1 /*
   2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "jvmtifiles/jvmtiEnv.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/access.inline.hpp"
  35 #include "oops/arrayOop.inline.hpp"
  36 #include "oops/constantPool.inline.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/typeArrayOop.inline.hpp"
  42 #include "prims/jvmtiEventController.hpp"
  43 #include "prims/jvmtiEventController.inline.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/jvmtiImpl.hpp"
  46 #include "prims/jvmtiTagMap.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/frame.inline.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/jniHandles.inline.hpp"
  52 #include "runtime/mutex.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/reflectionUtils.hpp"
  55 #include "runtime/thread.inline.hpp"
  56 #include "runtime/threadSMR.hpp"
  57 #include "runtime/vframe.hpp"
  58 #include "runtime/vmThread.hpp"
  59 #include "runtime/vm_operations.hpp"
  60 #include "services/serviceUtil.hpp"
  61 #include "utilities/macros.hpp"
  62 
  63 // JvmtiTagHashmapEntry
  64 //
  65 // Each entry encapsulates a reference to the tagged object
  66 // and the tag value. In addition an entry includes a next pointer which
  67 // is used to chain entries together.
  68 
  69 class JvmtiTagHashmapEntry : public CHeapObj<mtInternal> {
  70  private:
  71   friend class JvmtiTagMap;
  72 
  73   oop _object;                          // tagged object
  74   jlong _tag;                           // the tag
  75   JvmtiTagHashmapEntry* _next;          // next on the list
  76 
  77   inline void init(oop object, jlong tag) {
  78     _object = object;
  79     _tag = tag;
  80     _next = NULL;
  81   }
  82 
  83   // constructor
  84   JvmtiTagHashmapEntry(oop object, jlong tag) { init(object, tag); }
  85 
  86  public:
  87 
  88   // accessor methods
  89   inline oop* object_addr() { return &_object; }
  90   inline oop object()       { return RootAccess<ON_PHANTOM_OOP_REF>::oop_load(object_addr()); }
  91   // Peek at the object without keeping it alive. The returned object must be
  92   // kept alive using a normal access if it leaks out of a thread transition from VM.
  93   inline oop object_peek()  {
  94     return RootAccess<ON_PHANTOM_OOP_REF | AS_NO_KEEPALIVE>::oop_load(object_addr());
  95   }
  96   inline jlong tag() const  { return _tag; }
  97 
  98   inline void set_tag(jlong tag) {
  99     assert(tag != 0, "can't be zero");
 100     _tag = tag;
 101   }
 102 
 103   inline bool equals(oop object) {
 104     return object == object_peek();
 105   }
 106 
 107   inline JvmtiTagHashmapEntry* next() const        { return _next; }
 108   inline void set_next(JvmtiTagHashmapEntry* next) { _next = next; }
 109 };
 110 
 111 
 112 // JvmtiTagHashmap
 113 //
 114 // A hashmap is essentially a table of pointers to entries. Entries
 115 // are hashed to a location, or position in the table, and then
 116 // chained from that location. The "key" for hashing is address of
 117 // the object, or oop. The "value" is the tag value.
 118 //
 119 // A hashmap maintains a count of the number entries in the hashmap
 120 // and resizes if the number of entries exceeds a given threshold.
 121 // The threshold is specified as a percentage of the size - for
 122 // example a threshold of 0.75 will trigger the hashmap to resize
 123 // if the number of entries is >75% of table size.
 124 //
 125 // A hashmap provides functions for adding, removing, and finding
 126 // entries. It also provides a function to iterate over all entries
 127 // in the hashmap.
 128 
 129 class JvmtiTagHashmap : public CHeapObj<mtInternal> {
 130  private:
 131   friend class JvmtiTagMap;
 132 
 133   enum {
 134     small_trace_threshold  = 10000,                  // threshold for tracing
 135     medium_trace_threshold = 100000,
 136     large_trace_threshold  = 1000000,
 137     initial_trace_threshold = small_trace_threshold
 138   };
 139 
 140   static int _sizes[];                  // array of possible hashmap sizes
 141   int _size;                            // actual size of the table
 142   int _size_index;                      // index into size table
 143 
 144   int _entry_count;                     // number of entries in the hashmap
 145 
 146   float _load_factor;                   // load factor as a % of the size
 147   int _resize_threshold;                // computed threshold to trigger resizing.
 148   bool _resizing_enabled;               // indicates if hashmap can resize
 149 
 150   int _trace_threshold;                 // threshold for trace messages
 151 
 152   JvmtiTagHashmapEntry** _table;        // the table of entries.
 153 
 154   // private accessors
 155   int resize_threshold() const                  { return _resize_threshold; }
 156   int trace_threshold() const                   { return _trace_threshold; }
 157 
 158   // initialize the hashmap
 159   void init(int size_index=0, float load_factor=4.0f) {
 160     int initial_size =  _sizes[size_index];
 161     _size_index = size_index;
 162     _size = initial_size;
 163     _entry_count = 0;
 164     _trace_threshold = initial_trace_threshold;
 165     _load_factor = load_factor;
 166     _resize_threshold = (int)(_load_factor * _size);
 167     _resizing_enabled = true;
 168     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
 169     _table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
 170     if (_table == NULL) {
 171       vm_exit_out_of_memory(s, OOM_MALLOC_ERROR,
 172         "unable to allocate initial hashtable for jvmti object tags");
 173     }
 174     for (int i=0; i<initial_size; i++) {
 175       _table[i] = NULL;
 176     }
 177   }
 178 
 179   // hash a given key (oop) with the specified size
 180   static unsigned int hash(oop key, int size) {
 181     // shift right to get better distribution (as these bits will be zero
 182     // with aligned addresses)
 183     unsigned int addr = (unsigned int)(cast_from_oop<intptr_t>(key));
 184 #ifdef _LP64
 185     return (addr >> 3) % size;
 186 #else
 187     return (addr >> 2) % size;
 188 #endif
 189   }
 190 
 191   // hash a given key (oop)
 192   unsigned int hash(oop key) {
 193     return hash(key, _size);
 194   }
 195 
 196   // resize the hashmap - allocates a large table and re-hashes
 197   // all entries into the new table.
 198   void resize() {
 199     int new_size_index = _size_index+1;
 200     int new_size = _sizes[new_size_index];
 201     if (new_size < 0) {
 202       // hashmap already at maximum capacity
 203       return;
 204     }
 205 
 206     // allocate new table
 207     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
 208     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
 209     if (new_table == NULL) {
 210       warning("unable to allocate larger hashtable for jvmti object tags");
 211       set_resizing_enabled(false);
 212       return;
 213     }
 214 
 215     // initialize new table
 216     int i;
 217     for (i=0; i<new_size; i++) {
 218       new_table[i] = NULL;
 219     }
 220 
 221     // rehash all entries into the new table
 222     for (i=0; i<_size; i++) {
 223       JvmtiTagHashmapEntry* entry = _table[i];
 224       while (entry != NULL) {
 225         JvmtiTagHashmapEntry* next = entry->next();
 226         oop key = entry->object_peek();
 227         assert(key != NULL, "jni weak reference cleared!!");
 228         unsigned int h = hash(key, new_size);
 229         JvmtiTagHashmapEntry* anchor = new_table[h];
 230         if (anchor == NULL) {
 231           new_table[h] = entry;
 232           entry->set_next(NULL);
 233         } else {
 234           entry->set_next(anchor);
 235           new_table[h] = entry;
 236         }
 237         entry = next;
 238       }
 239     }
 240 
 241     // free old table and update settings.
 242     os::free((void*)_table);
 243     _table = new_table;
 244     _size_index = new_size_index;
 245     _size = new_size;
 246 
 247     // compute new resize threshold
 248     _resize_threshold = (int)(_load_factor * _size);
 249   }
 250 
 251 
 252   // internal remove function - remove an entry at a given position in the
 253   // table.
 254   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
 255     assert(pos >= 0 && pos < _size, "out of range");
 256     if (prev == NULL) {
 257       _table[pos] = entry->next();
 258     } else {
 259       prev->set_next(entry->next());
 260     }
 261     assert(_entry_count > 0, "checking");
 262     _entry_count--;
 263   }
 264 
 265   // resizing switch
 266   bool is_resizing_enabled() const          { return _resizing_enabled; }
 267   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
 268 
 269   // debugging
 270   void print_memory_usage();
 271   void compute_next_trace_threshold();
 272 
 273  public:
 274 
 275   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
 276   // The preferred size is rounded down to an actual size.
 277   JvmtiTagHashmap(int size, float load_factor=0.0f) {
 278     int i=0;
 279     while (_sizes[i] < size) {
 280       if (_sizes[i] < 0) {
 281         assert(i > 0, "sanity check");
 282         i--;
 283         break;
 284       }
 285       i++;
 286     }
 287 
 288     // if a load factor is specified then use it, otherwise use default
 289     if (load_factor > 0.01f) {
 290       init(i, load_factor);
 291     } else {
 292       init(i);
 293     }
 294   }
 295 
 296   // create a JvmtiTagHashmap with default settings
 297   JvmtiTagHashmap() {
 298     init();
 299   }
 300 
 301   // release table when JvmtiTagHashmap destroyed
 302   ~JvmtiTagHashmap() {
 303     if (_table != NULL) {
 304       os::free((void*)_table);
 305       _table = NULL;
 306     }
 307   }
 308 
 309   // accessors
 310   int size() const                              { return _size; }
 311   JvmtiTagHashmapEntry** table() const          { return _table; }
 312   int entry_count() const                       { return _entry_count; }
 313 
 314   // find an entry in the hashmap, returns NULL if not found.
 315   inline JvmtiTagHashmapEntry* find(oop key) {
 316     unsigned int h = hash(key);
 317     JvmtiTagHashmapEntry* entry = _table[h];
 318     while (entry != NULL) {
 319       if (entry->equals(key)) {
 320          return entry;
 321       }
 322       entry = entry->next();
 323     }
 324     return NULL;
 325   }
 326 
 327 
 328   // add a new entry to hashmap
 329   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
 330     assert(key != NULL, "checking");
 331     assert(find(key) == NULL, "duplicate detected");
 332     unsigned int h = hash(key);
 333     JvmtiTagHashmapEntry* anchor = _table[h];
 334     if (anchor == NULL) {
 335       _table[h] = entry;
 336       entry->set_next(NULL);
 337     } else {
 338       entry->set_next(anchor);
 339       _table[h] = entry;
 340     }
 341 
 342     _entry_count++;
 343     if (log_is_enabled(Debug, jvmti, objecttagging) && entry_count() >= trace_threshold()) {
 344       print_memory_usage();
 345       compute_next_trace_threshold();
 346     }
 347 
 348     // if the number of entries exceed the threshold then resize
 349     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
 350       resize();
 351     }
 352   }
 353 
 354   // remove an entry with the given key.
 355   inline JvmtiTagHashmapEntry* remove(oop key) {
 356     unsigned int h = hash(key);
 357     JvmtiTagHashmapEntry* entry = _table[h];
 358     JvmtiTagHashmapEntry* prev = NULL;
 359     while (entry != NULL) {
 360       if (entry->equals(key)) {
 361         break;
 362       }
 363       prev = entry;
 364       entry = entry->next();
 365     }
 366     if (entry != NULL) {
 367       remove(prev, h, entry);
 368     }
 369     return entry;
 370   }
 371 
 372   // iterate over all entries in the hashmap
 373   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
 374 };
 375 
 376 // possible hashmap sizes - odd primes that roughly double in size.
 377 // To avoid excessive resizing the odd primes from 4801-76831 and
 378 // 76831-307261 have been removed. The list must be terminated by -1.
 379 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
 380     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
 381 
 382 
 383 // A supporting class for iterating over all entries in Hashmap
 384 class JvmtiTagHashmapEntryClosure {
 385  public:
 386   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
 387 };
 388 
 389 
 390 // iterate over all entries in the hashmap
 391 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 392   for (int i=0; i<_size; i++) {
 393     JvmtiTagHashmapEntry* entry = _table[i];
 394     JvmtiTagHashmapEntry* prev = NULL;
 395     while (entry != NULL) {
 396       // obtain the next entry before invoking do_entry - this is
 397       // necessary because do_entry may remove the entry from the
 398       // hashmap.
 399       JvmtiTagHashmapEntry* next = entry->next();
 400       closure->do_entry(entry);
 401       entry = next;
 402      }
 403   }
 404 }
 405 
 406 // debugging
 407 void JvmtiTagHashmap::print_memory_usage() {
 408   intptr_t p = (intptr_t)this;
 409   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
 410 
 411   // table + entries in KB
 412   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
 413     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
 414 
 415   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
 416   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
 417     entry_count(), hashmap_usage, weak_globals_usage);
 418 }
 419 
 420 // compute threshold for the next trace message
 421 void JvmtiTagHashmap::compute_next_trace_threshold() {
 422   _trace_threshold = entry_count();
 423   if (trace_threshold() < medium_trace_threshold) {
 424     _trace_threshold += small_trace_threshold;
 425   } else {
 426     if (trace_threshold() < large_trace_threshold) {
 427       _trace_threshold += medium_trace_threshold;
 428     } else {
 429       _trace_threshold += large_trace_threshold;
 430     }
 431   }
 432 }
 433 
 434 // create a JvmtiTagMap
 435 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
 436   _env(env),
 437   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
 438   _free_entries(NULL),
 439   _free_entries_count(0)
 440 {
 441   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
 442   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
 443 
 444   _hashmap = new JvmtiTagHashmap();
 445 
 446   // finally add us to the environment
 447   ((JvmtiEnvBase *)env)->set_tag_map(this);
 448 }
 449 
 450 
 451 // destroy a JvmtiTagMap
 452 JvmtiTagMap::~JvmtiTagMap() {
 453 
 454   // no lock acquired as we assume the enclosing environment is
 455   // also being destroryed.
 456   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
 457 
 458   JvmtiTagHashmapEntry** table = _hashmap->table();
 459   for (int j = 0; j < _hashmap->size(); j++) {
 460     JvmtiTagHashmapEntry* entry = table[j];
 461     while (entry != NULL) {
 462       JvmtiTagHashmapEntry* next = entry->next();
 463       delete entry;
 464       entry = next;
 465     }
 466   }
 467 
 468   // finally destroy the hashmap
 469   delete _hashmap;
 470   _hashmap = NULL;
 471 
 472   // remove any entries on the free list
 473   JvmtiTagHashmapEntry* entry = _free_entries;
 474   while (entry != NULL) {
 475     JvmtiTagHashmapEntry* next = entry->next();
 476     delete entry;
 477     entry = next;
 478   }
 479   _free_entries = NULL;
 480 }
 481 
 482 // create a hashmap entry
 483 // - if there's an entry on the (per-environment) free list then this
 484 // is returned. Otherwise an new entry is allocated.
 485 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
 486   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
 487   JvmtiTagHashmapEntry* entry;
 488   if (_free_entries == NULL) {
 489     entry = new JvmtiTagHashmapEntry(ref, tag);
 490   } else {
 491     assert(_free_entries_count > 0, "mismatched _free_entries_count");
 492     _free_entries_count--;
 493     entry = _free_entries;
 494     _free_entries = entry->next();
 495     entry->init(ref, tag);
 496   }
 497   return entry;
 498 }
 499 
 500 // destroy an entry by returning it to the free list
 501 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
 502   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 503   // limit the size of the free list
 504   if (_free_entries_count >= max_free_entries) {
 505     delete entry;
 506   } else {
 507     entry->set_next(_free_entries);
 508     _free_entries = entry;
 509     _free_entries_count++;
 510   }
 511 }
 512 
 513 // returns the tag map for the given environments. If the tag map
 514 // doesn't exist then it is created.
 515 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
 516   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map();
 517   if (tag_map == NULL) {
 518     MutexLocker mu(JvmtiThreadState_lock);
 519     tag_map = ((JvmtiEnvBase*)env)->tag_map();
 520     if (tag_map == NULL) {
 521       tag_map = new JvmtiTagMap(env);
 522     }
 523   } else {
 524     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
 525   }
 526   return tag_map;
 527 }
 528 
 529 // iterate over all entries in the tag map.
 530 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 531   hashmap()->entry_iterate(closure);
 532 }
 533 
 534 // returns true if the hashmaps are empty
 535 bool JvmtiTagMap::is_empty() {
 536   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 537   return hashmap()->entry_count() == 0;
 538 }
 539 
 540 
 541 // Return the tag value for an object, or 0 if the object is
 542 // not tagged
 543 //
 544 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
 545   JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
 546   if (entry == NULL) {
 547     return 0;
 548   } else {
 549     return entry->tag();
 550   }
 551 }
 552 
 553 
 554 // A CallbackWrapper is a support class for querying and tagging an object
 555 // around a callback to a profiler. The constructor does pre-callback
 556 // work to get the tag value, klass tag value, ... and the destructor
 557 // does the post-callback work of tagging or untagging the object.
 558 //
 559 // {
 560 //   CallbackWrapper wrapper(tag_map, o);
 561 //
 562 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
 563 //
 564 // } // wrapper goes out of scope here which results in the destructor
 565 //      checking to see if the object has been tagged, untagged, or the
 566 //      tag value has changed.
 567 //
 568 class CallbackWrapper : public StackObj {
 569  private:
 570   JvmtiTagMap* _tag_map;
 571   JvmtiTagHashmap* _hashmap;
 572   JvmtiTagHashmapEntry* _entry;
 573   oop _o;
 574   jlong _obj_size;
 575   jlong _obj_tag;
 576   jlong _klass_tag;
 577 
 578  protected:
 579   JvmtiTagMap* tag_map() const      { return _tag_map; }
 580 
 581   // invoked post-callback to tag, untag, or update the tag of an object
 582   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
 583                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
 584  public:
 585   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
 586     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
 587            "MT unsafe or must be VM thread");
 588 
 589     // object to tag
 590     _o = o;
 591 
 592     // object size
 593     _obj_size = (jlong)_o->size() * wordSize;
 594 
 595     // record the context
 596     _tag_map = tag_map;
 597     _hashmap = tag_map->hashmap();
 598     _entry = _hashmap->find(_o);
 599 
 600     // get object tag
 601     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
 602 
 603     // get the class and the class's tag value
 604     assert(SystemDictionary::Class_klass()->is_mirror_instance_klass(), "Is not?");
 605 
 606     _klass_tag = tag_for(tag_map, _o->klass()->java_mirror());
 607   }
 608 
 609   ~CallbackWrapper() {
 610     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
 611   }
 612 
 613   inline jlong* obj_tag_p()                     { return &_obj_tag; }
 614   inline jlong obj_size() const                 { return _obj_size; }
 615   inline jlong obj_tag() const                  { return _obj_tag; }
 616   inline jlong klass_tag() const                { return _klass_tag; }
 617 };
 618 
 619 
 620 
 621 // callback post-callback to tag, untag, or update the tag of an object
 622 void inline CallbackWrapper::post_callback_tag_update(oop o,
 623                                                       JvmtiTagHashmap* hashmap,
 624                                                       JvmtiTagHashmapEntry* entry,
 625                                                       jlong obj_tag) {
 626   if (entry == NULL) {
 627     if (obj_tag != 0) {
 628       // callback has tagged the object
 629       assert(Thread::current()->is_VM_thread(), "must be VMThread");
 630       entry = tag_map()->create_entry(o, obj_tag);
 631       hashmap->add(o, entry);
 632     }
 633   } else {
 634     // object was previously tagged - the callback may have untagged
 635     // the object or changed the tag value
 636     if (obj_tag == 0) {
 637 
 638       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
 639       assert(entry_removed == entry, "checking");
 640       tag_map()->destroy_entry(entry);
 641 
 642     } else {
 643       if (obj_tag != entry->tag()) {
 644          entry->set_tag(obj_tag);
 645       }
 646     }
 647   }
 648 }
 649 
 650 // An extended CallbackWrapper used when reporting an object reference
 651 // to the agent.
 652 //
 653 // {
 654 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
 655 //
 656 //   (*callback)(wrapper.klass_tag(),
 657 //               wrapper.obj_size(),
 658 //               wrapper.obj_tag_p()
 659 //               wrapper.referrer_tag_p(), ...)
 660 //
 661 // } // wrapper goes out of scope here which results in the destructor
 662 //      checking to see if the referrer object has been tagged, untagged,
 663 //      or the tag value has changed.
 664 //
 665 class TwoOopCallbackWrapper : public CallbackWrapper {
 666  private:
 667   bool _is_reference_to_self;
 668   JvmtiTagHashmap* _referrer_hashmap;
 669   JvmtiTagHashmapEntry* _referrer_entry;
 670   oop _referrer;
 671   jlong _referrer_obj_tag;
 672   jlong _referrer_klass_tag;
 673   jlong* _referrer_tag_p;
 674 
 675   bool is_reference_to_self() const             { return _is_reference_to_self; }
 676 
 677  public:
 678   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
 679     CallbackWrapper(tag_map, o)
 680   {
 681     // self reference needs to be handled in a special way
 682     _is_reference_to_self = (referrer == o);
 683 
 684     if (_is_reference_to_self) {
 685       _referrer_klass_tag = klass_tag();
 686       _referrer_tag_p = obj_tag_p();
 687     } else {
 688       _referrer = referrer;
 689       // record the context
 690       _referrer_hashmap = tag_map->hashmap();
 691       _referrer_entry = _referrer_hashmap->find(_referrer);
 692 
 693       // get object tag
 694       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
 695       _referrer_tag_p = &_referrer_obj_tag;
 696 
 697       // get referrer class tag.
 698       _referrer_klass_tag = tag_for(tag_map, _referrer->klass()->java_mirror());
 699     }
 700   }
 701 
 702   ~TwoOopCallbackWrapper() {
 703     if (!is_reference_to_self()){
 704       post_callback_tag_update(_referrer,
 705                                _referrer_hashmap,
 706                                _referrer_entry,
 707                                _referrer_obj_tag);
 708     }
 709   }
 710 
 711   // address of referrer tag
 712   // (for a self reference this will return the same thing as obj_tag_p())
 713   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
 714 
 715   // referrer's class tag
 716   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
 717 };
 718 
 719 // tag an object
 720 //
 721 // This function is performance critical. If many threads attempt to tag objects
 722 // around the same time then it's possible that the Mutex associated with the
 723 // tag map will be a hot lock.
 724 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
 725   MutexLocker ml(lock());
 726 
 727   // resolve the object
 728   oop o = JNIHandles::resolve_non_null(object);
 729 
 730   // see if the object is already tagged
 731   JvmtiTagHashmap* hashmap = _hashmap;
 732   JvmtiTagHashmapEntry* entry = hashmap->find(o);
 733 
 734   // if the object is not already tagged then we tag it
 735   if (entry == NULL) {
 736     if (tag != 0) {
 737       entry = create_entry(o, tag);
 738       hashmap->add(o, entry);
 739     } else {
 740       // no-op
 741     }
 742   } else {
 743     // if the object is already tagged then we either update
 744     // the tag (if a new tag value has been provided)
 745     // or remove the object if the new tag value is 0.
 746     if (tag == 0) {
 747       hashmap->remove(o);
 748       destroy_entry(entry);
 749     } else {
 750       entry->set_tag(tag);
 751     }
 752   }
 753 }
 754 
 755 // get the tag for an object
 756 jlong JvmtiTagMap::get_tag(jobject object) {
 757   MutexLocker ml(lock());
 758 
 759   // resolve the object
 760   oop o = JNIHandles::resolve_non_null(object);
 761 
 762   return tag_for(this, o);
 763 }
 764 
 765 
 766 // Helper class used to describe the static or instance fields of a class.
 767 // For each field it holds the field index (as defined by the JVMTI specification),
 768 // the field type, and the offset.
 769 
 770 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
 771  private:
 772   int _field_index;
 773   int _field_offset;
 774   char _field_type;
 775  public:
 776   ClassFieldDescriptor(int index, char type, int offset) :
 777     _field_index(index), _field_type(type), _field_offset(offset) {
 778   }
 779   int field_index()  const  { return _field_index; }
 780   char field_type()  const  { return _field_type; }
 781   int field_offset() const  { return _field_offset; }
 782 };
 783 
 784 class ClassFieldMap: public CHeapObj<mtInternal> {
 785  private:
 786   enum {
 787     initial_field_count = 5
 788   };
 789 
 790   // list of field descriptors
 791   GrowableArray<ClassFieldDescriptor*>* _fields;
 792 
 793   // constructor
 794   ClassFieldMap();
 795 
 796   // add a field
 797   void add(int index, char type, int offset);
 798 
 799   // returns the field count for the given class
 800   static int compute_field_count(InstanceKlass* ik);
 801 
 802  public:
 803   ~ClassFieldMap();
 804 
 805   // access
 806   int field_count()                     { return _fields->length(); }
 807   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
 808 
 809   // functions to create maps of static or instance fields
 810   static ClassFieldMap* create_map_of_static_fields(Klass* k);
 811   static ClassFieldMap* create_map_of_instance_fields(oop obj);
 812 };
 813 
 814 ClassFieldMap::ClassFieldMap() {
 815   _fields = new (ResourceObj::C_HEAP, mtInternal)
 816     GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
 817 }
 818 
 819 ClassFieldMap::~ClassFieldMap() {
 820   for (int i=0; i<_fields->length(); i++) {
 821     delete _fields->at(i);
 822   }
 823   delete _fields;
 824 }
 825 
 826 void ClassFieldMap::add(int index, char type, int offset) {
 827   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
 828   _fields->append(field);
 829 }
 830 
 831 // Returns a heap allocated ClassFieldMap to describe the static fields
 832 // of the given class.
 833 //
 834 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) {
 835   HandleMark hm;
 836   InstanceKlass* ik = InstanceKlass::cast(k);
 837 
 838   // create the field map
 839   ClassFieldMap* field_map = new ClassFieldMap();
 840 
 841   FilteredFieldStream f(ik, false, false);
 842   int max_field_index = f.field_count()-1;
 843 
 844   int index = 0;
 845   for (FilteredFieldStream fld(ik, true, true); !fld.eos(); fld.next(), index++) {
 846     // ignore instance fields
 847     if (!fld.access_flags().is_static()) {
 848       continue;
 849     }
 850     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
 851   }
 852   return field_map;
 853 }
 854 
 855 // Returns a heap allocated ClassFieldMap to describe the instance fields
 856 // of the given class. All instance fields are included (this means public
 857 // and private fields declared in superclasses and superinterfaces too).
 858 //
 859 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
 860   HandleMark hm;
 861   InstanceKlass* ik = InstanceKlass::cast(obj->klass());
 862 
 863   // create the field map
 864   ClassFieldMap* field_map = new ClassFieldMap();
 865 
 866   FilteredFieldStream f(ik, false, false);
 867 
 868   int max_field_index = f.field_count()-1;
 869 
 870   int index = 0;
 871   for (FilteredFieldStream fld(ik, false, false); !fld.eos(); fld.next(), index++) {
 872     // ignore static fields
 873     if (fld.access_flags().is_static()) {
 874       continue;
 875     }
 876     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
 877   }
 878 
 879   return field_map;
 880 }
 881 
 882 // Helper class used to cache a ClassFileMap for the instance fields of
 883 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during
 884 // heap iteration and avoid creating a field map for each object in the heap
 885 // (only need to create the map when the first instance of a class is encountered).
 886 //
 887 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
 888  private:
 889    enum {
 890      initial_class_count = 200
 891    };
 892   ClassFieldMap* _field_map;
 893 
 894   ClassFieldMap* field_map() const          { return _field_map; }
 895 
 896   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
 897   ~JvmtiCachedClassFieldMap();
 898 
 899   static GrowableArray<InstanceKlass*>* _class_list;
 900   static void add_to_class_list(InstanceKlass* ik);
 901 
 902  public:
 903   // returns the field map for a given object (returning map cached
 904   // by InstanceKlass if possible
 905   static ClassFieldMap* get_map_of_instance_fields(oop obj);
 906 
 907   // removes the field map from all instanceKlasses - should be
 908   // called before VM operation completes
 909   static void clear_cache();
 910 
 911   // returns the number of ClassFieldMap cached by instanceKlasses
 912   static int cached_field_map_count();
 913 };
 914 
 915 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
 916 
 917 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
 918   _field_map = field_map;
 919 }
 920 
 921 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
 922   if (_field_map != NULL) {
 923     delete _field_map;
 924   }
 925 }
 926 
 927 // Marker class to ensure that the class file map cache is only used in a defined
 928 // scope.
 929 class ClassFieldMapCacheMark : public StackObj {
 930  private:
 931    static bool _is_active;
 932  public:
 933    ClassFieldMapCacheMark() {
 934      assert(Thread::current()->is_VM_thread(), "must be VMThread");
 935      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
 936      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
 937      _is_active = true;
 938    }
 939    ~ClassFieldMapCacheMark() {
 940      JvmtiCachedClassFieldMap::clear_cache();
 941      _is_active = false;
 942    }
 943    static bool is_active() { return _is_active; }
 944 };
 945 
 946 bool ClassFieldMapCacheMark::_is_active;
 947 
 948 
 949 // record that the given InstanceKlass is caching a field map
 950 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) {
 951   if (_class_list == NULL) {
 952     _class_list = new (ResourceObj::C_HEAP, mtInternal)
 953       GrowableArray<InstanceKlass*>(initial_class_count, true);
 954   }
 955   _class_list->push(ik);
 956 }
 957 
 958 // returns the instance field map for the given object
 959 // (returns field map cached by the InstanceKlass if possible)
 960 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
 961   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 962   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
 963 
 964   Klass* k = obj->klass();
 965   InstanceKlass* ik = InstanceKlass::cast(k);
 966 
 967   // return cached map if possible
 968   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 969   if (cached_map != NULL) {
 970     assert(cached_map->field_map() != NULL, "missing field list");
 971     return cached_map->field_map();
 972   } else {
 973     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
 974     cached_map = new JvmtiCachedClassFieldMap(field_map);
 975     ik->set_jvmti_cached_class_field_map(cached_map);
 976     add_to_class_list(ik);
 977     return field_map;
 978   }
 979 }
 980 
 981 // remove the fields maps cached from all instanceKlasses
 982 void JvmtiCachedClassFieldMap::clear_cache() {
 983   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 984   if (_class_list != NULL) {
 985     for (int i = 0; i < _class_list->length(); i++) {
 986       InstanceKlass* ik = _class_list->at(i);
 987       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 988       assert(cached_map != NULL, "should not be NULL");
 989       ik->set_jvmti_cached_class_field_map(NULL);
 990       delete cached_map;  // deletes the encapsulated field map
 991     }
 992     delete _class_list;
 993     _class_list = NULL;
 994   }
 995 }
 996 
 997 // returns the number of ClassFieldMap cached by instanceKlasses
 998 int JvmtiCachedClassFieldMap::cached_field_map_count() {
 999   return (_class_list == NULL) ? 0 : _class_list->length();
1000 }
1001 
1002 // helper function to indicate if an object is filtered by its tag or class tag
1003 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
1004                                               jlong klass_tag,
1005                                               int heap_filter) {
1006   // apply the heap filter
1007   if (obj_tag != 0) {
1008     // filter out tagged objects
1009     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
1010   } else {
1011     // filter out untagged objects
1012     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
1013   }
1014   if (klass_tag != 0) {
1015     // filter out objects with tagged classes
1016     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
1017   } else {
1018     // filter out objects with untagged classes.
1019     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
1020   }
1021   return false;
1022 }
1023 
1024 // helper function to indicate if an object is filtered by a klass filter
1025 static inline bool is_filtered_by_klass_filter(oop obj, Klass* klass_filter) {
1026   if (klass_filter != NULL) {
1027     if (obj->klass() != klass_filter) {
1028       return true;
1029     }
1030   }
1031   return false;
1032 }
1033 
1034 // helper function to tell if a field is a primitive field or not
1035 static inline bool is_primitive_field_type(char type) {
1036   return (type != 'L' && type != '[');
1037 }
1038 
1039 // helper function to copy the value from location addr to jvalue.
1040 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
1041   switch (value_type) {
1042     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
1043     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
1044     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
1045     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
1046     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
1047     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
1048     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
1049     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
1050     default: ShouldNotReachHere();
1051   }
1052 }
1053 
1054 // helper function to invoke string primitive value callback
1055 // returns visit control flags
1056 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
1057                                          CallbackWrapper* wrapper,
1058                                          oop str,
1059                                          void* user_data)
1060 {
1061   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
1062 
1063   typeArrayOop s_value = java_lang_String::value(str);
1064 
1065   // JDK-6584008: the value field may be null if a String instance is
1066   // partially constructed.
1067   if (s_value == NULL) {
1068     return 0;
1069   }
1070   // get the string value and length
1071   // (string value may be offset from the base)
1072   int s_len = java_lang_String::length(str);
1073   bool is_latin1 = java_lang_String::is_latin1(str);
1074   jchar* value;
1075   if (s_len > 0) {
1076     if (!is_latin1) {
1077       value = s_value->char_at_addr(0);
1078     } else {
1079       // Inflate latin1 encoded string to UTF16
1080       jchar* buf = NEW_C_HEAP_ARRAY(jchar, s_len, mtInternal);
1081       for (int i = 0; i < s_len; i++) {
1082         buf[i] = ((jchar) s_value->byte_at(i)) & 0xff;
1083       }
1084       value = &buf[0];
1085     }
1086   } else {
1087     // Don't use char_at_addr(0) if length is 0
1088     value = (jchar*) s_value->base(T_CHAR);
1089   }
1090 
1091   // invoke the callback
1092   jint res = (*cb)(wrapper->klass_tag(),
1093                    wrapper->obj_size(),
1094                    wrapper->obj_tag_p(),
1095                    value,
1096                    (jint)s_len,
1097                    user_data);
1098 
1099   if (is_latin1 && s_len > 0) {
1100     FREE_C_HEAP_ARRAY(jchar, value);
1101   }
1102   return res;
1103 }
1104 
1105 // helper function to invoke string primitive value callback
1106 // returns visit control flags
1107 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
1108                                                   CallbackWrapper* wrapper,
1109                                                   oop obj,
1110                                                   void* user_data)
1111 {
1112   assert(obj->is_typeArray(), "not a primitive array");
1113 
1114   // get base address of first element
1115   typeArrayOop array = typeArrayOop(obj);
1116   BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
1117   void* elements = array->base(type);
1118 
1119   // jvmtiPrimitiveType is defined so this mapping is always correct
1120   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
1121 
1122   return (*cb)(wrapper->klass_tag(),
1123                wrapper->obj_size(),
1124                wrapper->obj_tag_p(),
1125                (jint)array->length(),
1126                elem_type,
1127                elements,
1128                user_data);
1129 }
1130 
1131 // helper function to invoke the primitive field callback for all static fields
1132 // of a given class
1133 static jint invoke_primitive_field_callback_for_static_fields
1134   (CallbackWrapper* wrapper,
1135    oop obj,
1136    jvmtiPrimitiveFieldCallback cb,
1137    void* user_data)
1138 {
1139   // for static fields only the index will be set
1140   static jvmtiHeapReferenceInfo reference_info = { 0 };
1141 
1142   assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
1143   if (java_lang_Class::is_primitive(obj)) {
1144     return 0;
1145   }
1146   Klass* klass = java_lang_Class::as_Klass(obj);
1147 
1148   // ignore classes for object and type arrays
1149   if (!klass->is_instance_klass()) {
1150     return 0;
1151   }
1152 
1153   // ignore classes which aren't linked yet
1154   InstanceKlass* ik = InstanceKlass::cast(klass);
1155   if (!ik->is_linked()) {
1156     return 0;
1157   }
1158 
1159   // get the field map
1160   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
1161 
1162   // invoke the callback for each static primitive field
1163   for (int i=0; i<field_map->field_count(); i++) {
1164     ClassFieldDescriptor* field = field_map->field_at(i);
1165 
1166     // ignore non-primitive fields
1167     char type = field->field_type();
1168     if (!is_primitive_field_type(type)) {
1169       continue;
1170     }
1171     // one-to-one mapping
1172     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1173 
1174     // get offset and field value
1175     int offset = field->field_offset();
1176     address addr = (address)klass->java_mirror() + offset;
1177     jvalue value;
1178     copy_to_jvalue(&value, addr, value_type);
1179 
1180     // field index
1181     reference_info.field.index = field->field_index();
1182 
1183     // invoke the callback
1184     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1185                      &reference_info,
1186                      wrapper->klass_tag(),
1187                      wrapper->obj_tag_p(),
1188                      value,
1189                      value_type,
1190                      user_data);
1191     if (res & JVMTI_VISIT_ABORT) {
1192       delete field_map;
1193       return res;
1194     }
1195   }
1196 
1197   delete field_map;
1198   return 0;
1199 }
1200 
1201 // helper function to invoke the primitive field callback for all instance fields
1202 // of a given object
1203 static jint invoke_primitive_field_callback_for_instance_fields(
1204   CallbackWrapper* wrapper,
1205   oop obj,
1206   jvmtiPrimitiveFieldCallback cb,
1207   void* user_data)
1208 {
1209   // for instance fields only the index will be set
1210   static jvmtiHeapReferenceInfo reference_info = { 0 };
1211 
1212   // get the map of the instance fields
1213   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
1214 
1215   // invoke the callback for each instance primitive field
1216   for (int i=0; i<fields->field_count(); i++) {
1217     ClassFieldDescriptor* field = fields->field_at(i);
1218 
1219     // ignore non-primitive fields
1220     char type = field->field_type();
1221     if (!is_primitive_field_type(type)) {
1222       continue;
1223     }
1224     // one-to-one mapping
1225     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1226 
1227     // get offset and field value
1228     int offset = field->field_offset();
1229     address addr = (address)obj + offset;
1230     jvalue value;
1231     copy_to_jvalue(&value, addr, value_type);
1232 
1233     // field index
1234     reference_info.field.index = field->field_index();
1235 
1236     // invoke the callback
1237     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1238                      &reference_info,
1239                      wrapper->klass_tag(),
1240                      wrapper->obj_tag_p(),
1241                      value,
1242                      value_type,
1243                      user_data);
1244     if (res & JVMTI_VISIT_ABORT) {
1245       return res;
1246     }
1247   }
1248   return 0;
1249 }
1250 
1251 
1252 // VM operation to iterate over all objects in the heap (both reachable
1253 // and unreachable)
1254 class VM_HeapIterateOperation: public VM_Operation {
1255  private:
1256   ObjectClosure* _blk;
1257  public:
1258   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
1259 
1260   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1261   void doit() {
1262     // allows class files maps to be cached during iteration
1263     ClassFieldMapCacheMark cm;
1264 
1265     // make sure that heap is parsable (fills TLABs with filler objects)
1266     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1267 
1268     // Verify heap before iteration - if the heap gets corrupted then
1269     // JVMTI's IterateOverHeap will crash.
1270     if (VerifyBeforeIteration) {
1271       Universe::verify();
1272     }
1273 
1274     // do the iteration
1275     // If this operation encounters a bad object when using CMS,
1276     // consider using safe_object_iterate() which avoids perm gen
1277     // objects that may contain bad references.
1278     Universe::heap()->object_iterate(_blk);
1279   }
1280 
1281 };
1282 
1283 
1284 // An ObjectClosure used to support the deprecated IterateOverHeap and
1285 // IterateOverInstancesOfClass functions
1286 class IterateOverHeapObjectClosure: public ObjectClosure {
1287  private:
1288   JvmtiTagMap* _tag_map;
1289   Klass* _klass;
1290   jvmtiHeapObjectFilter _object_filter;
1291   jvmtiHeapObjectCallback _heap_object_callback;
1292   const void* _user_data;
1293 
1294   // accessors
1295   JvmtiTagMap* tag_map() const                    { return _tag_map; }
1296   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
1297   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1298   Klass* klass() const                            { return _klass; }
1299   const void* user_data() const                   { return _user_data; }
1300 
1301   // indicates if iteration has been aborted
1302   bool _iteration_aborted;
1303   bool is_iteration_aborted() const               { return _iteration_aborted; }
1304   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
1305 
1306  public:
1307   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1308                                Klass* klass,
1309                                jvmtiHeapObjectFilter object_filter,
1310                                jvmtiHeapObjectCallback heap_object_callback,
1311                                const void* user_data) :
1312     _tag_map(tag_map),
1313     _klass(klass),
1314     _object_filter(object_filter),
1315     _heap_object_callback(heap_object_callback),
1316     _user_data(user_data),
1317     _iteration_aborted(false)
1318   {
1319   }
1320 
1321   void do_object(oop o);
1322 };
1323 
1324 // invoked for each object in the heap
1325 void IterateOverHeapObjectClosure::do_object(oop o) {
1326   // check if iteration has been halted
1327   if (is_iteration_aborted()) return;
1328 
1329   // ignore any objects that aren't visible to profiler
1330   if (!ServiceUtil::visible_oop(o)) return;
1331 
1332   // instanceof check when filtering by klass
1333   if (klass() != NULL && !o->is_a(klass())) {
1334     return;
1335   }
1336   // prepare for the calllback
1337   CallbackWrapper wrapper(tag_map(), o);
1338 
1339   // if the object is tagged and we're only interested in untagged objects
1340   // then don't invoke the callback. Similiarly, if the object is untagged
1341   // and we're only interested in tagged objects we skip the callback.
1342   if (wrapper.obj_tag() != 0) {
1343     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1344   } else {
1345     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1346   }
1347 
1348   // invoke the agent's callback
1349   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1350                                                        wrapper.obj_size(),
1351                                                        wrapper.obj_tag_p(),
1352                                                        (void*)user_data());
1353   if (control == JVMTI_ITERATION_ABORT) {
1354     set_iteration_aborted(true);
1355   }
1356 }
1357 
1358 // An ObjectClosure used to support the IterateThroughHeap function
1359 class IterateThroughHeapObjectClosure: public ObjectClosure {
1360  private:
1361   JvmtiTagMap* _tag_map;
1362   Klass* _klass;
1363   int _heap_filter;
1364   const jvmtiHeapCallbacks* _callbacks;
1365   const void* _user_data;
1366 
1367   // accessor functions
1368   JvmtiTagMap* tag_map() const                     { return _tag_map; }
1369   int heap_filter() const                          { return _heap_filter; }
1370   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
1371   Klass* klass() const                             { return _klass; }
1372   const void* user_data() const                    { return _user_data; }
1373 
1374   // indicates if the iteration has been aborted
1375   bool _iteration_aborted;
1376   bool is_iteration_aborted() const                { return _iteration_aborted; }
1377 
1378   // used to check the visit control flags. If the abort flag is set
1379   // then we set the iteration aborted flag so that the iteration completes
1380   // without processing any further objects
1381   bool check_flags_for_abort(jint flags) {
1382     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1383     if (is_abort) {
1384       _iteration_aborted = true;
1385     }
1386     return is_abort;
1387   }
1388 
1389  public:
1390   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1391                                   Klass* klass,
1392                                   int heap_filter,
1393                                   const jvmtiHeapCallbacks* heap_callbacks,
1394                                   const void* user_data) :
1395     _tag_map(tag_map),
1396     _klass(klass),
1397     _heap_filter(heap_filter),
1398     _callbacks(heap_callbacks),
1399     _user_data(user_data),
1400     _iteration_aborted(false)
1401   {
1402   }
1403 
1404   void do_object(oop o);
1405 };
1406 
1407 // invoked for each object in the heap
1408 void IterateThroughHeapObjectClosure::do_object(oop obj) {
1409   // check if iteration has been halted
1410   if (is_iteration_aborted()) return;
1411 
1412   // ignore any objects that aren't visible to profiler
1413   if (!ServiceUtil::visible_oop(obj)) return;
1414 
1415   // apply class filter
1416   if (is_filtered_by_klass_filter(obj, klass())) return;
1417 
1418   // prepare for callback
1419   CallbackWrapper wrapper(tag_map(), obj);
1420 
1421   // check if filtered by the heap filter
1422   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1423     return;
1424   }
1425 
1426   // for arrays we need the length, otherwise -1
1427   bool is_array = obj->is_array();
1428   int len = is_array ? arrayOop(obj)->length() : -1;
1429 
1430   // invoke the object callback (if callback is provided)
1431   if (callbacks()->heap_iteration_callback != NULL) {
1432     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1433     jint res = (*cb)(wrapper.klass_tag(),
1434                      wrapper.obj_size(),
1435                      wrapper.obj_tag_p(),
1436                      (jint)len,
1437                      (void*)user_data());
1438     if (check_flags_for_abort(res)) return;
1439   }
1440 
1441   // for objects and classes we report primitive fields if callback provided
1442   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
1443     jint res;
1444     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1445     if (obj->klass() == SystemDictionary::Class_klass()) {
1446       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1447                                                                     obj,
1448                                                                     cb,
1449                                                                     (void*)user_data());
1450     } else {
1451       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1452                                                                       obj,
1453                                                                       cb,
1454                                                                       (void*)user_data());
1455     }
1456     if (check_flags_for_abort(res)) return;
1457   }
1458 
1459   // string callback
1460   if (!is_array &&
1461       callbacks()->string_primitive_value_callback != NULL &&
1462       obj->klass() == SystemDictionary::String_klass()) {
1463     jint res = invoke_string_value_callback(
1464                 callbacks()->string_primitive_value_callback,
1465                 &wrapper,
1466                 obj,
1467                 (void*)user_data() );
1468     if (check_flags_for_abort(res)) return;
1469   }
1470 
1471   // array callback
1472   if (is_array &&
1473       callbacks()->array_primitive_value_callback != NULL &&
1474       obj->is_typeArray()) {
1475     jint res = invoke_array_primitive_value_callback(
1476                callbacks()->array_primitive_value_callback,
1477                &wrapper,
1478                obj,
1479                (void*)user_data() );
1480     if (check_flags_for_abort(res)) return;
1481   }
1482 };
1483 
1484 
1485 // Deprecated function to iterate over all objects in the heap
1486 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1487                                     Klass* klass,
1488                                     jvmtiHeapObjectCallback heap_object_callback,
1489                                     const void* user_data)
1490 {
1491   MutexLocker ml(Heap_lock);
1492   IterateOverHeapObjectClosure blk(this,
1493                                    klass,
1494                                    object_filter,
1495                                    heap_object_callback,
1496                                    user_data);
1497   VM_HeapIterateOperation op(&blk);
1498   VMThread::execute(&op);
1499 }
1500 
1501 
1502 // Iterates over all objects in the heap
1503 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1504                                        Klass* klass,
1505                                        const jvmtiHeapCallbacks* callbacks,
1506                                        const void* user_data)
1507 {
1508   MutexLocker ml(Heap_lock);
1509   IterateThroughHeapObjectClosure blk(this,
1510                                       klass,
1511                                       heap_filter,
1512                                       callbacks,
1513                                       user_data);
1514   VM_HeapIterateOperation op(&blk);
1515   VMThread::execute(&op);
1516 }
1517 
1518 // support class for get_objects_with_tags
1519 
1520 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
1521  private:
1522   JvmtiEnv* _env;
1523   jlong* _tags;
1524   jint _tag_count;
1525 
1526   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1527   GrowableArray<uint64_t>* _tag_results;    // collected tags
1528 
1529  public:
1530   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
1531     _env = env;
1532     _tags = (jlong*)tags;
1533     _tag_count = tag_count;
1534     _object_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<jobject>(1,true);
1535     _tag_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<uint64_t>(1,true);
1536   }
1537 
1538   ~TagObjectCollector() {
1539     delete _object_results;
1540     delete _tag_results;
1541   }
1542 
1543   // for each tagged object check if the tag value matches
1544   // - if it matches then we create a JNI local reference to the object
1545   // and record the reference and tag value.
1546   //
1547   void do_entry(JvmtiTagHashmapEntry* entry) {
1548     for (int i=0; i<_tag_count; i++) {
1549       if (_tags[i] == entry->tag()) {
1550         // The reference in this tag map could be the only (implicitly weak)
1551         // reference to that object. If we hand it out, we need to keep it live wrt
1552         // SATB marking similar to other j.l.ref.Reference referents. This is
1553         // achieved by using a phantom load in the object() accessor.
1554         oop o = entry->object();
1555         assert(o != NULL && Universe::heap()->is_in_reserved(o), "sanity check");
1556         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
1557         _object_results->append(ref);
1558         _tag_results->append((uint64_t)entry->tag());
1559       }
1560     }
1561   }
1562 
1563   // return the results from the collection
1564   //
1565   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1566     jvmtiError error;
1567     int count = _object_results->length();
1568     assert(count >= 0, "sanity check");
1569 
1570     // if object_result_ptr is not NULL then allocate the result and copy
1571     // in the object references.
1572     if (object_result_ptr != NULL) {
1573       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1574       if (error != JVMTI_ERROR_NONE) {
1575         return error;
1576       }
1577       for (int i=0; i<count; i++) {
1578         (*object_result_ptr)[i] = _object_results->at(i);
1579       }
1580     }
1581 
1582     // if tag_result_ptr is not NULL then allocate the result and copy
1583     // in the tag values.
1584     if (tag_result_ptr != NULL) {
1585       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1586       if (error != JVMTI_ERROR_NONE) {
1587         if (object_result_ptr != NULL) {
1588           _env->Deallocate((unsigned char*)object_result_ptr);
1589         }
1590         return error;
1591       }
1592       for (int i=0; i<count; i++) {
1593         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1594       }
1595     }
1596 
1597     *count_ptr = count;
1598     return JVMTI_ERROR_NONE;
1599   }
1600 };
1601 
1602 // return the list of objects with the specified tags
1603 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1604   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1605 
1606   TagObjectCollector collector(env(), tags, count);
1607   {
1608     // iterate over all tagged objects
1609     MutexLocker ml(lock());
1610     entry_iterate(&collector);
1611   }
1612   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1613 }
1614 
1615 
1616 // ObjectMarker is used to support the marking objects when walking the
1617 // heap.
1618 //
1619 // This implementation uses the existing mark bits in an object for
1620 // marking. Objects that are marked must later have their headers restored.
1621 // As most objects are unlocked and don't have their identity hash computed
1622 // we don't have to save their headers. Instead we save the headers that
1623 // are "interesting". Later when the headers are restored this implementation
1624 // restores all headers to their initial value and then restores the few
1625 // objects that had interesting headers.
1626 //
1627 // Future work: This implementation currently uses growable arrays to save
1628 // the oop and header of interesting objects. As an optimization we could
1629 // use the same technique as the GC and make use of the unused area
1630 // between top() and end().
1631 //
1632 
1633 // An ObjectClosure used to restore the mark bits of an object
1634 class RestoreMarksClosure : public ObjectClosure {
1635  public:
1636   void do_object(oop o) {
1637     if (o != NULL) {
1638       markOop mark = o->mark();
1639       if (mark->is_marked()) {
1640         o->init_mark();
1641       }
1642     }
1643   }
1644 };
1645 
1646 // ObjectMarker provides the mark and visited functions
1647 class ObjectMarker : AllStatic {
1648  private:
1649   // saved headers
1650   static GrowableArray<oop>* _saved_oop_stack;
1651   static GrowableArray<markOop>* _saved_mark_stack;
1652   static bool _needs_reset;                  // do we need to reset mark bits?
1653 
1654  public:
1655   static void init();                       // initialize
1656   static void done();                       // clean-up
1657 
1658   static inline void mark(oop o);           // mark an object
1659   static inline bool visited(oop o);        // check if object has been visited
1660 
1661   static inline bool needs_reset()            { return _needs_reset; }
1662   static inline void set_needs_reset(bool v)  { _needs_reset = v; }
1663 };
1664 
1665 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
1666 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
1667 bool ObjectMarker::_needs_reset = true;  // need to reset mark bits by default
1668 
1669 // initialize ObjectMarker - prepares for object marking
1670 void ObjectMarker::init() {
1671   assert(Thread::current()->is_VM_thread(), "must be VMThread");
1672 
1673   // prepare heap for iteration
1674   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1675 
1676   // create stacks for interesting headers
1677   _saved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markOop>(4000, true);
1678   _saved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(4000, true);
1679 
1680   if (UseBiasedLocking) {
1681     BiasedLocking::preserve_marks();
1682   }
1683 }
1684 
1685 // Object marking is done so restore object headers
1686 void ObjectMarker::done() {
1687   // iterate over all objects and restore the mark bits to
1688   // their initial value
1689   RestoreMarksClosure blk;
1690   if (needs_reset()) {
1691     Universe::heap()->object_iterate(&blk);
1692   } else {
1693     // We don't need to reset mark bits on this call, but reset the
1694     // flag to the default for the next call.
1695     set_needs_reset(true);
1696   }
1697 
1698   // now restore the interesting headers
1699   for (int i = 0; i < _saved_oop_stack->length(); i++) {
1700     oop o = _saved_oop_stack->at(i);
1701     markOop mark = _saved_mark_stack->at(i);
1702     o->set_mark(mark);
1703   }
1704 
1705   if (UseBiasedLocking) {
1706     BiasedLocking::restore_marks();
1707   }
1708 
1709   // free the stacks
1710   delete _saved_oop_stack;
1711   delete _saved_mark_stack;
1712 }
1713 
1714 // mark an object
1715 inline void ObjectMarker::mark(oop o) {
1716   assert(Universe::heap()->is_in(o), "sanity check");
1717   assert(!o->mark()->is_marked(), "should only mark an object once");
1718 
1719   // object's mark word
1720   markOop mark = o->mark();
1721 
1722   if (mark->must_be_preserved(o)) {
1723     _saved_mark_stack->push(mark);
1724     _saved_oop_stack->push(o);
1725   }
1726 
1727   // mark the object
1728   o->set_mark(markOopDesc::prototype()->set_marked());
1729 }
1730 
1731 // return true if object is marked
1732 inline bool ObjectMarker::visited(oop o) {
1733   return o->mark()->is_marked();
1734 }
1735 
1736 // Stack allocated class to help ensure that ObjectMarker is used
1737 // correctly. Constructor initializes ObjectMarker, destructor calls
1738 // ObjectMarker's done() function to restore object headers.
1739 class ObjectMarkerController : public StackObj {
1740  public:
1741   ObjectMarkerController() {
1742     ObjectMarker::init();
1743   }
1744   ~ObjectMarkerController() {
1745     ObjectMarker::done();
1746   }
1747 };
1748 
1749 
1750 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1751 // (not performance critical as only used for roots)
1752 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1753   switch (kind) {
1754     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1755     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1756     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
1757     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1758     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1759     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1760     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1761     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1762   }
1763 }
1764 
1765 // Base class for all heap walk contexts. The base class maintains a flag
1766 // to indicate if the context is valid or not.
1767 class HeapWalkContext {
1768  private:
1769   bool _valid;
1770  public:
1771   HeapWalkContext(bool valid)                   { _valid = valid; }
1772   void invalidate()                             { _valid = false; }
1773   bool is_valid() const                         { return _valid; }
1774 };
1775 
1776 // A basic heap walk context for the deprecated heap walking functions.
1777 // The context for a basic heap walk are the callbacks and fields used by
1778 // the referrer caching scheme.
1779 class BasicHeapWalkContext: public HeapWalkContext {
1780  private:
1781   jvmtiHeapRootCallback _heap_root_callback;
1782   jvmtiStackReferenceCallback _stack_ref_callback;
1783   jvmtiObjectReferenceCallback _object_ref_callback;
1784 
1785   // used for caching
1786   oop _last_referrer;
1787   jlong _last_referrer_tag;
1788 
1789  public:
1790   BasicHeapWalkContext() : HeapWalkContext(false) { }
1791 
1792   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1793                        jvmtiStackReferenceCallback stack_ref_callback,
1794                        jvmtiObjectReferenceCallback object_ref_callback) :
1795     HeapWalkContext(true),
1796     _heap_root_callback(heap_root_callback),
1797     _stack_ref_callback(stack_ref_callback),
1798     _object_ref_callback(object_ref_callback),
1799     _last_referrer(NULL),
1800     _last_referrer_tag(0) {
1801   }
1802 
1803   // accessors
1804   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1805   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1806   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1807 
1808   oop last_referrer() const               { return _last_referrer; }
1809   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
1810   jlong last_referrer_tag() const         { return _last_referrer_tag; }
1811   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1812 };
1813 
1814 // The advanced heap walk context for the FollowReferences functions.
1815 // The context is the callbacks, and the fields used for filtering.
1816 class AdvancedHeapWalkContext: public HeapWalkContext {
1817  private:
1818   jint _heap_filter;
1819   Klass* _klass_filter;
1820   const jvmtiHeapCallbacks* _heap_callbacks;
1821 
1822  public:
1823   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1824 
1825   AdvancedHeapWalkContext(jint heap_filter,
1826                            Klass* klass_filter,
1827                            const jvmtiHeapCallbacks* heap_callbacks) :
1828     HeapWalkContext(true),
1829     _heap_filter(heap_filter),
1830     _klass_filter(klass_filter),
1831     _heap_callbacks(heap_callbacks) {
1832   }
1833 
1834   // accessors
1835   jint heap_filter() const         { return _heap_filter; }
1836   Klass* klass_filter() const      { return _klass_filter; }
1837 
1838   const jvmtiHeapReferenceCallback heap_reference_callback() const {
1839     return _heap_callbacks->heap_reference_callback;
1840   };
1841   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1842     return _heap_callbacks->primitive_field_callback;
1843   }
1844   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1845     return _heap_callbacks->array_primitive_value_callback;
1846   }
1847   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1848     return _heap_callbacks->string_primitive_value_callback;
1849   }
1850 };
1851 
1852 // The CallbackInvoker is a class with static functions that the heap walk can call
1853 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
1854 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
1855 // mode is for the newer FollowReferences function which supports a lot of
1856 // additional callbacks.
1857 class CallbackInvoker : AllStatic {
1858  private:
1859   // heap walk styles
1860   enum { basic, advanced };
1861   static int _heap_walk_type;
1862   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1863   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1864 
1865   // context for basic style heap walk
1866   static BasicHeapWalkContext _basic_context;
1867   static BasicHeapWalkContext* basic_context() {
1868     assert(_basic_context.is_valid(), "invalid");
1869     return &_basic_context;
1870   }
1871 
1872   // context for advanced style heap walk
1873   static AdvancedHeapWalkContext _advanced_context;
1874   static AdvancedHeapWalkContext* advanced_context() {
1875     assert(_advanced_context.is_valid(), "invalid");
1876     return &_advanced_context;
1877   }
1878 
1879   // context needed for all heap walks
1880   static JvmtiTagMap* _tag_map;
1881   static const void* _user_data;
1882   static GrowableArray<oop>* _visit_stack;
1883 
1884   // accessors
1885   static JvmtiTagMap* tag_map()                        { return _tag_map; }
1886   static const void* user_data()                       { return _user_data; }
1887   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
1888 
1889   // if the object hasn't been visited then push it onto the visit stack
1890   // so that it will be visited later
1891   static inline bool check_for_visit(oop obj) {
1892     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
1893     return true;
1894   }
1895 
1896   // invoke basic style callbacks
1897   static inline bool invoke_basic_heap_root_callback
1898     (jvmtiHeapRootKind root_kind, oop obj);
1899   static inline bool invoke_basic_stack_ref_callback
1900     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1901      int slot, oop obj);
1902   static inline bool invoke_basic_object_reference_callback
1903     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
1904 
1905   // invoke advanced style callbacks
1906   static inline bool invoke_advanced_heap_root_callback
1907     (jvmtiHeapReferenceKind ref_kind, oop obj);
1908   static inline bool invoke_advanced_stack_ref_callback
1909     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1910      jmethodID method, jlocation bci, jint slot, oop obj);
1911   static inline bool invoke_advanced_object_reference_callback
1912     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
1913 
1914   // used to report the value of primitive fields
1915   static inline bool report_primitive_field
1916     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
1917 
1918  public:
1919   // initialize for basic mode
1920   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1921                                              GrowableArray<oop>* visit_stack,
1922                                              const void* user_data,
1923                                              BasicHeapWalkContext context);
1924 
1925   // initialize for advanced mode
1926   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1927                                                 GrowableArray<oop>* visit_stack,
1928                                                 const void* user_data,
1929                                                 AdvancedHeapWalkContext context);
1930 
1931    // functions to report roots
1932   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
1933   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1934     jmethodID m, oop o);
1935   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1936     jmethodID method, jlocation bci, jint slot, oop o);
1937 
1938   // functions to report references
1939   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
1940   static inline bool report_class_reference(oop referrer, oop referree);
1941   static inline bool report_class_loader_reference(oop referrer, oop referree);
1942   static inline bool report_signers_reference(oop referrer, oop referree);
1943   static inline bool report_protection_domain_reference(oop referrer, oop referree);
1944   static inline bool report_superclass_reference(oop referrer, oop referree);
1945   static inline bool report_interface_reference(oop referrer, oop referree);
1946   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
1947   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
1948   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
1949   static inline bool report_primitive_array_values(oop array);
1950   static inline bool report_string_value(oop str);
1951   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
1952   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
1953 };
1954 
1955 // statics
1956 int CallbackInvoker::_heap_walk_type;
1957 BasicHeapWalkContext CallbackInvoker::_basic_context;
1958 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
1959 JvmtiTagMap* CallbackInvoker::_tag_map;
1960 const void* CallbackInvoker::_user_data;
1961 GrowableArray<oop>* CallbackInvoker::_visit_stack;
1962 
1963 // initialize for basic heap walk (IterateOverReachableObjects et al)
1964 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1965                                                      GrowableArray<oop>* visit_stack,
1966                                                      const void* user_data,
1967                                                      BasicHeapWalkContext context) {
1968   _tag_map = tag_map;
1969   _visit_stack = visit_stack;
1970   _user_data = user_data;
1971   _basic_context = context;
1972   _advanced_context.invalidate();       // will trigger assertion if used
1973   _heap_walk_type = basic;
1974 }
1975 
1976 // initialize for advanced heap walk (FollowReferences)
1977 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1978                                                         GrowableArray<oop>* visit_stack,
1979                                                         const void* user_data,
1980                                                         AdvancedHeapWalkContext context) {
1981   _tag_map = tag_map;
1982   _visit_stack = visit_stack;
1983   _user_data = user_data;
1984   _advanced_context = context;
1985   _basic_context.invalidate();      // will trigger assertion if used
1986   _heap_walk_type = advanced;
1987 }
1988 
1989 
1990 // invoke basic style heap root callback
1991 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
1992   assert(ServiceUtil::visible_oop(obj), "checking");
1993 
1994   // if we heap roots should be reported
1995   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
1996   if (cb == NULL) {
1997     return check_for_visit(obj);
1998   }
1999 
2000   CallbackWrapper wrapper(tag_map(), obj);
2001   jvmtiIterationControl control = (*cb)(root_kind,
2002                                         wrapper.klass_tag(),
2003                                         wrapper.obj_size(),
2004                                         wrapper.obj_tag_p(),
2005                                         (void*)user_data());
2006   // push root to visit stack when following references
2007   if (control == JVMTI_ITERATION_CONTINUE &&
2008       basic_context()->object_ref_callback() != NULL) {
2009     visit_stack()->push(obj);
2010   }
2011   return control != JVMTI_ITERATION_ABORT;
2012 }
2013 
2014 // invoke basic style stack ref callback
2015 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
2016                                                              jlong thread_tag,
2017                                                              jint depth,
2018                                                              jmethodID method,
2019                                                              int slot,
2020                                                              oop obj) {
2021   assert(ServiceUtil::visible_oop(obj), "checking");
2022 
2023   // if we stack refs should be reported
2024   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
2025   if (cb == NULL) {
2026     return check_for_visit(obj);
2027   }
2028 
2029   CallbackWrapper wrapper(tag_map(), obj);
2030   jvmtiIterationControl control = (*cb)(root_kind,
2031                                         wrapper.klass_tag(),
2032                                         wrapper.obj_size(),
2033                                         wrapper.obj_tag_p(),
2034                                         thread_tag,
2035                                         depth,
2036                                         method,
2037                                         slot,
2038                                         (void*)user_data());
2039   // push root to visit stack when following references
2040   if (control == JVMTI_ITERATION_CONTINUE &&
2041       basic_context()->object_ref_callback() != NULL) {
2042     visit_stack()->push(obj);
2043   }
2044   return control != JVMTI_ITERATION_ABORT;
2045 }
2046 
2047 // invoke basic style object reference callback
2048 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
2049                                                                     oop referrer,
2050                                                                     oop referree,
2051                                                                     jint index) {
2052 
2053   assert(ServiceUtil::visible_oop(referrer), "checking");
2054   assert(ServiceUtil::visible_oop(referree), "checking");
2055 
2056   BasicHeapWalkContext* context = basic_context();
2057 
2058   // callback requires the referrer's tag. If it's the same referrer
2059   // as the last call then we use the cached value.
2060   jlong referrer_tag;
2061   if (referrer == context->last_referrer()) {
2062     referrer_tag = context->last_referrer_tag();
2063   } else {
2064     referrer_tag = tag_for(tag_map(), referrer);
2065   }
2066 
2067   // do the callback
2068   CallbackWrapper wrapper(tag_map(), referree);
2069   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2070   jvmtiIterationControl control = (*cb)(ref_kind,
2071                                         wrapper.klass_tag(),
2072                                         wrapper.obj_size(),
2073                                         wrapper.obj_tag_p(),
2074                                         referrer_tag,
2075                                         index,
2076                                         (void*)user_data());
2077 
2078   // record referrer and referrer tag. For self-references record the
2079   // tag value from the callback as this might differ from referrer_tag.
2080   context->set_last_referrer(referrer);
2081   if (referrer == referree) {
2082     context->set_last_referrer_tag(*wrapper.obj_tag_p());
2083   } else {
2084     context->set_last_referrer_tag(referrer_tag);
2085   }
2086 
2087   if (control == JVMTI_ITERATION_CONTINUE) {
2088     return check_for_visit(referree);
2089   } else {
2090     return control != JVMTI_ITERATION_ABORT;
2091   }
2092 }
2093 
2094 // invoke advanced style heap root callback
2095 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2096                                                                 oop obj) {
2097   assert(ServiceUtil::visible_oop(obj), "checking");
2098 
2099   AdvancedHeapWalkContext* context = advanced_context();
2100 
2101   // check that callback is provided
2102   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2103   if (cb == NULL) {
2104     return check_for_visit(obj);
2105   }
2106 
2107   // apply class filter
2108   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2109     return check_for_visit(obj);
2110   }
2111 
2112   // setup the callback wrapper
2113   CallbackWrapper wrapper(tag_map(), obj);
2114 
2115   // apply tag filter
2116   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2117                                  wrapper.klass_tag(),
2118                                  context->heap_filter())) {
2119     return check_for_visit(obj);
2120   }
2121 
2122   // for arrays we need the length, otherwise -1
2123   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2124 
2125   // invoke the callback
2126   jint res  = (*cb)(ref_kind,
2127                     NULL, // referrer info
2128                     wrapper.klass_tag(),
2129                     0,    // referrer_class_tag is 0 for heap root
2130                     wrapper.obj_size(),
2131                     wrapper.obj_tag_p(),
2132                     NULL, // referrer_tag_p
2133                     len,
2134                     (void*)user_data());
2135   if (res & JVMTI_VISIT_ABORT) {
2136     return false;// referrer class tag
2137   }
2138   if (res & JVMTI_VISIT_OBJECTS) {
2139     check_for_visit(obj);
2140   }
2141   return true;
2142 }
2143 
2144 // report a reference from a thread stack to an object
2145 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2146                                                                 jlong thread_tag,
2147                                                                 jlong tid,
2148                                                                 int depth,
2149                                                                 jmethodID method,
2150                                                                 jlocation bci,
2151                                                                 jint slot,
2152                                                                 oop obj) {
2153   assert(ServiceUtil::visible_oop(obj), "checking");
2154 
2155   AdvancedHeapWalkContext* context = advanced_context();
2156 
2157   // check that callback is provider
2158   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2159   if (cb == NULL) {
2160     return check_for_visit(obj);
2161   }
2162 
2163   // apply class filter
2164   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2165     return check_for_visit(obj);
2166   }
2167 
2168   // setup the callback wrapper
2169   CallbackWrapper wrapper(tag_map(), obj);
2170 
2171   // apply tag filter
2172   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2173                                  wrapper.klass_tag(),
2174                                  context->heap_filter())) {
2175     return check_for_visit(obj);
2176   }
2177 
2178   // setup the referrer info
2179   jvmtiHeapReferenceInfo reference_info;
2180   reference_info.stack_local.thread_tag = thread_tag;
2181   reference_info.stack_local.thread_id = tid;
2182   reference_info.stack_local.depth = depth;
2183   reference_info.stack_local.method = method;
2184   reference_info.stack_local.location = bci;
2185   reference_info.stack_local.slot = slot;
2186 
2187   // for arrays we need the length, otherwise -1
2188   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2189 
2190   // call into the agent
2191   int res = (*cb)(ref_kind,
2192                   &reference_info,
2193                   wrapper.klass_tag(),
2194                   0,    // referrer_class_tag is 0 for heap root (stack)
2195                   wrapper.obj_size(),
2196                   wrapper.obj_tag_p(),
2197                   NULL, // referrer_tag is 0 for root
2198                   len,
2199                   (void*)user_data());
2200 
2201   if (res & JVMTI_VISIT_ABORT) {
2202     return false;
2203   }
2204   if (res & JVMTI_VISIT_OBJECTS) {
2205     check_for_visit(obj);
2206   }
2207   return true;
2208 }
2209 
2210 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2211 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
2212 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
2213                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
2214                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2215                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2216                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
2217                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2218 
2219 // invoke the object reference callback to report a reference
2220 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2221                                                                        oop referrer,
2222                                                                        oop obj,
2223                                                                        jint index)
2224 {
2225   // field index is only valid field in reference_info
2226   static jvmtiHeapReferenceInfo reference_info = { 0 };
2227 
2228   assert(ServiceUtil::visible_oop(referrer), "checking");
2229   assert(ServiceUtil::visible_oop(obj), "checking");
2230 
2231   AdvancedHeapWalkContext* context = advanced_context();
2232 
2233   // check that callback is provider
2234   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2235   if (cb == NULL) {
2236     return check_for_visit(obj);
2237   }
2238 
2239   // apply class filter
2240   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2241     return check_for_visit(obj);
2242   }
2243 
2244   // setup the callback wrapper
2245   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2246 
2247   // apply tag filter
2248   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2249                                  wrapper.klass_tag(),
2250                                  context->heap_filter())) {
2251     return check_for_visit(obj);
2252   }
2253 
2254   // field index is only valid field in reference_info
2255   reference_info.field.index = index;
2256 
2257   // for arrays we need the length, otherwise -1
2258   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2259 
2260   // invoke the callback
2261   int res = (*cb)(ref_kind,
2262                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
2263                   wrapper.klass_tag(),
2264                   wrapper.referrer_klass_tag(),
2265                   wrapper.obj_size(),
2266                   wrapper.obj_tag_p(),
2267                   wrapper.referrer_tag_p(),
2268                   len,
2269                   (void*)user_data());
2270 
2271   if (res & JVMTI_VISIT_ABORT) {
2272     return false;
2273   }
2274   if (res & JVMTI_VISIT_OBJECTS) {
2275     check_for_visit(obj);
2276   }
2277   return true;
2278 }
2279 
2280 // report a "simple root"
2281 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
2282   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2283          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2284   assert(ServiceUtil::visible_oop(obj), "checking");
2285 
2286   if (is_basic_heap_walk()) {
2287     // map to old style root kind
2288     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2289     return invoke_basic_heap_root_callback(root_kind, obj);
2290   } else {
2291     assert(is_advanced_heap_walk(), "wrong heap walk type");
2292     return invoke_advanced_heap_root_callback(kind, obj);
2293   }
2294 }
2295 
2296 
2297 // invoke the primitive array values
2298 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
2299   assert(obj->is_typeArray(), "not a primitive array");
2300 
2301   AdvancedHeapWalkContext* context = advanced_context();
2302   assert(context->array_primitive_value_callback() != NULL, "no callback");
2303 
2304   // apply class filter
2305   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2306     return true;
2307   }
2308 
2309   CallbackWrapper wrapper(tag_map(), obj);
2310 
2311   // apply tag filter
2312   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2313                                  wrapper.klass_tag(),
2314                                  context->heap_filter())) {
2315     return true;
2316   }
2317 
2318   // invoke the callback
2319   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2320                                                   &wrapper,
2321                                                   obj,
2322                                                   (void*)user_data());
2323   return (!(res & JVMTI_VISIT_ABORT));
2324 }
2325 
2326 // invoke the string value callback
2327 inline bool CallbackInvoker::report_string_value(oop str) {
2328   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
2329 
2330   AdvancedHeapWalkContext* context = advanced_context();
2331   assert(context->string_primitive_value_callback() != NULL, "no callback");
2332 
2333   // apply class filter
2334   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2335     return true;
2336   }
2337 
2338   CallbackWrapper wrapper(tag_map(), str);
2339 
2340   // apply tag filter
2341   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2342                                  wrapper.klass_tag(),
2343                                  context->heap_filter())) {
2344     return true;
2345   }
2346 
2347   // invoke the callback
2348   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2349                                          &wrapper,
2350                                          str,
2351                                          (void*)user_data());
2352   return (!(res & JVMTI_VISIT_ABORT));
2353 }
2354 
2355 // invoke the primitive field callback
2356 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2357                                                     oop obj,
2358                                                     jint index,
2359                                                     address addr,
2360                                                     char type)
2361 {
2362   // for primitive fields only the index will be set
2363   static jvmtiHeapReferenceInfo reference_info = { 0 };
2364 
2365   AdvancedHeapWalkContext* context = advanced_context();
2366   assert(context->primitive_field_callback() != NULL, "no callback");
2367 
2368   // apply class filter
2369   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2370     return true;
2371   }
2372 
2373   CallbackWrapper wrapper(tag_map(), obj);
2374 
2375   // apply tag filter
2376   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2377                                  wrapper.klass_tag(),
2378                                  context->heap_filter())) {
2379     return true;
2380   }
2381 
2382   // the field index in the referrer
2383   reference_info.field.index = index;
2384 
2385   // map the type
2386   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2387 
2388   // setup the jvalue
2389   jvalue value;
2390   copy_to_jvalue(&value, addr, value_type);
2391 
2392   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2393   int res = (*cb)(ref_kind,
2394                   &reference_info,
2395                   wrapper.klass_tag(),
2396                   wrapper.obj_tag_p(),
2397                   value,
2398                   value_type,
2399                   (void*)user_data());
2400   return (!(res & JVMTI_VISIT_ABORT));
2401 }
2402 
2403 
2404 // instance field
2405 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
2406                                                              jint index,
2407                                                              address value,
2408                                                              char type) {
2409   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2410                                 obj,
2411                                 index,
2412                                 value,
2413                                 type);
2414 }
2415 
2416 // static field
2417 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
2418                                                            jint index,
2419                                                            address value,
2420                                                            char type) {
2421   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2422                                 obj,
2423                                 index,
2424                                 value,
2425                                 type);
2426 }
2427 
2428 // report a JNI local (root object) to the profiler
2429 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
2430   if (is_basic_heap_walk()) {
2431     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2432                                            thread_tag,
2433                                            depth,
2434                                            m,
2435                                            -1,
2436                                            obj);
2437   } else {
2438     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2439                                               thread_tag, tid,
2440                                               depth,
2441                                               m,
2442                                               (jlocation)-1,
2443                                               -1,
2444                                               obj);
2445   }
2446 }
2447 
2448 
2449 // report a local (stack reference, root object)
2450 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2451                                                    jlong tid,
2452                                                    jint depth,
2453                                                    jmethodID method,
2454                                                    jlocation bci,
2455                                                    jint slot,
2456                                                    oop obj) {
2457   if (is_basic_heap_walk()) {
2458     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2459                                            thread_tag,
2460                                            depth,
2461                                            method,
2462                                            slot,
2463                                            obj);
2464   } else {
2465     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2466                                               thread_tag,
2467                                               tid,
2468                                               depth,
2469                                               method,
2470                                               bci,
2471                                               slot,
2472                                               obj);
2473   }
2474 }
2475 
2476 // report an object referencing a class.
2477 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
2478   if (is_basic_heap_walk()) {
2479     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2480   } else {
2481     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2482   }
2483 }
2484 
2485 // report a class referencing its class loader.
2486 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
2487   if (is_basic_heap_walk()) {
2488     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2489   } else {
2490     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2491   }
2492 }
2493 
2494 // report a class referencing its signers.
2495 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
2496   if (is_basic_heap_walk()) {
2497     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2498   } else {
2499     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2500   }
2501 }
2502 
2503 // report a class referencing its protection domain..
2504 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
2505   if (is_basic_heap_walk()) {
2506     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2507   } else {
2508     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2509   }
2510 }
2511 
2512 // report a class referencing its superclass.
2513 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
2514   if (is_basic_heap_walk()) {
2515     // Send this to be consistent with past implementation
2516     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2517   } else {
2518     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2519   }
2520 }
2521 
2522 // report a class referencing one of its interfaces.
2523 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
2524   if (is_basic_heap_walk()) {
2525     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2526   } else {
2527     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2528   }
2529 }
2530 
2531 // report a class referencing one of its static fields.
2532 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
2533   if (is_basic_heap_walk()) {
2534     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2535   } else {
2536     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2537   }
2538 }
2539 
2540 // report an array referencing an element object
2541 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
2542   if (is_basic_heap_walk()) {
2543     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2544   } else {
2545     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2546   }
2547 }
2548 
2549 // report an object referencing an instance field object
2550 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
2551   if (is_basic_heap_walk()) {
2552     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2553   } else {
2554     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2555   }
2556 }
2557 
2558 // report an array referencing an element object
2559 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
2560   if (is_basic_heap_walk()) {
2561     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2562   } else {
2563     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2564   }
2565 }
2566 
2567 // A supporting closure used to process simple roots
2568 class SimpleRootsClosure : public OopClosure {
2569  private:
2570   jvmtiHeapReferenceKind _kind;
2571   bool _continue;
2572 
2573   jvmtiHeapReferenceKind root_kind()    { return _kind; }
2574 
2575  public:
2576   void set_kind(jvmtiHeapReferenceKind kind) {
2577     _kind = kind;
2578     _continue = true;
2579   }
2580 
2581   inline bool stopped() {
2582     return !_continue;
2583   }
2584 
2585   void do_oop(oop* obj_p) {
2586     // iteration has terminated
2587     if (stopped()) {
2588       return;
2589     }
2590 
2591     oop o = *obj_p;
2592     // ignore null
2593     if (o == NULL) {
2594       return;
2595     }
2596 
2597     assert(Universe::heap()->is_in_reserved(o), "should be impossible");
2598 
2599     jvmtiHeapReferenceKind kind = root_kind();
2600     if (kind == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
2601       // SystemDictionary::always_strong_oops_do reports the application
2602       // class loader as a root. We want this root to be reported as
2603       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
2604       if (!o->is_instance() || !InstanceKlass::cast(o->klass())->is_mirror_instance_klass()) {
2605         kind = JVMTI_HEAP_REFERENCE_OTHER;
2606       }
2607     }
2608 
2609     // some objects are ignored - in the case of simple
2610     // roots it's mostly Symbol*s that we are skipping
2611     // here.
2612     if (!ServiceUtil::visible_oop(o)) {
2613       return;
2614     }
2615 
2616     // invoke the callback
2617     _continue = CallbackInvoker::report_simple_root(kind, o);
2618 
2619   }
2620   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2621 };
2622 
2623 // A supporting closure used to process JNI locals
2624 class JNILocalRootsClosure : public OopClosure {
2625  private:
2626   jlong _thread_tag;
2627   jlong _tid;
2628   jint _depth;
2629   jmethodID _method;
2630   bool _continue;
2631  public:
2632   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2633     _thread_tag = thread_tag;
2634     _tid = tid;
2635     _depth = depth;
2636     _method = method;
2637     _continue = true;
2638   }
2639 
2640   inline bool stopped() {
2641     return !_continue;
2642   }
2643 
2644   void do_oop(oop* obj_p) {
2645     // iteration has terminated
2646     if (stopped()) {
2647       return;
2648     }
2649 
2650     oop o = *obj_p;
2651     // ignore null
2652     if (o == NULL) {
2653       return;
2654     }
2655 
2656     if (!ServiceUtil::visible_oop(o)) {
2657       return;
2658     }
2659 
2660     // invoke the callback
2661     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2662   }
2663   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2664 };
2665 
2666 
2667 // A VM operation to iterate over objects that are reachable from
2668 // a set of roots or an initial object.
2669 //
2670 // For VM_HeapWalkOperation the set of roots used is :-
2671 //
2672 // - All JNI global references
2673 // - All inflated monitors
2674 // - All classes loaded by the boot class loader (or all classes
2675 //     in the event that class unloading is disabled)
2676 // - All java threads
2677 // - For each java thread then all locals and JNI local references
2678 //      on the thread's execution stack
2679 // - All visible/explainable objects from Universes::oops_do
2680 //
2681 class VM_HeapWalkOperation: public VM_Operation {
2682  private:
2683   enum {
2684     initial_visit_stack_size = 4000
2685   };
2686 
2687   bool _is_advanced_heap_walk;                      // indicates FollowReferences
2688   JvmtiTagMap* _tag_map;
2689   Handle _initial_object;
2690   GrowableArray<oop>* _visit_stack;                 // the visit stack
2691 
2692   bool _collecting_heap_roots;                      // are we collecting roots
2693   bool _following_object_refs;                      // are we following object references
2694 
2695   bool _reporting_primitive_fields;                 // optional reporting
2696   bool _reporting_primitive_array_values;
2697   bool _reporting_string_values;
2698 
2699   GrowableArray<oop>* create_visit_stack() {
2700     return new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(initial_visit_stack_size, true);
2701   }
2702 
2703   // accessors
2704   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2705   JvmtiTagMap* tag_map() const                     { return _tag_map; }
2706   Handle initial_object() const                    { return _initial_object; }
2707 
2708   bool is_following_references() const             { return _following_object_refs; }
2709 
2710   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2711   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2712   bool is_reporting_string_values() const          { return _reporting_string_values; }
2713 
2714   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
2715 
2716   // iterate over the various object types
2717   inline bool iterate_over_array(oop o);
2718   inline bool iterate_over_type_array(oop o);
2719   inline bool iterate_over_class(oop o);
2720   inline bool iterate_over_object(oop o);
2721 
2722   // root collection
2723   inline bool collect_simple_roots();
2724   inline bool collect_stack_roots();
2725   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
2726 
2727   // visit an object
2728   inline bool visit(oop o);
2729 
2730  public:
2731   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2732                        Handle initial_object,
2733                        BasicHeapWalkContext callbacks,
2734                        const void* user_data);
2735 
2736   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2737                        Handle initial_object,
2738                        AdvancedHeapWalkContext callbacks,
2739                        const void* user_data);
2740 
2741   ~VM_HeapWalkOperation();
2742 
2743   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2744   void doit();
2745 };
2746 
2747 
2748 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2749                                            Handle initial_object,
2750                                            BasicHeapWalkContext callbacks,
2751                                            const void* user_data) {
2752   _is_advanced_heap_walk = false;
2753   _tag_map = tag_map;
2754   _initial_object = initial_object;
2755   _following_object_refs = (callbacks.object_ref_callback() != NULL);
2756   _reporting_primitive_fields = false;
2757   _reporting_primitive_array_values = false;
2758   _reporting_string_values = false;
2759   _visit_stack = create_visit_stack();
2760 
2761 
2762   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2763 }
2764 
2765 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2766                                            Handle initial_object,
2767                                            AdvancedHeapWalkContext callbacks,
2768                                            const void* user_data) {
2769   _is_advanced_heap_walk = true;
2770   _tag_map = tag_map;
2771   _initial_object = initial_object;
2772   _following_object_refs = true;
2773   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
2774   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
2775   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
2776   _visit_stack = create_visit_stack();
2777 
2778   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2779 }
2780 
2781 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2782   if (_following_object_refs) {
2783     assert(_visit_stack != NULL, "checking");
2784     delete _visit_stack;
2785     _visit_stack = NULL;
2786   }
2787 }
2788 
2789 // an array references its class and has a reference to
2790 // each element in the array
2791 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
2792   objArrayOop array = objArrayOop(o);
2793 
2794   // array reference to its class
2795   oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror();
2796   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2797     return false;
2798   }
2799 
2800   // iterate over the array and report each reference to a
2801   // non-null element
2802   for (int index=0; index<array->length(); index++) {
2803     oop elem = array->obj_at(index);
2804     if (elem == NULL) {
2805       continue;
2806     }
2807 
2808     // report the array reference o[index] = elem
2809     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2810       return false;
2811     }
2812   }
2813   return true;
2814 }
2815 
2816 // a type array references its class
2817 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
2818   Klass* k = o->klass();
2819   oop mirror = k->java_mirror();
2820   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2821     return false;
2822   }
2823 
2824   // report the array contents if required
2825   if (is_reporting_primitive_array_values()) {
2826     if (!CallbackInvoker::report_primitive_array_values(o)) {
2827       return false;
2828     }
2829   }
2830   return true;
2831 }
2832 
2833 #ifdef ASSERT
2834 // verify that a static oop field is in range
2835 static inline bool verify_static_oop(InstanceKlass* ik,
2836                                      oop mirror, int offset) {
2837   address obj_p = (address)mirror + offset;
2838   address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror);
2839   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
2840   assert(end >= start, "sanity check");
2841 
2842   if (obj_p >= start && obj_p < end) {
2843     return true;
2844   } else {
2845     return false;
2846   }
2847 }
2848 #endif // #ifdef ASSERT
2849 
2850 // a class references its super class, interfaces, class loader, ...
2851 // and finally its static fields
2852 inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) {
2853   int i;
2854   Klass* klass = java_lang_Class::as_Klass(java_class);
2855 
2856   if (klass->is_instance_klass()) {
2857     InstanceKlass* ik = InstanceKlass::cast(klass);
2858 
2859     // Ignore the class if it hasn't been initialized yet
2860     if (!ik->is_linked()) {
2861       return true;
2862     }
2863 
2864     // get the java mirror
2865     oop mirror = klass->java_mirror();
2866 
2867     // super (only if something more interesting than java.lang.Object)
2868     Klass* java_super = ik->java_super();
2869     if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
2870       oop super = java_super->java_mirror();
2871       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2872         return false;
2873       }
2874     }
2875 
2876     // class loader
2877     oop cl = ik->class_loader();
2878     if (cl != NULL) {
2879       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2880         return false;
2881       }
2882     }
2883 
2884     // protection domain
2885     oop pd = ik->protection_domain();
2886     if (pd != NULL) {
2887       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2888         return false;
2889       }
2890     }
2891 
2892     // signers
2893     oop signers = ik->signers();
2894     if (signers != NULL) {
2895       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2896         return false;
2897       }
2898     }
2899 
2900     // references from the constant pool
2901     {
2902       ConstantPool* pool = ik->constants();
2903       for (int i = 1; i < pool->length(); i++) {
2904         constantTag tag = pool->tag_at(i).value();
2905         if (tag.is_string() || tag.is_klass()) {
2906           oop entry;
2907           if (tag.is_string()) {
2908             entry = pool->resolved_string_at(i);
2909             // If the entry is non-null it is resolved.
2910             if (entry == NULL) continue;
2911           } else {
2912             entry = pool->resolved_klass_at(i)->java_mirror();
2913           }
2914           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
2915             return false;
2916           }
2917         }
2918       }
2919     }
2920 
2921     // interfaces
2922     // (These will already have been reported as references from the constant pool
2923     //  but are specified by IterateOverReachableObjects and must be reported).
2924     Array<Klass*>* interfaces = ik->local_interfaces();
2925     for (i = 0; i < interfaces->length(); i++) {
2926       oop interf = ((Klass*)interfaces->at(i))->java_mirror();
2927       if (interf == NULL) {
2928         continue;
2929       }
2930       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
2931         return false;
2932       }
2933     }
2934 
2935     // iterate over the static fields
2936 
2937     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
2938     for (i=0; i<field_map->field_count(); i++) {
2939       ClassFieldDescriptor* field = field_map->field_at(i);
2940       char type = field->field_type();
2941       if (!is_primitive_field_type(type)) {
2942         oop fld_o = mirror->obj_field(field->field_offset());
2943         assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
2944         if (fld_o != NULL) {
2945           int slot = field->field_index();
2946           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
2947             delete field_map;
2948             return false;
2949           }
2950         }
2951       } else {
2952          if (is_reporting_primitive_fields()) {
2953            address addr = (address)mirror + field->field_offset();
2954            int slot = field->field_index();
2955            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
2956              delete field_map;
2957              return false;
2958           }
2959         }
2960       }
2961     }
2962     delete field_map;
2963 
2964     return true;
2965   }
2966 
2967   return true;
2968 }
2969 
2970 // an object references a class and its instance fields
2971 // (static fields are ignored here as we report these as
2972 // references from the class).
2973 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
2974   // reference to the class
2975   if (!CallbackInvoker::report_class_reference(o, o->klass()->java_mirror())) {
2976     return false;
2977   }
2978 
2979   // iterate over instance fields
2980   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
2981   for (int i=0; i<field_map->field_count(); i++) {
2982     ClassFieldDescriptor* field = field_map->field_at(i);
2983     char type = field->field_type();
2984     if (!is_primitive_field_type(type)) {
2985       oop fld_o = o->obj_field(field->field_offset());
2986       // ignore any objects that aren't visible to profiler
2987       if (fld_o != NULL && ServiceUtil::visible_oop(fld_o)) {
2988         assert(Universe::heap()->is_in_reserved(fld_o), "unsafe code should not "
2989                "have references to Klass* anymore");
2990         int slot = field->field_index();
2991         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
2992           return false;
2993         }
2994       }
2995     } else {
2996       if (is_reporting_primitive_fields()) {
2997         // primitive instance field
2998         address addr = (address)o + field->field_offset();
2999         int slot = field->field_index();
3000         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
3001           return false;
3002         }
3003       }
3004     }
3005   }
3006 
3007   // if the object is a java.lang.String
3008   if (is_reporting_string_values() &&
3009       o->klass() == SystemDictionary::String_klass()) {
3010     if (!CallbackInvoker::report_string_value(o)) {
3011       return false;
3012     }
3013   }
3014   return true;
3015 }
3016 
3017 
3018 // Collects all simple (non-stack) roots except for threads;
3019 // threads are handled in collect_stack_roots() as an optimization.
3020 // if there's a heap root callback provided then the callback is
3021 // invoked for each simple root.
3022 // if an object reference callback is provided then all simple
3023 // roots are pushed onto the marking stack so that they can be
3024 // processed later
3025 //
3026 inline bool VM_HeapWalkOperation::collect_simple_roots() {
3027   SimpleRootsClosure blk;
3028 
3029   // JNI globals
3030   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
3031   JNIHandles::oops_do(&blk);
3032   if (blk.stopped()) {
3033     return false;
3034   }
3035 
3036   // Preloaded classes and loader from the system dictionary
3037   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
3038   SystemDictionary::always_strong_oops_do(&blk);
3039   ClassLoaderDataGraph::always_strong_oops_do(&blk, false);
3040   if (blk.stopped()) {
3041     return false;
3042   }
3043 
3044   // Inflated monitors
3045   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
3046   ObjectSynchronizer::oops_do(&blk);
3047   if (blk.stopped()) {
3048     return false;
3049   }
3050 
3051   // threads are now handled in collect_stack_roots()
3052 
3053   // Other kinds of roots maintained by HotSpot
3054   // Many of these won't be visible but others (such as instances of important
3055   // exceptions) will be visible.
3056   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3057   Universe::oops_do(&blk);
3058 
3059   // If there are any non-perm roots in the code cache, visit them.
3060   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3061   CodeBlobToOopClosure look_in_blobs(&blk, !CodeBlobToOopClosure::FixRelocations);
3062   CodeCache::scavenge_root_nmethods_do(&look_in_blobs);
3063 
3064   return true;
3065 }
3066 
3067 // Walk the stack of a given thread and find all references (locals
3068 // and JNI calls) and report these as stack references
3069 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
3070                                                       JNILocalRootsClosure* blk)
3071 {
3072   oop threadObj = java_thread->threadObj();
3073   assert(threadObj != NULL, "sanity check");
3074 
3075   // only need to get the thread's tag once per thread
3076   jlong thread_tag = tag_for(_tag_map, threadObj);
3077 
3078   // also need the thread id
3079   jlong tid = java_lang_Thread::thread_id(threadObj);
3080 
3081 
3082   if (java_thread->has_last_Java_frame()) {
3083 
3084     // vframes are resource allocated
3085     Thread* current_thread = Thread::current();
3086     ResourceMark rm(current_thread);
3087     HandleMark hm(current_thread);
3088 
3089     RegisterMap reg_map(java_thread);
3090     frame f = java_thread->last_frame();
3091     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3092 
3093     bool is_top_frame = true;
3094     int depth = 0;
3095     frame* last_entry_frame = NULL;
3096 
3097     while (vf != NULL) {
3098       if (vf->is_java_frame()) {
3099 
3100         // java frame (interpreted, compiled, ...)
3101         javaVFrame *jvf = javaVFrame::cast(vf);
3102 
3103         // the jmethodID
3104         jmethodID method = jvf->method()->jmethod_id();
3105 
3106         if (!(jvf->method()->is_native())) {
3107           jlocation bci = (jlocation)jvf->bci();
3108           StackValueCollection* locals = jvf->locals();
3109           for (int slot=0; slot<locals->size(); slot++) {
3110             if (locals->at(slot)->type() == T_OBJECT) {
3111               oop o = locals->obj_at(slot)();
3112               if (o == NULL) {
3113                 continue;
3114               }
3115 
3116               // stack reference
3117               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3118                                                    bci, slot, o)) {
3119                 return false;
3120               }
3121             }
3122           }
3123 
3124           StackValueCollection* exprs = jvf->expressions();
3125           for (int index=0; index < exprs->size(); index++) {
3126             if (exprs->at(index)->type() == T_OBJECT) {
3127               oop o = exprs->obj_at(index)();
3128               if (o == NULL) {
3129                 continue;
3130               }
3131 
3132               // stack reference
3133               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3134                                                    bci, locals->size() + index, o)) {
3135                 return false;
3136               }
3137             }
3138           }
3139 
3140           // Follow oops from compiled nmethod
3141           if (jvf->cb() != NULL && jvf->cb()->is_nmethod()) {
3142             blk->set_context(thread_tag, tid, depth, method);
3143             jvf->cb()->as_nmethod()->oops_do(blk);
3144           }
3145         } else {
3146           blk->set_context(thread_tag, tid, depth, method);
3147           if (is_top_frame) {
3148             // JNI locals for the top frame.
3149             java_thread->active_handles()->oops_do(blk);
3150           } else {
3151             if (last_entry_frame != NULL) {
3152               // JNI locals for the entry frame
3153               assert(last_entry_frame->is_entry_frame(), "checking");
3154               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
3155             }
3156           }
3157         }
3158         last_entry_frame = NULL;
3159         depth++;
3160       } else {
3161         // externalVFrame - for an entry frame then we report the JNI locals
3162         // when we find the corresponding javaVFrame
3163         frame* fr = vf->frame_pointer();
3164         assert(fr != NULL, "sanity check");
3165         if (fr->is_entry_frame()) {
3166           last_entry_frame = fr;
3167         }
3168       }
3169 
3170       vf = vf->sender();
3171       is_top_frame = false;
3172     }
3173   } else {
3174     // no last java frame but there may be JNI locals
3175     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
3176     java_thread->active_handles()->oops_do(blk);
3177   }
3178   return true;
3179 }
3180 
3181 
3182 // Collects the simple roots for all threads and collects all
3183 // stack roots - for each thread it walks the execution
3184 // stack to find all references and local JNI refs.
3185 inline bool VM_HeapWalkOperation::collect_stack_roots() {
3186   JNILocalRootsClosure blk;
3187   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
3188     oop threadObj = thread->threadObj();
3189     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3190       // Collect the simple root for this thread before we
3191       // collect its stack roots
3192       if (!CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD,
3193                                                threadObj)) {
3194         return false;
3195       }
3196       if (!collect_stack_roots(thread, &blk)) {
3197         return false;
3198       }
3199     }
3200   }
3201   return true;
3202 }
3203 
3204 // visit an object
3205 // first mark the object as visited
3206 // second get all the outbound references from this object (in other words, all
3207 // the objects referenced by this object).
3208 //
3209 bool VM_HeapWalkOperation::visit(oop o) {
3210   // mark object as visited
3211   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
3212   ObjectMarker::mark(o);
3213 
3214   // instance
3215   if (o->is_instance()) {
3216     if (o->klass() == SystemDictionary::Class_klass()) {
3217       if (!java_lang_Class::is_primitive(o)) {
3218         // a java.lang.Class
3219         return iterate_over_class(o);
3220       }
3221     } else {
3222       return iterate_over_object(o);
3223     }
3224   }
3225 
3226   // object array
3227   if (o->is_objArray()) {
3228     return iterate_over_array(o);
3229   }
3230 
3231   // type array
3232   if (o->is_typeArray()) {
3233     return iterate_over_type_array(o);
3234   }
3235 
3236   return true;
3237 }
3238 
3239 void VM_HeapWalkOperation::doit() {
3240   ResourceMark rm;
3241   ObjectMarkerController marker;
3242   ClassFieldMapCacheMark cm;
3243 
3244   assert(visit_stack()->is_empty(), "visit stack must be empty");
3245 
3246   // the heap walk starts with an initial object or the heap roots
3247   if (initial_object().is_null()) {
3248     // If either collect_stack_roots() or collect_simple_roots()
3249     // returns false at this point, then there are no mark bits
3250     // to reset.
3251     ObjectMarker::set_needs_reset(false);
3252 
3253     // Calling collect_stack_roots() before collect_simple_roots()
3254     // can result in a big performance boost for an agent that is
3255     // focused on analyzing references in the thread stacks.
3256     if (!collect_stack_roots()) return;
3257 
3258     if (!collect_simple_roots()) return;
3259 
3260     // no early return so enable heap traversal to reset the mark bits
3261     ObjectMarker::set_needs_reset(true);
3262   } else {
3263     visit_stack()->push(initial_object()());
3264   }
3265 
3266   // object references required
3267   if (is_following_references()) {
3268 
3269     // visit each object until all reachable objects have been
3270     // visited or the callback asked to terminate the iteration.
3271     while (!visit_stack()->is_empty()) {
3272       oop o = visit_stack()->pop();
3273       if (!ObjectMarker::visited(o)) {
3274         if (!visit(o)) {
3275           break;
3276         }
3277       }
3278     }
3279   }
3280 }
3281 
3282 // iterate over all objects that are reachable from a set of roots
3283 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3284                                                  jvmtiStackReferenceCallback stack_ref_callback,
3285                                                  jvmtiObjectReferenceCallback object_ref_callback,
3286                                                  const void* user_data) {
3287   MutexLocker ml(Heap_lock);
3288   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3289   VM_HeapWalkOperation op(this, Handle(), context, user_data);
3290   VMThread::execute(&op);
3291 }
3292 
3293 // iterate over all objects that are reachable from a given object
3294 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3295                                                              jvmtiObjectReferenceCallback object_ref_callback,
3296                                                              const void* user_data) {
3297   oop obj = JNIHandles::resolve(object);
3298   Handle initial_object(Thread::current(), obj);
3299 
3300   MutexLocker ml(Heap_lock);
3301   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
3302   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3303   VMThread::execute(&op);
3304 }
3305 
3306 // follow references from an initial object or the GC roots
3307 void JvmtiTagMap::follow_references(jint heap_filter,
3308                                     Klass* klass,
3309                                     jobject object,
3310                                     const jvmtiHeapCallbacks* callbacks,
3311                                     const void* user_data)
3312 {
3313   oop obj = JNIHandles::resolve(object);
3314   Handle initial_object(Thread::current(), obj);
3315 
3316   MutexLocker ml(Heap_lock);
3317   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3318   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3319   VMThread::execute(&op);
3320 }
3321 
3322 
3323 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
3324   // No locks during VM bring-up (0 threads) and no safepoints after main
3325   // thread creation and before VMThread creation (1 thread); initial GC
3326   // verification can happen in that window which gets to here.
3327   assert(Threads::number_of_threads() <= 1 ||
3328          SafepointSynchronize::is_at_safepoint(),
3329          "must be executed at a safepoint");
3330   if (JvmtiEnv::environments_might_exist()) {
3331     JvmtiEnvIterator it;
3332     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3333       JvmtiTagMap* tag_map = env->tag_map();
3334       if (tag_map != NULL && !tag_map->is_empty()) {
3335         tag_map->do_weak_oops(is_alive, f);
3336       }
3337     }
3338   }
3339 }
3340 
3341 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
3342 
3343   // does this environment have the OBJECT_FREE event enabled
3344   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
3345 
3346   // counters used for trace message
3347   int freed = 0;
3348   int moved = 0;
3349 
3350   JvmtiTagHashmap* hashmap = this->hashmap();
3351 
3352   // reenable sizing (if disabled)
3353   hashmap->set_resizing_enabled(true);
3354 
3355   // if the hashmap is empty then we can skip it
3356   if (hashmap->_entry_count == 0) {
3357     return;
3358   }
3359 
3360   // now iterate through each entry in the table
3361 
3362   JvmtiTagHashmapEntry** table = hashmap->table();
3363   int size = hashmap->size();
3364 
3365   JvmtiTagHashmapEntry* delayed_add = NULL;
3366 
3367   for (int pos = 0; pos < size; ++pos) {
3368     JvmtiTagHashmapEntry* entry = table[pos];
3369     JvmtiTagHashmapEntry* prev = NULL;
3370 
3371     while (entry != NULL) {
3372       JvmtiTagHashmapEntry* next = entry->next();
3373 
3374       // has object been GC'ed
3375       if (!is_alive->do_object_b(entry->object_peek())) {
3376         // grab the tag
3377         jlong tag = entry->tag();
3378         guarantee(tag != 0, "checking");
3379 
3380         // remove GC'ed entry from hashmap and return the
3381         // entry to the free list
3382         hashmap->remove(prev, pos, entry);
3383         destroy_entry(entry);
3384 
3385         // post the event to the profiler
3386         if (post_object_free) {
3387           JvmtiExport::post_object_free(env(), tag);
3388         }
3389 
3390         ++freed;
3391       } else {
3392         f->do_oop(entry->object_addr());
3393         oop new_oop = entry->object_peek();
3394 
3395         // if the object has moved then re-hash it and move its
3396         // entry to its new location.
3397         unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
3398         if (new_pos != (unsigned int)pos) {
3399           if (prev == NULL) {
3400             table[pos] = next;
3401           } else {
3402             prev->set_next(next);
3403           }
3404           if (new_pos < (unsigned int)pos) {
3405             entry->set_next(table[new_pos]);
3406             table[new_pos] = entry;
3407           } else {
3408             // Delay adding this entry to it's new position as we'd end up
3409             // hitting it again during this iteration.
3410             entry->set_next(delayed_add);
3411             delayed_add = entry;
3412           }
3413           moved++;
3414         } else {
3415           // object didn't move
3416           prev = entry;
3417         }
3418       }
3419 
3420       entry = next;
3421     }
3422   }
3423 
3424   // Re-add all the entries which were kept aside
3425   while (delayed_add != NULL) {
3426     JvmtiTagHashmapEntry* next = delayed_add->next();
3427     unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object_peek(), size);
3428     delayed_add->set_next(table[pos]);
3429     table[pos] = delayed_add;
3430     delayed_add = next;
3431   }
3432 
3433   log_debug(jvmti, objecttagging)("(%d->%d, %d freed, %d total moves)",
3434                                   hashmap->_entry_count + freed, hashmap->_entry_count, freed, moved);
3435 }