1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciUtilities.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CardTable.hpp"
  30 #include "gc/g1/heapRegion.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/cardTable.hpp"
  33 #include "gc/shared/cardTableBarrierSet.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/locknode.hpp"
  44 #include "opto/machnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 
  52 //----------------------------GraphKit-----------------------------------------
  53 // Main utility constructor.
  54 GraphKit::GraphKit(JVMState* jvms)
  55   : Phase(Phase::Parser),
  56     _env(C->env()),
  57     _gvn(*C->initial_gvn())
  58 {
  59   _exceptions = jvms->map()->next_exception();
  60   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  61   set_jvms(jvms);
  62 }
  63 
  64 // Private constructor for parser.
  65 GraphKit::GraphKit()
  66   : Phase(Phase::Parser),
  67     _env(C->env()),
  68     _gvn(*C->initial_gvn())
  69 {
  70   _exceptions = NULL;
  71   set_map(NULL);
  72   debug_only(_sp = -99);
  73   debug_only(set_bci(-99));
  74 }
  75 
  76 
  77 
  78 //---------------------------clean_stack---------------------------------------
  79 // Clear away rubbish from the stack area of the JVM state.
  80 // This destroys any arguments that may be waiting on the stack.
  81 void GraphKit::clean_stack(int from_sp) {
  82   SafePointNode* map      = this->map();
  83   JVMState*      jvms     = this->jvms();
  84   int            stk_size = jvms->stk_size();
  85   int            stkoff   = jvms->stkoff();
  86   Node*          top      = this->top();
  87   for (int i = from_sp; i < stk_size; i++) {
  88     if (map->in(stkoff + i) != top) {
  89       map->set_req(stkoff + i, top);
  90     }
  91   }
  92 }
  93 
  94 
  95 //--------------------------------sync_jvms-----------------------------------
  96 // Make sure our current jvms agrees with our parse state.
  97 JVMState* GraphKit::sync_jvms() const {
  98   JVMState* jvms = this->jvms();
  99   jvms->set_bci(bci());       // Record the new bci in the JVMState
 100   jvms->set_sp(sp());         // Record the new sp in the JVMState
 101   assert(jvms_in_sync(), "jvms is now in sync");
 102   return jvms;
 103 }
 104 
 105 //--------------------------------sync_jvms_for_reexecute---------------------
 106 // Make sure our current jvms agrees with our parse state.  This version
 107 // uses the reexecute_sp for reexecuting bytecodes.
 108 JVMState* GraphKit::sync_jvms_for_reexecute() {
 109   JVMState* jvms = this->jvms();
 110   jvms->set_bci(bci());          // Record the new bci in the JVMState
 111   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 112   return jvms;
 113 }
 114 
 115 #ifdef ASSERT
 116 bool GraphKit::jvms_in_sync() const {
 117   Parse* parse = is_Parse();
 118   if (parse == NULL) {
 119     if (bci() !=      jvms()->bci())          return false;
 120     if (sp()  != (int)jvms()->sp())           return false;
 121     return true;
 122   }
 123   if (jvms()->method() != parse->method())    return false;
 124   if (jvms()->bci()    != parse->bci())       return false;
 125   int jvms_sp = jvms()->sp();
 126   if (jvms_sp          != parse->sp())        return false;
 127   int jvms_depth = jvms()->depth();
 128   if (jvms_depth       != parse->depth())     return false;
 129   return true;
 130 }
 131 
 132 // Local helper checks for special internal merge points
 133 // used to accumulate and merge exception states.
 134 // They are marked by the region's in(0) edge being the map itself.
 135 // Such merge points must never "escape" into the parser at large,
 136 // until they have been handed to gvn.transform.
 137 static bool is_hidden_merge(Node* reg) {
 138   if (reg == NULL)  return false;
 139   if (reg->is_Phi()) {
 140     reg = reg->in(0);
 141     if (reg == NULL)  return false;
 142   }
 143   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 144 }
 145 
 146 void GraphKit::verify_map() const {
 147   if (map() == NULL)  return;  // null map is OK
 148   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 149   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 150   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 151 }
 152 
 153 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 154   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 155   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 156 }
 157 #endif
 158 
 159 //---------------------------stop_and_kill_map---------------------------------
 160 // Set _map to NULL, signalling a stop to further bytecode execution.
 161 // First smash the current map's control to a constant, to mark it dead.
 162 void GraphKit::stop_and_kill_map() {
 163   SafePointNode* dead_map = stop();
 164   if (dead_map != NULL) {
 165     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 166     assert(dead_map->is_killed(), "must be so marked");
 167   }
 168 }
 169 
 170 
 171 //--------------------------------stopped--------------------------------------
 172 // Tell if _map is NULL, or control is top.
 173 bool GraphKit::stopped() {
 174   if (map() == NULL)           return true;
 175   else if (control() == top()) return true;
 176   else                         return false;
 177 }
 178 
 179 
 180 //-----------------------------has_ex_handler----------------------------------
 181 // Tell if this method or any caller method has exception handlers.
 182 bool GraphKit::has_ex_handler() {
 183   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 184     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 185       return true;
 186     }
 187   }
 188   return false;
 189 }
 190 
 191 //------------------------------save_ex_oop------------------------------------
 192 // Save an exception without blowing stack contents or other JVM state.
 193 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 194   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 195   ex_map->add_req(ex_oop);
 196   debug_only(verify_exception_state(ex_map));
 197 }
 198 
 199 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 200   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 201   Node* ex_oop = ex_map->in(ex_map->req()-1);
 202   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 203   return ex_oop;
 204 }
 205 
 206 //-----------------------------saved_ex_oop------------------------------------
 207 // Recover a saved exception from its map.
 208 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 209   return common_saved_ex_oop(ex_map, false);
 210 }
 211 
 212 //--------------------------clear_saved_ex_oop---------------------------------
 213 // Erase a previously saved exception from its map.
 214 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 215   return common_saved_ex_oop(ex_map, true);
 216 }
 217 
 218 #ifdef ASSERT
 219 //---------------------------has_saved_ex_oop----------------------------------
 220 // Erase a previously saved exception from its map.
 221 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 222   return ex_map->req() == ex_map->jvms()->endoff()+1;
 223 }
 224 #endif
 225 
 226 //-------------------------make_exception_state--------------------------------
 227 // Turn the current JVM state into an exception state, appending the ex_oop.
 228 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 229   sync_jvms();
 230   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 231   set_saved_ex_oop(ex_map, ex_oop);
 232   return ex_map;
 233 }
 234 
 235 
 236 //--------------------------add_exception_state--------------------------------
 237 // Add an exception to my list of exceptions.
 238 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 239   if (ex_map == NULL || ex_map->control() == top()) {
 240     return;
 241   }
 242 #ifdef ASSERT
 243   verify_exception_state(ex_map);
 244   if (has_exceptions()) {
 245     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 246   }
 247 #endif
 248 
 249   // If there is already an exception of exactly this type, merge with it.
 250   // In particular, null-checks and other low-level exceptions common up here.
 251   Node*       ex_oop  = saved_ex_oop(ex_map);
 252   const Type* ex_type = _gvn.type(ex_oop);
 253   if (ex_oop == top()) {
 254     // No action needed.
 255     return;
 256   }
 257   assert(ex_type->isa_instptr(), "exception must be an instance");
 258   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 259     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 260     // We check sp also because call bytecodes can generate exceptions
 261     // both before and after arguments are popped!
 262     if (ex_type2 == ex_type
 263         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 264       combine_exception_states(ex_map, e2);
 265       return;
 266     }
 267   }
 268 
 269   // No pre-existing exception of the same type.  Chain it on the list.
 270   push_exception_state(ex_map);
 271 }
 272 
 273 //-----------------------add_exception_states_from-----------------------------
 274 void GraphKit::add_exception_states_from(JVMState* jvms) {
 275   SafePointNode* ex_map = jvms->map()->next_exception();
 276   if (ex_map != NULL) {
 277     jvms->map()->set_next_exception(NULL);
 278     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 279       next_map = ex_map->next_exception();
 280       ex_map->set_next_exception(NULL);
 281       add_exception_state(ex_map);
 282     }
 283   }
 284 }
 285 
 286 //-----------------------transfer_exceptions_into_jvms-------------------------
 287 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 288   if (map() == NULL) {
 289     // We need a JVMS to carry the exceptions, but the map has gone away.
 290     // Create a scratch JVMS, cloned from any of the exception states...
 291     if (has_exceptions()) {
 292       _map = _exceptions;
 293       _map = clone_map();
 294       _map->set_next_exception(NULL);
 295       clear_saved_ex_oop(_map);
 296       debug_only(verify_map());
 297     } else {
 298       // ...or created from scratch
 299       JVMState* jvms = new (C) JVMState(_method, NULL);
 300       jvms->set_bci(_bci);
 301       jvms->set_sp(_sp);
 302       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 303       set_jvms(jvms);
 304       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 305       set_all_memory(top());
 306       while (map()->req() < jvms->endoff())  map()->add_req(top());
 307     }
 308     // (This is a kludge, in case you didn't notice.)
 309     set_control(top());
 310   }
 311   JVMState* jvms = sync_jvms();
 312   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 313   jvms->map()->set_next_exception(_exceptions);
 314   _exceptions = NULL;   // done with this set of exceptions
 315   return jvms;
 316 }
 317 
 318 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 319   assert(is_hidden_merge(dstphi), "must be a special merge node");
 320   assert(is_hidden_merge(srcphi), "must be a special merge node");
 321   uint limit = srcphi->req();
 322   for (uint i = PhiNode::Input; i < limit; i++) {
 323     dstphi->add_req(srcphi->in(i));
 324   }
 325 }
 326 static inline void add_one_req(Node* dstphi, Node* src) {
 327   assert(is_hidden_merge(dstphi), "must be a special merge node");
 328   assert(!is_hidden_merge(src), "must not be a special merge node");
 329   dstphi->add_req(src);
 330 }
 331 
 332 //-----------------------combine_exception_states------------------------------
 333 // This helper function combines exception states by building phis on a
 334 // specially marked state-merging region.  These regions and phis are
 335 // untransformed, and can build up gradually.  The region is marked by
 336 // having a control input of its exception map, rather than NULL.  Such
 337 // regions do not appear except in this function, and in use_exception_state.
 338 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 339   if (failing())  return;  // dying anyway...
 340   JVMState* ex_jvms = ex_map->_jvms;
 341   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 342   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 343   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 344   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 345   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 346   assert(ex_map->req() == phi_map->req(), "matching maps");
 347   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 348   Node*         hidden_merge_mark = root();
 349   Node*         region  = phi_map->control();
 350   MergeMemNode* phi_mem = phi_map->merged_memory();
 351   MergeMemNode* ex_mem  = ex_map->merged_memory();
 352   if (region->in(0) != hidden_merge_mark) {
 353     // The control input is not (yet) a specially-marked region in phi_map.
 354     // Make it so, and build some phis.
 355     region = new RegionNode(2);
 356     _gvn.set_type(region, Type::CONTROL);
 357     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 358     region->init_req(1, phi_map->control());
 359     phi_map->set_control(region);
 360     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 361     record_for_igvn(io_phi);
 362     _gvn.set_type(io_phi, Type::ABIO);
 363     phi_map->set_i_o(io_phi);
 364     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 365       Node* m = mms.memory();
 366       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 367       record_for_igvn(m_phi);
 368       _gvn.set_type(m_phi, Type::MEMORY);
 369       mms.set_memory(m_phi);
 370     }
 371   }
 372 
 373   // Either or both of phi_map and ex_map might already be converted into phis.
 374   Node* ex_control = ex_map->control();
 375   // if there is special marking on ex_map also, we add multiple edges from src
 376   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 377   // how wide was the destination phi_map, originally?
 378   uint orig_width = region->req();
 379 
 380   if (add_multiple) {
 381     add_n_reqs(region, ex_control);
 382     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 383   } else {
 384     // ex_map has no merges, so we just add single edges everywhere
 385     add_one_req(region, ex_control);
 386     add_one_req(phi_map->i_o(), ex_map->i_o());
 387   }
 388   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 389     if (mms.is_empty()) {
 390       // get a copy of the base memory, and patch some inputs into it
 391       const TypePtr* adr_type = mms.adr_type(C);
 392       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 393       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 394       mms.set_memory(phi);
 395       // Prepare to append interesting stuff onto the newly sliced phi:
 396       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 397     }
 398     // Append stuff from ex_map:
 399     if (add_multiple) {
 400       add_n_reqs(mms.memory(), mms.memory2());
 401     } else {
 402       add_one_req(mms.memory(), mms.memory2());
 403     }
 404   }
 405   uint limit = ex_map->req();
 406   for (uint i = TypeFunc::Parms; i < limit; i++) {
 407     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 408     if (i == tos)  i = ex_jvms->monoff();
 409     Node* src = ex_map->in(i);
 410     Node* dst = phi_map->in(i);
 411     if (src != dst) {
 412       PhiNode* phi;
 413       if (dst->in(0) != region) {
 414         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 415         record_for_igvn(phi);
 416         _gvn.set_type(phi, phi->type());
 417         phi_map->set_req(i, dst);
 418         // Prepare to append interesting stuff onto the new phi:
 419         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 420       } else {
 421         assert(dst->is_Phi(), "nobody else uses a hidden region");
 422         phi = dst->as_Phi();
 423       }
 424       if (add_multiple && src->in(0) == ex_control) {
 425         // Both are phis.
 426         add_n_reqs(dst, src);
 427       } else {
 428         while (dst->req() < region->req())  add_one_req(dst, src);
 429       }
 430       const Type* srctype = _gvn.type(src);
 431       if (phi->type() != srctype) {
 432         const Type* dsttype = phi->type()->meet_speculative(srctype);
 433         if (phi->type() != dsttype) {
 434           phi->set_type(dsttype);
 435           _gvn.set_type(phi, dsttype);
 436         }
 437       }
 438     }
 439   }
 440   phi_map->merge_replaced_nodes_with(ex_map);
 441 }
 442 
 443 //--------------------------use_exception_state--------------------------------
 444 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 445   if (failing()) { stop(); return top(); }
 446   Node* region = phi_map->control();
 447   Node* hidden_merge_mark = root();
 448   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 449   Node* ex_oop = clear_saved_ex_oop(phi_map);
 450   if (region->in(0) == hidden_merge_mark) {
 451     // Special marking for internal ex-states.  Process the phis now.
 452     region->set_req(0, region);  // now it's an ordinary region
 453     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 454     // Note: Setting the jvms also sets the bci and sp.
 455     set_control(_gvn.transform(region));
 456     uint tos = jvms()->stkoff() + sp();
 457     for (uint i = 1; i < tos; i++) {
 458       Node* x = phi_map->in(i);
 459       if (x->in(0) == region) {
 460         assert(x->is_Phi(), "expected a special phi");
 461         phi_map->set_req(i, _gvn.transform(x));
 462       }
 463     }
 464     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 465       Node* x = mms.memory();
 466       if (x->in(0) == region) {
 467         assert(x->is_Phi(), "nobody else uses a hidden region");
 468         mms.set_memory(_gvn.transform(x));
 469       }
 470     }
 471     if (ex_oop->in(0) == region) {
 472       assert(ex_oop->is_Phi(), "expected a special phi");
 473       ex_oop = _gvn.transform(ex_oop);
 474     }
 475   } else {
 476     set_jvms(phi_map->jvms());
 477   }
 478 
 479   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 480   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 481   return ex_oop;
 482 }
 483 
 484 //---------------------------------java_bc-------------------------------------
 485 Bytecodes::Code GraphKit::java_bc() const {
 486   ciMethod* method = this->method();
 487   int       bci    = this->bci();
 488   if (method != NULL && bci != InvocationEntryBci)
 489     return method->java_code_at_bci(bci);
 490   else
 491     return Bytecodes::_illegal;
 492 }
 493 
 494 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 495                                                           bool must_throw) {
 496     // if the exception capability is set, then we will generate code
 497     // to check the JavaThread.should_post_on_exceptions flag to see
 498     // if we actually need to report exception events (for this
 499     // thread).  If we don't need to report exception events, we will
 500     // take the normal fast path provided by add_exception_events.  If
 501     // exception event reporting is enabled for this thread, we will
 502     // take the uncommon_trap in the BuildCutout below.
 503 
 504     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 505     Node* jthread = _gvn.transform(new ThreadLocalNode());
 506     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 507     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 508 
 509     // Test the should_post_on_exceptions_flag vs. 0
 510     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 511     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 512 
 513     // Branch to slow_path if should_post_on_exceptions_flag was true
 514     { BuildCutout unless(this, tst, PROB_MAX);
 515       // Do not try anything fancy if we're notifying the VM on every throw.
 516       // Cf. case Bytecodes::_athrow in parse2.cpp.
 517       uncommon_trap(reason, Deoptimization::Action_none,
 518                     (ciKlass*)NULL, (char*)NULL, must_throw);
 519     }
 520 
 521 }
 522 
 523 //------------------------------builtin_throw----------------------------------
 524 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 525   bool must_throw = true;
 526 
 527   if (env()->jvmti_can_post_on_exceptions()) {
 528     // check if we must post exception events, take uncommon trap if so
 529     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 530     // here if should_post_on_exceptions is false
 531     // continue on with the normal codegen
 532   }
 533 
 534   // If this particular condition has not yet happened at this
 535   // bytecode, then use the uncommon trap mechanism, and allow for
 536   // a future recompilation if several traps occur here.
 537   // If the throw is hot, try to use a more complicated inline mechanism
 538   // which keeps execution inside the compiled code.
 539   bool treat_throw_as_hot = false;
 540   ciMethodData* md = method()->method_data();
 541 
 542   if (ProfileTraps) {
 543     if (too_many_traps(reason)) {
 544       treat_throw_as_hot = true;
 545     }
 546     // (If there is no MDO at all, assume it is early in
 547     // execution, and that any deopts are part of the
 548     // startup transient, and don't need to be remembered.)
 549 
 550     // Also, if there is a local exception handler, treat all throws
 551     // as hot if there has been at least one in this method.
 552     if (C->trap_count(reason) != 0
 553         && method()->method_data()->trap_count(reason) != 0
 554         && has_ex_handler()) {
 555         treat_throw_as_hot = true;
 556     }
 557   }
 558 
 559   // If this throw happens frequently, an uncommon trap might cause
 560   // a performance pothole.  If there is a local exception handler,
 561   // and if this particular bytecode appears to be deoptimizing often,
 562   // let us handle the throw inline, with a preconstructed instance.
 563   // Note:   If the deopt count has blown up, the uncommon trap
 564   // runtime is going to flush this nmethod, not matter what.
 565   if (treat_throw_as_hot
 566       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 567     // If the throw is local, we use a pre-existing instance and
 568     // punt on the backtrace.  This would lead to a missing backtrace
 569     // (a repeat of 4292742) if the backtrace object is ever asked
 570     // for its backtrace.
 571     // Fixing this remaining case of 4292742 requires some flavor of
 572     // escape analysis.  Leave that for the future.
 573     ciInstance* ex_obj = NULL;
 574     switch (reason) {
 575     case Deoptimization::Reason_null_check:
 576       ex_obj = env()->NullPointerException_instance();
 577       break;
 578     case Deoptimization::Reason_div0_check:
 579       ex_obj = env()->ArithmeticException_instance();
 580       break;
 581     case Deoptimization::Reason_range_check:
 582       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 583       break;
 584     case Deoptimization::Reason_class_check:
 585       if (java_bc() == Bytecodes::_aastore) {
 586         ex_obj = env()->ArrayStoreException_instance();
 587       } else {
 588         ex_obj = env()->ClassCastException_instance();
 589       }
 590       break;
 591     default:
 592       break;
 593     }
 594     if (failing()) { stop(); return; }  // exception allocation might fail
 595     if (ex_obj != NULL) {
 596       // Cheat with a preallocated exception object.
 597       if (C->log() != NULL)
 598         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 599                        Deoptimization::trap_reason_name(reason));
 600       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 601       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 602 
 603       // Clear the detail message of the preallocated exception object.
 604       // Weblogic sometimes mutates the detail message of exceptions
 605       // using reflection.
 606       int offset = java_lang_Throwable::get_detailMessage_offset();
 607       const TypePtr* adr_typ = ex_con->add_offset(offset);
 608 
 609       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 610       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 611       // Conservatively release stores of object references.
 612       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 613 
 614       add_exception_state(make_exception_state(ex_node));
 615       return;
 616     }
 617   }
 618 
 619   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 620   // It won't be much cheaper than bailing to the interp., since we'll
 621   // have to pass up all the debug-info, and the runtime will have to
 622   // create the stack trace.
 623 
 624   // Usual case:  Bail to interpreter.
 625   // Reserve the right to recompile if we haven't seen anything yet.
 626 
 627   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 628   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 629   if (treat_throw_as_hot
 630       && (method()->method_data()->trap_recompiled_at(bci(), m)
 631           || C->too_many_traps(reason))) {
 632     // We cannot afford to take more traps here.  Suffer in the interpreter.
 633     if (C->log() != NULL)
 634       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 635                      Deoptimization::trap_reason_name(reason),
 636                      C->trap_count(reason));
 637     action = Deoptimization::Action_none;
 638   }
 639 
 640   // "must_throw" prunes the JVM state to include only the stack, if there
 641   // are no local exception handlers.  This should cut down on register
 642   // allocation time and code size, by drastically reducing the number
 643   // of in-edges on the call to the uncommon trap.
 644 
 645   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 646 }
 647 
 648 
 649 //----------------------------PreserveJVMState---------------------------------
 650 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 651   debug_only(kit->verify_map());
 652   _kit    = kit;
 653   _map    = kit->map();   // preserve the map
 654   _sp     = kit->sp();
 655   kit->set_map(clone_map ? kit->clone_map() : NULL);
 656 #ifdef ASSERT
 657   _bci    = kit->bci();
 658   Parse* parser = kit->is_Parse();
 659   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 660   _block  = block;
 661 #endif
 662 }
 663 PreserveJVMState::~PreserveJVMState() {
 664   GraphKit* kit = _kit;
 665 #ifdef ASSERT
 666   assert(kit->bci() == _bci, "bci must not shift");
 667   Parse* parser = kit->is_Parse();
 668   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 669   assert(block == _block,    "block must not shift");
 670 #endif
 671   kit->set_map(_map);
 672   kit->set_sp(_sp);
 673 }
 674 
 675 
 676 //-----------------------------BuildCutout-------------------------------------
 677 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 678   : PreserveJVMState(kit)
 679 {
 680   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 681   SafePointNode* outer_map = _map;   // preserved map is caller's
 682   SafePointNode* inner_map = kit->map();
 683   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 684   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 685   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 686 }
 687 BuildCutout::~BuildCutout() {
 688   GraphKit* kit = _kit;
 689   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 690 }
 691 
 692 //---------------------------PreserveReexecuteState----------------------------
 693 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 694   assert(!kit->stopped(), "must call stopped() before");
 695   _kit    =    kit;
 696   _sp     =    kit->sp();
 697   _reexecute = kit->jvms()->_reexecute;
 698 }
 699 PreserveReexecuteState::~PreserveReexecuteState() {
 700   if (_kit->stopped()) return;
 701   _kit->jvms()->_reexecute = _reexecute;
 702   _kit->set_sp(_sp);
 703 }
 704 
 705 //------------------------------clone_map--------------------------------------
 706 // Implementation of PreserveJVMState
 707 //
 708 // Only clone_map(...) here. If this function is only used in the
 709 // PreserveJVMState class we may want to get rid of this extra
 710 // function eventually and do it all there.
 711 
 712 SafePointNode* GraphKit::clone_map() {
 713   if (map() == NULL)  return NULL;
 714 
 715   // Clone the memory edge first
 716   Node* mem = MergeMemNode::make(map()->memory());
 717   gvn().set_type_bottom(mem);
 718 
 719   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 720   JVMState* jvms = this->jvms();
 721   JVMState* clonejvms = jvms->clone_shallow(C);
 722   clonemap->set_memory(mem);
 723   clonemap->set_jvms(clonejvms);
 724   clonejvms->set_map(clonemap);
 725   record_for_igvn(clonemap);
 726   gvn().set_type_bottom(clonemap);
 727   return clonemap;
 728 }
 729 
 730 
 731 //-----------------------------set_map_clone-----------------------------------
 732 void GraphKit::set_map_clone(SafePointNode* m) {
 733   _map = m;
 734   _map = clone_map();
 735   _map->set_next_exception(NULL);
 736   debug_only(verify_map());
 737 }
 738 
 739 
 740 //----------------------------kill_dead_locals---------------------------------
 741 // Detect any locals which are known to be dead, and force them to top.
 742 void GraphKit::kill_dead_locals() {
 743   // Consult the liveness information for the locals.  If any
 744   // of them are unused, then they can be replaced by top().  This
 745   // should help register allocation time and cut down on the size
 746   // of the deoptimization information.
 747 
 748   // This call is made from many of the bytecode handling
 749   // subroutines called from the Big Switch in do_one_bytecode.
 750   // Every bytecode which might include a slow path is responsible
 751   // for killing its dead locals.  The more consistent we
 752   // are about killing deads, the fewer useless phis will be
 753   // constructed for them at various merge points.
 754 
 755   // bci can be -1 (InvocationEntryBci).  We return the entry
 756   // liveness for the method.
 757 
 758   if (method() == NULL || method()->code_size() == 0) {
 759     // We are building a graph for a call to a native method.
 760     // All locals are live.
 761     return;
 762   }
 763 
 764   ResourceMark rm;
 765 
 766   // Consult the liveness information for the locals.  If any
 767   // of them are unused, then they can be replaced by top().  This
 768   // should help register allocation time and cut down on the size
 769   // of the deoptimization information.
 770   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 771 
 772   int len = (int)live_locals.size();
 773   assert(len <= jvms()->loc_size(), "too many live locals");
 774   for (int local = 0; local < len; local++) {
 775     if (!live_locals.at(local)) {
 776       set_local(local, top());
 777     }
 778   }
 779 }
 780 
 781 #ifdef ASSERT
 782 //-------------------------dead_locals_are_killed------------------------------
 783 // Return true if all dead locals are set to top in the map.
 784 // Used to assert "clean" debug info at various points.
 785 bool GraphKit::dead_locals_are_killed() {
 786   if (method() == NULL || method()->code_size() == 0) {
 787     // No locals need to be dead, so all is as it should be.
 788     return true;
 789   }
 790 
 791   // Make sure somebody called kill_dead_locals upstream.
 792   ResourceMark rm;
 793   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 794     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 795     SafePointNode* map = jvms->map();
 796     ciMethod* method = jvms->method();
 797     int       bci    = jvms->bci();
 798     if (jvms == this->jvms()) {
 799       bci = this->bci();  // it might not yet be synched
 800     }
 801     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 802     int len = (int)live_locals.size();
 803     if (!live_locals.is_valid() || len == 0)
 804       // This method is trivial, or is poisoned by a breakpoint.
 805       return true;
 806     assert(len == jvms->loc_size(), "live map consistent with locals map");
 807     for (int local = 0; local < len; local++) {
 808       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 809         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 810           tty->print_cr("Zombie local %d: ", local);
 811           jvms->dump();
 812         }
 813         return false;
 814       }
 815     }
 816   }
 817   return true;
 818 }
 819 
 820 #endif //ASSERT
 821 
 822 // Helper function for enforcing certain bytecodes to reexecute if
 823 // deoptimization happens
 824 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 825   ciMethod* cur_method = jvms->method();
 826   int       cur_bci   = jvms->bci();
 827   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 828     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 829     return Interpreter::bytecode_should_reexecute(code) ||
 830            (is_anewarray && code == Bytecodes::_multianewarray);
 831     // Reexecute _multianewarray bytecode which was replaced with
 832     // sequence of [a]newarray. See Parse::do_multianewarray().
 833     //
 834     // Note: interpreter should not have it set since this optimization
 835     // is limited by dimensions and guarded by flag so in some cases
 836     // multianewarray() runtime calls will be generated and
 837     // the bytecode should not be reexecutes (stack will not be reset).
 838   } else
 839     return false;
 840 }
 841 
 842 // Helper function for adding JVMState and debug information to node
 843 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 844   // Add the safepoint edges to the call (or other safepoint).
 845 
 846   // Make sure dead locals are set to top.  This
 847   // should help register allocation time and cut down on the size
 848   // of the deoptimization information.
 849   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 850 
 851   // Walk the inline list to fill in the correct set of JVMState's
 852   // Also fill in the associated edges for each JVMState.
 853 
 854   // If the bytecode needs to be reexecuted we need to put
 855   // the arguments back on the stack.
 856   const bool should_reexecute = jvms()->should_reexecute();
 857   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 858 
 859   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 860   // undefined if the bci is different.  This is normal for Parse but it
 861   // should not happen for LibraryCallKit because only one bci is processed.
 862   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 863          "in LibraryCallKit the reexecute bit should not change");
 864 
 865   // If we are guaranteed to throw, we can prune everything but the
 866   // input to the current bytecode.
 867   bool can_prune_locals = false;
 868   uint stack_slots_not_pruned = 0;
 869   int inputs = 0, depth = 0;
 870   if (must_throw) {
 871     assert(method() == youngest_jvms->method(), "sanity");
 872     if (compute_stack_effects(inputs, depth)) {
 873       can_prune_locals = true;
 874       stack_slots_not_pruned = inputs;
 875     }
 876   }
 877 
 878   if (env()->should_retain_local_variables()) {
 879     // At any safepoint, this method can get breakpointed, which would
 880     // then require an immediate deoptimization.
 881     can_prune_locals = false;  // do not prune locals
 882     stack_slots_not_pruned = 0;
 883   }
 884 
 885   // do not scribble on the input jvms
 886   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 887   call->set_jvms(out_jvms); // Start jvms list for call node
 888 
 889   // For a known set of bytecodes, the interpreter should reexecute them if
 890   // deoptimization happens. We set the reexecute state for them here
 891   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 892       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 893     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 894   }
 895 
 896   // Presize the call:
 897   DEBUG_ONLY(uint non_debug_edges = call->req());
 898   call->add_req_batch(top(), youngest_jvms->debug_depth());
 899   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 900 
 901   // Set up edges so that the call looks like this:
 902   //  Call [state:] ctl io mem fptr retadr
 903   //       [parms:] parm0 ... parmN
 904   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 905   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 906   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 907   // Note that caller debug info precedes callee debug info.
 908 
 909   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 910   uint debug_ptr = call->req();
 911 
 912   // Loop over the map input edges associated with jvms, add them
 913   // to the call node, & reset all offsets to match call node array.
 914   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 915     uint debug_end   = debug_ptr;
 916     uint debug_start = debug_ptr - in_jvms->debug_size();
 917     debug_ptr = debug_start;  // back up the ptr
 918 
 919     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 920     uint j, k, l;
 921     SafePointNode* in_map = in_jvms->map();
 922     out_jvms->set_map(call);
 923 
 924     if (can_prune_locals) {
 925       assert(in_jvms->method() == out_jvms->method(), "sanity");
 926       // If the current throw can reach an exception handler in this JVMS,
 927       // then we must keep everything live that can reach that handler.
 928       // As a quick and dirty approximation, we look for any handlers at all.
 929       if (in_jvms->method()->has_exception_handlers()) {
 930         can_prune_locals = false;
 931       }
 932     }
 933 
 934     // Add the Locals
 935     k = in_jvms->locoff();
 936     l = in_jvms->loc_size();
 937     out_jvms->set_locoff(p);
 938     if (!can_prune_locals) {
 939       for (j = 0; j < l; j++)
 940         call->set_req(p++, in_map->in(k+j));
 941     } else {
 942       p += l;  // already set to top above by add_req_batch
 943     }
 944 
 945     // Add the Expression Stack
 946     k = in_jvms->stkoff();
 947     l = in_jvms->sp();
 948     out_jvms->set_stkoff(p);
 949     if (!can_prune_locals) {
 950       for (j = 0; j < l; j++)
 951         call->set_req(p++, in_map->in(k+j));
 952     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 953       // Divide stack into {S0,...,S1}, where S0 is set to top.
 954       uint s1 = stack_slots_not_pruned;
 955       stack_slots_not_pruned = 0;  // for next iteration
 956       if (s1 > l)  s1 = l;
 957       uint s0 = l - s1;
 958       p += s0;  // skip the tops preinstalled by add_req_batch
 959       for (j = s0; j < l; j++)
 960         call->set_req(p++, in_map->in(k+j));
 961     } else {
 962       p += l;  // already set to top above by add_req_batch
 963     }
 964 
 965     // Add the Monitors
 966     k = in_jvms->monoff();
 967     l = in_jvms->mon_size();
 968     out_jvms->set_monoff(p);
 969     for (j = 0; j < l; j++)
 970       call->set_req(p++, in_map->in(k+j));
 971 
 972     // Copy any scalar object fields.
 973     k = in_jvms->scloff();
 974     l = in_jvms->scl_size();
 975     out_jvms->set_scloff(p);
 976     for (j = 0; j < l; j++)
 977       call->set_req(p++, in_map->in(k+j));
 978 
 979     // Finish the new jvms.
 980     out_jvms->set_endoff(p);
 981 
 982     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 983     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 984     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 985     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 986     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 987     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 988 
 989     // Update the two tail pointers in parallel.
 990     out_jvms = out_jvms->caller();
 991     in_jvms  = in_jvms->caller();
 992   }
 993 
 994   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 995 
 996   // Test the correctness of JVMState::debug_xxx accessors:
 997   assert(call->jvms()->debug_start() == non_debug_edges, "");
 998   assert(call->jvms()->debug_end()   == call->req(), "");
 999   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1000 }
1001 
1002 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1003   Bytecodes::Code code = java_bc();
1004   if (code == Bytecodes::_wide) {
1005     code = method()->java_code_at_bci(bci() + 1);
1006   }
1007 
1008   BasicType rtype = T_ILLEGAL;
1009   int       rsize = 0;
1010 
1011   if (code != Bytecodes::_illegal) {
1012     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1013     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1014     if (rtype < T_CONFLICT)
1015       rsize = type2size[rtype];
1016   }
1017 
1018   switch (code) {
1019   case Bytecodes::_illegal:
1020     return false;
1021 
1022   case Bytecodes::_ldc:
1023   case Bytecodes::_ldc_w:
1024   case Bytecodes::_ldc2_w:
1025     inputs = 0;
1026     break;
1027 
1028   case Bytecodes::_dup:         inputs = 1;  break;
1029   case Bytecodes::_dup_x1:      inputs = 2;  break;
1030   case Bytecodes::_dup_x2:      inputs = 3;  break;
1031   case Bytecodes::_dup2:        inputs = 2;  break;
1032   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1033   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1034   case Bytecodes::_swap:        inputs = 2;  break;
1035   case Bytecodes::_arraylength: inputs = 1;  break;
1036 
1037   case Bytecodes::_getstatic:
1038   case Bytecodes::_putstatic:
1039   case Bytecodes::_getfield:
1040   case Bytecodes::_putfield:
1041     {
1042       bool ignored_will_link;
1043       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1044       int      size  = field->type()->size();
1045       bool is_get = (depth >= 0), is_static = (depth & 1);
1046       inputs = (is_static ? 0 : 1);
1047       if (is_get) {
1048         depth = size - inputs;
1049       } else {
1050         inputs += size;        // putxxx pops the value from the stack
1051         depth = - inputs;
1052       }
1053     }
1054     break;
1055 
1056   case Bytecodes::_invokevirtual:
1057   case Bytecodes::_invokespecial:
1058   case Bytecodes::_invokestatic:
1059   case Bytecodes::_invokedynamic:
1060   case Bytecodes::_invokeinterface:
1061     {
1062       bool ignored_will_link;
1063       ciSignature* declared_signature = NULL;
1064       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1065       assert(declared_signature != NULL, "cannot be null");
1066       inputs   = declared_signature->arg_size_for_bc(code);
1067       int size = declared_signature->return_type()->size();
1068       depth = size - inputs;
1069     }
1070     break;
1071 
1072   case Bytecodes::_multianewarray:
1073     {
1074       ciBytecodeStream iter(method());
1075       iter.reset_to_bci(bci());
1076       iter.next();
1077       inputs = iter.get_dimensions();
1078       assert(rsize == 1, "");
1079       depth = rsize - inputs;
1080     }
1081     break;
1082 
1083   case Bytecodes::_ireturn:
1084   case Bytecodes::_lreturn:
1085   case Bytecodes::_freturn:
1086   case Bytecodes::_dreturn:
1087   case Bytecodes::_areturn:
1088     assert(rsize == -depth, "");
1089     inputs = rsize;
1090     break;
1091 
1092   case Bytecodes::_jsr:
1093   case Bytecodes::_jsr_w:
1094     inputs = 0;
1095     depth  = 1;                  // S.B. depth=1, not zero
1096     break;
1097 
1098   default:
1099     // bytecode produces a typed result
1100     inputs = rsize - depth;
1101     assert(inputs >= 0, "");
1102     break;
1103   }
1104 
1105 #ifdef ASSERT
1106   // spot check
1107   int outputs = depth + inputs;
1108   assert(outputs >= 0, "sanity");
1109   switch (code) {
1110   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1111   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1112   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1113   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1114   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1115   default:                    break;
1116   }
1117 #endif //ASSERT
1118 
1119   return true;
1120 }
1121 
1122 
1123 
1124 //------------------------------basic_plus_adr---------------------------------
1125 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1126   // short-circuit a common case
1127   if (offset == intcon(0))  return ptr;
1128   return _gvn.transform( new AddPNode(base, ptr, offset) );
1129 }
1130 
1131 Node* GraphKit::ConvI2L(Node* offset) {
1132   // short-circuit a common case
1133   jint offset_con = find_int_con(offset, Type::OffsetBot);
1134   if (offset_con != Type::OffsetBot) {
1135     return longcon((jlong) offset_con);
1136   }
1137   return _gvn.transform( new ConvI2LNode(offset));
1138 }
1139 
1140 Node* GraphKit::ConvI2UL(Node* offset) {
1141   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1142   if (offset_con != (juint) Type::OffsetBot) {
1143     return longcon((julong) offset_con);
1144   }
1145   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1146   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1147   return _gvn.transform( new AndLNode(conv, mask) );
1148 }
1149 
1150 Node* GraphKit::ConvL2I(Node* offset) {
1151   // short-circuit a common case
1152   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1153   if (offset_con != (jlong)Type::OffsetBot) {
1154     return intcon((int) offset_con);
1155   }
1156   return _gvn.transform( new ConvL2INode(offset));
1157 }
1158 
1159 //-------------------------load_object_klass-----------------------------------
1160 Node* GraphKit::load_object_klass(Node* obj) {
1161   // Special-case a fresh allocation to avoid building nodes:
1162   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1163   if (akls != NULL)  return akls;
1164   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1165   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1166 }
1167 
1168 //-------------------------load_array_length-----------------------------------
1169 Node* GraphKit::load_array_length(Node* array) {
1170   // Special-case a fresh allocation to avoid building nodes:
1171   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1172   Node *alen;
1173   if (alloc == NULL) {
1174     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1175     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1176   } else {
1177     alen = alloc->Ideal_length();
1178     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1179     if (ccast != alen) {
1180       alen = _gvn.transform(ccast);
1181     }
1182   }
1183   return alen;
1184 }
1185 
1186 //------------------------------do_null_check----------------------------------
1187 // Helper function to do a NULL pointer check.  Returned value is
1188 // the incoming address with NULL casted away.  You are allowed to use the
1189 // not-null value only if you are control dependent on the test.
1190 #ifndef PRODUCT
1191 extern int explicit_null_checks_inserted,
1192            explicit_null_checks_elided;
1193 #endif
1194 Node* GraphKit::null_check_common(Node* value, BasicType type,
1195                                   // optional arguments for variations:
1196                                   bool assert_null,
1197                                   Node* *null_control,
1198                                   bool speculative) {
1199   assert(!assert_null || null_control == NULL, "not both at once");
1200   if (stopped())  return top();
1201   NOT_PRODUCT(explicit_null_checks_inserted++);
1202 
1203   // Construct NULL check
1204   Node *chk = NULL;
1205   switch(type) {
1206     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1207     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1208     case T_ARRAY  : // fall through
1209       type = T_OBJECT;  // simplify further tests
1210     case T_OBJECT : {
1211       const Type *t = _gvn.type( value );
1212 
1213       const TypeOopPtr* tp = t->isa_oopptr();
1214       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1215           // Only for do_null_check, not any of its siblings:
1216           && !assert_null && null_control == NULL) {
1217         // Usually, any field access or invocation on an unloaded oop type
1218         // will simply fail to link, since the statically linked class is
1219         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1220         // the static class is loaded but the sharper oop type is not.
1221         // Rather than checking for this obscure case in lots of places,
1222         // we simply observe that a null check on an unloaded class
1223         // will always be followed by a nonsense operation, so we
1224         // can just issue the uncommon trap here.
1225         // Our access to the unloaded class will only be correct
1226         // after it has been loaded and initialized, which requires
1227         // a trip through the interpreter.
1228 #ifndef PRODUCT
1229         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1230 #endif
1231         uncommon_trap(Deoptimization::Reason_unloaded,
1232                       Deoptimization::Action_reinterpret,
1233                       tp->klass(), "!loaded");
1234         return top();
1235       }
1236 
1237       if (assert_null) {
1238         // See if the type is contained in NULL_PTR.
1239         // If so, then the value is already null.
1240         if (t->higher_equal(TypePtr::NULL_PTR)) {
1241           NOT_PRODUCT(explicit_null_checks_elided++);
1242           return value;           // Elided null assert quickly!
1243         }
1244       } else {
1245         // See if mixing in the NULL pointer changes type.
1246         // If so, then the NULL pointer was not allowed in the original
1247         // type.  In other words, "value" was not-null.
1248         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1249           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1250           NOT_PRODUCT(explicit_null_checks_elided++);
1251           return value;           // Elided null check quickly!
1252         }
1253       }
1254       chk = new CmpPNode( value, null() );
1255       break;
1256     }
1257 
1258     default:
1259       fatal("unexpected type: %s", type2name(type));
1260   }
1261   assert(chk != NULL, "sanity check");
1262   chk = _gvn.transform(chk);
1263 
1264   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1265   BoolNode *btst = new BoolNode( chk, btest);
1266   Node   *tst = _gvn.transform( btst );
1267 
1268   //-----------
1269   // if peephole optimizations occurred, a prior test existed.
1270   // If a prior test existed, maybe it dominates as we can avoid this test.
1271   if (tst != btst && type == T_OBJECT) {
1272     // At this point we want to scan up the CFG to see if we can
1273     // find an identical test (and so avoid this test altogether).
1274     Node *cfg = control();
1275     int depth = 0;
1276     while( depth < 16 ) {       // Limit search depth for speed
1277       if( cfg->Opcode() == Op_IfTrue &&
1278           cfg->in(0)->in(1) == tst ) {
1279         // Found prior test.  Use "cast_not_null" to construct an identical
1280         // CastPP (and hence hash to) as already exists for the prior test.
1281         // Return that casted value.
1282         if (assert_null) {
1283           replace_in_map(value, null());
1284           return null();  // do not issue the redundant test
1285         }
1286         Node *oldcontrol = control();
1287         set_control(cfg);
1288         Node *res = cast_not_null(value);
1289         set_control(oldcontrol);
1290         NOT_PRODUCT(explicit_null_checks_elided++);
1291         return res;
1292       }
1293       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1294       if (cfg == NULL)  break;  // Quit at region nodes
1295       depth++;
1296     }
1297   }
1298 
1299   //-----------
1300   // Branch to failure if null
1301   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1302   Deoptimization::DeoptReason reason;
1303   if (assert_null) {
1304     reason = Deoptimization::reason_null_assert(speculative);
1305   } else if (type == T_OBJECT) {
1306     reason = Deoptimization::reason_null_check(speculative);
1307   } else {
1308     reason = Deoptimization::Reason_div0_check;
1309   }
1310   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1311   // ciMethodData::has_trap_at will return a conservative -1 if any
1312   // must-be-null assertion has failed.  This could cause performance
1313   // problems for a method after its first do_null_assert failure.
1314   // Consider using 'Reason_class_check' instead?
1315 
1316   // To cause an implicit null check, we set the not-null probability
1317   // to the maximum (PROB_MAX).  For an explicit check the probability
1318   // is set to a smaller value.
1319   if (null_control != NULL || too_many_traps(reason)) {
1320     // probability is less likely
1321     ok_prob =  PROB_LIKELY_MAG(3);
1322   } else if (!assert_null &&
1323              (ImplicitNullCheckThreshold > 0) &&
1324              method() != NULL &&
1325              (method()->method_data()->trap_count(reason)
1326               >= (uint)ImplicitNullCheckThreshold)) {
1327     ok_prob =  PROB_LIKELY_MAG(3);
1328   }
1329 
1330   if (null_control != NULL) {
1331     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1332     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1333     set_control(      _gvn.transform( new IfTrueNode(iff)));
1334 #ifndef PRODUCT
1335     if (null_true == top()) {
1336       explicit_null_checks_elided++;
1337     }
1338 #endif
1339     (*null_control) = null_true;
1340   } else {
1341     BuildCutout unless(this, tst, ok_prob);
1342     // Check for optimizer eliding test at parse time
1343     if (stopped()) {
1344       // Failure not possible; do not bother making uncommon trap.
1345       NOT_PRODUCT(explicit_null_checks_elided++);
1346     } else if (assert_null) {
1347       uncommon_trap(reason,
1348                     Deoptimization::Action_make_not_entrant,
1349                     NULL, "assert_null");
1350     } else {
1351       replace_in_map(value, zerocon(type));
1352       builtin_throw(reason);
1353     }
1354   }
1355 
1356   // Must throw exception, fall-thru not possible?
1357   if (stopped()) {
1358     return top();               // No result
1359   }
1360 
1361   if (assert_null) {
1362     // Cast obj to null on this path.
1363     replace_in_map(value, zerocon(type));
1364     return zerocon(type);
1365   }
1366 
1367   // Cast obj to not-null on this path, if there is no null_control.
1368   // (If there is a null_control, a non-null value may come back to haunt us.)
1369   if (type == T_OBJECT) {
1370     Node* cast = cast_not_null(value, false);
1371     if (null_control == NULL || (*null_control) == top())
1372       replace_in_map(value, cast);
1373     value = cast;
1374   }
1375 
1376   return value;
1377 }
1378 
1379 
1380 //------------------------------cast_not_null----------------------------------
1381 // Cast obj to not-null on this path
1382 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1383   const Type *t = _gvn.type(obj);
1384   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1385   // Object is already not-null?
1386   if( t == t_not_null ) return obj;
1387 
1388   Node *cast = new CastPPNode(obj,t_not_null);
1389   cast->init_req(0, control());
1390   cast = _gvn.transform( cast );
1391 
1392   // Scan for instances of 'obj' in the current JVM mapping.
1393   // These instances are known to be not-null after the test.
1394   if (do_replace_in_map)
1395     replace_in_map(obj, cast);
1396 
1397   return cast;                  // Return casted value
1398 }
1399 
1400 // Sometimes in intrinsics, we implicitly know an object is not null
1401 // (there's no actual null check) so we can cast it to not null. In
1402 // the course of optimizations, the input to the cast can become null.
1403 // In that case that data path will die and we need the control path
1404 // to become dead as well to keep the graph consistent. So we have to
1405 // add a check for null for which one branch can't be taken. It uses
1406 // an Opaque4 node that will cause the check to be removed after loop
1407 // opts so the test goes away and the compiled code doesn't execute a
1408 // useless check.
1409 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1410   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1411   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1412   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1413   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1414   _gvn.set_type(iff, iff->Value(&_gvn));
1415   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1416   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1417   Node *halt = _gvn.transform(new HaltNode(if_f, frame));
1418   C->root()->add_req(halt);
1419   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1420   set_control(if_t);
1421   return cast_not_null(value, do_replace_in_map);
1422 }
1423 
1424 
1425 //--------------------------replace_in_map-------------------------------------
1426 void GraphKit::replace_in_map(Node* old, Node* neww) {
1427   if (old == neww) {
1428     return;
1429   }
1430 
1431   map()->replace_edge(old, neww);
1432 
1433   // Note: This operation potentially replaces any edge
1434   // on the map.  This includes locals, stack, and monitors
1435   // of the current (innermost) JVM state.
1436 
1437   // don't let inconsistent types from profiling escape this
1438   // method
1439 
1440   const Type* told = _gvn.type(old);
1441   const Type* tnew = _gvn.type(neww);
1442 
1443   if (!tnew->higher_equal(told)) {
1444     return;
1445   }
1446 
1447   map()->record_replaced_node(old, neww);
1448 }
1449 
1450 
1451 //=============================================================================
1452 //--------------------------------memory---------------------------------------
1453 Node* GraphKit::memory(uint alias_idx) {
1454   MergeMemNode* mem = merged_memory();
1455   Node* p = mem->memory_at(alias_idx);
1456   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1457   return p;
1458 }
1459 
1460 //-----------------------------reset_memory------------------------------------
1461 Node* GraphKit::reset_memory() {
1462   Node* mem = map()->memory();
1463   // do not use this node for any more parsing!
1464   debug_only( map()->set_memory((Node*)NULL) );
1465   return _gvn.transform( mem );
1466 }
1467 
1468 //------------------------------set_all_memory---------------------------------
1469 void GraphKit::set_all_memory(Node* newmem) {
1470   Node* mergemem = MergeMemNode::make(newmem);
1471   gvn().set_type_bottom(mergemem);
1472   map()->set_memory(mergemem);
1473 }
1474 
1475 //------------------------------set_all_memory_call----------------------------
1476 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1477   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1478   set_all_memory(newmem);
1479 }
1480 
1481 //=============================================================================
1482 //
1483 // parser factory methods for MemNodes
1484 //
1485 // These are layered on top of the factory methods in LoadNode and StoreNode,
1486 // and integrate with the parser's memory state and _gvn engine.
1487 //
1488 
1489 // factory methods in "int adr_idx"
1490 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1491                           int adr_idx,
1492                           MemNode::MemOrd mo,
1493                           LoadNode::ControlDependency control_dependency,
1494                           bool require_atomic_access,
1495                           bool unaligned,
1496                           bool mismatched) {
1497   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1498   const TypePtr* adr_type = NULL; // debug-mode-only argument
1499   debug_only(adr_type = C->get_adr_type(adr_idx));
1500   Node* mem = memory(adr_idx);
1501   Node* ld;
1502   if (require_atomic_access && bt == T_LONG) {
1503     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1504   } else if (require_atomic_access && bt == T_DOUBLE) {
1505     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1506   } else {
1507     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1508   }
1509   ld = _gvn.transform(ld);
1510   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1511     // Improve graph before escape analysis and boxing elimination.
1512     record_for_igvn(ld);
1513   }
1514   return ld;
1515 }
1516 
1517 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1518                                 int adr_idx,
1519                                 MemNode::MemOrd mo,
1520                                 bool require_atomic_access,
1521                                 bool unaligned,
1522                                 bool mismatched) {
1523   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1524   const TypePtr* adr_type = NULL;
1525   debug_only(adr_type = C->get_adr_type(adr_idx));
1526   Node *mem = memory(adr_idx);
1527   Node* st;
1528   if (require_atomic_access && bt == T_LONG) {
1529     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1530   } else if (require_atomic_access && bt == T_DOUBLE) {
1531     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1532   } else {
1533     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1534   }
1535   if (unaligned) {
1536     st->as_Store()->set_unaligned_access();
1537   }
1538   if (mismatched) {
1539     st->as_Store()->set_mismatched_access();
1540   }
1541   st = _gvn.transform(st);
1542   set_memory(st, adr_idx);
1543   // Back-to-back stores can only remove intermediate store with DU info
1544   // so push on worklist for optimizer.
1545   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1546     record_for_igvn(st);
1547 
1548   return st;
1549 }
1550 
1551 
1552 void GraphKit::pre_barrier(bool do_load,
1553                            Node* ctl,
1554                            Node* obj,
1555                            Node* adr,
1556                            uint  adr_idx,
1557                            Node* val,
1558                            const TypeOopPtr* val_type,
1559                            Node* pre_val,
1560                            BasicType bt) {
1561 
1562   BarrierSet* bs = Universe::heap()->barrier_set();
1563   set_control(ctl);
1564   switch (bs->kind()) {
1565     case BarrierSet::G1BarrierSet:
1566       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1567       break;
1568 
1569     case BarrierSet::CardTableBarrierSet:
1570       break;
1571 
1572     default      :
1573       ShouldNotReachHere();
1574 
1575   }
1576 }
1577 
1578 bool GraphKit::can_move_pre_barrier() const {
1579   BarrierSet* bs = Universe::heap()->barrier_set();
1580   switch (bs->kind()) {
1581     case BarrierSet::G1BarrierSet:
1582       return true; // Can move it if no safepoint
1583 
1584     case BarrierSet::CardTableBarrierSet:
1585       return true; // There is no pre-barrier
1586 
1587     default      :
1588       ShouldNotReachHere();
1589   }
1590   return false;
1591 }
1592 
1593 void GraphKit::post_barrier(Node* ctl,
1594                             Node* store,
1595                             Node* obj,
1596                             Node* adr,
1597                             uint  adr_idx,
1598                             Node* val,
1599                             BasicType bt,
1600                             bool use_precise) {
1601   BarrierSet* bs = Universe::heap()->barrier_set();
1602   set_control(ctl);
1603   switch (bs->kind()) {
1604     case BarrierSet::G1BarrierSet:
1605       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1606       break;
1607 
1608     case BarrierSet::CardTableBarrierSet:
1609       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1610       break;
1611 
1612     default      :
1613       ShouldNotReachHere();
1614 
1615   }
1616 }
1617 
1618 Node* GraphKit::store_oop(Node* ctl,
1619                           Node* obj,
1620                           Node* adr,
1621                           const TypePtr* adr_type,
1622                           Node* val,
1623                           const TypeOopPtr* val_type,
1624                           BasicType bt,
1625                           bool use_precise,
1626                           MemNode::MemOrd mo,
1627                           bool mismatched) {
1628   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1629   // could be delayed during Parse (for example, in adjust_map_after_if()).
1630   // Execute transformation here to avoid barrier generation in such case.
1631   if (_gvn.type(val) == TypePtr::NULL_PTR)
1632     val = _gvn.makecon(TypePtr::NULL_PTR);
1633 
1634   set_control(ctl);
1635   if (stopped()) return top(); // Dead path ?
1636 
1637   assert(bt == T_OBJECT, "sanity");
1638   assert(val != NULL, "not dead path");
1639   uint adr_idx = C->get_alias_index(adr_type);
1640   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1641 
1642   pre_barrier(true /* do_load */,
1643               control(), obj, adr, adr_idx, val, val_type,
1644               NULL /* pre_val */,
1645               bt);
1646 
1647   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
1648   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1649   return store;
1650 }
1651 
1652 // Could be an array or object we don't know at compile time (unsafe ref.)
1653 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1654                              Node* obj,   // containing obj
1655                              Node* adr,  // actual adress to store val at
1656                              const TypePtr* adr_type,
1657                              Node* val,
1658                              BasicType bt,
1659                              MemNode::MemOrd mo,
1660                              bool mismatched) {
1661   Compile::AliasType* at = C->alias_type(adr_type);
1662   const TypeOopPtr* val_type = NULL;
1663   if (adr_type->isa_instptr()) {
1664     if (at->field() != NULL) {
1665       // known field.  This code is a copy of the do_put_xxx logic.
1666       ciField* field = at->field();
1667       if (!field->type()->is_loaded()) {
1668         val_type = TypeInstPtr::BOTTOM;
1669       } else {
1670         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1671       }
1672     }
1673   } else if (adr_type->isa_aryptr()) {
1674     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1675   }
1676   if (val_type == NULL) {
1677     val_type = TypeInstPtr::BOTTOM;
1678   }
1679   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
1680 }
1681 
1682 
1683 //-------------------------array_element_address-------------------------
1684 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1685                                       const TypeInt* sizetype, Node* ctrl) {
1686   uint shift  = exact_log2(type2aelembytes(elembt));
1687   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1688 
1689   // short-circuit a common case (saves lots of confusing waste motion)
1690   jint idx_con = find_int_con(idx, -1);
1691   if (idx_con >= 0) {
1692     intptr_t offset = header + ((intptr_t)idx_con << shift);
1693     return basic_plus_adr(ary, offset);
1694   }
1695 
1696   // must be correct type for alignment purposes
1697   Node* base  = basic_plus_adr(ary, header);
1698   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1699   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1700   return basic_plus_adr(ary, base, scale);
1701 }
1702 
1703 //-------------------------load_array_element-------------------------
1704 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1705   const Type* elemtype = arytype->elem();
1706   BasicType elembt = elemtype->array_element_basic_type();
1707   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1708   if (elembt == T_NARROWOOP) {
1709     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1710   }
1711   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1712   return ld;
1713 }
1714 
1715 //-------------------------set_arguments_for_java_call-------------------------
1716 // Arguments (pre-popped from the stack) are taken from the JVMS.
1717 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1718   // Add the call arguments:
1719   uint nargs = call->method()->arg_size();
1720   for (uint i = 0; i < nargs; i++) {
1721     Node* arg = argument(i);
1722     call->init_req(i + TypeFunc::Parms, arg);
1723   }
1724 }
1725 
1726 //---------------------------set_edges_for_java_call---------------------------
1727 // Connect a newly created call into the current JVMS.
1728 // A return value node (if any) is returned from set_edges_for_java_call.
1729 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1730 
1731   // Add the predefined inputs:
1732   call->init_req( TypeFunc::Control, control() );
1733   call->init_req( TypeFunc::I_O    , i_o() );
1734   call->init_req( TypeFunc::Memory , reset_memory() );
1735   call->init_req( TypeFunc::FramePtr, frameptr() );
1736   call->init_req( TypeFunc::ReturnAdr, top() );
1737 
1738   add_safepoint_edges(call, must_throw);
1739 
1740   Node* xcall = _gvn.transform(call);
1741 
1742   if (xcall == top()) {
1743     set_control(top());
1744     return;
1745   }
1746   assert(xcall == call, "call identity is stable");
1747 
1748   // Re-use the current map to produce the result.
1749 
1750   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1751   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1752   set_all_memory_call(xcall, separate_io_proj);
1753 
1754   //return xcall;   // no need, caller already has it
1755 }
1756 
1757 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1758   if (stopped())  return top();  // maybe the call folded up?
1759 
1760   // Capture the return value, if any.
1761   Node* ret;
1762   if (call->method() == NULL ||
1763       call->method()->return_type()->basic_type() == T_VOID)
1764         ret = top();
1765   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1766 
1767   // Note:  Since any out-of-line call can produce an exception,
1768   // we always insert an I_O projection from the call into the result.
1769 
1770   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1771 
1772   if (separate_io_proj) {
1773     // The caller requested separate projections be used by the fall
1774     // through and exceptional paths, so replace the projections for
1775     // the fall through path.
1776     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1777     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1778   }
1779   return ret;
1780 }
1781 
1782 //--------------------set_predefined_input_for_runtime_call--------------------
1783 // Reading and setting the memory state is way conservative here.
1784 // The real problem is that I am not doing real Type analysis on memory,
1785 // so I cannot distinguish card mark stores from other stores.  Across a GC
1786 // point the Store Barrier and the card mark memory has to agree.  I cannot
1787 // have a card mark store and its barrier split across the GC point from
1788 // either above or below.  Here I get that to happen by reading ALL of memory.
1789 // A better answer would be to separate out card marks from other memory.
1790 // For now, return the input memory state, so that it can be reused
1791 // after the call, if this call has restricted memory effects.
1792 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1793   // Set fixed predefined input arguments
1794   Node* memory = reset_memory();
1795   call->init_req( TypeFunc::Control,   control()  );
1796   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1797   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1798   call->init_req( TypeFunc::FramePtr,  frameptr() );
1799   call->init_req( TypeFunc::ReturnAdr, top()      );
1800   return memory;
1801 }
1802 
1803 //-------------------set_predefined_output_for_runtime_call--------------------
1804 // Set control and memory (not i_o) from the call.
1805 // If keep_mem is not NULL, use it for the output state,
1806 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1807 // If hook_mem is NULL, this call produces no memory effects at all.
1808 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1809 // then only that memory slice is taken from the call.
1810 // In the last case, we must put an appropriate memory barrier before
1811 // the call, so as to create the correct anti-dependencies on loads
1812 // preceding the call.
1813 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1814                                                       Node* keep_mem,
1815                                                       const TypePtr* hook_mem) {
1816   // no i/o
1817   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1818   if (keep_mem) {
1819     // First clone the existing memory state
1820     set_all_memory(keep_mem);
1821     if (hook_mem != NULL) {
1822       // Make memory for the call
1823       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1824       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1825       // We also use hook_mem to extract specific effects from arraycopy stubs.
1826       set_memory(mem, hook_mem);
1827     }
1828     // ...else the call has NO memory effects.
1829 
1830     // Make sure the call advertises its memory effects precisely.
1831     // This lets us build accurate anti-dependences in gcm.cpp.
1832     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1833            "call node must be constructed correctly");
1834   } else {
1835     assert(hook_mem == NULL, "");
1836     // This is not a "slow path" call; all memory comes from the call.
1837     set_all_memory_call(call);
1838   }
1839 }
1840 
1841 
1842 // Replace the call with the current state of the kit.
1843 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1844   JVMState* ejvms = NULL;
1845   if (has_exceptions()) {
1846     ejvms = transfer_exceptions_into_jvms();
1847   }
1848 
1849   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1850   ReplacedNodes replaced_nodes_exception;
1851   Node* ex_ctl = top();
1852 
1853   SafePointNode* final_state = stop();
1854 
1855   // Find all the needed outputs of this call
1856   CallProjections callprojs;
1857   call->extract_projections(&callprojs, true);
1858 
1859   Node* init_mem = call->in(TypeFunc::Memory);
1860   Node* final_mem = final_state->in(TypeFunc::Memory);
1861   Node* final_ctl = final_state->in(TypeFunc::Control);
1862   Node* final_io = final_state->in(TypeFunc::I_O);
1863 
1864   // Replace all the old call edges with the edges from the inlining result
1865   if (callprojs.fallthrough_catchproj != NULL) {
1866     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1867   }
1868   if (callprojs.fallthrough_memproj != NULL) {
1869     if (final_mem->is_MergeMem()) {
1870       // Parser's exits MergeMem was not transformed but may be optimized
1871       final_mem = _gvn.transform(final_mem);
1872     }
1873     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1874   }
1875   if (callprojs.fallthrough_ioproj != NULL) {
1876     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1877   }
1878 
1879   // Replace the result with the new result if it exists and is used
1880   if (callprojs.resproj != NULL && result != NULL) {
1881     C->gvn_replace_by(callprojs.resproj, result);
1882   }
1883 
1884   if (ejvms == NULL) {
1885     // No exception edges to simply kill off those paths
1886     if (callprojs.catchall_catchproj != NULL) {
1887       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1888     }
1889     if (callprojs.catchall_memproj != NULL) {
1890       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1891     }
1892     if (callprojs.catchall_ioproj != NULL) {
1893       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1894     }
1895     // Replace the old exception object with top
1896     if (callprojs.exobj != NULL) {
1897       C->gvn_replace_by(callprojs.exobj, C->top());
1898     }
1899   } else {
1900     GraphKit ekit(ejvms);
1901 
1902     // Load my combined exception state into the kit, with all phis transformed:
1903     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1904     replaced_nodes_exception = ex_map->replaced_nodes();
1905 
1906     Node* ex_oop = ekit.use_exception_state(ex_map);
1907 
1908     if (callprojs.catchall_catchproj != NULL) {
1909       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1910       ex_ctl = ekit.control();
1911     }
1912     if (callprojs.catchall_memproj != NULL) {
1913       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1914     }
1915     if (callprojs.catchall_ioproj != NULL) {
1916       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1917     }
1918 
1919     // Replace the old exception object with the newly created one
1920     if (callprojs.exobj != NULL) {
1921       C->gvn_replace_by(callprojs.exobj, ex_oop);
1922     }
1923   }
1924 
1925   // Disconnect the call from the graph
1926   call->disconnect_inputs(NULL, C);
1927   C->gvn_replace_by(call, C->top());
1928 
1929   // Clean up any MergeMems that feed other MergeMems since the
1930   // optimizer doesn't like that.
1931   if (final_mem->is_MergeMem()) {
1932     Node_List wl;
1933     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1934       Node* m = i.get();
1935       if (m->is_MergeMem() && !wl.contains(m)) {
1936         wl.push(m);
1937       }
1938     }
1939     while (wl.size()  > 0) {
1940       _gvn.transform(wl.pop());
1941     }
1942   }
1943 
1944   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1945     replaced_nodes.apply(C, final_ctl);
1946   }
1947   if (!ex_ctl->is_top() && do_replaced_nodes) {
1948     replaced_nodes_exception.apply(C, ex_ctl);
1949   }
1950 }
1951 
1952 
1953 //------------------------------increment_counter------------------------------
1954 // for statistics: increment a VM counter by 1
1955 
1956 void GraphKit::increment_counter(address counter_addr) {
1957   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1958   increment_counter(adr1);
1959 }
1960 
1961 void GraphKit::increment_counter(Node* counter_addr) {
1962   int adr_type = Compile::AliasIdxRaw;
1963   Node* ctrl = control();
1964   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1965   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1966   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1967 }
1968 
1969 
1970 //------------------------------uncommon_trap----------------------------------
1971 // Bail out to the interpreter in mid-method.  Implemented by calling the
1972 // uncommon_trap blob.  This helper function inserts a runtime call with the
1973 // right debug info.
1974 void GraphKit::uncommon_trap(int trap_request,
1975                              ciKlass* klass, const char* comment,
1976                              bool must_throw,
1977                              bool keep_exact_action) {
1978   if (failing())  stop();
1979   if (stopped())  return; // trap reachable?
1980 
1981   // Note:  If ProfileTraps is true, and if a deopt. actually
1982   // occurs here, the runtime will make sure an MDO exists.  There is
1983   // no need to call method()->ensure_method_data() at this point.
1984 
1985   // Set the stack pointer to the right value for reexecution:
1986   set_sp(reexecute_sp());
1987 
1988 #ifdef ASSERT
1989   if (!must_throw) {
1990     // Make sure the stack has at least enough depth to execute
1991     // the current bytecode.
1992     int inputs, ignored_depth;
1993     if (compute_stack_effects(inputs, ignored_depth)) {
1994       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1995              Bytecodes::name(java_bc()), sp(), inputs);
1996     }
1997   }
1998 #endif
1999 
2000   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2001   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2002 
2003   switch (action) {
2004   case Deoptimization::Action_maybe_recompile:
2005   case Deoptimization::Action_reinterpret:
2006     // Temporary fix for 6529811 to allow virtual calls to be sure they
2007     // get the chance to go from mono->bi->mega
2008     if (!keep_exact_action &&
2009         Deoptimization::trap_request_index(trap_request) < 0 &&
2010         too_many_recompiles(reason)) {
2011       // This BCI is causing too many recompilations.
2012       if (C->log() != NULL) {
2013         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2014                 Deoptimization::trap_reason_name(reason),
2015                 Deoptimization::trap_action_name(action));
2016       }
2017       action = Deoptimization::Action_none;
2018       trap_request = Deoptimization::make_trap_request(reason, action);
2019     } else {
2020       C->set_trap_can_recompile(true);
2021     }
2022     break;
2023   case Deoptimization::Action_make_not_entrant:
2024     C->set_trap_can_recompile(true);
2025     break;
2026   case Deoptimization::Action_none:
2027   case Deoptimization::Action_make_not_compilable:
2028     break;
2029   default:
2030 #ifdef ASSERT
2031     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2032 #endif
2033     break;
2034   }
2035 
2036   if (TraceOptoParse) {
2037     char buf[100];
2038     tty->print_cr("Uncommon trap %s at bci:%d",
2039                   Deoptimization::format_trap_request(buf, sizeof(buf),
2040                                                       trap_request), bci());
2041   }
2042 
2043   CompileLog* log = C->log();
2044   if (log != NULL) {
2045     int kid = (klass == NULL)? -1: log->identify(klass);
2046     log->begin_elem("uncommon_trap bci='%d'", bci());
2047     char buf[100];
2048     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2049                                                           trap_request));
2050     if (kid >= 0)         log->print(" klass='%d'", kid);
2051     if (comment != NULL)  log->print(" comment='%s'", comment);
2052     log->end_elem();
2053   }
2054 
2055   // Make sure any guarding test views this path as very unlikely
2056   Node *i0 = control()->in(0);
2057   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2058     IfNode *iff = i0->as_If();
2059     float f = iff->_prob;   // Get prob
2060     if (control()->Opcode() == Op_IfTrue) {
2061       if (f > PROB_UNLIKELY_MAG(4))
2062         iff->_prob = PROB_MIN;
2063     } else {
2064       if (f < PROB_LIKELY_MAG(4))
2065         iff->_prob = PROB_MAX;
2066     }
2067   }
2068 
2069   // Clear out dead values from the debug info.
2070   kill_dead_locals();
2071 
2072   // Now insert the uncommon trap subroutine call
2073   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2074   const TypePtr* no_memory_effects = NULL;
2075   // Pass the index of the class to be loaded
2076   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2077                                  (must_throw ? RC_MUST_THROW : 0),
2078                                  OptoRuntime::uncommon_trap_Type(),
2079                                  call_addr, "uncommon_trap", no_memory_effects,
2080                                  intcon(trap_request));
2081   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2082          "must extract request correctly from the graph");
2083   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2084 
2085   call->set_req(TypeFunc::ReturnAdr, returnadr());
2086   // The debug info is the only real input to this call.
2087 
2088   // Halt-and-catch fire here.  The above call should never return!
2089   HaltNode* halt = new HaltNode(control(), frameptr());
2090   _gvn.set_type_bottom(halt);
2091   root()->add_req(halt);
2092 
2093   stop_and_kill_map();
2094 }
2095 
2096 
2097 //--------------------------just_allocated_object------------------------------
2098 // Report the object that was just allocated.
2099 // It must be the case that there are no intervening safepoints.
2100 // We use this to determine if an object is so "fresh" that
2101 // it does not require card marks.
2102 Node* GraphKit::just_allocated_object(Node* current_control) {
2103   if (C->recent_alloc_ctl() == current_control)
2104     return C->recent_alloc_obj();
2105   return NULL;
2106 }
2107 
2108 
2109 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2110   // (Note:  TypeFunc::make has a cache that makes this fast.)
2111   const TypeFunc* tf    = TypeFunc::make(dest_method);
2112   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2113   for (int j = 0; j < nargs; j++) {
2114     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2115     if( targ->basic_type() == T_DOUBLE ) {
2116       // If any parameters are doubles, they must be rounded before
2117       // the call, dstore_rounding does gvn.transform
2118       Node *arg = argument(j);
2119       arg = dstore_rounding(arg);
2120       set_argument(j, arg);
2121     }
2122   }
2123 }
2124 
2125 /**
2126  * Record profiling data exact_kls for Node n with the type system so
2127  * that it can propagate it (speculation)
2128  *
2129  * @param n          node that the type applies to
2130  * @param exact_kls  type from profiling
2131  * @param maybe_null did profiling see null?
2132  *
2133  * @return           node with improved type
2134  */
2135 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2136   const Type* current_type = _gvn.type(n);
2137   assert(UseTypeSpeculation, "type speculation must be on");
2138 
2139   const TypePtr* speculative = current_type->speculative();
2140 
2141   // Should the klass from the profile be recorded in the speculative type?
2142   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2143     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2144     const TypeOopPtr* xtype = tklass->as_instance_type();
2145     assert(xtype->klass_is_exact(), "Should be exact");
2146     // Any reason to believe n is not null (from this profiling or a previous one)?
2147     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2148     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2149     // record the new speculative type's depth
2150     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2151     speculative = speculative->with_inline_depth(jvms()->depth());
2152   } else if (current_type->would_improve_ptr(ptr_kind)) {
2153     // Profiling report that null was never seen so we can change the
2154     // speculative type to non null ptr.
2155     if (ptr_kind == ProfileAlwaysNull) {
2156       speculative = TypePtr::NULL_PTR;
2157     } else {
2158       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2159       const TypePtr* ptr = TypePtr::NOTNULL;
2160       if (speculative != NULL) {
2161         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2162       } else {
2163         speculative = ptr;
2164       }
2165     }
2166   }
2167 
2168   if (speculative != current_type->speculative()) {
2169     // Build a type with a speculative type (what we think we know
2170     // about the type but will need a guard when we use it)
2171     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2172     // We're changing the type, we need a new CheckCast node to carry
2173     // the new type. The new type depends on the control: what
2174     // profiling tells us is only valid from here as far as we can
2175     // tell.
2176     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2177     cast = _gvn.transform(cast);
2178     replace_in_map(n, cast);
2179     n = cast;
2180   }
2181 
2182   return n;
2183 }
2184 
2185 /**
2186  * Record profiling data from receiver profiling at an invoke with the
2187  * type system so that it can propagate it (speculation)
2188  *
2189  * @param n  receiver node
2190  *
2191  * @return   node with improved type
2192  */
2193 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2194   if (!UseTypeSpeculation) {
2195     return n;
2196   }
2197   ciKlass* exact_kls = profile_has_unique_klass();
2198   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2199   if ((java_bc() == Bytecodes::_checkcast ||
2200        java_bc() == Bytecodes::_instanceof ||
2201        java_bc() == Bytecodes::_aastore) &&
2202       method()->method_data()->is_mature()) {
2203     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2204     if (data != NULL) {
2205       if (!data->as_BitData()->null_seen()) {
2206         ptr_kind = ProfileNeverNull;
2207       } else {
2208         assert(data->is_ReceiverTypeData(), "bad profile data type");
2209         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2210         uint i = 0;
2211         for (; i < call->row_limit(); i++) {
2212           ciKlass* receiver = call->receiver(i);
2213           if (receiver != NULL) {
2214             break;
2215           }
2216         }
2217         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2218       }
2219     }
2220   }
2221   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2222 }
2223 
2224 /**
2225  * Record profiling data from argument profiling at an invoke with the
2226  * type system so that it can propagate it (speculation)
2227  *
2228  * @param dest_method  target method for the call
2229  * @param bc           what invoke bytecode is this?
2230  */
2231 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2232   if (!UseTypeSpeculation) {
2233     return;
2234   }
2235   const TypeFunc* tf    = TypeFunc::make(dest_method);
2236   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2237   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2238   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2239     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2240     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2241       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2242       ciKlass* better_type = NULL;
2243       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2244         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2245       }
2246       i++;
2247     }
2248   }
2249 }
2250 
2251 /**
2252  * Record profiling data from parameter profiling at an invoke with
2253  * the type system so that it can propagate it (speculation)
2254  */
2255 void GraphKit::record_profiled_parameters_for_speculation() {
2256   if (!UseTypeSpeculation) {
2257     return;
2258   }
2259   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2260     if (_gvn.type(local(i))->isa_oopptr()) {
2261       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2262       ciKlass* better_type = NULL;
2263       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2264         record_profile_for_speculation(local(i), better_type, ptr_kind);
2265       }
2266       j++;
2267     }
2268   }
2269 }
2270 
2271 /**
2272  * Record profiling data from return value profiling at an invoke with
2273  * the type system so that it can propagate it (speculation)
2274  */
2275 void GraphKit::record_profiled_return_for_speculation() {
2276   if (!UseTypeSpeculation) {
2277     return;
2278   }
2279   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2280   ciKlass* better_type = NULL;
2281   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2282     // If profiling reports a single type for the return value,
2283     // feed it to the type system so it can propagate it as a
2284     // speculative type
2285     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2286   }
2287 }
2288 
2289 void GraphKit::round_double_result(ciMethod* dest_method) {
2290   // A non-strict method may return a double value which has an extended
2291   // exponent, but this must not be visible in a caller which is 'strict'
2292   // If a strict caller invokes a non-strict callee, round a double result
2293 
2294   BasicType result_type = dest_method->return_type()->basic_type();
2295   assert( method() != NULL, "must have caller context");
2296   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2297     // Destination method's return value is on top of stack
2298     // dstore_rounding() does gvn.transform
2299     Node *result = pop_pair();
2300     result = dstore_rounding(result);
2301     push_pair(result);
2302   }
2303 }
2304 
2305 // rounding for strict float precision conformance
2306 Node* GraphKit::precision_rounding(Node* n) {
2307   return UseStrictFP && _method->flags().is_strict()
2308     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2309     ? _gvn.transform( new RoundFloatNode(0, n) )
2310     : n;
2311 }
2312 
2313 // rounding for strict double precision conformance
2314 Node* GraphKit::dprecision_rounding(Node *n) {
2315   return UseStrictFP && _method->flags().is_strict()
2316     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2317     ? _gvn.transform( new RoundDoubleNode(0, n) )
2318     : n;
2319 }
2320 
2321 // rounding for non-strict double stores
2322 Node* GraphKit::dstore_rounding(Node* n) {
2323   return Matcher::strict_fp_requires_explicit_rounding
2324     && UseSSE <= 1
2325     ? _gvn.transform( new RoundDoubleNode(0, n) )
2326     : n;
2327 }
2328 
2329 //=============================================================================
2330 // Generate a fast path/slow path idiom.  Graph looks like:
2331 // [foo] indicates that 'foo' is a parameter
2332 //
2333 //              [in]     NULL
2334 //                 \    /
2335 //                  CmpP
2336 //                  Bool ne
2337 //                   If
2338 //                  /  \
2339 //              True    False-<2>
2340 //              / |
2341 //             /  cast_not_null
2342 //           Load  |    |   ^
2343 //        [fast_test]   |   |
2344 // gvn to   opt_test    |   |
2345 //          /    \      |  <1>
2346 //      True     False  |
2347 //        |         \\  |
2348 //   [slow_call]     \[fast_result]
2349 //    Ctl   Val       \      \
2350 //     |               \      \
2351 //    Catch       <1>   \      \
2352 //   /    \        ^     \      \
2353 //  Ex    No_Ex    |      \      \
2354 //  |       \   \  |       \ <2>  \
2355 //  ...      \  [slow_res] |  |    \   [null_result]
2356 //            \         \--+--+---  |  |
2357 //             \           | /    \ | /
2358 //              --------Region     Phi
2359 //
2360 //=============================================================================
2361 // Code is structured as a series of driver functions all called 'do_XXX' that
2362 // call a set of helper functions.  Helper functions first, then drivers.
2363 
2364 //------------------------------null_check_oop---------------------------------
2365 // Null check oop.  Set null-path control into Region in slot 3.
2366 // Make a cast-not-nullness use the other not-null control.  Return cast.
2367 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2368                                bool never_see_null,
2369                                bool safe_for_replace,
2370                                bool speculative) {
2371   // Initial NULL check taken path
2372   (*null_control) = top();
2373   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2374 
2375   // Generate uncommon_trap:
2376   if (never_see_null && (*null_control) != top()) {
2377     // If we see an unexpected null at a check-cast we record it and force a
2378     // recompile; the offending check-cast will be compiled to handle NULLs.
2379     // If we see more than one offending BCI, then all checkcasts in the
2380     // method will be compiled to handle NULLs.
2381     PreserveJVMState pjvms(this);
2382     set_control(*null_control);
2383     replace_in_map(value, null());
2384     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2385     uncommon_trap(reason,
2386                   Deoptimization::Action_make_not_entrant);
2387     (*null_control) = top();    // NULL path is dead
2388   }
2389   if ((*null_control) == top() && safe_for_replace) {
2390     replace_in_map(value, cast);
2391   }
2392 
2393   // Cast away null-ness on the result
2394   return cast;
2395 }
2396 
2397 //------------------------------opt_iff----------------------------------------
2398 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2399 // Return slow-path control.
2400 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2401   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2402 
2403   // Fast path taken; set region slot 2
2404   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2405   region->init_req(2,fast_taken); // Capture fast-control
2406 
2407   // Fast path not-taken, i.e. slow path
2408   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2409   return slow_taken;
2410 }
2411 
2412 //-----------------------------make_runtime_call-------------------------------
2413 Node* GraphKit::make_runtime_call(int flags,
2414                                   const TypeFunc* call_type, address call_addr,
2415                                   const char* call_name,
2416                                   const TypePtr* adr_type,
2417                                   // The following parms are all optional.
2418                                   // The first NULL ends the list.
2419                                   Node* parm0, Node* parm1,
2420                                   Node* parm2, Node* parm3,
2421                                   Node* parm4, Node* parm5,
2422                                   Node* parm6, Node* parm7) {
2423   // Slow-path call
2424   bool is_leaf = !(flags & RC_NO_LEAF);
2425   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2426   if (call_name == NULL) {
2427     assert(!is_leaf, "must supply name for leaf");
2428     call_name = OptoRuntime::stub_name(call_addr);
2429   }
2430   CallNode* call;
2431   if (!is_leaf) {
2432     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2433                                            bci(), adr_type);
2434   } else if (flags & RC_NO_FP) {
2435     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2436   } else {
2437     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2438   }
2439 
2440   // The following is similar to set_edges_for_java_call,
2441   // except that the memory effects of the call are restricted to AliasIdxRaw.
2442 
2443   // Slow path call has no side-effects, uses few values
2444   bool wide_in  = !(flags & RC_NARROW_MEM);
2445   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2446 
2447   Node* prev_mem = NULL;
2448   if (wide_in) {
2449     prev_mem = set_predefined_input_for_runtime_call(call);
2450   } else {
2451     assert(!wide_out, "narrow in => narrow out");
2452     Node* narrow_mem = memory(adr_type);
2453     prev_mem = reset_memory();
2454     map()->set_memory(narrow_mem);
2455     set_predefined_input_for_runtime_call(call);
2456   }
2457 
2458   // Hook each parm in order.  Stop looking at the first NULL.
2459   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2460   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2461   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2462   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2463   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2464   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2465   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2466   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2467     /* close each nested if ===> */  } } } } } } } }
2468   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2469 
2470   if (!is_leaf) {
2471     // Non-leaves can block and take safepoints:
2472     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2473   }
2474   // Non-leaves can throw exceptions:
2475   if (has_io) {
2476     call->set_req(TypeFunc::I_O, i_o());
2477   }
2478 
2479   if (flags & RC_UNCOMMON) {
2480     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2481     // (An "if" probability corresponds roughly to an unconditional count.
2482     // Sort of.)
2483     call->set_cnt(PROB_UNLIKELY_MAG(4));
2484   }
2485 
2486   Node* c = _gvn.transform(call);
2487   assert(c == call, "cannot disappear");
2488 
2489   if (wide_out) {
2490     // Slow path call has full side-effects.
2491     set_predefined_output_for_runtime_call(call);
2492   } else {
2493     // Slow path call has few side-effects, and/or sets few values.
2494     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2495   }
2496 
2497   if (has_io) {
2498     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2499   }
2500   return call;
2501 
2502 }
2503 
2504 //------------------------------merge_memory-----------------------------------
2505 // Merge memory from one path into the current memory state.
2506 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2507   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2508     Node* old_slice = mms.force_memory();
2509     Node* new_slice = mms.memory2();
2510     if (old_slice != new_slice) {
2511       PhiNode* phi;
2512       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2513         if (mms.is_empty()) {
2514           // clone base memory Phi's inputs for this memory slice
2515           assert(old_slice == mms.base_memory(), "sanity");
2516           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2517           _gvn.set_type(phi, Type::MEMORY);
2518           for (uint i = 1; i < phi->req(); i++) {
2519             phi->init_req(i, old_slice->in(i));
2520           }
2521         } else {
2522           phi = old_slice->as_Phi(); // Phi was generated already
2523         }
2524       } else {
2525         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2526         _gvn.set_type(phi, Type::MEMORY);
2527       }
2528       phi->set_req(new_path, new_slice);
2529       mms.set_memory(phi);
2530     }
2531   }
2532 }
2533 
2534 //------------------------------make_slow_call_ex------------------------------
2535 // Make the exception handler hookups for the slow call
2536 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2537   if (stopped())  return;
2538 
2539   // Make a catch node with just two handlers:  fall-through and catch-all
2540   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2541   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2542   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2543   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2544 
2545   { PreserveJVMState pjvms(this);
2546     set_control(excp);
2547     set_i_o(i_o);
2548 
2549     if (excp != top()) {
2550       if (deoptimize) {
2551         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2552         uncommon_trap(Deoptimization::Reason_unhandled,
2553                       Deoptimization::Action_none);
2554       } else {
2555         // Create an exception state also.
2556         // Use an exact type if the caller has specified a specific exception.
2557         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2558         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2559         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2560       }
2561     }
2562   }
2563 
2564   // Get the no-exception control from the CatchNode.
2565   set_control(norm);
2566 }
2567 
2568 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2569   Node* cmp = NULL;
2570   switch(bt) {
2571   case T_INT: cmp = new CmpINode(in1, in2); break;
2572   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2573   default: fatal("unexpected comparison type %s", type2name(bt));
2574   }
2575   gvn->transform(cmp);
2576   Node* bol = gvn->transform(new BoolNode(cmp, test));
2577   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2578   gvn->transform(iff);
2579   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2580   return iff;
2581 }
2582 
2583 
2584 //-------------------------------gen_subtype_check-----------------------------
2585 // Generate a subtyping check.  Takes as input the subtype and supertype.
2586 // Returns 2 values: sets the default control() to the true path and returns
2587 // the false path.  Only reads invariant memory; sets no (visible) memory.
2588 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2589 // but that's not exposed to the optimizer.  This call also doesn't take in an
2590 // Object; if you wish to check an Object you need to load the Object's class
2591 // prior to coming here.
2592 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2593   Compile* C = gvn->C;
2594 
2595   if ((*ctrl)->is_top()) {
2596     return C->top();
2597   }
2598 
2599   // Fast check for identical types, perhaps identical constants.
2600   // The types can even be identical non-constants, in cases
2601   // involving Array.newInstance, Object.clone, etc.
2602   if (subklass == superklass)
2603     return C->top();             // false path is dead; no test needed.
2604 
2605   if (gvn->type(superklass)->singleton()) {
2606     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2607     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2608 
2609     // In the common case of an exact superklass, try to fold up the
2610     // test before generating code.  You may ask, why not just generate
2611     // the code and then let it fold up?  The answer is that the generated
2612     // code will necessarily include null checks, which do not always
2613     // completely fold away.  If they are also needless, then they turn
2614     // into a performance loss.  Example:
2615     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2616     // Here, the type of 'fa' is often exact, so the store check
2617     // of fa[1]=x will fold up, without testing the nullness of x.
2618     switch (C->static_subtype_check(superk, subk)) {
2619     case Compile::SSC_always_false:
2620       {
2621         Node* always_fail = *ctrl;
2622         *ctrl = gvn->C->top();
2623         return always_fail;
2624       }
2625     case Compile::SSC_always_true:
2626       return C->top();
2627     case Compile::SSC_easy_test:
2628       {
2629         // Just do a direct pointer compare and be done.
2630         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2631         *ctrl = gvn->transform(new IfTrueNode(iff));
2632         return gvn->transform(new IfFalseNode(iff));
2633       }
2634     case Compile::SSC_full_test:
2635       break;
2636     default:
2637       ShouldNotReachHere();
2638     }
2639   }
2640 
2641   // %%% Possible further optimization:  Even if the superklass is not exact,
2642   // if the subklass is the unique subtype of the superklass, the check
2643   // will always succeed.  We could leave a dependency behind to ensure this.
2644 
2645   // First load the super-klass's check-offset
2646   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2647   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2648   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2649   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2650   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2651 
2652   // Load from the sub-klass's super-class display list, or a 1-word cache of
2653   // the secondary superclass list, or a failing value with a sentinel offset
2654   // if the super-klass is an interface or exceptionally deep in the Java
2655   // hierarchy and we have to scan the secondary superclass list the hard way.
2656   // Worst-case type is a little odd: NULL is allowed as a result (usually
2657   // klass loads can never produce a NULL).
2658   Node *chk_off_X = chk_off;
2659 #ifdef _LP64
2660   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2661 #endif
2662   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2663   // For some types like interfaces the following loadKlass is from a 1-word
2664   // cache which is mutable so can't use immutable memory.  Other
2665   // types load from the super-class display table which is immutable.
2666   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2667   Node *kmem = might_be_cache ? m : C->immutable_memory();
2668   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2669 
2670   // Compile speed common case: ARE a subtype and we canNOT fail
2671   if( superklass == nkls )
2672     return C->top();             // false path is dead; no test needed.
2673 
2674   // See if we get an immediate positive hit.  Happens roughly 83% of the
2675   // time.  Test to see if the value loaded just previously from the subklass
2676   // is exactly the superklass.
2677   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2678   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2679   *ctrl = gvn->transform(new IfFalseNode(iff1));
2680 
2681   // Compile speed common case: Check for being deterministic right now.  If
2682   // chk_off is a constant and not equal to cacheoff then we are NOT a
2683   // subklass.  In this case we need exactly the 1 test above and we can
2684   // return those results immediately.
2685   if (!might_be_cache) {
2686     Node* not_subtype_ctrl = *ctrl;
2687     *ctrl = iftrue1; // We need exactly the 1 test above
2688     return not_subtype_ctrl;
2689   }
2690 
2691   // Gather the various success & failures here
2692   RegionNode *r_ok_subtype = new RegionNode(4);
2693   gvn->record_for_igvn(r_ok_subtype);
2694   RegionNode *r_not_subtype = new RegionNode(3);
2695   gvn->record_for_igvn(r_not_subtype);
2696 
2697   r_ok_subtype->init_req(1, iftrue1);
2698 
2699   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2700   // is roughly 63% of the remaining cases).  Test to see if the loaded
2701   // check-offset points into the subklass display list or the 1-element
2702   // cache.  If it points to the display (and NOT the cache) and the display
2703   // missed then it's not a subtype.
2704   Node *cacheoff = gvn->intcon(cacheoff_con);
2705   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2706   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2707   *ctrl = gvn->transform(new IfFalseNode(iff2));
2708 
2709   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2710   // No performance impact (too rare) but allows sharing of secondary arrays
2711   // which has some footprint reduction.
2712   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2713   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2714   *ctrl = gvn->transform(new IfFalseNode(iff3));
2715 
2716   // -- Roads not taken here: --
2717   // We could also have chosen to perform the self-check at the beginning
2718   // of this code sequence, as the assembler does.  This would not pay off
2719   // the same way, since the optimizer, unlike the assembler, can perform
2720   // static type analysis to fold away many successful self-checks.
2721   // Non-foldable self checks work better here in second position, because
2722   // the initial primary superclass check subsumes a self-check for most
2723   // types.  An exception would be a secondary type like array-of-interface,
2724   // which does not appear in its own primary supertype display.
2725   // Finally, we could have chosen to move the self-check into the
2726   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2727   // dependent manner.  But it is worthwhile to have the check here,
2728   // where it can be perhaps be optimized.  The cost in code space is
2729   // small (register compare, branch).
2730 
2731   // Now do a linear scan of the secondary super-klass array.  Again, no real
2732   // performance impact (too rare) but it's gotta be done.
2733   // Since the code is rarely used, there is no penalty for moving it
2734   // out of line, and it can only improve I-cache density.
2735   // The decision to inline or out-of-line this final check is platform
2736   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2737   Node* psc = gvn->transform(
2738     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2739 
2740   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2741   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2742   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2743 
2744   // Return false path; set default control to true path.
2745   *ctrl = gvn->transform(r_ok_subtype);
2746   return gvn->transform(r_not_subtype);
2747 }
2748 
2749 // Profile-driven exact type check:
2750 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2751                                     float prob,
2752                                     Node* *casted_receiver) {
2753   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2754   Node* recv_klass = load_object_klass(receiver);
2755   Node* want_klass = makecon(tklass);
2756   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2757   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2758   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2759   set_control( _gvn.transform( new IfTrueNode (iff) ));
2760   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2761 
2762   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2763   assert(recv_xtype->klass_is_exact(), "");
2764 
2765   // Subsume downstream occurrences of receiver with a cast to
2766   // recv_xtype, since now we know what the type will be.
2767   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2768   (*casted_receiver) = _gvn.transform(cast);
2769   // (User must make the replace_in_map call.)
2770 
2771   return fail;
2772 }
2773 
2774 
2775 //------------------------------seems_never_null-------------------------------
2776 // Use null_seen information if it is available from the profile.
2777 // If we see an unexpected null at a type check we record it and force a
2778 // recompile; the offending check will be recompiled to handle NULLs.
2779 // If we see several offending BCIs, then all checks in the
2780 // method will be recompiled.
2781 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2782   speculating = !_gvn.type(obj)->speculative_maybe_null();
2783   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2784   if (UncommonNullCast               // Cutout for this technique
2785       && obj != null()               // And not the -Xcomp stupid case?
2786       && !too_many_traps(reason)
2787       ) {
2788     if (speculating) {
2789       return true;
2790     }
2791     if (data == NULL)
2792       // Edge case:  no mature data.  Be optimistic here.
2793       return true;
2794     // If the profile has not seen a null, assume it won't happen.
2795     assert(java_bc() == Bytecodes::_checkcast ||
2796            java_bc() == Bytecodes::_instanceof ||
2797            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2798     return !data->as_BitData()->null_seen();
2799   }
2800   speculating = false;
2801   return false;
2802 }
2803 
2804 //------------------------maybe_cast_profiled_receiver-------------------------
2805 // If the profile has seen exactly one type, narrow to exactly that type.
2806 // Subsequent type checks will always fold up.
2807 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2808                                              ciKlass* require_klass,
2809                                              ciKlass* spec_klass,
2810                                              bool safe_for_replace) {
2811   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2812 
2813   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2814 
2815   // Make sure we haven't already deoptimized from this tactic.
2816   if (too_many_traps(reason) || too_many_recompiles(reason))
2817     return NULL;
2818 
2819   // (No, this isn't a call, but it's enough like a virtual call
2820   // to use the same ciMethod accessor to get the profile info...)
2821   // If we have a speculative type use it instead of profiling (which
2822   // may not help us)
2823   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2824   if (exact_kls != NULL) {// no cast failures here
2825     if (require_klass == NULL ||
2826         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2827       // If we narrow the type to match what the type profile sees or
2828       // the speculative type, we can then remove the rest of the
2829       // cast.
2830       // This is a win, even if the exact_kls is very specific,
2831       // because downstream operations, such as method calls,
2832       // will often benefit from the sharper type.
2833       Node* exact_obj = not_null_obj; // will get updated in place...
2834       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2835                                             &exact_obj);
2836       { PreserveJVMState pjvms(this);
2837         set_control(slow_ctl);
2838         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2839       }
2840       if (safe_for_replace) {
2841         replace_in_map(not_null_obj, exact_obj);
2842       }
2843       return exact_obj;
2844     }
2845     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2846   }
2847 
2848   return NULL;
2849 }
2850 
2851 /**
2852  * Cast obj to type and emit guard unless we had too many traps here
2853  * already
2854  *
2855  * @param obj       node being casted
2856  * @param type      type to cast the node to
2857  * @param not_null  true if we know node cannot be null
2858  */
2859 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2860                                         ciKlass* type,
2861                                         bool not_null) {
2862   if (stopped()) {
2863     return obj;
2864   }
2865 
2866   // type == NULL if profiling tells us this object is always null
2867   if (type != NULL) {
2868     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2869     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2870 
2871     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2872         !too_many_traps(class_reason) &&
2873         !too_many_recompiles(class_reason)) {
2874       Node* not_null_obj = NULL;
2875       // not_null is true if we know the object is not null and
2876       // there's no need for a null check
2877       if (!not_null) {
2878         Node* null_ctl = top();
2879         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2880         assert(null_ctl->is_top(), "no null control here");
2881       } else {
2882         not_null_obj = obj;
2883       }
2884 
2885       Node* exact_obj = not_null_obj;
2886       ciKlass* exact_kls = type;
2887       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2888                                             &exact_obj);
2889       {
2890         PreserveJVMState pjvms(this);
2891         set_control(slow_ctl);
2892         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2893       }
2894       replace_in_map(not_null_obj, exact_obj);
2895       obj = exact_obj;
2896     }
2897   } else {
2898     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2899         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2900       Node* exact_obj = null_assert(obj);
2901       replace_in_map(obj, exact_obj);
2902       obj = exact_obj;
2903     }
2904   }
2905   return obj;
2906 }
2907 
2908 //-------------------------------gen_instanceof--------------------------------
2909 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2910 // and the reflective instance-of call.
2911 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2912   kill_dead_locals();           // Benefit all the uncommon traps
2913   assert( !stopped(), "dead parse path should be checked in callers" );
2914   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2915          "must check for not-null not-dead klass in callers");
2916 
2917   // Make the merge point
2918   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2919   RegionNode* region = new RegionNode(PATH_LIMIT);
2920   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2921   C->set_has_split_ifs(true); // Has chance for split-if optimization
2922 
2923   ciProfileData* data = NULL;
2924   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2925     data = method()->method_data()->bci_to_data(bci());
2926   }
2927   bool speculative_not_null = false;
2928   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2929                          && seems_never_null(obj, data, speculative_not_null));
2930 
2931   // Null check; get casted pointer; set region slot 3
2932   Node* null_ctl = top();
2933   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2934 
2935   // If not_null_obj is dead, only null-path is taken
2936   if (stopped()) {              // Doing instance-of on a NULL?
2937     set_control(null_ctl);
2938     return intcon(0);
2939   }
2940   region->init_req(_null_path, null_ctl);
2941   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2942   if (null_ctl == top()) {
2943     // Do this eagerly, so that pattern matches like is_diamond_phi
2944     // will work even during parsing.
2945     assert(_null_path == PATH_LIMIT-1, "delete last");
2946     region->del_req(_null_path);
2947     phi   ->del_req(_null_path);
2948   }
2949 
2950   // Do we know the type check always succeed?
2951   bool known_statically = false;
2952   if (_gvn.type(superklass)->singleton()) {
2953     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2954     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2955     if (subk != NULL && subk->is_loaded()) {
2956       int static_res = C->static_subtype_check(superk, subk);
2957       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2958     }
2959   }
2960 
2961   if (!known_statically) {
2962     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2963     // We may not have profiling here or it may not help us. If we
2964     // have a speculative type use it to perform an exact cast.
2965     ciKlass* spec_obj_type = obj_type->speculative_type();
2966     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2967       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2968       if (stopped()) {            // Profile disagrees with this path.
2969         set_control(null_ctl);    // Null is the only remaining possibility.
2970         return intcon(0);
2971       }
2972       if (cast_obj != NULL) {
2973         not_null_obj = cast_obj;
2974       }
2975     }
2976   }
2977 
2978   // Load the object's klass
2979   Node* obj_klass = load_object_klass(not_null_obj);
2980 
2981   // Generate the subtype check
2982   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2983 
2984   // Plug in the success path to the general merge in slot 1.
2985   region->init_req(_obj_path, control());
2986   phi   ->init_req(_obj_path, intcon(1));
2987 
2988   // Plug in the failing path to the general merge in slot 2.
2989   region->init_req(_fail_path, not_subtype_ctrl);
2990   phi   ->init_req(_fail_path, intcon(0));
2991 
2992   // Return final merged results
2993   set_control( _gvn.transform(region) );
2994   record_for_igvn(region);
2995 
2996   // If we know the type check always succeeds then we don't use the
2997   // profiling data at this bytecode. Don't lose it, feed it to the
2998   // type system as a speculative type.
2999   if (safe_for_replace) {
3000     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3001     replace_in_map(obj, casted_obj);
3002   }
3003 
3004   return _gvn.transform(phi);
3005 }
3006 
3007 //-------------------------------gen_checkcast---------------------------------
3008 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3009 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3010 // uncommon-trap paths work.  Adjust stack after this call.
3011 // If failure_control is supplied and not null, it is filled in with
3012 // the control edge for the cast failure.  Otherwise, an appropriate
3013 // uncommon trap or exception is thrown.
3014 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3015                               Node* *failure_control) {
3016   kill_dead_locals();           // Benefit all the uncommon traps
3017   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3018   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
3019 
3020   // Fast cutout:  Check the case that the cast is vacuously true.
3021   // This detects the common cases where the test will short-circuit
3022   // away completely.  We do this before we perform the null check,
3023   // because if the test is going to turn into zero code, we don't
3024   // want a residual null check left around.  (Causes a slowdown,
3025   // for example, in some objArray manipulations, such as a[i]=a[j].)
3026   if (tk->singleton()) {
3027     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3028     if (objtp != NULL && objtp->klass() != NULL) {
3029       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
3030       case Compile::SSC_always_true:
3031         // If we know the type check always succeed then we don't use
3032         // the profiling data at this bytecode. Don't lose it, feed it
3033         // to the type system as a speculative type.
3034         return record_profiled_receiver_for_speculation(obj);
3035       case Compile::SSC_always_false:
3036         // It needs a null check because a null will *pass* the cast check.
3037         // A non-null value will always produce an exception.
3038         return null_assert(obj);
3039       }
3040     }
3041   }
3042 
3043   ciProfileData* data = NULL;
3044   bool safe_for_replace = false;
3045   if (failure_control == NULL) {        // use MDO in regular case only
3046     assert(java_bc() == Bytecodes::_aastore ||
3047            java_bc() == Bytecodes::_checkcast,
3048            "interpreter profiles type checks only for these BCs");
3049     data = method()->method_data()->bci_to_data(bci());
3050     safe_for_replace = true;
3051   }
3052 
3053   // Make the merge point
3054   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3055   RegionNode* region = new RegionNode(PATH_LIMIT);
3056   Node*       phi    = new PhiNode(region, toop);
3057   C->set_has_split_ifs(true); // Has chance for split-if optimization
3058 
3059   // Use null-cast information if it is available
3060   bool speculative_not_null = false;
3061   bool never_see_null = ((failure_control == NULL)  // regular case only
3062                          && seems_never_null(obj, data, speculative_not_null));
3063 
3064   // Null check; get casted pointer; set region slot 3
3065   Node* null_ctl = top();
3066   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3067 
3068   // If not_null_obj is dead, only null-path is taken
3069   if (stopped()) {              // Doing instance-of on a NULL?
3070     set_control(null_ctl);
3071     return null();
3072   }
3073   region->init_req(_null_path, null_ctl);
3074   phi   ->init_req(_null_path, null());  // Set null path value
3075   if (null_ctl == top()) {
3076     // Do this eagerly, so that pattern matches like is_diamond_phi
3077     // will work even during parsing.
3078     assert(_null_path == PATH_LIMIT-1, "delete last");
3079     region->del_req(_null_path);
3080     phi   ->del_req(_null_path);
3081   }
3082 
3083   Node* cast_obj = NULL;
3084   if (tk->klass_is_exact()) {
3085     // The following optimization tries to statically cast the speculative type of the object
3086     // (for example obtained during profiling) to the type of the superklass and then do a
3087     // dynamic check that the type of the object is what we expect. To work correctly
3088     // for checkcast and aastore the type of superklass should be exact.
3089     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3090     // We may not have profiling here or it may not help us. If we have
3091     // a speculative type use it to perform an exact cast.
3092     ciKlass* spec_obj_type = obj_type->speculative_type();
3093     if (spec_obj_type != NULL || data != NULL) {
3094       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3095       if (cast_obj != NULL) {
3096         if (failure_control != NULL) // failure is now impossible
3097           (*failure_control) = top();
3098         // adjust the type of the phi to the exact klass:
3099         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3100       }
3101     }
3102   }
3103 
3104   if (cast_obj == NULL) {
3105     // Load the object's klass
3106     Node* obj_klass = load_object_klass(not_null_obj);
3107 
3108     // Generate the subtype check
3109     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3110 
3111     // Plug in success path into the merge
3112     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3113     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3114     if (failure_control == NULL) {
3115       if (not_subtype_ctrl != top()) { // If failure is possible
3116         PreserveJVMState pjvms(this);
3117         set_control(not_subtype_ctrl);
3118         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3119       }
3120     } else {
3121       (*failure_control) = not_subtype_ctrl;
3122     }
3123   }
3124 
3125   region->init_req(_obj_path, control());
3126   phi   ->init_req(_obj_path, cast_obj);
3127 
3128   // A merge of NULL or Casted-NotNull obj
3129   Node* res = _gvn.transform(phi);
3130 
3131   // Note I do NOT always 'replace_in_map(obj,result)' here.
3132   //  if( tk->klass()->can_be_primary_super()  )
3133     // This means that if I successfully store an Object into an array-of-String
3134     // I 'forget' that the Object is really now known to be a String.  I have to
3135     // do this because we don't have true union types for interfaces - if I store
3136     // a Baz into an array-of-Interface and then tell the optimizer it's an
3137     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3138     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3139   //  replace_in_map( obj, res );
3140 
3141   // Return final merged results
3142   set_control( _gvn.transform(region) );
3143   record_for_igvn(region);
3144 
3145   return record_profiled_receiver_for_speculation(res);
3146 }
3147 
3148 //------------------------------next_monitor-----------------------------------
3149 // What number should be given to the next monitor?
3150 int GraphKit::next_monitor() {
3151   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3152   int next = current + C->sync_stack_slots();
3153   // Keep the toplevel high water mark current:
3154   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3155   return current;
3156 }
3157 
3158 //------------------------------insert_mem_bar---------------------------------
3159 // Memory barrier to avoid floating things around
3160 // The membar serves as a pinch point between both control and all memory slices.
3161 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3162   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3163   mb->init_req(TypeFunc::Control, control());
3164   mb->init_req(TypeFunc::Memory,  reset_memory());
3165   Node* membar = _gvn.transform(mb);
3166   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3167   set_all_memory_call(membar);
3168   return membar;
3169 }
3170 
3171 //-------------------------insert_mem_bar_volatile----------------------------
3172 // Memory barrier to avoid floating things around
3173 // The membar serves as a pinch point between both control and memory(alias_idx).
3174 // If you want to make a pinch point on all memory slices, do not use this
3175 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3176 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3177   // When Parse::do_put_xxx updates a volatile field, it appends a series
3178   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3179   // The first membar is on the same memory slice as the field store opcode.
3180   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3181   // All the other membars (for other volatile slices, including AliasIdxBot,
3182   // which stands for all unknown volatile slices) are control-dependent
3183   // on the first membar.  This prevents later volatile loads or stores
3184   // from sliding up past the just-emitted store.
3185 
3186   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3187   mb->set_req(TypeFunc::Control,control());
3188   if (alias_idx == Compile::AliasIdxBot) {
3189     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3190   } else {
3191     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3192     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3193   }
3194   Node* membar = _gvn.transform(mb);
3195   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3196   if (alias_idx == Compile::AliasIdxBot) {
3197     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3198   } else {
3199     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3200   }
3201   return membar;
3202 }
3203 
3204 //------------------------------shared_lock------------------------------------
3205 // Emit locking code.
3206 FastLockNode* GraphKit::shared_lock(Node* obj) {
3207   // bci is either a monitorenter bc or InvocationEntryBci
3208   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3209   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3210 
3211   if( !GenerateSynchronizationCode )
3212     return NULL;                // Not locking things?
3213   if (stopped())                // Dead monitor?
3214     return NULL;
3215 
3216   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3217 
3218   // Box the stack location
3219   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3220   Node* mem = reset_memory();
3221 
3222   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3223   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3224     // Create the counters for this fast lock.
3225     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3226   }
3227 
3228   // Create the rtm counters for this fast lock if needed.
3229   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3230 
3231   // Add monitor to debug info for the slow path.  If we block inside the
3232   // slow path and de-opt, we need the monitor hanging around
3233   map()->push_monitor( flock );
3234 
3235   const TypeFunc *tf = LockNode::lock_type();
3236   LockNode *lock = new LockNode(C, tf);
3237 
3238   lock->init_req( TypeFunc::Control, control() );
3239   lock->init_req( TypeFunc::Memory , mem );
3240   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3241   lock->init_req( TypeFunc::FramePtr, frameptr() );
3242   lock->init_req( TypeFunc::ReturnAdr, top() );
3243 
3244   lock->init_req(TypeFunc::Parms + 0, obj);
3245   lock->init_req(TypeFunc::Parms + 1, box);
3246   lock->init_req(TypeFunc::Parms + 2, flock);
3247   add_safepoint_edges(lock);
3248 
3249   lock = _gvn.transform( lock )->as_Lock();
3250 
3251   // lock has no side-effects, sets few values
3252   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3253 
3254   insert_mem_bar(Op_MemBarAcquireLock);
3255 
3256   // Add this to the worklist so that the lock can be eliminated
3257   record_for_igvn(lock);
3258 
3259 #ifndef PRODUCT
3260   if (PrintLockStatistics) {
3261     // Update the counter for this lock.  Don't bother using an atomic
3262     // operation since we don't require absolute accuracy.
3263     lock->create_lock_counter(map()->jvms());
3264     increment_counter(lock->counter()->addr());
3265   }
3266 #endif
3267 
3268   return flock;
3269 }
3270 
3271 
3272 //------------------------------shared_unlock----------------------------------
3273 // Emit unlocking code.
3274 void GraphKit::shared_unlock(Node* box, Node* obj) {
3275   // bci is either a monitorenter bc or InvocationEntryBci
3276   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3277   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3278 
3279   if( !GenerateSynchronizationCode )
3280     return;
3281   if (stopped()) {               // Dead monitor?
3282     map()->pop_monitor();        // Kill monitor from debug info
3283     return;
3284   }
3285 
3286   // Memory barrier to avoid floating things down past the locked region
3287   insert_mem_bar(Op_MemBarReleaseLock);
3288 
3289   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3290   UnlockNode *unlock = new UnlockNode(C, tf);
3291 #ifdef ASSERT
3292   unlock->set_dbg_jvms(sync_jvms());
3293 #endif
3294   uint raw_idx = Compile::AliasIdxRaw;
3295   unlock->init_req( TypeFunc::Control, control() );
3296   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3297   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3298   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3299   unlock->init_req( TypeFunc::ReturnAdr, top() );
3300 
3301   unlock->init_req(TypeFunc::Parms + 0, obj);
3302   unlock->init_req(TypeFunc::Parms + 1, box);
3303   unlock = _gvn.transform(unlock)->as_Unlock();
3304 
3305   Node* mem = reset_memory();
3306 
3307   // unlock has no side-effects, sets few values
3308   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3309 
3310   // Kill monitor from debug info
3311   map()->pop_monitor( );
3312 }
3313 
3314 //-------------------------------get_layout_helper-----------------------------
3315 // If the given klass is a constant or known to be an array,
3316 // fetch the constant layout helper value into constant_value
3317 // and return (Node*)NULL.  Otherwise, load the non-constant
3318 // layout helper value, and return the node which represents it.
3319 // This two-faced routine is useful because allocation sites
3320 // almost always feature constant types.
3321 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3322   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3323   if (!StressReflectiveCode && inst_klass != NULL) {
3324     ciKlass* klass = inst_klass->klass();
3325     bool    xklass = inst_klass->klass_is_exact();
3326     if (xklass || klass->is_array_klass()) {
3327       jint lhelper = klass->layout_helper();
3328       if (lhelper != Klass::_lh_neutral_value) {
3329         constant_value = lhelper;
3330         return (Node*) NULL;
3331       }
3332     }
3333   }
3334   constant_value = Klass::_lh_neutral_value;  // put in a known value
3335   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3336   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3337 }
3338 
3339 // We just put in an allocate/initialize with a big raw-memory effect.
3340 // Hook selected additional alias categories on the initialization.
3341 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3342                                 MergeMemNode* init_in_merge,
3343                                 Node* init_out_raw) {
3344   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3345   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3346 
3347   Node* prevmem = kit.memory(alias_idx);
3348   init_in_merge->set_memory_at(alias_idx, prevmem);
3349   kit.set_memory(init_out_raw, alias_idx);
3350 }
3351 
3352 //---------------------------set_output_for_allocation-------------------------
3353 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3354                                           const TypeOopPtr* oop_type,
3355                                           bool deoptimize_on_exception) {
3356   int rawidx = Compile::AliasIdxRaw;
3357   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3358   add_safepoint_edges(alloc);
3359   Node* allocx = _gvn.transform(alloc);
3360   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3361   // create memory projection for i_o
3362   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3363   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3364 
3365   // create a memory projection as for the normal control path
3366   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3367   set_memory(malloc, rawidx);
3368 
3369   // a normal slow-call doesn't change i_o, but an allocation does
3370   // we create a separate i_o projection for the normal control path
3371   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3372   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3373 
3374   // put in an initialization barrier
3375   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3376                                                  rawoop)->as_Initialize();
3377   assert(alloc->initialization() == init,  "2-way macro link must work");
3378   assert(init ->allocation()     == alloc, "2-way macro link must work");
3379   {
3380     // Extract memory strands which may participate in the new object's
3381     // initialization, and source them from the new InitializeNode.
3382     // This will allow us to observe initializations when they occur,
3383     // and link them properly (as a group) to the InitializeNode.
3384     assert(init->in(InitializeNode::Memory) == malloc, "");
3385     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3386     init->set_req(InitializeNode::Memory, minit_in);
3387     record_for_igvn(minit_in); // fold it up later, if possible
3388     Node* minit_out = memory(rawidx);
3389     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3390     if (oop_type->isa_aryptr()) {
3391       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3392       int            elemidx  = C->get_alias_index(telemref);
3393       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3394     } else if (oop_type->isa_instptr()) {
3395       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3396       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3397         ciField* field = ik->nonstatic_field_at(i);
3398         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3399           continue;  // do not bother to track really large numbers of fields
3400         // Find (or create) the alias category for this field:
3401         int fieldidx = C->alias_type(field)->index();
3402         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3403       }
3404     }
3405   }
3406 
3407   // Cast raw oop to the real thing...
3408   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3409   javaoop = _gvn.transform(javaoop);
3410   C->set_recent_alloc(control(), javaoop);
3411   assert(just_allocated_object(control()) == javaoop, "just allocated");
3412 
3413 #ifdef ASSERT
3414   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3415     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3416            "Ideal_allocation works");
3417     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3418            "Ideal_allocation works");
3419     if (alloc->is_AllocateArray()) {
3420       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3421              "Ideal_allocation works");
3422       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3423              "Ideal_allocation works");
3424     } else {
3425       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3426     }
3427   }
3428 #endif //ASSERT
3429 
3430   return javaoop;
3431 }
3432 
3433 //---------------------------new_instance--------------------------------------
3434 // This routine takes a klass_node which may be constant (for a static type)
3435 // or may be non-constant (for reflective code).  It will work equally well
3436 // for either, and the graph will fold nicely if the optimizer later reduces
3437 // the type to a constant.
3438 // The optional arguments are for specialized use by intrinsics:
3439 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3440 //  - If 'return_size_val', report the the total object size to the caller.
3441 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3442 Node* GraphKit::new_instance(Node* klass_node,
3443                              Node* extra_slow_test,
3444                              Node* *return_size_val,
3445                              bool deoptimize_on_exception) {
3446   // Compute size in doublewords
3447   // The size is always an integral number of doublewords, represented
3448   // as a positive bytewise size stored in the klass's layout_helper.
3449   // The layout_helper also encodes (in a low bit) the need for a slow path.
3450   jint  layout_con = Klass::_lh_neutral_value;
3451   Node* layout_val = get_layout_helper(klass_node, layout_con);
3452   int   layout_is_con = (layout_val == NULL);
3453 
3454   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3455   // Generate the initial go-slow test.  It's either ALWAYS (return a
3456   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3457   // case) a computed value derived from the layout_helper.
3458   Node* initial_slow_test = NULL;
3459   if (layout_is_con) {
3460     assert(!StressReflectiveCode, "stress mode does not use these paths");
3461     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3462     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3463   } else {   // reflective case
3464     // This reflective path is used by Unsafe.allocateInstance.
3465     // (It may be stress-tested by specifying StressReflectiveCode.)
3466     // Basically, we want to get into the VM is there's an illegal argument.
3467     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3468     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3469     if (extra_slow_test != intcon(0)) {
3470       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3471     }
3472     // (Macro-expander will further convert this to a Bool, if necessary.)
3473   }
3474 
3475   // Find the size in bytes.  This is easy; it's the layout_helper.
3476   // The size value must be valid even if the slow path is taken.
3477   Node* size = NULL;
3478   if (layout_is_con) {
3479     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3480   } else {   // reflective case
3481     // This reflective path is used by clone and Unsafe.allocateInstance.
3482     size = ConvI2X(layout_val);
3483 
3484     // Clear the low bits to extract layout_helper_size_in_bytes:
3485     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3486     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3487     size = _gvn.transform( new AndXNode(size, mask) );
3488   }
3489   if (return_size_val != NULL) {
3490     (*return_size_val) = size;
3491   }
3492 
3493   // This is a precise notnull oop of the klass.
3494   // (Actually, it need not be precise if this is a reflective allocation.)
3495   // It's what we cast the result to.
3496   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3497   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3498   const TypeOopPtr* oop_type = tklass->as_instance_type();
3499 
3500   // Now generate allocation code
3501 
3502   // The entire memory state is needed for slow path of the allocation
3503   // since GC and deoptimization can happened.
3504   Node *mem = reset_memory();
3505   set_all_memory(mem); // Create new memory state
3506 
3507   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3508                                          control(), mem, i_o(),
3509                                          size, klass_node,
3510                                          initial_slow_test);
3511 
3512   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3513 }
3514 
3515 //-------------------------------new_array-------------------------------------
3516 // helper for both newarray and anewarray
3517 // The 'length' parameter is (obviously) the length of the array.
3518 // See comments on new_instance for the meaning of the other arguments.
3519 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3520                           Node* length,         // number of array elements
3521                           int   nargs,          // number of arguments to push back for uncommon trap
3522                           Node* *return_size_val,
3523                           bool deoptimize_on_exception) {
3524   jint  layout_con = Klass::_lh_neutral_value;
3525   Node* layout_val = get_layout_helper(klass_node, layout_con);
3526   int   layout_is_con = (layout_val == NULL);
3527 
3528   if (!layout_is_con && !StressReflectiveCode &&
3529       !too_many_traps(Deoptimization::Reason_class_check)) {
3530     // This is a reflective array creation site.
3531     // Optimistically assume that it is a subtype of Object[],
3532     // so that we can fold up all the address arithmetic.
3533     layout_con = Klass::array_layout_helper(T_OBJECT);
3534     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3535     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3536     { BuildCutout unless(this, bol_lh, PROB_MAX);
3537       inc_sp(nargs);
3538       uncommon_trap(Deoptimization::Reason_class_check,
3539                     Deoptimization::Action_maybe_recompile);
3540     }
3541     layout_val = NULL;
3542     layout_is_con = true;
3543   }
3544 
3545   // Generate the initial go-slow test.  Make sure we do not overflow
3546   // if length is huge (near 2Gig) or negative!  We do not need
3547   // exact double-words here, just a close approximation of needed
3548   // double-words.  We can't add any offset or rounding bits, lest we
3549   // take a size -1 of bytes and make it positive.  Use an unsigned
3550   // compare, so negative sizes look hugely positive.
3551   int fast_size_limit = FastAllocateSizeLimit;
3552   if (layout_is_con) {
3553     assert(!StressReflectiveCode, "stress mode does not use these paths");
3554     // Increase the size limit if we have exact knowledge of array type.
3555     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3556     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3557   }
3558 
3559   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3560   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3561 
3562   // --- Size Computation ---
3563   // array_size = round_to_heap(array_header + (length << elem_shift));
3564   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3565   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3566   // The rounding mask is strength-reduced, if possible.
3567   int round_mask = MinObjAlignmentInBytes - 1;
3568   Node* header_size = NULL;
3569   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3570   // (T_BYTE has the weakest alignment and size restrictions...)
3571   if (layout_is_con) {
3572     int       hsize  = Klass::layout_helper_header_size(layout_con);
3573     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3574     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3575     if ((round_mask & ~right_n_bits(eshift)) == 0)
3576       round_mask = 0;  // strength-reduce it if it goes away completely
3577     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3578     assert(header_size_min <= hsize, "generic minimum is smallest");
3579     header_size_min = hsize;
3580     header_size = intcon(hsize + round_mask);
3581   } else {
3582     Node* hss   = intcon(Klass::_lh_header_size_shift);
3583     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3584     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3585     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3586     Node* mask  = intcon(round_mask);
3587     header_size = _gvn.transform( new AddINode(hsize, mask) );
3588   }
3589 
3590   Node* elem_shift = NULL;
3591   if (layout_is_con) {
3592     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3593     if (eshift != 0)
3594       elem_shift = intcon(eshift);
3595   } else {
3596     // There is no need to mask or shift this value.
3597     // The semantics of LShiftINode include an implicit mask to 0x1F.
3598     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3599     elem_shift = layout_val;
3600   }
3601 
3602   // Transition to native address size for all offset calculations:
3603   Node* lengthx = ConvI2X(length);
3604   Node* headerx = ConvI2X(header_size);
3605 #ifdef _LP64
3606   { const TypeInt* tilen = _gvn.find_int_type(length);
3607     if (tilen != NULL && tilen->_lo < 0) {
3608       // Add a manual constraint to a positive range.  Cf. array_element_address.
3609       jint size_max = fast_size_limit;
3610       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3611       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3612 
3613       // Only do a narrow I2L conversion if the range check passed.
3614       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3615       _gvn.transform(iff);
3616       RegionNode* region = new RegionNode(3);
3617       _gvn.set_type(region, Type::CONTROL);
3618       lengthx = new PhiNode(region, TypeLong::LONG);
3619       _gvn.set_type(lengthx, TypeLong::LONG);
3620 
3621       // Range check passed. Use ConvI2L node with narrow type.
3622       Node* passed = IfFalse(iff);
3623       region->init_req(1, passed);
3624       // Make I2L conversion control dependent to prevent it from
3625       // floating above the range check during loop optimizations.
3626       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3627 
3628       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3629       region->init_req(2, IfTrue(iff));
3630       lengthx->init_req(2, ConvI2X(length));
3631 
3632       set_control(region);
3633       record_for_igvn(region);
3634       record_for_igvn(lengthx);
3635     }
3636   }
3637 #endif
3638 
3639   // Combine header size (plus rounding) and body size.  Then round down.
3640   // This computation cannot overflow, because it is used only in two
3641   // places, one where the length is sharply limited, and the other
3642   // after a successful allocation.
3643   Node* abody = lengthx;
3644   if (elem_shift != NULL)
3645     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3646   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3647   if (round_mask != 0) {
3648     Node* mask = MakeConX(~round_mask);
3649     size       = _gvn.transform( new AndXNode(size, mask) );
3650   }
3651   // else if round_mask == 0, the size computation is self-rounding
3652 
3653   if (return_size_val != NULL) {
3654     // This is the size
3655     (*return_size_val) = size;
3656   }
3657 
3658   // Now generate allocation code
3659 
3660   // The entire memory state is needed for slow path of the allocation
3661   // since GC and deoptimization can happened.
3662   Node *mem = reset_memory();
3663   set_all_memory(mem); // Create new memory state
3664 
3665   if (initial_slow_test->is_Bool()) {
3666     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3667     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3668   }
3669 
3670   // Create the AllocateArrayNode and its result projections
3671   AllocateArrayNode* alloc
3672     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3673                             control(), mem, i_o(),
3674                             size, klass_node,
3675                             initial_slow_test,
3676                             length);
3677 
3678   // Cast to correct type.  Note that the klass_node may be constant or not,
3679   // and in the latter case the actual array type will be inexact also.
3680   // (This happens via a non-constant argument to inline_native_newArray.)
3681   // In any case, the value of klass_node provides the desired array type.
3682   const TypeInt* length_type = _gvn.find_int_type(length);
3683   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3684   if (ary_type->isa_aryptr() && length_type != NULL) {
3685     // Try to get a better type than POS for the size
3686     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3687   }
3688 
3689   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3690 
3691   // Cast length on remaining path to be as narrow as possible
3692   if (map()->find_edge(length) >= 0) {
3693     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3694     if (ccast != length) {
3695       _gvn.set_type_bottom(ccast);
3696       record_for_igvn(ccast);
3697       replace_in_map(length, ccast);
3698     }
3699   }
3700 
3701   return javaoop;
3702 }
3703 
3704 // The following "Ideal_foo" functions are placed here because they recognize
3705 // the graph shapes created by the functions immediately above.
3706 
3707 //---------------------------Ideal_allocation----------------------------------
3708 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3709 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3710   if (ptr == NULL) {     // reduce dumb test in callers
3711     return NULL;
3712   }
3713   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3714     ptr = ptr->in(1);
3715     if (ptr == NULL) return NULL;
3716   }
3717   // Return NULL for allocations with several casts:
3718   //   j.l.reflect.Array.newInstance(jobject, jint)
3719   //   Object.clone()
3720   // to keep more precise type from last cast.
3721   if (ptr->is_Proj()) {
3722     Node* allo = ptr->in(0);
3723     if (allo != NULL && allo->is_Allocate()) {
3724       return allo->as_Allocate();
3725     }
3726   }
3727   // Report failure to match.
3728   return NULL;
3729 }
3730 
3731 // Fancy version which also strips off an offset (and reports it to caller).
3732 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3733                                              intptr_t& offset) {
3734   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3735   if (base == NULL)  return NULL;
3736   return Ideal_allocation(base, phase);
3737 }
3738 
3739 // Trace Initialize <- Proj[Parm] <- Allocate
3740 AllocateNode* InitializeNode::allocation() {
3741   Node* rawoop = in(InitializeNode::RawAddress);
3742   if (rawoop->is_Proj()) {
3743     Node* alloc = rawoop->in(0);
3744     if (alloc->is_Allocate()) {
3745       return alloc->as_Allocate();
3746     }
3747   }
3748   return NULL;
3749 }
3750 
3751 // Trace Allocate -> Proj[Parm] -> Initialize
3752 InitializeNode* AllocateNode::initialization() {
3753   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
3754   if (rawoop == NULL)  return NULL;
3755   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3756     Node* init = rawoop->fast_out(i);
3757     if (init->is_Initialize()) {
3758       assert(init->as_Initialize()->allocation() == this, "2-way link");
3759       return init->as_Initialize();
3760     }
3761   }
3762   return NULL;
3763 }
3764 
3765 //----------------------------- loop predicates ---------------------------
3766 
3767 //------------------------------add_predicate_impl----------------------------
3768 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3769   // Too many traps seen?
3770   if (too_many_traps(reason)) {
3771 #ifdef ASSERT
3772     if (TraceLoopPredicate) {
3773       int tc = C->trap_count(reason);
3774       tty->print("too many traps=%s tcount=%d in ",
3775                     Deoptimization::trap_reason_name(reason), tc);
3776       method()->print(); // which method has too many predicate traps
3777       tty->cr();
3778     }
3779 #endif
3780     // We cannot afford to take more traps here,
3781     // do not generate predicate.
3782     return;
3783   }
3784 
3785   Node *cont    = _gvn.intcon(1);
3786   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3787   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3788   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3789   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3790   C->add_predicate_opaq(opq);
3791   {
3792     PreserveJVMState pjvms(this);
3793     set_control(iffalse);
3794     inc_sp(nargs);
3795     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3796   }
3797   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3798   set_control(iftrue);
3799 }
3800 
3801 //------------------------------add_predicate---------------------------------
3802 void GraphKit::add_predicate(int nargs) {
3803   if (UseLoopPredicate) {
3804     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3805   }
3806   // loop's limit check predicate should be near the loop.
3807   add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3808 }
3809 
3810 //----------------------------- store barriers ----------------------------
3811 #define __ ideal.
3812 
3813 bool GraphKit::use_ReduceInitialCardMarks() {
3814   BarrierSet *bs = Universe::heap()->barrier_set();
3815   return bs->is_a(BarrierSet::CardTableBarrierSet)
3816          && barrier_set_cast<CardTableBarrierSet>(bs)->can_elide_tlab_store_barriers()
3817          && ReduceInitialCardMarks;
3818 }
3819 
3820 void GraphKit::sync_kit(IdealKit& ideal) {
3821   set_all_memory(__ merged_memory());
3822   set_i_o(__ i_o());
3823   set_control(__ ctrl());
3824 }
3825 
3826 void GraphKit::final_sync(IdealKit& ideal) {
3827   // Final sync IdealKit and graphKit.
3828   sync_kit(ideal);
3829 }
3830 
3831 Node* GraphKit::byte_map_base_node() {
3832   // Get base of card map
3833   jbyte* card_table_base = ci_card_table_address();
3834   if (card_table_base != NULL) {
3835     return makecon(TypeRawPtr::make((address)card_table_base));
3836   } else {
3837     return null();
3838   }
3839 }
3840 
3841 // vanilla/CMS post barrier
3842 // Insert a write-barrier store.  This is to let generational GC work; we have
3843 // to flag all oop-stores before the next GC point.
3844 void GraphKit::write_barrier_post(Node* oop_store,
3845                                   Node* obj,
3846                                   Node* adr,
3847                                   uint  adr_idx,
3848                                   Node* val,
3849                                   bool use_precise) {
3850   // No store check needed if we're storing a NULL or an old object
3851   // (latter case is probably a string constant). The concurrent
3852   // mark sweep garbage collector, however, needs to have all nonNull
3853   // oop updates flagged via card-marks.
3854   if (val != NULL && val->is_Con()) {
3855     // must be either an oop or NULL
3856     const Type* t = val->bottom_type();
3857     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3858       // stores of null never (?) need barriers
3859       return;
3860   }
3861 
3862   if (use_ReduceInitialCardMarks()
3863       && obj == just_allocated_object(control())) {
3864     // We can skip marks on a freshly-allocated object in Eden.
3865     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
3866     // That routine informs GC to take appropriate compensating steps,
3867     // upon a slow-path allocation, so as to make this card-mark
3868     // elision safe.
3869     return;
3870   }
3871 
3872   if (!use_precise) {
3873     // All card marks for a (non-array) instance are in one place:
3874     adr = obj;
3875   }
3876   // (Else it's an array (or unknown), and we want more precise card marks.)
3877   assert(adr != NULL, "");
3878 
3879   IdealKit ideal(this, true);
3880 
3881   // Convert the pointer to an int prior to doing math on it
3882   Node* cast = __ CastPX(__ ctrl(), adr);
3883 
3884   // Divide by card size
3885   assert(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableBarrierSet),
3886          "Only one we handle so far.");
3887   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) );
3888 
3889   // Combine card table base and card offset
3890   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3891 
3892   // Get the alias_index for raw card-mark memory
3893   int adr_type = Compile::AliasIdxRaw;
3894   Node*   zero = __ ConI(0); // Dirty card value
3895   BasicType bt = T_BYTE;
3896 
3897   if (UseConcMarkSweepGC && UseCondCardMark) {
3898     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
3899     __ sync_kit(this);
3900   }
3901 
3902   if (UseCondCardMark) {
3903     // The classic GC reference write barrier is typically implemented
3904     // as a store into the global card mark table.  Unfortunately
3905     // unconditional stores can result in false sharing and excessive
3906     // coherence traffic as well as false transactional aborts.
3907     // UseCondCardMark enables MP "polite" conditional card mark
3908     // stores.  In theory we could relax the load from ctrl() to
3909     // no_ctrl, but that doesn't buy much latitude.
3910     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3911     __ if_then(card_val, BoolTest::ne, zero);
3912   }
3913 
3914   // Smash zero into card
3915   if( !UseConcMarkSweepGC ) {
3916     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered);
3917   } else {
3918     // Specialized path for CM store barrier
3919     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3920   }
3921 
3922   if (UseCondCardMark) {
3923     __ end_if();
3924   }
3925 
3926   // Final sync IdealKit and GraphKit.
3927   final_sync(ideal);
3928 }
3929 /*
3930  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
3931  * required by SATB to make sure all objects live at the start of the
3932  * marking are kept alive, all reference updates need to any previous
3933  * reference stored before writing.
3934  *
3935  * If the previous value is NULL there is no need to save the old value.
3936  * References that are NULL are filtered during runtime by the barrier
3937  * code to avoid unnecessary queuing.
3938  *
3939  * However in the case of newly allocated objects it might be possible to
3940  * prove that the reference about to be overwritten is NULL during compile
3941  * time and avoid adding the barrier code completely.
3942  *
3943  * The compiler needs to determine that the object in which a field is about
3944  * to be written is newly allocated, and that no prior store to the same field
3945  * has happened since the allocation.
3946  *
3947  * Returns true if the pre-barrier can be removed
3948  */
3949 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr,
3950                                          BasicType bt, uint adr_idx) {
3951   intptr_t offset = 0;
3952   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
3953   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
3954 
3955   if (offset == Type::OffsetBot) {
3956     return false; // cannot unalias unless there are precise offsets
3957   }
3958 
3959   if (alloc == NULL) {
3960     return false; // No allocation found
3961   }
3962 
3963   intptr_t size_in_bytes = type2aelembytes(bt);
3964 
3965   Node* mem = memory(adr_idx); // start searching here...
3966 
3967   for (int cnt = 0; cnt < 50; cnt++) {
3968 
3969     if (mem->is_Store()) {
3970 
3971       Node* st_adr = mem->in(MemNode::Address);
3972       intptr_t st_offset = 0;
3973       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
3974 
3975       if (st_base == NULL) {
3976         break; // inscrutable pointer
3977       }
3978 
3979       // Break we have found a store with same base and offset as ours so break
3980       if (st_base == base && st_offset == offset) {
3981         break;
3982       }
3983 
3984       if (st_offset != offset && st_offset != Type::OffsetBot) {
3985         const int MAX_STORE = BytesPerLong;
3986         if (st_offset >= offset + size_in_bytes ||
3987             st_offset <= offset - MAX_STORE ||
3988             st_offset <= offset - mem->as_Store()->memory_size()) {
3989           // Success:  The offsets are provably independent.
3990           // (You may ask, why not just test st_offset != offset and be done?
3991           // The answer is that stores of different sizes can co-exist
3992           // in the same sequence of RawMem effects.  We sometimes initialize
3993           // a whole 'tile' of array elements with a single jint or jlong.)
3994           mem = mem->in(MemNode::Memory);
3995           continue; // advance through independent store memory
3996         }
3997       }
3998 
3999       if (st_base != base
4000           && MemNode::detect_ptr_independence(base, alloc, st_base,
4001                                               AllocateNode::Ideal_allocation(st_base, phase),
4002                                               phase)) {
4003         // Success:  The bases are provably independent.
4004         mem = mem->in(MemNode::Memory);
4005         continue; // advance through independent store memory
4006       }
4007     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4008 
4009       InitializeNode* st_init = mem->in(0)->as_Initialize();
4010       AllocateNode* st_alloc = st_init->allocation();
4011 
4012       // Make sure that we are looking at the same allocation site.
4013       // The alloc variable is guaranteed to not be null here from earlier check.
4014       if (alloc == st_alloc) {
4015         // Check that the initialization is storing NULL so that no previous store
4016         // has been moved up and directly write a reference
4017         Node* captured_store = st_init->find_captured_store(offset,
4018                                                             type2aelembytes(T_OBJECT),
4019                                                             phase);
4020         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
4021           return true;
4022         }
4023       }
4024     }
4025 
4026     // Unless there is an explicit 'continue', we must bail out here,
4027     // because 'mem' is an inscrutable memory state (e.g., a call).
4028     break;
4029   }
4030 
4031   return false;
4032 }
4033 
4034 // G1 pre/post barriers
4035 void GraphKit::g1_write_barrier_pre(bool do_load,
4036                                     Node* obj,
4037                                     Node* adr,
4038                                     uint alias_idx,
4039                                     Node* val,
4040                                     const TypeOopPtr* val_type,
4041                                     Node* pre_val,
4042                                     BasicType bt) {
4043 
4044   // Some sanity checks
4045   // Note: val is unused in this routine.
4046 
4047   if (do_load) {
4048     // We need to generate the load of the previous value
4049     assert(obj != NULL, "must have a base");
4050     assert(adr != NULL, "where are loading from?");
4051     assert(pre_val == NULL, "loaded already?");
4052     assert(val_type != NULL, "need a type");
4053 
4054     if (use_ReduceInitialCardMarks()
4055         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4056       return;
4057     }
4058 
4059   } else {
4060     // In this case both val_type and alias_idx are unused.
4061     assert(pre_val != NULL, "must be loaded already");
4062     // Nothing to be done if pre_val is null.
4063     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
4064     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4065   }
4066   assert(bt == T_OBJECT, "or we shouldn't be here");
4067 
4068   IdealKit ideal(this, true);
4069 
4070   Node* tls = __ thread(); // ThreadLocalStorage
4071 
4072   Node* no_ctrl = NULL;
4073   Node* no_base = __ top();
4074   Node* zero  = __ ConI(0);
4075   Node* zeroX = __ ConX(0);
4076 
4077   float likely  = PROB_LIKELY(0.999);
4078   float unlikely  = PROB_UNLIKELY(0.999);
4079 
4080   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4081   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4082 
4083   // Offsets into the thread
4084   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4085                                           SATBMarkQueue::byte_offset_of_active());
4086   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4087                                           SATBMarkQueue::byte_offset_of_index());
4088   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4089                                           SATBMarkQueue::byte_offset_of_buf());
4090 
4091   // Now the actual pointers into the thread
4092   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4093   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4094   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4095 
4096   // Now some of the values
4097   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4098 
4099   // if (!marking)
4100   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4101     BasicType index_bt = TypeX_X->basic_type();
4102     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4103     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4104 
4105     if (do_load) {
4106       // load original value
4107       // alias_idx correct??
4108       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4109     }
4110 
4111     // if (pre_val != NULL)
4112     __ if_then(pre_val, BoolTest::ne, null()); {
4113       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4114 
4115       // is the queue for this thread full?
4116       __ if_then(index, BoolTest::ne, zeroX, likely); {
4117 
4118         // decrement the index
4119         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4120 
4121         // Now get the buffer location we will log the previous value into and store it
4122         Node *log_addr = __ AddP(no_base, buffer, next_index);
4123         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4124         // update the index
4125         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4126 
4127       } __ else_(); {
4128 
4129         // logging buffer is full, call the runtime
4130         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4131         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4132       } __ end_if();  // (!index)
4133     } __ end_if();  // (pre_val != NULL)
4134   } __ end_if();  // (!marking)
4135 
4136   // Final sync IdealKit and GraphKit.
4137   final_sync(ideal);
4138 }
4139 
4140 /*
4141  * G1 similar to any GC with a Young Generation requires a way to keep track of
4142  * references from Old Generation to Young Generation to make sure all live
4143  * objects are found. G1 also requires to keep track of object references
4144  * between different regions to enable evacuation of old regions, which is done
4145  * as part of mixed collections. References are tracked in remembered sets and
4146  * is continuously updated as reference are written to with the help of the
4147  * post-barrier.
4148  *
4149  * To reduce the number of updates to the remembered set the post-barrier
4150  * filters updates to fields in objects located in the Young Generation,
4151  * the same region as the reference, when the NULL is being written or
4152  * if the card is already marked as dirty by an earlier write.
4153  *
4154  * Under certain circumstances it is possible to avoid generating the
4155  * post-barrier completely if it is possible during compile time to prove
4156  * the object is newly allocated and that no safepoint exists between the
4157  * allocation and the store.
4158  *
4159  * In the case of slow allocation the allocation code must handle the barrier
4160  * as part of the allocation in the case the allocated object is not located
4161  * in the nursery, this would happen for humongous objects. This is similar to
4162  * how CMS is required to handle this case, see the comments for the method
4163  * CardTableBarrierSet::on_allocation_slowpath_exit and OptoRuntime::new_deferred_store_barrier.
4164  * A deferred card mark is required for these objects and handled in the above
4165  * mentioned methods.
4166  *
4167  * Returns true if the post barrier can be removed
4168  */
4169 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store,
4170                                           Node* adr) {
4171   intptr_t      offset = 0;
4172   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
4173   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
4174 
4175   if (offset == Type::OffsetBot) {
4176     return false; // cannot unalias unless there are precise offsets
4177   }
4178 
4179   if (alloc == NULL) {
4180      return false; // No allocation found
4181   }
4182 
4183   // Start search from Store node
4184   Node* mem = store->in(MemNode::Control);
4185   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4186 
4187     InitializeNode* st_init = mem->in(0)->as_Initialize();
4188     AllocateNode*  st_alloc = st_init->allocation();
4189 
4190     // Make sure we are looking at the same allocation
4191     if (alloc == st_alloc) {
4192       return true;
4193     }
4194   }
4195 
4196   return false;
4197 }
4198 
4199 //
4200 // Update the card table and add card address to the queue
4201 //
4202 void GraphKit::g1_mark_card(IdealKit& ideal,
4203                             Node* card_adr,
4204                             Node* oop_store,
4205                             uint oop_alias_idx,
4206                             Node* index,
4207                             Node* index_adr,
4208                             Node* buffer,
4209                             const TypeFunc* tf) {
4210 
4211   Node* zero  = __ ConI(0);
4212   Node* zeroX = __ ConX(0);
4213   Node* no_base = __ top();
4214   BasicType card_bt = T_BYTE;
4215   // Smash zero into card. MUST BE ORDERED WRT TO STORE
4216   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
4217 
4218   //  Now do the queue work
4219   __ if_then(index, BoolTest::ne, zeroX); {
4220 
4221     Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4222     Node* log_addr = __ AddP(no_base, buffer, next_index);
4223 
4224     // Order, see storeCM.
4225     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4226     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4227 
4228   } __ else_(); {
4229     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4230   } __ end_if();
4231 
4232 }
4233 
4234 void GraphKit::g1_write_barrier_post(Node* oop_store,
4235                                      Node* obj,
4236                                      Node* adr,
4237                                      uint alias_idx,
4238                                      Node* val,
4239                                      BasicType bt,
4240                                      bool use_precise) {
4241   // If we are writing a NULL then we need no post barrier
4242 
4243   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4244     // Must be NULL
4245     const Type* t = val->bottom_type();
4246     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4247     // No post barrier if writing NULLx
4248     return;
4249   }
4250 
4251   if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) {
4252     // We can skip marks on a freshly-allocated object in Eden.
4253     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
4254     // That routine informs GC to take appropriate compensating steps,
4255     // upon a slow-path allocation, so as to make this card-mark
4256     // elision safe.
4257     return;
4258   }
4259 
4260   if (use_ReduceInitialCardMarks()
4261       && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) {
4262     return;
4263   }
4264 
4265   if (!use_precise) {
4266     // All card marks for a (non-array) instance are in one place:
4267     adr = obj;
4268   }
4269   // (Else it's an array (or unknown), and we want more precise card marks.)
4270   assert(adr != NULL, "");
4271 
4272   IdealKit ideal(this, true);
4273 
4274   Node* tls = __ thread(); // ThreadLocalStorage
4275 
4276   Node* no_base = __ top();
4277   float likely  = PROB_LIKELY(0.999);
4278   float unlikely  = PROB_UNLIKELY(0.999);
4279   Node* young_card = __ ConI((jint)G1CardTable::g1_young_card_val());
4280   Node* dirty_card = __ ConI((jint)CardTable::dirty_card_val());
4281   Node* zeroX = __ ConX(0);
4282 
4283   // Get the alias_index for raw card-mark memory
4284   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4285 
4286   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4287 
4288   // Offsets into the thread
4289   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4290                                      DirtyCardQueue::byte_offset_of_index());
4291   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4292                                      DirtyCardQueue::byte_offset_of_buf());
4293 
4294   // Pointers into the thread
4295 
4296   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4297   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4298 
4299   // Now some values
4300   // Use ctrl to avoid hoisting these values past a safepoint, which could
4301   // potentially reset these fields in the JavaThread.
4302   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4303   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4304 
4305   // Convert the store obj pointer to an int prior to doing math on it
4306   // Must use ctrl to prevent "integerized oop" existing across safepoint
4307   Node* cast =  __ CastPX(__ ctrl(), adr);
4308 
4309   // Divide pointer by card size
4310   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) );
4311 
4312   // Combine card table base and card offset
4313   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4314 
4315   // If we know the value being stored does it cross regions?
4316 
4317   if (val != NULL) {
4318     // Does the store cause us to cross regions?
4319 
4320     // Should be able to do an unsigned compare of region_size instead of
4321     // and extra shift. Do we have an unsigned compare??
4322     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4323     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4324 
4325     // if (xor_res == 0) same region so skip
4326     __ if_then(xor_res, BoolTest::ne, zeroX); {
4327 
4328       // No barrier if we are storing a NULL
4329       __ if_then(val, BoolTest::ne, null(), unlikely); {
4330 
4331         // Ok must mark the card if not already dirty
4332 
4333         // load the original value of the card
4334         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4335 
4336         __ if_then(card_val, BoolTest::ne, young_card); {
4337           sync_kit(ideal);
4338           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4339           insert_mem_bar(Op_MemBarVolatile, oop_store);
4340           __ sync_kit(this);
4341 
4342           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4343           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4344             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4345           } __ end_if();
4346         } __ end_if();
4347       } __ end_if();
4348     } __ end_if();
4349   } else {
4350     // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
4351     // We don't need a barrier here if the destination is a newly allocated object
4352     // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
4353     // are set to 'g1_young_gen' (see G1CardTable::verify_g1_young_region()).
4354     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
4355     Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4356     __ if_then(card_val, BoolTest::ne, young_card); {
4357       g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4358     } __ end_if();
4359   }
4360 
4361   // Final sync IdealKit and GraphKit.
4362   final_sync(ideal);
4363 }
4364 #undef __
4365 
4366 
4367 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4368   Node* len = load_array_length(load_String_value(ctrl, str));
4369   Node* coder = load_String_coder(ctrl, str);
4370   // Divide length by 2 if coder is UTF16
4371   return _gvn.transform(new RShiftINode(len, coder));
4372 }
4373 
4374 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4375   int value_offset = java_lang_String::value_offset_in_bytes();
4376   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4377                                                      false, NULL, 0);
4378   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4379   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4380                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4381                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4382   int value_field_idx = C->get_alias_index(value_field_type);
4383   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4384                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4385   // String.value field is known to be @Stable.
4386   if (UseImplicitStableValues) {
4387     load = cast_array_to_stable(load, value_type);
4388   }
4389   return load;
4390 }
4391 
4392 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) {
4393   if (!CompactStrings) {
4394     return intcon(java_lang_String::CODER_UTF16);
4395   }
4396   int coder_offset = java_lang_String::coder_offset_in_bytes();
4397   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4398                                                      false, NULL, 0);
4399   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4400   int coder_field_idx = C->get_alias_index(coder_field_type);
4401   return make_load(ctrl, basic_plus_adr(str, str, coder_offset),
4402                    TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered);
4403 }
4404 
4405 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4406   int value_offset = java_lang_String::value_offset_in_bytes();
4407   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4408                                                      false, NULL, 0);
4409   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4410   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4411       value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered);
4412 }
4413 
4414 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) {
4415   int coder_offset = java_lang_String::coder_offset_in_bytes();
4416   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4417                                                      false, NULL, 0);
4418   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4419   int coder_field_idx = C->get_alias_index(coder_field_type);
4420   store_to_memory(ctrl, basic_plus_adr(str, coder_offset),
4421                   value, T_BYTE, coder_field_idx, MemNode::unordered);
4422 }
4423 
4424 // Capture src and dst memory state with a MergeMemNode
4425 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4426   if (src_type == dst_type) {
4427     // Types are equal, we don't need a MergeMemNode
4428     return memory(src_type);
4429   }
4430   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4431   record_for_igvn(merge); // fold it up later, if possible
4432   int src_idx = C->get_alias_index(src_type);
4433   int dst_idx = C->get_alias_index(dst_type);
4434   merge->set_memory_at(src_idx, memory(src_idx));
4435   merge->set_memory_at(dst_idx, memory(dst_idx));
4436   return merge;
4437 }
4438 
4439 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4440   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4441   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4442   // If input and output memory types differ, capture both states to preserve
4443   // the dependency between preceding and subsequent loads/stores.
4444   // For example, the following program:
4445   //  StoreB
4446   //  compress_string
4447   //  LoadB
4448   // has this memory graph (use->def):
4449   //  LoadB -> compress_string -> CharMem
4450   //             ... -> StoreB -> ByteMem
4451   // The intrinsic hides the dependency between LoadB and StoreB, causing
4452   // the load to read from memory not containing the result of the StoreB.
4453   // The correct memory graph should look like this:
4454   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4455   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4456   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4457   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4458   set_memory(res_mem, TypeAryPtr::BYTES);
4459   return str;
4460 }
4461 
4462 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4463   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4464   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4465   // Capture src and dst memory (see comment in 'compress_string').
4466   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4467   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4468   set_memory(_gvn.transform(str), dst_type);
4469 }
4470 
4471 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4472   /**
4473    * int i_char = start;
4474    * for (int i_byte = 0; i_byte < count; i_byte++) {
4475    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4476    * }
4477    */
4478   add_predicate();
4479   RegionNode* head = new RegionNode(3);
4480   head->init_req(1, control());
4481   gvn().set_type(head, Type::CONTROL);
4482   record_for_igvn(head);
4483 
4484   Node* i_byte = new PhiNode(head, TypeInt::INT);
4485   i_byte->init_req(1, intcon(0));
4486   gvn().set_type(i_byte, TypeInt::INT);
4487   record_for_igvn(i_byte);
4488 
4489   Node* i_char = new PhiNode(head, TypeInt::INT);
4490   i_char->init_req(1, start);
4491   gvn().set_type(i_char, TypeInt::INT);
4492   record_for_igvn(i_char);
4493 
4494   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4495   gvn().set_type(mem, Type::MEMORY);
4496   record_for_igvn(mem);
4497   set_control(head);
4498   set_memory(mem, TypeAryPtr::BYTES);
4499   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4500   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4501                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4502                              false, false, true /* mismatched */);
4503 
4504   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4505   head->init_req(2, IfTrue(iff));
4506   mem->init_req(2, st);
4507   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4508   i_char->init_req(2, AddI(i_char, intcon(2)));
4509 
4510   set_control(IfFalse(iff));
4511   set_memory(st, TypeAryPtr::BYTES);
4512 }
4513 
4514 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4515   if (!field->is_constant()) {
4516     return NULL; // Field not marked as constant.
4517   }
4518   ciInstance* holder = NULL;
4519   if (!field->is_static()) {
4520     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4521     if (const_oop != NULL && const_oop->is_instance()) {
4522       holder = const_oop->as_instance();
4523     }
4524   }
4525   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4526                                                         /*is_unsigned_load=*/false);
4527   if (con_type != NULL) {
4528     return makecon(con_type);
4529   }
4530   return NULL;
4531 }
4532 
4533 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4534   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4535   // assumption of CCP analysis.
4536   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4537 }