1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 
  45 
  46 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  47 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  48 // fast versions of NegF/NegD and AbsF/AbsD.
  49 
  50 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  51 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  52   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  53   // of 128-bits operands for SSE instructions.
  54   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  55   // Store the value to a 128-bits operand.
  56   operand[0] = lo;
  57   operand[1] = hi;
  58   return operand;
  59 }
  60 
  61 // Buffer for 128-bits masks used by SSE instructions.
  62 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  63 
  64 // Static initialization during VM startup.
  65 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  66 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  67 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  68 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  69 
  70 
  71 
  72 NEEDS_CLEANUP // remove this definitions ?
  73 const Register IC_Klass    = rax;   // where the IC klass is cached
  74 const Register SYNC_header = rax;   // synchronization header
  75 const Register SHIFT_count = rcx;   // where count for shift operations must be
  76 
  77 #define __ _masm->
  78 
  79 
  80 static void select_different_registers(Register preserve,
  81                                        Register extra,
  82                                        Register &tmp1,
  83                                        Register &tmp2) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, extra);
  89     tmp2 = extra;
  90   }
  91   assert_different_registers(preserve, tmp1, tmp2);
  92 }
  93 
  94 
  95 
  96 static void select_different_registers(Register preserve,
  97                                        Register extra,
  98                                        Register &tmp1,
  99                                        Register &tmp2,
 100                                        Register &tmp3) {
 101   if (tmp1 == preserve) {
 102     assert_different_registers(tmp1, tmp2, tmp3, extra);
 103     tmp1 = extra;
 104   } else if (tmp2 == preserve) {
 105     assert_different_registers(tmp1, tmp2, tmp3, extra);
 106     tmp2 = extra;
 107   } else if (tmp3 == preserve) {
 108     assert_different_registers(tmp1, tmp2, tmp3, extra);
 109     tmp3 = extra;
 110   }
 111   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 112 }
 113 
 114 
 115 
 116 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 117   if (opr->is_constant()) {
 118     LIR_Const* constant = opr->as_constant_ptr();
 119     switch (constant->type()) {
 120       case T_INT: {
 121         return true;
 122       }
 123 
 124       default:
 125         return false;
 126     }
 127   }
 128   return false;
 129 }
 130 
 131 
 132 LIR_Opr LIR_Assembler::receiverOpr() {
 133   return FrameMap::receiver_opr;
 134 }
 135 
 136 LIR_Opr LIR_Assembler::osrBufferPointer() {
 137   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 138 }
 139 
 140 //--------------fpu register translations-----------------------
 141 
 142 
 143 address LIR_Assembler::float_constant(float f) {
 144   address const_addr = __ float_constant(f);
 145   if (const_addr == NULL) {
 146     bailout("const section overflow");
 147     return __ code()->consts()->start();
 148   } else {
 149     return const_addr;
 150   }
 151 }
 152 
 153 
 154 address LIR_Assembler::double_constant(double d) {
 155   address const_addr = __ double_constant(d);
 156   if (const_addr == NULL) {
 157     bailout("const section overflow");
 158     return __ code()->consts()->start();
 159   } else {
 160     return const_addr;
 161   }
 162 }
 163 
 164 
 165 void LIR_Assembler::set_24bit_FPU() {
 166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 167 }
 168 
 169 void LIR_Assembler::reset_FPU() {
 170   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 171 }
 172 
 173 void LIR_Assembler::fpop() {
 174   __ fpop();
 175 }
 176 
 177 void LIR_Assembler::fxch(int i) {
 178   __ fxch(i);
 179 }
 180 
 181 void LIR_Assembler::fld(int i) {
 182   __ fld_s(i);
 183 }
 184 
 185 void LIR_Assembler::ffree(int i) {
 186   __ ffree(i);
 187 }
 188 
 189 void LIR_Assembler::breakpoint() {
 190   __ int3();
 191 }
 192 
 193 void LIR_Assembler::push(LIR_Opr opr) {
 194   if (opr->is_single_cpu()) {
 195     __ push_reg(opr->as_register());
 196   } else if (opr->is_double_cpu()) {
 197     NOT_LP64(__ push_reg(opr->as_register_hi()));
 198     __ push_reg(opr->as_register_lo());
 199   } else if (opr->is_stack()) {
 200     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 201   } else if (opr->is_constant()) {
 202     LIR_Const* const_opr = opr->as_constant_ptr();
 203     if (const_opr->type() == T_OBJECT) {
 204       __ push_oop(const_opr->as_jobject());
 205     } else if (const_opr->type() == T_INT) {
 206       __ push_jint(const_opr->as_jint());
 207     } else {
 208       ShouldNotReachHere();
 209     }
 210 
 211   } else {
 212     ShouldNotReachHere();
 213   }
 214 }
 215 
 216 void LIR_Assembler::pop(LIR_Opr opr) {
 217   if (opr->is_single_cpu()) {
 218     __ pop_reg(opr->as_register());
 219   } else {
 220     ShouldNotReachHere();
 221   }
 222 }
 223 
 224 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 225   return addr->base()->is_illegal() && addr->index()->is_illegal();
 226 }
 227 
 228 //-------------------------------------------
 229 
 230 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 231   return as_Address(addr, rscratch1);
 232 }
 233 
 234 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 235   if (addr->base()->is_illegal()) {
 236     assert(addr->index()->is_illegal(), "must be illegal too");
 237     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 238     if (! __ reachable(laddr)) {
 239       __ movptr(tmp, laddr.addr());
 240       Address res(tmp, 0);
 241       return res;
 242     } else {
 243       return __ as_Address(laddr);
 244     }
 245   }
 246 
 247   Register base = addr->base()->as_pointer_register();
 248 
 249   if (addr->index()->is_illegal()) {
 250     return Address( base, addr->disp());
 251   } else if (addr->index()->is_cpu_register()) {
 252     Register index = addr->index()->as_pointer_register();
 253     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 254   } else if (addr->index()->is_constant()) {
 255     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 256     assert(Assembler::is_simm32(addr_offset), "must be");
 257 
 258     return Address(base, addr_offset);
 259   } else {
 260     Unimplemented();
 261     return Address();
 262   }
 263 }
 264 
 265 
 266 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 267   Address base = as_Address(addr);
 268   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 269 }
 270 
 271 
 272 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 273   return as_Address(addr);
 274 }
 275 
 276 
 277 void LIR_Assembler::osr_entry() {
 278   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 279   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 280   ValueStack* entry_state = osr_entry->state();
 281   int number_of_locks = entry_state->locks_size();
 282 
 283   // we jump here if osr happens with the interpreter
 284   // state set up to continue at the beginning of the
 285   // loop that triggered osr - in particular, we have
 286   // the following registers setup:
 287   //
 288   // rcx: osr buffer
 289   //
 290 
 291   // build frame
 292   ciMethod* m = compilation()->method();
 293   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 294 
 295   // OSR buffer is
 296   //
 297   // locals[nlocals-1..0]
 298   // monitors[0..number_of_locks]
 299   //
 300   // locals is a direct copy of the interpreter frame so in the osr buffer
 301   // so first slot in the local array is the last local from the interpreter
 302   // and last slot is local[0] (receiver) from the interpreter
 303   //
 304   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 305   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 306   // in the interpreter frame (the method lock if a sync method)
 307 
 308   // Initialize monitors in the compiled activation.
 309   //   rcx: pointer to osr buffer
 310   //
 311   // All other registers are dead at this point and the locals will be
 312   // copied into place by code emitted in the IR.
 313 
 314   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 315   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 316     int monitor_offset = BytesPerWord * method()->max_locals() +
 317       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 318     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 319     // the OSR buffer using 2 word entries: first the lock and then
 320     // the oop.
 321     for (int i = 0; i < number_of_locks; i++) {
 322       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 323 #ifdef ASSERT
 324       // verify the interpreter's monitor has a non-null object
 325       {
 326         Label L;
 327         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 328         __ jcc(Assembler::notZero, L);
 329         __ stop("locked object is NULL");
 330         __ bind(L);
 331       }
 332 #endif
 333       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 334       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 335       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 336       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 337     }
 338   }
 339 }
 340 
 341 
 342 // inline cache check; done before the frame is built.
 343 int LIR_Assembler::check_icache() {
 344   Register receiver = FrameMap::receiver_opr->as_register();
 345   Register ic_klass = IC_Klass;
 346   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 347   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 348   if (!do_post_padding) {
 349     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 350     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 351   }
 352   int offset = __ offset();
 353   __ inline_cache_check(receiver, IC_Klass);
 354   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 355   if (do_post_padding) {
 356     // force alignment after the cache check.
 357     // It's been verified to be aligned if !VerifyOops
 358     __ align(CodeEntryAlignment);
 359   }
 360   return offset;
 361 }
 362 
 363 
 364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 365   jobject o = NULL;
 366   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 367   __ movoop(reg, o);
 368   patching_epilog(patch, lir_patch_normal, reg, info);
 369 }
 370 
 371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 372   Metadata* o = NULL;
 373   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 374   __ mov_metadata(reg, o);
 375   patching_epilog(patch, lir_patch_normal, reg, info);
 376 }
 377 
 378 // This specifies the rsp decrement needed to build the frame
 379 int LIR_Assembler::initial_frame_size_in_bytes() const {
 380   // if rounding, must let FrameMap know!
 381 
 382   // The frame_map records size in slots (32bit word)
 383 
 384   // subtract two words to account for return address and link
 385   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 386 }
 387 
 388 
 389 int LIR_Assembler::emit_exception_handler() {
 390   // if the last instruction is a call (typically to do a throw which
 391   // is coming at the end after block reordering) the return address
 392   // must still point into the code area in order to avoid assertion
 393   // failures when searching for the corresponding bci => add a nop
 394   // (was bug 5/14/1999 - gri)
 395   __ nop();
 396 
 397   // generate code for exception handler
 398   address handler_base = __ start_a_stub(exception_handler_size());
 399   if (handler_base == NULL) {
 400     // not enough space left for the handler
 401     bailout("exception handler overflow");
 402     return -1;
 403   }
 404 
 405   int offset = code_offset();
 406 
 407   // the exception oop and pc are in rax, and rdx
 408   // no other registers need to be preserved, so invalidate them
 409   __ invalidate_registers(false, true, true, false, true, true);
 410 
 411   // check that there is really an exception
 412   __ verify_not_null_oop(rax);
 413 
 414   // search an exception handler (rax: exception oop, rdx: throwing pc)
 415   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 416   __ should_not_reach_here();
 417   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 418   __ end_a_stub();
 419 
 420   return offset;
 421 }
 422 
 423 
 424 // Emit the code to remove the frame from the stack in the exception
 425 // unwind path.
 426 int LIR_Assembler::emit_unwind_handler() {
 427 #ifndef PRODUCT
 428   if (CommentedAssembly) {
 429     _masm->block_comment("Unwind handler");
 430   }
 431 #endif
 432 
 433   int offset = code_offset();
 434 
 435   // Fetch the exception from TLS and clear out exception related thread state
 436   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 437   NOT_LP64(__ get_thread(rsi));
 438   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 439   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 440   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 441 
 442   __ bind(_unwind_handler_entry);
 443   __ verify_not_null_oop(rax);
 444   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 445     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 446   }
 447 
 448   // Preform needed unlocking
 449   MonitorExitStub* stub = NULL;
 450   if (method()->is_synchronized()) {
 451     monitor_address(0, FrameMap::rax_opr);
 452     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 453     __ unlock_object(rdi, rsi, rax, *stub->entry());
 454     __ bind(*stub->continuation());
 455   }
 456 
 457   if (compilation()->env()->dtrace_method_probes()) {
 458 #ifdef _LP64
 459     __ mov(rdi, r15_thread);
 460     __ mov_metadata(rsi, method()->constant_encoding());
 461 #else
 462     __ get_thread(rax);
 463     __ movptr(Address(rsp, 0), rax);
 464     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 465 #endif
 466     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 467   }
 468 
 469   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 470     __ mov(rax, rbx);  // Restore the exception
 471   }
 472 
 473   // remove the activation and dispatch to the unwind handler
 474   __ remove_frame(initial_frame_size_in_bytes());
 475   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 476 
 477   // Emit the slow path assembly
 478   if (stub != NULL) {
 479     stub->emit_code(this);
 480   }
 481 
 482   return offset;
 483 }
 484 
 485 
 486 int LIR_Assembler::emit_deopt_handler() {
 487   // if the last instruction is a call (typically to do a throw which
 488   // is coming at the end after block reordering) the return address
 489   // must still point into the code area in order to avoid assertion
 490   // failures when searching for the corresponding bci => add a nop
 491   // (was bug 5/14/1999 - gri)
 492   __ nop();
 493 
 494   // generate code for exception handler
 495   address handler_base = __ start_a_stub(deopt_handler_size());
 496   if (handler_base == NULL) {
 497     // not enough space left for the handler
 498     bailout("deopt handler overflow");
 499     return -1;
 500   }
 501 
 502   int offset = code_offset();
 503   InternalAddress here(__ pc());
 504 
 505   __ pushptr(here.addr());
 506   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 507   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 508   __ end_a_stub();
 509 
 510   return offset;
 511 }
 512 
 513 
 514 void LIR_Assembler::return_op(LIR_Opr result) {
 515   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 516   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 517     assert(result->fpu() == 0, "result must already be on TOS");
 518   }
 519 
 520   // Pop the stack before the safepoint code
 521   __ remove_frame(initial_frame_size_in_bytes());
 522 
 523   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 524     __ reserved_stack_check();
 525   }
 526 
 527   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 528 
 529   // Note: we do not need to round double result; float result has the right precision
 530   // the poll sets the condition code, but no data registers
 531 
 532   if (SafepointMechanism::uses_thread_local_poll()) {
 533 #ifdef _LP64
 534     const Register poll_addr = rscratch1;
 535     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 536 #else
 537     const Register poll_addr = rbx;
 538     assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
 539     __ get_thread(poll_addr);
 540     __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
 541 #endif
 542     __ relocate(relocInfo::poll_return_type);
 543     __ testl(rax, Address(poll_addr, 0));
 544   } else {
 545     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 546 
 547     if (Assembler::is_polling_page_far()) {
 548       __ lea(rscratch1, polling_page);
 549       __ relocate(relocInfo::poll_return_type);
 550       __ testl(rax, Address(rscratch1, 0));
 551     } else {
 552       __ testl(rax, polling_page);
 553     }
 554   }
 555   __ ret(0);
 556 }
 557 
 558 
 559 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 560   guarantee(info != NULL, "Shouldn't be NULL");
 561   int offset = __ offset();
 562   if (SafepointMechanism::uses_thread_local_poll()) {
 563 #ifdef _LP64
 564     const Register poll_addr = rscratch1;
 565     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 566 #else
 567     assert(tmp->is_cpu_register(), "needed");
 568     const Register poll_addr = tmp->as_register();
 569     __ get_thread(poll_addr);
 570     __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
 571 #endif
 572     add_debug_info_for_branch(info);
 573     __ relocate(relocInfo::poll_type);
 574     address pre_pc = __ pc();
 575     __ testl(rax, Address(poll_addr, 0));
 576     address post_pc = __ pc();
 577     guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 578   } else {
 579     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 580     if (Assembler::is_polling_page_far()) {
 581       __ lea(rscratch1, polling_page);
 582       offset = __ offset();
 583       add_debug_info_for_branch(info);
 584       __ relocate(relocInfo::poll_type);
 585       __ testl(rax, Address(rscratch1, 0));
 586     } else {
 587       add_debug_info_for_branch(info);
 588       __ testl(rax, polling_page);
 589     }
 590   }
 591   return offset;
 592 }
 593 
 594 
 595 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 596   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 597 }
 598 
 599 void LIR_Assembler::swap_reg(Register a, Register b) {
 600   __ xchgptr(a, b);
 601 }
 602 
 603 
 604 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 605   assert(src->is_constant(), "should not call otherwise");
 606   assert(dest->is_register(), "should not call otherwise");
 607   LIR_Const* c = src->as_constant_ptr();
 608 
 609   switch (c->type()) {
 610     case T_INT: {
 611       assert(patch_code == lir_patch_none, "no patching handled here");
 612       __ movl(dest->as_register(), c->as_jint());
 613       break;
 614     }
 615 
 616     case T_ADDRESS: {
 617       assert(patch_code == lir_patch_none, "no patching handled here");
 618       __ movptr(dest->as_register(), c->as_jint());
 619       break;
 620     }
 621 
 622     case T_LONG: {
 623       assert(patch_code == lir_patch_none, "no patching handled here");
 624 #ifdef _LP64
 625       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 626 #else
 627       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 628       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 629 #endif // _LP64
 630       break;
 631     }
 632 
 633     case T_OBJECT: {
 634       if (patch_code != lir_patch_none) {
 635         jobject2reg_with_patching(dest->as_register(), info);
 636       } else {
 637         __ movoop(dest->as_register(), c->as_jobject());
 638       }
 639       break;
 640     }
 641 
 642     case T_METADATA: {
 643       if (patch_code != lir_patch_none) {
 644         klass2reg_with_patching(dest->as_register(), info);
 645       } else {
 646         __ mov_metadata(dest->as_register(), c->as_metadata());
 647       }
 648       break;
 649     }
 650 
 651     case T_FLOAT: {
 652       if (dest->is_single_xmm()) {
 653         if (c->is_zero_float()) {
 654           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 655         } else {
 656           __ movflt(dest->as_xmm_float_reg(),
 657                    InternalAddress(float_constant(c->as_jfloat())));
 658         }
 659       } else {
 660         assert(dest->is_single_fpu(), "must be");
 661         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 662         if (c->is_zero_float()) {
 663           __ fldz();
 664         } else if (c->is_one_float()) {
 665           __ fld1();
 666         } else {
 667           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 668         }
 669       }
 670       break;
 671     }
 672 
 673     case T_DOUBLE: {
 674       if (dest->is_double_xmm()) {
 675         if (c->is_zero_double()) {
 676           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 677         } else {
 678           __ movdbl(dest->as_xmm_double_reg(),
 679                     InternalAddress(double_constant(c->as_jdouble())));
 680         }
 681       } else {
 682         assert(dest->is_double_fpu(), "must be");
 683         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 684         if (c->is_zero_double()) {
 685           __ fldz();
 686         } else if (c->is_one_double()) {
 687           __ fld1();
 688         } else {
 689           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 690         }
 691       }
 692       break;
 693     }
 694 
 695     default:
 696       ShouldNotReachHere();
 697   }
 698 }
 699 
 700 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 701   assert(src->is_constant(), "should not call otherwise");
 702   assert(dest->is_stack(), "should not call otherwise");
 703   LIR_Const* c = src->as_constant_ptr();
 704 
 705   switch (c->type()) {
 706     case T_INT:  // fall through
 707     case T_FLOAT:
 708       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 709       break;
 710 
 711     case T_ADDRESS:
 712       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 713       break;
 714 
 715     case T_OBJECT:
 716       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 717       break;
 718 
 719     case T_LONG:  // fall through
 720     case T_DOUBLE:
 721 #ifdef _LP64
 722       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 723                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 724 #else
 725       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 726                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 727       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 728                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 729 #endif // _LP64
 730       break;
 731 
 732     default:
 733       ShouldNotReachHere();
 734   }
 735 }
 736 
 737 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 738   assert(src->is_constant(), "should not call otherwise");
 739   assert(dest->is_address(), "should not call otherwise");
 740   LIR_Const* c = src->as_constant_ptr();
 741   LIR_Address* addr = dest->as_address_ptr();
 742 
 743   int null_check_here = code_offset();
 744   switch (type) {
 745     case T_INT:    // fall through
 746     case T_FLOAT:
 747       __ movl(as_Address(addr), c->as_jint_bits());
 748       break;
 749 
 750     case T_ADDRESS:
 751       __ movptr(as_Address(addr), c->as_jint_bits());
 752       break;
 753 
 754     case T_OBJECT:  // fall through
 755     case T_ARRAY:
 756       if (c->as_jobject() == NULL) {
 757         if (UseCompressedOops && !wide) {
 758           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 759         } else {
 760 #ifdef _LP64
 761           __ xorptr(rscratch1, rscratch1);
 762           null_check_here = code_offset();
 763           __ movptr(as_Address(addr), rscratch1);
 764 #else
 765           __ movptr(as_Address(addr), NULL_WORD);
 766 #endif
 767         }
 768       } else {
 769         if (is_literal_address(addr)) {
 770           ShouldNotReachHere();
 771           __ movoop(as_Address(addr, noreg), c->as_jobject());
 772         } else {
 773 #ifdef _LP64
 774           __ movoop(rscratch1, c->as_jobject());
 775           if (UseCompressedOops && !wide) {
 776             __ encode_heap_oop(rscratch1);
 777             null_check_here = code_offset();
 778             __ movl(as_Address_lo(addr), rscratch1);
 779           } else {
 780             null_check_here = code_offset();
 781             __ movptr(as_Address_lo(addr), rscratch1);
 782           }
 783 #else
 784           __ movoop(as_Address(addr), c->as_jobject());
 785 #endif
 786         }
 787       }
 788       break;
 789 
 790     case T_LONG:    // fall through
 791     case T_DOUBLE:
 792 #ifdef _LP64
 793       if (is_literal_address(addr)) {
 794         ShouldNotReachHere();
 795         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 796       } else {
 797         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 798         null_check_here = code_offset();
 799         __ movptr(as_Address_lo(addr), r10);
 800       }
 801 #else
 802       // Always reachable in 32bit so this doesn't produce useless move literal
 803       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 804       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 805 #endif // _LP64
 806       break;
 807 
 808     case T_BOOLEAN: // fall through
 809     case T_BYTE:
 810       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 811       break;
 812 
 813     case T_CHAR:    // fall through
 814     case T_SHORT:
 815       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 816       break;
 817 
 818     default:
 819       ShouldNotReachHere();
 820   };
 821 
 822   if (info != NULL) {
 823     add_debug_info_for_null_check(null_check_here, info);
 824   }
 825 }
 826 
 827 
 828 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 829   assert(src->is_register(), "should not call otherwise");
 830   assert(dest->is_register(), "should not call otherwise");
 831 
 832   // move between cpu-registers
 833   if (dest->is_single_cpu()) {
 834 #ifdef _LP64
 835     if (src->type() == T_LONG) {
 836       // Can do LONG -> OBJECT
 837       move_regs(src->as_register_lo(), dest->as_register());
 838       return;
 839     }
 840 #endif
 841     assert(src->is_single_cpu(), "must match");
 842     if (src->type() == T_OBJECT) {
 843       __ verify_oop(src->as_register());
 844     }
 845     move_regs(src->as_register(), dest->as_register());
 846 
 847   } else if (dest->is_double_cpu()) {
 848 #ifdef _LP64
 849     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 850       // Surprising to me but we can see move of a long to t_object
 851       __ verify_oop(src->as_register());
 852       move_regs(src->as_register(), dest->as_register_lo());
 853       return;
 854     }
 855 #endif
 856     assert(src->is_double_cpu(), "must match");
 857     Register f_lo = src->as_register_lo();
 858     Register f_hi = src->as_register_hi();
 859     Register t_lo = dest->as_register_lo();
 860     Register t_hi = dest->as_register_hi();
 861 #ifdef _LP64
 862     assert(f_hi == f_lo, "must be same");
 863     assert(t_hi == t_lo, "must be same");
 864     move_regs(f_lo, t_lo);
 865 #else
 866     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 867 
 868 
 869     if (f_lo == t_hi && f_hi == t_lo) {
 870       swap_reg(f_lo, f_hi);
 871     } else if (f_hi == t_lo) {
 872       assert(f_lo != t_hi, "overwriting register");
 873       move_regs(f_hi, t_hi);
 874       move_regs(f_lo, t_lo);
 875     } else {
 876       assert(f_hi != t_lo, "overwriting register");
 877       move_regs(f_lo, t_lo);
 878       move_regs(f_hi, t_hi);
 879     }
 880 #endif // LP64
 881 
 882     // special moves from fpu-register to xmm-register
 883     // necessary for method results
 884   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 885     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 886     __ fld_s(Address(rsp, 0));
 887   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 888     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 889     __ fld_d(Address(rsp, 0));
 890   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 891     __ fstp_s(Address(rsp, 0));
 892     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 893   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 894     __ fstp_d(Address(rsp, 0));
 895     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 896 
 897     // move between xmm-registers
 898   } else if (dest->is_single_xmm()) {
 899     assert(src->is_single_xmm(), "must match");
 900     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 901   } else if (dest->is_double_xmm()) {
 902     assert(src->is_double_xmm(), "must match");
 903     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 904 
 905     // move between fpu-registers (no instruction necessary because of fpu-stack)
 906   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 907     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 908     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 909   } else {
 910     ShouldNotReachHere();
 911   }
 912 }
 913 
 914 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 915   assert(src->is_register(), "should not call otherwise");
 916   assert(dest->is_stack(), "should not call otherwise");
 917 
 918   if (src->is_single_cpu()) {
 919     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 920     if (type == T_OBJECT || type == T_ARRAY) {
 921       __ verify_oop(src->as_register());
 922       __ movptr (dst, src->as_register());
 923     } else if (type == T_METADATA) {
 924       __ movptr (dst, src->as_register());
 925     } else {
 926       __ movl (dst, src->as_register());
 927     }
 928 
 929   } else if (src->is_double_cpu()) {
 930     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 931     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 932     __ movptr (dstLO, src->as_register_lo());
 933     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 934 
 935   } else if (src->is_single_xmm()) {
 936     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 937     __ movflt(dst_addr, src->as_xmm_float_reg());
 938 
 939   } else if (src->is_double_xmm()) {
 940     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 941     __ movdbl(dst_addr, src->as_xmm_double_reg());
 942 
 943   } else if (src->is_single_fpu()) {
 944     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 945     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 946     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 947     else                   __ fst_s  (dst_addr);
 948 
 949   } else if (src->is_double_fpu()) {
 950     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 951     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 952     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 953     else                   __ fst_d  (dst_addr);
 954 
 955   } else {
 956     ShouldNotReachHere();
 957   }
 958 }
 959 
 960 
 961 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 962   LIR_Address* to_addr = dest->as_address_ptr();
 963   PatchingStub* patch = NULL;
 964   Register compressed_src = rscratch1;
 965 
 966   if (type == T_ARRAY || type == T_OBJECT) {
 967     __ verify_oop(src->as_register());
 968 #ifdef _LP64
 969     if (UseCompressedOops && !wide) {
 970       __ movptr(compressed_src, src->as_register());
 971       __ encode_heap_oop(compressed_src);
 972       if (patch_code != lir_patch_none) {
 973         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 974       }
 975     }
 976 #endif
 977   }
 978 
 979   if (patch_code != lir_patch_none) {
 980     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 981     Address toa = as_Address(to_addr);
 982     assert(toa.disp() != 0, "must have");
 983   }
 984 
 985   int null_check_here = code_offset();
 986   switch (type) {
 987     case T_FLOAT: {
 988       if (src->is_single_xmm()) {
 989         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 990       } else {
 991         assert(src->is_single_fpu(), "must be");
 992         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 993         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 994         else                    __ fst_s (as_Address(to_addr));
 995       }
 996       break;
 997     }
 998 
 999     case T_DOUBLE: {
1000       if (src->is_double_xmm()) {
1001         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1002       } else {
1003         assert(src->is_double_fpu(), "must be");
1004         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1005         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1006         else                    __ fst_d (as_Address(to_addr));
1007       }
1008       break;
1009     }
1010 
1011     case T_ARRAY:   // fall through
1012     case T_OBJECT:  // fall through
1013       if (UseCompressedOops && !wide) {
1014         __ movl(as_Address(to_addr), compressed_src);
1015       } else {
1016         __ movptr(as_Address(to_addr), src->as_register());
1017       }
1018       break;
1019     case T_METADATA:
1020       // We get here to store a method pointer to the stack to pass to
1021       // a dtrace runtime call. This can't work on 64 bit with
1022       // compressed klass ptrs: T_METADATA can be a compressed klass
1023       // ptr or a 64 bit method pointer.
1024       LP64_ONLY(ShouldNotReachHere());
1025       __ movptr(as_Address(to_addr), src->as_register());
1026       break;
1027     case T_ADDRESS:
1028       __ movptr(as_Address(to_addr), src->as_register());
1029       break;
1030     case T_INT:
1031       __ movl(as_Address(to_addr), src->as_register());
1032       break;
1033 
1034     case T_LONG: {
1035       Register from_lo = src->as_register_lo();
1036       Register from_hi = src->as_register_hi();
1037 #ifdef _LP64
1038       __ movptr(as_Address_lo(to_addr), from_lo);
1039 #else
1040       Register base = to_addr->base()->as_register();
1041       Register index = noreg;
1042       if (to_addr->index()->is_register()) {
1043         index = to_addr->index()->as_register();
1044       }
1045       if (base == from_lo || index == from_lo) {
1046         assert(base != from_hi, "can't be");
1047         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1048         __ movl(as_Address_hi(to_addr), from_hi);
1049         if (patch != NULL) {
1050           patching_epilog(patch, lir_patch_high, base, info);
1051           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1052           patch_code = lir_patch_low;
1053         }
1054         __ movl(as_Address_lo(to_addr), from_lo);
1055       } else {
1056         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1057         __ movl(as_Address_lo(to_addr), from_lo);
1058         if (patch != NULL) {
1059           patching_epilog(patch, lir_patch_low, base, info);
1060           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1061           patch_code = lir_patch_high;
1062         }
1063         __ movl(as_Address_hi(to_addr), from_hi);
1064       }
1065 #endif // _LP64
1066       break;
1067     }
1068 
1069     case T_BYTE:    // fall through
1070     case T_BOOLEAN: {
1071       Register src_reg = src->as_register();
1072       Address dst_addr = as_Address(to_addr);
1073       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1074       __ movb(dst_addr, src_reg);
1075       break;
1076     }
1077 
1078     case T_CHAR:    // fall through
1079     case T_SHORT:
1080       __ movw(as_Address(to_addr), src->as_register());
1081       break;
1082 
1083     default:
1084       ShouldNotReachHere();
1085   }
1086   if (info != NULL) {
1087     add_debug_info_for_null_check(null_check_here, info);
1088   }
1089 
1090   if (patch_code != lir_patch_none) {
1091     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1092   }
1093 }
1094 
1095 
1096 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1097   assert(src->is_stack(), "should not call otherwise");
1098   assert(dest->is_register(), "should not call otherwise");
1099 
1100   if (dest->is_single_cpu()) {
1101     if (type == T_ARRAY || type == T_OBJECT) {
1102       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1103       __ verify_oop(dest->as_register());
1104     } else if (type == T_METADATA) {
1105       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1106     } else {
1107       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1108     }
1109 
1110   } else if (dest->is_double_cpu()) {
1111     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1112     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1113     __ movptr(dest->as_register_lo(), src_addr_LO);
1114     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1115 
1116   } else if (dest->is_single_xmm()) {
1117     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1118     __ movflt(dest->as_xmm_float_reg(), src_addr);
1119 
1120   } else if (dest->is_double_xmm()) {
1121     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1122     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1123 
1124   } else if (dest->is_single_fpu()) {
1125     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1126     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1127     __ fld_s(src_addr);
1128 
1129   } else if (dest->is_double_fpu()) {
1130     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1131     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1132     __ fld_d(src_addr);
1133 
1134   } else {
1135     ShouldNotReachHere();
1136   }
1137 }
1138 
1139 
1140 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1141   if (src->is_single_stack()) {
1142     if (type == T_OBJECT || type == T_ARRAY) {
1143       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1144       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1145     } else {
1146 #ifndef _LP64
1147       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1148       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1149 #else
1150       //no pushl on 64bits
1151       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1152       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1153 #endif
1154     }
1155 
1156   } else if (src->is_double_stack()) {
1157 #ifdef _LP64
1158     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1159     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1160 #else
1161     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1162     // push and pop the part at src + wordSize, adding wordSize for the previous push
1163     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1164     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1165     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1166 #endif // _LP64
1167 
1168   } else {
1169     ShouldNotReachHere();
1170   }
1171 }
1172 
1173 
1174 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1175   assert(src->is_address(), "should not call otherwise");
1176   assert(dest->is_register(), "should not call otherwise");
1177 
1178   LIR_Address* addr = src->as_address_ptr();
1179   Address from_addr = as_Address(addr);
1180 
1181   if (addr->base()->type() == T_OBJECT) {
1182     __ verify_oop(addr->base()->as_pointer_register());
1183   }
1184 
1185   switch (type) {
1186     case T_BOOLEAN: // fall through
1187     case T_BYTE:    // fall through
1188     case T_CHAR:    // fall through
1189     case T_SHORT:
1190       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1191         // on pre P6 processors we may get partial register stalls
1192         // so blow away the value of to_rinfo before loading a
1193         // partial word into it.  Do it here so that it precedes
1194         // the potential patch point below.
1195         __ xorptr(dest->as_register(), dest->as_register());
1196       }
1197       break;
1198    default:
1199      break;
1200   }
1201 
1202   PatchingStub* patch = NULL;
1203   if (patch_code != lir_patch_none) {
1204     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1205     assert(from_addr.disp() != 0, "must have");
1206   }
1207   if (info != NULL) {
1208     add_debug_info_for_null_check_here(info);
1209   }
1210 
1211   switch (type) {
1212     case T_FLOAT: {
1213       if (dest->is_single_xmm()) {
1214         __ movflt(dest->as_xmm_float_reg(), from_addr);
1215       } else {
1216         assert(dest->is_single_fpu(), "must be");
1217         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1218         __ fld_s(from_addr);
1219       }
1220       break;
1221     }
1222 
1223     case T_DOUBLE: {
1224       if (dest->is_double_xmm()) {
1225         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1226       } else {
1227         assert(dest->is_double_fpu(), "must be");
1228         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1229         __ fld_d(from_addr);
1230       }
1231       break;
1232     }
1233 
1234     case T_OBJECT:  // fall through
1235     case T_ARRAY:   // fall through
1236       if (UseCompressedOops && !wide) {
1237         __ movl(dest->as_register(), from_addr);
1238       } else {
1239         __ movptr(dest->as_register(), from_addr);
1240       }
1241       break;
1242 
1243     case T_ADDRESS:
1244       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1245         __ movl(dest->as_register(), from_addr);
1246       } else {
1247         __ movptr(dest->as_register(), from_addr);
1248       }
1249       break;
1250     case T_INT:
1251       __ movl(dest->as_register(), from_addr);
1252       break;
1253 
1254     case T_LONG: {
1255       Register to_lo = dest->as_register_lo();
1256       Register to_hi = dest->as_register_hi();
1257 #ifdef _LP64
1258       __ movptr(to_lo, as_Address_lo(addr));
1259 #else
1260       Register base = addr->base()->as_register();
1261       Register index = noreg;
1262       if (addr->index()->is_register()) {
1263         index = addr->index()->as_register();
1264       }
1265       if ((base == to_lo && index == to_hi) ||
1266           (base == to_hi && index == to_lo)) {
1267         // addresses with 2 registers are only formed as a result of
1268         // array access so this code will never have to deal with
1269         // patches or null checks.
1270         assert(info == NULL && patch == NULL, "must be");
1271         __ lea(to_hi, as_Address(addr));
1272         __ movl(to_lo, Address(to_hi, 0));
1273         __ movl(to_hi, Address(to_hi, BytesPerWord));
1274       } else if (base == to_lo || index == to_lo) {
1275         assert(base != to_hi, "can't be");
1276         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1277         __ movl(to_hi, as_Address_hi(addr));
1278         if (patch != NULL) {
1279           patching_epilog(patch, lir_patch_high, base, info);
1280           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1281           patch_code = lir_patch_low;
1282         }
1283         __ movl(to_lo, as_Address_lo(addr));
1284       } else {
1285         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1286         __ movl(to_lo, as_Address_lo(addr));
1287         if (patch != NULL) {
1288           patching_epilog(patch, lir_patch_low, base, info);
1289           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1290           patch_code = lir_patch_high;
1291         }
1292         __ movl(to_hi, as_Address_hi(addr));
1293       }
1294 #endif // _LP64
1295       break;
1296     }
1297 
1298     case T_BOOLEAN: // fall through
1299     case T_BYTE: {
1300       Register dest_reg = dest->as_register();
1301       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1302       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1303         __ movsbl(dest_reg, from_addr);
1304       } else {
1305         __ movb(dest_reg, from_addr);
1306         __ shll(dest_reg, 24);
1307         __ sarl(dest_reg, 24);
1308       }
1309       break;
1310     }
1311 
1312     case T_CHAR: {
1313       Register dest_reg = dest->as_register();
1314       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1315       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1316         __ movzwl(dest_reg, from_addr);
1317       } else {
1318         __ movw(dest_reg, from_addr);
1319       }
1320       break;
1321     }
1322 
1323     case T_SHORT: {
1324       Register dest_reg = dest->as_register();
1325       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1326         __ movswl(dest_reg, from_addr);
1327       } else {
1328         __ movw(dest_reg, from_addr);
1329         __ shll(dest_reg, 16);
1330         __ sarl(dest_reg, 16);
1331       }
1332       break;
1333     }
1334 
1335     default:
1336       ShouldNotReachHere();
1337   }
1338 
1339   if (patch != NULL) {
1340     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1341   }
1342 
1343   if (type == T_ARRAY || type == T_OBJECT) {
1344 #ifdef _LP64
1345     if (UseCompressedOops && !wide) {
1346       __ decode_heap_oop(dest->as_register());
1347     }
1348 #endif
1349     __ verify_oop(dest->as_register());
1350   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1351 #ifdef _LP64
1352     if (UseCompressedClassPointers) {
1353       __ decode_klass_not_null(dest->as_register());
1354     }
1355 #endif
1356   }
1357 }
1358 
1359 
1360 NEEDS_CLEANUP; // This could be static?
1361 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1362   int elem_size = type2aelembytes(type);
1363   switch (elem_size) {
1364     case 1: return Address::times_1;
1365     case 2: return Address::times_2;
1366     case 4: return Address::times_4;
1367     case 8: return Address::times_8;
1368   }
1369   ShouldNotReachHere();
1370   return Address::no_scale;
1371 }
1372 
1373 
1374 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1375   switch (op->code()) {
1376     case lir_idiv:
1377     case lir_irem:
1378       arithmetic_idiv(op->code(),
1379                       op->in_opr1(),
1380                       op->in_opr2(),
1381                       op->in_opr3(),
1382                       op->result_opr(),
1383                       op->info());
1384       break;
1385     case lir_fmad:
1386       __ fmad(op->result_opr()->as_xmm_double_reg(),
1387               op->in_opr1()->as_xmm_double_reg(),
1388               op->in_opr2()->as_xmm_double_reg(),
1389               op->in_opr3()->as_xmm_double_reg());
1390       break;
1391     case lir_fmaf:
1392       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1393               op->in_opr1()->as_xmm_float_reg(),
1394               op->in_opr2()->as_xmm_float_reg(),
1395               op->in_opr3()->as_xmm_float_reg());
1396       break;
1397     default:      ShouldNotReachHere(); break;
1398   }
1399 }
1400 
1401 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1402 #ifdef ASSERT
1403   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1404   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1405   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1406 #endif
1407 
1408   if (op->cond() == lir_cond_always) {
1409     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1410     __ jmp (*(op->label()));
1411   } else {
1412     Assembler::Condition acond = Assembler::zero;
1413     if (op->code() == lir_cond_float_branch) {
1414       assert(op->ublock() != NULL, "must have unordered successor");
1415       __ jcc(Assembler::parity, *(op->ublock()->label()));
1416       switch(op->cond()) {
1417         case lir_cond_equal:        acond = Assembler::equal;      break;
1418         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1419         case lir_cond_less:         acond = Assembler::below;      break;
1420         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1421         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1422         case lir_cond_greater:      acond = Assembler::above;      break;
1423         default:                         ShouldNotReachHere();
1424       }
1425     } else {
1426       switch (op->cond()) {
1427         case lir_cond_equal:        acond = Assembler::equal;       break;
1428         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1429         case lir_cond_less:         acond = Assembler::less;        break;
1430         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1431         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1432         case lir_cond_greater:      acond = Assembler::greater;     break;
1433         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1434         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1435         default:                         ShouldNotReachHere();
1436       }
1437     }
1438     __ jcc(acond,*(op->label()));
1439   }
1440 }
1441 
1442 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1443   LIR_Opr src  = op->in_opr();
1444   LIR_Opr dest = op->result_opr();
1445 
1446   switch (op->bytecode()) {
1447     case Bytecodes::_i2l:
1448 #ifdef _LP64
1449       __ movl2ptr(dest->as_register_lo(), src->as_register());
1450 #else
1451       move_regs(src->as_register(), dest->as_register_lo());
1452       move_regs(src->as_register(), dest->as_register_hi());
1453       __ sarl(dest->as_register_hi(), 31);
1454 #endif // LP64
1455       break;
1456 
1457     case Bytecodes::_l2i:
1458 #ifdef _LP64
1459       __ movl(dest->as_register(), src->as_register_lo());
1460 #else
1461       move_regs(src->as_register_lo(), dest->as_register());
1462 #endif
1463       break;
1464 
1465     case Bytecodes::_i2b:
1466       move_regs(src->as_register(), dest->as_register());
1467       __ sign_extend_byte(dest->as_register());
1468       break;
1469 
1470     case Bytecodes::_i2c:
1471       move_regs(src->as_register(), dest->as_register());
1472       __ andl(dest->as_register(), 0xFFFF);
1473       break;
1474 
1475     case Bytecodes::_i2s:
1476       move_regs(src->as_register(), dest->as_register());
1477       __ sign_extend_short(dest->as_register());
1478       break;
1479 
1480 
1481     case Bytecodes::_f2d:
1482     case Bytecodes::_d2f:
1483       if (dest->is_single_xmm()) {
1484         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1485       } else if (dest->is_double_xmm()) {
1486         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1487       } else {
1488         assert(src->fpu() == dest->fpu(), "register must be equal");
1489         // do nothing (float result is rounded later through spilling)
1490       }
1491       break;
1492 
1493     case Bytecodes::_i2f:
1494     case Bytecodes::_i2d:
1495       if (dest->is_single_xmm()) {
1496         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1497       } else if (dest->is_double_xmm()) {
1498         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1499       } else {
1500         assert(dest->fpu() == 0, "result must be on TOS");
1501         __ movl(Address(rsp, 0), src->as_register());
1502         __ fild_s(Address(rsp, 0));
1503       }
1504       break;
1505 
1506     case Bytecodes::_f2i:
1507     case Bytecodes::_d2i:
1508       if (src->is_single_xmm()) {
1509         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1510       } else if (src->is_double_xmm()) {
1511         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1512       } else {
1513         assert(src->fpu() == 0, "input must be on TOS");
1514         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1515         __ fist_s(Address(rsp, 0));
1516         __ movl(dest->as_register(), Address(rsp, 0));
1517         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1518       }
1519 
1520       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1521       assert(op->stub() != NULL, "stub required");
1522       __ cmpl(dest->as_register(), 0x80000000);
1523       __ jcc(Assembler::equal, *op->stub()->entry());
1524       __ bind(*op->stub()->continuation());
1525       break;
1526 
1527     case Bytecodes::_l2f:
1528     case Bytecodes::_l2d:
1529       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1530       assert(dest->fpu() == 0, "result must be on TOS");
1531 
1532       __ movptr(Address(rsp, 0),            src->as_register_lo());
1533       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1534       __ fild_d(Address(rsp, 0));
1535       // float result is rounded later through spilling
1536       break;
1537 
1538     case Bytecodes::_f2l:
1539     case Bytecodes::_d2l:
1540       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1541       assert(src->fpu() == 0, "input must be on TOS");
1542       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1543 
1544       // instruction sequence too long to inline it here
1545       {
1546         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1547       }
1548       break;
1549 
1550     default: ShouldNotReachHere();
1551   }
1552 }
1553 
1554 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1555   if (op->init_check()) {
1556     add_debug_info_for_null_check_here(op->stub()->info());
1557     __ cmpb(Address(op->klass()->as_register(),
1558                     InstanceKlass::init_state_offset()),
1559                     InstanceKlass::fully_initialized);
1560     __ jcc(Assembler::notEqual, *op->stub()->entry());
1561   }
1562   __ allocate_object(op->obj()->as_register(),
1563                      op->tmp1()->as_register(),
1564                      op->tmp2()->as_register(),
1565                      op->header_size(),
1566                      op->object_size(),
1567                      op->klass()->as_register(),
1568                      *op->stub()->entry());
1569   __ bind(*op->stub()->continuation());
1570 }
1571 
1572 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1573   Register len =  op->len()->as_register();
1574   LP64_ONLY( __ movslq(len, len); )
1575 
1576   if (UseSlowPath ||
1577       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1578       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1579     __ jmp(*op->stub()->entry());
1580   } else {
1581     Register tmp1 = op->tmp1()->as_register();
1582     Register tmp2 = op->tmp2()->as_register();
1583     Register tmp3 = op->tmp3()->as_register();
1584     if (len == tmp1) {
1585       tmp1 = tmp3;
1586     } else if (len == tmp2) {
1587       tmp2 = tmp3;
1588     } else if (len == tmp3) {
1589       // everything is ok
1590     } else {
1591       __ mov(tmp3, len);
1592     }
1593     __ allocate_array(op->obj()->as_register(),
1594                       len,
1595                       tmp1,
1596                       tmp2,
1597                       arrayOopDesc::header_size(op->type()),
1598                       array_element_size(op->type()),
1599                       op->klass()->as_register(),
1600                       *op->stub()->entry());
1601   }
1602   __ bind(*op->stub()->continuation());
1603 }
1604 
1605 void LIR_Assembler::type_profile_helper(Register mdo,
1606                                         ciMethodData *md, ciProfileData *data,
1607                                         Register recv, Label* update_done) {
1608   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1609     Label next_test;
1610     // See if the receiver is receiver[n].
1611     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1612     __ jccb(Assembler::notEqual, next_test);
1613     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1614     __ addptr(data_addr, DataLayout::counter_increment);
1615     __ jmp(*update_done);
1616     __ bind(next_test);
1617   }
1618 
1619   // Didn't find receiver; find next empty slot and fill it in
1620   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1621     Label next_test;
1622     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1623     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1624     __ jccb(Assembler::notEqual, next_test);
1625     __ movptr(recv_addr, recv);
1626     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1627     __ jmp(*update_done);
1628     __ bind(next_test);
1629   }
1630 }
1631 
1632 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1633   // we always need a stub for the failure case.
1634   CodeStub* stub = op->stub();
1635   Register obj = op->object()->as_register();
1636   Register k_RInfo = op->tmp1()->as_register();
1637   Register klass_RInfo = op->tmp2()->as_register();
1638   Register dst = op->result_opr()->as_register();
1639   ciKlass* k = op->klass();
1640   Register Rtmp1 = noreg;
1641 
1642   // check if it needs to be profiled
1643   ciMethodData* md = NULL;
1644   ciProfileData* data = NULL;
1645 
1646   if (op->should_profile()) {
1647     ciMethod* method = op->profiled_method();
1648     assert(method != NULL, "Should have method");
1649     int bci = op->profiled_bci();
1650     md = method->method_data_or_null();
1651     assert(md != NULL, "Sanity");
1652     data = md->bci_to_data(bci);
1653     assert(data != NULL,                "need data for type check");
1654     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1655   }
1656   Label profile_cast_success, profile_cast_failure;
1657   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1658   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1659 
1660   if (obj == k_RInfo) {
1661     k_RInfo = dst;
1662   } else if (obj == klass_RInfo) {
1663     klass_RInfo = dst;
1664   }
1665   if (k->is_loaded() && !UseCompressedClassPointers) {
1666     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1667   } else {
1668     Rtmp1 = op->tmp3()->as_register();
1669     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1670   }
1671 
1672   assert_different_registers(obj, k_RInfo, klass_RInfo);
1673 
1674   __ cmpptr(obj, (int32_t)NULL_WORD);
1675   if (op->should_profile()) {
1676     Label not_null;
1677     __ jccb(Assembler::notEqual, not_null);
1678     // Object is null; update MDO and exit
1679     Register mdo  = klass_RInfo;
1680     __ mov_metadata(mdo, md->constant_encoding());
1681     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1682     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1683     __ orl(data_addr, header_bits);
1684     __ jmp(*obj_is_null);
1685     __ bind(not_null);
1686   } else {
1687     __ jcc(Assembler::equal, *obj_is_null);
1688   }
1689 
1690   if (!k->is_loaded()) {
1691     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1692   } else {
1693 #ifdef _LP64
1694     __ mov_metadata(k_RInfo, k->constant_encoding());
1695 #endif // _LP64
1696   }
1697   __ verify_oop(obj);
1698 
1699   if (op->fast_check()) {
1700     // get object class
1701     // not a safepoint as obj null check happens earlier
1702 #ifdef _LP64
1703     if (UseCompressedClassPointers) {
1704       __ load_klass(Rtmp1, obj);
1705       __ cmpptr(k_RInfo, Rtmp1);
1706     } else {
1707       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1708     }
1709 #else
1710     if (k->is_loaded()) {
1711       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1712     } else {
1713       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1714     }
1715 #endif
1716     __ jcc(Assembler::notEqual, *failure_target);
1717     // successful cast, fall through to profile or jump
1718   } else {
1719     // get object class
1720     // not a safepoint as obj null check happens earlier
1721     __ load_klass(klass_RInfo, obj);
1722     if (k->is_loaded()) {
1723       // See if we get an immediate positive hit
1724 #ifdef _LP64
1725       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1726 #else
1727       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1728 #endif // _LP64
1729       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1730         __ jcc(Assembler::notEqual, *failure_target);
1731         // successful cast, fall through to profile or jump
1732       } else {
1733         // See if we get an immediate positive hit
1734         __ jcc(Assembler::equal, *success_target);
1735         // check for self
1736 #ifdef _LP64
1737         __ cmpptr(klass_RInfo, k_RInfo);
1738 #else
1739         __ cmpklass(klass_RInfo, k->constant_encoding());
1740 #endif // _LP64
1741         __ jcc(Assembler::equal, *success_target);
1742 
1743         __ push(klass_RInfo);
1744 #ifdef _LP64
1745         __ push(k_RInfo);
1746 #else
1747         __ pushklass(k->constant_encoding());
1748 #endif // _LP64
1749         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1750         __ pop(klass_RInfo);
1751         __ pop(klass_RInfo);
1752         // result is a boolean
1753         __ cmpl(klass_RInfo, 0);
1754         __ jcc(Assembler::equal, *failure_target);
1755         // successful cast, fall through to profile or jump
1756       }
1757     } else {
1758       // perform the fast part of the checking logic
1759       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1760       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1761       __ push(klass_RInfo);
1762       __ push(k_RInfo);
1763       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1764       __ pop(klass_RInfo);
1765       __ pop(k_RInfo);
1766       // result is a boolean
1767       __ cmpl(k_RInfo, 0);
1768       __ jcc(Assembler::equal, *failure_target);
1769       // successful cast, fall through to profile or jump
1770     }
1771   }
1772   if (op->should_profile()) {
1773     Register mdo  = klass_RInfo, recv = k_RInfo;
1774     __ bind(profile_cast_success);
1775     __ mov_metadata(mdo, md->constant_encoding());
1776     __ load_klass(recv, obj);
1777     Label update_done;
1778     type_profile_helper(mdo, md, data, recv, success);
1779     __ jmp(*success);
1780 
1781     __ bind(profile_cast_failure);
1782     __ mov_metadata(mdo, md->constant_encoding());
1783     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1784     __ subptr(counter_addr, DataLayout::counter_increment);
1785     __ jmp(*failure);
1786   }
1787   __ jmp(*success);
1788 }
1789 
1790 
1791 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1792   LIR_Code code = op->code();
1793   if (code == lir_store_check) {
1794     Register value = op->object()->as_register();
1795     Register array = op->array()->as_register();
1796     Register k_RInfo = op->tmp1()->as_register();
1797     Register klass_RInfo = op->tmp2()->as_register();
1798     Register Rtmp1 = op->tmp3()->as_register();
1799 
1800     CodeStub* stub = op->stub();
1801 
1802     // check if it needs to be profiled
1803     ciMethodData* md = NULL;
1804     ciProfileData* data = NULL;
1805 
1806     if (op->should_profile()) {
1807       ciMethod* method = op->profiled_method();
1808       assert(method != NULL, "Should have method");
1809       int bci = op->profiled_bci();
1810       md = method->method_data_or_null();
1811       assert(md != NULL, "Sanity");
1812       data = md->bci_to_data(bci);
1813       assert(data != NULL,                "need data for type check");
1814       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1815     }
1816     Label profile_cast_success, profile_cast_failure, done;
1817     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1818     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1819 
1820     __ cmpptr(value, (int32_t)NULL_WORD);
1821     if (op->should_profile()) {
1822       Label not_null;
1823       __ jccb(Assembler::notEqual, not_null);
1824       // Object is null; update MDO and exit
1825       Register mdo  = klass_RInfo;
1826       __ mov_metadata(mdo, md->constant_encoding());
1827       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1828       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1829       __ orl(data_addr, header_bits);
1830       __ jmp(done);
1831       __ bind(not_null);
1832     } else {
1833       __ jcc(Assembler::equal, done);
1834     }
1835 
1836     add_debug_info_for_null_check_here(op->info_for_exception());
1837     __ load_klass(k_RInfo, array);
1838     __ load_klass(klass_RInfo, value);
1839 
1840     // get instance klass (it's already uncompressed)
1841     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1842     // perform the fast part of the checking logic
1843     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1844     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1845     __ push(klass_RInfo);
1846     __ push(k_RInfo);
1847     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1848     __ pop(klass_RInfo);
1849     __ pop(k_RInfo);
1850     // result is a boolean
1851     __ cmpl(k_RInfo, 0);
1852     __ jcc(Assembler::equal, *failure_target);
1853     // fall through to the success case
1854 
1855     if (op->should_profile()) {
1856       Register mdo  = klass_RInfo, recv = k_RInfo;
1857       __ bind(profile_cast_success);
1858       __ mov_metadata(mdo, md->constant_encoding());
1859       __ load_klass(recv, value);
1860       Label update_done;
1861       type_profile_helper(mdo, md, data, recv, &done);
1862       __ jmpb(done);
1863 
1864       __ bind(profile_cast_failure);
1865       __ mov_metadata(mdo, md->constant_encoding());
1866       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1867       __ subptr(counter_addr, DataLayout::counter_increment);
1868       __ jmp(*stub->entry());
1869     }
1870 
1871     __ bind(done);
1872   } else
1873     if (code == lir_checkcast) {
1874       Register obj = op->object()->as_register();
1875       Register dst = op->result_opr()->as_register();
1876       Label success;
1877       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1878       __ bind(success);
1879       if (dst != obj) {
1880         __ mov(dst, obj);
1881       }
1882     } else
1883       if (code == lir_instanceof) {
1884         Register obj = op->object()->as_register();
1885         Register dst = op->result_opr()->as_register();
1886         Label success, failure, done;
1887         emit_typecheck_helper(op, &success, &failure, &failure);
1888         __ bind(failure);
1889         __ xorptr(dst, dst);
1890         __ jmpb(done);
1891         __ bind(success);
1892         __ movptr(dst, 1);
1893         __ bind(done);
1894       } else {
1895         ShouldNotReachHere();
1896       }
1897 
1898 }
1899 
1900 
1901 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1902   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1903     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1904     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1905     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1906     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1907     Register addr = op->addr()->as_register();
1908     if (os::is_MP()) {
1909       __ lock();
1910     }
1911     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1912 
1913   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1914     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1915     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1916     Register newval = op->new_value()->as_register();
1917     Register cmpval = op->cmp_value()->as_register();
1918     assert(cmpval == rax, "wrong register");
1919     assert(newval != NULL, "new val must be register");
1920     assert(cmpval != newval, "cmp and new values must be in different registers");
1921     assert(cmpval != addr, "cmp and addr must be in different registers");
1922     assert(newval != addr, "new value and addr must be in different registers");
1923 
1924     if ( op->code() == lir_cas_obj) {
1925 #ifdef _LP64
1926       if (UseCompressedOops) {
1927         __ encode_heap_oop(cmpval);
1928         __ mov(rscratch1, newval);
1929         __ encode_heap_oop(rscratch1);
1930         if (os::is_MP()) {
1931           __ lock();
1932         }
1933         // cmpval (rax) is implicitly used by this instruction
1934         __ cmpxchgl(rscratch1, Address(addr, 0));
1935       } else
1936 #endif
1937       {
1938         if (os::is_MP()) {
1939           __ lock();
1940         }
1941         __ cmpxchgptr(newval, Address(addr, 0));
1942       }
1943     } else {
1944       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1945       if (os::is_MP()) {
1946         __ lock();
1947       }
1948       __ cmpxchgl(newval, Address(addr, 0));
1949     }
1950 #ifdef _LP64
1951   } else if (op->code() == lir_cas_long) {
1952     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1953     Register newval = op->new_value()->as_register_lo();
1954     Register cmpval = op->cmp_value()->as_register_lo();
1955     assert(cmpval == rax, "wrong register");
1956     assert(newval != NULL, "new val must be register");
1957     assert(cmpval != newval, "cmp and new values must be in different registers");
1958     assert(cmpval != addr, "cmp and addr must be in different registers");
1959     assert(newval != addr, "new value and addr must be in different registers");
1960     if (os::is_MP()) {
1961       __ lock();
1962     }
1963     __ cmpxchgq(newval, Address(addr, 0));
1964 #endif // _LP64
1965   } else {
1966     Unimplemented();
1967   }
1968 }
1969 
1970 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1971   Assembler::Condition acond, ncond;
1972   switch (condition) {
1973     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1974     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1975     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1976     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1977     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1978     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1979     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1980     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1981     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1982                                 ShouldNotReachHere();
1983   }
1984 
1985   if (opr1->is_cpu_register()) {
1986     reg2reg(opr1, result);
1987   } else if (opr1->is_stack()) {
1988     stack2reg(opr1, result, result->type());
1989   } else if (opr1->is_constant()) {
1990     const2reg(opr1, result, lir_patch_none, NULL);
1991   } else {
1992     ShouldNotReachHere();
1993   }
1994 
1995   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1996     // optimized version that does not require a branch
1997     if (opr2->is_single_cpu()) {
1998       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1999       __ cmov(ncond, result->as_register(), opr2->as_register());
2000     } else if (opr2->is_double_cpu()) {
2001       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2002       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2003       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2004       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2005     } else if (opr2->is_single_stack()) {
2006       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2007     } else if (opr2->is_double_stack()) {
2008       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2009       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2010     } else {
2011       ShouldNotReachHere();
2012     }
2013 
2014   } else {
2015     Label skip;
2016     __ jcc (acond, skip);
2017     if (opr2->is_cpu_register()) {
2018       reg2reg(opr2, result);
2019     } else if (opr2->is_stack()) {
2020       stack2reg(opr2, result, result->type());
2021     } else if (opr2->is_constant()) {
2022       const2reg(opr2, result, lir_patch_none, NULL);
2023     } else {
2024       ShouldNotReachHere();
2025     }
2026     __ bind(skip);
2027   }
2028 }
2029 
2030 
2031 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2032   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2033 
2034   if (left->is_single_cpu()) {
2035     assert(left == dest, "left and dest must be equal");
2036     Register lreg = left->as_register();
2037 
2038     if (right->is_single_cpu()) {
2039       // cpu register - cpu register
2040       Register rreg = right->as_register();
2041       switch (code) {
2042         case lir_add: __ addl (lreg, rreg); break;
2043         case lir_sub: __ subl (lreg, rreg); break;
2044         case lir_mul: __ imull(lreg, rreg); break;
2045         default:      ShouldNotReachHere();
2046       }
2047 
2048     } else if (right->is_stack()) {
2049       // cpu register - stack
2050       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2051       switch (code) {
2052         case lir_add: __ addl(lreg, raddr); break;
2053         case lir_sub: __ subl(lreg, raddr); break;
2054         default:      ShouldNotReachHere();
2055       }
2056 
2057     } else if (right->is_constant()) {
2058       // cpu register - constant
2059       jint c = right->as_constant_ptr()->as_jint();
2060       switch (code) {
2061         case lir_add: {
2062           __ incrementl(lreg, c);
2063           break;
2064         }
2065         case lir_sub: {
2066           __ decrementl(lreg, c);
2067           break;
2068         }
2069         default: ShouldNotReachHere();
2070       }
2071 
2072     } else {
2073       ShouldNotReachHere();
2074     }
2075 
2076   } else if (left->is_double_cpu()) {
2077     assert(left == dest, "left and dest must be equal");
2078     Register lreg_lo = left->as_register_lo();
2079     Register lreg_hi = left->as_register_hi();
2080 
2081     if (right->is_double_cpu()) {
2082       // cpu register - cpu register
2083       Register rreg_lo = right->as_register_lo();
2084       Register rreg_hi = right->as_register_hi();
2085       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2086       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2087       switch (code) {
2088         case lir_add:
2089           __ addptr(lreg_lo, rreg_lo);
2090           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2091           break;
2092         case lir_sub:
2093           __ subptr(lreg_lo, rreg_lo);
2094           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2095           break;
2096         case lir_mul:
2097 #ifdef _LP64
2098           __ imulq(lreg_lo, rreg_lo);
2099 #else
2100           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2101           __ imull(lreg_hi, rreg_lo);
2102           __ imull(rreg_hi, lreg_lo);
2103           __ addl (rreg_hi, lreg_hi);
2104           __ mull (rreg_lo);
2105           __ addl (lreg_hi, rreg_hi);
2106 #endif // _LP64
2107           break;
2108         default:
2109           ShouldNotReachHere();
2110       }
2111 
2112     } else if (right->is_constant()) {
2113       // cpu register - constant
2114 #ifdef _LP64
2115       jlong c = right->as_constant_ptr()->as_jlong_bits();
2116       __ movptr(r10, (intptr_t) c);
2117       switch (code) {
2118         case lir_add:
2119           __ addptr(lreg_lo, r10);
2120           break;
2121         case lir_sub:
2122           __ subptr(lreg_lo, r10);
2123           break;
2124         default:
2125           ShouldNotReachHere();
2126       }
2127 #else
2128       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2129       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2130       switch (code) {
2131         case lir_add:
2132           __ addptr(lreg_lo, c_lo);
2133           __ adcl(lreg_hi, c_hi);
2134           break;
2135         case lir_sub:
2136           __ subptr(lreg_lo, c_lo);
2137           __ sbbl(lreg_hi, c_hi);
2138           break;
2139         default:
2140           ShouldNotReachHere();
2141       }
2142 #endif // _LP64
2143 
2144     } else {
2145       ShouldNotReachHere();
2146     }
2147 
2148   } else if (left->is_single_xmm()) {
2149     assert(left == dest, "left and dest must be equal");
2150     XMMRegister lreg = left->as_xmm_float_reg();
2151 
2152     if (right->is_single_xmm()) {
2153       XMMRegister rreg = right->as_xmm_float_reg();
2154       switch (code) {
2155         case lir_add: __ addss(lreg, rreg);  break;
2156         case lir_sub: __ subss(lreg, rreg);  break;
2157         case lir_mul_strictfp: // fall through
2158         case lir_mul: __ mulss(lreg, rreg);  break;
2159         case lir_div_strictfp: // fall through
2160         case lir_div: __ divss(lreg, rreg);  break;
2161         default: ShouldNotReachHere();
2162       }
2163     } else {
2164       Address raddr;
2165       if (right->is_single_stack()) {
2166         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2167       } else if (right->is_constant()) {
2168         // hack for now
2169         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2170       } else {
2171         ShouldNotReachHere();
2172       }
2173       switch (code) {
2174         case lir_add: __ addss(lreg, raddr);  break;
2175         case lir_sub: __ subss(lreg, raddr);  break;
2176         case lir_mul_strictfp: // fall through
2177         case lir_mul: __ mulss(lreg, raddr);  break;
2178         case lir_div_strictfp: // fall through
2179         case lir_div: __ divss(lreg, raddr);  break;
2180         default: ShouldNotReachHere();
2181       }
2182     }
2183 
2184   } else if (left->is_double_xmm()) {
2185     assert(left == dest, "left and dest must be equal");
2186 
2187     XMMRegister lreg = left->as_xmm_double_reg();
2188     if (right->is_double_xmm()) {
2189       XMMRegister rreg = right->as_xmm_double_reg();
2190       switch (code) {
2191         case lir_add: __ addsd(lreg, rreg);  break;
2192         case lir_sub: __ subsd(lreg, rreg);  break;
2193         case lir_mul_strictfp: // fall through
2194         case lir_mul: __ mulsd(lreg, rreg);  break;
2195         case lir_div_strictfp: // fall through
2196         case lir_div: __ divsd(lreg, rreg);  break;
2197         default: ShouldNotReachHere();
2198       }
2199     } else {
2200       Address raddr;
2201       if (right->is_double_stack()) {
2202         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2203       } else if (right->is_constant()) {
2204         // hack for now
2205         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2206       } else {
2207         ShouldNotReachHere();
2208       }
2209       switch (code) {
2210         case lir_add: __ addsd(lreg, raddr);  break;
2211         case lir_sub: __ subsd(lreg, raddr);  break;
2212         case lir_mul_strictfp: // fall through
2213         case lir_mul: __ mulsd(lreg, raddr);  break;
2214         case lir_div_strictfp: // fall through
2215         case lir_div: __ divsd(lreg, raddr);  break;
2216         default: ShouldNotReachHere();
2217       }
2218     }
2219 
2220   } else if (left->is_single_fpu()) {
2221     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2222 
2223     if (right->is_single_fpu()) {
2224       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2225 
2226     } else {
2227       assert(left->fpu_regnr() == 0, "left must be on TOS");
2228       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2229 
2230       Address raddr;
2231       if (right->is_single_stack()) {
2232         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2233       } else if (right->is_constant()) {
2234         address const_addr = float_constant(right->as_jfloat());
2235         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2236         // hack for now
2237         raddr = __ as_Address(InternalAddress(const_addr));
2238       } else {
2239         ShouldNotReachHere();
2240       }
2241 
2242       switch (code) {
2243         case lir_add: __ fadd_s(raddr); break;
2244         case lir_sub: __ fsub_s(raddr); break;
2245         case lir_mul_strictfp: // fall through
2246         case lir_mul: __ fmul_s(raddr); break;
2247         case lir_div_strictfp: // fall through
2248         case lir_div: __ fdiv_s(raddr); break;
2249         default:      ShouldNotReachHere();
2250       }
2251     }
2252 
2253   } else if (left->is_double_fpu()) {
2254     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2255 
2256     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2257       // Double values require special handling for strictfp mul/div on x86
2258       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2259       __ fmulp(left->fpu_regnrLo() + 1);
2260     }
2261 
2262     if (right->is_double_fpu()) {
2263       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2264 
2265     } else {
2266       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2267       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2268 
2269       Address raddr;
2270       if (right->is_double_stack()) {
2271         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2272       } else if (right->is_constant()) {
2273         // hack for now
2274         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2275       } else {
2276         ShouldNotReachHere();
2277       }
2278 
2279       switch (code) {
2280         case lir_add: __ fadd_d(raddr); break;
2281         case lir_sub: __ fsub_d(raddr); break;
2282         case lir_mul_strictfp: // fall through
2283         case lir_mul: __ fmul_d(raddr); break;
2284         case lir_div_strictfp: // fall through
2285         case lir_div: __ fdiv_d(raddr); break;
2286         default: ShouldNotReachHere();
2287       }
2288     }
2289 
2290     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2291       // Double values require special handling for strictfp mul/div on x86
2292       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2293       __ fmulp(dest->fpu_regnrLo() + 1);
2294     }
2295 
2296   } else if (left->is_single_stack() || left->is_address()) {
2297     assert(left == dest, "left and dest must be equal");
2298 
2299     Address laddr;
2300     if (left->is_single_stack()) {
2301       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2302     } else if (left->is_address()) {
2303       laddr = as_Address(left->as_address_ptr());
2304     } else {
2305       ShouldNotReachHere();
2306     }
2307 
2308     if (right->is_single_cpu()) {
2309       Register rreg = right->as_register();
2310       switch (code) {
2311         case lir_add: __ addl(laddr, rreg); break;
2312         case lir_sub: __ subl(laddr, rreg); break;
2313         default:      ShouldNotReachHere();
2314       }
2315     } else if (right->is_constant()) {
2316       jint c = right->as_constant_ptr()->as_jint();
2317       switch (code) {
2318         case lir_add: {
2319           __ incrementl(laddr, c);
2320           break;
2321         }
2322         case lir_sub: {
2323           __ decrementl(laddr, c);
2324           break;
2325         }
2326         default: ShouldNotReachHere();
2327       }
2328     } else {
2329       ShouldNotReachHere();
2330     }
2331 
2332   } else {
2333     ShouldNotReachHere();
2334   }
2335 }
2336 
2337 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2338   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2339   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2340   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2341 
2342   bool left_is_tos = (left_index == 0);
2343   bool dest_is_tos = (dest_index == 0);
2344   int non_tos_index = (left_is_tos ? right_index : left_index);
2345 
2346   switch (code) {
2347     case lir_add:
2348       if (pop_fpu_stack)       __ faddp(non_tos_index);
2349       else if (dest_is_tos)    __ fadd (non_tos_index);
2350       else                     __ fadda(non_tos_index);
2351       break;
2352 
2353     case lir_sub:
2354       if (left_is_tos) {
2355         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2356         else if (dest_is_tos)  __ fsub  (non_tos_index);
2357         else                   __ fsubra(non_tos_index);
2358       } else {
2359         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2360         else if (dest_is_tos)  __ fsubr (non_tos_index);
2361         else                   __ fsuba (non_tos_index);
2362       }
2363       break;
2364 
2365     case lir_mul_strictfp: // fall through
2366     case lir_mul:
2367       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2368       else if (dest_is_tos)    __ fmul (non_tos_index);
2369       else                     __ fmula(non_tos_index);
2370       break;
2371 
2372     case lir_div_strictfp: // fall through
2373     case lir_div:
2374       if (left_is_tos) {
2375         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2376         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2377         else                   __ fdivra(non_tos_index);
2378       } else {
2379         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2380         else if (dest_is_tos)  __ fdivr (non_tos_index);
2381         else                   __ fdiva (non_tos_index);
2382       }
2383       break;
2384 
2385     case lir_rem:
2386       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2387       __ fremr(noreg);
2388       break;
2389 
2390     default:
2391       ShouldNotReachHere();
2392   }
2393 }
2394 
2395 
2396 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2397   if (value->is_double_xmm()) {
2398     switch(code) {
2399       case lir_abs :
2400         {
2401           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2402             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2403           }
2404           __ andpd(dest->as_xmm_double_reg(),
2405                     ExternalAddress((address)double_signmask_pool));
2406         }
2407         break;
2408 
2409       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2410       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2411       default      : ShouldNotReachHere();
2412     }
2413 
2414   } else if (value->is_double_fpu()) {
2415     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2416     switch(code) {
2417       case lir_abs   : __ fabs() ; break;
2418       case lir_sqrt  : __ fsqrt(); break;
2419       default      : ShouldNotReachHere();
2420     }
2421   } else {
2422     Unimplemented();
2423   }
2424 }
2425 
2426 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2427   // assert(left->destroys_register(), "check");
2428   if (left->is_single_cpu()) {
2429     Register reg = left->as_register();
2430     if (right->is_constant()) {
2431       int val = right->as_constant_ptr()->as_jint();
2432       switch (code) {
2433         case lir_logic_and: __ andl (reg, val); break;
2434         case lir_logic_or:  __ orl  (reg, val); break;
2435         case lir_logic_xor: __ xorl (reg, val); break;
2436         default: ShouldNotReachHere();
2437       }
2438     } else if (right->is_stack()) {
2439       // added support for stack operands
2440       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2441       switch (code) {
2442         case lir_logic_and: __ andl (reg, raddr); break;
2443         case lir_logic_or:  __ orl  (reg, raddr); break;
2444         case lir_logic_xor: __ xorl (reg, raddr); break;
2445         default: ShouldNotReachHere();
2446       }
2447     } else {
2448       Register rright = right->as_register();
2449       switch (code) {
2450         case lir_logic_and: __ andptr (reg, rright); break;
2451         case lir_logic_or : __ orptr  (reg, rright); break;
2452         case lir_logic_xor: __ xorptr (reg, rright); break;
2453         default: ShouldNotReachHere();
2454       }
2455     }
2456     move_regs(reg, dst->as_register());
2457   } else {
2458     Register l_lo = left->as_register_lo();
2459     Register l_hi = left->as_register_hi();
2460     if (right->is_constant()) {
2461 #ifdef _LP64
2462       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2463       switch (code) {
2464         case lir_logic_and:
2465           __ andq(l_lo, rscratch1);
2466           break;
2467         case lir_logic_or:
2468           __ orq(l_lo, rscratch1);
2469           break;
2470         case lir_logic_xor:
2471           __ xorq(l_lo, rscratch1);
2472           break;
2473         default: ShouldNotReachHere();
2474       }
2475 #else
2476       int r_lo = right->as_constant_ptr()->as_jint_lo();
2477       int r_hi = right->as_constant_ptr()->as_jint_hi();
2478       switch (code) {
2479         case lir_logic_and:
2480           __ andl(l_lo, r_lo);
2481           __ andl(l_hi, r_hi);
2482           break;
2483         case lir_logic_or:
2484           __ orl(l_lo, r_lo);
2485           __ orl(l_hi, r_hi);
2486           break;
2487         case lir_logic_xor:
2488           __ xorl(l_lo, r_lo);
2489           __ xorl(l_hi, r_hi);
2490           break;
2491         default: ShouldNotReachHere();
2492       }
2493 #endif // _LP64
2494     } else {
2495 #ifdef _LP64
2496       Register r_lo;
2497       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2498         r_lo = right->as_register();
2499       } else {
2500         r_lo = right->as_register_lo();
2501       }
2502 #else
2503       Register r_lo = right->as_register_lo();
2504       Register r_hi = right->as_register_hi();
2505       assert(l_lo != r_hi, "overwriting registers");
2506 #endif
2507       switch (code) {
2508         case lir_logic_and:
2509           __ andptr(l_lo, r_lo);
2510           NOT_LP64(__ andptr(l_hi, r_hi);)
2511           break;
2512         case lir_logic_or:
2513           __ orptr(l_lo, r_lo);
2514           NOT_LP64(__ orptr(l_hi, r_hi);)
2515           break;
2516         case lir_logic_xor:
2517           __ xorptr(l_lo, r_lo);
2518           NOT_LP64(__ xorptr(l_hi, r_hi);)
2519           break;
2520         default: ShouldNotReachHere();
2521       }
2522     }
2523 
2524     Register dst_lo = dst->as_register_lo();
2525     Register dst_hi = dst->as_register_hi();
2526 
2527 #ifdef _LP64
2528     move_regs(l_lo, dst_lo);
2529 #else
2530     if (dst_lo == l_hi) {
2531       assert(dst_hi != l_lo, "overwriting registers");
2532       move_regs(l_hi, dst_hi);
2533       move_regs(l_lo, dst_lo);
2534     } else {
2535       assert(dst_lo != l_hi, "overwriting registers");
2536       move_regs(l_lo, dst_lo);
2537       move_regs(l_hi, dst_hi);
2538     }
2539 #endif // _LP64
2540   }
2541 }
2542 
2543 
2544 // we assume that rax, and rdx can be overwritten
2545 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2546 
2547   assert(left->is_single_cpu(),   "left must be register");
2548   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2549   assert(result->is_single_cpu(), "result must be register");
2550 
2551   //  assert(left->destroys_register(), "check");
2552   //  assert(right->destroys_register(), "check");
2553 
2554   Register lreg = left->as_register();
2555   Register dreg = result->as_register();
2556 
2557   if (right->is_constant()) {
2558     int divisor = right->as_constant_ptr()->as_jint();
2559     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2560     if (code == lir_idiv) {
2561       assert(lreg == rax, "must be rax,");
2562       assert(temp->as_register() == rdx, "tmp register must be rdx");
2563       __ cdql(); // sign extend into rdx:rax
2564       if (divisor == 2) {
2565         __ subl(lreg, rdx);
2566       } else {
2567         __ andl(rdx, divisor - 1);
2568         __ addl(lreg, rdx);
2569       }
2570       __ sarl(lreg, log2_intptr(divisor));
2571       move_regs(lreg, dreg);
2572     } else if (code == lir_irem) {
2573       Label done;
2574       __ mov(dreg, lreg);
2575       __ andl(dreg, 0x80000000 | (divisor - 1));
2576       __ jcc(Assembler::positive, done);
2577       __ decrement(dreg);
2578       __ orl(dreg, ~(divisor - 1));
2579       __ increment(dreg);
2580       __ bind(done);
2581     } else {
2582       ShouldNotReachHere();
2583     }
2584   } else {
2585     Register rreg = right->as_register();
2586     assert(lreg == rax, "left register must be rax,");
2587     assert(rreg != rdx, "right register must not be rdx");
2588     assert(temp->as_register() == rdx, "tmp register must be rdx");
2589 
2590     move_regs(lreg, rax);
2591 
2592     int idivl_offset = __ corrected_idivl(rreg);
2593     if (ImplicitDiv0Checks) {
2594       add_debug_info_for_div0(idivl_offset, info);
2595     }
2596     if (code == lir_irem) {
2597       move_regs(rdx, dreg); // result is in rdx
2598     } else {
2599       move_regs(rax, dreg);
2600     }
2601   }
2602 }
2603 
2604 
2605 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2606   if (opr1->is_single_cpu()) {
2607     Register reg1 = opr1->as_register();
2608     if (opr2->is_single_cpu()) {
2609       // cpu register - cpu register
2610       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2611         __ cmpoop(reg1, opr2->as_register());
2612       } else {
2613         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2614         __ cmpl(reg1, opr2->as_register());
2615       }
2616     } else if (opr2->is_stack()) {
2617       // cpu register - stack
2618       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2619         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2620       } else {
2621         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2622       }
2623     } else if (opr2->is_constant()) {
2624       // cpu register - constant
2625       LIR_Const* c = opr2->as_constant_ptr();
2626       if (c->type() == T_INT) {
2627         __ cmpl(reg1, c->as_jint());
2628       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2629         // In 64bit oops are single register
2630         jobject o = c->as_jobject();
2631         if (o == NULL) {
2632           __ cmpptr(reg1, (int32_t)NULL_WORD);
2633         } else {
2634           __ cmpoop(reg1, o);
2635         }
2636       } else {
2637         fatal("unexpected type: %s", basictype_to_str(c->type()));
2638       }
2639       // cpu register - address
2640     } else if (opr2->is_address()) {
2641       if (op->info() != NULL) {
2642         add_debug_info_for_null_check_here(op->info());
2643       }
2644       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2645     } else {
2646       ShouldNotReachHere();
2647     }
2648 
2649   } else if(opr1->is_double_cpu()) {
2650     Register xlo = opr1->as_register_lo();
2651     Register xhi = opr1->as_register_hi();
2652     if (opr2->is_double_cpu()) {
2653 #ifdef _LP64
2654       __ cmpptr(xlo, opr2->as_register_lo());
2655 #else
2656       // cpu register - cpu register
2657       Register ylo = opr2->as_register_lo();
2658       Register yhi = opr2->as_register_hi();
2659       __ subl(xlo, ylo);
2660       __ sbbl(xhi, yhi);
2661       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2662         __ orl(xhi, xlo);
2663       }
2664 #endif // _LP64
2665     } else if (opr2->is_constant()) {
2666       // cpu register - constant 0
2667       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2668 #ifdef _LP64
2669       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2670 #else
2671       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2672       __ orl(xhi, xlo);
2673 #endif // _LP64
2674     } else {
2675       ShouldNotReachHere();
2676     }
2677 
2678   } else if (opr1->is_single_xmm()) {
2679     XMMRegister reg1 = opr1->as_xmm_float_reg();
2680     if (opr2->is_single_xmm()) {
2681       // xmm register - xmm register
2682       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2683     } else if (opr2->is_stack()) {
2684       // xmm register - stack
2685       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2686     } else if (opr2->is_constant()) {
2687       // xmm register - constant
2688       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2689     } else if (opr2->is_address()) {
2690       // xmm register - address
2691       if (op->info() != NULL) {
2692         add_debug_info_for_null_check_here(op->info());
2693       }
2694       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2695     } else {
2696       ShouldNotReachHere();
2697     }
2698 
2699   } else if (opr1->is_double_xmm()) {
2700     XMMRegister reg1 = opr1->as_xmm_double_reg();
2701     if (opr2->is_double_xmm()) {
2702       // xmm register - xmm register
2703       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2704     } else if (opr2->is_stack()) {
2705       // xmm register - stack
2706       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2707     } else if (opr2->is_constant()) {
2708       // xmm register - constant
2709       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2710     } else if (opr2->is_address()) {
2711       // xmm register - address
2712       if (op->info() != NULL) {
2713         add_debug_info_for_null_check_here(op->info());
2714       }
2715       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2716     } else {
2717       ShouldNotReachHere();
2718     }
2719 
2720   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2721     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2722     assert(opr2->is_fpu_register(), "both must be registers");
2723     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2724 
2725   } else if (opr1->is_address() && opr2->is_constant()) {
2726     LIR_Const* c = opr2->as_constant_ptr();
2727 #ifdef _LP64
2728     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2729       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2730       __ movoop(rscratch1, c->as_jobject());
2731     }
2732 #endif // LP64
2733     if (op->info() != NULL) {
2734       add_debug_info_for_null_check_here(op->info());
2735     }
2736     // special case: address - constant
2737     LIR_Address* addr = opr1->as_address_ptr();
2738     if (c->type() == T_INT) {
2739       __ cmpl(as_Address(addr), c->as_jint());
2740     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2741 #ifdef _LP64
2742       // %%% Make this explode if addr isn't reachable until we figure out a
2743       // better strategy by giving noreg as the temp for as_Address
2744       __ cmpoop(rscratch1, as_Address(addr, noreg));
2745 #else
2746       __ cmpoop(as_Address(addr), c->as_jobject());
2747 #endif // _LP64
2748     } else {
2749       ShouldNotReachHere();
2750     }
2751 
2752   } else {
2753     ShouldNotReachHere();
2754   }
2755 }
2756 
2757 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2758   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2759     if (left->is_single_xmm()) {
2760       assert(right->is_single_xmm(), "must match");
2761       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2762     } else if (left->is_double_xmm()) {
2763       assert(right->is_double_xmm(), "must match");
2764       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2765 
2766     } else {
2767       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2768       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2769 
2770       assert(left->fpu() == 0, "left must be on TOS");
2771       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2772                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2773     }
2774   } else {
2775     assert(code == lir_cmp_l2i, "check");
2776 #ifdef _LP64
2777     Label done;
2778     Register dest = dst->as_register();
2779     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2780     __ movl(dest, -1);
2781     __ jccb(Assembler::less, done);
2782     __ set_byte_if_not_zero(dest);
2783     __ movzbl(dest, dest);
2784     __ bind(done);
2785 #else
2786     __ lcmp2int(left->as_register_hi(),
2787                 left->as_register_lo(),
2788                 right->as_register_hi(),
2789                 right->as_register_lo());
2790     move_regs(left->as_register_hi(), dst->as_register());
2791 #endif // _LP64
2792   }
2793 }
2794 
2795 
2796 void LIR_Assembler::align_call(LIR_Code code) {
2797   if (os::is_MP()) {
2798     // make sure that the displacement word of the call ends up word aligned
2799     int offset = __ offset();
2800     switch (code) {
2801       case lir_static_call:
2802       case lir_optvirtual_call:
2803       case lir_dynamic_call:
2804         offset += NativeCall::displacement_offset;
2805         break;
2806       case lir_icvirtual_call:
2807         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2808       break;
2809       case lir_virtual_call:  // currently, sparc-specific for niagara
2810       default: ShouldNotReachHere();
2811     }
2812     __ align(BytesPerWord, offset);
2813   }
2814 }
2815 
2816 
2817 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2818   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2819          "must be aligned");
2820   __ call(AddressLiteral(op->addr(), rtype));
2821   add_call_info(code_offset(), op->info());
2822 }
2823 
2824 
2825 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2826   __ ic_call(op->addr());
2827   add_call_info(code_offset(), op->info());
2828   assert(!os::is_MP() ||
2829          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2830          "must be aligned");
2831 }
2832 
2833 
2834 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2835 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2836   ShouldNotReachHere();
2837 }
2838 
2839 
2840 void LIR_Assembler::emit_static_call_stub() {
2841   address call_pc = __ pc();
2842   address stub = __ start_a_stub(call_stub_size());
2843   if (stub == NULL) {
2844     bailout("static call stub overflow");
2845     return;
2846   }
2847 
2848   int start = __ offset();
2849   if (os::is_MP()) {
2850     // make sure that the displacement word of the call ends up word aligned
2851     __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2852   }
2853   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2854   __ mov_metadata(rbx, (Metadata*)NULL);
2855   // must be set to -1 at code generation time
2856   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2857   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2858   __ jump(RuntimeAddress(__ pc()));
2859 
2860   if (UseAOT) {
2861     // Trampoline to aot code
2862     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2863 #ifdef _LP64
2864     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2865 #else
2866     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2867 #endif
2868     __ jmp(rax);
2869   }
2870   assert(__ offset() - start <= call_stub_size(), "stub too big");
2871   __ end_a_stub();
2872 }
2873 
2874 
2875 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2876   assert(exceptionOop->as_register() == rax, "must match");
2877   assert(exceptionPC->as_register() == rdx, "must match");
2878 
2879   // exception object is not added to oop map by LinearScan
2880   // (LinearScan assumes that no oops are in fixed registers)
2881   info->add_register_oop(exceptionOop);
2882   Runtime1::StubID unwind_id;
2883 
2884   // get current pc information
2885   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2886   int pc_for_athrow_offset = __ offset();
2887   InternalAddress pc_for_athrow(__ pc());
2888   __ lea(exceptionPC->as_register(), pc_for_athrow);
2889   add_call_info(pc_for_athrow_offset, info); // for exception handler
2890 
2891   __ verify_not_null_oop(rax);
2892   // search an exception handler (rax: exception oop, rdx: throwing pc)
2893   if (compilation()->has_fpu_code()) {
2894     unwind_id = Runtime1::handle_exception_id;
2895   } else {
2896     unwind_id = Runtime1::handle_exception_nofpu_id;
2897   }
2898   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2899 
2900   // enough room for two byte trap
2901   __ nop();
2902 }
2903 
2904 
2905 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2906   assert(exceptionOop->as_register() == rax, "must match");
2907 
2908   __ jmp(_unwind_handler_entry);
2909 }
2910 
2911 
2912 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2913 
2914   // optimized version for linear scan:
2915   // * count must be already in ECX (guaranteed by LinearScan)
2916   // * left and dest must be equal
2917   // * tmp must be unused
2918   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2919   assert(left == dest, "left and dest must be equal");
2920   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2921 
2922   if (left->is_single_cpu()) {
2923     Register value = left->as_register();
2924     assert(value != SHIFT_count, "left cannot be ECX");
2925 
2926     switch (code) {
2927       case lir_shl:  __ shll(value); break;
2928       case lir_shr:  __ sarl(value); break;
2929       case lir_ushr: __ shrl(value); break;
2930       default: ShouldNotReachHere();
2931     }
2932   } else if (left->is_double_cpu()) {
2933     Register lo = left->as_register_lo();
2934     Register hi = left->as_register_hi();
2935     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2936 #ifdef _LP64
2937     switch (code) {
2938       case lir_shl:  __ shlptr(lo);        break;
2939       case lir_shr:  __ sarptr(lo);        break;
2940       case lir_ushr: __ shrptr(lo);        break;
2941       default: ShouldNotReachHere();
2942     }
2943 #else
2944 
2945     switch (code) {
2946       case lir_shl:  __ lshl(hi, lo);        break;
2947       case lir_shr:  __ lshr(hi, lo, true);  break;
2948       case lir_ushr: __ lshr(hi, lo, false); break;
2949       default: ShouldNotReachHere();
2950     }
2951 #endif // LP64
2952   } else {
2953     ShouldNotReachHere();
2954   }
2955 }
2956 
2957 
2958 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2959   if (dest->is_single_cpu()) {
2960     // first move left into dest so that left is not destroyed by the shift
2961     Register value = dest->as_register();
2962     count = count & 0x1F; // Java spec
2963 
2964     move_regs(left->as_register(), value);
2965     switch (code) {
2966       case lir_shl:  __ shll(value, count); break;
2967       case lir_shr:  __ sarl(value, count); break;
2968       case lir_ushr: __ shrl(value, count); break;
2969       default: ShouldNotReachHere();
2970     }
2971   } else if (dest->is_double_cpu()) {
2972 #ifndef _LP64
2973     Unimplemented();
2974 #else
2975     // first move left into dest so that left is not destroyed by the shift
2976     Register value = dest->as_register_lo();
2977     count = count & 0x1F; // Java spec
2978 
2979     move_regs(left->as_register_lo(), value);
2980     switch (code) {
2981       case lir_shl:  __ shlptr(value, count); break;
2982       case lir_shr:  __ sarptr(value, count); break;
2983       case lir_ushr: __ shrptr(value, count); break;
2984       default: ShouldNotReachHere();
2985     }
2986 #endif // _LP64
2987   } else {
2988     ShouldNotReachHere();
2989   }
2990 }
2991 
2992 
2993 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2994   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2995   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2996   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2997   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2998 }
2999 
3000 
3001 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3002   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3003   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3004   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3005   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3006 }
3007 
3008 
3009 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3010   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3011   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3012   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3013   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3014 }
3015 
3016 
3017 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3018   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3019   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3020   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3021   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3022 }
3023 
3024 
3025 // This code replaces a call to arraycopy; no exception may
3026 // be thrown in this code, they must be thrown in the System.arraycopy
3027 // activation frame; we could save some checks if this would not be the case
3028 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3029   ciArrayKlass* default_type = op->expected_type();
3030   Register src = op->src()->as_register();
3031   Register dst = op->dst()->as_register();
3032   Register src_pos = op->src_pos()->as_register();
3033   Register dst_pos = op->dst_pos()->as_register();
3034   Register length  = op->length()->as_register();
3035   Register tmp = op->tmp()->as_register();
3036 
3037   CodeStub* stub = op->stub();
3038   int flags = op->flags();
3039   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3040   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3041 
3042   // if we don't know anything, just go through the generic arraycopy
3043   if (default_type == NULL) {
3044     Label done;
3045     // save outgoing arguments on stack in case call to System.arraycopy is needed
3046     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3047     // for interpreter calling conventions. Now we have to do it in new style conventions.
3048     // For the moment until C1 gets the new register allocator I just force all the
3049     // args to the right place (except the register args) and then on the back side
3050     // reload the register args properly if we go slow path. Yuck
3051 
3052     // These are proper for the calling convention
3053     store_parameter(length, 2);
3054     store_parameter(dst_pos, 1);
3055     store_parameter(dst, 0);
3056 
3057     // these are just temporary placements until we need to reload
3058     store_parameter(src_pos, 3);
3059     store_parameter(src, 4);
3060     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3061 
3062     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3063 
3064     address copyfunc_addr = StubRoutines::generic_arraycopy();
3065 
3066     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3067 #ifdef _LP64
3068     // The arguments are in java calling convention so we can trivially shift them to C
3069     // convention
3070     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3071     __ mov(c_rarg0, j_rarg0);
3072     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3073     __ mov(c_rarg1, j_rarg1);
3074     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3075     __ mov(c_rarg2, j_rarg2);
3076     assert_different_registers(c_rarg3, j_rarg4);
3077     __ mov(c_rarg3, j_rarg3);
3078 #ifdef _WIN64
3079     // Allocate abi space for args but be sure to keep stack aligned
3080     __ subptr(rsp, 6*wordSize);
3081     store_parameter(j_rarg4, 4);
3082     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3083       __ call(RuntimeAddress(C_entry));
3084     } else {
3085 #ifndef PRODUCT
3086       if (PrintC1Statistics) {
3087         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3088       }
3089 #endif
3090       __ call(RuntimeAddress(copyfunc_addr));
3091     }
3092     __ addptr(rsp, 6*wordSize);
3093 #else
3094     __ mov(c_rarg4, j_rarg4);
3095     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3096       __ call(RuntimeAddress(C_entry));
3097     } else {
3098 #ifndef PRODUCT
3099       if (PrintC1Statistics) {
3100         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3101       }
3102 #endif
3103       __ call(RuntimeAddress(copyfunc_addr));
3104     }
3105 #endif // _WIN64
3106 #else
3107     __ push(length);
3108     __ push(dst_pos);
3109     __ push(dst);
3110     __ push(src_pos);
3111     __ push(src);
3112 
3113     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3114       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3115     } else {
3116 #ifndef PRODUCT
3117       if (PrintC1Statistics) {
3118         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3119       }
3120 #endif
3121       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3122     }
3123 
3124 #endif // _LP64
3125 
3126     __ cmpl(rax, 0);
3127     __ jcc(Assembler::equal, *stub->continuation());
3128 
3129     if (copyfunc_addr != NULL) {
3130       __ mov(tmp, rax);
3131       __ xorl(tmp, -1);
3132     }
3133 
3134     // Reload values from the stack so they are where the stub
3135     // expects them.
3136     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3137     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3138     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3139     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3140     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3141 
3142     if (copyfunc_addr != NULL) {
3143       __ subl(length, tmp);
3144       __ addl(src_pos, tmp);
3145       __ addl(dst_pos, tmp);
3146     }
3147     __ jmp(*stub->entry());
3148 
3149     __ bind(*stub->continuation());
3150     return;
3151   }
3152 
3153   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3154 
3155   int elem_size = type2aelembytes(basic_type);
3156   Address::ScaleFactor scale;
3157 
3158   switch (elem_size) {
3159     case 1 :
3160       scale = Address::times_1;
3161       break;
3162     case 2 :
3163       scale = Address::times_2;
3164       break;
3165     case 4 :
3166       scale = Address::times_4;
3167       break;
3168     case 8 :
3169       scale = Address::times_8;
3170       break;
3171     default:
3172       scale = Address::no_scale;
3173       ShouldNotReachHere();
3174   }
3175 
3176   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3177   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3178   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3179   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3180 
3181   // length and pos's are all sign extended at this point on 64bit
3182 
3183   // test for NULL
3184   if (flags & LIR_OpArrayCopy::src_null_check) {
3185     __ testptr(src, src);
3186     __ jcc(Assembler::zero, *stub->entry());
3187   }
3188   if (flags & LIR_OpArrayCopy::dst_null_check) {
3189     __ testptr(dst, dst);
3190     __ jcc(Assembler::zero, *stub->entry());
3191   }
3192 
3193   // If the compiler was not able to prove that exact type of the source or the destination
3194   // of the arraycopy is an array type, check at runtime if the source or the destination is
3195   // an instance type.
3196   if (flags & LIR_OpArrayCopy::type_check) {
3197     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3198       __ load_klass(tmp, dst);
3199       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3200       __ jcc(Assembler::greaterEqual, *stub->entry());
3201     }
3202 
3203     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3204       __ load_klass(tmp, src);
3205       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3206       __ jcc(Assembler::greaterEqual, *stub->entry());
3207     }
3208   }
3209 
3210   // check if negative
3211   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3212     __ testl(src_pos, src_pos);
3213     __ jcc(Assembler::less, *stub->entry());
3214   }
3215   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3216     __ testl(dst_pos, dst_pos);
3217     __ jcc(Assembler::less, *stub->entry());
3218   }
3219 
3220   if (flags & LIR_OpArrayCopy::src_range_check) {
3221     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3222     __ cmpl(tmp, src_length_addr);
3223     __ jcc(Assembler::above, *stub->entry());
3224   }
3225   if (flags & LIR_OpArrayCopy::dst_range_check) {
3226     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3227     __ cmpl(tmp, dst_length_addr);
3228     __ jcc(Assembler::above, *stub->entry());
3229   }
3230 
3231   if (flags & LIR_OpArrayCopy::length_positive_check) {
3232     __ testl(length, length);
3233     __ jcc(Assembler::less, *stub->entry());
3234   }
3235 
3236 #ifdef _LP64
3237   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3238   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3239 #endif
3240 
3241   if (flags & LIR_OpArrayCopy::type_check) {
3242     // We don't know the array types are compatible
3243     if (basic_type != T_OBJECT) {
3244       // Simple test for basic type arrays
3245       if (UseCompressedClassPointers) {
3246         __ movl(tmp, src_klass_addr);
3247         __ cmpl(tmp, dst_klass_addr);
3248       } else {
3249         __ movptr(tmp, src_klass_addr);
3250         __ cmpptr(tmp, dst_klass_addr);
3251       }
3252       __ jcc(Assembler::notEqual, *stub->entry());
3253     } else {
3254       // For object arrays, if src is a sub class of dst then we can
3255       // safely do the copy.
3256       Label cont, slow;
3257 
3258       __ push(src);
3259       __ push(dst);
3260 
3261       __ load_klass(src, src);
3262       __ load_klass(dst, dst);
3263 
3264       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3265 
3266       __ push(src);
3267       __ push(dst);
3268       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3269       __ pop(dst);
3270       __ pop(src);
3271 
3272       __ cmpl(src, 0);
3273       __ jcc(Assembler::notEqual, cont);
3274 
3275       __ bind(slow);
3276       __ pop(dst);
3277       __ pop(src);
3278 
3279       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3280       if (copyfunc_addr != NULL) { // use stub if available
3281         // src is not a sub class of dst so we have to do a
3282         // per-element check.
3283 
3284         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3285         if ((flags & mask) != mask) {
3286           // Check that at least both of them object arrays.
3287           assert(flags & mask, "one of the two should be known to be an object array");
3288 
3289           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3290             __ load_klass(tmp, src);
3291           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3292             __ load_klass(tmp, dst);
3293           }
3294           int lh_offset = in_bytes(Klass::layout_helper_offset());
3295           Address klass_lh_addr(tmp, lh_offset);
3296           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3297           __ cmpl(klass_lh_addr, objArray_lh);
3298           __ jcc(Assembler::notEqual, *stub->entry());
3299         }
3300 
3301        // Spill because stubs can use any register they like and it's
3302        // easier to restore just those that we care about.
3303        store_parameter(dst, 0);
3304        store_parameter(dst_pos, 1);
3305        store_parameter(length, 2);
3306        store_parameter(src_pos, 3);
3307        store_parameter(src, 4);
3308 
3309 #ifndef _LP64
3310         __ movptr(tmp, dst_klass_addr);
3311         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3312         __ push(tmp);
3313         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3314         __ push(tmp);
3315         __ push(length);
3316         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3317         __ push(tmp);
3318         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3319         __ push(tmp);
3320 
3321         __ call_VM_leaf(copyfunc_addr, 5);
3322 #else
3323         __ movl2ptr(length, length); //higher 32bits must be null
3324 
3325         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3326         assert_different_registers(c_rarg0, dst, dst_pos, length);
3327         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3328         assert_different_registers(c_rarg1, dst, length);
3329 
3330         __ mov(c_rarg2, length);
3331         assert_different_registers(c_rarg2, dst);
3332 
3333 #ifdef _WIN64
3334         // Allocate abi space for args but be sure to keep stack aligned
3335         __ subptr(rsp, 6*wordSize);
3336         __ load_klass(c_rarg3, dst);
3337         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3338         store_parameter(c_rarg3, 4);
3339         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3340         __ call(RuntimeAddress(copyfunc_addr));
3341         __ addptr(rsp, 6*wordSize);
3342 #else
3343         __ load_klass(c_rarg4, dst);
3344         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3345         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3346         __ call(RuntimeAddress(copyfunc_addr));
3347 #endif
3348 
3349 #endif
3350 
3351 #ifndef PRODUCT
3352         if (PrintC1Statistics) {
3353           Label failed;
3354           __ testl(rax, rax);
3355           __ jcc(Assembler::notZero, failed);
3356           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3357           __ bind(failed);
3358         }
3359 #endif
3360 
3361         __ testl(rax, rax);
3362         __ jcc(Assembler::zero, *stub->continuation());
3363 
3364 #ifndef PRODUCT
3365         if (PrintC1Statistics) {
3366           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3367         }
3368 #endif
3369 
3370         __ mov(tmp, rax);
3371 
3372         __ xorl(tmp, -1);
3373 
3374         // Restore previously spilled arguments
3375         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3376         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3377         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3378         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3379         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3380 
3381 
3382         __ subl(length, tmp);
3383         __ addl(src_pos, tmp);
3384         __ addl(dst_pos, tmp);
3385       }
3386 
3387       __ jmp(*stub->entry());
3388 
3389       __ bind(cont);
3390       __ pop(dst);
3391       __ pop(src);
3392     }
3393   }
3394 
3395 #ifdef ASSERT
3396   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3397     // Sanity check the known type with the incoming class.  For the
3398     // primitive case the types must match exactly with src.klass and
3399     // dst.klass each exactly matching the default type.  For the
3400     // object array case, if no type check is needed then either the
3401     // dst type is exactly the expected type and the src type is a
3402     // subtype which we can't check or src is the same array as dst
3403     // but not necessarily exactly of type default_type.
3404     Label known_ok, halt;
3405     __ mov_metadata(tmp, default_type->constant_encoding());
3406 #ifdef _LP64
3407     if (UseCompressedClassPointers) {
3408       __ encode_klass_not_null(tmp);
3409     }
3410 #endif
3411 
3412     if (basic_type != T_OBJECT) {
3413 
3414       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3415       else                   __ cmpptr(tmp, dst_klass_addr);
3416       __ jcc(Assembler::notEqual, halt);
3417       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3418       else                   __ cmpptr(tmp, src_klass_addr);
3419       __ jcc(Assembler::equal, known_ok);
3420     } else {
3421       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3422       else                   __ cmpptr(tmp, dst_klass_addr);
3423       __ jcc(Assembler::equal, known_ok);
3424       __ cmpptr(src, dst);
3425       __ jcc(Assembler::equal, known_ok);
3426     }
3427     __ bind(halt);
3428     __ stop("incorrect type information in arraycopy");
3429     __ bind(known_ok);
3430   }
3431 #endif
3432 
3433 #ifndef PRODUCT
3434   if (PrintC1Statistics) {
3435     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3436   }
3437 #endif
3438 
3439 #ifdef _LP64
3440   assert_different_registers(c_rarg0, dst, dst_pos, length);
3441   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3442   assert_different_registers(c_rarg1, length);
3443   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3444   __ mov(c_rarg2, length);
3445 
3446 #else
3447   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3448   store_parameter(tmp, 0);
3449   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3450   store_parameter(tmp, 1);
3451   store_parameter(length, 2);
3452 #endif // _LP64
3453 
3454   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3455   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3456   const char *name;
3457   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3458   __ call_VM_leaf(entry, 0);
3459 
3460   __ bind(*stub->continuation());
3461 }
3462 
3463 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3464   assert(op->crc()->is_single_cpu(),  "crc must be register");
3465   assert(op->val()->is_single_cpu(),  "byte value must be register");
3466   assert(op->result_opr()->is_single_cpu(), "result must be register");
3467   Register crc = op->crc()->as_register();
3468   Register val = op->val()->as_register();
3469   Register res = op->result_opr()->as_register();
3470 
3471   assert_different_registers(val, crc, res);
3472 
3473   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3474   __ notl(crc); // ~crc
3475   __ update_byte_crc32(crc, val, res);
3476   __ notl(crc); // ~crc
3477   __ mov(res, crc);
3478 }
3479 
3480 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3481   Register obj = op->obj_opr()->as_register();  // may not be an oop
3482   Register hdr = op->hdr_opr()->as_register();
3483   Register lock = op->lock_opr()->as_register();
3484   if (!UseFastLocking) {
3485     __ jmp(*op->stub()->entry());
3486   } else if (op->code() == lir_lock) {
3487     Register scratch = noreg;
3488     if (UseBiasedLocking) {
3489       scratch = op->scratch_opr()->as_register();
3490     }
3491     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3492     // add debug info for NullPointerException only if one is possible
3493     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3494     if (op->info() != NULL) {
3495       add_debug_info_for_null_check(null_check_offset, op->info());
3496     }
3497     // done
3498   } else if (op->code() == lir_unlock) {
3499     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3500     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3501   } else {
3502     Unimplemented();
3503   }
3504   __ bind(*op->stub()->continuation());
3505 }
3506 
3507 
3508 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3509   ciMethod* method = op->profiled_method();
3510   int bci          = op->profiled_bci();
3511   ciMethod* callee = op->profiled_callee();
3512 
3513   // Update counter for all call types
3514   ciMethodData* md = method->method_data_or_null();
3515   assert(md != NULL, "Sanity");
3516   ciProfileData* data = md->bci_to_data(bci);
3517   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3518   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3519   Register mdo  = op->mdo()->as_register();
3520   __ mov_metadata(mdo, md->constant_encoding());
3521   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3522   // Perform additional virtual call profiling for invokevirtual and
3523   // invokeinterface bytecodes
3524   if (op->should_profile_receiver_type()) {
3525     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3526     Register recv = op->recv()->as_register();
3527     assert_different_registers(mdo, recv);
3528     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3529     ciKlass* known_klass = op->known_holder();
3530     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3531       // We know the type that will be seen at this call site; we can
3532       // statically update the MethodData* rather than needing to do
3533       // dynamic tests on the receiver type
3534 
3535       // NOTE: we should probably put a lock around this search to
3536       // avoid collisions by concurrent compilations
3537       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3538       uint i;
3539       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3540         ciKlass* receiver = vc_data->receiver(i);
3541         if (known_klass->equals(receiver)) {
3542           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3543           __ addptr(data_addr, DataLayout::counter_increment);
3544           return;
3545         }
3546       }
3547 
3548       // Receiver type not found in profile data; select an empty slot
3549 
3550       // Note that this is less efficient than it should be because it
3551       // always does a write to the receiver part of the
3552       // VirtualCallData rather than just the first time
3553       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3554         ciKlass* receiver = vc_data->receiver(i);
3555         if (receiver == NULL) {
3556           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3557           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3558           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3559           __ addptr(data_addr, DataLayout::counter_increment);
3560           return;
3561         }
3562       }
3563     } else {
3564       __ load_klass(recv, recv);
3565       Label update_done;
3566       type_profile_helper(mdo, md, data, recv, &update_done);
3567       // Receiver did not match any saved receiver and there is no empty row for it.
3568       // Increment total counter to indicate polymorphic case.
3569       __ addptr(counter_addr, DataLayout::counter_increment);
3570 
3571       __ bind(update_done);
3572     }
3573   } else {
3574     // Static call
3575     __ addptr(counter_addr, DataLayout::counter_increment);
3576   }
3577 }
3578 
3579 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3580   Register obj = op->obj()->as_register();
3581   Register tmp = op->tmp()->as_pointer_register();
3582   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3583   ciKlass* exact_klass = op->exact_klass();
3584   intptr_t current_klass = op->current_klass();
3585   bool not_null = op->not_null();
3586   bool no_conflict = op->no_conflict();
3587 
3588   Label update, next, none;
3589 
3590   bool do_null = !not_null;
3591   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3592   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3593 
3594   assert(do_null || do_update, "why are we here?");
3595   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3596 
3597   __ verify_oop(obj);
3598 
3599   if (tmp != obj) {
3600     __ mov(tmp, obj);
3601   }
3602   if (do_null) {
3603     __ testptr(tmp, tmp);
3604     __ jccb(Assembler::notZero, update);
3605     if (!TypeEntries::was_null_seen(current_klass)) {
3606       __ orptr(mdo_addr, TypeEntries::null_seen);
3607     }
3608     if (do_update) {
3609 #ifndef ASSERT
3610       __ jmpb(next);
3611     }
3612 #else
3613       __ jmp(next);
3614     }
3615   } else {
3616     __ testptr(tmp, tmp);
3617     __ jccb(Assembler::notZero, update);
3618     __ stop("unexpect null obj");
3619 #endif
3620   }
3621 
3622   __ bind(update);
3623 
3624   if (do_update) {
3625 #ifdef ASSERT
3626     if (exact_klass != NULL) {
3627       Label ok;
3628       __ load_klass(tmp, tmp);
3629       __ push(tmp);
3630       __ mov_metadata(tmp, exact_klass->constant_encoding());
3631       __ cmpptr(tmp, Address(rsp, 0));
3632       __ jccb(Assembler::equal, ok);
3633       __ stop("exact klass and actual klass differ");
3634       __ bind(ok);
3635       __ pop(tmp);
3636     }
3637 #endif
3638     if (!no_conflict) {
3639       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3640         if (exact_klass != NULL) {
3641           __ mov_metadata(tmp, exact_klass->constant_encoding());
3642         } else {
3643           __ load_klass(tmp, tmp);
3644         }
3645 
3646         __ xorptr(tmp, mdo_addr);
3647         __ testptr(tmp, TypeEntries::type_klass_mask);
3648         // klass seen before, nothing to do. The unknown bit may have been
3649         // set already but no need to check.
3650         __ jccb(Assembler::zero, next);
3651 
3652         __ testptr(tmp, TypeEntries::type_unknown);
3653         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3654 
3655         if (TypeEntries::is_type_none(current_klass)) {
3656           __ cmpptr(mdo_addr, 0);
3657           __ jccb(Assembler::equal, none);
3658           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3659           __ jccb(Assembler::equal, none);
3660           // There is a chance that the checks above (re-reading profiling
3661           // data from memory) fail if another thread has just set the
3662           // profiling to this obj's klass
3663           __ xorptr(tmp, mdo_addr);
3664           __ testptr(tmp, TypeEntries::type_klass_mask);
3665           __ jccb(Assembler::zero, next);
3666         }
3667       } else {
3668         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3669                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3670 
3671         __ movptr(tmp, mdo_addr);
3672         __ testptr(tmp, TypeEntries::type_unknown);
3673         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3674       }
3675 
3676       // different than before. Cannot keep accurate profile.
3677       __ orptr(mdo_addr, TypeEntries::type_unknown);
3678 
3679       if (TypeEntries::is_type_none(current_klass)) {
3680         __ jmpb(next);
3681 
3682         __ bind(none);
3683         // first time here. Set profile type.
3684         __ movptr(mdo_addr, tmp);
3685       }
3686     } else {
3687       // There's a single possible klass at this profile point
3688       assert(exact_klass != NULL, "should be");
3689       if (TypeEntries::is_type_none(current_klass)) {
3690         __ mov_metadata(tmp, exact_klass->constant_encoding());
3691         __ xorptr(tmp, mdo_addr);
3692         __ testptr(tmp, TypeEntries::type_klass_mask);
3693 #ifdef ASSERT
3694         __ jcc(Assembler::zero, next);
3695 
3696         {
3697           Label ok;
3698           __ push(tmp);
3699           __ cmpptr(mdo_addr, 0);
3700           __ jcc(Assembler::equal, ok);
3701           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3702           __ jcc(Assembler::equal, ok);
3703           // may have been set by another thread
3704           __ mov_metadata(tmp, exact_klass->constant_encoding());
3705           __ xorptr(tmp, mdo_addr);
3706           __ testptr(tmp, TypeEntries::type_mask);
3707           __ jcc(Assembler::zero, ok);
3708 
3709           __ stop("unexpected profiling mismatch");
3710           __ bind(ok);
3711           __ pop(tmp);
3712         }
3713 #else
3714         __ jccb(Assembler::zero, next);
3715 #endif
3716         // first time here. Set profile type.
3717         __ movptr(mdo_addr, tmp);
3718       } else {
3719         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3720                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3721 
3722         __ movptr(tmp, mdo_addr);
3723         __ testptr(tmp, TypeEntries::type_unknown);
3724         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3725 
3726         __ orptr(mdo_addr, TypeEntries::type_unknown);
3727       }
3728     }
3729 
3730     __ bind(next);
3731   }
3732 }
3733 
3734 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3735   Unimplemented();
3736 }
3737 
3738 
3739 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3740   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3741 }
3742 
3743 
3744 void LIR_Assembler::align_backward_branch_target() {
3745   __ align(BytesPerWord);
3746 }
3747 
3748 
3749 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3750   if (left->is_single_cpu()) {
3751     __ negl(left->as_register());
3752     move_regs(left->as_register(), dest->as_register());
3753 
3754   } else if (left->is_double_cpu()) {
3755     Register lo = left->as_register_lo();
3756 #ifdef _LP64
3757     Register dst = dest->as_register_lo();
3758     __ movptr(dst, lo);
3759     __ negptr(dst);
3760 #else
3761     Register hi = left->as_register_hi();
3762     __ lneg(hi, lo);
3763     if (dest->as_register_lo() == hi) {
3764       assert(dest->as_register_hi() != lo, "destroying register");
3765       move_regs(hi, dest->as_register_hi());
3766       move_regs(lo, dest->as_register_lo());
3767     } else {
3768       move_regs(lo, dest->as_register_lo());
3769       move_regs(hi, dest->as_register_hi());
3770     }
3771 #endif // _LP64
3772 
3773   } else if (dest->is_single_xmm()) {
3774     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3775       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3776     }
3777     if (UseAVX > 0) {
3778       __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
3779                    ExternalAddress((address)float_signflip_pool));
3780     } else {
3781       __ xorps(dest->as_xmm_float_reg(),
3782                ExternalAddress((address)float_signflip_pool));
3783     }
3784   } else if (dest->is_double_xmm()) {
3785     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3786       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3787     }
3788     if (UseAVX > 0) {
3789       __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
3790                    ExternalAddress((address)double_signflip_pool));
3791     } else {
3792       __ xorpd(dest->as_xmm_double_reg(),
3793                ExternalAddress((address)double_signflip_pool));
3794     }
3795   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3796     assert(left->fpu() == 0, "arg must be on TOS");
3797     assert(dest->fpu() == 0, "dest must be TOS");
3798     __ fchs();
3799 
3800   } else {
3801     ShouldNotReachHere();
3802   }
3803 }
3804 
3805 
3806 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3807   assert(addr->is_address() && dest->is_register(), "check");
3808   Register reg;
3809   reg = dest->as_pointer_register();
3810   __ lea(reg, as_Address(addr->as_address_ptr()));
3811 }
3812 
3813 
3814 
3815 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3816   assert(!tmp->is_valid(), "don't need temporary");
3817   __ call(RuntimeAddress(dest));
3818   if (info != NULL) {
3819     add_call_info_here(info);
3820   }
3821 }
3822 
3823 
3824 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3825   assert(type == T_LONG, "only for volatile long fields");
3826 
3827   if (info != NULL) {
3828     add_debug_info_for_null_check_here(info);
3829   }
3830 
3831   if (src->is_double_xmm()) {
3832     if (dest->is_double_cpu()) {
3833 #ifdef _LP64
3834       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3835 #else
3836       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3837       __ psrlq(src->as_xmm_double_reg(), 32);
3838       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3839 #endif // _LP64
3840     } else if (dest->is_double_stack()) {
3841       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3842     } else if (dest->is_address()) {
3843       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3844     } else {
3845       ShouldNotReachHere();
3846     }
3847 
3848   } else if (dest->is_double_xmm()) {
3849     if (src->is_double_stack()) {
3850       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3851     } else if (src->is_address()) {
3852       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3853     } else {
3854       ShouldNotReachHere();
3855     }
3856 
3857   } else if (src->is_double_fpu()) {
3858     assert(src->fpu_regnrLo() == 0, "must be TOS");
3859     if (dest->is_double_stack()) {
3860       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3861     } else if (dest->is_address()) {
3862       __ fistp_d(as_Address(dest->as_address_ptr()));
3863     } else {
3864       ShouldNotReachHere();
3865     }
3866 
3867   } else if (dest->is_double_fpu()) {
3868     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3869     if (src->is_double_stack()) {
3870       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3871     } else if (src->is_address()) {
3872       __ fild_d(as_Address(src->as_address_ptr()));
3873     } else {
3874       ShouldNotReachHere();
3875     }
3876   } else {
3877     ShouldNotReachHere();
3878   }
3879 }
3880 
3881 #ifdef ASSERT
3882 // emit run-time assertion
3883 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3884   assert(op->code() == lir_assert, "must be");
3885 
3886   if (op->in_opr1()->is_valid()) {
3887     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3888     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3889   } else {
3890     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3891     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3892   }
3893 
3894   Label ok;
3895   if (op->condition() != lir_cond_always) {
3896     Assembler::Condition acond = Assembler::zero;
3897     switch (op->condition()) {
3898       case lir_cond_equal:        acond = Assembler::equal;       break;
3899       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3900       case lir_cond_less:         acond = Assembler::less;        break;
3901       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3902       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3903       case lir_cond_greater:      acond = Assembler::greater;     break;
3904       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3905       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3906       default:                    ShouldNotReachHere();
3907     }
3908     __ jcc(acond, ok);
3909   }
3910   if (op->halt()) {
3911     const char* str = __ code_string(op->msg());
3912     __ stop(str);
3913   } else {
3914     breakpoint();
3915   }
3916   __ bind(ok);
3917 }
3918 #endif
3919 
3920 void LIR_Assembler::membar() {
3921   // QQQ sparc TSO uses this,
3922   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3923 }
3924 
3925 void LIR_Assembler::membar_acquire() {
3926   // No x86 machines currently require load fences
3927 }
3928 
3929 void LIR_Assembler::membar_release() {
3930   // No x86 machines currently require store fences
3931 }
3932 
3933 void LIR_Assembler::membar_loadload() {
3934   // no-op
3935   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3936 }
3937 
3938 void LIR_Assembler::membar_storestore() {
3939   // no-op
3940   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3941 }
3942 
3943 void LIR_Assembler::membar_loadstore() {
3944   // no-op
3945   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3946 }
3947 
3948 void LIR_Assembler::membar_storeload() {
3949   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3950 }
3951 
3952 void LIR_Assembler::on_spin_wait() {
3953   __ pause ();
3954 }
3955 
3956 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3957   assert(result_reg->is_register(), "check");
3958 #ifdef _LP64
3959   // __ get_thread(result_reg->as_register_lo());
3960   __ mov(result_reg->as_register(), r15_thread);
3961 #else
3962   __ get_thread(result_reg->as_register());
3963 #endif // _LP64
3964 }
3965 
3966 
3967 void LIR_Assembler::peephole(LIR_List*) {
3968   // do nothing for now
3969 }
3970 
3971 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3972   assert(data == dest, "xchg/xadd uses only 2 operands");
3973 
3974   if (data->type() == T_INT) {
3975     if (code == lir_xadd) {
3976       if (os::is_MP()) {
3977         __ lock();
3978       }
3979       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3980     } else {
3981       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3982     }
3983   } else if (data->is_oop()) {
3984     assert (code == lir_xchg, "xadd for oops");
3985     Register obj = data->as_register();
3986 #ifdef _LP64
3987     if (UseCompressedOops) {
3988       __ encode_heap_oop(obj);
3989       __ xchgl(obj, as_Address(src->as_address_ptr()));
3990       __ decode_heap_oop(obj);
3991     } else {
3992       __ xchgptr(obj, as_Address(src->as_address_ptr()));
3993     }
3994 #else
3995     __ xchgl(obj, as_Address(src->as_address_ptr()));
3996 #endif
3997   } else if (data->type() == T_LONG) {
3998 #ifdef _LP64
3999     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4000     if (code == lir_xadd) {
4001       if (os::is_MP()) {
4002         __ lock();
4003       }
4004       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4005     } else {
4006       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4007     }
4008 #else
4009     ShouldNotReachHere();
4010 #endif
4011   } else {
4012     ShouldNotReachHere();
4013   }
4014 }
4015 
4016 #undef __