) {
3269     const char* str = __ code_string(op->msg());
3270     __ stop(str);
3271   } else {
3272     breakpoint();
3273   }
3274   __ bind(ok);
3275 }
3276 #endif
3277 
3278 void LIR_Assembler::peephole(LIR_List* lir) {
3279   LIR_OpList* inst = lir->instructions_list();
3280   for (int i = 0; i < inst->length(); i++) {
3281     LIR_Op* op = inst->at(i);
3282     switch (op->code()) {
3283       case lir_cond_float_branch:
3284       case lir_branch: {
3285         LIR_OpBranch* branch = op->as_OpBranch();
3286         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3287         LIR_Op* delay_op = NULL;
3288         // we'd like to be able to pull following instructions into
3289         // this slot but we don't know enough to do it safely yet so
3290         // only optimize block to block control flow.
3291         if (LIRFillDelaySlots && branch->block()) {
3292           LIR_Op* prev = inst->at(i - 1);
3293           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3294             // swap previous instruction into delay slot
3295             inst->at_put(i - 1, op);
3296             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3297 #ifndef PRODUCT
3298             if (LIRTracePeephole) {
3299               tty->print_cr("delayed");
3300               inst->at(i - 1)->print();
3301               inst->at(i)->print();
3302               tty->cr();
3303             }
3304 #endif
3305             continue;
3306           }
3307         }
3308 
3309         if (!delay_op) {
3310           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3311         }
3312         inst->insert_before(i + 1, delay_op);
3313         break;
3314       }
3315       case lir_static_call:
3316       case lir_virtual_call:
3317       case lir_icvirtual_call:
3318       case lir_optvirtual_call:
3319       case lir_dynamic_call: {
3320         LIR_Op* prev = inst->at(i - 1);
3321         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3322             (op->code() != lir_virtual_call ||
3323              !prev->result_opr()->is_single_cpu() ||
3324              prev->result_opr()->as_register() != O0) &&
3325             LIR_Assembler::is_single_instruction(prev)) {
3326           // Only moves without info can be put into the delay slot.
3327           // Also don't allow the setup of the receiver in the delay
3328           // slot for vtable calls.
3329           inst->at_put(i - 1, op);
3330           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3331 #ifndef PRODUCT
3332           if (LIRTracePeephole) {
3333             tty->print_cr("delayed");
3334             inst->at(i - 1)->print();
3335             inst->at(i)->print();
3336             tty->cr();
3337           }
3338 #endif
3339         } else {
3340           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3341           inst->insert_before(i + 1, delay_op);
3342           i++;
3343         }
3344         break;
3345       }
3346     }
3347   }
3348 }
3349 
3350 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3351   LIR_Address* addr = src->as_address_ptr();
3352 
3353   assert(data == dest, "swap uses only 2 operands");
3354   assert (code == lir_xchg, "no xadd on sparc");
3355 
3356   if (data->type() == T_INT) {
3357     __ swap(as_Address(addr), data->as_register());
3358   } else if (data->is_oop()) {
3359     Register obj = data->as_register();
3360     Register narrow = tmp->as_register();
3361     assert(UseCompressedOops, "swap is 32bit only");
3362     __ encode_heap_oop(obj, narrow);
3363     __ swap(as_Address(addr), narrow);
3364     __ decode_heap_oop(narrow, obj);
3365   } else {
3366     ShouldNotReachHere();
3367   }
3368 }
3369 
3370 #undef __