1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/templateTable.hpp"
  30 #include "memory/universe.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/safepointMechanism.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/synchronizer.hpp"
  40 #include "utilities/macros.hpp"
  41 
  42 #define __ _masm->
  43 
  44 // Misc helpers
  45 
  46 // Do an oop store like *(base + index + offset) = val
  47 // index can be noreg,
  48 static void do_oop_store(InterpreterMacroAssembler* _masm,
  49                          Register base,
  50                          Register index,
  51                          int offset,
  52                          Register val,
  53                          Register tmp,
  54                          BarrierSet::Name barrier,
  55                          bool precise) {
  56   assert(tmp != val && tmp != base && tmp != index, "register collision");
  57   assert(index == noreg || offset == 0, "only one offset");
  58   switch (barrier) {
  59 #if INCLUDE_ALL_GCS
  60     case BarrierSet::G1BarrierSet:
  61       {
  62         // Load and record the previous value.
  63         __ g1_write_barrier_pre(base, index, offset,
  64                                 noreg /* pre_val */,
  65                                 tmp, true /*preserve_o_regs*/);
  66 
  67         // G1 barrier needs uncompressed oop for region cross check.
  68         Register new_val = val;
  69         if (UseCompressedOops && val != G0) {
  70           new_val = tmp;
  71           __ mov(val, new_val);
  72         }
  73 
  74         if (index == noreg ) {
  75           assert(Assembler::is_simm13(offset), "fix this code");
  76           __ store_heap_oop(val, base, offset);
  77         } else {
  78           __ store_heap_oop(val, base, index);
  79         }
  80 
  81         // No need for post barrier if storing NULL
  82         if (val != G0) {
  83           if (precise) {
  84             if (index == noreg) {
  85               __ add(base, offset, base);
  86             } else {
  87               __ add(base, index, base);
  88             }
  89           }
  90           __ g1_write_barrier_post(base, new_val, tmp);
  91         }
  92       }
  93       break;
  94 #endif // INCLUDE_ALL_GCS
  95     case BarrierSet::CardTableBarrierSet:
  96       {
  97         if (index == noreg ) {
  98           assert(Assembler::is_simm13(offset), "fix this code");
  99           __ store_heap_oop(val, base, offset);
 100         } else {
 101           __ store_heap_oop(val, base, index);
 102         }
 103         // No need for post barrier if storing NULL
 104         if (val != G0) {
 105           if (precise) {
 106             if (index == noreg) {
 107               __ add(base, offset, base);
 108             } else {
 109               __ add(base, index, base);
 110             }
 111           }
 112           __ card_write_barrier_post(base, val, tmp);
 113         }
 114       }
 115       break;
 116     case BarrierSet::ModRef:
 117       ShouldNotReachHere();
 118       break;
 119     default      :
 120       ShouldNotReachHere();
 121 
 122   }
 123 }
 124 
 125 
 126 //----------------------------------------------------------------------------------------------------
 127 // Platform-dependent initialization
 128 
 129 void TemplateTable::pd_initialize() {
 130   // (none)
 131 }
 132 
 133 
 134 //----------------------------------------------------------------------------------------------------
 135 // Condition conversion
 136 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 137   switch (cc) {
 138     case TemplateTable::equal        : return Assembler::notEqual;
 139     case TemplateTable::not_equal    : return Assembler::equal;
 140     case TemplateTable::less         : return Assembler::greaterEqual;
 141     case TemplateTable::less_equal   : return Assembler::greater;
 142     case TemplateTable::greater      : return Assembler::lessEqual;
 143     case TemplateTable::greater_equal: return Assembler::less;
 144   }
 145   ShouldNotReachHere();
 146   return Assembler::zero;
 147 }
 148 
 149 //----------------------------------------------------------------------------------------------------
 150 // Miscelaneous helper routines
 151 
 152 
 153 Address TemplateTable::at_bcp(int offset) {
 154   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 155   return Address(Lbcp, offset);
 156 }
 157 
 158 
 159 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 160                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 161                                    int byte_no) {
 162   // With sharing on, may need to test Method* flag.
 163   if (!RewriteBytecodes)  return;
 164   Label L_patch_done;
 165 
 166   switch (bc) {
 167   case Bytecodes::_fast_aputfield:
 168   case Bytecodes::_fast_bputfield:
 169   case Bytecodes::_fast_zputfield:
 170   case Bytecodes::_fast_cputfield:
 171   case Bytecodes::_fast_dputfield:
 172   case Bytecodes::_fast_fputfield:
 173   case Bytecodes::_fast_iputfield:
 174   case Bytecodes::_fast_lputfield:
 175   case Bytecodes::_fast_sputfield:
 176     {
 177       // We skip bytecode quickening for putfield instructions when
 178       // the put_code written to the constant pool cache is zero.
 179       // This is required so that every execution of this instruction
 180       // calls out to InterpreterRuntime::resolve_get_put to do
 181       // additional, required work.
 182       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 183       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 184       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 185       __ set(bc, bc_reg);
 186       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
 187     }
 188     break;
 189   default:
 190     assert(byte_no == -1, "sanity");
 191     if (load_bc_into_bc_reg) {
 192       __ set(bc, bc_reg);
 193     }
 194   }
 195 
 196   if (JvmtiExport::can_post_breakpoint()) {
 197     Label L_fast_patch;
 198     __ ldub(at_bcp(0), temp_reg);
 199     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
 200     // perform the quickening, slowly, in the bowels of the breakpoint table
 201     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
 202     __ ba_short(L_patch_done);
 203     __ bind(L_fast_patch);
 204   }
 205 
 206 #ifdef ASSERT
 207   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 208   Label L_okay;
 209   __ ldub(at_bcp(0), temp_reg);
 210   __ cmp(temp_reg, orig_bytecode);
 211   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 212   __ delayed()->cmp(temp_reg, bc_reg);
 213   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 214   __ delayed()->nop();
 215   __ stop("patching the wrong bytecode");
 216   __ bind(L_okay);
 217 #endif
 218 
 219   // patch bytecode
 220   __ stb(bc_reg, at_bcp(0));
 221   __ bind(L_patch_done);
 222 }
 223 
 224 //----------------------------------------------------------------------------------------------------
 225 // Individual instructions
 226 
 227 void TemplateTable::nop() {
 228   transition(vtos, vtos);
 229   // nothing to do
 230 }
 231 
 232 void TemplateTable::shouldnotreachhere() {
 233   transition(vtos, vtos);
 234   __ stop("shouldnotreachhere bytecode");
 235 }
 236 
 237 void TemplateTable::aconst_null() {
 238   transition(vtos, atos);
 239   __ clr(Otos_i);
 240 }
 241 
 242 
 243 void TemplateTable::iconst(int value) {
 244   transition(vtos, itos);
 245   __ set(value, Otos_i);
 246 }
 247 
 248 
 249 void TemplateTable::lconst(int value) {
 250   transition(vtos, ltos);
 251   assert(value >= 0, "check this code");
 252   __ set(value, Otos_l);
 253 }
 254 
 255 
 256 void TemplateTable::fconst(int value) {
 257   transition(vtos, ftos);
 258   static float zero = 0.0, one = 1.0, two = 2.0;
 259   float* p;
 260   switch( value ) {
 261    default: ShouldNotReachHere();
 262    case 0:  p = &zero;  break;
 263    case 1:  p = &one;   break;
 264    case 2:  p = &two;   break;
 265   }
 266   AddressLiteral a(p);
 267   __ sethi(a, G3_scratch);
 268   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 269 }
 270 
 271 
 272 void TemplateTable::dconst(int value) {
 273   transition(vtos, dtos);
 274   static double zero = 0.0, one = 1.0;
 275   double* p;
 276   switch( value ) {
 277    default: ShouldNotReachHere();
 278    case 0:  p = &zero;  break;
 279    case 1:  p = &one;   break;
 280   }
 281   AddressLiteral a(p);
 282   __ sethi(a, G3_scratch);
 283   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 284 }
 285 
 286 
 287 // %%%%% Should factore most snippet templates across platforms
 288 
 289 void TemplateTable::bipush() {
 290   transition(vtos, itos);
 291   __ ldsb( at_bcp(1), Otos_i );
 292 }
 293 
 294 void TemplateTable::sipush() {
 295   transition(vtos, itos);
 296   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 297 }
 298 
 299 void TemplateTable::ldc(bool wide) {
 300   transition(vtos, vtos);
 301   Label call_ldc, notInt, isString, notString, notClass, exit;
 302 
 303   if (wide) {
 304     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 305   } else {
 306     __ ldub(Lbcp, 1, O1);
 307   }
 308   __ get_cpool_and_tags(O0, O2);
 309 
 310   const int base_offset = ConstantPool::header_size() * wordSize;
 311   const int tags_offset = Array<u1>::base_offset_in_bytes();
 312 
 313   // get type from tags
 314   __ add(O2, tags_offset, O2);
 315   __ ldub(O2, O1, O2);
 316 
 317   // unresolved class? If so, must resolve
 318   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
 319 
 320   // unresolved class in error state
 321   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
 322 
 323   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 324   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 325   __ delayed()->add(O0, base_offset, O0);
 326 
 327   __ bind(call_ldc);
 328   __ set(wide, O1);
 329   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 330   __ push(atos);
 331   __ ba_short(exit);
 332 
 333   __ bind(notClass);
 334  // __ add(O0, base_offset, O0);
 335   __ sll(O1, LogBytesPerWord, O1);
 336   __ cmp(O2, JVM_CONSTANT_Integer);
 337   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 338   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 339   __ ld(O0, O1, Otos_i);
 340   __ push(itos);
 341   __ ba_short(exit);
 342 
 343   __ bind(notInt);
 344  // __ cmp(O2, JVM_CONSTANT_String);
 345   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 346   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 347   __ bind(isString);
 348   __ stop("string should be rewritten to fast_aldc");
 349   __ ba_short(exit);
 350 
 351   __ bind(notString);
 352  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 353   __ push(ftos);
 354 
 355   __ bind(exit);
 356 }
 357 
 358 // Fast path for caching oop constants.
 359 // %%% We should use this to handle Class and String constants also.
 360 // %%% It will simplify the ldc/primitive path considerably.
 361 void TemplateTable::fast_aldc(bool wide) {
 362   transition(vtos, atos);
 363 
 364   int index_size = wide ? sizeof(u2) : sizeof(u1);
 365   Label resolved;
 366 
 367   // We are resolved if the resolved reference cache entry contains a
 368   // non-null object (CallSite, etc.)
 369   assert_different_registers(Otos_i, G3_scratch);
 370   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
 371   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
 372   __ tst(Otos_i);
 373   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
 374   __ delayed()->set((int)bytecode(), O1);
 375 
 376   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 377 
 378   // first time invocation - must resolve first
 379   __ call_VM(Otos_i, entry, O1);
 380   __ bind(resolved);
 381   __ verify_oop(Otos_i);
 382 }
 383 
 384 void TemplateTable::ldc2_w() {
 385   transition(vtos, vtos);
 386   Label Long, exit;
 387 
 388   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 389   __ get_cpool_and_tags(O0, O2);
 390 
 391   const int base_offset = ConstantPool::header_size() * wordSize;
 392   const int tags_offset = Array<u1>::base_offset_in_bytes();
 393   // get type from tags
 394   __ add(O2, tags_offset, O2);
 395   __ ldub(O2, O1, O2);
 396 
 397   __ sll(O1, LogBytesPerWord, O1);
 398   __ add(O0, O1, G3_scratch);
 399 
 400   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
 401   // A double can be placed at word-aligned locations in the constant pool.
 402   // Check out Conversions.java for an example.
 403   // Also ConstantPool::header_size() is 20, which makes it very difficult
 404   // to double-align double on the constant pool.  SG, 11/7/97
 405   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 406   __ push(dtos);
 407   __ ba_short(exit);
 408 
 409   __ bind(Long);
 410   __ ldx(G3_scratch, base_offset, Otos_l);
 411   __ push(ltos);
 412 
 413   __ bind(exit);
 414 }
 415 
 416 void TemplateTable::locals_index(Register reg, int offset) {
 417   __ ldub( at_bcp(offset), reg );
 418 }
 419 
 420 void TemplateTable::locals_index_wide(Register reg) {
 421   // offset is 2, not 1, because Lbcp points to wide prefix code
 422   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 423 }
 424 
 425 void TemplateTable::iload() {
 426   iload_internal();
 427 }
 428 
 429 void TemplateTable::nofast_iload() {
 430   iload_internal(may_not_rewrite);
 431 }
 432 
 433 void TemplateTable::iload_internal(RewriteControl rc) {
 434   transition(vtos, itos);
 435   // Rewrite iload,iload  pair into fast_iload2
 436   //         iload,caload pair into fast_icaload
 437   if (RewriteFrequentPairs && rc == may_rewrite) {
 438     Label rewrite, done;
 439 
 440     // get next byte
 441     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 442 
 443     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 444     // last two iloads in a pair.  Comparing against fast_iload means that
 445     // the next bytecode is neither an iload or a caload, and therefore
 446     // an iload pair.
 447     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
 448 
 449     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 450     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 451     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 452 
 453     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 454     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 455     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 456 
 457     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 458     // rewrite
 459     // G4_scratch: fast bytecode
 460     __ bind(rewrite);
 461     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 462     __ bind(done);
 463   }
 464 
 465   // Get the local value into tos
 466   locals_index(G3_scratch);
 467   __ access_local_int( G3_scratch, Otos_i );
 468 }
 469 
 470 void TemplateTable::fast_iload2() {
 471   transition(vtos, itos);
 472   locals_index(G3_scratch);
 473   __ access_local_int( G3_scratch, Otos_i );
 474   __ push_i();
 475   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 476   __ access_local_int( G3_scratch, Otos_i );
 477 }
 478 
 479 void TemplateTable::fast_iload() {
 480   transition(vtos, itos);
 481   locals_index(G3_scratch);
 482   __ access_local_int( G3_scratch, Otos_i );
 483 }
 484 
 485 void TemplateTable::lload() {
 486   transition(vtos, ltos);
 487   locals_index(G3_scratch);
 488   __ access_local_long( G3_scratch, Otos_l );
 489 }
 490 
 491 
 492 void TemplateTable::fload() {
 493   transition(vtos, ftos);
 494   locals_index(G3_scratch);
 495   __ access_local_float( G3_scratch, Ftos_f );
 496 }
 497 
 498 
 499 void TemplateTable::dload() {
 500   transition(vtos, dtos);
 501   locals_index(G3_scratch);
 502   __ access_local_double( G3_scratch, Ftos_d );
 503 }
 504 
 505 
 506 void TemplateTable::aload() {
 507   transition(vtos, atos);
 508   locals_index(G3_scratch);
 509   __ access_local_ptr( G3_scratch, Otos_i);
 510 }
 511 
 512 
 513 void TemplateTable::wide_iload() {
 514   transition(vtos, itos);
 515   locals_index_wide(G3_scratch);
 516   __ access_local_int( G3_scratch, Otos_i );
 517 }
 518 
 519 
 520 void TemplateTable::wide_lload() {
 521   transition(vtos, ltos);
 522   locals_index_wide(G3_scratch);
 523   __ access_local_long( G3_scratch, Otos_l );
 524 }
 525 
 526 
 527 void TemplateTable::wide_fload() {
 528   transition(vtos, ftos);
 529   locals_index_wide(G3_scratch);
 530   __ access_local_float( G3_scratch, Ftos_f );
 531 }
 532 
 533 
 534 void TemplateTable::wide_dload() {
 535   transition(vtos, dtos);
 536   locals_index_wide(G3_scratch);
 537   __ access_local_double( G3_scratch, Ftos_d );
 538 }
 539 
 540 
 541 void TemplateTable::wide_aload() {
 542   transition(vtos, atos);
 543   locals_index_wide(G3_scratch);
 544   __ access_local_ptr( G3_scratch, Otos_i );
 545   __ verify_oop(Otos_i);
 546 }
 547 
 548 
 549 void TemplateTable::iaload() {
 550   transition(itos, itos);
 551   // Otos_i: index
 552   // tos: array
 553   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 554   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 555 }
 556 
 557 
 558 void TemplateTable::laload() {
 559   transition(itos, ltos);
 560   // Otos_i: index
 561   // O2: array
 562   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 563   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 564 }
 565 
 566 
 567 void TemplateTable::faload() {
 568   transition(itos, ftos);
 569   // Otos_i: index
 570   // O2: array
 571   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 572   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 573 }
 574 
 575 
 576 void TemplateTable::daload() {
 577   transition(itos, dtos);
 578   // Otos_i: index
 579   // O2: array
 580   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 581   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 582 }
 583 
 584 
 585 void TemplateTable::aaload() {
 586   transition(itos, atos);
 587   // Otos_i: index
 588   // tos: array
 589   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 590   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 591   __ verify_oop(Otos_i);
 592 }
 593 
 594 
 595 void TemplateTable::baload() {
 596   transition(itos, itos);
 597   // Otos_i: index
 598   // tos: array
 599   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 600   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 601 }
 602 
 603 
 604 void TemplateTable::caload() {
 605   transition(itos, itos);
 606   // Otos_i: index
 607   // tos: array
 608   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 609   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 610 }
 611 
 612 void TemplateTable::fast_icaload() {
 613   transition(vtos, itos);
 614   // Otos_i: index
 615   // tos: array
 616   locals_index(G3_scratch);
 617   __ access_local_int( G3_scratch, Otos_i );
 618   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 619   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 620 }
 621 
 622 
 623 void TemplateTable::saload() {
 624   transition(itos, itos);
 625   // Otos_i: index
 626   // tos: array
 627   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 628   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 629 }
 630 
 631 
 632 void TemplateTable::iload(int n) {
 633   transition(vtos, itos);
 634   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 635 }
 636 
 637 
 638 void TemplateTable::lload(int n) {
 639   transition(vtos, ltos);
 640   assert(n+1 < Argument::n_register_parameters, "would need more code");
 641   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 642 }
 643 
 644 
 645 void TemplateTable::fload(int n) {
 646   transition(vtos, ftos);
 647   assert(n < Argument::n_register_parameters, "would need more code");
 648   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 649 }
 650 
 651 
 652 void TemplateTable::dload(int n) {
 653   transition(vtos, dtos);
 654   FloatRegister dst = Ftos_d;
 655   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 656 }
 657 
 658 
 659 void TemplateTable::aload(int n) {
 660   transition(vtos, atos);
 661   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 662 }
 663 
 664 void TemplateTable::aload_0() {
 665   aload_0_internal();
 666 }
 667 
 668 void TemplateTable::nofast_aload_0() {
 669   aload_0_internal(may_not_rewrite);
 670 }
 671 
 672 void TemplateTable::aload_0_internal(RewriteControl rc) {
 673   transition(vtos, atos);
 674 
 675   // According to bytecode histograms, the pairs:
 676   //
 677   // _aload_0, _fast_igetfield (itos)
 678   // _aload_0, _fast_agetfield (atos)
 679   // _aload_0, _fast_fgetfield (ftos)
 680   //
 681   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 682   // bytecode checks the next bytecode and then rewrites the current
 683   // bytecode into a pair bytecode; otherwise it rewrites the current
 684   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 685   //
 686   if (RewriteFrequentPairs && rc == may_rewrite) {
 687     Label rewrite, done;
 688 
 689     // get next byte
 690     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 691 
 692     // if _getfield then wait with rewrite
 693     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
 694 
 695     // if _igetfield then rewrite to _fast_iaccess_0
 696     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 697     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 698     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 699     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 700 
 701     // if _agetfield then rewrite to _fast_aaccess_0
 702     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 703     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 704     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 705     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 706 
 707     // if _fgetfield then rewrite to _fast_faccess_0
 708     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 709     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 710     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 711     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 712 
 713     // else rewrite to _fast_aload0
 714     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 715     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 716 
 717     // rewrite
 718     // G4_scratch: fast bytecode
 719     __ bind(rewrite);
 720     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 721     __ bind(done);
 722   }
 723 
 724   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 725   aload(0);
 726 }
 727 
 728 void TemplateTable::istore() {
 729   transition(itos, vtos);
 730   locals_index(G3_scratch);
 731   __ store_local_int( G3_scratch, Otos_i );
 732 }
 733 
 734 
 735 void TemplateTable::lstore() {
 736   transition(ltos, vtos);
 737   locals_index(G3_scratch);
 738   __ store_local_long( G3_scratch, Otos_l );
 739 }
 740 
 741 
 742 void TemplateTable::fstore() {
 743   transition(ftos, vtos);
 744   locals_index(G3_scratch);
 745   __ store_local_float( G3_scratch, Ftos_f );
 746 }
 747 
 748 
 749 void TemplateTable::dstore() {
 750   transition(dtos, vtos);
 751   locals_index(G3_scratch);
 752   __ store_local_double( G3_scratch, Ftos_d );
 753 }
 754 
 755 
 756 void TemplateTable::astore() {
 757   transition(vtos, vtos);
 758   __ load_ptr(0, Otos_i);
 759   __ inc(Lesp, Interpreter::stackElementSize);
 760   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 761   locals_index(G3_scratch);
 762   __ store_local_ptr(G3_scratch, Otos_i);
 763 }
 764 
 765 
 766 void TemplateTable::wide_istore() {
 767   transition(vtos, vtos);
 768   __ pop_i();
 769   locals_index_wide(G3_scratch);
 770   __ store_local_int( G3_scratch, Otos_i );
 771 }
 772 
 773 
 774 void TemplateTable::wide_lstore() {
 775   transition(vtos, vtos);
 776   __ pop_l();
 777   locals_index_wide(G3_scratch);
 778   __ store_local_long( G3_scratch, Otos_l );
 779 }
 780 
 781 
 782 void TemplateTable::wide_fstore() {
 783   transition(vtos, vtos);
 784   __ pop_f();
 785   locals_index_wide(G3_scratch);
 786   __ store_local_float( G3_scratch, Ftos_f );
 787 }
 788 
 789 
 790 void TemplateTable::wide_dstore() {
 791   transition(vtos, vtos);
 792   __ pop_d();
 793   locals_index_wide(G3_scratch);
 794   __ store_local_double( G3_scratch, Ftos_d );
 795 }
 796 
 797 
 798 void TemplateTable::wide_astore() {
 799   transition(vtos, vtos);
 800   __ load_ptr(0, Otos_i);
 801   __ inc(Lesp, Interpreter::stackElementSize);
 802   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 803   locals_index_wide(G3_scratch);
 804   __ store_local_ptr(G3_scratch, Otos_i);
 805 }
 806 
 807 
 808 void TemplateTable::iastore() {
 809   transition(itos, vtos);
 810   __ pop_i(O2); // index
 811   // Otos_i: val
 812   // O3: array
 813   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 814   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 815 }
 816 
 817 
 818 void TemplateTable::lastore() {
 819   transition(ltos, vtos);
 820   __ pop_i(O2); // index
 821   // Otos_l: val
 822   // O3: array
 823   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 824   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 825 }
 826 
 827 
 828 void TemplateTable::fastore() {
 829   transition(ftos, vtos);
 830   __ pop_i(O2); // index
 831   // Ftos_f: val
 832   // O3: array
 833   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 834   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 835 }
 836 
 837 
 838 void TemplateTable::dastore() {
 839   transition(dtos, vtos);
 840   __ pop_i(O2); // index
 841   // Fos_d: val
 842   // O3: array
 843   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 844   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 845 }
 846 
 847 
 848 void TemplateTable::aastore() {
 849   Label store_ok, is_null, done;
 850   transition(vtos, vtos);
 851   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 852   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 853   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 854   // Otos_i: val
 855   // O2: index
 856   // O3: array
 857   __ verify_oop(Otos_i);
 858   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 859 
 860   // do array store check - check for NULL value first
 861   __ br_null_short( Otos_i, Assembler::pn, is_null );
 862 
 863   __ load_klass(O3, O4); // get array klass
 864   __ load_klass(Otos_i, O5); // get value klass
 865 
 866   // do fast instanceof cache test
 867 
 868   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
 869 
 870   assert(Otos_i == O0, "just checking");
 871 
 872   // Otos_i:    value
 873   // O1:        addr - offset
 874   // O2:        index
 875   // O3:        array
 876   // O4:        array element klass
 877   // O5:        value klass
 878 
 879   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 880 
 881   // Generate a fast subtype check.  Branch to store_ok if no
 882   // failure.  Throw if failure.
 883   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 884 
 885   // Not a subtype; so must throw exception
 886   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 887 
 888   // Store is OK.
 889   __ bind(store_ok);
 890   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 891 
 892   __ ba(done);
 893   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 894 
 895   __ bind(is_null);
 896   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 897 
 898   __ profile_null_seen(G3_scratch);
 899   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 900   __ bind(done);
 901 }
 902 
 903 
 904 void TemplateTable::bastore() {
 905   transition(itos, vtos);
 906   __ pop_i(O2); // index
 907   // Otos_i: val
 908   // O2: index
 909   // O3: array
 910   __ index_check(O3, O2, 0, G3_scratch, O2);
 911   // Need to check whether array is boolean or byte
 912   // since both types share the bastore bytecode.
 913   __ load_klass(O3, G4_scratch);
 914   __ ld(G4_scratch, in_bytes(Klass::layout_helper_offset()), G4_scratch);
 915   __ set(Klass::layout_helper_boolean_diffbit(), G3_scratch);
 916   __ andcc(G3_scratch, G4_scratch, G0);
 917   Label L_skip;
 918   __ br(Assembler::zero, false, Assembler::pn, L_skip);
 919   __ delayed()->nop();
 920   __ and3(Otos_i, 1, Otos_i);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
 921   __ bind(L_skip);
 922   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 923 }
 924 
 925 
 926 void TemplateTable::castore() {
 927   transition(itos, vtos);
 928   __ pop_i(O2); // index
 929   // Otos_i: val
 930   // O3: array
 931   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 932   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 933 }
 934 
 935 
 936 void TemplateTable::sastore() {
 937   // %%%%% Factor across platform
 938   castore();
 939 }
 940 
 941 
 942 void TemplateTable::istore(int n) {
 943   transition(itos, vtos);
 944   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 945 }
 946 
 947 
 948 void TemplateTable::lstore(int n) {
 949   transition(ltos, vtos);
 950   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 951   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 952 
 953 }
 954 
 955 
 956 void TemplateTable::fstore(int n) {
 957   transition(ftos, vtos);
 958   assert(n < Argument::n_register_parameters, "only handle register cases");
 959   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 960 }
 961 
 962 
 963 void TemplateTable::dstore(int n) {
 964   transition(dtos, vtos);
 965   FloatRegister src = Ftos_d;
 966   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 967 }
 968 
 969 
 970 void TemplateTable::astore(int n) {
 971   transition(vtos, vtos);
 972   __ load_ptr(0, Otos_i);
 973   __ inc(Lesp, Interpreter::stackElementSize);
 974   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 975   __ store_local_ptr(n, Otos_i);
 976 }
 977 
 978 
 979 void TemplateTable::pop() {
 980   transition(vtos, vtos);
 981   __ inc(Lesp, Interpreter::stackElementSize);
 982 }
 983 
 984 
 985 void TemplateTable::pop2() {
 986   transition(vtos, vtos);
 987   __ inc(Lesp, 2 * Interpreter::stackElementSize);
 988 }
 989 
 990 
 991 void TemplateTable::dup() {
 992   transition(vtos, vtos);
 993   // stack: ..., a
 994   // load a and tag
 995   __ load_ptr(0, Otos_i);
 996   __ push_ptr(Otos_i);
 997   // stack: ..., a, a
 998 }
 999 
1000 
1001 void TemplateTable::dup_x1() {
1002   transition(vtos, vtos);
1003   // stack: ..., a, b
1004   __ load_ptr( 1, G3_scratch);  // get a
1005   __ load_ptr( 0, Otos_l1);     // get b
1006   __ store_ptr(1, Otos_l1);     // put b
1007   __ store_ptr(0, G3_scratch);  // put a - like swap
1008   __ push_ptr(Otos_l1);         // push b
1009   // stack: ..., b, a, b
1010 }
1011 
1012 
1013 void TemplateTable::dup_x2() {
1014   transition(vtos, vtos);
1015   // stack: ..., a, b, c
1016   // get c and push on stack, reuse registers
1017   __ load_ptr( 0, G3_scratch);  // get c
1018   __ push_ptr(G3_scratch);      // push c with tag
1019   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1020   // (stack offsets n+1 now)
1021   __ load_ptr( 3, Otos_l1);     // get a
1022   __ store_ptr(3, G3_scratch);  // put c at 3
1023   // stack: ..., c, b, c, c  (a in reg)
1024   __ load_ptr( 2, G3_scratch);  // get b
1025   __ store_ptr(2, Otos_l1);     // put a at 2
1026   // stack: ..., c, a, c, c  (b in reg)
1027   __ store_ptr(1, G3_scratch);  // put b at 1
1028   // stack: ..., c, a, b, c
1029 }
1030 
1031 
1032 void TemplateTable::dup2() {
1033   transition(vtos, vtos);
1034   __ load_ptr(1, G3_scratch);  // get a
1035   __ load_ptr(0, Otos_l1);     // get b
1036   __ push_ptr(G3_scratch);     // push a
1037   __ push_ptr(Otos_l1);        // push b
1038   // stack: ..., a, b, a, b
1039 }
1040 
1041 
1042 void TemplateTable::dup2_x1() {
1043   transition(vtos, vtos);
1044   // stack: ..., a, b, c
1045   __ load_ptr( 1, Lscratch);    // get b
1046   __ load_ptr( 2, Otos_l1);     // get a
1047   __ store_ptr(2, Lscratch);    // put b at a
1048   // stack: ..., b, b, c
1049   __ load_ptr( 0, G3_scratch);  // get c
1050   __ store_ptr(1, G3_scratch);  // put c at b
1051   // stack: ..., b, c, c
1052   __ store_ptr(0, Otos_l1);     // put a at c
1053   // stack: ..., b, c, a
1054   __ push_ptr(Lscratch);        // push b
1055   __ push_ptr(G3_scratch);      // push c
1056   // stack: ..., b, c, a, b, c
1057 }
1058 
1059 
1060 // The spec says that these types can be a mixture of category 1 (1 word)
1061 // types and/or category 2 types (long and doubles)
1062 void TemplateTable::dup2_x2() {
1063   transition(vtos, vtos);
1064   // stack: ..., a, b, c, d
1065   __ load_ptr( 1, Lscratch);    // get c
1066   __ load_ptr( 3, Otos_l1);     // get a
1067   __ store_ptr(3, Lscratch);    // put c at 3
1068   __ store_ptr(1, Otos_l1);     // put a at 1
1069   // stack: ..., c, b, a, d
1070   __ load_ptr( 2, G3_scratch);  // get b
1071   __ load_ptr( 0, Otos_l1);     // get d
1072   __ store_ptr(0, G3_scratch);  // put b at 0
1073   __ store_ptr(2, Otos_l1);     // put d at 2
1074   // stack: ..., c, d, a, b
1075   __ push_ptr(Lscratch);        // push c
1076   __ push_ptr(Otos_l1);         // push d
1077   // stack: ..., c, d, a, b, c, d
1078 }
1079 
1080 
1081 void TemplateTable::swap() {
1082   transition(vtos, vtos);
1083   // stack: ..., a, b
1084   __ load_ptr( 1, G3_scratch);  // get a
1085   __ load_ptr( 0, Otos_l1);     // get b
1086   __ store_ptr(0, G3_scratch);  // put b
1087   __ store_ptr(1, Otos_l1);     // put a
1088   // stack: ..., b, a
1089 }
1090 
1091 
1092 void TemplateTable::iop2(Operation op) {
1093   transition(itos, itos);
1094   __ pop_i(O1);
1095   switch (op) {
1096    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1097    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1098      // %%%%% Mul may not exist: better to call .mul?
1099    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1100    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1101    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1102    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1103    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1104    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1105    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1106    default: ShouldNotReachHere();
1107   }
1108 }
1109 
1110 
1111 void TemplateTable::lop2(Operation op) {
1112   transition(ltos, ltos);
1113   __ pop_l(O2);
1114   switch (op) {
1115    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1116    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1117    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1118    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1119    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1120    default: ShouldNotReachHere();
1121   }
1122 }
1123 
1124 
1125 void TemplateTable::idiv() {
1126   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1127   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1128 
1129   transition(itos, itos);
1130   __ pop_i(O1); // get 1st op
1131 
1132   // Y contains upper 32 bits of result, set it to 0 or all ones
1133   __ wry(G0);
1134   __ mov(~0, G3_scratch);
1135 
1136   __ tst(O1);
1137      Label neg;
1138   __ br(Assembler::negative, true, Assembler::pn, neg);
1139   __ delayed()->wry(G3_scratch);
1140   __ bind(neg);
1141 
1142      Label ok;
1143   __ tst(Otos_i);
1144   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1145 
1146   const int min_int = 0x80000000;
1147   Label regular;
1148   __ cmp(Otos_i, -1);
1149   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1150   // Don't put set in delay slot
1151   // Set will turn into multiple instructions in 64 bit mode
1152   __ delayed()->nop();
1153   __ set(min_int, G4_scratch);
1154   Label done;
1155   __ cmp(O1, G4_scratch);
1156   __ br(Assembler::equal, true, Assembler::pt, done);
1157   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1158 
1159   __ bind(regular);
1160   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1161   __ bind(done);
1162 }
1163 
1164 
1165 void TemplateTable::irem() {
1166   transition(itos, itos);
1167   __ mov(Otos_i, O2); // save divisor
1168   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1169   __ smul(Otos_i, O2, Otos_i);
1170   __ sub(O1, Otos_i, Otos_i);
1171 }
1172 
1173 
1174 void TemplateTable::lmul() {
1175   transition(ltos, ltos);
1176   __ pop_l(O2);
1177   __ mulx(Otos_l, O2, Otos_l);
1178 
1179 }
1180 
1181 
1182 void TemplateTable::ldiv() {
1183   transition(ltos, ltos);
1184 
1185   // check for zero
1186   __ pop_l(O2);
1187   __ tst(Otos_l);
1188   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1189   __ sdivx(O2, Otos_l, Otos_l);
1190 }
1191 
1192 
1193 void TemplateTable::lrem() {
1194   transition(ltos, ltos);
1195 
1196   // check for zero
1197   __ pop_l(O2);
1198   __ tst(Otos_l);
1199   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1200   __ sdivx(O2, Otos_l, Otos_l2);
1201   __ mulx (Otos_l2, Otos_l, Otos_l2);
1202   __ sub  (O2, Otos_l2, Otos_l);
1203 }
1204 
1205 
1206 void TemplateTable::lshl() {
1207   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1208 
1209   __ pop_l(O2);                          // shift value in O2, O3
1210   __ sllx(O2, Otos_i, Otos_l);
1211 }
1212 
1213 
1214 void TemplateTable::lshr() {
1215   transition(itos, ltos); // %%%% see lshl comment
1216 
1217   __ pop_l(O2);                          // shift value in O2, O3
1218   __ srax(O2, Otos_i, Otos_l);
1219 }
1220 
1221 
1222 
1223 void TemplateTable::lushr() {
1224   transition(itos, ltos); // %%%% see lshl comment
1225 
1226   __ pop_l(O2);                          // shift value in O2, O3
1227   __ srlx(O2, Otos_i, Otos_l);
1228 }
1229 
1230 
1231 void TemplateTable::fop2(Operation op) {
1232   transition(ftos, ftos);
1233   switch (op) {
1234    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1235    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1236    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1237    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1238    case  rem:
1239      assert(Ftos_f == F0, "just checking");
1240      // LP64 calling conventions use F1, F3 for passing 2 floats
1241      __ pop_f(F1);
1242      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1243      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1244      assert( Ftos_f == F0, "fix this code" );
1245      break;
1246 
1247    default: ShouldNotReachHere();
1248   }
1249 }
1250 
1251 
1252 void TemplateTable::dop2(Operation op) {
1253   transition(dtos, dtos);
1254   switch (op) {
1255    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1256    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1257    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1258    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1259    case  rem:
1260      // Pass arguments in D0, D2
1261      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1262      __ pop_d( F0 );
1263      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1264      assert( Ftos_d == F0, "fix this code" );
1265      break;
1266 
1267    default: ShouldNotReachHere();
1268   }
1269 }
1270 
1271 
1272 void TemplateTable::ineg() {
1273   transition(itos, itos);
1274   __ neg(Otos_i);
1275 }
1276 
1277 
1278 void TemplateTable::lneg() {
1279   transition(ltos, ltos);
1280   __ sub(G0, Otos_l, Otos_l);
1281 }
1282 
1283 
1284 void TemplateTable::fneg() {
1285   transition(ftos, ftos);
1286   __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
1287 }
1288 
1289 
1290 void TemplateTable::dneg() {
1291   transition(dtos, dtos);
1292   __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
1293 }
1294 
1295 
1296 void TemplateTable::iinc() {
1297   transition(vtos, vtos);
1298   locals_index(G3_scratch);
1299   __ ldsb(Lbcp, 2, O2);  // load constant
1300   __ access_local_int(G3_scratch, Otos_i);
1301   __ add(Otos_i, O2, Otos_i);
1302   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1303 }
1304 
1305 
1306 void TemplateTable::wide_iinc() {
1307   transition(vtos, vtos);
1308   locals_index_wide(G3_scratch);
1309   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1310   __ access_local_int(G3_scratch, Otos_i);
1311   __ add(Otos_i, O3, Otos_i);
1312   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1313 }
1314 
1315 
1316 void TemplateTable::convert() {
1317 // %%%%% Factor this first part accross platforms
1318   #ifdef ASSERT
1319     TosState tos_in  = ilgl;
1320     TosState tos_out = ilgl;
1321     switch (bytecode()) {
1322       case Bytecodes::_i2l: // fall through
1323       case Bytecodes::_i2f: // fall through
1324       case Bytecodes::_i2d: // fall through
1325       case Bytecodes::_i2b: // fall through
1326       case Bytecodes::_i2c: // fall through
1327       case Bytecodes::_i2s: tos_in = itos; break;
1328       case Bytecodes::_l2i: // fall through
1329       case Bytecodes::_l2f: // fall through
1330       case Bytecodes::_l2d: tos_in = ltos; break;
1331       case Bytecodes::_f2i: // fall through
1332       case Bytecodes::_f2l: // fall through
1333       case Bytecodes::_f2d: tos_in = ftos; break;
1334       case Bytecodes::_d2i: // fall through
1335       case Bytecodes::_d2l: // fall through
1336       case Bytecodes::_d2f: tos_in = dtos; break;
1337       default             : ShouldNotReachHere();
1338     }
1339     switch (bytecode()) {
1340       case Bytecodes::_l2i: // fall through
1341       case Bytecodes::_f2i: // fall through
1342       case Bytecodes::_d2i: // fall through
1343       case Bytecodes::_i2b: // fall through
1344       case Bytecodes::_i2c: // fall through
1345       case Bytecodes::_i2s: tos_out = itos; break;
1346       case Bytecodes::_i2l: // fall through
1347       case Bytecodes::_f2l: // fall through
1348       case Bytecodes::_d2l: tos_out = ltos; break;
1349       case Bytecodes::_i2f: // fall through
1350       case Bytecodes::_l2f: // fall through
1351       case Bytecodes::_d2f: tos_out = ftos; break;
1352       case Bytecodes::_i2d: // fall through
1353       case Bytecodes::_l2d: // fall through
1354       case Bytecodes::_f2d: tos_out = dtos; break;
1355       default             : ShouldNotReachHere();
1356     }
1357     transition(tos_in, tos_out);
1358   #endif
1359 
1360 
1361   // Conversion
1362   Label done;
1363   switch (bytecode()) {
1364    case Bytecodes::_i2l:
1365     // Sign extend the 32 bits
1366     __ sra ( Otos_i, 0, Otos_l );
1367     break;
1368 
1369    case Bytecodes::_i2f:
1370     __ st(Otos_i, __ d_tmp );
1371     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1372     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1373     break;
1374 
1375    case Bytecodes::_i2d:
1376     __ st(Otos_i, __ d_tmp);
1377     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1378     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1379     break;
1380 
1381    case Bytecodes::_i2b:
1382     __ sll(Otos_i, 24, Otos_i);
1383     __ sra(Otos_i, 24, Otos_i);
1384     break;
1385 
1386    case Bytecodes::_i2c:
1387     __ sll(Otos_i, 16, Otos_i);
1388     __ srl(Otos_i, 16, Otos_i);
1389     break;
1390 
1391    case Bytecodes::_i2s:
1392     __ sll(Otos_i, 16, Otos_i);
1393     __ sra(Otos_i, 16, Otos_i);
1394     break;
1395 
1396    case Bytecodes::_l2i:
1397     // Sign-extend into the high 32 bits
1398     __ sra(Otos_l, 0, Otos_i);
1399     break;
1400 
1401    case Bytecodes::_l2f:
1402    case Bytecodes::_l2d:
1403     __ st_long(Otos_l, __ d_tmp);
1404     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1405 
1406     if (bytecode() == Bytecodes::_l2f) {
1407       __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1408     } else {
1409       __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1410     }
1411     break;
1412 
1413   case Bytecodes::_f2i:  {
1414       Label isNaN;
1415       // result must be 0 if value is NaN; test by comparing value to itself
1416       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1417       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1418       __ delayed()->clr(Otos_i);                                     // NaN
1419       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1420       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1421       __ ld(__ d_tmp, Otos_i);
1422       __ bind(isNaN);
1423     }
1424     break;
1425 
1426    case Bytecodes::_f2l:
1427     // must uncache tos
1428     __ push_f();
1429     __ pop_f(F1);
1430     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1431     break;
1432 
1433    case Bytecodes::_f2d:
1434     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1435     break;
1436 
1437    case Bytecodes::_d2i:
1438    case Bytecodes::_d2l:
1439     // must uncache tos
1440     __ push_d();
1441     // LP64 calling conventions pass first double arg in D0
1442     __ pop_d( Ftos_d );
1443     __ call_VM_leaf(Lscratch,
1444         bytecode() == Bytecodes::_d2i
1445           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1446           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1447     break;
1448 
1449     case Bytecodes::_d2f:
1450       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1451     break;
1452 
1453     default: ShouldNotReachHere();
1454   }
1455   __ bind(done);
1456 }
1457 
1458 
1459 void TemplateTable::lcmp() {
1460   transition(ltos, itos);
1461 
1462   __ pop_l(O1); // pop off value 1, value 2 is in O0
1463   __ lcmp( O1, Otos_l, Otos_i );
1464 }
1465 
1466 
1467 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1468 
1469   if (is_float) __ pop_f(F2);
1470   else          __ pop_d(F2);
1471 
1472   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1473 
1474   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1475 }
1476 
1477 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1478   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1479   __ verify_thread();
1480 
1481   const Register O2_bumped_count = O2;
1482   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1483 
1484   // get (wide) offset to O1_disp
1485   const Register O1_disp = O1;
1486   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1487   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1488 
1489   // Handle all the JSR stuff here, then exit.
1490   // It's much shorter and cleaner than intermingling with the
1491   // non-JSR normal-branch stuff occurring below.
1492   if( is_jsr ) {
1493     // compute return address as bci in Otos_i
1494     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1495     __ sub(Lbcp, G3_scratch, G3_scratch);
1496     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1497 
1498     // Bump Lbcp to target of JSR
1499     __ add(Lbcp, O1_disp, Lbcp);
1500     // Push returnAddress for "ret" on stack
1501     __ push_ptr(Otos_i);
1502     // And away we go!
1503     __ dispatch_next(vtos, 0, true);
1504     return;
1505   }
1506 
1507   // Normal (non-jsr) branch handling
1508 
1509   // Save the current Lbcp
1510   const Register l_cur_bcp = Lscratch;
1511   __ mov( Lbcp, l_cur_bcp );
1512 
1513   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1514   if ( increment_invocation_counter_for_backward_branches ) {
1515     Label Lforward;
1516     // check branch direction
1517     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1518     // Bump bytecode pointer by displacement (take the branch)
1519     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1520 
1521     const Register G3_method_counters = G3_scratch;
1522     __ get_method_counters(Lmethod, G3_method_counters, Lforward);
1523 
1524     if (TieredCompilation) {
1525       Label Lno_mdo, Loverflow;
1526       int increment = InvocationCounter::count_increment;
1527       if (ProfileInterpreter) {
1528         // If no method data exists, go to profile_continue.
1529         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
1530         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
1531 
1532         // Increment backedge counter in the MDO
1533         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
1534                                                  in_bytes(InvocationCounter::counter_offset()));
1535         Address mask(G4_scratch, in_bytes(MethodData::backedge_mask_offset()));
1536         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
1537                                    (UseOnStackReplacement ? Assembler::notZero : Assembler::always), &Lforward);
1538         __ ba_short(Loverflow);
1539       }
1540 
1541       // If there's no MDO, increment counter in MethodCounters*
1542       __ bind(Lno_mdo);
1543       Address backedge_counter(G3_method_counters,
1544               in_bytes(MethodCounters::backedge_counter_offset()) +
1545               in_bytes(InvocationCounter::counter_offset()));
1546       Address mask(G3_method_counters, in_bytes(MethodCounters::backedge_mask_offset()));
1547       __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
1548                                  (UseOnStackReplacement ? Assembler::notZero : Assembler::always), &Lforward);
1549       __ bind(Loverflow);
1550 
1551       // notify point for loop, pass branch bytecode
1552       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
1553 
1554       // Was an OSR adapter generated?
1555       // O0 = osr nmethod
1556       __ br_null_short(O0, Assembler::pn, Lforward);
1557 
1558       // Has the nmethod been invalidated already?
1559       __ ldub(O0, nmethod::state_offset(), O2);
1560       __ cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, Lforward);
1561 
1562       // migrate the interpreter frame off of the stack
1563 
1564       __ mov(G2_thread, L7);
1565       // save nmethod
1566       __ mov(O0, L6);
1567       __ set_last_Java_frame(SP, noreg);
1568       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1569       __ reset_last_Java_frame();
1570       __ mov(L7, G2_thread);
1571 
1572       // move OSR nmethod to I1
1573       __ mov(L6, I1);
1574 
1575       // OSR buffer to I0
1576       __ mov(O0, I0);
1577 
1578       // remove the interpreter frame
1579       __ restore(I5_savedSP, 0, SP);
1580 
1581       // Jump to the osr code.
1582       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1583       __ jmp(O2, G0);
1584       __ delayed()->nop();
1585 
1586     } else { // not TieredCompilation
1587       // Update Backedge branch separately from invocations
1588       const Register G4_invoke_ctr = G4;
1589       __ increment_backedge_counter(G3_method_counters, G4_invoke_ctr, G1_scratch);
1590       if (ProfileInterpreter) {
1591         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_method_counters, G1_scratch, Lforward);
1592         if (UseOnStackReplacement) {
1593 
1594           __ test_backedge_count_for_osr(O2_bumped_count, G3_method_counters, l_cur_bcp, G1_scratch);
1595         }
1596       } else {
1597         if (UseOnStackReplacement) {
1598           __ test_backedge_count_for_osr(G4_invoke_ctr, G3_method_counters, l_cur_bcp, G1_scratch);
1599         }
1600       }
1601     }
1602 
1603     __ bind(Lforward);
1604   } else
1605     // Bump bytecode pointer by displacement (take the branch)
1606     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1607 
1608   // continue with bytecode @ target
1609   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1610   // %%%%% and changing dispatch_next to dispatch_only
1611   __ dispatch_next(vtos, 0, true);
1612 }
1613 
1614 
1615 // Note Condition in argument is TemplateTable::Condition
1616 // arg scope is within class scope
1617 
1618 void TemplateTable::if_0cmp(Condition cc) {
1619   // no pointers, integer only!
1620   transition(itos, vtos);
1621   // assume branch is more often taken than not (loops use backward branches)
1622   __ cmp( Otos_i, 0);
1623   __ if_cmp(ccNot(cc), false);
1624 }
1625 
1626 
1627 void TemplateTable::if_icmp(Condition cc) {
1628   transition(itos, vtos);
1629   __ pop_i(O1);
1630   __ cmp(O1, Otos_i);
1631   __ if_cmp(ccNot(cc), false);
1632 }
1633 
1634 
1635 void TemplateTable::if_nullcmp(Condition cc) {
1636   transition(atos, vtos);
1637   __ tst(Otos_i);
1638   __ if_cmp(ccNot(cc), true);
1639 }
1640 
1641 
1642 void TemplateTable::if_acmp(Condition cc) {
1643   transition(atos, vtos);
1644   __ pop_ptr(O1);
1645   __ verify_oop(O1);
1646   __ verify_oop(Otos_i);
1647   __ cmp(O1, Otos_i);
1648   __ if_cmp(ccNot(cc), true);
1649 }
1650 
1651 
1652 
1653 void TemplateTable::ret() {
1654   transition(vtos, vtos);
1655   locals_index(G3_scratch);
1656   __ access_local_returnAddress(G3_scratch, Otos_i);
1657   // Otos_i contains the bci, compute the bcp from that
1658 
1659 #ifdef ASSERT
1660   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1661   // the result.  The return address (really a BCI) was stored with an
1662   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1663   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1664   // loaded value.
1665   { Label zzz ;
1666      __ set (65536, G3_scratch) ;
1667      __ cmp (Otos_i, G3_scratch) ;
1668      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1669      __ delayed()->nop();
1670      __ stop("BCI is in the wrong register half?");
1671      __ bind (zzz) ;
1672   }
1673 #endif
1674 
1675   __ profile_ret(vtos, Otos_i, G4_scratch);
1676 
1677   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1678   __ add(G3_scratch, Otos_i, G3_scratch);
1679   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1680   __ dispatch_next(vtos, 0, true);
1681 }
1682 
1683 
1684 void TemplateTable::wide_ret() {
1685   transition(vtos, vtos);
1686   locals_index_wide(G3_scratch);
1687   __ access_local_returnAddress(G3_scratch, Otos_i);
1688   // Otos_i contains the bci, compute the bcp from that
1689 
1690   __ profile_ret(vtos, Otos_i, G4_scratch);
1691 
1692   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1693   __ add(G3_scratch, Otos_i, G3_scratch);
1694   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1695   __ dispatch_next(vtos, 0, true);
1696 }
1697 
1698 
1699 void TemplateTable::tableswitch() {
1700   transition(itos, vtos);
1701   Label default_case, continue_execution;
1702 
1703   // align bcp
1704   __ add(Lbcp, BytesPerInt, O1);
1705   __ and3(O1, -BytesPerInt, O1);
1706   // load lo, hi
1707   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1708   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1709   // Sign extend the 32 bits
1710   __ sra ( Otos_i, 0, Otos_i );
1711 
1712   // check against lo & hi
1713   __ cmp( Otos_i, O2);
1714   __ br( Assembler::less, false, Assembler::pn, default_case);
1715   __ delayed()->cmp( Otos_i, O3 );
1716   __ br( Assembler::greater, false, Assembler::pn, default_case);
1717   // lookup dispatch offset
1718   __ delayed()->sub(Otos_i, O2, O2);
1719   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1720   __ sll(O2, LogBytesPerInt, O2);
1721   __ add(O2, 3 * BytesPerInt, O2);
1722   __ ba(continue_execution);
1723   __ delayed()->ld(O1, O2, O2);
1724   // handle default
1725   __ bind(default_case);
1726   __ profile_switch_default(O3);
1727   __ ld(O1, 0, O2); // get default offset
1728   // continue execution
1729   __ bind(continue_execution);
1730   __ add(Lbcp, O2, Lbcp);
1731   __ dispatch_next(vtos, 0, true);
1732 }
1733 
1734 
1735 void TemplateTable::lookupswitch() {
1736   transition(itos, itos);
1737   __ stop("lookupswitch bytecode should have been rewritten");
1738 }
1739 
1740 void TemplateTable::fast_linearswitch() {
1741   transition(itos, vtos);
1742     Label loop_entry, loop, found, continue_execution;
1743   // align bcp
1744   __ add(Lbcp, BytesPerInt, O1);
1745   __ and3(O1, -BytesPerInt, O1);
1746  // set counter
1747   __ ld(O1, BytesPerInt, O2);
1748   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1749   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1750   __ ba(loop_entry);
1751   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1752 
1753   // table search
1754   __ bind(loop);
1755   __ cmp(O4, Otos_i);
1756   __ br(Assembler::equal, true, Assembler::pn, found);
1757   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1758   __ inc(O3, 2 * BytesPerInt);
1759 
1760   __ bind(loop_entry);
1761   __ cmp(O2, O3);
1762   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1763   __ delayed()->ld(O3, 0, O4);
1764 
1765   // default case
1766   __ ld(O1, 0, O4); // get default offset
1767   if (ProfileInterpreter) {
1768     __ profile_switch_default(O3);
1769     __ ba_short(continue_execution);
1770   }
1771 
1772   // entry found -> get offset
1773   __ bind(found);
1774   if (ProfileInterpreter) {
1775     __ sub(O3, O1, O3);
1776     __ sub(O3, 2*BytesPerInt, O3);
1777     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1778     __ profile_switch_case(O3, O1, O2, G3_scratch);
1779 
1780     __ bind(continue_execution);
1781   }
1782   __ add(Lbcp, O4, Lbcp);
1783   __ dispatch_next(vtos, 0, true);
1784 }
1785 
1786 
1787 void TemplateTable::fast_binaryswitch() {
1788   transition(itos, vtos);
1789   // Implementation using the following core algorithm: (copied from Intel)
1790   //
1791   // int binary_search(int key, LookupswitchPair* array, int n) {
1792   //   // Binary search according to "Methodik des Programmierens" by
1793   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1794   //   int i = 0;
1795   //   int j = n;
1796   //   while (i+1 < j) {
1797   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1798   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1799   //     // where a stands for the array and assuming that the (inexisting)
1800   //     // element a[n] is infinitely big.
1801   //     int h = (i + j) >> 1;
1802   //     // i < h < j
1803   //     if (key < array[h].fast_match()) {
1804   //       j = h;
1805   //     } else {
1806   //       i = h;
1807   //     }
1808   //   }
1809   //   // R: a[i] <= key < a[i+1] or Q
1810   //   // (i.e., if key is within array, i is the correct index)
1811   //   return i;
1812   // }
1813 
1814   // register allocation
1815   assert(Otos_i == O0, "alias checking");
1816   const Register Rkey     = Otos_i;                    // already set (tosca)
1817   const Register Rarray   = O1;
1818   const Register Ri       = O2;
1819   const Register Rj       = O3;
1820   const Register Rh       = O4;
1821   const Register Rscratch = O5;
1822 
1823   const int log_entry_size = 3;
1824   const int entry_size = 1 << log_entry_size;
1825 
1826   Label found;
1827   // Find Array start
1828   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1829   __ and3(Rarray, -BytesPerInt, Rarray);
1830   // initialize i & j (in delay slot)
1831   __ clr( Ri );
1832 
1833   // and start
1834   Label entry;
1835   __ ba(entry);
1836   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1837   // (Rj is already in the native byte-ordering.)
1838 
1839   // binary search loop
1840   { Label loop;
1841     __ bind( loop );
1842     // int h = (i + j) >> 1;
1843     __ sra( Rh, 1, Rh );
1844     // if (key < array[h].fast_match()) {
1845     //   j = h;
1846     // } else {
1847     //   i = h;
1848     // }
1849     __ sll( Rh, log_entry_size, Rscratch );
1850     __ ld( Rarray, Rscratch, Rscratch );
1851     // (Rscratch is already in the native byte-ordering.)
1852     __ cmp( Rkey, Rscratch );
1853     __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1854     __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1855 
1856     // while (i+1 < j)
1857     __ bind( entry );
1858     __ add( Ri, 1, Rscratch );
1859     __ cmp(Rscratch, Rj);
1860     __ br( Assembler::less, true, Assembler::pt, loop );
1861     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1862   }
1863 
1864   // end of binary search, result index is i (must check again!)
1865   Label default_case;
1866   Label continue_execution;
1867   if (ProfileInterpreter) {
1868     __ mov( Ri, Rh );              // Save index in i for profiling
1869   }
1870   __ sll( Ri, log_entry_size, Ri );
1871   __ ld( Rarray, Ri, Rscratch );
1872   // (Rscratch is already in the native byte-ordering.)
1873   __ cmp( Rkey, Rscratch );
1874   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1875   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1876 
1877   // entry found -> j = offset
1878   __ inc( Ri, BytesPerInt );
1879   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1880   __ ld( Rarray, Ri, Rj );
1881   // (Rj is already in the native byte-ordering.)
1882 
1883   if (ProfileInterpreter) {
1884     __ ba_short(continue_execution);
1885   }
1886 
1887   __ bind(default_case); // fall through (if not profiling)
1888   __ profile_switch_default(Ri);
1889 
1890   __ bind(continue_execution);
1891   __ add( Lbcp, Rj, Lbcp );
1892   __ dispatch_next(vtos, 0, true);
1893 }
1894 
1895 
1896 void TemplateTable::_return(TosState state) {
1897   transition(state, state);
1898   assert(_desc->calls_vm(), "inconsistent calls_vm information");
1899 
1900   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1901     assert(state == vtos, "only valid state");
1902     __ mov(G0, G3_scratch);
1903     __ access_local_ptr(G3_scratch, Otos_i);
1904     __ load_klass(Otos_i, O2);
1905     __ set(JVM_ACC_HAS_FINALIZER, G3);
1906     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
1907     __ andcc(G3, O2, G0);
1908     Label skip_register_finalizer;
1909     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
1910     __ delayed()->nop();
1911 
1912     // Call out to do finalizer registration
1913     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
1914 
1915     __ bind(skip_register_finalizer);
1916   }
1917 
1918   if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
1919     Label no_safepoint;
1920     __ ldx(Address(G2_thread, Thread::polling_page_offset()), G3_scratch, 0);
1921     __ btst(SafepointMechanism::poll_bit(), G3_scratch);
1922     __ br(Assembler::zero, false, Assembler::pt, no_safepoint);
1923     __ delayed()->nop();
1924     __ push(state);
1925     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
1926     __ pop(state);
1927     __ bind(no_safepoint);
1928   }
1929 
1930   // Narrow result if state is itos but result type is smaller.
1931   // Need to narrow in the return bytecode rather than in generate_return_entry
1932   // since compiled code callers expect the result to already be narrowed.
1933   if (state == itos) {
1934     __ narrow(Otos_i);
1935   }
1936   __ remove_activation(state, /* throw_monitor_exception */ true);
1937 
1938   // The caller's SP was adjusted upon method entry to accomodate
1939   // the callee's non-argument locals. Undo that adjustment.
1940   __ ret();                             // return to caller
1941   __ delayed()->restore(I5_savedSP, G0, SP);
1942 }
1943 
1944 
1945 // ----------------------------------------------------------------------------
1946 // Volatile variables demand their effects be made known to all CPU's in
1947 // order.  Store buffers on most chips allow reads & writes to reorder; the
1948 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1949 // memory barrier (i.e., it's not sufficient that the interpreter does not
1950 // reorder volatile references, the hardware also must not reorder them).
1951 //
1952 // According to the new Java Memory Model (JMM):
1953 // (1) All volatiles are serialized wrt to each other.
1954 // ALSO reads & writes act as aquire & release, so:
1955 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1956 // the read float up to before the read.  It's OK for non-volatile memory refs
1957 // that happen before the volatile read to float down below it.
1958 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1959 // that happen BEFORE the write float down to after the write.  It's OK for
1960 // non-volatile memory refs that happen after the volatile write to float up
1961 // before it.
1962 //
1963 // We only put in barriers around volatile refs (they are expensive), not
1964 // _between_ memory refs (that would require us to track the flavor of the
1965 // previous memory refs).  Requirements (2) and (3) require some barriers
1966 // before volatile stores and after volatile loads.  These nearly cover
1967 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1968 // case is placed after volatile-stores although it could just as well go
1969 // before volatile-loads.
1970 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
1971   // Helper function to insert a is-volatile test and memory barrier
1972   // All current sparc implementations run in TSO, needing only StoreLoad
1973   if ((order_constraint & Assembler::StoreLoad) == 0) return;
1974   __ membar( order_constraint );
1975 }
1976 
1977 // ----------------------------------------------------------------------------
1978 void TemplateTable::resolve_cache_and_index(int byte_no,
1979                                             Register Rcache,
1980                                             Register index,
1981                                             size_t index_size) {
1982   // Depends on cpCacheOop layout!
1983 
1984   Label resolved;
1985   Bytecodes::Code code = bytecode();
1986   switch (code) {
1987   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
1988   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
1989   }
1990 
1991   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
1992   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
1993   __ cmp(Lbyte_code, code);  // have we resolved this bytecode?
1994   __ br(Assembler::equal, false, Assembler::pt, resolved);
1995   __ delayed()->set(code, O1);
1996 
1997   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
1998   // first time invocation - must resolve first
1999   __ call_VM(noreg, entry, O1);
2000   // Update registers with resolved info
2001   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2002   __ bind(resolved);
2003 }
2004 
2005 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2006                                                Register method,
2007                                                Register itable_index,
2008                                                Register flags,
2009                                                bool is_invokevirtual,
2010                                                bool is_invokevfinal,
2011                                                bool is_invokedynamic) {
2012   // Uses both G3_scratch and G4_scratch
2013   Register cache = G3_scratch;
2014   Register index = G4_scratch;
2015   assert_different_registers(cache, method, itable_index);
2016 
2017   // determine constant pool cache field offsets
2018   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2019   const int method_offset = in_bytes(
2020       ConstantPoolCache::base_offset() +
2021       ((byte_no == f2_byte)
2022        ? ConstantPoolCacheEntry::f2_offset()
2023        : ConstantPoolCacheEntry::f1_offset()
2024       )
2025     );
2026   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2027                                     ConstantPoolCacheEntry::flags_offset());
2028   // access constant pool cache fields
2029   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2030                                     ConstantPoolCacheEntry::f2_offset());
2031 
2032   if (is_invokevfinal) {
2033     __ get_cache_and_index_at_bcp(cache, index, 1);
2034     __ ld_ptr(Address(cache, method_offset), method);
2035   } else {
2036     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2037     resolve_cache_and_index(byte_no, cache, index, index_size);
2038     __ ld_ptr(Address(cache, method_offset), method);
2039   }
2040 
2041   if (itable_index != noreg) {
2042     // pick up itable or appendix index from f2 also:
2043     __ ld_ptr(Address(cache, index_offset), itable_index);
2044   }
2045   __ ld_ptr(Address(cache, flags_offset), flags);
2046 }
2047 
2048 // The Rcache register must be set before call
2049 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2050                                               Register Rcache,
2051                                               Register index,
2052                                               Register Roffset,
2053                                               Register Rflags,
2054                                               bool is_static) {
2055   assert_different_registers(Rcache, Rflags, Roffset);
2056 
2057   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2058 
2059   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2060   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2061   if (is_static) {
2062     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2063     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2064     __ ld_ptr( Robj, mirror_offset, Robj);
2065     __ resolve_oop_handle(Robj);
2066   }
2067 }
2068 
2069 // The registers Rcache and index expected to be set before call.
2070 // Correct values of the Rcache and index registers are preserved.
2071 void TemplateTable::jvmti_post_field_access(Register Rcache,
2072                                             Register index,
2073                                             bool is_static,
2074                                             bool has_tos) {
2075   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2076 
2077   if (JvmtiExport::can_post_field_access()) {
2078     // Check to see if a field access watch has been set before we take
2079     // the time to call into the VM.
2080     Label Label1;
2081     assert_different_registers(Rcache, index, G1_scratch);
2082     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2083     __ load_contents(get_field_access_count_addr, G1_scratch);
2084     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
2085 
2086     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2087 
2088     if (is_static) {
2089       __ clr(Otos_i);
2090     } else {
2091       if (has_tos) {
2092       // save object pointer before call_VM() clobbers it
2093         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2094       } else {
2095         // Load top of stack (do not pop the value off the stack);
2096         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2097       }
2098       __ verify_oop(Otos_i);
2099     }
2100     // Otos_i: object pointer or NULL if static
2101     // Rcache: cache entry pointer
2102     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2103                Otos_i, Rcache);
2104     if (!is_static && has_tos) {
2105       __ pop_ptr(Otos_i);  // restore object pointer
2106       __ verify_oop(Otos_i);
2107     }
2108     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2109     __ bind(Label1);
2110   }
2111 }
2112 
2113 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2114   transition(vtos, vtos);
2115 
2116   Register Rcache = G3_scratch;
2117   Register index  = G4_scratch;
2118   Register Rclass = Rcache;
2119   Register Roffset= G4_scratch;
2120   Register Rflags = G1_scratch;
2121   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2122 
2123   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2124   jvmti_post_field_access(Rcache, index, is_static, false);
2125   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2126 
2127   if (!is_static) {
2128     pop_and_check_object(Rclass);
2129   } else {
2130     __ verify_oop(Rclass);
2131   }
2132 
2133   Label exit;
2134 
2135   Assembler::Membar_mask_bits membar_bits =
2136     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2137 
2138   if (__ membar_has_effect(membar_bits)) {
2139     // Get volatile flag
2140     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2141     __ and3(Rflags, Lscratch, Lscratch);
2142   }
2143 
2144   Label checkVolatile;
2145 
2146   // compute field type
2147   Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
2148   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2149   // Make sure we don't need to mask Rflags after the above shift
2150   ConstantPoolCacheEntry::verify_tos_state_shift();
2151 
2152   // Check atos before itos for getstatic, more likely (in Queens at least)
2153   __ cmp(Rflags, atos);
2154   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2155   __ delayed() ->cmp(Rflags, itos);
2156 
2157   // atos
2158   __ load_heap_oop(Rclass, Roffset, Otos_i);
2159   __ verify_oop(Otos_i);
2160   __ push(atos);
2161   if (!is_static && rc == may_rewrite) {
2162     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2163   }
2164   __ ba(checkVolatile);
2165   __ delayed()->tst(Lscratch);
2166 
2167   __ bind(notObj);
2168 
2169   // cmp(Rflags, itos);
2170   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2171   __ delayed() ->cmp(Rflags, ltos);
2172 
2173   // itos
2174   __ ld(Rclass, Roffset, Otos_i);
2175   __ push(itos);
2176   if (!is_static && rc == may_rewrite) {
2177     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2178   }
2179   __ ba(checkVolatile);
2180   __ delayed()->tst(Lscratch);
2181 
2182   __ bind(notInt);
2183 
2184   // cmp(Rflags, ltos);
2185   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2186   __ delayed() ->cmp(Rflags, btos);
2187 
2188   // ltos
2189   // load must be atomic
2190   __ ld_long(Rclass, Roffset, Otos_l);
2191   __ push(ltos);
2192   if (!is_static && rc == may_rewrite) {
2193     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2194   }
2195   __ ba(checkVolatile);
2196   __ delayed()->tst(Lscratch);
2197 
2198   __ bind(notLong);
2199 
2200   // cmp(Rflags, btos);
2201   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2202   __ delayed() ->cmp(Rflags, ztos);
2203 
2204   // btos
2205   __ ldsb(Rclass, Roffset, Otos_i);
2206   __ push(itos);
2207   if (!is_static && rc == may_rewrite) {
2208     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2209   }
2210   __ ba(checkVolatile);
2211   __ delayed()->tst(Lscratch);
2212 
2213   __ bind(notByte);
2214 
2215   // cmp(Rflags, ztos);
2216   __ br(Assembler::notEqual, false, Assembler::pt, notBool);
2217   __ delayed() ->cmp(Rflags, ctos);
2218 
2219   // ztos
2220   __ ldsb(Rclass, Roffset, Otos_i);
2221   __ push(itos);
2222   if (!is_static && rc == may_rewrite) {
2223     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2224     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2225   }
2226   __ ba(checkVolatile);
2227   __ delayed()->tst(Lscratch);
2228 
2229   __ bind(notBool);
2230 
2231   // cmp(Rflags, ctos);
2232   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2233   __ delayed() ->cmp(Rflags, stos);
2234 
2235   // ctos
2236   __ lduh(Rclass, Roffset, Otos_i);
2237   __ push(itos);
2238   if (!is_static && rc == may_rewrite) {
2239     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2240   }
2241   __ ba(checkVolatile);
2242   __ delayed()->tst(Lscratch);
2243 
2244   __ bind(notChar);
2245 
2246   // cmp(Rflags, stos);
2247   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2248   __ delayed() ->cmp(Rflags, ftos);
2249 
2250   // stos
2251   __ ldsh(Rclass, Roffset, Otos_i);
2252   __ push(itos);
2253   if (!is_static && rc == may_rewrite) {
2254     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2255   }
2256   __ ba(checkVolatile);
2257   __ delayed()->tst(Lscratch);
2258 
2259   __ bind(notShort);
2260 
2261 
2262   // cmp(Rflags, ftos);
2263   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2264   __ delayed() ->tst(Lscratch);
2265 
2266   // ftos
2267   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2268   __ push(ftos);
2269   if (!is_static && rc == may_rewrite) {
2270     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2271   }
2272   __ ba(checkVolatile);
2273   __ delayed()->tst(Lscratch);
2274 
2275   __ bind(notFloat);
2276 
2277 
2278   // dtos
2279   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2280   __ push(dtos);
2281   if (!is_static && rc == may_rewrite) {
2282     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2283   }
2284 
2285   __ bind(checkVolatile);
2286   if (__ membar_has_effect(membar_bits)) {
2287     // __ tst(Lscratch); executed in delay slot
2288     __ br(Assembler::zero, false, Assembler::pt, exit);
2289     __ delayed()->nop();
2290     volatile_barrier(membar_bits);
2291   }
2292 
2293   __ bind(exit);
2294 }
2295 
2296 void TemplateTable::getfield(int byte_no) {
2297   getfield_or_static(byte_no, false);
2298 }
2299 
2300 void TemplateTable::nofast_getfield(int byte_no) {
2301   getfield_or_static(byte_no, false, may_not_rewrite);
2302 }
2303 
2304 void TemplateTable::getstatic(int byte_no) {
2305   getfield_or_static(byte_no, true);
2306 }
2307 
2308 void TemplateTable::fast_accessfield(TosState state) {
2309   transition(atos, state);
2310   Register Rcache  = G3_scratch;
2311   Register index   = G4_scratch;
2312   Register Roffset = G4_scratch;
2313   Register Rflags  = Rcache;
2314   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2315 
2316   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2317   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2318 
2319   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2320 
2321   __ null_check(Otos_i);
2322   __ verify_oop(Otos_i);
2323 
2324   Label exit;
2325 
2326   Assembler::Membar_mask_bits membar_bits =
2327     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2328   if (__ membar_has_effect(membar_bits)) {
2329     // Get volatile flag
2330     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2331     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2332   }
2333 
2334   switch (bytecode()) {
2335     case Bytecodes::_fast_bgetfield:
2336       __ ldsb(Otos_i, Roffset, Otos_i);
2337       break;
2338     case Bytecodes::_fast_cgetfield:
2339       __ lduh(Otos_i, Roffset, Otos_i);
2340       break;
2341     case Bytecodes::_fast_sgetfield:
2342       __ ldsh(Otos_i, Roffset, Otos_i);
2343       break;
2344     case Bytecodes::_fast_igetfield:
2345       __ ld(Otos_i, Roffset, Otos_i);
2346       break;
2347     case Bytecodes::_fast_lgetfield:
2348       __ ld_long(Otos_i, Roffset, Otos_l);
2349       break;
2350     case Bytecodes::_fast_fgetfield:
2351       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2352       break;
2353     case Bytecodes::_fast_dgetfield:
2354       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2355       break;
2356     case Bytecodes::_fast_agetfield:
2357       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2358       break;
2359     default:
2360       ShouldNotReachHere();
2361   }
2362 
2363   if (__ membar_has_effect(membar_bits)) {
2364     __ btst(Lscratch, Rflags);
2365     __ br(Assembler::zero, false, Assembler::pt, exit);
2366     __ delayed()->nop();
2367     volatile_barrier(membar_bits);
2368     __ bind(exit);
2369   }
2370 
2371   if (state == atos) {
2372     __ verify_oop(Otos_i);    // does not blow flags!
2373   }
2374 }
2375 
2376 void TemplateTable::jvmti_post_fast_field_mod() {
2377   if (JvmtiExport::can_post_field_modification()) {
2378     // Check to see if a field modification watch has been set before we take
2379     // the time to call into the VM.
2380     Label done;
2381     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2382     __ load_contents(get_field_modification_count_addr, G4_scratch);
2383     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
2384     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2385     __ verify_oop(G4_scratch);
2386     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2387     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2388     // Save tos values before call_VM() clobbers them. Since we have
2389     // to do it for every data type, we use the saved values as the
2390     // jvalue object.
2391     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2392     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2393     case Bytecodes::_fast_bputfield: // fall through
2394     case Bytecodes::_fast_zputfield: // fall through
2395     case Bytecodes::_fast_sputfield: // fall through
2396     case Bytecodes::_fast_cputfield: // fall through
2397     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2398     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2399     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2400     // get words in right order for use as jvalue object
2401     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2402     }
2403     // setup pointer to jvalue object
2404     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2405     // G4_scratch:  object pointer
2406     // G1_scratch: cache entry pointer
2407     // G3_scratch: jvalue object on the stack
2408     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2409     switch (bytecode()) {             // restore tos values
2410     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2411     case Bytecodes::_fast_bputfield: // fall through
2412     case Bytecodes::_fast_zputfield: // fall through
2413     case Bytecodes::_fast_sputfield: // fall through
2414     case Bytecodes::_fast_cputfield: // fall through
2415     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2416     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2417     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2418     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2419     }
2420     __ bind(done);
2421   }
2422 }
2423 
2424 // The registers Rcache and index expected to be set before call.
2425 // The function may destroy various registers, just not the Rcache and index registers.
2426 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2427   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2428 
2429   if (JvmtiExport::can_post_field_modification()) {
2430     // Check to see if a field modification watch has been set before we take
2431     // the time to call into the VM.
2432     Label Label1;
2433     assert_different_registers(Rcache, index, G1_scratch);
2434     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2435     __ load_contents(get_field_modification_count_addr, G1_scratch);
2436     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
2437 
2438     // The Rcache and index registers have been already set.
2439     // This allows to eliminate this call but the Rcache and index
2440     // registers must be correspondingly used after this line.
2441     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2442 
2443     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2444     if (is_static) {
2445       // Life is simple.  Null out the object pointer.
2446       __ clr(G4_scratch);
2447     } else {
2448       Register Rflags = G1_scratch;
2449       // Life is harder. The stack holds the value on top, followed by the
2450       // object.  We don't know the size of the value, though; it could be
2451       // one or two words depending on its type. As a result, we must find
2452       // the type to determine where the object is.
2453 
2454       Label two_word, valsizeknown;
2455       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2456       __ mov(Lesp, G4_scratch);
2457       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2458       // Make sure we don't need to mask Rflags after the above shift
2459       ConstantPoolCacheEntry::verify_tos_state_shift();
2460       __ cmp(Rflags, ltos);
2461       __ br(Assembler::equal, false, Assembler::pt, two_word);
2462       __ delayed()->cmp(Rflags, dtos);
2463       __ br(Assembler::equal, false, Assembler::pt, two_word);
2464       __ delayed()->nop();
2465       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2466       __ ba_short(valsizeknown);
2467       __ bind(two_word);
2468 
2469       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2470 
2471       __ bind(valsizeknown);
2472       // setup object pointer
2473       __ ld_ptr(G4_scratch, 0, G4_scratch);
2474       __ verify_oop(G4_scratch);
2475     }
2476     // setup pointer to jvalue object
2477     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2478     // G4_scratch:  object pointer or NULL if static
2479     // G3_scratch: cache entry pointer
2480     // G1_scratch: jvalue object on the stack
2481     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2482                G4_scratch, G3_scratch, G1_scratch);
2483     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2484     __ bind(Label1);
2485   }
2486 }
2487 
2488 void TemplateTable::pop_and_check_object(Register r) {
2489   __ pop_ptr(r);
2490   __ null_check(r);  // for field access must check obj.
2491   __ verify_oop(r);
2492 }
2493 
2494 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2495   transition(vtos, vtos);
2496   Register Rcache = G3_scratch;
2497   Register index  = G4_scratch;
2498   Register Rclass = Rcache;
2499   Register Roffset= G4_scratch;
2500   Register Rflags = G1_scratch;
2501   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2502 
2503   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2504   jvmti_post_field_mod(Rcache, index, is_static);
2505   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2506 
2507   Assembler::Membar_mask_bits read_bits =
2508     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2509   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2510 
2511   Label notVolatile, checkVolatile, exit;
2512   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2513     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2514     __ and3(Rflags, Lscratch, Lscratch);
2515 
2516     if (__ membar_has_effect(read_bits)) {
2517       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2518       volatile_barrier(read_bits);
2519       __ bind(notVolatile);
2520     }
2521   }
2522 
2523   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2524   // Make sure we don't need to mask Rflags after the above shift
2525   ConstantPoolCacheEntry::verify_tos_state_shift();
2526 
2527   // compute field type
2528   Label notInt, notShort, notChar, notObj, notByte, notBool, notLong, notFloat;
2529 
2530   if (is_static) {
2531     // putstatic with object type most likely, check that first
2532     __ cmp(Rflags, atos);
2533     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2534     __ delayed()->cmp(Rflags, itos);
2535 
2536     // atos
2537     {
2538       __ pop_ptr();
2539       __ verify_oop(Otos_i);
2540       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2541       __ ba(checkVolatile);
2542       __ delayed()->tst(Lscratch);
2543     }
2544 
2545     __ bind(notObj);
2546     // cmp(Rflags, itos);
2547     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2548     __ delayed()->cmp(Rflags, btos);
2549 
2550     // itos
2551     {
2552       __ pop_i();
2553       __ st(Otos_i, Rclass, Roffset);
2554       __ ba(checkVolatile);
2555       __ delayed()->tst(Lscratch);
2556     }
2557 
2558     __ bind(notInt);
2559   } else {
2560     // putfield with int type most likely, check that first
2561     __ cmp(Rflags, itos);
2562     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2563     __ delayed()->cmp(Rflags, atos);
2564 
2565     // itos
2566     {
2567       __ pop_i();
2568       pop_and_check_object(Rclass);
2569       __ st(Otos_i, Rclass, Roffset);
2570       if (rc == may_rewrite) patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
2571       __ ba(checkVolatile);
2572       __ delayed()->tst(Lscratch);
2573     }
2574 
2575     __ bind(notInt);
2576     // cmp(Rflags, atos);
2577     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2578     __ delayed()->cmp(Rflags, btos);
2579 
2580     // atos
2581     {
2582       __ pop_ptr();
2583       pop_and_check_object(Rclass);
2584       __ verify_oop(Otos_i);
2585       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2586       if (rc == may_rewrite) patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
2587       __ ba(checkVolatile);
2588       __ delayed()->tst(Lscratch);
2589     }
2590 
2591     __ bind(notObj);
2592   }
2593 
2594   // cmp(Rflags, btos);
2595   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2596   __ delayed()->cmp(Rflags, ztos);
2597 
2598   // btos
2599   {
2600     __ pop_i();
2601     if (!is_static) pop_and_check_object(Rclass);
2602     __ stb(Otos_i, Rclass, Roffset);
2603     if (!is_static && rc == may_rewrite) {
2604       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
2605     }
2606     __ ba(checkVolatile);
2607     __ delayed()->tst(Lscratch);
2608   }
2609 
2610   __ bind(notByte);
2611 
2612   // cmp(Rflags, btos);
2613   __ br(Assembler::notEqual, false, Assembler::pt, notBool);
2614   __ delayed()->cmp(Rflags, ltos);
2615 
2616   // ztos
2617   {
2618     __ pop_i();
2619     if (!is_static) pop_and_check_object(Rclass);
2620     __ and3(Otos_i, 1, Otos_i);
2621     __ stb(Otos_i, Rclass, Roffset);
2622     if (!is_static && rc == may_rewrite) {
2623       patch_bytecode(Bytecodes::_fast_zputfield, G3_scratch, G4_scratch, true, byte_no);
2624     }
2625     __ ba(checkVolatile);
2626     __ delayed()->tst(Lscratch);
2627   }
2628 
2629   __ bind(notBool);
2630   // cmp(Rflags, ltos);
2631   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2632   __ delayed()->cmp(Rflags, ctos);
2633 
2634   // ltos
2635   {
2636     __ pop_l();
2637     if (!is_static) pop_and_check_object(Rclass);
2638     __ st_long(Otos_l, Rclass, Roffset);
2639     if (!is_static && rc == may_rewrite) {
2640       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
2641     }
2642     __ ba(checkVolatile);
2643     __ delayed()->tst(Lscratch);
2644   }
2645 
2646   __ bind(notLong);
2647   // cmp(Rflags, ctos);
2648   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2649   __ delayed()->cmp(Rflags, stos);
2650 
2651   // ctos (char)
2652   {
2653     __ pop_i();
2654     if (!is_static) pop_and_check_object(Rclass);
2655     __ sth(Otos_i, Rclass, Roffset);
2656     if (!is_static && rc == may_rewrite) {
2657       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
2658     }
2659     __ ba(checkVolatile);
2660     __ delayed()->tst(Lscratch);
2661   }
2662 
2663   __ bind(notChar);
2664   // cmp(Rflags, stos);
2665   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2666   __ delayed()->cmp(Rflags, ftos);
2667 
2668   // stos (short)
2669   {
2670     __ pop_i();
2671     if (!is_static) pop_and_check_object(Rclass);
2672     __ sth(Otos_i, Rclass, Roffset);
2673     if (!is_static && rc == may_rewrite) {
2674       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
2675     }
2676     __ ba(checkVolatile);
2677     __ delayed()->tst(Lscratch);
2678   }
2679 
2680   __ bind(notShort);
2681   // cmp(Rflags, ftos);
2682   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2683   __ delayed()->nop();
2684 
2685   // ftos
2686   {
2687     __ pop_f();
2688     if (!is_static) pop_and_check_object(Rclass);
2689     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2690     if (!is_static && rc == may_rewrite) {
2691       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
2692     }
2693     __ ba(checkVolatile);
2694     __ delayed()->tst(Lscratch);
2695   }
2696 
2697   __ bind(notFloat);
2698 
2699   // dtos
2700   {
2701     __ pop_d();
2702     if (!is_static) pop_and_check_object(Rclass);
2703     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2704     if (!is_static && rc == may_rewrite) {
2705       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
2706     }
2707   }
2708 
2709   __ bind(checkVolatile);
2710   __ tst(Lscratch);
2711 
2712   if (__ membar_has_effect(write_bits)) {
2713     // __ tst(Lscratch); in delay slot
2714     __ br(Assembler::zero, false, Assembler::pt, exit);
2715     __ delayed()->nop();
2716     volatile_barrier(Assembler::StoreLoad);
2717     __ bind(exit);
2718   }
2719 }
2720 
2721 void TemplateTable::fast_storefield(TosState state) {
2722   transition(state, vtos);
2723   Register Rcache = G3_scratch;
2724   Register Rclass = Rcache;
2725   Register Roffset= G4_scratch;
2726   Register Rflags = G1_scratch;
2727   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2728 
2729   jvmti_post_fast_field_mod();
2730 
2731   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2732 
2733   Assembler::Membar_mask_bits read_bits =
2734     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2735   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2736 
2737   Label notVolatile, checkVolatile, exit;
2738   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2739     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2740     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2741     __ and3(Rflags, Lscratch, Lscratch);
2742     if (__ membar_has_effect(read_bits)) {
2743       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2744       volatile_barrier(read_bits);
2745       __ bind(notVolatile);
2746     }
2747   }
2748 
2749   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2750   pop_and_check_object(Rclass);
2751 
2752   switch (bytecode()) {
2753     case Bytecodes::_fast_zputfield: __ and3(Otos_i, 1, Otos_i);  // fall through to bputfield
2754     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2755     case Bytecodes::_fast_cputfield: /* fall through */
2756     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2757     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2758     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2759     case Bytecodes::_fast_fputfield:
2760       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2761       break;
2762     case Bytecodes::_fast_dputfield:
2763       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2764       break;
2765     case Bytecodes::_fast_aputfield:
2766       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2767       break;
2768     default:
2769       ShouldNotReachHere();
2770   }
2771 
2772   if (__ membar_has_effect(write_bits)) {
2773     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
2774     volatile_barrier(Assembler::StoreLoad);
2775     __ bind(exit);
2776   }
2777 }
2778 
2779 void TemplateTable::putfield(int byte_no) {
2780   putfield_or_static(byte_no, false);
2781 }
2782 
2783 void TemplateTable::nofast_putfield(int byte_no) {
2784   putfield_or_static(byte_no, false, may_not_rewrite);
2785 }
2786 
2787 void TemplateTable::putstatic(int byte_no) {
2788   putfield_or_static(byte_no, true);
2789 }
2790 
2791 void TemplateTable::fast_xaccess(TosState state) {
2792   transition(vtos, state);
2793   Register Rcache = G3_scratch;
2794   Register Roffset = G4_scratch;
2795   Register Rflags  = G4_scratch;
2796   Register Rreceiver = Lscratch;
2797 
2798   __ ld_ptr(Llocals, 0, Rreceiver);
2799 
2800   // access constant pool cache  (is resolved)
2801   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2802   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2803   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2804 
2805   __ verify_oop(Rreceiver);
2806   __ null_check(Rreceiver);
2807   if (state == atos) {
2808     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2809   } else if (state == itos) {
2810     __ ld (Rreceiver, Roffset, Otos_i) ;
2811   } else if (state == ftos) {
2812     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2813   } else {
2814     ShouldNotReachHere();
2815   }
2816 
2817   Assembler::Membar_mask_bits membar_bits =
2818     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2819   if (__ membar_has_effect(membar_bits)) {
2820 
2821     // Get is_volatile value in Rflags and check if membar is needed
2822     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2823 
2824     // Test volatile
2825     Label notVolatile;
2826     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2827     __ btst(Rflags, Lscratch);
2828     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2829     __ delayed()->nop();
2830     volatile_barrier(membar_bits);
2831     __ bind(notVolatile);
2832   }
2833 
2834   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2835   __ sub(Lbcp, 1, Lbcp);
2836 }
2837 
2838 //----------------------------------------------------------------------------------------------------
2839 // Calls
2840 
2841 void TemplateTable::count_calls(Register method, Register temp) {
2842   // implemented elsewhere
2843   ShouldNotReachHere();
2844 }
2845 
2846 void TemplateTable::prepare_invoke(int byte_no,
2847                                    Register method,  // linked method (or i-klass)
2848                                    Register ra,      // return address
2849                                    Register index,   // itable index, MethodType, etc.
2850                                    Register recv,    // if caller wants to see it
2851                                    Register flags    // if caller wants to test it
2852                                    ) {
2853   // determine flags
2854   const Bytecodes::Code code = bytecode();
2855   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2856   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2857   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2858   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2859   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2860   const bool load_receiver       = (recv != noreg);
2861   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2862   assert(recv  == noreg || recv  == O0, "");
2863   assert(flags == noreg || flags == O1, "");
2864 
2865   // setup registers & access constant pool cache
2866   if (recv  == noreg)  recv  = O0;
2867   if (flags == noreg)  flags = O1;
2868   const Register temp = O2;
2869   assert_different_registers(method, ra, index, recv, flags, temp);
2870 
2871   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2872 
2873   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
2874 
2875   // maybe push appendix to arguments
2876   if (is_invokedynamic || is_invokehandle) {
2877     Label L_no_push;
2878     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
2879     __ btst(flags, temp);
2880     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
2881     __ delayed()->nop();
2882     // Push the appendix as a trailing parameter.
2883     // This must be done before we get the receiver,
2884     // since the parameter_size includes it.
2885     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2886     __ load_resolved_reference_at_index(temp, index);
2887     __ verify_oop(temp);
2888     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
2889     __ bind(L_no_push);
2890   }
2891 
2892   // load receiver if needed (after appendix is pushed so parameter size is correct)
2893   if (load_receiver) {
2894     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
2895     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
2896     __ verify_oop(recv);
2897   }
2898 
2899   // compute return type
2900   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
2901   // Make sure we don't need to mask flags after the above shift
2902   ConstantPoolCacheEntry::verify_tos_state_shift();
2903   // load return address
2904   {
2905     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2906     AddressLiteral table(table_addr);
2907     __ set(table, temp);
2908     __ sll(ra, LogBytesPerWord, ra);
2909     __ ld_ptr(Address(temp, ra), ra);
2910   }
2911 }
2912 
2913 
2914 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
2915   Register Rtemp = G4_scratch;
2916   Register Rcall = Rindex;
2917   assert_different_registers(Rcall, G5_method, Gargs, Rret);
2918 
2919   // get target Method* & entry point
2920   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
2921   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
2922   __ profile_called_method(G5_method, Rtemp);
2923   __ call_from_interpreter(Rcall, Gargs, Rret);
2924 }
2925 
2926 void TemplateTable::invokevirtual(int byte_no) {
2927   transition(vtos, vtos);
2928   assert(byte_no == f2_byte, "use this argument");
2929 
2930   Register Rscratch = G3_scratch;
2931   Register Rtemp    = G4_scratch;
2932   Register Rret     = Lscratch;
2933   Register O0_recv  = O0;
2934   Label notFinal;
2935 
2936   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
2937   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2938 
2939   // Check for vfinal
2940   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
2941   __ btst(Rret, G4_scratch);
2942   __ br(Assembler::zero, false, Assembler::pt, notFinal);
2943   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
2944 
2945   if (RewriteBytecodes && !UseSharedSpaces && !DumpSharedSpaces) {
2946     patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
2947   }
2948 
2949   invokevfinal_helper(Rscratch, Rret);
2950 
2951   __ bind(notFinal);
2952 
2953   __ mov(G5_method, Rscratch);  // better scratch register
2954   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
2955   // receiver is in O0_recv
2956   __ verify_oop(O0_recv);
2957 
2958   // get return address
2959   AddressLiteral table(Interpreter::invoke_return_entry_table());
2960   __ set(table, Rtemp);
2961   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
2962   // Make sure we don't need to mask Rret after the above shift
2963   ConstantPoolCacheEntry::verify_tos_state_shift();
2964   __ sll(Rret,  LogBytesPerWord, Rret);
2965   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
2966 
2967   // get receiver klass
2968   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
2969   __ load_klass(O0_recv, O0_recv);
2970   __ verify_klass_ptr(O0_recv);
2971 
2972   __ profile_virtual_call(O0_recv, O4);
2973 
2974   generate_vtable_call(O0_recv, Rscratch, Rret);
2975 }
2976 
2977 void TemplateTable::fast_invokevfinal(int byte_no) {
2978   transition(vtos, vtos);
2979   assert(byte_no == f2_byte, "use this argument");
2980 
2981   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
2982                              /*is_invokevfinal*/true, false);
2983   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2984   invokevfinal_helper(G3_scratch, Lscratch);
2985 }
2986 
2987 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
2988   Register Rtemp = G4_scratch;
2989 
2990   // Load receiver from stack slot
2991   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
2992   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
2993   __ load_receiver(G4_scratch, O0);
2994 
2995   // receiver NULL check
2996   __ null_check(O0);
2997 
2998   __ profile_final_call(O4);
2999   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3000 
3001   // get return address
3002   AddressLiteral table(Interpreter::invoke_return_entry_table());
3003   __ set(table, Rtemp);
3004   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3005   // Make sure we don't need to mask Rret after the above shift
3006   ConstantPoolCacheEntry::verify_tos_state_shift();
3007   __ sll(Rret,  LogBytesPerWord, Rret);
3008   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3009 
3010 
3011   // do the call
3012   __ call_from_interpreter(Rscratch, Gargs, Rret);
3013 }
3014 
3015 
3016 void TemplateTable::invokespecial(int byte_no) {
3017   transition(vtos, vtos);
3018   assert(byte_no == f1_byte, "use this argument");
3019 
3020   const Register Rret     = Lscratch;
3021   const Register O0_recv  = O0;
3022   const Register Rscratch = G3_scratch;
3023 
3024   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
3025   __ null_check(O0_recv);
3026 
3027   // do the call
3028   __ profile_call(O4);
3029   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3030   __ call_from_interpreter(Rscratch, Gargs, Rret);
3031 }
3032 
3033 
3034 void TemplateTable::invokestatic(int byte_no) {
3035   transition(vtos, vtos);
3036   assert(byte_no == f1_byte, "use this argument");
3037 
3038   const Register Rret     = Lscratch;
3039   const Register Rscratch = G3_scratch;
3040 
3041   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
3042 
3043   // do the call
3044   __ profile_call(O4);
3045   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3046   __ call_from_interpreter(Rscratch, Gargs, Rret);
3047 }
3048 
3049 void TemplateTable::invokeinterface_object_method(Register RKlass,
3050                                                   Register Rcall,
3051                                                   Register Rret,
3052                                                   Register Rflags) {
3053   Register Rscratch = G4_scratch;
3054   Register Rindex = Lscratch;
3055 
3056   assert_different_registers(Rscratch, Rindex, Rret);
3057 
3058   Label notFinal;
3059 
3060   // Check for vfinal
3061   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
3062   __ btst(Rflags, Rscratch);
3063   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3064   __ delayed()->nop();
3065 
3066   __ profile_final_call(O4);
3067 
3068   // do the call - the index (f2) contains the Method*
3069   assert_different_registers(G5_method, Gargs, Rcall);
3070   __ mov(Rindex, G5_method);
3071   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3072   __ call_from_interpreter(Rcall, Gargs, Rret);
3073   __ bind(notFinal);
3074 
3075   __ profile_virtual_call(RKlass, O4);
3076   generate_vtable_call(RKlass, Rindex, Rret);
3077 }
3078 
3079 
3080 void TemplateTable::invokeinterface(int byte_no) {
3081   transition(vtos, vtos);
3082   assert(byte_no == f1_byte, "use this argument");
3083 
3084   const Register Rinterface  = G1_scratch;
3085   const Register Rmethod     = Lscratch;
3086   const Register Rret        = G3_scratch;
3087   const Register O0_recv     = O0;
3088   const Register O1_flags    = O1;
3089   const Register O2_Klass    = O2;
3090   const Register Rscratch    = G4_scratch;
3091   assert_different_registers(Rscratch, G5_method);
3092 
3093   prepare_invoke(byte_no, Rinterface, Rret, Rmethod, O0_recv, O1_flags);
3094 
3095   // get receiver klass
3096   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3097   __ load_klass(O0_recv, O2_Klass);
3098 
3099   // Special case of invokeinterface called for virtual method of
3100   // java.lang.Object.  See cpCacheOop.cpp for details.
3101   // This code isn't produced by javac, but could be produced by
3102   // another compliant java compiler.
3103   Label notMethod;
3104   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
3105   __ btst(O1_flags, Rscratch);
3106   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3107   __ delayed()->nop();
3108 
3109   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
3110 
3111   __ bind(notMethod);
3112 
3113   Register Rtemp = O1_flags;
3114 
3115   Label L_no_such_interface;
3116 
3117   // Receiver subtype check against REFC.
3118   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3119                              O2_Klass, Rinterface, noreg,
3120                              // outputs: temp reg1, temp reg2, temp reg3
3121                              G5_method, Rscratch, Rtemp,
3122                              L_no_such_interface,
3123                              /*return_method=*/false);
3124 
3125   __ profile_virtual_call(O2_Klass, O4);
3126 
3127   //
3128   // find entry point to call
3129   //
3130 
3131   // Get declaring interface class from method
3132   __ ld_ptr(Rmethod, Method::const_offset(), Rinterface);
3133   __ ld_ptr(Rinterface, ConstMethod::constants_offset(), Rinterface);
3134   __ ld_ptr(Rinterface, ConstantPool::pool_holder_offset_in_bytes(), Rinterface);
3135 
3136   // Get itable index from method
3137   const Register Rindex = G5_method;
3138   __ ld(Rmethod, Method::itable_index_offset(), Rindex);
3139   __ sub(Rindex, Method::itable_index_max, Rindex);
3140   __ neg(Rindex);
3141 
3142   // Preserve O2_Klass for throw_AbstractMethodErrorVerbose
3143   __ mov(O2_Klass, O4);
3144   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3145                              O4, Rinterface, Rindex,
3146                              // outputs: method, scan temp reg, temp reg
3147                              G5_method, Rscratch, Rtemp,
3148                              L_no_such_interface);
3149 
3150   // Check for abstract method error.
3151   {
3152     Label ok;
3153     __ br_notnull_short(G5_method, Assembler::pt, ok);
3154     // Pass arguments for generating a verbose error message.
3155     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3156             O2_Klass, Rmethod);
3157     __ should_not_reach_here();
3158     __ bind(ok);
3159   }
3160 
3161   Register Rcall = Rinterface;
3162   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3163 
3164   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3165   __ profile_called_method(G5_method, Rscratch);
3166   __ call_from_interpreter(Rcall, Gargs, Rret);
3167 
3168   __ bind(L_no_such_interface);
3169   // Pass arguments for generating a verbose error message.
3170   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3171           O2_Klass, Rinterface);
3172   __ should_not_reach_here();
3173 }
3174 
3175 void TemplateTable::invokehandle(int byte_no) {
3176   transition(vtos, vtos);
3177   assert(byte_no == f1_byte, "use this argument");
3178 
3179   const Register Rret       = Lscratch;
3180   const Register G4_mtype   = G4_scratch;
3181   const Register O0_recv    = O0;
3182   const Register Rscratch   = G3_scratch;
3183 
3184   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
3185   __ null_check(O0_recv);
3186 
3187   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
3188   // G5: MH.invokeExact_MT method (from f2)
3189 
3190   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
3191 
3192   // do the call
3193   __ verify_oop(G4_mtype);
3194   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
3195   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3196   __ call_from_interpreter(Rscratch, Gargs, Rret);
3197 }
3198 
3199 
3200 void TemplateTable::invokedynamic(int byte_no) {
3201   transition(vtos, vtos);
3202   assert(byte_no == f1_byte, "use this argument");
3203 
3204   const Register Rret        = Lscratch;
3205   const Register G4_callsite = G4_scratch;
3206   const Register Rscratch    = G3_scratch;
3207 
3208   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
3209 
3210   // G4: CallSite object (from cpool->resolved_references[f1])
3211   // G5: MH.linkToCallSite method (from f2)
3212 
3213   // Note:  G4_callsite is already pushed by prepare_invoke
3214 
3215   // %%% should make a type profile for any invokedynamic that takes a ref argument
3216   // profile this call
3217   __ profile_call(O4);
3218 
3219   // do the call
3220   __ verify_oop(G4_callsite);
3221   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3222   __ call_from_interpreter(Rscratch, Gargs, Rret);
3223 }
3224 
3225 
3226 //----------------------------------------------------------------------------------------------------
3227 // Allocation
3228 
3229 void TemplateTable::_new() {
3230   transition(vtos, atos);
3231 
3232   Label slow_case;
3233   Label done;
3234   Label initialize_header;
3235   Label initialize_object;  // including clearing the fields
3236 
3237   Register RallocatedObject = Otos_i;
3238   Register RinstanceKlass = O1;
3239   Register Roffset = O3;
3240   Register Rscratch = O4;
3241 
3242   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3243   __ get_cpool_and_tags(Rscratch, G3_scratch);
3244   // make sure the class we're about to instantiate has been resolved
3245   // This is done before loading InstanceKlass to be consistent with the order
3246   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3247   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3248   __ ldub(G3_scratch, Roffset, G3_scratch);
3249   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3250   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3251   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3252   // get InstanceKlass
3253   __ load_resolved_klass_at_offset(Rscratch, Roffset, RinstanceKlass);
3254 
3255   // make sure klass is fully initialized:
3256   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
3257   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
3258   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3259   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3260 
3261   // get instance_size in InstanceKlass (already aligned)
3262   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3263 
3264   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3265   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3266   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3267   __ delayed()->nop();
3268 
3269   // Allocate the instance:
3270   //  If TLAB is enabled:
3271   //    Try to allocate in the TLAB.
3272   //    If fails, go to the slow path.
3273   //  Else If inline contiguous allocations are enabled:
3274   //    Try to allocate in eden.
3275   //    If fails due to heap end, go to slow path.
3276   //
3277   //  If TLAB is enabled OR inline contiguous is enabled:
3278   //    Initialize the allocation.
3279   //    Exit.
3280   //
3281   //  Go to slow path.
3282 
3283   const bool allow_shared_alloc =
3284     Universe::heap()->supports_inline_contig_alloc();
3285 
3286   if(UseTLAB) {
3287     Register RoldTopValue = RallocatedObject;
3288     Register RtlabWasteLimitValue = G3_scratch;
3289     Register RnewTopValue = G1_scratch;
3290     Register RendValue = Rscratch;
3291     Register RfreeValue = RnewTopValue;
3292 
3293     // check if we can allocate in the TLAB
3294     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3295     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3296     __ add(RoldTopValue, Roffset, RnewTopValue);
3297 
3298     // if there is enough space, we do not CAS and do not clear
3299     __ cmp(RnewTopValue, RendValue);
3300     if(ZeroTLAB) {
3301       // the fields have already been cleared
3302       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3303     } else {
3304       // initialize both the header and fields
3305       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3306     }
3307     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3308 
3309     // Allocation does not fit in the TLAB.
3310     __ ba_short(slow_case);
3311   } else {
3312     // Allocation in the shared Eden
3313     if (allow_shared_alloc) {
3314       Register RoldTopValue = G1_scratch;
3315       Register RtopAddr = G3_scratch;
3316       Register RnewTopValue = RallocatedObject;
3317       Register RendValue = Rscratch;
3318 
3319       __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3320 
3321       Label retry;
3322       __ bind(retry);
3323       __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3324       __ ld_ptr(RendValue, 0, RendValue);
3325       __ ld_ptr(RtopAddr, 0, RoldTopValue);
3326       __ add(RoldTopValue, Roffset, RnewTopValue);
3327 
3328       // RnewTopValue contains the top address after the new object
3329       // has been allocated.
3330       __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
3331 
3332       __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
3333 
3334       // if someone beat us on the allocation, try again, otherwise continue
3335       __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
3336 
3337       // bump total bytes allocated by this thread
3338       // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3339       __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3340     }
3341   }
3342 
3343   // If UseTLAB or allow_shared_alloc are true, the object is created above and
3344   // there is an initialize need. Otherwise, skip and go to the slow path.
3345   if (UseTLAB || allow_shared_alloc) {
3346     // clear object fields
3347     __ bind(initialize_object);
3348     __ deccc(Roffset, sizeof(oopDesc));
3349     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3350     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3351 
3352     // initialize remaining object fields
3353     if (UseBlockZeroing) {
3354       // Use BIS for zeroing
3355       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
3356     } else {
3357       Label loop;
3358       __ subcc(Roffset, wordSize, Roffset);
3359       __ bind(loop);
3360       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3361       __ st_ptr(G0, G3_scratch, Roffset);
3362       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3363       __ delayed()->subcc(Roffset, wordSize, Roffset);
3364     }
3365     __ ba_short(initialize_header);
3366   }
3367 
3368   // slow case
3369   __ bind(slow_case);
3370   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3371   __ get_constant_pool(O1);
3372 
3373   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3374 
3375   __ ba_short(done);
3376 
3377   // Initialize the header: mark, klass
3378   __ bind(initialize_header);
3379 
3380   if (UseBiasedLocking) {
3381     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
3382   } else {
3383     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3384   }
3385   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3386   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3387   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3388 
3389   {
3390     SkipIfEqual skip_if(
3391       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3392     // Trigger dtrace event
3393     __ push(atos);
3394     __ call_VM_leaf(noreg,
3395        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3396     __ pop(atos);
3397   }
3398 
3399   // continue
3400   __ bind(done);
3401 }
3402 
3403 
3404 
3405 void TemplateTable::newarray() {
3406   transition(itos, atos);
3407   __ ldub(Lbcp, 1, O1);
3408      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3409 }
3410 
3411 
3412 void TemplateTable::anewarray() {
3413   transition(itos, atos);
3414   __ get_constant_pool(O1);
3415   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3416      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3417 }
3418 
3419 
3420 void TemplateTable::arraylength() {
3421   transition(atos, itos);
3422   Label ok;
3423   __ verify_oop(Otos_i);
3424   __ tst(Otos_i);
3425   __ throw_if_not_1_x( Assembler::notZero, ok );
3426   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3427   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3428 }
3429 
3430 
3431 void TemplateTable::checkcast() {
3432   transition(atos, atos);
3433   Label done, is_null, quicked, cast_ok, resolved;
3434   Register Roffset = G1_scratch;
3435   Register RobjKlass = O5;
3436   Register RspecifiedKlass = O4;
3437 
3438   // Check for casting a NULL
3439   __ br_null(Otos_i, false, Assembler::pn, is_null);
3440   __ delayed()->nop();
3441 
3442   // Get value klass in RobjKlass
3443   __ load_klass(Otos_i, RobjKlass); // get value klass
3444 
3445   // Get constant pool tag
3446   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3447 
3448   // See if the checkcast has been quickened
3449   __ get_cpool_and_tags(Lscratch, G3_scratch);
3450   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3451   __ ldub(G3_scratch, Roffset, G3_scratch);
3452   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3453   __ br(Assembler::equal, true, Assembler::pt, quicked);
3454   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3455 
3456   __ push_ptr(); // save receiver for result, and for GC
3457   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3458   __ get_vm_result_2(RspecifiedKlass);
3459   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3460 
3461   __ ba_short(resolved);
3462 
3463   // Extract target class from constant pool
3464   __ bind(quicked);
3465   __ load_resolved_klass_at_offset(Lscratch, Roffset, RspecifiedKlass);
3466 
3467 
3468   __ bind(resolved);
3469   __ load_klass(Otos_i, RobjKlass); // get value klass
3470 
3471   // Generate a fast subtype check.  Branch to cast_ok if no
3472   // failure.  Throw exception if failure.
3473   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3474 
3475   // Not a subtype; so must throw exception
3476   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3477 
3478   __ bind(cast_ok);
3479 
3480   if (ProfileInterpreter) {
3481     __ ba_short(done);
3482   }
3483   __ bind(is_null);
3484   __ profile_null_seen(G3_scratch);
3485   __ bind(done);
3486 }
3487 
3488 
3489 void TemplateTable::instanceof() {
3490   Label done, is_null, quicked, resolved;
3491   transition(atos, itos);
3492   Register Roffset = G1_scratch;
3493   Register RobjKlass = O5;
3494   Register RspecifiedKlass = O4;
3495 
3496   // Check for casting a NULL
3497   __ br_null(Otos_i, false, Assembler::pt, is_null);
3498   __ delayed()->nop();
3499 
3500   // Get value klass in RobjKlass
3501   __ load_klass(Otos_i, RobjKlass); // get value klass
3502 
3503   // Get constant pool tag
3504   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3505 
3506   // See if the checkcast has been quickened
3507   __ get_cpool_and_tags(Lscratch, G3_scratch);
3508   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3509   __ ldub(G3_scratch, Roffset, G3_scratch);
3510   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3511   __ br(Assembler::equal, true, Assembler::pt, quicked);
3512   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3513 
3514   __ push_ptr(); // save receiver for result, and for GC
3515   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3516   __ get_vm_result_2(RspecifiedKlass);
3517   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3518 
3519   __ ba_short(resolved);
3520 
3521   // Extract target class from constant pool
3522   __ bind(quicked);
3523   __ get_constant_pool(Lscratch);
3524   __ load_resolved_klass_at_offset(Lscratch, Roffset, RspecifiedKlass);
3525 
3526   __ bind(resolved);
3527   __ load_klass(Otos_i, RobjKlass); // get value klass
3528 
3529   // Generate a fast subtype check.  Branch to cast_ok if no
3530   // failure.  Return 0 if failure.
3531   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3532   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3533   // Not a subtype; return 0;
3534   __ clr( Otos_i );
3535 
3536   if (ProfileInterpreter) {
3537     __ ba_short(done);
3538   }
3539   __ bind(is_null);
3540   __ profile_null_seen(G3_scratch);
3541   __ bind(done);
3542 }
3543 
3544 void TemplateTable::_breakpoint() {
3545 
3546    // Note: We get here even if we are single stepping..
3547    // jbug insists on setting breakpoints at every bytecode
3548    // even if we are in single step mode.
3549 
3550    transition(vtos, vtos);
3551    // get the unpatched byte code
3552    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3553    __ mov(O0, Lbyte_code);
3554 
3555    // post the breakpoint event
3556    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3557 
3558    // complete the execution of original bytecode
3559    __ dispatch_normal(vtos);
3560 }
3561 
3562 
3563 //----------------------------------------------------------------------------------------------------
3564 // Exceptions
3565 
3566 void TemplateTable::athrow() {
3567   transition(atos, vtos);
3568 
3569   // This works because exception is cached in Otos_i which is same as O0,
3570   // which is same as what throw_exception_entry_expects
3571   assert(Otos_i == Oexception, "see explanation above");
3572 
3573   __ verify_oop(Otos_i);
3574   __ null_check(Otos_i);
3575   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3576 }
3577 
3578 
3579 //----------------------------------------------------------------------------------------------------
3580 // Synchronization
3581 
3582 
3583 // See frame_sparc.hpp for monitor block layout.
3584 // Monitor elements are dynamically allocated by growing stack as needed.
3585 
3586 void TemplateTable::monitorenter() {
3587   transition(atos, vtos);
3588   __ verify_oop(Otos_i);
3589   // Try to acquire a lock on the object
3590   // Repeat until succeeded (i.e., until
3591   // monitorenter returns true).
3592 
3593   {   Label ok;
3594     __ tst(Otos_i);
3595     __ throw_if_not_1_x( Assembler::notZero,  ok);
3596     __ delayed()->mov(Otos_i, Lscratch); // save obj
3597     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3598   }
3599 
3600   assert(O0 == Otos_i, "Be sure where the object to lock is");
3601 
3602   // find a free slot in the monitor block
3603 
3604 
3605   // initialize entry pointer
3606   __ clr(O1); // points to free slot or NULL
3607 
3608   {
3609     Label entry, loop, exit;
3610     __ add( __ top_most_monitor(), O2 ); // last one to check
3611     __ ba( entry );
3612     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3613 
3614 
3615     __ bind( loop );
3616 
3617     __ verify_oop(O4);          // verify each monitor's oop
3618     __ tst(O4); // is this entry unused?
3619     __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3620 
3621     __ cmp(O4, O0); // check if current entry is for same object
3622     __ brx( Assembler::equal, false, Assembler::pn, exit );
3623     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3624 
3625     __ bind( entry );
3626 
3627     __ cmp( O3, O2 );
3628     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3629     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3630 
3631     __ bind( exit );
3632   }
3633 
3634   { Label allocated;
3635 
3636     // found free slot?
3637     __ br_notnull_short(O1, Assembler::pn, allocated);
3638 
3639     __ add_monitor_to_stack( false, O2, O3 );
3640     __ mov(Lmonitors, O1);
3641 
3642     __ bind(allocated);
3643   }
3644 
3645   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3646   // The object has already been poped from the stack, so the expression stack looks correct.
3647   __ inc(Lbcp);
3648 
3649   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3650   __ lock_object(O1, O0);
3651 
3652   // check if there's enough space on the stack for the monitors after locking
3653   __ generate_stack_overflow_check(0);
3654 
3655   // The bcp has already been incremented. Just need to dispatch to next instruction.
3656   __ dispatch_next(vtos);
3657 }
3658 
3659 
3660 void TemplateTable::monitorexit() {
3661   transition(atos, vtos);
3662   __ verify_oop(Otos_i);
3663   __ tst(Otos_i);
3664   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3665 
3666   assert(O0 == Otos_i, "just checking");
3667 
3668   { Label entry, loop, found;
3669     __ add( __ top_most_monitor(), O2 ); // last one to check
3670     __ ba(entry);
3671     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3672     // By using a local it survives the call to the C routine.
3673     __ delayed()->mov( Lmonitors, Lscratch );
3674 
3675     __ bind( loop );
3676 
3677     __ verify_oop(O4);          // verify each monitor's oop
3678     __ cmp(O4, O0); // check if current entry is for desired object
3679     __ brx( Assembler::equal, true, Assembler::pt, found );
3680     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3681 
3682     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3683 
3684     __ bind( entry );
3685 
3686     __ cmp( Lscratch, O2 );
3687     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3688     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3689 
3690     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3691     __ should_not_reach_here();
3692 
3693     __ bind(found);
3694   }
3695   __ unlock_object(O1);
3696 }
3697 
3698 
3699 //----------------------------------------------------------------------------------------------------
3700 // Wide instructions
3701 
3702 void TemplateTable::wide() {
3703   transition(vtos, vtos);
3704   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3705   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3706   AddressLiteral ep(Interpreter::_wentry_point);
3707   __ set(ep, G4_scratch);
3708   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3709   __ jmp(G3_scratch, G0);
3710   __ delayed()->nop();
3711   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3712 }
3713 
3714 
3715 //----------------------------------------------------------------------------------------------------
3716 // Multi arrays
3717 
3718 void TemplateTable::multianewarray() {
3719   transition(vtos, atos);
3720      // put ndims * wordSize into Lscratch
3721   __ ldub( Lbcp,     3,               Lscratch);
3722   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3723      // Lesp points past last_dim, so set to O1 to first_dim address
3724   __ add(  Lesp,     Lscratch,        O1);
3725      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3726   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3727 }