1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/metaspaceShared.hpp"
  30 #include "memory/padded.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "runtime/atomic.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/interfaceSupport.inline.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "runtime/objectMonitor.hpp"
  40 #include "runtime/objectMonitor.inline.hpp"
  41 #include "runtime/osThread.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "runtime/vframe.hpp"
  46 #include "runtime/vmThread.hpp"
  47 #include "trace/traceMacros.hpp"
  48 #include "trace/tracing.hpp"
  49 #include "utilities/align.hpp"
  50 #include "utilities/dtrace.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/preserveException.hpp"
  53 
  54 // The "core" versions of monitor enter and exit reside in this file.
  55 // The interpreter and compilers contain specialized transliterated
  56 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  57 // for instance.  If you make changes here, make sure to modify the
  58 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  59 //
  60 // -----------------------------------------------------------------------------
  61 
  62 #ifdef DTRACE_ENABLED
  63 
  64 // Only bother with this argument setup if dtrace is available
  65 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  66 
  67 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  68   char* bytes = NULL;                                                      \
  69   int len = 0;                                                             \
  70   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  71   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  72   if (klassname != NULL) {                                                 \
  73     bytes = (char*)klassname->bytes();                                     \
  74     len = klassname->utf8_length();                                        \
  75   }
  76 
  77 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  78   {                                                                        \
  79     if (DTraceMonitorProbes) {                                             \
  80       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  81       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  82                            (uintptr_t)(monitor), bytes, len, (millis));    \
  83     }                                                                      \
  84   }
  85 
  86 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  87 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  88 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  89 
  90 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  91   {                                                                        \
  92     if (DTraceMonitorProbes) {                                             \
  93       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  94       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  95                                     (uintptr_t)(monitor), bytes, len);     \
  96     }                                                                      \
  97   }
  98 
  99 #else //  ndef DTRACE_ENABLED
 100 
 101 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 102 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 103 
 104 #endif // ndef DTRACE_ENABLED
 105 
 106 // This exists only as a workaround of dtrace bug 6254741
 107 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 108   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 109   return 0;
 110 }
 111 
 112 #define NINFLATIONLOCKS 256
 113 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 114 
 115 // global list of blocks of monitors
 116 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 117 // global monitor free list
 118 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 119 // global monitor in-use list, for moribund threads,
 120 // monitors they inflated need to be scanned for deflation
 121 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 122 // count of entries in gOmInUseList
 123 int ObjectSynchronizer::gOmInUseCount = 0;
 124 
 125 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 126 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 127 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 128 
 129 static void post_monitor_inflate_event(EventJavaMonitorInflate&,
 130                                        const oop,
 131                                        const ObjectSynchronizer::InflateCause);
 132 
 133 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 134 
 135 
 136 // =====================> Quick functions
 137 
 138 // The quick_* forms are special fast-path variants used to improve
 139 // performance.  In the simplest case, a "quick_*" implementation could
 140 // simply return false, in which case the caller will perform the necessary
 141 // state transitions and call the slow-path form.
 142 // The fast-path is designed to handle frequently arising cases in an efficient
 143 // manner and is just a degenerate "optimistic" variant of the slow-path.
 144 // returns true  -- to indicate the call was satisfied.
 145 // returns false -- to indicate the call needs the services of the slow-path.
 146 // A no-loitering ordinance is in effect for code in the quick_* family
 147 // operators: safepoints or indefinite blocking (blocking that might span a
 148 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 149 // entry.
 150 //
 151 // Consider: An interesting optimization is to have the JIT recognize the
 152 // following common idiom:
 153 //   synchronized (someobj) { .... ; notify(); }
 154 // That is, we find a notify() or notifyAll() call that immediately precedes
 155 // the monitorexit operation.  In that case the JIT could fuse the operations
 156 // into a single notifyAndExit() runtime primitive.
 157 
 158 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 159   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 160   assert(self->is_Java_thread(), "invariant");
 161   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 162   NoSafepointVerifier nsv;
 163   if (obj == NULL) return false;  // slow-path for invalid obj
 164   const markOop mark = obj->mark();
 165 
 166   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 167     // Degenerate notify
 168     // stack-locked by caller so by definition the implied waitset is empty.
 169     return true;
 170   }
 171 
 172   if (mark->has_monitor()) {
 173     ObjectMonitor * const mon = mark->monitor();
 174     assert(mon->object() == obj, "invariant");
 175     if (mon->owner() != self) return false;  // slow-path for IMS exception
 176 
 177     if (mon->first_waiter() != NULL) {
 178       // We have one or more waiters. Since this is an inflated monitor
 179       // that we own, we can transfer one or more threads from the waitset
 180       // to the entrylist here and now, avoiding the slow-path.
 181       if (all) {
 182         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 183       } else {
 184         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 185       }
 186       int tally = 0;
 187       do {
 188         mon->INotify(self);
 189         ++tally;
 190       } while (mon->first_waiter() != NULL && all);
 191       OM_PERFDATA_OP(Notifications, inc(tally));
 192     }
 193     return true;
 194   }
 195 
 196   // biased locking and any other IMS exception states take the slow-path
 197   return false;
 198 }
 199 
 200 
 201 // The LockNode emitted directly at the synchronization site would have
 202 // been too big if it were to have included support for the cases of inflated
 203 // recursive enter and exit, so they go here instead.
 204 // Note that we can't safely call AsyncPrintJavaStack() from within
 205 // quick_enter() as our thread state remains _in_Java.
 206 
 207 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 208                                      BasicLock * lock) {
 209   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 210   assert(Self->is_Java_thread(), "invariant");
 211   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 212   NoSafepointVerifier nsv;
 213   if (obj == NULL) return false;       // Need to throw NPE
 214   const markOop mark = obj->mark();
 215 
 216   if (mark->has_monitor()) {
 217     ObjectMonitor * const m = mark->monitor();
 218     assert(m->object() == obj, "invariant");
 219     Thread * const owner = (Thread *) m->_owner;
 220 
 221     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 222     // and observability
 223     // Case: light contention possibly amenable to TLE
 224     // Case: TLE inimical operations such as nested/recursive synchronization
 225 
 226     if (owner == Self) {
 227       m->_recursions++;
 228       return true;
 229     }
 230 
 231     // This Java Monitor is inflated so obj's header will never be
 232     // displaced to this thread's BasicLock. Make the displaced header
 233     // non-NULL so this BasicLock is not seen as recursive nor as
 234     // being locked. We do this unconditionally so that this thread's
 235     // BasicLock cannot be mis-interpreted by any stack walkers. For
 236     // performance reasons, stack walkers generally first check for
 237     // Biased Locking in the object's header, the second check is for
 238     // stack-locking in the object's header, the third check is for
 239     // recursive stack-locking in the displaced header in the BasicLock,
 240     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 241     lock->set_displaced_header(markOopDesc::unused_mark());
 242 
 243     if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 244       assert(m->_recursions == 0, "invariant");
 245       assert(m->_owner == Self, "invariant");
 246       return true;
 247     }
 248   }
 249 
 250   // Note that we could inflate in quick_enter.
 251   // This is likely a useful optimization
 252   // Critically, in quick_enter() we must not:
 253   // -- perform bias revocation, or
 254   // -- block indefinitely, or
 255   // -- reach a safepoint
 256 
 257   return false;        // revert to slow-path
 258 }
 259 
 260 // -----------------------------------------------------------------------------
 261 //  Fast Monitor Enter/Exit
 262 // This the fast monitor enter. The interpreter and compiler use
 263 // some assembly copies of this code. Make sure update those code
 264 // if the following function is changed. The implementation is
 265 // extremely sensitive to race condition. Be careful.
 266 
 267 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 268                                     bool attempt_rebias, TRAPS) {
 269   if (UseBiasedLocking) {
 270     if (!SafepointSynchronize::is_at_safepoint()) {
 271       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 272       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 273         return;
 274       }
 275     } else {
 276       assert(!attempt_rebias, "can not rebias toward VM thread");
 277       BiasedLocking::revoke_at_safepoint(obj);
 278     }
 279     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 280   }
 281 
 282   slow_enter(obj, lock, THREAD);
 283 }
 284 
 285 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 286   markOop mark = object->mark();
 287   // We cannot check for Biased Locking if we are racing an inflation.
 288   assert(mark == markOopDesc::INFLATING() ||
 289          !mark->has_bias_pattern(), "should not see bias pattern here");
 290 
 291   markOop dhw = lock->displaced_header();
 292   if (dhw == NULL) {
 293     // If the displaced header is NULL, then this exit matches up with
 294     // a recursive enter. No real work to do here except for diagnostics.
 295 #ifndef PRODUCT
 296     if (mark != markOopDesc::INFLATING()) {
 297       // Only do diagnostics if we are not racing an inflation. Simply
 298       // exiting a recursive enter of a Java Monitor that is being
 299       // inflated is safe; see the has_monitor() comment below.
 300       assert(!mark->is_neutral(), "invariant");
 301       assert(!mark->has_locker() ||
 302              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 303       if (mark->has_monitor()) {
 304         // The BasicLock's displaced_header is marked as a recursive
 305         // enter and we have an inflated Java Monitor (ObjectMonitor).
 306         // This is a special case where the Java Monitor was inflated
 307         // after this thread entered the stack-lock recursively. When a
 308         // Java Monitor is inflated, we cannot safely walk the Java
 309         // Monitor owner's stack and update the BasicLocks because a
 310         // Java Monitor can be asynchronously inflated by a thread that
 311         // does not own the Java Monitor.
 312         ObjectMonitor * m = mark->monitor();
 313         assert(((oop)(m->object()))->mark() == mark, "invariant");
 314         assert(m->is_entered(THREAD), "invariant");
 315       }
 316     }
 317 #endif
 318     return;
 319   }
 320 
 321   if (mark == (markOop) lock) {
 322     // If the object is stack-locked by the current thread, try to
 323     // swing the displaced header from the BasicLock back to the mark.
 324     assert(dhw->is_neutral(), "invariant");
 325     if (object->cas_set_mark(dhw, mark) == mark) {
 326       TEVENT(fast_exit: release stack-lock);
 327       return;
 328     }
 329   }
 330 
 331   // We have to take the slow-path of possible inflation and then exit.
 332   ObjectSynchronizer::inflate(THREAD,
 333                               object,
 334                               inflate_cause_vm_internal)->exit(true, THREAD);
 335 }
 336 
 337 // -----------------------------------------------------------------------------
 338 // Interpreter/Compiler Slow Case
 339 // This routine is used to handle interpreter/compiler slow case
 340 // We don't need to use fast path here, because it must have been
 341 // failed in the interpreter/compiler code.
 342 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 343   markOop mark = obj->mark();
 344   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 345 
 346   if (mark->is_neutral()) {
 347     // Anticipate successful CAS -- the ST of the displaced mark must
 348     // be visible <= the ST performed by the CAS.
 349     lock->set_displaced_header(mark);
 350     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 351       TEVENT(slow_enter: release stacklock);
 352       return;
 353     }
 354     // Fall through to inflate() ...
 355   } else if (mark->has_locker() &&
 356              THREAD->is_lock_owned((address)mark->locker())) {
 357     assert(lock != mark->locker(), "must not re-lock the same lock");
 358     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 359     lock->set_displaced_header(NULL);
 360     return;
 361   }
 362 
 363   // The object header will never be displaced to this lock,
 364   // so it does not matter what the value is, except that it
 365   // must be non-zero to avoid looking like a re-entrant lock,
 366   // and must not look locked either.
 367   lock->set_displaced_header(markOopDesc::unused_mark());
 368   ObjectSynchronizer::inflate(THREAD,
 369                               obj(),
 370                               inflate_cause_monitor_enter)->enter(THREAD);
 371 }
 372 
 373 // This routine is used to handle interpreter/compiler slow case
 374 // We don't need to use fast path here, because it must have
 375 // failed in the interpreter/compiler code. Simply use the heavy
 376 // weight monitor should be ok, unless someone find otherwise.
 377 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 378   fast_exit(object, lock, THREAD);
 379 }
 380 
 381 // -----------------------------------------------------------------------------
 382 // Class Loader  support to workaround deadlocks on the class loader lock objects
 383 // Also used by GC
 384 // complete_exit()/reenter() are used to wait on a nested lock
 385 // i.e. to give up an outer lock completely and then re-enter
 386 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 387 //  1) complete_exit lock1 - saving recursion count
 388 //  2) wait on lock2
 389 //  3) when notified on lock2, unlock lock2
 390 //  4) reenter lock1 with original recursion count
 391 //  5) lock lock2
 392 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 393 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 394   TEVENT(complete_exit);
 395   if (UseBiasedLocking) {
 396     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 397     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 398   }
 399 
 400   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 401                                                        obj(),
 402                                                        inflate_cause_vm_internal);
 403 
 404   return monitor->complete_exit(THREAD);
 405 }
 406 
 407 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 408 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 409   TEVENT(reenter);
 410   if (UseBiasedLocking) {
 411     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 412     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 413   }
 414 
 415   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 416                                                        obj(),
 417                                                        inflate_cause_vm_internal);
 418 
 419   monitor->reenter(recursion, THREAD);
 420 }
 421 // -----------------------------------------------------------------------------
 422 // JNI locks on java objects
 423 // NOTE: must use heavy weight monitor to handle jni monitor enter
 424 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 425   // the current locking is from JNI instead of Java code
 426   TEVENT(jni_enter);
 427   if (UseBiasedLocking) {
 428     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 429     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 430   }
 431   THREAD->set_current_pending_monitor_is_from_java(false);
 432   ObjectSynchronizer::inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 433   THREAD->set_current_pending_monitor_is_from_java(true);
 434 }
 435 
 436 // NOTE: must use heavy weight monitor to handle jni monitor exit
 437 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 438   TEVENT(jni_exit);
 439   if (UseBiasedLocking) {
 440     Handle h_obj(THREAD, obj);
 441     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 442     obj = h_obj();
 443   }
 444   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 445 
 446   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 447                                                        obj,
 448                                                        inflate_cause_jni_exit);
 449   // If this thread has locked the object, exit the monitor.  Note:  can't use
 450   // monitor->check(CHECK); must exit even if an exception is pending.
 451   if (monitor->check(THREAD)) {
 452     monitor->exit(true, THREAD);
 453   }
 454 }
 455 
 456 // -----------------------------------------------------------------------------
 457 // Internal VM locks on java objects
 458 // standard constructor, allows locking failures
 459 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 460   _dolock = doLock;
 461   _thread = thread;
 462   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 463   _obj = obj;
 464 
 465   if (_dolock) {
 466     TEVENT(ObjectLocker);
 467 
 468     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 469   }
 470 }
 471 
 472 ObjectLocker::~ObjectLocker() {
 473   if (_dolock) {
 474     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 475   }
 476 }
 477 
 478 
 479 // -----------------------------------------------------------------------------
 480 //  Wait/Notify/NotifyAll
 481 // NOTE: must use heavy weight monitor to handle wait()
 482 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 483   if (UseBiasedLocking) {
 484     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 485     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 486   }
 487   if (millis < 0) {
 488     TEVENT(wait - throw IAX);
 489     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 490   }
 491   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 492                                                        obj(),
 493                                                        inflate_cause_wait);
 494 
 495   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 496   monitor->wait(millis, true, THREAD);
 497 
 498   // This dummy call is in place to get around dtrace bug 6254741.  Once
 499   // that's fixed we can uncomment the following line, remove the call
 500   // and change this function back into a "void" func.
 501   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 502   return dtrace_waited_probe(monitor, obj, THREAD);
 503 }
 504 
 505 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 506   if (UseBiasedLocking) {
 507     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 508     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 509   }
 510   if (millis < 0) {
 511     TEVENT(wait - throw IAX);
 512     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 513   }
 514   ObjectSynchronizer::inflate(THREAD,
 515                               obj(),
 516                               inflate_cause_wait)->wait(millis, false, THREAD);
 517 }
 518 
 519 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 520   if (UseBiasedLocking) {
 521     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 522     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 523   }
 524 
 525   markOop mark = obj->mark();
 526   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 527     return;
 528   }
 529   ObjectSynchronizer::inflate(THREAD,
 530                               obj(),
 531                               inflate_cause_notify)->notify(THREAD);
 532 }
 533 
 534 // NOTE: see comment of notify()
 535 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 536   if (UseBiasedLocking) {
 537     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 538     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 539   }
 540 
 541   markOop mark = obj->mark();
 542   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 543     return;
 544   }
 545   ObjectSynchronizer::inflate(THREAD,
 546                               obj(),
 547                               inflate_cause_notify)->notifyAll(THREAD);
 548 }
 549 
 550 // -----------------------------------------------------------------------------
 551 // Hash Code handling
 552 //
 553 // Performance concern:
 554 // OrderAccess::storestore() calls release() which at one time stored 0
 555 // into the global volatile OrderAccess::dummy variable. This store was
 556 // unnecessary for correctness. Many threads storing into a common location
 557 // causes considerable cache migration or "sloshing" on large SMP systems.
 558 // As such, I avoided using OrderAccess::storestore(). In some cases
 559 // OrderAccess::fence() -- which incurs local latency on the executing
 560 // processor -- is a better choice as it scales on SMP systems.
 561 //
 562 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 563 // a discussion of coherency costs. Note that all our current reference
 564 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 565 // x64, and SPARC.
 566 //
 567 // As a general policy we use "volatile" to control compiler-based reordering
 568 // and explicit fences (barriers) to control for architectural reordering
 569 // performed by the CPU(s) or platform.
 570 
 571 struct SharedGlobals {
 572   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 573   // These are highly shared mostly-read variables.
 574   // To avoid false-sharing they need to be the sole occupants of a cache line.
 575   volatile int stwRandom;
 576   volatile int stwCycle;
 577   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 578   // Hot RW variable -- Sequester to avoid false-sharing
 579   volatile int hcSequence;
 580   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 581 };
 582 
 583 static SharedGlobals GVars;
 584 static int MonitorScavengeThreshold = 1000000;
 585 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 586 
 587 static markOop ReadStableMark(oop obj) {
 588   markOop mark = obj->mark();
 589   if (!mark->is_being_inflated()) {
 590     return mark;       // normal fast-path return
 591   }
 592 
 593   int its = 0;
 594   for (;;) {
 595     markOop mark = obj->mark();
 596     if (!mark->is_being_inflated()) {
 597       return mark;    // normal fast-path return
 598     }
 599 
 600     // The object is being inflated by some other thread.
 601     // The caller of ReadStableMark() must wait for inflation to complete.
 602     // Avoid live-lock
 603     // TODO: consider calling SafepointSynchronize::do_call_back() while
 604     // spinning to see if there's a safepoint pending.  If so, immediately
 605     // yielding or blocking would be appropriate.  Avoid spinning while
 606     // there is a safepoint pending.
 607     // TODO: add inflation contention performance counters.
 608     // TODO: restrict the aggregate number of spinners.
 609 
 610     ++its;
 611     if (its > 10000 || !os::is_MP()) {
 612       if (its & 1) {
 613         os::naked_yield();
 614         TEVENT(Inflate: INFLATING - yield);
 615       } else {
 616         // Note that the following code attenuates the livelock problem but is not
 617         // a complete remedy.  A more complete solution would require that the inflating
 618         // thread hold the associated inflation lock.  The following code simply restricts
 619         // the number of spinners to at most one.  We'll have N-2 threads blocked
 620         // on the inflationlock, 1 thread holding the inflation lock and using
 621         // a yield/park strategy, and 1 thread in the midst of inflation.
 622         // A more refined approach would be to change the encoding of INFLATING
 623         // to allow encapsulation of a native thread pointer.  Threads waiting for
 624         // inflation to complete would use CAS to push themselves onto a singly linked
 625         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 626         // and calling park().  When inflation was complete the thread that accomplished inflation
 627         // would detach the list and set the markword to inflated with a single CAS and
 628         // then for each thread on the list, set the flag and unpark() the thread.
 629         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 630         // wakes at most one thread whereas we need to wake the entire list.
 631         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 632         int YieldThenBlock = 0;
 633         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 634         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 635         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 636         while (obj->mark() == markOopDesc::INFLATING()) {
 637           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 638           // so we periodically call Self->_ParkEvent->park(1).
 639           // We use a mixed spin/yield/block mechanism.
 640           if ((YieldThenBlock++) >= 16) {
 641             Thread::current()->_ParkEvent->park(1);
 642           } else {
 643             os::naked_yield();
 644           }
 645         }
 646         Thread::muxRelease(gInflationLocks + ix);
 647         TEVENT(Inflate: INFLATING - yield/park);
 648       }
 649     } else {
 650       SpinPause();       // SMP-polite spinning
 651     }
 652   }
 653 }
 654 
 655 // hashCode() generation :
 656 //
 657 // Possibilities:
 658 // * MD5Digest of {obj,stwRandom}
 659 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 660 // * A DES- or AES-style SBox[] mechanism
 661 // * One of the Phi-based schemes, such as:
 662 //   2654435761 = 2^32 * Phi (golden ratio)
 663 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 664 // * A variation of Marsaglia's shift-xor RNG scheme.
 665 // * (obj ^ stwRandom) is appealing, but can result
 666 //   in undesirable regularity in the hashCode values of adjacent objects
 667 //   (objects allocated back-to-back, in particular).  This could potentially
 668 //   result in hashtable collisions and reduced hashtable efficiency.
 669 //   There are simple ways to "diffuse" the middle address bits over the
 670 //   generated hashCode values:
 671 
 672 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 673   intptr_t value = 0;
 674   if (hashCode == 0) {
 675     // This form uses global Park-Miller RNG.
 676     // On MP system we'll have lots of RW access to a global, so the
 677     // mechanism induces lots of coherency traffic.
 678     value = os::random();
 679   } else if (hashCode == 1) {
 680     // This variation has the property of being stable (idempotent)
 681     // between STW operations.  This can be useful in some of the 1-0
 682     // synchronization schemes.
 683     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 684     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 685   } else if (hashCode == 2) {
 686     value = 1;            // for sensitivity testing
 687   } else if (hashCode == 3) {
 688     value = ++GVars.hcSequence;
 689   } else if (hashCode == 4) {
 690     value = cast_from_oop<intptr_t>(obj);
 691   } else {
 692     // Marsaglia's xor-shift scheme with thread-specific state
 693     // This is probably the best overall implementation -- we'll
 694     // likely make this the default in future releases.
 695     unsigned t = Self->_hashStateX;
 696     t ^= (t << 11);
 697     Self->_hashStateX = Self->_hashStateY;
 698     Self->_hashStateY = Self->_hashStateZ;
 699     Self->_hashStateZ = Self->_hashStateW;
 700     unsigned v = Self->_hashStateW;
 701     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 702     Self->_hashStateW = v;
 703     value = v;
 704   }
 705 
 706   value &= markOopDesc::hash_mask;
 707   if (value == 0) value = 0xBAD;
 708   assert(value != markOopDesc::no_hash, "invariant");
 709   TEVENT(hashCode: GENERATE);
 710   return value;
 711 }
 712 
 713 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 714   if (UseBiasedLocking) {
 715     // NOTE: many places throughout the JVM do not expect a safepoint
 716     // to be taken here, in particular most operations on perm gen
 717     // objects. However, we only ever bias Java instances and all of
 718     // the call sites of identity_hash that might revoke biases have
 719     // been checked to make sure they can handle a safepoint. The
 720     // added check of the bias pattern is to avoid useless calls to
 721     // thread-local storage.
 722     if (obj->mark()->has_bias_pattern()) {
 723       // Handle for oop obj in case of STW safepoint
 724       Handle hobj(Self, obj);
 725       // Relaxing assertion for bug 6320749.
 726       assert(Universe::verify_in_progress() ||
 727              !SafepointSynchronize::is_at_safepoint(),
 728              "biases should not be seen by VM thread here");
 729       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 730       obj = hobj();
 731       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 732     }
 733   }
 734 
 735   // hashCode() is a heap mutator ...
 736   // Relaxing assertion for bug 6320749.
 737   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 738          !SafepointSynchronize::is_at_safepoint(), "invariant");
 739   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 740          Self->is_Java_thread() , "invariant");
 741   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 742          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 743 
 744   ObjectMonitor* monitor = NULL;
 745   markOop temp, test;
 746   intptr_t hash;
 747   markOop mark = ReadStableMark(obj);
 748 
 749   // object should remain ineligible for biased locking
 750   assert(!mark->has_bias_pattern(), "invariant");
 751 
 752   if (mark->is_neutral()) {
 753     hash = mark->hash();              // this is a normal header
 754     if (hash) {                       // if it has hash, just return it
 755       return hash;
 756     }
 757     hash = get_next_hash(Self, obj);  // allocate a new hash code
 758     temp = mark->copy_set_hash(hash); // merge the hash code into header
 759     // use (machine word version) atomic operation to install the hash
 760     test = obj->cas_set_mark(temp, mark);
 761     if (test == mark) {
 762       return hash;
 763     }
 764     // If atomic operation failed, we must inflate the header
 765     // into heavy weight monitor. We could add more code here
 766     // for fast path, but it does not worth the complexity.
 767   } else if (mark->has_monitor()) {
 768     monitor = mark->monitor();
 769     temp = monitor->header();
 770     assert(temp->is_neutral(), "invariant");
 771     hash = temp->hash();
 772     if (hash) {
 773       return hash;
 774     }
 775     // Skip to the following code to reduce code size
 776   } else if (Self->is_lock_owned((address)mark->locker())) {
 777     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 778     assert(temp->is_neutral(), "invariant");
 779     hash = temp->hash();              // by current thread, check if the displaced
 780     if (hash) {                       // header contains hash code
 781       return hash;
 782     }
 783     // WARNING:
 784     //   The displaced header is strictly immutable.
 785     // It can NOT be changed in ANY cases. So we have
 786     // to inflate the header into heavyweight monitor
 787     // even the current thread owns the lock. The reason
 788     // is the BasicLock (stack slot) will be asynchronously
 789     // read by other threads during the inflate() function.
 790     // Any change to stack may not propagate to other threads
 791     // correctly.
 792   }
 793 
 794   // Inflate the monitor to set hash code
 795   monitor = ObjectSynchronizer::inflate(Self, obj, inflate_cause_hash_code);
 796   // Load displaced header and check it has hash code
 797   mark = monitor->header();
 798   assert(mark->is_neutral(), "invariant");
 799   hash = mark->hash();
 800   if (hash == 0) {
 801     hash = get_next_hash(Self, obj);
 802     temp = mark->copy_set_hash(hash); // merge hash code into header
 803     assert(temp->is_neutral(), "invariant");
 804     test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 805     if (test != mark) {
 806       // The only update to the header in the monitor (outside GC)
 807       // is install the hash code. If someone add new usage of
 808       // displaced header, please update this code
 809       hash = test->hash();
 810       assert(test->is_neutral(), "invariant");
 811       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 812     }
 813   }
 814   // We finally get the hash
 815   return hash;
 816 }
 817 
 818 // Deprecated -- use FastHashCode() instead.
 819 
 820 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 821   return FastHashCode(Thread::current(), obj());
 822 }
 823 
 824 
 825 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 826                                                    Handle h_obj) {
 827   if (UseBiasedLocking) {
 828     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 829     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 830   }
 831 
 832   assert(thread == JavaThread::current(), "Can only be called on current thread");
 833   oop obj = h_obj();
 834 
 835   markOop mark = ReadStableMark(obj);
 836 
 837   // Uncontended case, header points to stack
 838   if (mark->has_locker()) {
 839     return thread->is_lock_owned((address)mark->locker());
 840   }
 841   // Contended case, header points to ObjectMonitor (tagged pointer)
 842   if (mark->has_monitor()) {
 843     ObjectMonitor* monitor = mark->monitor();
 844     return monitor->is_entered(thread) != 0;
 845   }
 846   // Unlocked case, header in place
 847   assert(mark->is_neutral(), "sanity check");
 848   return false;
 849 }
 850 
 851 // Be aware of this method could revoke bias of the lock object.
 852 // This method queries the ownership of the lock handle specified by 'h_obj'.
 853 // If the current thread owns the lock, it returns owner_self. If no
 854 // thread owns the lock, it returns owner_none. Otherwise, it will return
 855 // owner_other.
 856 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 857 (JavaThread *self, Handle h_obj) {
 858   // The caller must beware this method can revoke bias, and
 859   // revocation can result in a safepoint.
 860   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 861   assert(self->thread_state() != _thread_blocked, "invariant");
 862 
 863   // Possible mark states: neutral, biased, stack-locked, inflated
 864 
 865   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 866     // CASE: biased
 867     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 868     assert(!h_obj->mark()->has_bias_pattern(),
 869            "biases should be revoked by now");
 870   }
 871 
 872   assert(self == JavaThread::current(), "Can only be called on current thread");
 873   oop obj = h_obj();
 874   markOop mark = ReadStableMark(obj);
 875 
 876   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 877   if (mark->has_locker()) {
 878     return self->is_lock_owned((address)mark->locker()) ?
 879       owner_self : owner_other;
 880   }
 881 
 882   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 883   // The Object:ObjectMonitor relationship is stable as long as we're
 884   // not at a safepoint.
 885   if (mark->has_monitor()) {
 886     void * owner = mark->monitor()->_owner;
 887     if (owner == NULL) return owner_none;
 888     return (owner == self ||
 889             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 890   }
 891 
 892   // CASE: neutral
 893   assert(mark->is_neutral(), "sanity check");
 894   return owner_none;           // it's unlocked
 895 }
 896 
 897 // FIXME: jvmti should call this
 898 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 899   if (UseBiasedLocking) {
 900     if (SafepointSynchronize::is_at_safepoint()) {
 901       BiasedLocking::revoke_at_safepoint(h_obj);
 902     } else {
 903       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 904     }
 905     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 906   }
 907 
 908   oop obj = h_obj();
 909   address owner = NULL;
 910 
 911   markOop mark = ReadStableMark(obj);
 912 
 913   // Uncontended case, header points to stack
 914   if (mark->has_locker()) {
 915     owner = (address) mark->locker();
 916   }
 917 
 918   // Contended case, header points to ObjectMonitor (tagged pointer)
 919   if (mark->has_monitor()) {
 920     ObjectMonitor* monitor = mark->monitor();
 921     assert(monitor != NULL, "monitor should be non-null");
 922     owner = (address) monitor->owner();
 923   }
 924 
 925   if (owner != NULL) {
 926     // owning_thread_from_monitor_owner() may also return NULL here
 927     return Threads::owning_thread_from_monitor_owner(t_list, owner);
 928   }
 929 
 930   // Unlocked case, header in place
 931   // Cannot have assertion since this object may have been
 932   // locked by another thread when reaching here.
 933   // assert(mark->is_neutral(), "sanity check");
 934 
 935   return NULL;
 936 }
 937 
 938 // Visitors ...
 939 
 940 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 941   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 942   while (block != NULL) {
 943     assert(block->object() == CHAINMARKER, "must be a block header");
 944     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 945       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 946       oop object = (oop)mid->object();
 947       if (object != NULL) {
 948         closure->do_monitor(mid);
 949       }
 950     }
 951     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
 952   }
 953 }
 954 
 955 // Get the next block in the block list.
 956 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
 957   assert(block->object() == CHAINMARKER, "must be a block header");
 958   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
 959   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 960   return block;
 961 }
 962 
 963 static bool monitors_used_above_threshold() {
 964   if (gMonitorPopulation == 0) {
 965     return false;
 966   }
 967   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
 968   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
 969   return monitor_usage > MonitorUsedDeflationThreshold;
 970 }
 971 
 972 bool ObjectSynchronizer::is_cleanup_needed() {
 973   if (MonitorUsedDeflationThreshold > 0) {
 974     return monitors_used_above_threshold();
 975   }
 976   return false;
 977 }
 978 
 979 void ObjectSynchronizer::oops_do(OopClosure* f) {
 980   if (MonitorInUseLists) {
 981     // When using thread local monitor lists, we only scan the
 982     // global used list here (for moribund threads), and
 983     // the thread-local monitors in Thread::oops_do().
 984     global_used_oops_do(f);
 985   } else {
 986     global_oops_do(f);
 987   }
 988 }
 989 
 990 void ObjectSynchronizer::global_oops_do(OopClosure* f) {
 991   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 992   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 993   for (; block != NULL; block = next(block)) {
 994     assert(block->object() == CHAINMARKER, "must be a block header");
 995     for (int i = 1; i < _BLOCKSIZE; i++) {
 996       ObjectMonitor* mid = (ObjectMonitor *)&block[i];
 997       if (mid->object() != NULL) {
 998         f->do_oop((oop*)mid->object_addr());
 999       }
1000     }
1001   }
1002 }
1003 
1004 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1005   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1006   list_oops_do(gOmInUseList, f);
1007 }
1008 
1009 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1010   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1011   list_oops_do(thread->omInUseList, f);
1012 }
1013 
1014 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1015   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1016   ObjectMonitor* mid;
1017   for (mid = list; mid != NULL; mid = mid->FreeNext) {
1018     if (mid->object() != NULL) {
1019       f->do_oop((oop*)mid->object_addr());
1020     }
1021   }
1022 }
1023 
1024 
1025 // -----------------------------------------------------------------------------
1026 // ObjectMonitor Lifecycle
1027 // -----------------------
1028 // Inflation unlinks monitors from the global gFreeList and
1029 // associates them with objects.  Deflation -- which occurs at
1030 // STW-time -- disassociates idle monitors from objects.  Such
1031 // scavenged monitors are returned to the gFreeList.
1032 //
1033 // The global list is protected by gListLock.  All the critical sections
1034 // are short and operate in constant-time.
1035 //
1036 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1037 //
1038 // Lifecycle:
1039 // --   unassigned and on the global free list
1040 // --   unassigned and on a thread's private omFreeList
1041 // --   assigned to an object.  The object is inflated and the mark refers
1042 //      to the objectmonitor.
1043 
1044 
1045 // Constraining monitor pool growth via MonitorBound ...
1046 //
1047 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1048 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1049 // an inordinate number of monitors in circulation.
1050 // To avoid that scenario we can artificially induce a STW safepoint
1051 // if the pool appears to be growing past some reasonable bound.
1052 // Generally we favor time in space-time tradeoffs, but as there's no
1053 // natural back-pressure on the # of extant monitors we need to impose some
1054 // type of limit.  Beware that if MonitorBound is set to too low a value
1055 // we could just loop. In addition, if MonitorBound is set to a low value
1056 // we'll incur more safepoints, which are harmful to performance.
1057 // See also: GuaranteedSafepointInterval
1058 //
1059 // The current implementation uses asynchronous VM operations.
1060 
1061 static void InduceScavenge(Thread * Self, const char * Whence) {
1062   // Induce STW safepoint to trim monitors
1063   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1064   // More precisely, trigger an asynchronous STW safepoint as the number
1065   // of active monitors passes the specified threshold.
1066   // TODO: assert thread state is reasonable
1067 
1068   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1069     if (ObjectMonitor::Knob_Verbose) {
1070       tty->print_cr("INFO: Monitor scavenge - Induced STW @%s (%d)",
1071                     Whence, ForceMonitorScavenge) ;
1072       tty->flush();
1073     }
1074     // Induce a 'null' safepoint to scavenge monitors
1075     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1076     // to the VMthread and have a lifespan longer than that of this activation record.
1077     // The VMThread will delete the op when completed.
1078     VMThread::execute(new VM_ScavengeMonitors());
1079 
1080     if (ObjectMonitor::Knob_Verbose) {
1081       tty->print_cr("INFO: Monitor scavenge - STW posted @%s (%d)",
1082                     Whence, ForceMonitorScavenge) ;
1083       tty->flush();
1084     }
1085   }
1086 }
1087 
1088 void ObjectSynchronizer::verifyInUse(Thread *Self) {
1089   ObjectMonitor* mid;
1090   int in_use_tally = 0;
1091   for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
1092     in_use_tally++;
1093   }
1094   assert(in_use_tally == Self->omInUseCount, "in-use count off");
1095 
1096   int free_tally = 0;
1097   for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
1098     free_tally++;
1099   }
1100   assert(free_tally == Self->omFreeCount, "free count off");
1101 }
1102 
1103 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {
1104   // A large MAXPRIVATE value reduces both list lock contention
1105   // and list coherency traffic, but also tends to increase the
1106   // number of objectMonitors in circulation as well as the STW
1107   // scavenge costs.  As usual, we lean toward time in space-time
1108   // tradeoffs.
1109   const int MAXPRIVATE = 1024;
1110   for (;;) {
1111     ObjectMonitor * m;
1112 
1113     // 1: try to allocate from the thread's local omFreeList.
1114     // Threads will attempt to allocate first from their local list, then
1115     // from the global list, and only after those attempts fail will the thread
1116     // attempt to instantiate new monitors.   Thread-local free lists take
1117     // heat off the gListLock and improve allocation latency, as well as reducing
1118     // coherency traffic on the shared global list.
1119     m = Self->omFreeList;
1120     if (m != NULL) {
1121       Self->omFreeList = m->FreeNext;
1122       Self->omFreeCount--;
1123       // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
1124       guarantee(m->object() == NULL, "invariant");
1125       if (MonitorInUseLists) {
1126         m->FreeNext = Self->omInUseList;
1127         Self->omInUseList = m;
1128         Self->omInUseCount++;
1129         if (ObjectMonitor::Knob_VerifyInUse) {
1130           verifyInUse(Self);
1131         }
1132       } else {
1133         m->FreeNext = NULL;
1134       }
1135       return m;
1136     }
1137 
1138     // 2: try to allocate from the global gFreeList
1139     // CONSIDER: use muxTry() instead of muxAcquire().
1140     // If the muxTry() fails then drop immediately into case 3.
1141     // If we're using thread-local free lists then try
1142     // to reprovision the caller's free list.
1143     if (gFreeList != NULL) {
1144       // Reprovision the thread's omFreeList.
1145       // Use bulk transfers to reduce the allocation rate and heat
1146       // on various locks.
1147       Thread::muxAcquire(&gListLock, "omAlloc");
1148       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1149         gMonitorFreeCount--;
1150         ObjectMonitor * take = gFreeList;
1151         gFreeList = take->FreeNext;
1152         guarantee(take->object() == NULL, "invariant");
1153         guarantee(!take->is_busy(), "invariant");
1154         take->Recycle();
1155         omRelease(Self, take, false);
1156       }
1157       Thread::muxRelease(&gListLock);
1158       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1159       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1160       TEVENT(omFirst - reprovision);
1161 
1162       const int mx = MonitorBound;
1163       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1164         // We can't safely induce a STW safepoint from omAlloc() as our thread
1165         // state may not be appropriate for such activities and callers may hold
1166         // naked oops, so instead we defer the action.
1167         InduceScavenge(Self, "omAlloc");
1168       }
1169       continue;
1170     }
1171 
1172     // 3: allocate a block of new ObjectMonitors
1173     // Both the local and global free lists are empty -- resort to malloc().
1174     // In the current implementation objectMonitors are TSM - immortal.
1175     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1176     // each ObjectMonitor to start at the beginning of a cache line,
1177     // so we use align_up().
1178     // A better solution would be to use C++ placement-new.
1179     // BEWARE: As it stands currently, we don't run the ctors!
1180     assert(_BLOCKSIZE > 1, "invariant");
1181     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1182     PaddedEnd<ObjectMonitor> * temp;
1183     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1184     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1185                                                       mtInternal);
1186     temp = (PaddedEnd<ObjectMonitor> *)
1187              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1188 
1189     // NOTE: (almost) no way to recover if allocation failed.
1190     // We might be able to induce a STW safepoint and scavenge enough
1191     // objectMonitors to permit progress.
1192     if (temp == NULL) {
1193       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1194                             "Allocate ObjectMonitors");
1195     }
1196     (void)memset((void *) temp, 0, neededsize);
1197 
1198     // Format the block.
1199     // initialize the linked list, each monitor points to its next
1200     // forming the single linked free list, the very first monitor
1201     // will points to next block, which forms the block list.
1202     // The trick of using the 1st element in the block as gBlockList
1203     // linkage should be reconsidered.  A better implementation would
1204     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1205 
1206     for (int i = 1; i < _BLOCKSIZE; i++) {
1207       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1208     }
1209 
1210     // terminate the last monitor as the end of list
1211     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1212 
1213     // Element [0] is reserved for global list linkage
1214     temp[0].set_object(CHAINMARKER);
1215 
1216     // Consider carving out this thread's current request from the
1217     // block in hand.  This avoids some lock traffic and redundant
1218     // list activity.
1219 
1220     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1221     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1222     Thread::muxAcquire(&gListLock, "omAlloc [2]");
1223     gMonitorPopulation += _BLOCKSIZE-1;
1224     gMonitorFreeCount += _BLOCKSIZE-1;
1225 
1226     // Add the new block to the list of extant blocks (gBlockList).
1227     // The very first objectMonitor in a block is reserved and dedicated.
1228     // It serves as blocklist "next" linkage.
1229     temp[0].FreeNext = gBlockList;
1230     // There are lock-free uses of gBlockList so make sure that
1231     // the previous stores happen before we update gBlockList.
1232     OrderAccess::release_store(&gBlockList, temp);
1233 
1234     // Add the new string of objectMonitors to the global free list
1235     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1236     gFreeList = temp + 1;
1237     Thread::muxRelease(&gListLock);
1238     TEVENT(Allocate block of monitors);
1239   }
1240 }
1241 
1242 // Place "m" on the caller's private per-thread omFreeList.
1243 // In practice there's no need to clamp or limit the number of
1244 // monitors on a thread's omFreeList as the only time we'll call
1245 // omRelease is to return a monitor to the free list after a CAS
1246 // attempt failed.  This doesn't allow unbounded #s of monitors to
1247 // accumulate on a thread's free list.
1248 //
1249 // Key constraint: all ObjectMonitors on a thread's free list and the global
1250 // free list must have their object field set to null. This prevents the
1251 // scavenger -- deflate_idle_monitors -- from reclaiming them.
1252 
1253 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1254                                    bool fromPerThreadAlloc) {
1255   guarantee(m->object() == NULL, "invariant");
1256   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1257   // Remove from omInUseList
1258   if (MonitorInUseLists && fromPerThreadAlloc) {
1259     ObjectMonitor* cur_mid_in_use = NULL;
1260     bool extracted = false;
1261     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1262       if (m == mid) {
1263         // extract from per-thread in-use list
1264         if (mid == Self->omInUseList) {
1265           Self->omInUseList = mid->FreeNext;
1266         } else if (cur_mid_in_use != NULL) {
1267           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1268         }
1269         extracted = true;
1270         Self->omInUseCount--;
1271         if (ObjectMonitor::Knob_VerifyInUse) {
1272           verifyInUse(Self);
1273         }
1274         break;
1275       }
1276     }
1277     assert(extracted, "Should have extracted from in-use list");
1278   }
1279 
1280   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1281   m->FreeNext = Self->omFreeList;
1282   Self->omFreeList = m;
1283   Self->omFreeCount++;
1284 }
1285 
1286 // Return the monitors of a moribund thread's local free list to
1287 // the global free list.  Typically a thread calls omFlush() when
1288 // it's dying.  We could also consider having the VM thread steal
1289 // monitors from threads that have not run java code over a few
1290 // consecutive STW safepoints.  Relatedly, we might decay
1291 // omFreeProvision at STW safepoints.
1292 //
1293 // Also return the monitors of a moribund thread's omInUseList to
1294 // a global gOmInUseList under the global list lock so these
1295 // will continue to be scanned.
1296 //
1297 // We currently call omFlush() from Threads::remove() _before the thread
1298 // has been excised from the thread list and is no longer a mutator.
1299 // This means that omFlush() can not run concurrently with a safepoint and
1300 // interleave with the scavenge operator. In particular, this ensures that
1301 // the thread's monitors are scanned by a GC safepoint, either via
1302 // Thread::oops_do() (if safepoint happens before omFlush()) or via
1303 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1304 // monitors have been transferred to the global in-use list).
1305 
1306 void ObjectSynchronizer::omFlush(Thread * Self) {
1307   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1308   Self->omFreeList = NULL;
1309   ObjectMonitor * tail = NULL;
1310   int tally = 0;
1311   if (list != NULL) {
1312     ObjectMonitor * s;
1313     // The thread is going away, the per-thread free monitors
1314     // are freed via set_owner(NULL)
1315     // Link them to tail, which will be linked into the global free list
1316     // gFreeList below, under the gListLock
1317     for (s = list; s != NULL; s = s->FreeNext) {
1318       tally++;
1319       tail = s;
1320       guarantee(s->object() == NULL, "invariant");
1321       guarantee(!s->is_busy(), "invariant");
1322       s->set_owner(NULL);   // redundant but good hygiene
1323       TEVENT(omFlush - Move one);
1324     }
1325     guarantee(tail != NULL && list != NULL, "invariant");
1326   }
1327 
1328   ObjectMonitor * inUseList = Self->omInUseList;
1329   ObjectMonitor * inUseTail = NULL;
1330   int inUseTally = 0;
1331   if (inUseList != NULL) {
1332     Self->omInUseList = NULL;
1333     ObjectMonitor *cur_om;
1334     // The thread is going away, however the omInUseList inflated
1335     // monitors may still be in-use by other threads.
1336     // Link them to inUseTail, which will be linked into the global in-use list
1337     // gOmInUseList below, under the gListLock
1338     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1339       inUseTail = cur_om;
1340       inUseTally++;
1341     }
1342     assert(Self->omInUseCount == inUseTally, "in-use count off");
1343     Self->omInUseCount = 0;
1344     guarantee(inUseTail != NULL && inUseList != NULL, "invariant");
1345   }
1346 
1347   Thread::muxAcquire(&gListLock, "omFlush");
1348   if (tail != NULL) {
1349     tail->FreeNext = gFreeList;
1350     gFreeList = list;
1351     gMonitorFreeCount += tally;
1352     assert(Self->omFreeCount == tally, "free-count off");
1353     Self->omFreeCount = 0;
1354   }
1355 
1356   if (inUseTail != NULL) {
1357     inUseTail->FreeNext = gOmInUseList;
1358     gOmInUseList = inUseList;
1359     gOmInUseCount += inUseTally;
1360   }
1361 
1362   Thread::muxRelease(&gListLock);
1363   TEVENT(omFlush);
1364 }
1365 
1366 // Fast path code shared by multiple functions
1367 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1368   markOop mark = obj->mark();
1369   if (mark->has_monitor()) {
1370     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1371     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1372     return mark->monitor();
1373   }
1374   return ObjectSynchronizer::inflate(Thread::current(),
1375                                      obj,
1376                                      inflate_cause_vm_internal);
1377 }
1378 
1379 ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1380                                                      oop object,
1381                                                      const InflateCause cause) {
1382 
1383   // Inflate mutates the heap ...
1384   // Relaxing assertion for bug 6320749.
1385   assert(Universe::verify_in_progress() ||
1386          !SafepointSynchronize::is_at_safepoint(), "invariant");
1387 
1388   EventJavaMonitorInflate event;
1389 
1390   for (;;) {
1391     const markOop mark = object->mark();
1392     assert(!mark->has_bias_pattern(), "invariant");
1393 
1394     // The mark can be in one of the following states:
1395     // *  Inflated     - just return
1396     // *  Stack-locked - coerce it to inflated
1397     // *  INFLATING    - busy wait for conversion to complete
1398     // *  Neutral      - aggressively inflate the object.
1399     // *  BIASED       - Illegal.  We should never see this
1400 
1401     // CASE: inflated
1402     if (mark->has_monitor()) {
1403       ObjectMonitor * inf = mark->monitor();
1404       assert(inf->header()->is_neutral(), "invariant");
1405       assert(inf->object() == object, "invariant");
1406       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1407       return inf;
1408     }
1409 
1410     // CASE: inflation in progress - inflating over a stack-lock.
1411     // Some other thread is converting from stack-locked to inflated.
1412     // Only that thread can complete inflation -- other threads must wait.
1413     // The INFLATING value is transient.
1414     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1415     // We could always eliminate polling by parking the thread on some auxiliary list.
1416     if (mark == markOopDesc::INFLATING()) {
1417       TEVENT(Inflate: spin while INFLATING);
1418       ReadStableMark(object);
1419       continue;
1420     }
1421 
1422     // CASE: stack-locked
1423     // Could be stack-locked either by this thread or by some other thread.
1424     //
1425     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1426     // to install INFLATING into the mark word.  We originally installed INFLATING,
1427     // allocated the objectmonitor, and then finally STed the address of the
1428     // objectmonitor into the mark.  This was correct, but artificially lengthened
1429     // the interval in which INFLATED appeared in the mark, thus increasing
1430     // the odds of inflation contention.
1431     //
1432     // We now use per-thread private objectmonitor free lists.
1433     // These list are reprovisioned from the global free list outside the
1434     // critical INFLATING...ST interval.  A thread can transfer
1435     // multiple objectmonitors en-mass from the global free list to its local free list.
1436     // This reduces coherency traffic and lock contention on the global free list.
1437     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1438     // before or after the CAS(INFLATING) operation.
1439     // See the comments in omAlloc().
1440 
1441     if (mark->has_locker()) {
1442       ObjectMonitor * m = omAlloc(Self);
1443       // Optimistically prepare the objectmonitor - anticipate successful CAS
1444       // We do this before the CAS in order to minimize the length of time
1445       // in which INFLATING appears in the mark.
1446       m->Recycle();
1447       m->_Responsible  = NULL;
1448       m->_recursions   = 0;
1449       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1450 
1451       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1452       if (cmp != mark) {
1453         omRelease(Self, m, true);
1454         continue;       // Interference -- just retry
1455       }
1456 
1457       // We've successfully installed INFLATING (0) into the mark-word.
1458       // This is the only case where 0 will appear in a mark-word.
1459       // Only the singular thread that successfully swings the mark-word
1460       // to 0 can perform (or more precisely, complete) inflation.
1461       //
1462       // Why do we CAS a 0 into the mark-word instead of just CASing the
1463       // mark-word from the stack-locked value directly to the new inflated state?
1464       // Consider what happens when a thread unlocks a stack-locked object.
1465       // It attempts to use CAS to swing the displaced header value from the
1466       // on-stack basiclock back into the object header.  Recall also that the
1467       // header value (hashcode, etc) can reside in (a) the object header, or
1468       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1469       // header in an objectMonitor.  The inflate() routine must copy the header
1470       // value from the basiclock on the owner's stack to the objectMonitor, all
1471       // the while preserving the hashCode stability invariants.  If the owner
1472       // decides to release the lock while the value is 0, the unlock will fail
1473       // and control will eventually pass from slow_exit() to inflate.  The owner
1474       // will then spin, waiting for the 0 value to disappear.   Put another way,
1475       // the 0 causes the owner to stall if the owner happens to try to
1476       // drop the lock (restoring the header from the basiclock to the object)
1477       // while inflation is in-progress.  This protocol avoids races that might
1478       // would otherwise permit hashCode values to change or "flicker" for an object.
1479       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1480       // 0 serves as a "BUSY" inflate-in-progress indicator.
1481 
1482 
1483       // fetch the displaced mark from the owner's stack.
1484       // The owner can't die or unwind past the lock while our INFLATING
1485       // object is in the mark.  Furthermore the owner can't complete
1486       // an unlock on the object, either.
1487       markOop dmw = mark->displaced_mark_helper();
1488       assert(dmw->is_neutral(), "invariant");
1489 
1490       // Setup monitor fields to proper values -- prepare the monitor
1491       m->set_header(dmw);
1492 
1493       // Optimization: if the mark->locker stack address is associated
1494       // with this thread we could simply set m->_owner = Self.
1495       // Note that a thread can inflate an object
1496       // that it has stack-locked -- as might happen in wait() -- directly
1497       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1498       m->set_owner(mark->locker());
1499       m->set_object(object);
1500       // TODO-FIXME: assert BasicLock->dhw != 0.
1501 
1502       // Must preserve store ordering. The monitor state must
1503       // be stable at the time of publishing the monitor address.
1504       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1505       object->release_set_mark(markOopDesc::encode(m));
1506 
1507       // Hopefully the performance counters are allocated on distinct cache lines
1508       // to avoid false sharing on MP systems ...
1509       OM_PERFDATA_OP(Inflations, inc());
1510       TEVENT(Inflate: overwrite stacklock);
1511       if (log_is_enabled(Debug, monitorinflation)) {
1512         if (object->is_instance()) {
1513           ResourceMark rm;
1514           log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1515                                       p2i(object), p2i(object->mark()),
1516                                       object->klass()->external_name());
1517         }
1518       }
1519       if (event.should_commit()) {
1520         post_monitor_inflate_event(event, object, cause);
1521       }
1522       return m;
1523     }
1524 
1525     // CASE: neutral
1526     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1527     // If we know we're inflating for entry it's better to inflate by swinging a
1528     // pre-locked objectMonitor pointer into the object header.   A successful
1529     // CAS inflates the object *and* confers ownership to the inflating thread.
1530     // In the current implementation we use a 2-step mechanism where we CAS()
1531     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1532     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1533     // would be useful.
1534 
1535     assert(mark->is_neutral(), "invariant");
1536     ObjectMonitor * m = omAlloc(Self);
1537     // prepare m for installation - set monitor to initial state
1538     m->Recycle();
1539     m->set_header(mark);
1540     m->set_owner(NULL);
1541     m->set_object(object);
1542     m->_recursions   = 0;
1543     m->_Responsible  = NULL;
1544     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1545 
1546     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1547       m->set_object(NULL);
1548       m->set_owner(NULL);
1549       m->Recycle();
1550       omRelease(Self, m, true);
1551       m = NULL;
1552       continue;
1553       // interference - the markword changed - just retry.
1554       // The state-transitions are one-way, so there's no chance of
1555       // live-lock -- "Inflated" is an absorbing state.
1556     }
1557 
1558     // Hopefully the performance counters are allocated on distinct
1559     // cache lines to avoid false sharing on MP systems ...
1560     OM_PERFDATA_OP(Inflations, inc());
1561     TEVENT(Inflate: overwrite neutral);
1562     if (log_is_enabled(Debug, monitorinflation)) {
1563       if (object->is_instance()) {
1564         ResourceMark rm;
1565         log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1566                                     p2i(object), p2i(object->mark()),
1567                                     object->klass()->external_name());
1568       }
1569     }
1570     if (event.should_commit()) {
1571       post_monitor_inflate_event(event, object, cause);
1572     }
1573     return m;
1574   }
1575 }
1576 
1577 
1578 // Deflate_idle_monitors() is called at all safepoints, immediately
1579 // after all mutators are stopped, but before any objects have moved.
1580 // It traverses the list of known monitors, deflating where possible.
1581 // The scavenged monitor are returned to the monitor free list.
1582 //
1583 // Beware that we scavenge at *every* stop-the-world point.
1584 // Having a large number of monitors in-circulation negatively
1585 // impacts the performance of some applications (e.g., PointBase).
1586 // Broadly, we want to minimize the # of monitors in circulation.
1587 //
1588 // We have added a flag, MonitorInUseLists, which creates a list
1589 // of active monitors for each thread. deflate_idle_monitors()
1590 // only scans the per-thread in-use lists. omAlloc() puts all
1591 // assigned monitors on the per-thread list. deflate_idle_monitors()
1592 // returns the non-busy monitors to the global free list.
1593 // When a thread dies, omFlush() adds the list of active monitors for
1594 // that thread to a global gOmInUseList acquiring the
1595 // global list lock. deflate_idle_monitors() acquires the global
1596 // list lock to scan for non-busy monitors to the global free list.
1597 // An alternative could have used a single global in-use list. The
1598 // downside would have been the additional cost of acquiring the global list lock
1599 // for every omAlloc().
1600 //
1601 // Perversely, the heap size -- and thus the STW safepoint rate --
1602 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1603 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1604 // This is an unfortunate aspect of this design.
1605 
1606 enum ManifestConstants {
1607   ClearResponsibleAtSTW = 0
1608 };
1609 
1610 // Deflate a single monitor if not in-use
1611 // Return true if deflated, false if in-use
1612 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1613                                          ObjectMonitor** freeHeadp,
1614                                          ObjectMonitor** freeTailp) {
1615   bool deflated;
1616   // Normal case ... The monitor is associated with obj.
1617   guarantee(obj->mark() == markOopDesc::encode(mid), "invariant");
1618   guarantee(mid == obj->mark()->monitor(), "invariant");
1619   guarantee(mid->header()->is_neutral(), "invariant");
1620 
1621   if (mid->is_busy()) {
1622     if (ClearResponsibleAtSTW) mid->_Responsible = NULL;
1623     deflated = false;
1624   } else {
1625     // Deflate the monitor if it is no longer being used
1626     // It's idle - scavenge and return to the global free list
1627     // plain old deflation ...
1628     TEVENT(deflate_idle_monitors - scavenge1);
1629     if (log_is_enabled(Debug, monitorinflation)) {
1630       if (obj->is_instance()) {
1631         ResourceMark rm;
1632         log_debug(monitorinflation)("Deflating object " INTPTR_FORMAT " , "
1633                                     "mark " INTPTR_FORMAT " , type %s",
1634                                     p2i(obj), p2i(obj->mark()),
1635                                     obj->klass()->external_name());
1636       }
1637     }
1638 
1639     // Restore the header back to obj
1640     obj->release_set_mark(mid->header());
1641     mid->clear();
1642 
1643     assert(mid->object() == NULL, "invariant");
1644 
1645     // Move the object to the working free list defined by freeHeadp, freeTailp
1646     if (*freeHeadp == NULL) *freeHeadp = mid;
1647     if (*freeTailp != NULL) {
1648       ObjectMonitor * prevtail = *freeTailp;
1649       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1650       prevtail->FreeNext = mid;
1651     }
1652     *freeTailp = mid;
1653     deflated = true;
1654   }
1655   return deflated;
1656 }
1657 
1658 // Walk a given monitor list, and deflate idle monitors
1659 // The given list could be a per-thread list or a global list
1660 // Caller acquires gListLock.
1661 //
1662 // In the case of parallel processing of thread local monitor lists,
1663 // work is done by Threads::parallel_threads_do() which ensures that
1664 // each Java thread is processed by exactly one worker thread, and
1665 // thus avoid conflicts that would arise when worker threads would
1666 // process the same monitor lists concurrently.
1667 //
1668 // See also ParallelSPCleanupTask and
1669 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1670 // Threads::parallel_java_threads_do() in thread.cpp.
1671 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1672                                              ObjectMonitor** freeHeadp,
1673                                              ObjectMonitor** freeTailp) {
1674   ObjectMonitor* mid;
1675   ObjectMonitor* next;
1676   ObjectMonitor* cur_mid_in_use = NULL;
1677   int deflated_count = 0;
1678 
1679   for (mid = *listHeadp; mid != NULL;) {
1680     oop obj = (oop) mid->object();
1681     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1682       // if deflate_monitor succeeded,
1683       // extract from per-thread in-use list
1684       if (mid == *listHeadp) {
1685         *listHeadp = mid->FreeNext;
1686       } else if (cur_mid_in_use != NULL) {
1687         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1688       }
1689       next = mid->FreeNext;
1690       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1691       mid = next;
1692       deflated_count++;
1693     } else {
1694       cur_mid_in_use = mid;
1695       mid = mid->FreeNext;
1696     }
1697   }
1698   return deflated_count;
1699 }
1700 
1701 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1702   counters->nInuse = 0;          // currently associated with objects
1703   counters->nInCirculation = 0;  // extant
1704   counters->nScavenged = 0;      // reclaimed
1705 }
1706 
1707 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
1708   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1709   bool deflated = false;
1710 
1711   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1712   ObjectMonitor * freeTailp = NULL;
1713 
1714   TEVENT(deflate_idle_monitors);
1715   // Prevent omFlush from changing mids in Thread dtor's during deflation
1716   // And in case the vm thread is acquiring a lock during a safepoint
1717   // See e.g. 6320749
1718   Thread::muxAcquire(&gListLock, "scavenge - return");
1719 
1720   if (MonitorInUseLists) {
1721     // Note: the thread-local monitors lists get deflated in
1722     // a separate pass. See deflate_thread_local_monitors().
1723 
1724     // For moribund threads, scan gOmInUseList
1725     if (gOmInUseList) {
1726       counters->nInCirculation += gOmInUseCount;
1727       int deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1728       gOmInUseCount -= deflated_count;
1729       counters->nScavenged += deflated_count;
1730       counters->nInuse += gOmInUseCount;
1731     }
1732 
1733   } else {
1734     PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
1735     for (; block != NULL; block = next(block)) {
1736       // Iterate over all extant monitors - Scavenge all idle monitors.
1737       assert(block->object() == CHAINMARKER, "must be a block header");
1738       counters->nInCirculation += _BLOCKSIZE;
1739       for (int i = 1; i < _BLOCKSIZE; i++) {
1740         ObjectMonitor* mid = (ObjectMonitor*)&block[i];
1741         oop obj = (oop)mid->object();
1742 
1743         if (obj == NULL) {
1744           // The monitor is not associated with an object.
1745           // The monitor should either be a thread-specific private
1746           // free list or the global free list.
1747           // obj == NULL IMPLIES mid->is_busy() == 0
1748           guarantee(!mid->is_busy(), "invariant");
1749           continue;
1750         }
1751         deflated = deflate_monitor(mid, obj, &freeHeadp, &freeTailp);
1752 
1753         if (deflated) {
1754           mid->FreeNext = NULL;
1755           counters->nScavenged++;
1756         } else {
1757           counters->nInuse++;
1758         }
1759       }
1760     }
1761   }
1762 
1763   // Move the scavenged monitors back to the global free list.
1764   if (freeHeadp != NULL) {
1765     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
1766     assert(freeTailp->FreeNext == NULL, "invariant");
1767     // constant-time list splice - prepend scavenged segment to gFreeList
1768     freeTailp->FreeNext = gFreeList;
1769     gFreeList = freeHeadp;
1770   }
1771   Thread::muxRelease(&gListLock);
1772 
1773 }
1774 
1775 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1776   gMonitorFreeCount += counters->nScavenged;
1777 
1778   // Consider: audit gFreeList to ensure that gMonitorFreeCount and list agree.
1779 
1780   if (ObjectMonitor::Knob_Verbose) {
1781     tty->print_cr("INFO: Deflate: InCirc=%d InUse=%d Scavenged=%d "
1782                   "ForceMonitorScavenge=%d : pop=%d free=%d",
1783                   counters->nInCirculation, counters->nInuse, counters->nScavenged, ForceMonitorScavenge,
1784                   gMonitorPopulation, gMonitorFreeCount);
1785     tty->flush();
1786   }
1787 
1788   ForceMonitorScavenge = 0;    // Reset
1789 
1790   OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
1791   OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
1792 
1793   // TODO: Add objectMonitor leak detection.
1794   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1795   GVars.stwRandom = os::random();
1796   GVars.stwCycle++;
1797 }
1798 
1799 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
1800   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1801   if (!MonitorInUseLists) return;
1802 
1803   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1804   ObjectMonitor * freeTailp = NULL;
1805 
1806   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
1807 
1808   Thread::muxAcquire(&gListLock, "scavenge - return");
1809 
1810   // Adjust counters
1811   counters->nInCirculation += thread->omInUseCount;
1812   thread->omInUseCount -= deflated_count;
1813   if (ObjectMonitor::Knob_VerifyInUse) {
1814     verifyInUse(thread);
1815   }
1816   counters->nScavenged += deflated_count;
1817   counters->nInuse += thread->omInUseCount;
1818 
1819   // Move the scavenged monitors back to the global free list.
1820   if (freeHeadp != NULL) {
1821     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
1822     assert(freeTailp->FreeNext == NULL, "invariant");
1823 
1824     // constant-time list splice - prepend scavenged segment to gFreeList
1825     freeTailp->FreeNext = gFreeList;
1826     gFreeList = freeHeadp;
1827   }
1828   Thread::muxRelease(&gListLock);
1829 }
1830 
1831 // Monitor cleanup on JavaThread::exit
1832 
1833 // Iterate through monitor cache and attempt to release thread's monitors
1834 // Gives up on a particular monitor if an exception occurs, but continues
1835 // the overall iteration, swallowing the exception.
1836 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1837  private:
1838   TRAPS;
1839 
1840  public:
1841   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1842   void do_monitor(ObjectMonitor* mid) {
1843     if (mid->owner() == THREAD) {
1844       if (ObjectMonitor::Knob_VerifyMatch != 0) {
1845         ResourceMark rm;
1846         Handle obj(THREAD, (oop) mid->object());
1847         tty->print("INFO: unexpected locked object:");
1848         javaVFrame::print_locked_object_class_name(tty, obj, "locked");
1849         fatal("exiting JavaThread=" INTPTR_FORMAT
1850               " unexpectedly owns ObjectMonitor=" INTPTR_FORMAT,
1851               p2i(THREAD), p2i(mid));
1852       }
1853       (void)mid->complete_exit(CHECK);
1854     }
1855   }
1856 };
1857 
1858 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1859 // ignored.  This is meant to be called during JNI thread detach which assumes
1860 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1861 // Scanning the extant monitor list can be time consuming.
1862 // A simple optimization is to add a per-thread flag that indicates a thread
1863 // called jni_monitorenter() during its lifetime.
1864 //
1865 // Instead of No_Savepoint_Verifier it might be cheaper to
1866 // use an idiom of the form:
1867 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1868 //   <code that must not run at safepoint>
1869 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1870 // Since the tests are extremely cheap we could leave them enabled
1871 // for normal product builds.
1872 
1873 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1874   assert(THREAD == JavaThread::current(), "must be current Java thread");
1875   NoSafepointVerifier nsv;
1876   ReleaseJavaMonitorsClosure rjmc(THREAD);
1877   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1878   ObjectSynchronizer::monitors_iterate(&rjmc);
1879   Thread::muxRelease(&gListLock);
1880   THREAD->clear_pending_exception();
1881 }
1882 
1883 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1884   switch (cause) {
1885     case inflate_cause_vm_internal:    return "VM Internal";
1886     case inflate_cause_monitor_enter:  return "Monitor Enter";
1887     case inflate_cause_wait:           return "Monitor Wait";
1888     case inflate_cause_notify:         return "Monitor Notify";
1889     case inflate_cause_hash_code:      return "Monitor Hash Code";
1890     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1891     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1892     default:
1893       ShouldNotReachHere();
1894   }
1895   return "Unknown";
1896 }
1897 
1898 static void post_monitor_inflate_event(EventJavaMonitorInflate& event,
1899                                        const oop obj,
1900                                        const ObjectSynchronizer::InflateCause cause) {
1901 #if INCLUDE_TRACE
1902   assert(event.should_commit(), "check outside");
1903   event.set_monitorClass(obj->klass());
1904   event.set_address((TYPE_ADDRESS)(uintptr_t)(void*)obj);
1905   event.set_cause((u1)cause);
1906   event.commit();
1907 #endif
1908 }
1909 
1910 //------------------------------------------------------------------------------
1911 // Debugging code
1912 
1913 void ObjectSynchronizer::sanity_checks(const bool verbose,
1914                                        const uint cache_line_size,
1915                                        int *error_cnt_ptr,
1916                                        int *warning_cnt_ptr) {
1917   u_char *addr_begin      = (u_char*)&GVars;
1918   u_char *addr_stwRandom  = (u_char*)&GVars.stwRandom;
1919   u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
1920 
1921   if (verbose) {
1922     tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
1923                   sizeof(SharedGlobals));
1924   }
1925 
1926   uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
1927   if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
1928 
1929   uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
1930   if (verbose) {
1931     tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
1932   }
1933 
1934   if (cache_line_size != 0) {
1935     // We were able to determine the L1 data cache line size so
1936     // do some cache line specific sanity checks
1937 
1938     if (offset_stwRandom < cache_line_size) {
1939       tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
1940                     "to the struct beginning than a cache line which permits "
1941                     "false sharing.");
1942       (*warning_cnt_ptr)++;
1943     }
1944 
1945     if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
1946       tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
1947                     "SharedGlobals.hcSequence fields are closer than a cache "
1948                     "line which permits false sharing.");
1949       (*warning_cnt_ptr)++;
1950     }
1951 
1952     if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
1953       tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
1954                     "to the struct end than a cache line which permits false "
1955                     "sharing.");
1956       (*warning_cnt_ptr)++;
1957     }
1958   }
1959 }
1960 
1961 #ifndef PRODUCT
1962 
1963 // Check if monitor belongs to the monitor cache
1964 // The list is grow-only so it's *relatively* safe to traverse
1965 // the list of extant blocks without taking a lock.
1966 
1967 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1968   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
1969   while (block != NULL) {
1970     assert(block->object() == CHAINMARKER, "must be a block header");
1971     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
1972       address mon = (address)monitor;
1973       address blk = (address)block;
1974       size_t diff = mon - blk;
1975       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
1976       return 1;
1977     }
1978     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1979   }
1980   return 0;
1981 }
1982 
1983 #endif