1 /*
   2  * Copyright (c) 2010, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "runtime/advancedThresholdPolicy.hpp"
  28 #include "runtime/handles.inline.hpp"
  29 #include "runtime/simpleThresholdPolicy.inline.hpp"
  30 #if INCLUDE_JVMCI
  31 #include "jvmci/jvmciRuntime.hpp"
  32 #endif
  33 
  34 #ifdef TIERED
  35 // Print an event.
  36 void AdvancedThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
  37                                              int bci, CompLevel level) {
  38   tty->print(" rate=");
  39   if (mh->prev_time() == 0) tty->print("n/a");
  40   else tty->print("%f", mh->rate());
  41 
  42   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  43                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  44 
  45 }
  46 
  47 void AdvancedThresholdPolicy::initialize() {
  48   int count = CICompilerCount;
  49 #ifdef _LP64
  50   // Turn on ergonomic compiler count selection
  51   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  52     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  53   }
  54   if (CICompilerCountPerCPU) {
  55     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  56     int log_cpu = log2_intptr(os::active_processor_count());
  57     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
  58     count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
  59     FLAG_SET_ERGO(intx, CICompilerCount, count);
  60   }
  61 #else
  62   // On 32-bit systems, the number of compiler threads is limited to 3.
  63   // On these systems, the virtual address space available to the JVM
  64   // is usually limited to 2-4 GB (the exact value depends on the platform).
  65   // As the compilers (especially C2) can consume a large amount of
  66   // memory, scaling the number of compiler threads with the number of
  67   // available cores can result in the exhaustion of the address space
  68   /// available to the VM and thus cause the VM to crash.
  69   if (FLAG_IS_DEFAULT(CICompilerCount)) {
  70     count = 3;
  71     FLAG_SET_ERGO(intx, CICompilerCount, count);
  72   }
  73 #endif
  74 
  75   if (TieredStopAtLevel < CompLevel_full_optimization) {
  76     // No C2 compiler thread required
  77     set_c1_count(count);
  78   } else {
  79     set_c1_count(MAX2(count / 3, 1));
  80     set_c2_count(MAX2(count - c1_count(), 1));
  81   }
  82   assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
  83 
  84   // Some inlining tuning
  85 #ifdef X86
  86   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  87     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  88   }
  89 #endif
  90 
  91 #if defined SPARC || defined AARCH64
  92   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  93     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  94   }
  95 #endif
  96 
  97   set_increase_threshold_at_ratio();
  98   set_start_time(os::javaTimeMillis());
  99 }
 100 
 101 // update_rate() is called from select_task() while holding a compile queue lock.
 102 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
 103   // Skip update if counters are absent.
 104   // Can't allocate them since we are holding compile queue lock.
 105   if (m->method_counters() == NULL)  return;
 106 
 107   if (is_old(m)) {
 108     // We don't remove old methods from the queue,
 109     // so we can just zero the rate.
 110     m->set_rate(0);
 111     return;
 112   }
 113 
 114   // We don't update the rate if we've just came out of a safepoint.
 115   // delta_s is the time since last safepoint in milliseconds.
 116   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 117   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
 118   // How many events were there since the last time?
 119   int event_count = m->invocation_count() + m->backedge_count();
 120   int delta_e = event_count - m->prev_event_count();
 121 
 122   // We should be running for at least 1ms.
 123   if (delta_s >= TieredRateUpdateMinTime) {
 124     // And we must've taken the previous point at least 1ms before.
 125     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 126       m->set_prev_time(t);
 127       m->set_prev_event_count(event_count);
 128       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 129     } else {
 130       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 131         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 132         m->set_rate(0);
 133       }
 134     }
 135   }
 136 }
 137 
 138 // Check if this method has been stale from a given number of milliseconds.
 139 // See select_task().
 140 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 141   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 142   jlong delta_t = t - m->prev_time();
 143   if (delta_t > timeout && delta_s > timeout) {
 144     int event_count = m->invocation_count() + m->backedge_count();
 145     int delta_e = event_count - m->prev_event_count();
 146     // Return true if there were no events.
 147     return delta_e == 0;
 148   }
 149   return false;
 150 }
 151 
 152 // We don't remove old methods from the compile queue even if they have
 153 // very low activity. See select_task().
 154 bool AdvancedThresholdPolicy::is_old(Method* method) {
 155   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 156 }
 157 
 158 double AdvancedThresholdPolicy::weight(Method* method) {
 159   return (double)(method->rate() + 1) *
 160     (method->invocation_count() + 1) * (method->backedge_count() + 1);
 161 }
 162 
 163 // Apply heuristics and return true if x should be compiled before y
 164 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
 165   if (x->highest_comp_level() > y->highest_comp_level()) {
 166     // recompilation after deopt
 167     return true;
 168   } else
 169     if (x->highest_comp_level() == y->highest_comp_level()) {
 170       if (weight(x) > weight(y)) {
 171         return true;
 172       }
 173     }
 174   return false;
 175 }
 176 
 177 // Is method profiled enough?
 178 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
 179   MethodData* mdo = method->method_data();
 180   if (mdo != NULL) {
 181     int i = mdo->invocation_count_delta();
 182     int b = mdo->backedge_count_delta();
 183     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
 184   }
 185   return false;
 186 }
 187 
 188 // Called with the queue locked and with at least one element
 189 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 190   CompileTask *max_blocking_task = NULL;
 191   CompileTask *max_task = NULL;
 192   Method* max_method = NULL;
 193   jlong t = os::javaTimeMillis();
 194   // Iterate through the queue and find a method with a maximum rate.
 195   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 196     CompileTask* next_task = task->next();
 197     Method* method = task->method();
 198     update_rate(t, method);
 199     if (max_task == NULL) {
 200       max_task = task;
 201       max_method = method;
 202     } else {
 203       // If a method has been stale for some time, remove it from the queue.
 204       // Blocking tasks and tasks submitted from whitebox API don't become stale
 205       if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 206         if (PrintTieredEvents) {
 207           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 208         }
 209         compile_queue->remove_and_mark_stale(task);
 210         method->clear_queued_for_compilation();
 211         task = next_task;
 212         continue;
 213       }
 214 
 215       // Select a method with a higher rate
 216       if (compare_methods(method, max_method)) {
 217         max_task = task;
 218         max_method = method;
 219       }
 220     }
 221 
 222     if (task->is_blocking()) {
 223       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 224         max_blocking_task = task;
 225       }
 226     }
 227 
 228     task = next_task;
 229   }
 230 
 231   if (max_blocking_task != NULL) {
 232     // In blocking compilation mode, the CompileBroker will make
 233     // compilations submitted by a JVMCI compiler thread non-blocking. These
 234     // compilations should be scheduled after all blocking compilations
 235     // to service non-compiler related compilations sooner and reduce the
 236     // chance of such compilations timing out.
 237     max_task = max_blocking_task;
 238     max_method = max_task->method();
 239   }
 240 
 241   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
 242       && is_method_profiled(max_method)) {
 243     max_task->set_comp_level(CompLevel_limited_profile);
 244     if (PrintTieredEvents) {
 245       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 246     }
 247   }
 248 
 249   return max_task;
 250 }
 251 
 252 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 253   double queue_size = CompileBroker::queue_size(level);
 254   int comp_count = compiler_count(level);
 255   double k = queue_size / (feedback_k * comp_count) + 1;
 256 
 257   // Increase C1 compile threshold when the code cache is filled more
 258   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 259   // The main intention is to keep enough free space for C2 compiled code
 260   // to achieve peak performance if the code cache is under stress.
 261   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 262     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 263     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 264       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 265     }
 266   }
 267   return k;
 268 }
 269 
 270 // Call and loop predicates determine whether a transition to a higher
 271 // compilation level should be performed (pointers to predicate functions
 272 // are passed to common()).
 273 // Tier?LoadFeedback is basically a coefficient that determines of
 274 // how many methods per compiler thread can be in the queue before
 275 // the threshold values double.
 276 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 277   switch(cur_level) {
 278   case CompLevel_aot: {
 279     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 280     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
 281   }
 282   case CompLevel_none:
 283   case CompLevel_limited_profile: {
 284     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 285     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 286   }
 287   case CompLevel_full_profile: {
 288     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 289     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 290   }
 291   default:
 292     return true;
 293   }
 294 }
 295 
 296 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 297   switch(cur_level) {
 298   case CompLevel_aot: {
 299     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 300     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
 301   }
 302   case CompLevel_none:
 303   case CompLevel_limited_profile: {
 304     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 305     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 306   }
 307   case CompLevel_full_profile: {
 308     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 309     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 310   }
 311   default:
 312     return true;
 313   }
 314 }
 315 
 316 // If a method is old enough and is still in the interpreter we would want to
 317 // start profiling without waiting for the compiled method to arrive.
 318 // We also take the load on compilers into the account.
 319 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 320   if (cur_level == CompLevel_none &&
 321       CompileBroker::queue_size(CompLevel_full_optimization) <=
 322       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 323     int i = method->invocation_count();
 324     int b = method->backedge_count();
 325     double k = Tier0ProfilingStartPercentage / 100.0;
 326     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
 327   }
 328   return false;
 329 }
 330 
 331 // Inlining control: if we're compiling a profiled method with C1 and the callee
 332 // is known to have OSRed in a C2 version, don't inline it.
 333 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 334   CompLevel comp_level = (CompLevel)env->comp_level();
 335   if (comp_level == CompLevel_full_profile ||
 336       comp_level == CompLevel_limited_profile) {
 337     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 338   }
 339   return false;
 340 }
 341 
 342 // Create MDO if necessary.
 343 void AdvancedThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
 344   if (mh->is_native() ||
 345       mh->is_abstract() ||
 346       mh->is_accessor() ||
 347       mh->is_constant_getter()) {
 348     return;
 349   }
 350   if (mh->method_data() == NULL) {
 351     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 352   }
 353 }
 354 
 355 
 356 /*
 357  * Method states:
 358  *   0 - interpreter (CompLevel_none)
 359  *   1 - pure C1 (CompLevel_simple)
 360  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 361  *   3 - C1 with full profiling (CompLevel_full_profile)
 362  *   4 - C2 (CompLevel_full_optimization)
 363  *
 364  * Common state transition patterns:
 365  * a. 0 -> 3 -> 4.
 366  *    The most common path. But note that even in this straightforward case
 367  *    profiling can start at level 0 and finish at level 3.
 368  *
 369  * b. 0 -> 2 -> 3 -> 4.
 370  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
 371  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 372  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 373  *
 374  * c. 0 -> (3->2) -> 4.
 375  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 376  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 377  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 378  *    without full profiling while c2 is compiling.
 379  *
 380  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 381  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 382  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 383  *
 384  * e. 0 -> 4.
 385  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 386  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 387  *    the compiled version already exists).
 388  *
 389  * Note that since state 0 can be reached from any other state via deoptimization different loops
 390  * are possible.
 391  *
 392  */
 393 
 394 // Common transition function. Given a predicate determines if a method should transition to another level.
 395 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 396   CompLevel next_level = cur_level;
 397   int i = method->invocation_count();
 398   int b = method->backedge_count();
 399 
 400   if (is_trivial(method)) {
 401     next_level = CompLevel_simple;
 402   } else {
 403     switch(cur_level) {
 404       default: break;
 405       case CompLevel_aot: {
 406       // If we were at full profile level, would we switch to full opt?
 407       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 408         next_level = CompLevel_full_optimization;
 409       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 410                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 411                                (this->*p)(i, b, cur_level, method))) {
 412         next_level = CompLevel_full_profile;
 413       }
 414     }
 415     break;
 416     case CompLevel_none:
 417       // If we were at full profile level, would we switch to full opt?
 418       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 419         next_level = CompLevel_full_optimization;
 420       } else if ((this->*p)(i, b, cur_level, method)) {
 421 #if INCLUDE_JVMCI
 422         if (EnableJVMCI && UseJVMCICompiler) {
 423           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 424           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
 425           // compilation method and all potential inlinees have mature profiles (which
 426           // includes type profiling). If it sees immature profiles, JVMCI's inliner
 427           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
 428           // exploring/inlining too many graphs). Since a rewrite of the inliner is
 429           // in progress, we simply disable the dialing back heuristic for now and will
 430           // revisit this decision once the new inliner is completed.
 431           next_level = CompLevel_full_profile;
 432         } else
 433 #endif
 434         {
 435           // C1-generated fully profiled code is about 30% slower than the limited profile
 436           // code that has only invocation and backedge counters. The observation is that
 437           // if C2 queue is large enough we can spend too much time in the fully profiled code
 438           // while waiting for C2 to pick the method from the queue. To alleviate this problem
 439           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 440           // we choose to compile a limited profiled version and then recompile with full profiling
 441           // when the load on C2 goes down.
 442           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 443               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 444             next_level = CompLevel_limited_profile;
 445           } else {
 446             next_level = CompLevel_full_profile;
 447           }
 448         }
 449       }
 450       break;
 451     case CompLevel_limited_profile:
 452       if (is_method_profiled(method)) {
 453         // Special case: we got here because this method was fully profiled in the interpreter.
 454         next_level = CompLevel_full_optimization;
 455       } else {
 456         MethodData* mdo = method->method_data();
 457         if (mdo != NULL) {
 458           if (mdo->would_profile()) {
 459             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 460                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 461                                      (this->*p)(i, b, cur_level, method))) {
 462               next_level = CompLevel_full_profile;
 463             }
 464           } else {
 465             next_level = CompLevel_full_optimization;
 466           }
 467         } else {
 468           // If there is no MDO we need to profile
 469           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 470                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 471                                    (this->*p)(i, b, cur_level, method))) {
 472             next_level = CompLevel_full_profile;
 473           }
 474         }
 475       }
 476       break;
 477     case CompLevel_full_profile:
 478       {
 479         MethodData* mdo = method->method_data();
 480         if (mdo != NULL) {
 481           if (mdo->would_profile()) {
 482             int mdo_i = mdo->invocation_count_delta();
 483             int mdo_b = mdo->backedge_count_delta();
 484             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 485               next_level = CompLevel_full_optimization;
 486             }
 487           } else {
 488             next_level = CompLevel_full_optimization;
 489           }
 490         }
 491       }
 492       break;
 493     }
 494   }
 495   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 496 }
 497 
 498 // Determine if a method should be compiled with a normal entry point at a different level.
 499 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
 500   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 501                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
 502   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 503 
 504   // If OSR method level is greater than the regular method level, the levels should be
 505   // equalized by raising the regular method level in order to avoid OSRs during each
 506   // invocation of the method.
 507   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 508     MethodData* mdo = method->method_data();
 509     guarantee(mdo != NULL, "MDO should not be NULL");
 510     if (mdo->invocation_count() >= 1) {
 511       next_level = CompLevel_full_optimization;
 512     }
 513   } else {
 514     next_level = MAX2(osr_level, next_level);
 515   }
 516 #if INCLUDE_JVMCI
 517   if (UseJVMCICompiler) {
 518     next_level = JVMCIRuntime::adjust_comp_level(method, false, next_level, thread);
 519   }
 520 #endif
 521   return next_level;
 522 }
 523 
 524 // Determine if we should do an OSR compilation of a given method.
 525 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread * thread) {
 526   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
 527   if (cur_level == CompLevel_none) {
 528     // If there is a live OSR method that means that we deopted to the interpreter
 529     // for the transition.
 530     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 531     if (osr_level > CompLevel_none) {
 532       return osr_level;
 533     }
 534   }
 535 #if INCLUDE_JVMCI
 536   if (UseJVMCICompiler) {
 537     next_level = JVMCIRuntime::adjust_comp_level(method, true, next_level, thread);
 538   }
 539 #endif
 540   return next_level;
 541 }
 542 
 543 // Update the rate and submit compile
 544 void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 545   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 546   update_rate(os::javaTimeMillis(), mh());
 547   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
 548 }
 549 
 550 bool AdvancedThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
 551   if (UseAOT && !delay_compilation_during_startup()) {
 552     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
 553       // If the current level is full profile or interpreter and we're switching to any other level,
 554       // activate the AOT code back first so that we won't waste time overprofiling.
 555       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 556       // Fall through for JIT compilation.
 557     }
 558     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
 559       // If the next level is limited profile, use the aot code (if there is any),
 560       // since it's essentially the same thing.
 561       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 562       // Not need to JIT, we're done.
 563       return true;
 564     }
 565   }
 566   return false;
 567 }
 568 
 569 
 570 // Handle the invocation event.
 571 void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 572                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 573   if (should_create_mdo(mh(), level)) {
 574     create_mdo(mh, thread);
 575   }
 576   CompLevel next_level = call_event(mh(), level, thread);
 577   if (next_level != level) {
 578     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
 579       // No JITting necessary
 580       return;
 581     }
 582     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 583       compile(mh, InvocationEntryBci, next_level, thread);
 584     }
 585   }
 586 }
 587 
 588 // Handle the back branch event. Notice that we can compile the method
 589 // with a regular entry from here.
 590 void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 591                                                        int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 592   if (should_create_mdo(mh(), level)) {
 593     create_mdo(mh, thread);
 594   }
 595   // Check if MDO should be created for the inlined method
 596   if (should_create_mdo(imh(), level)) {
 597     create_mdo(imh, thread);
 598   }
 599 
 600   if (is_compilation_enabled()) {
 601     CompLevel next_osr_level = loop_event(imh(), level, thread);
 602     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 603     // At the very least compile the OSR version
 604     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 605       compile(imh, bci, next_osr_level, thread);
 606     }
 607 
 608     // Use loop event as an opportunity to also check if there's been
 609     // enough calls.
 610     CompLevel cur_level, next_level;
 611     if (mh() != imh()) { // If there is an enclosing method
 612       if (level == CompLevel_aot) {
 613         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
 614         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
 615           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
 616         }
 617       } else {
 618         // Current loop event level is not AOT
 619         guarantee(nm != NULL, "Should have nmethod here");
 620         cur_level = comp_level(mh());
 621         next_level = call_event(mh(), cur_level, thread);
 622 
 623         if (max_osr_level == CompLevel_full_optimization) {
 624           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 625           bool make_not_entrant = false;
 626           if (nm->is_osr_method()) {
 627             // This is an osr method, just make it not entrant and recompile later if needed
 628             make_not_entrant = true;
 629           } else {
 630             if (next_level != CompLevel_full_optimization) {
 631               // next_level is not full opt, so we need to recompile the
 632               // enclosing method without the inlinee
 633               cur_level = CompLevel_none;
 634               make_not_entrant = true;
 635             }
 636           }
 637           if (make_not_entrant) {
 638             if (PrintTieredEvents) {
 639               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 640               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 641             }
 642             nm->make_not_entrant();
 643           }
 644         }
 645         // Fix up next_level if necessary to avoid deopts
 646         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 647           next_level = CompLevel_full_profile;
 648         }
 649         if (cur_level != next_level) {
 650           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 651             compile(mh, InvocationEntryBci, next_level, thread);
 652           }
 653         }
 654       }
 655     } else {
 656       cur_level = comp_level(mh());
 657       next_level = call_event(mh(), cur_level, thread);
 658       if (next_level != cur_level) {
 659         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 660           compile(mh, InvocationEntryBci, next_level, thread);
 661         }
 662       }
 663     }
 664   }
 665 }
 666 
 667 #endif // TIERED