1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2018 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "libo4.hpp"
  41 #include "libperfstat_aix.hpp"
  42 #include "libodm_aix.hpp"
  43 #include "loadlib_aix.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "misc_aix.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "os_aix.inline.hpp"
  49 #include "os_share_aix.hpp"
  50 #include "porting_aix.hpp"
  51 #include "prims/jniFastGetField.hpp"
  52 #include "prims/jvm_misc.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/extendedPC.hpp"
  56 #include "runtime/globals.hpp"
  57 #include "runtime/interfaceSupport.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.hpp"
  63 #include "runtime/os.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/perfMemory.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/timer.hpp"
  72 #include "runtime/vm_version.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/runtimeService.hpp"
  75 #include "utilities/align.hpp"
  76 #include "utilities/decoder.hpp"
  77 #include "utilities/defaultStream.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/growableArray.hpp"
  80 #include "utilities/vmError.hpp"
  81 
  82 // put OS-includes here (sorted alphabetically)
  83 #include <errno.h>
  84 #include <fcntl.h>
  85 #include <inttypes.h>
  86 #include <poll.h>
  87 #include <procinfo.h>
  88 #include <pthread.h>
  89 #include <pwd.h>
  90 #include <semaphore.h>
  91 #include <signal.h>
  92 #include <stdint.h>
  93 #include <stdio.h>
  94 #include <string.h>
  95 #include <unistd.h>
  96 #include <sys/ioctl.h>
  97 #include <sys/ipc.h>
  98 #include <sys/mman.h>
  99 #include <sys/resource.h>
 100 #include <sys/select.h>
 101 #include <sys/shm.h>
 102 #include <sys/socket.h>
 103 #include <sys/stat.h>
 104 #include <sys/sysinfo.h>
 105 #include <sys/systemcfg.h>
 106 #include <sys/time.h>
 107 #include <sys/times.h>
 108 #include <sys/types.h>
 109 #include <sys/utsname.h>
 110 #include <sys/vminfo.h>
 111 #include <sys/wait.h>
 112 
 113 // Missing prototypes for various system APIs.
 114 extern "C"
 115 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 116 
 117 #if !defined(_AIXVERSION_610)
 118 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 119 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 120 extern "C" int getargs(procsinfo*, int, char*, int);
 121 #endif
 122 
 123 #define MAX_PATH (2 * K)
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 // for multipage initialization error analysis (in 'g_multipage_error')
 128 #define ERROR_MP_OS_TOO_OLD                          100
 129 #define ERROR_MP_EXTSHM_ACTIVE                       101
 130 #define ERROR_MP_VMGETINFO_FAILED                    102
 131 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 132 
 133 // excerpts from systemcfg.h that might be missing on older os levels
 134 #ifndef PV_5_Compat
 135   #define PV_5_Compat 0x0F8000   /* Power PC 5 */
 136 #endif
 137 #ifndef PV_6
 138   #define PV_6 0x100000          /* Power PC 6 */
 139 #endif
 140 #ifndef PV_6_1
 141   #define PV_6_1 0x100001        /* Power PC 6 DD1.x */
 142 #endif
 143 #ifndef PV_6_Compat
 144   #define PV_6_Compat 0x108000   /* Power PC 6 */
 145 #endif
 146 #ifndef PV_7
 147   #define PV_7 0x200000          /* Power PC 7 */
 148 #endif
 149 #ifndef PV_7_Compat
 150   #define PV_7_Compat 0x208000   /* Power PC 7 */
 151 #endif
 152 #ifndef PV_8
 153   #define PV_8 0x300000          /* Power PC 8 */
 154 #endif
 155 #ifndef PV_8_Compat
 156   #define PV_8_Compat 0x308000   /* Power PC 8 */
 157 #endif
 158 
 159 static address resolve_function_descriptor_to_code_pointer(address p);
 160 
 161 static void vmembk_print_on(outputStream* os);
 162 
 163 ////////////////////////////////////////////////////////////////////////////////
 164 // global variables (for a description see os_aix.hpp)
 165 
 166 julong    os::Aix::_physical_memory = 0;
 167 
 168 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 169 int       os::Aix::_page_size = -1;
 170 
 171 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 172 int       os::Aix::_on_pase = -1;
 173 
 174 // 0 = uninitialized, otherwise 32 bit number:
 175 //  0xVVRRTTSS
 176 //  VV - major version
 177 //  RR - minor version
 178 //  TT - tech level, if known, 0 otherwise
 179 //  SS - service pack, if known, 0 otherwise
 180 uint32_t  os::Aix::_os_version = 0;
 181 
 182 // -1 = uninitialized, 0 - no, 1 - yes
 183 int       os::Aix::_xpg_sus_mode = -1;
 184 
 185 // -1 = uninitialized, 0 - no, 1 - yes
 186 int       os::Aix::_extshm = -1;
 187 
 188 ////////////////////////////////////////////////////////////////////////////////
 189 // local variables
 190 
 191 static volatile jlong max_real_time = 0;
 192 static jlong    initial_time_count = 0;
 193 static int      clock_tics_per_sec = 100;
 194 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 195 static bool     check_signals      = true;
 196 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 197 static sigset_t SR_sigset;
 198 
 199 // Process break recorded at startup.
 200 static address g_brk_at_startup = NULL;
 201 
 202 // This describes the state of multipage support of the underlying
 203 // OS. Note that this is of no interest to the outsize world and
 204 // therefore should not be defined in AIX class.
 205 //
 206 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 207 // latter two (16M "large" resp. 16G "huge" pages) require special
 208 // setup and are normally not available.
 209 //
 210 // AIX supports multiple page sizes per process, for:
 211 //  - Stack (of the primordial thread, so not relevant for us)
 212 //  - Data - data, bss, heap, for us also pthread stacks
 213 //  - Text - text code
 214 //  - shared memory
 215 //
 216 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 217 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 218 //
 219 // For shared memory, page size can be set dynamically via
 220 // shmctl(). Different shared memory regions can have different page
 221 // sizes.
 222 //
 223 // More information can be found at AIBM info center:
 224 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 225 //
 226 static struct {
 227   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 228   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 229   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 230   size_t pthr_stack_pagesize; // stack page size of pthread threads
 231   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 232   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 233   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 234   int error;                  // Error describing if something went wrong at multipage init.
 235 } g_multipage_support = {
 236   (size_t) -1,
 237   (size_t) -1,
 238   (size_t) -1,
 239   (size_t) -1,
 240   (size_t) -1,
 241   false, false,
 242   0
 243 };
 244 
 245 // We must not accidentally allocate memory close to the BRK - even if
 246 // that would work - because then we prevent the BRK segment from
 247 // growing which may result in a malloc OOM even though there is
 248 // enough memory. The problem only arises if we shmat() or mmap() at
 249 // a specific wish address, e.g. to place the heap in a
 250 // compressed-oops-friendly way.
 251 static bool is_close_to_brk(address a) {
 252   assert0(g_brk_at_startup != NULL);
 253   if (a >= g_brk_at_startup &&
 254       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 255     return true;
 256   }
 257   return false;
 258 }
 259 
 260 julong os::available_memory() {
 261   return Aix::available_memory();
 262 }
 263 
 264 julong os::Aix::available_memory() {
 265   // Avoid expensive API call here, as returned value will always be null.
 266   if (os::Aix::on_pase()) {
 267     return 0x0LL;
 268   }
 269   os::Aix::meminfo_t mi;
 270   if (os::Aix::get_meminfo(&mi)) {
 271     return mi.real_free;
 272   } else {
 273     return ULONG_MAX;
 274   }
 275 }
 276 
 277 julong os::physical_memory() {
 278   return Aix::physical_memory();
 279 }
 280 
 281 // Return true if user is running as root.
 282 
 283 bool os::have_special_privileges() {
 284   static bool init = false;
 285   static bool privileges = false;
 286   if (!init) {
 287     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 288     init = true;
 289   }
 290   return privileges;
 291 }
 292 
 293 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 294 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 295 static bool my_disclaim64(char* addr, size_t size) {
 296 
 297   if (size == 0) {
 298     return true;
 299   }
 300 
 301   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 302   const unsigned int maxDisclaimSize = 0x40000000;
 303 
 304   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 305   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 306 
 307   char* p = addr;
 308 
 309   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 310     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 311       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 312       return false;
 313     }
 314     p += maxDisclaimSize;
 315   }
 316 
 317   if (lastDisclaimSize > 0) {
 318     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 319       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 320       return false;
 321     }
 322   }
 323 
 324   return true;
 325 }
 326 
 327 // Cpu architecture string
 328 #if defined(PPC32)
 329 static char cpu_arch[] = "ppc";
 330 #elif defined(PPC64)
 331 static char cpu_arch[] = "ppc64";
 332 #else
 333 #error Add appropriate cpu_arch setting
 334 #endif
 335 
 336 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 337 static int checked_vmgetinfo(void *out, int command, int arg) {
 338   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 339     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 340   }
 341   return ::vmgetinfo(out, command, arg);
 342 }
 343 
 344 // Given an address, returns the size of the page backing that address.
 345 size_t os::Aix::query_pagesize(void* addr) {
 346 
 347   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 348     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 349     return 4*K;
 350   }
 351 
 352   vm_page_info pi;
 353   pi.addr = (uint64_t)addr;
 354   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 355     return pi.pagesize;
 356   } else {
 357     assert(false, "vmgetinfo failed to retrieve page size");
 358     return 4*K;
 359   }
 360 }
 361 
 362 void os::Aix::initialize_system_info() {
 363 
 364   // Get the number of online(logical) cpus instead of configured.
 365   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 366   assert(_processor_count > 0, "_processor_count must be > 0");
 367 
 368   // Retrieve total physical storage.
 369   os::Aix::meminfo_t mi;
 370   if (!os::Aix::get_meminfo(&mi)) {
 371     assert(false, "os::Aix::get_meminfo failed.");
 372   }
 373   _physical_memory = (julong) mi.real_total;
 374 }
 375 
 376 // Helper function for tracing page sizes.
 377 static const char* describe_pagesize(size_t pagesize) {
 378   switch (pagesize) {
 379     case 4*K : return "4K";
 380     case 64*K: return "64K";
 381     case 16*M: return "16M";
 382     case 16*G: return "16G";
 383     default:
 384       assert(false, "surprise");
 385       return "??";
 386   }
 387 }
 388 
 389 // Probe OS for multipage support.
 390 // Will fill the global g_multipage_support structure.
 391 // Must be called before calling os::large_page_init().
 392 static void query_multipage_support() {
 393 
 394   guarantee(g_multipage_support.pagesize == -1,
 395             "do not call twice");
 396 
 397   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 398 
 399   // This really would surprise me.
 400   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 401 
 402   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 403   // Default data page size is defined either by linker options (-bdatapsize)
 404   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 405   // default should be 4K.
 406   {
 407     void* p = ::malloc(16*M);
 408     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 409     ::free(p);
 410   }
 411 
 412   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 413   // Note that this is pure curiosity. We do not rely on default page size but set
 414   // our own page size after allocated.
 415   {
 416     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 417     guarantee(shmid != -1, "shmget failed");
 418     void* p = ::shmat(shmid, NULL, 0);
 419     ::shmctl(shmid, IPC_RMID, NULL);
 420     guarantee(p != (void*) -1, "shmat failed");
 421     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 422     ::shmdt(p);
 423   }
 424 
 425   // Before querying the stack page size, make sure we are not running as primordial
 426   // thread (because primordial thread's stack may have different page size than
 427   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 428   // number of reasons so we may just as well guarantee it here.
 429   guarantee0(!os::is_primordial_thread());
 430 
 431   // Query pthread stack page size. Should be the same as data page size because
 432   // pthread stacks are allocated from C-Heap.
 433   {
 434     int dummy = 0;
 435     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 436   }
 437 
 438   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 439   {
 440     address any_function =
 441       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 442     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 443   }
 444 
 445   // Now probe for support of 64K pages and 16M pages.
 446 
 447   // Before OS/400 V6R1, there is no support for pages other than 4K.
 448   if (os::Aix::on_pase_V5R4_or_older()) {
 449     trcVerbose("OS/400 < V6R1 - no large page support.");
 450     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 451     goto query_multipage_support_end;
 452   }
 453 
 454   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 455   {
 456     const int MAX_PAGE_SIZES = 4;
 457     psize_t sizes[MAX_PAGE_SIZES];
 458     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 459     if (num_psizes == -1) {
 460       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 461       trcVerbose("disabling multipage support.");
 462       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 463       goto query_multipage_support_end;
 464     }
 465     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 466     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 467     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 468     for (int i = 0; i < num_psizes; i ++) {
 469       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 470     }
 471 
 472     // Can we use 64K, 16M pages?
 473     for (int i = 0; i < num_psizes; i ++) {
 474       const size_t pagesize = sizes[i];
 475       if (pagesize != 64*K && pagesize != 16*M) {
 476         continue;
 477       }
 478       bool can_use = false;
 479       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 480       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 481         IPC_CREAT | S_IRUSR | S_IWUSR);
 482       guarantee0(shmid != -1); // Should always work.
 483       // Try to set pagesize.
 484       struct shmid_ds shm_buf = { 0 };
 485       shm_buf.shm_pagesize = pagesize;
 486       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 487         const int en = errno;
 488         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 489         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%n",
 490           errno);
 491       } else {
 492         // Attach and double check pageisze.
 493         void* p = ::shmat(shmid, NULL, 0);
 494         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 495         guarantee0(p != (void*) -1); // Should always work.
 496         const size_t real_pagesize = os::Aix::query_pagesize(p);
 497         if (real_pagesize != pagesize) {
 498           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 499         } else {
 500           can_use = true;
 501         }
 502         ::shmdt(p);
 503       }
 504       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 505       if (pagesize == 64*K) {
 506         g_multipage_support.can_use_64K_pages = can_use;
 507       } else if (pagesize == 16*M) {
 508         g_multipage_support.can_use_16M_pages = can_use;
 509       }
 510     }
 511 
 512   } // end: check which pages can be used for shared memory
 513 
 514 query_multipage_support_end:
 515 
 516   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 517       describe_pagesize(g_multipage_support.pagesize));
 518   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 519       describe_pagesize(g_multipage_support.datapsize));
 520   trcVerbose("Text page size: %s",
 521       describe_pagesize(g_multipage_support.textpsize));
 522   trcVerbose("Thread stack page size (pthread): %s",
 523       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 524   trcVerbose("Default shared memory page size: %s",
 525       describe_pagesize(g_multipage_support.shmpsize));
 526   trcVerbose("Can use 64K pages dynamically with shared meory: %s",
 527       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 528   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 529       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 530   trcVerbose("Multipage error details: %d",
 531       g_multipage_support.error);
 532 
 533   // sanity checks
 534   assert0(g_multipage_support.pagesize == 4*K);
 535   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 536   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 537   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 538   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 539 
 540 }
 541 
 542 void os::init_system_properties_values() {
 543 
 544 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 545 #define EXTENSIONS_DIR  "/lib/ext"
 546 
 547   // Buffer that fits several sprintfs.
 548   // Note that the space for the trailing null is provided
 549   // by the nulls included by the sizeof operator.
 550   const size_t bufsize =
 551     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 552          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 553   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 554 
 555   // sysclasspath, java_home, dll_dir
 556   {
 557     char *pslash;
 558     os::jvm_path(buf, bufsize);
 559 
 560     // Found the full path to libjvm.so.
 561     // Now cut the path to <java_home>/jre if we can.
 562     pslash = strrchr(buf, '/');
 563     if (pslash != NULL) {
 564       *pslash = '\0';            // Get rid of /libjvm.so.
 565     }
 566     pslash = strrchr(buf, '/');
 567     if (pslash != NULL) {
 568       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 569     }
 570     Arguments::set_dll_dir(buf);
 571 
 572     if (pslash != NULL) {
 573       pslash = strrchr(buf, '/');
 574       if (pslash != NULL) {
 575         *pslash = '\0';        // Get rid of /lib.
 576       }
 577     }
 578     Arguments::set_java_home(buf);
 579     set_boot_path('/', ':');
 580   }
 581 
 582   // Where to look for native libraries.
 583 
 584   // On Aix we get the user setting of LIBPATH.
 585   // Eventually, all the library path setting will be done here.
 586   // Get the user setting of LIBPATH.
 587   const char *v = ::getenv("LIBPATH");
 588   const char *v_colon = ":";
 589   if (v == NULL) { v = ""; v_colon = ""; }
 590 
 591   // Concatenate user and invariant part of ld_library_path.
 592   // That's +1 for the colon and +1 for the trailing '\0'.
 593   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 594   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 595   Arguments::set_library_path(ld_library_path);
 596   FREE_C_HEAP_ARRAY(char, ld_library_path);
 597 
 598   // Extensions directories.
 599   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 600   Arguments::set_ext_dirs(buf);
 601 
 602   FREE_C_HEAP_ARRAY(char, buf);
 603 
 604 #undef DEFAULT_LIBPATH
 605 #undef EXTENSIONS_DIR
 606 }
 607 
 608 ////////////////////////////////////////////////////////////////////////////////
 609 // breakpoint support
 610 
 611 void os::breakpoint() {
 612   BREAKPOINT;
 613 }
 614 
 615 extern "C" void breakpoint() {
 616   // use debugger to set breakpoint here
 617 }
 618 
 619 ////////////////////////////////////////////////////////////////////////////////
 620 // signal support
 621 
 622 debug_only(static bool signal_sets_initialized = false);
 623 static sigset_t unblocked_sigs, vm_sigs;
 624 
 625 void os::Aix::signal_sets_init() {
 626   // Should also have an assertion stating we are still single-threaded.
 627   assert(!signal_sets_initialized, "Already initialized");
 628   // Fill in signals that are necessarily unblocked for all threads in
 629   // the VM. Currently, we unblock the following signals:
 630   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 631   //                         by -Xrs (=ReduceSignalUsage));
 632   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 633   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 634   // the dispositions or masks wrt these signals.
 635   // Programs embedding the VM that want to use the above signals for their
 636   // own purposes must, at this time, use the "-Xrs" option to prevent
 637   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 638   // (See bug 4345157, and other related bugs).
 639   // In reality, though, unblocking these signals is really a nop, since
 640   // these signals are not blocked by default.
 641   sigemptyset(&unblocked_sigs);
 642   sigaddset(&unblocked_sigs, SIGILL);
 643   sigaddset(&unblocked_sigs, SIGSEGV);
 644   sigaddset(&unblocked_sigs, SIGBUS);
 645   sigaddset(&unblocked_sigs, SIGFPE);
 646   sigaddset(&unblocked_sigs, SIGTRAP);
 647   sigaddset(&unblocked_sigs, SR_signum);
 648 
 649   if (!ReduceSignalUsage) {
 650    if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 651      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 652    }
 653    if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 654      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 655    }
 656    if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 657      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 658    }
 659   }
 660   // Fill in signals that are blocked by all but the VM thread.
 661   sigemptyset(&vm_sigs);
 662   if (!ReduceSignalUsage)
 663     sigaddset(&vm_sigs, BREAK_SIGNAL);
 664   debug_only(signal_sets_initialized = true);
 665 }
 666 
 667 // These are signals that are unblocked while a thread is running Java.
 668 // (For some reason, they get blocked by default.)
 669 sigset_t* os::Aix::unblocked_signals() {
 670   assert(signal_sets_initialized, "Not initialized");
 671   return &unblocked_sigs;
 672 }
 673 
 674 // These are the signals that are blocked while a (non-VM) thread is
 675 // running Java. Only the VM thread handles these signals.
 676 sigset_t* os::Aix::vm_signals() {
 677   assert(signal_sets_initialized, "Not initialized");
 678   return &vm_sigs;
 679 }
 680 
 681 void os::Aix::hotspot_sigmask(Thread* thread) {
 682 
 683   //Save caller's signal mask before setting VM signal mask
 684   sigset_t caller_sigmask;
 685   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 686 
 687   OSThread* osthread = thread->osthread();
 688   osthread->set_caller_sigmask(caller_sigmask);
 689 
 690   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 691 
 692   if (!ReduceSignalUsage) {
 693     if (thread->is_VM_thread()) {
 694       // Only the VM thread handles BREAK_SIGNAL ...
 695       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 696     } else {
 697       // ... all other threads block BREAK_SIGNAL
 698       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 699     }
 700   }
 701 }
 702 
 703 // retrieve memory information.
 704 // Returns false if something went wrong;
 705 // content of pmi undefined in this case.
 706 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 707 
 708   assert(pmi, "get_meminfo: invalid parameter");
 709 
 710   memset(pmi, 0, sizeof(meminfo_t));
 711 
 712   if (os::Aix::on_pase()) {
 713     // On PASE, use the libo4 porting library.
 714 
 715     unsigned long long virt_total = 0;
 716     unsigned long long real_total = 0;
 717     unsigned long long real_free = 0;
 718     unsigned long long pgsp_total = 0;
 719     unsigned long long pgsp_free = 0;
 720     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 721       pmi->virt_total = virt_total;
 722       pmi->real_total = real_total;
 723       pmi->real_free = real_free;
 724       pmi->pgsp_total = pgsp_total;
 725       pmi->pgsp_free = pgsp_free;
 726       return true;
 727     }
 728     return false;
 729 
 730   } else {
 731 
 732     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 733     // See:
 734     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 735     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 736     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 737     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 738 
 739     perfstat_memory_total_t psmt;
 740     memset (&psmt, '\0', sizeof(psmt));
 741     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 742     if (rc == -1) {
 743       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 744       assert(0, "perfstat_memory_total() failed");
 745       return false;
 746     }
 747 
 748     assert(rc == 1, "perfstat_memory_total() - weird return code");
 749 
 750     // excerpt from
 751     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 752     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 753     // The fields of perfstat_memory_total_t:
 754     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 755     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 756     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 757     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 758     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 759 
 760     pmi->virt_total = psmt.virt_total * 4096;
 761     pmi->real_total = psmt.real_total * 4096;
 762     pmi->real_free = psmt.real_free * 4096;
 763     pmi->pgsp_total = psmt.pgsp_total * 4096;
 764     pmi->pgsp_free = psmt.pgsp_free * 4096;
 765 
 766     return true;
 767 
 768   }
 769 } // end os::Aix::get_meminfo
 770 
 771 //////////////////////////////////////////////////////////////////////////////
 772 // create new thread
 773 
 774 // Thread start routine for all newly created threads
 775 static void *thread_native_entry(Thread *thread) {
 776 
 777   // find out my own stack dimensions
 778   {
 779     // actually, this should do exactly the same as thread->record_stack_base_and_size...
 780     thread->set_stack_base(os::current_stack_base());
 781     thread->set_stack_size(os::current_stack_size());
 782   }
 783 
 784   const pthread_t pthread_id = ::pthread_self();
 785   const tid_t kernel_thread_id = ::thread_self();
 786 
 787   LogTarget(Info, os, thread) lt;
 788   if (lt.is_enabled()) {
 789     address low_address = thread->stack_end();
 790     address high_address = thread->stack_base();
 791     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 792              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 793              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 794              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 795   }
 796 
 797   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 798   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 799   // tools hook pthread_create(). In this case, we may run into problems establishing
 800   // guard pages on those stacks, because the stacks may reside in memory which is not
 801   // protectable (shmated).
 802   if (thread->stack_base() > ::sbrk(0)) {
 803     log_warning(os, thread)("Thread stack not in data segment.");
 804   }
 805 
 806   // Try to randomize the cache line index of hot stack frames.
 807   // This helps when threads of the same stack traces evict each other's
 808   // cache lines. The threads can be either from the same JVM instance, or
 809   // from different JVM instances. The benefit is especially true for
 810   // processors with hyperthreading technology.
 811 
 812   static int counter = 0;
 813   int pid = os::current_process_id();
 814   alloca(((pid ^ counter++) & 7) * 128);
 815 
 816   thread->initialize_thread_current();
 817 
 818   OSThread* osthread = thread->osthread();
 819 
 820   // Thread_id is pthread id.
 821   osthread->set_thread_id(pthread_id);
 822 
 823   // .. but keep kernel thread id too for diagnostics
 824   osthread->set_kernel_thread_id(kernel_thread_id);
 825 
 826   // Initialize signal mask for this thread.
 827   os::Aix::hotspot_sigmask(thread);
 828 
 829   // Initialize floating point control register.
 830   os::Aix::init_thread_fpu_state();
 831 
 832   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 833 
 834   // Call one more level start routine.
 835   thread->run();
 836 
 837   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 838     os::current_thread_id(), (uintx) kernel_thread_id);
 839 
 840   // If a thread has not deleted itself ("delete this") as part of its
 841   // termination sequence, we have to ensure thread-local-storage is
 842   // cleared before we actually terminate. No threads should ever be
 843   // deleted asynchronously with respect to their termination.
 844   if (Thread::current_or_null_safe() != NULL) {
 845     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 846     thread->clear_thread_current();
 847   }
 848 
 849   return 0;
 850 }
 851 
 852 bool os::create_thread(Thread* thread, ThreadType thr_type,
 853                        size_t req_stack_size) {
 854 
 855   assert(thread->osthread() == NULL, "caller responsible");
 856 
 857   // Allocate the OSThread object.
 858   OSThread* osthread = new OSThread(NULL, NULL);
 859   if (osthread == NULL) {
 860     return false;
 861   }
 862 
 863   // Set the correct thread state.
 864   osthread->set_thread_type(thr_type);
 865 
 866   // Initial state is ALLOCATED but not INITIALIZED
 867   osthread->set_state(ALLOCATED);
 868 
 869   thread->set_osthread(osthread);
 870 
 871   // Init thread attributes.
 872   pthread_attr_t attr;
 873   pthread_attr_init(&attr);
 874   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 875 
 876   // Make sure we run in 1:1 kernel-user-thread mode.
 877   if (os::Aix::on_aix()) {
 878     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 879     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 880   }
 881 
 882   // Start in suspended state, and in os::thread_start, wake the thread up.
 883   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 884 
 885   // Calculate stack size if it's not specified by caller.
 886   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 887 
 888   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 889   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 890   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 891   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 892   if (stack_size < 4096 * K) {
 893     stack_size += 64 * K;
 894   }
 895 
 896   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 897   // thread size in attr unchanged. If this is the minimal stack size as set
 898   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 899   // guard pages might not fit on the tiny stack created.
 900   int ret = pthread_attr_setstacksize(&attr, stack_size);
 901   if (ret != 0) {
 902     log_warning(os, thread)("The thread stack size specified is invalid: " SIZE_FORMAT "k",
 903                             stack_size / K);
 904   }
 905 
 906   // Save some cycles and a page by disabling OS guard pages where we have our own
 907   // VM guard pages (in java threads). For other threads, keep system default guard
 908   // pages in place.
 909   if (thr_type == java_thread || thr_type == compiler_thread) {
 910     ret = pthread_attr_setguardsize(&attr, 0);
 911   }
 912 
 913   pthread_t tid = 0;
 914   if (ret == 0) {
 915     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 916   }
 917 
 918   if (ret == 0) {
 919     char buf[64];
 920     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 921       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 922   } else {
 923     char buf[64];
 924     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 925       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 926   }
 927 
 928   pthread_attr_destroy(&attr);
 929 
 930   if (ret != 0) {
 931     // Need to clean up stuff we've allocated so far.
 932     thread->set_osthread(NULL);
 933     delete osthread;
 934     return false;
 935   }
 936 
 937   // OSThread::thread_id is the pthread id.
 938   osthread->set_thread_id(tid);
 939 
 940   return true;
 941 }
 942 
 943 /////////////////////////////////////////////////////////////////////////////
 944 // attach existing thread
 945 
 946 // bootstrap the main thread
 947 bool os::create_main_thread(JavaThread* thread) {
 948   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 949   return create_attached_thread(thread);
 950 }
 951 
 952 bool os::create_attached_thread(JavaThread* thread) {
 953 #ifdef ASSERT
 954     thread->verify_not_published();
 955 #endif
 956 
 957   // Allocate the OSThread object
 958   OSThread* osthread = new OSThread(NULL, NULL);
 959 
 960   if (osthread == NULL) {
 961     return false;
 962   }
 963 
 964   const pthread_t pthread_id = ::pthread_self();
 965   const tid_t kernel_thread_id = ::thread_self();
 966 
 967   // OSThread::thread_id is the pthread id.
 968   osthread->set_thread_id(pthread_id);
 969 
 970   // .. but keep kernel thread id too for diagnostics
 971   osthread->set_kernel_thread_id(kernel_thread_id);
 972 
 973   // initialize floating point control register
 974   os::Aix::init_thread_fpu_state();
 975 
 976   // Initial thread state is RUNNABLE
 977   osthread->set_state(RUNNABLE);
 978 
 979   thread->set_osthread(osthread);
 980 
 981   if (UseNUMA) {
 982     int lgrp_id = os::numa_get_group_id();
 983     if (lgrp_id != -1) {
 984       thread->set_lgrp_id(lgrp_id);
 985     }
 986   }
 987 
 988   // initialize signal mask for this thread
 989   // and save the caller's signal mask
 990   os::Aix::hotspot_sigmask(thread);
 991 
 992   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 993     os::current_thread_id(), (uintx) kernel_thread_id);
 994 
 995   return true;
 996 }
 997 
 998 void os::pd_start_thread(Thread* thread) {
 999   int status = pthread_continue_np(thread->osthread()->pthread_id());
1000   assert(status == 0, "thr_continue failed");
1001 }
1002 
1003 // Free OS resources related to the OSThread
1004 void os::free_thread(OSThread* osthread) {
1005   assert(osthread != NULL, "osthread not set");
1006 
1007   // We are told to free resources of the argument thread,
1008   // but we can only really operate on the current thread.
1009   assert(Thread::current()->osthread() == osthread,
1010          "os::free_thread but not current thread");
1011 
1012   // Restore caller's signal mask
1013   sigset_t sigmask = osthread->caller_sigmask();
1014   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1015 
1016   delete osthread;
1017 }
1018 
1019 ////////////////////////////////////////////////////////////////////////////////
1020 // time support
1021 
1022 // Time since start-up in seconds to a fine granularity.
1023 // Used by VMSelfDestructTimer and the MemProfiler.
1024 double os::elapsedTime() {
1025   return (double)(os::elapsed_counter()) * 0.000001;
1026 }
1027 
1028 jlong os::elapsed_counter() {
1029   timeval time;
1030   int status = gettimeofday(&time, NULL);
1031   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1032 }
1033 
1034 jlong os::elapsed_frequency() {
1035   return (1000 * 1000);
1036 }
1037 
1038 bool os::supports_vtime() { return true; }
1039 bool os::enable_vtime()   { return false; }
1040 bool os::vtime_enabled()  { return false; }
1041 
1042 double os::elapsedVTime() {
1043   struct rusage usage;
1044   int retval = getrusage(RUSAGE_THREAD, &usage);
1045   if (retval == 0) {
1046     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1047   } else {
1048     // better than nothing, but not much
1049     return elapsedTime();
1050   }
1051 }
1052 
1053 jlong os::javaTimeMillis() {
1054   timeval time;
1055   int status = gettimeofday(&time, NULL);
1056   assert(status != -1, "aix error at gettimeofday()");
1057   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1058 }
1059 
1060 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1061   timeval time;
1062   int status = gettimeofday(&time, NULL);
1063   assert(status != -1, "aix error at gettimeofday()");
1064   seconds = jlong(time.tv_sec);
1065   nanos = jlong(time.tv_usec) * 1000;
1066 }
1067 
1068 // We use mread_real_time here.
1069 // On AIX: If the CPU has a time register, the result will be RTC_POWER and
1070 // it has to be converted to real time. AIX documentations suggests to do
1071 // this unconditionally, so we do it.
1072 //
1073 // See: https://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.basetrf2/read_real_time.htm
1074 //
1075 // On PASE: mread_real_time will always return RTC_POWER_PC data, so no
1076 // conversion is necessary. However, mread_real_time will not return
1077 // monotonic results but merely matches read_real_time. So we need a tweak
1078 // to ensure monotonic results.
1079 //
1080 // For PASE no public documentation exists, just word by IBM
1081 jlong os::javaTimeNanos() {
1082   timebasestruct_t time;
1083   int rc = mread_real_time(&time, TIMEBASE_SZ);
1084   if (os::Aix::on_pase()) {
1085     assert(rc == RTC_POWER, "expected time format RTC_POWER from mread_real_time in PASE");
1086     jlong now = jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1087     jlong prev = max_real_time;
1088     if (now <= prev) {
1089       return prev;   // same or retrograde time;
1090     }
1091     jlong obsv = Atomic::cmpxchg(now, &max_real_time, prev);
1092     assert(obsv >= prev, "invariant");   // Monotonicity
1093     // If the CAS succeeded then we're done and return "now".
1094     // If the CAS failed and the observed value "obsv" is >= now then
1095     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1096     // some other thread raced this thread and installed a new value, in which case
1097     // we could either (a) retry the entire operation, (b) retry trying to install now
1098     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1099     // we might discard a higher "now" value in deference to a slightly lower but freshly
1100     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1101     // to (a) or (b) -- and greatly reduces coherence traffic.
1102     // We might also condition (c) on the magnitude of the delta between obsv and now.
1103     // Avoiding excessive CAS operations to hot RW locations is critical.
1104     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1105     return (prev == obsv) ? now : obsv;
1106   } else {
1107     if (rc != RTC_POWER) {
1108       rc = time_base_to_time(&time, TIMEBASE_SZ);
1109       assert(rc != -1, "error calling time_base_to_time()");
1110     }
1111     return jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1112   }
1113 }
1114 
1115 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1116   info_ptr->max_value = ALL_64_BITS;
1117   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1118   info_ptr->may_skip_backward = false;
1119   info_ptr->may_skip_forward = false;
1120   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1121 }
1122 
1123 // Return the real, user, and system times in seconds from an
1124 // arbitrary fixed point in the past.
1125 bool os::getTimesSecs(double* process_real_time,
1126                       double* process_user_time,
1127                       double* process_system_time) {
1128   struct tms ticks;
1129   clock_t real_ticks = times(&ticks);
1130 
1131   if (real_ticks == (clock_t) (-1)) {
1132     return false;
1133   } else {
1134     double ticks_per_second = (double) clock_tics_per_sec;
1135     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1136     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1137     *process_real_time = ((double) real_ticks) / ticks_per_second;
1138 
1139     return true;
1140   }
1141 }
1142 
1143 char * os::local_time_string(char *buf, size_t buflen) {
1144   struct tm t;
1145   time_t long_time;
1146   time(&long_time);
1147   localtime_r(&long_time, &t);
1148   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1149                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1150                t.tm_hour, t.tm_min, t.tm_sec);
1151   return buf;
1152 }
1153 
1154 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1155   return localtime_r(clock, res);
1156 }
1157 
1158 ////////////////////////////////////////////////////////////////////////////////
1159 // runtime exit support
1160 
1161 // Note: os::shutdown() might be called very early during initialization, or
1162 // called from signal handler. Before adding something to os::shutdown(), make
1163 // sure it is async-safe and can handle partially initialized VM.
1164 void os::shutdown() {
1165 
1166   // allow PerfMemory to attempt cleanup of any persistent resources
1167   perfMemory_exit();
1168 
1169   // needs to remove object in file system
1170   AttachListener::abort();
1171 
1172   // flush buffered output, finish log files
1173   ostream_abort();
1174 
1175   // Check for abort hook
1176   abort_hook_t abort_hook = Arguments::abort_hook();
1177   if (abort_hook != NULL) {
1178     abort_hook();
1179   }
1180 }
1181 
1182 // Note: os::abort() might be called very early during initialization, or
1183 // called from signal handler. Before adding something to os::abort(), make
1184 // sure it is async-safe and can handle partially initialized VM.
1185 void os::abort(bool dump_core, void* siginfo, const void* context) {
1186   os::shutdown();
1187   if (dump_core) {
1188 #ifndef PRODUCT
1189     fdStream out(defaultStream::output_fd());
1190     out.print_raw("Current thread is ");
1191     char buf[16];
1192     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1193     out.print_raw_cr(buf);
1194     out.print_raw_cr("Dumping core ...");
1195 #endif
1196     ::abort(); // dump core
1197   }
1198 
1199   ::exit(1);
1200 }
1201 
1202 // Die immediately, no exit hook, no abort hook, no cleanup.
1203 void os::die() {
1204   ::abort();
1205 }
1206 
1207 // This method is a copy of JDK's sysGetLastErrorString
1208 // from src/solaris/hpi/src/system_md.c
1209 
1210 size_t os::lasterror(char *buf, size_t len) {
1211   if (errno == 0) return 0;
1212 
1213   const char *s = os::strerror(errno);
1214   size_t n = ::strlen(s);
1215   if (n >= len) {
1216     n = len - 1;
1217   }
1218   ::strncpy(buf, s, n);
1219   buf[n] = '\0';
1220   return n;
1221 }
1222 
1223 intx os::current_thread_id() {
1224   return (intx)pthread_self();
1225 }
1226 
1227 int os::current_process_id() {
1228   return getpid();
1229 }
1230 
1231 // DLL functions
1232 
1233 const char* os::dll_file_extension() { return ".so"; }
1234 
1235 // This must be hard coded because it's the system's temporary
1236 // directory not the java application's temp directory, ala java.io.tmpdir.
1237 const char* os::get_temp_directory() { return "/tmp"; }
1238 
1239 // Check if addr is inside libjvm.so.
1240 bool os::address_is_in_vm(address addr) {
1241 
1242   // Input could be a real pc or a function pointer literal. The latter
1243   // would be a function descriptor residing in the data segment of a module.
1244   loaded_module_t lm;
1245   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1246     return lm.is_in_vm;
1247   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1248     return lm.is_in_vm;
1249   } else {
1250     return false;
1251   }
1252 
1253 }
1254 
1255 // Resolve an AIX function descriptor literal to a code pointer.
1256 // If the input is a valid code pointer to a text segment of a loaded module,
1257 //   it is returned unchanged.
1258 // If the input is a valid AIX function descriptor, it is resolved to the
1259 //   code entry point.
1260 // If the input is neither a valid function descriptor nor a valid code pointer,
1261 //   NULL is returned.
1262 static address resolve_function_descriptor_to_code_pointer(address p) {
1263 
1264   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1265     // It is a real code pointer.
1266     return p;
1267   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1268     // Pointer to data segment, potential function descriptor.
1269     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1270     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1271       // It is a function descriptor.
1272       return code_entry;
1273     }
1274   }
1275 
1276   return NULL;
1277 }
1278 
1279 bool os::dll_address_to_function_name(address addr, char *buf,
1280                                       int buflen, int *offset,
1281                                       bool demangle) {
1282   if (offset) {
1283     *offset = -1;
1284   }
1285   // Buf is not optional, but offset is optional.
1286   assert(buf != NULL, "sanity check");
1287   buf[0] = '\0';
1288 
1289   // Resolve function ptr literals first.
1290   addr = resolve_function_descriptor_to_code_pointer(addr);
1291   if (!addr) {
1292     return false;
1293   }
1294 
1295   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1296 }
1297 
1298 bool os::dll_address_to_library_name(address addr, char* buf,
1299                                      int buflen, int* offset) {
1300   if (offset) {
1301     *offset = -1;
1302   }
1303   // Buf is not optional, but offset is optional.
1304   assert(buf != NULL, "sanity check");
1305   buf[0] = '\0';
1306 
1307   // Resolve function ptr literals first.
1308   addr = resolve_function_descriptor_to_code_pointer(addr);
1309   if (!addr) {
1310     return false;
1311   }
1312 
1313   return AixSymbols::get_module_name(addr, buf, buflen);
1314 }
1315 
1316 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1317 // for the same architecture as Hotspot is running on.
1318 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1319 
1320   if (ebuf && ebuflen > 0) {
1321     ebuf[0] = '\0';
1322     ebuf[ebuflen - 1] = '\0';
1323   }
1324 
1325   if (!filename || strlen(filename) == 0) {
1326     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1327     return NULL;
1328   }
1329 
1330   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1331   void * result= ::dlopen(filename, RTLD_LAZY);
1332   if (result != NULL) {
1333     // Reload dll cache. Don't do this in signal handling.
1334     LoadedLibraries::reload();
1335     return result;
1336   } else {
1337     // error analysis when dlopen fails
1338     const char* const error_report = ::dlerror();
1339     if (error_report && ebuf && ebuflen > 0) {
1340       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1341                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1342     }
1343   }
1344   return NULL;
1345 }
1346 
1347 void* os::dll_lookup(void* handle, const char* name) {
1348   void* res = dlsym(handle, name);
1349   return res;
1350 }
1351 
1352 void* os::get_default_process_handle() {
1353   return (void*)::dlopen(NULL, RTLD_LAZY);
1354 }
1355 
1356 void os::print_dll_info(outputStream *st) {
1357   st->print_cr("Dynamic libraries:");
1358   LoadedLibraries::print(st);
1359 }
1360 
1361 void os::get_summary_os_info(char* buf, size_t buflen) {
1362   // There might be something more readable than uname results for AIX.
1363   struct utsname name;
1364   uname(&name);
1365   snprintf(buf, buflen, "%s %s", name.release, name.version);
1366 }
1367 
1368 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1369   // Not yet implemented.
1370   return 0;
1371 }
1372 
1373 void os::print_os_info_brief(outputStream* st) {
1374   uint32_t ver = os::Aix::os_version();
1375   st->print_cr("AIX kernel version %u.%u.%u.%u",
1376                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1377 
1378   os::Posix::print_uname_info(st);
1379 
1380   // Linux uses print_libversion_info(st); here.
1381 }
1382 
1383 void os::print_os_info(outputStream* st) {
1384   st->print("OS:");
1385 
1386   st->print("uname:");
1387   struct utsname name;
1388   uname(&name);
1389   st->print(name.sysname); st->print(" ");
1390   st->print(name.nodename); st->print(" ");
1391   st->print(name.release); st->print(" ");
1392   st->print(name.version); st->print(" ");
1393   st->print(name.machine);
1394   st->cr();
1395 
1396   uint32_t ver = os::Aix::os_version();
1397   st->print_cr("AIX kernel version %u.%u.%u.%u",
1398                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1399 
1400   os::Posix::print_rlimit_info(st);
1401 
1402   // load average
1403   st->print("load average:");
1404   double loadavg[3] = {-1.L, -1.L, -1.L};
1405   os::loadavg(loadavg, 3);
1406   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1407   st->cr();
1408 
1409   // print wpar info
1410   libperfstat::wparinfo_t wi;
1411   if (libperfstat::get_wparinfo(&wi)) {
1412     st->print_cr("wpar info");
1413     st->print_cr("name: %s", wi.name);
1414     st->print_cr("id:   %d", wi.wpar_id);
1415     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1416   }
1417 
1418   // print partition info
1419   libperfstat::partitioninfo_t pi;
1420   if (libperfstat::get_partitioninfo(&pi)) {
1421     st->print_cr("partition info");
1422     st->print_cr(" name: %s", pi.name);
1423   }
1424 
1425 }
1426 
1427 void os::print_memory_info(outputStream* st) {
1428 
1429   st->print_cr("Memory:");
1430 
1431   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1432     describe_pagesize(g_multipage_support.pagesize));
1433   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1434     describe_pagesize(g_multipage_support.datapsize));
1435   st->print_cr("  Text page size:                         %s",
1436     describe_pagesize(g_multipage_support.textpsize));
1437   st->print_cr("  Thread stack page size (pthread):       %s",
1438     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1439   st->print_cr("  Default shared memory page size:        %s",
1440     describe_pagesize(g_multipage_support.shmpsize));
1441   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1442     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1443   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1444     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1445   st->print_cr("  Multipage error: %d",
1446     g_multipage_support.error);
1447   st->cr();
1448   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1449 
1450   // print out LDR_CNTRL because it affects the default page sizes
1451   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1452   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1453 
1454   // Print out EXTSHM because it is an unsupported setting.
1455   const char* const extshm = ::getenv("EXTSHM");
1456   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1457   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1458     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1459   }
1460 
1461   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1462   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1463   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1464       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1465   st->cr();
1466 
1467   os::Aix::meminfo_t mi;
1468   if (os::Aix::get_meminfo(&mi)) {
1469     if (os::Aix::on_aix()) {
1470       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1471       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1472       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1473       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1474     } else {
1475       // PASE - Numbers are result of QWCRSSTS; they mean:
1476       // real_total: Sum of all system pools
1477       // real_free: always 0
1478       // pgsp_total: we take the size of the system ASP
1479       // pgsp_free: size of system ASP times percentage of system ASP unused
1480       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1481       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1482       st->print_cr("%% system asp used : %.2f",
1483         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1484     }
1485   }
1486   st->cr();
1487 
1488   // Print program break.
1489   st->print_cr("Program break at VM startup: " PTR_FORMAT ".", p2i(g_brk_at_startup));
1490   address brk_now = (address)::sbrk(0);
1491   if (brk_now != (address)-1) {
1492     st->print_cr("Program break now          : " PTR_FORMAT " (distance: " SIZE_FORMAT "k).",
1493                  p2i(brk_now), (size_t)((brk_now - g_brk_at_startup) / K));
1494   }
1495   st->print_cr("MaxExpectedDataSegmentSize    : " SIZE_FORMAT "k.", MaxExpectedDataSegmentSize / K);
1496   st->cr();
1497 
1498   // Print segments allocated with os::reserve_memory.
1499   st->print_cr("internal virtual memory regions used by vm:");
1500   vmembk_print_on(st);
1501 }
1502 
1503 // Get a string for the cpuinfo that is a summary of the cpu type
1504 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1505   // read _system_configuration.version
1506   switch (_system_configuration.version) {
1507   case PV_8:
1508     strncpy(buf, "Power PC 8", buflen);
1509     break;
1510   case PV_7:
1511     strncpy(buf, "Power PC 7", buflen);
1512     break;
1513   case PV_6_1:
1514     strncpy(buf, "Power PC 6 DD1.x", buflen);
1515     break;
1516   case PV_6:
1517     strncpy(buf, "Power PC 6", buflen);
1518     break;
1519   case PV_5:
1520     strncpy(buf, "Power PC 5", buflen);
1521     break;
1522   case PV_5_2:
1523     strncpy(buf, "Power PC 5_2", buflen);
1524     break;
1525   case PV_5_3:
1526     strncpy(buf, "Power PC 5_3", buflen);
1527     break;
1528   case PV_5_Compat:
1529     strncpy(buf, "PV_5_Compat", buflen);
1530     break;
1531   case PV_6_Compat:
1532     strncpy(buf, "PV_6_Compat", buflen);
1533     break;
1534   case PV_7_Compat:
1535     strncpy(buf, "PV_7_Compat", buflen);
1536     break;
1537   case PV_8_Compat:
1538     strncpy(buf, "PV_8_Compat", buflen);
1539     break;
1540   default:
1541     strncpy(buf, "unknown", buflen);
1542   }
1543 }
1544 
1545 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1546   // Nothing to do beyond of what os::print_cpu_info() does.
1547 }
1548 
1549 static void print_signal_handler(outputStream* st, int sig,
1550                                  char* buf, size_t buflen);
1551 
1552 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1553   st->print_cr("Signal Handlers:");
1554   print_signal_handler(st, SIGSEGV, buf, buflen);
1555   print_signal_handler(st, SIGBUS , buf, buflen);
1556   print_signal_handler(st, SIGFPE , buf, buflen);
1557   print_signal_handler(st, SIGPIPE, buf, buflen);
1558   print_signal_handler(st, SIGXFSZ, buf, buflen);
1559   print_signal_handler(st, SIGILL , buf, buflen);
1560   print_signal_handler(st, SR_signum, buf, buflen);
1561   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1562   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1563   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1564   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1565   print_signal_handler(st, SIGTRAP, buf, buflen);
1566   // We also want to know if someone else adds a SIGDANGER handler because
1567   // that will interfere with OOM killling.
1568   print_signal_handler(st, SIGDANGER, buf, buflen);
1569 }
1570 
1571 static char saved_jvm_path[MAXPATHLEN] = {0};
1572 
1573 // Find the full path to the current module, libjvm.so.
1574 void os::jvm_path(char *buf, jint buflen) {
1575   // Error checking.
1576   if (buflen < MAXPATHLEN) {
1577     assert(false, "must use a large-enough buffer");
1578     buf[0] = '\0';
1579     return;
1580   }
1581   // Lazy resolve the path to current module.
1582   if (saved_jvm_path[0] != 0) {
1583     strcpy(buf, saved_jvm_path);
1584     return;
1585   }
1586 
1587   Dl_info dlinfo;
1588   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1589   assert(ret != 0, "cannot locate libjvm");
1590   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1591   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1592 
1593   if (Arguments::sun_java_launcher_is_altjvm()) {
1594     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1595     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1596     // If "/jre/lib/" appears at the right place in the string, then
1597     // assume we are installed in a JDK and we're done. Otherwise, check
1598     // for a JAVA_HOME environment variable and fix up the path so it
1599     // looks like libjvm.so is installed there (append a fake suffix
1600     // hotspot/libjvm.so).
1601     const char *p = buf + strlen(buf) - 1;
1602     for (int count = 0; p > buf && count < 4; ++count) {
1603       for (--p; p > buf && *p != '/'; --p)
1604         /* empty */ ;
1605     }
1606 
1607     if (strncmp(p, "/jre/lib/", 9) != 0) {
1608       // Look for JAVA_HOME in the environment.
1609       char* java_home_var = ::getenv("JAVA_HOME");
1610       if (java_home_var != NULL && java_home_var[0] != 0) {
1611         char* jrelib_p;
1612         int len;
1613 
1614         // Check the current module name "libjvm.so".
1615         p = strrchr(buf, '/');
1616         if (p == NULL) {
1617           return;
1618         }
1619         assert(strstr(p, "/libjvm") == p, "invalid library name");
1620 
1621         rp = os::Posix::realpath(java_home_var, buf, buflen);
1622         if (rp == NULL) {
1623           return;
1624         }
1625 
1626         // determine if this is a legacy image or modules image
1627         // modules image doesn't have "jre" subdirectory
1628         len = strlen(buf);
1629         assert(len < buflen, "Ran out of buffer room");
1630         jrelib_p = buf + len;
1631         snprintf(jrelib_p, buflen-len, "/jre/lib");
1632         if (0 != access(buf, F_OK)) {
1633           snprintf(jrelib_p, buflen-len, "/lib");
1634         }
1635 
1636         if (0 == access(buf, F_OK)) {
1637           // Use current module name "libjvm.so"
1638           len = strlen(buf);
1639           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1640         } else {
1641           // Go back to path of .so
1642           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1643           if (rp == NULL) {
1644             return;
1645           }
1646         }
1647       }
1648     }
1649   }
1650 
1651   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1652   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1653 }
1654 
1655 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1656   // no prefix required, not even "_"
1657 }
1658 
1659 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1660   // no suffix required
1661 }
1662 
1663 ////////////////////////////////////////////////////////////////////////////////
1664 // sun.misc.Signal support
1665 
1666 static volatile jint sigint_count = 0;
1667 
1668 static void
1669 UserHandler(int sig, void *siginfo, void *context) {
1670   // 4511530 - sem_post is serialized and handled by the manager thread. When
1671   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1672   // don't want to flood the manager thread with sem_post requests.
1673   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1674     return;
1675 
1676   // Ctrl-C is pressed during error reporting, likely because the error
1677   // handler fails to abort. Let VM die immediately.
1678   if (sig == SIGINT && VMError::is_error_reported()) {
1679     os::die();
1680   }
1681 
1682   os::signal_notify(sig);
1683 }
1684 
1685 void* os::user_handler() {
1686   return CAST_FROM_FN_PTR(void*, UserHandler);
1687 }
1688 
1689 extern "C" {
1690   typedef void (*sa_handler_t)(int);
1691   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1692 }
1693 
1694 void* os::signal(int signal_number, void* handler) {
1695   struct sigaction sigAct, oldSigAct;
1696 
1697   sigfillset(&(sigAct.sa_mask));
1698 
1699   // Do not block out synchronous signals in the signal handler.
1700   // Blocking synchronous signals only makes sense if you can really
1701   // be sure that those signals won't happen during signal handling,
1702   // when the blocking applies. Normal signal handlers are lean and
1703   // do not cause signals. But our signal handlers tend to be "risky"
1704   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1705   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1706   // by a SIGILL, which was blocked due to the signal mask. The process
1707   // just hung forever. Better to crash from a secondary signal than to hang.
1708   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1709   sigdelset(&(sigAct.sa_mask), SIGBUS);
1710   sigdelset(&(sigAct.sa_mask), SIGILL);
1711   sigdelset(&(sigAct.sa_mask), SIGFPE);
1712   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1713 
1714   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1715 
1716   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1717 
1718   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1719     // -1 means registration failed
1720     return (void *)-1;
1721   }
1722 
1723   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1724 }
1725 
1726 void os::signal_raise(int signal_number) {
1727   ::raise(signal_number);
1728 }
1729 
1730 //
1731 // The following code is moved from os.cpp for making this
1732 // code platform specific, which it is by its very nature.
1733 //
1734 
1735 // Will be modified when max signal is changed to be dynamic
1736 int os::sigexitnum_pd() {
1737   return NSIG;
1738 }
1739 
1740 // a counter for each possible signal value
1741 static volatile jint pending_signals[NSIG+1] = { 0 };
1742 
1743 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1744 // On AIX, we use sem_init(), sem_post(), sem_wait()
1745 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1746 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1747 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1748 // on AIX, msem_..() calls are suspected of causing problems.
1749 static sem_t sig_sem;
1750 static msemaphore* p_sig_msem = 0;
1751 
1752 static void local_sem_init() {
1753   if (os::Aix::on_aix()) {
1754     int rc = ::sem_init(&sig_sem, 0, 0);
1755     guarantee(rc != -1, "sem_init failed");
1756   } else {
1757     // Memory semaphores must live in shared mem.
1758     guarantee0(p_sig_msem == NULL);
1759     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1760     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1761     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1762   }
1763 }
1764 
1765 static void local_sem_post() {
1766   static bool warn_only_once = false;
1767   if (os::Aix::on_aix()) {
1768     int rc = ::sem_post(&sig_sem);
1769     if (rc == -1 && !warn_only_once) {
1770       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1771       warn_only_once = true;
1772     }
1773   } else {
1774     guarantee0(p_sig_msem != NULL);
1775     int rc = ::msem_unlock(p_sig_msem, 0);
1776     if (rc == -1 && !warn_only_once) {
1777       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1778       warn_only_once = true;
1779     }
1780   }
1781 }
1782 
1783 static void local_sem_wait() {
1784   static bool warn_only_once = false;
1785   if (os::Aix::on_aix()) {
1786     int rc = ::sem_wait(&sig_sem);
1787     if (rc == -1 && !warn_only_once) {
1788       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1789       warn_only_once = true;
1790     }
1791   } else {
1792     guarantee0(p_sig_msem != NULL); // must init before use
1793     int rc = ::msem_lock(p_sig_msem, 0);
1794     if (rc == -1 && !warn_only_once) {
1795       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1796       warn_only_once = true;
1797     }
1798   }
1799 }
1800 
1801 static void jdk_misc_signal_init() {
1802   // Initialize signal structures
1803   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1804 
1805   // Initialize signal semaphore
1806   local_sem_init();
1807 }
1808 
1809 void os::signal_notify(int sig) {
1810   Atomic::inc(&pending_signals[sig]);
1811   local_sem_post();
1812 }
1813 
1814 static int check_pending_signals() {
1815   Atomic::store(0, &sigint_count);
1816   for (;;) {
1817     for (int i = 0; i < NSIG + 1; i++) {
1818       jint n = pending_signals[i];
1819       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1820         return i;
1821       }
1822     }
1823     JavaThread *thread = JavaThread::current();
1824     ThreadBlockInVM tbivm(thread);
1825 
1826     bool threadIsSuspended;
1827     do {
1828       thread->set_suspend_equivalent();
1829       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1830 
1831       local_sem_wait();
1832 
1833       // were we externally suspended while we were waiting?
1834       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1835       if (threadIsSuspended) {
1836         //
1837         // The semaphore has been incremented, but while we were waiting
1838         // another thread suspended us. We don't want to continue running
1839         // while suspended because that would surprise the thread that
1840         // suspended us.
1841         //
1842 
1843         local_sem_post();
1844 
1845         thread->java_suspend_self();
1846       }
1847     } while (threadIsSuspended);
1848   }
1849 }
1850 
1851 int os::signal_wait() {
1852   return check_pending_signals();
1853 }
1854 
1855 ////////////////////////////////////////////////////////////////////////////////
1856 // Virtual Memory
1857 
1858 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1859 
1860 #define VMEM_MAPPED  1
1861 #define VMEM_SHMATED 2
1862 
1863 struct vmembk_t {
1864   int type;         // 1 - mmap, 2 - shmat
1865   char* addr;
1866   size_t size;      // Real size, may be larger than usersize.
1867   size_t pagesize;  // page size of area
1868   vmembk_t* next;
1869 
1870   bool contains_addr(char* p) const {
1871     return p >= addr && p < (addr + size);
1872   }
1873 
1874   bool contains_range(char* p, size_t s) const {
1875     return contains_addr(p) && contains_addr(p + s - 1);
1876   }
1877 
1878   void print_on(outputStream* os) const {
1879     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1880       " bytes, %d %s pages), %s",
1881       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1882       (type == VMEM_SHMATED ? "shmat" : "mmap")
1883     );
1884   }
1885 
1886   // Check that range is a sub range of memory block (or equal to memory block);
1887   // also check that range is fully page aligned to the page size if the block.
1888   void assert_is_valid_subrange(char* p, size_t s) const {
1889     if (!contains_range(p, s)) {
1890       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1891               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1892               p, p + s, addr, addr + size);
1893       guarantee0(false);
1894     }
1895     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1896       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1897               " aligned to pagesize (%lu)", p, p + s, (unsigned long) pagesize);
1898       guarantee0(false);
1899     }
1900   }
1901 };
1902 
1903 static struct {
1904   vmembk_t* first;
1905   MiscUtils::CritSect cs;
1906 } vmem;
1907 
1908 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1909   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1910   assert0(p);
1911   if (p) {
1912     MiscUtils::AutoCritSect lck(&vmem.cs);
1913     p->addr = addr; p->size = size;
1914     p->pagesize = pagesize;
1915     p->type = type;
1916     p->next = vmem.first;
1917     vmem.first = p;
1918   }
1919 }
1920 
1921 static vmembk_t* vmembk_find(char* addr) {
1922   MiscUtils::AutoCritSect lck(&vmem.cs);
1923   for (vmembk_t* p = vmem.first; p; p = p->next) {
1924     if (p->addr <= addr && (p->addr + p->size) > addr) {
1925       return p;
1926     }
1927   }
1928   return NULL;
1929 }
1930 
1931 static void vmembk_remove(vmembk_t* p0) {
1932   MiscUtils::AutoCritSect lck(&vmem.cs);
1933   assert0(p0);
1934   assert0(vmem.first); // List should not be empty.
1935   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1936     if (*pp == p0) {
1937       *pp = p0->next;
1938       ::free(p0);
1939       return;
1940     }
1941   }
1942   assert0(false); // Not found?
1943 }
1944 
1945 static void vmembk_print_on(outputStream* os) {
1946   MiscUtils::AutoCritSect lck(&vmem.cs);
1947   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1948     vmi->print_on(os);
1949     os->cr();
1950   }
1951 }
1952 
1953 // Reserve and attach a section of System V memory.
1954 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1955 // address. Failing that, it will attach the memory anywhere.
1956 // If <requested_addr> is NULL, function will attach the memory anywhere.
1957 //
1958 // <alignment_hint> is being ignored by this function. It is very probable however that the
1959 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1960 // Should this be not enogh, we can put more work into it.
1961 static char* reserve_shmated_memory (
1962   size_t bytes,
1963   char* requested_addr,
1964   size_t alignment_hint) {
1965 
1966   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1967     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1968     bytes, requested_addr, alignment_hint);
1969 
1970   // Either give me wish address or wish alignment but not both.
1971   assert0(!(requested_addr != NULL && alignment_hint != 0));
1972 
1973   // We must prevent anyone from attaching too close to the
1974   // BRK because that may cause malloc OOM.
1975   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1976     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1977       "Will attach anywhere.", requested_addr);
1978     // Act like the OS refused to attach there.
1979     requested_addr = NULL;
1980   }
1981 
1982   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1983   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1984   if (os::Aix::on_pase_V5R4_or_older()) {
1985     ShouldNotReachHere();
1986   }
1987 
1988   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1989   const size_t size = align_up(bytes, 64*K);
1990 
1991   // Reserve the shared segment.
1992   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1993   if (shmid == -1) {
1994     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1995     return NULL;
1996   }
1997 
1998   // Important note:
1999   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
2000   // We must right after attaching it remove it from the system. System V shm segments are global and
2001   // survive the process.
2002   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
2003 
2004   struct shmid_ds shmbuf;
2005   memset(&shmbuf, 0, sizeof(shmbuf));
2006   shmbuf.shm_pagesize = 64*K;
2007   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
2008     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
2009                size / (64*K), errno);
2010     // I want to know if this ever happens.
2011     assert(false, "failed to set page size for shmat");
2012   }
2013 
2014   // Now attach the shared segment.
2015   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
2016   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
2017   // were not a segment boundary.
2018   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
2019   const int errno_shmat = errno;
2020 
2021   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2022   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2023     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2024     assert(false, "failed to remove shared memory segment!");
2025   }
2026 
2027   // Handle shmat error. If we failed to attach, just return.
2028   if (addr == (char*)-1) {
2029     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
2030     return NULL;
2031   }
2032 
2033   // Just for info: query the real page size. In case setting the page size did not
2034   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2035   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2036   if (real_pagesize != shmbuf.shm_pagesize) {
2037     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
2038   }
2039 
2040   if (addr) {
2041     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2042       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
2043   } else {
2044     if (requested_addr != NULL) {
2045       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
2046     } else {
2047       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2048     }
2049   }
2050 
2051   // book-keeping
2052   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2053   assert0(is_aligned_to(addr, os::vm_page_size()));
2054 
2055   return addr;
2056 }
2057 
2058 static bool release_shmated_memory(char* addr, size_t size) {
2059 
2060   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2061     addr, addr + size - 1);
2062 
2063   bool rc = false;
2064 
2065   // TODO: is there a way to verify shm size without doing bookkeeping?
2066   if (::shmdt(addr) != 0) {
2067     trcVerbose("error (%d).", errno);
2068   } else {
2069     trcVerbose("ok.");
2070     rc = true;
2071   }
2072   return rc;
2073 }
2074 
2075 static bool uncommit_shmated_memory(char* addr, size_t size) {
2076   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2077     addr, addr + size - 1);
2078 
2079   const bool rc = my_disclaim64(addr, size);
2080 
2081   if (!rc) {
2082     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2083     return false;
2084   }
2085   return true;
2086 }
2087 
2088 ////////////////////////////////  mmap-based routines /////////////////////////////////
2089 
2090 // Reserve memory via mmap.
2091 // If <requested_addr> is given, an attempt is made to attach at the given address.
2092 // Failing that, memory is allocated at any address.
2093 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2094 // allocate at an address aligned with the given alignment. Failing that, memory
2095 // is aligned anywhere.
2096 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2097   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2098     "alignment_hint " UINTX_FORMAT "...",
2099     bytes, requested_addr, alignment_hint);
2100 
2101   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2102   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2103     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2104     return NULL;
2105   }
2106 
2107   // We must prevent anyone from attaching too close to the
2108   // BRK because that may cause malloc OOM.
2109   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2110     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2111       "Will attach anywhere.", requested_addr);
2112     // Act like the OS refused to attach there.
2113     requested_addr = NULL;
2114   }
2115 
2116   // Specify one or the other but not both.
2117   assert0(!(requested_addr != NULL && alignment_hint > 0));
2118 
2119   // In 64K mode, we claim the global page size (os::vm_page_size())
2120   // is 64K. This is one of the few points where that illusion may
2121   // break, because mmap() will always return memory aligned to 4K. So
2122   // we must ensure we only ever return memory aligned to 64k.
2123   if (alignment_hint) {
2124     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2125   } else {
2126     alignment_hint = os::vm_page_size();
2127   }
2128 
2129   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2130   const size_t size = align_up(bytes, os::vm_page_size());
2131 
2132   // alignment: Allocate memory large enough to include an aligned range of the right size and
2133   // cut off the leading and trailing waste pages.
2134   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2135   const size_t extra_size = size + alignment_hint;
2136 
2137   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2138   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2139   int flags = MAP_ANONYMOUS | MAP_SHARED;
2140 
2141   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2142   // it means if wishaddress is given but MAP_FIXED is not set.
2143   //
2144   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2145   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2146   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2147   // get clobbered.
2148   if (requested_addr != NULL) {
2149     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2150       flags |= MAP_FIXED;
2151     }
2152   }
2153 
2154   char* addr = (char*)::mmap(requested_addr, extra_size,
2155       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2156 
2157   if (addr == MAP_FAILED) {
2158     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2159     return NULL;
2160   }
2161 
2162   // Handle alignment.
2163   char* const addr_aligned = align_up(addr, alignment_hint);
2164   const size_t waste_pre = addr_aligned - addr;
2165   char* const addr_aligned_end = addr_aligned + size;
2166   const size_t waste_post = extra_size - waste_pre - size;
2167   if (waste_pre > 0) {
2168     ::munmap(addr, waste_pre);
2169   }
2170   if (waste_post > 0) {
2171     ::munmap(addr_aligned_end, waste_post);
2172   }
2173   addr = addr_aligned;
2174 
2175   if (addr) {
2176     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2177       addr, addr + bytes, bytes);
2178   } else {
2179     if (requested_addr != NULL) {
2180       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2181     } else {
2182       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2183     }
2184   }
2185 
2186   // bookkeeping
2187   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2188 
2189   // Test alignment, see above.
2190   assert0(is_aligned_to(addr, os::vm_page_size()));
2191 
2192   return addr;
2193 }
2194 
2195 static bool release_mmaped_memory(char* addr, size_t size) {
2196   assert0(is_aligned_to(addr, os::vm_page_size()));
2197   assert0(is_aligned_to(size, os::vm_page_size()));
2198 
2199   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2200     addr, addr + size - 1);
2201   bool rc = false;
2202 
2203   if (::munmap(addr, size) != 0) {
2204     trcVerbose("failed (%d)\n", errno);
2205     rc = false;
2206   } else {
2207     trcVerbose("ok.");
2208     rc = true;
2209   }
2210 
2211   return rc;
2212 }
2213 
2214 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2215 
2216   assert0(is_aligned_to(addr, os::vm_page_size()));
2217   assert0(is_aligned_to(size, os::vm_page_size()));
2218 
2219   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2220     addr, addr + size - 1);
2221   bool rc = false;
2222 
2223   // Uncommit mmap memory with msync MS_INVALIDATE.
2224   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2225     trcVerbose("failed (%d)\n", errno);
2226     rc = false;
2227   } else {
2228     trcVerbose("ok.");
2229     rc = true;
2230   }
2231 
2232   return rc;
2233 }
2234 
2235 int os::vm_page_size() {
2236   // Seems redundant as all get out.
2237   assert(os::Aix::page_size() != -1, "must call os::init");
2238   return os::Aix::page_size();
2239 }
2240 
2241 // Aix allocates memory by pages.
2242 int os::vm_allocation_granularity() {
2243   assert(os::Aix::page_size() != -1, "must call os::init");
2244   return os::Aix::page_size();
2245 }
2246 
2247 #ifdef PRODUCT
2248 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2249                                     int err) {
2250   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2251           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2252           os::errno_name(err), err);
2253 }
2254 #endif
2255 
2256 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2257                                   const char* mesg) {
2258   assert(mesg != NULL, "mesg must be specified");
2259   if (!pd_commit_memory(addr, size, exec)) {
2260     // Add extra info in product mode for vm_exit_out_of_memory():
2261     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2262     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2263   }
2264 }
2265 
2266 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2267 
2268   assert(is_aligned_to(addr, os::vm_page_size()),
2269     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2270     p2i(addr), os::vm_page_size());
2271   assert(is_aligned_to(size, os::vm_page_size()),
2272     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2273     size, os::vm_page_size());
2274 
2275   vmembk_t* const vmi = vmembk_find(addr);
2276   guarantee0(vmi);
2277   vmi->assert_is_valid_subrange(addr, size);
2278 
2279   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2280 
2281   if (UseExplicitCommit) {
2282     // AIX commits memory on touch. So, touch all pages to be committed.
2283     for (char* p = addr; p < (addr + size); p += 4*K) {
2284       *p = '\0';
2285     }
2286   }
2287 
2288   return true;
2289 }
2290 
2291 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2292   return pd_commit_memory(addr, size, exec);
2293 }
2294 
2295 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2296                                   size_t alignment_hint, bool exec,
2297                                   const char* mesg) {
2298   // Alignment_hint is ignored on this OS.
2299   pd_commit_memory_or_exit(addr, size, exec, mesg);
2300 }
2301 
2302 bool os::pd_uncommit_memory(char* addr, size_t size) {
2303   assert(is_aligned_to(addr, os::vm_page_size()),
2304     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2305     p2i(addr), os::vm_page_size());
2306   assert(is_aligned_to(size, os::vm_page_size()),
2307     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2308     size, os::vm_page_size());
2309 
2310   // Dynamically do different things for mmap/shmat.
2311   const vmembk_t* const vmi = vmembk_find(addr);
2312   guarantee0(vmi);
2313   vmi->assert_is_valid_subrange(addr, size);
2314 
2315   if (vmi->type == VMEM_SHMATED) {
2316     return uncommit_shmated_memory(addr, size);
2317   } else {
2318     return uncommit_mmaped_memory(addr, size);
2319   }
2320 }
2321 
2322 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2323   // Do not call this; no need to commit stack pages on AIX.
2324   ShouldNotReachHere();
2325   return true;
2326 }
2327 
2328 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2329   // Do not call this; no need to commit stack pages on AIX.
2330   ShouldNotReachHere();
2331   return true;
2332 }
2333 
2334 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2335 }
2336 
2337 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2338 }
2339 
2340 void os::numa_make_global(char *addr, size_t bytes) {
2341 }
2342 
2343 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2344 }
2345 
2346 bool os::numa_topology_changed() {
2347   return false;
2348 }
2349 
2350 size_t os::numa_get_groups_num() {
2351   return 1;
2352 }
2353 
2354 int os::numa_get_group_id() {
2355   return 0;
2356 }
2357 
2358 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2359   if (size > 0) {
2360     ids[0] = 0;
2361     return 1;
2362   }
2363   return 0;
2364 }
2365 
2366 bool os::get_page_info(char *start, page_info* info) {
2367   return false;
2368 }
2369 
2370 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2371   return end;
2372 }
2373 
2374 // Reserves and attaches a shared memory segment.
2375 // Will assert if a wish address is given and could not be obtained.
2376 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2377 
2378   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2379   // thereby clobbering old mappings at that place. That is probably
2380   // not intended, never used and almost certainly an error were it
2381   // ever be used this way (to try attaching at a specified address
2382   // without clobbering old mappings an alternate API exists,
2383   // os::attempt_reserve_memory_at()).
2384   // Instead of mimicking the dangerous coding of the other platforms, here I
2385   // just ignore the request address (release) or assert(debug).
2386   assert0(requested_addr == NULL);
2387 
2388   // Always round to os::vm_page_size(), which may be larger than 4K.
2389   bytes = align_up(bytes, os::vm_page_size());
2390   const size_t alignment_hint0 =
2391     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2392 
2393   // In 4K mode always use mmap.
2394   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2395   if (os::vm_page_size() == 4*K) {
2396     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2397   } else {
2398     if (bytes >= Use64KPagesThreshold) {
2399       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2400     } else {
2401       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2402     }
2403   }
2404 }
2405 
2406 bool os::pd_release_memory(char* addr, size_t size) {
2407 
2408   // Dynamically do different things for mmap/shmat.
2409   vmembk_t* const vmi = vmembk_find(addr);
2410   guarantee0(vmi);
2411 
2412   // Always round to os::vm_page_size(), which may be larger than 4K.
2413   size = align_up(size, os::vm_page_size());
2414   addr = align_up(addr, os::vm_page_size());
2415 
2416   bool rc = false;
2417   bool remove_bookkeeping = false;
2418   if (vmi->type == VMEM_SHMATED) {
2419     // For shmatted memory, we do:
2420     // - If user wants to release the whole range, release the memory (shmdt).
2421     // - If user only wants to release a partial range, uncommit (disclaim) that
2422     //   range. That way, at least, we do not use memory anymore (bust still page
2423     //   table space).
2424     vmi->assert_is_valid_subrange(addr, size);
2425     if (addr == vmi->addr && size == vmi->size) {
2426       rc = release_shmated_memory(addr, size);
2427       remove_bookkeeping = true;
2428     } else {
2429       rc = uncommit_shmated_memory(addr, size);
2430     }
2431   } else {
2432     // User may unmap partial regions but region has to be fully contained.
2433 #ifdef ASSERT
2434     vmi->assert_is_valid_subrange(addr, size);
2435 #endif
2436     rc = release_mmaped_memory(addr, size);
2437     remove_bookkeeping = true;
2438   }
2439 
2440   // update bookkeeping
2441   if (rc && remove_bookkeeping) {
2442     vmembk_remove(vmi);
2443   }
2444 
2445   return rc;
2446 }
2447 
2448 static bool checked_mprotect(char* addr, size_t size, int prot) {
2449 
2450   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2451   // not tell me if protection failed when trying to protect an un-protectable range.
2452   //
2453   // This means if the memory was allocated using shmget/shmat, protection wont work
2454   // but mprotect will still return 0:
2455   //
2456   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2457 
2458   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2459 
2460   if (!rc) {
2461     const char* const s_errno = os::errno_name(errno);
2462     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2463     return false;
2464   }
2465 
2466   // mprotect success check
2467   //
2468   // Mprotect said it changed the protection but can I believe it?
2469   //
2470   // To be sure I need to check the protection afterwards. Try to
2471   // read from protected memory and check whether that causes a segfault.
2472   //
2473   if (!os::Aix::xpg_sus_mode()) {
2474 
2475     if (CanUseSafeFetch32()) {
2476 
2477       const bool read_protected =
2478         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2479          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2480 
2481       if (prot & PROT_READ) {
2482         rc = !read_protected;
2483       } else {
2484         rc = read_protected;
2485       }
2486 
2487       if (!rc) {
2488         if (os::Aix::on_pase()) {
2489           // There is an issue on older PASE systems where mprotect() will return success but the
2490           // memory will not be protected.
2491           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2492           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2493           // a stack. It is an OS error.
2494           //
2495           // A valid strategy is just to try again. This usually works. :-/
2496 
2497           ::usleep(1000);
2498           if (::mprotect(addr, size, prot) == 0) {
2499             const bool read_protected_2 =
2500               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2501               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2502             rc = true;
2503           }
2504         }
2505       }
2506     }
2507   }
2508 
2509   assert(rc == true, "mprotect failed.");
2510 
2511   return rc;
2512 }
2513 
2514 // Set protections specified
2515 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2516   unsigned int p = 0;
2517   switch (prot) {
2518   case MEM_PROT_NONE: p = PROT_NONE; break;
2519   case MEM_PROT_READ: p = PROT_READ; break;
2520   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2521   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2522   default:
2523     ShouldNotReachHere();
2524   }
2525   // is_committed is unused.
2526   return checked_mprotect(addr, size, p);
2527 }
2528 
2529 bool os::guard_memory(char* addr, size_t size) {
2530   return checked_mprotect(addr, size, PROT_NONE);
2531 }
2532 
2533 bool os::unguard_memory(char* addr, size_t size) {
2534   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2535 }
2536 
2537 // Large page support
2538 
2539 static size_t _large_page_size = 0;
2540 
2541 // Enable large page support if OS allows that.
2542 void os::large_page_init() {
2543   return; // Nothing to do. See query_multipage_support and friends.
2544 }
2545 
2546 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2547   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2548   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2549   // so this is not needed.
2550   assert(false, "should not be called on AIX");
2551   return NULL;
2552 }
2553 
2554 bool os::release_memory_special(char* base, size_t bytes) {
2555   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2556   Unimplemented();
2557   return false;
2558 }
2559 
2560 size_t os::large_page_size() {
2561   return _large_page_size;
2562 }
2563 
2564 bool os::can_commit_large_page_memory() {
2565   // Does not matter, we do not support huge pages.
2566   return false;
2567 }
2568 
2569 bool os::can_execute_large_page_memory() {
2570   // Does not matter, we do not support huge pages.
2571   return false;
2572 }
2573 
2574 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2575   assert(file_desc >= 0, "file_desc is not valid");
2576   char* result = NULL;
2577 
2578   // Always round to os::vm_page_size(), which may be larger than 4K.
2579   bytes = align_up(bytes, os::vm_page_size());
2580   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2581 
2582   if (result != NULL) {
2583     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2584       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2585     }
2586   }
2587   return result;
2588 }
2589 
2590 // Reserve memory at an arbitrary address, only if that area is
2591 // available (and not reserved for something else).
2592 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2593   char* addr = NULL;
2594 
2595   // Always round to os::vm_page_size(), which may be larger than 4K.
2596   bytes = align_up(bytes, os::vm_page_size());
2597 
2598   // In 4K mode always use mmap.
2599   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2600   if (os::vm_page_size() == 4*K) {
2601     return reserve_mmaped_memory(bytes, requested_addr, 0);
2602   } else {
2603     if (bytes >= Use64KPagesThreshold) {
2604       return reserve_shmated_memory(bytes, requested_addr, 0);
2605     } else {
2606       return reserve_mmaped_memory(bytes, requested_addr, 0);
2607     }
2608   }
2609 
2610   return addr;
2611 }
2612 
2613 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2614   return ::read(fd, buf, nBytes);
2615 }
2616 
2617 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2618   return ::pread(fd, buf, nBytes, offset);
2619 }
2620 
2621 void os::naked_short_sleep(jlong ms) {
2622   struct timespec req;
2623 
2624   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2625   req.tv_sec = 0;
2626   if (ms > 0) {
2627     req.tv_nsec = (ms % 1000) * 1000000;
2628   }
2629   else {
2630     req.tv_nsec = 1;
2631   }
2632 
2633   nanosleep(&req, NULL);
2634 
2635   return;
2636 }
2637 
2638 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2639 void os::infinite_sleep() {
2640   while (true) {    // sleep forever ...
2641     ::sleep(100);   // ... 100 seconds at a time
2642   }
2643 }
2644 
2645 // Used to convert frequent JVM_Yield() to nops
2646 bool os::dont_yield() {
2647   return DontYieldALot;
2648 }
2649 
2650 void os::naked_yield() {
2651   sched_yield();
2652 }
2653 
2654 ////////////////////////////////////////////////////////////////////////////////
2655 // thread priority support
2656 
2657 // From AIX manpage to pthread_setschedparam
2658 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2659 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2660 //
2661 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2662 // range from 40 to 80, where 40 is the least favored priority and 80
2663 // is the most favored."
2664 //
2665 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2666 // scheduling there; however, this still leaves iSeries.)
2667 //
2668 // We use the same values for AIX and PASE.
2669 int os::java_to_os_priority[CriticalPriority + 1] = {
2670   54,             // 0 Entry should never be used
2671 
2672   55,             // 1 MinPriority
2673   55,             // 2
2674   56,             // 3
2675 
2676   56,             // 4
2677   57,             // 5 NormPriority
2678   57,             // 6
2679 
2680   58,             // 7
2681   58,             // 8
2682   59,             // 9 NearMaxPriority
2683 
2684   60,             // 10 MaxPriority
2685 
2686   60              // 11 CriticalPriority
2687 };
2688 
2689 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2690   if (!UseThreadPriorities) return OS_OK;
2691   pthread_t thr = thread->osthread()->pthread_id();
2692   int policy = SCHED_OTHER;
2693   struct sched_param param;
2694   param.sched_priority = newpri;
2695   int ret = pthread_setschedparam(thr, policy, &param);
2696 
2697   if (ret != 0) {
2698     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2699         (int)thr, newpri, ret, os::errno_name(ret));
2700   }
2701   return (ret == 0) ? OS_OK : OS_ERR;
2702 }
2703 
2704 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2705   if (!UseThreadPriorities) {
2706     *priority_ptr = java_to_os_priority[NormPriority];
2707     return OS_OK;
2708   }
2709   pthread_t thr = thread->osthread()->pthread_id();
2710   int policy = SCHED_OTHER;
2711   struct sched_param param;
2712   int ret = pthread_getschedparam(thr, &policy, &param);
2713   *priority_ptr = param.sched_priority;
2714 
2715   return (ret == 0) ? OS_OK : OS_ERR;
2716 }
2717 
2718 // Hint to the underlying OS that a task switch would not be good.
2719 // Void return because it's a hint and can fail.
2720 void os::hint_no_preempt() {}
2721 
2722 ////////////////////////////////////////////////////////////////////////////////
2723 // suspend/resume support
2724 
2725 //  The low-level signal-based suspend/resume support is a remnant from the
2726 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2727 //  within hotspot. Currently used by JFR's OSThreadSampler
2728 //
2729 //  The remaining code is greatly simplified from the more general suspension
2730 //  code that used to be used.
2731 //
2732 //  The protocol is quite simple:
2733 //  - suspend:
2734 //      - sends a signal to the target thread
2735 //      - polls the suspend state of the osthread using a yield loop
2736 //      - target thread signal handler (SR_handler) sets suspend state
2737 //        and blocks in sigsuspend until continued
2738 //  - resume:
2739 //      - sets target osthread state to continue
2740 //      - sends signal to end the sigsuspend loop in the SR_handler
2741 //
2742 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2743 //  but is checked for NULL in SR_handler as a thread termination indicator.
2744 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2745 //
2746 //  Note that resume_clear_context() and suspend_save_context() are needed
2747 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2748 //  which in part is used by:
2749 //    - Forte Analyzer: AsyncGetCallTrace()
2750 //    - StackBanging: get_frame_at_stack_banging_point()
2751 
2752 static void resume_clear_context(OSThread *osthread) {
2753   osthread->set_ucontext(NULL);
2754   osthread->set_siginfo(NULL);
2755 }
2756 
2757 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2758   osthread->set_ucontext(context);
2759   osthread->set_siginfo(siginfo);
2760 }
2761 
2762 //
2763 // Handler function invoked when a thread's execution is suspended or
2764 // resumed. We have to be careful that only async-safe functions are
2765 // called here (Note: most pthread functions are not async safe and
2766 // should be avoided.)
2767 //
2768 // Note: sigwait() is a more natural fit than sigsuspend() from an
2769 // interface point of view, but sigwait() prevents the signal hander
2770 // from being run. libpthread would get very confused by not having
2771 // its signal handlers run and prevents sigwait()'s use with the
2772 // mutex granting granting signal.
2773 //
2774 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2775 //
2776 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2777   // Save and restore errno to avoid confusing native code with EINTR
2778   // after sigsuspend.
2779   int old_errno = errno;
2780 
2781   Thread* thread = Thread::current_or_null_safe();
2782   assert(thread != NULL, "Missing current thread in SR_handler");
2783 
2784   // On some systems we have seen signal delivery get "stuck" until the signal
2785   // mask is changed as part of thread termination. Check that the current thread
2786   // has not already terminated (via SR_lock()) - else the following assertion
2787   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2788   // destructor has completed.
2789 
2790   if (thread->SR_lock() == NULL) {
2791     return;
2792   }
2793 
2794   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2795 
2796   OSThread* osthread = thread->osthread();
2797 
2798   os::SuspendResume::State current = osthread->sr.state();
2799   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2800     suspend_save_context(osthread, siginfo, context);
2801 
2802     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2803     os::SuspendResume::State state = osthread->sr.suspended();
2804     if (state == os::SuspendResume::SR_SUSPENDED) {
2805       sigset_t suspend_set;  // signals for sigsuspend()
2806 
2807       // get current set of blocked signals and unblock resume signal
2808       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2809       sigdelset(&suspend_set, SR_signum);
2810 
2811       // wait here until we are resumed
2812       while (1) {
2813         sigsuspend(&suspend_set);
2814 
2815         os::SuspendResume::State result = osthread->sr.running();
2816         if (result == os::SuspendResume::SR_RUNNING) {
2817           break;
2818         }
2819       }
2820 
2821     } else if (state == os::SuspendResume::SR_RUNNING) {
2822       // request was cancelled, continue
2823     } else {
2824       ShouldNotReachHere();
2825     }
2826 
2827     resume_clear_context(osthread);
2828   } else if (current == os::SuspendResume::SR_RUNNING) {
2829     // request was cancelled, continue
2830   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2831     // ignore
2832   } else {
2833     ShouldNotReachHere();
2834   }
2835 
2836   errno = old_errno;
2837 }
2838 
2839 static int SR_initialize() {
2840   struct sigaction act;
2841   char *s;
2842   // Get signal number to use for suspend/resume
2843   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2844     int sig = ::strtol(s, 0, 10);
2845     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2846         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2847       SR_signum = sig;
2848     } else {
2849       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2850               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2851     }
2852   }
2853 
2854   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2855         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2856 
2857   sigemptyset(&SR_sigset);
2858   sigaddset(&SR_sigset, SR_signum);
2859 
2860   // Set up signal handler for suspend/resume.
2861   act.sa_flags = SA_RESTART|SA_SIGINFO;
2862   act.sa_handler = (void (*)(int)) SR_handler;
2863 
2864   // SR_signum is blocked by default.
2865   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2866 
2867   if (sigaction(SR_signum, &act, 0) == -1) {
2868     return -1;
2869   }
2870 
2871   // Save signal flag
2872   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2873   return 0;
2874 }
2875 
2876 static int SR_finalize() {
2877   return 0;
2878 }
2879 
2880 static int sr_notify(OSThread* osthread) {
2881   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2882   assert_status(status == 0, status, "pthread_kill");
2883   return status;
2884 }
2885 
2886 // "Randomly" selected value for how long we want to spin
2887 // before bailing out on suspending a thread, also how often
2888 // we send a signal to a thread we want to resume
2889 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2890 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2891 
2892 // returns true on success and false on error - really an error is fatal
2893 // but this seems the normal response to library errors
2894 static bool do_suspend(OSThread* osthread) {
2895   assert(osthread->sr.is_running(), "thread should be running");
2896   // mark as suspended and send signal
2897 
2898   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2899     // failed to switch, state wasn't running?
2900     ShouldNotReachHere();
2901     return false;
2902   }
2903 
2904   if (sr_notify(osthread) != 0) {
2905     // try to cancel, switch to running
2906 
2907     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2908     if (result == os::SuspendResume::SR_RUNNING) {
2909       // cancelled
2910       return false;
2911     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2912       // somehow managed to suspend
2913       return true;
2914     } else {
2915       ShouldNotReachHere();
2916       return false;
2917     }
2918   }
2919 
2920   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2921 
2922   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2923     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2924       os::naked_yield();
2925     }
2926 
2927     // timeout, try to cancel the request
2928     if (n >= RANDOMLY_LARGE_INTEGER) {
2929       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2930       if (cancelled == os::SuspendResume::SR_RUNNING) {
2931         return false;
2932       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2933         return true;
2934       } else {
2935         ShouldNotReachHere();
2936         return false;
2937       }
2938     }
2939   }
2940 
2941   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2942   return true;
2943 }
2944 
2945 static void do_resume(OSThread* osthread) {
2946   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2947 
2948   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2949     // failed to switch to WAKEUP_REQUEST
2950     ShouldNotReachHere();
2951     return;
2952   }
2953 
2954   while (!osthread->sr.is_running()) {
2955     if (sr_notify(osthread) == 0) {
2956       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2957         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2958           os::naked_yield();
2959         }
2960       }
2961     } else {
2962       ShouldNotReachHere();
2963     }
2964   }
2965 
2966   guarantee(osthread->sr.is_running(), "Must be running!");
2967 }
2968 
2969 ///////////////////////////////////////////////////////////////////////////////////
2970 // signal handling (except suspend/resume)
2971 
2972 // This routine may be used by user applications as a "hook" to catch signals.
2973 // The user-defined signal handler must pass unrecognized signals to this
2974 // routine, and if it returns true (non-zero), then the signal handler must
2975 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2976 // routine will never retun false (zero), but instead will execute a VM panic
2977 // routine kill the process.
2978 //
2979 // If this routine returns false, it is OK to call it again. This allows
2980 // the user-defined signal handler to perform checks either before or after
2981 // the VM performs its own checks. Naturally, the user code would be making
2982 // a serious error if it tried to handle an exception (such as a null check
2983 // or breakpoint) that the VM was generating for its own correct operation.
2984 //
2985 // This routine may recognize any of the following kinds of signals:
2986 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2987 // It should be consulted by handlers for any of those signals.
2988 //
2989 // The caller of this routine must pass in the three arguments supplied
2990 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2991 // field of the structure passed to sigaction(). This routine assumes that
2992 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2993 //
2994 // Note that the VM will print warnings if it detects conflicting signal
2995 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2996 //
2997 extern "C" JNIEXPORT int
2998 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2999 
3000 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
3001 // to be the thing to call; documentation is not terribly clear about whether
3002 // pthread_sigmask also works, and if it does, whether it does the same.
3003 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
3004   const int rc = ::pthread_sigmask(how, set, oset);
3005   // return value semantics differ slightly for error case:
3006   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
3007   // (so, pthread_sigmask is more theadsafe for error handling)
3008   // But success is always 0.
3009   return rc == 0 ? true : false;
3010 }
3011 
3012 // Function to unblock all signals which are, according
3013 // to POSIX, typical program error signals. If they happen while being blocked,
3014 // they typically will bring down the process immediately.
3015 bool unblock_program_error_signals() {
3016   sigset_t set;
3017   ::sigemptyset(&set);
3018   ::sigaddset(&set, SIGILL);
3019   ::sigaddset(&set, SIGBUS);
3020   ::sigaddset(&set, SIGFPE);
3021   ::sigaddset(&set, SIGSEGV);
3022   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
3023 }
3024 
3025 // Renamed from 'signalHandler' to avoid collision with other shared libs.
3026 static void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
3027   assert(info != NULL && uc != NULL, "it must be old kernel");
3028 
3029   // Never leave program error signals blocked;
3030   // on all our platforms they would bring down the process immediately when
3031   // getting raised while being blocked.
3032   unblock_program_error_signals();
3033 
3034   int orig_errno = errno;  // Preserve errno value over signal handler.
3035   JVM_handle_aix_signal(sig, info, uc, true);
3036   errno = orig_errno;
3037 }
3038 
3039 // This boolean allows users to forward their own non-matching signals
3040 // to JVM_handle_aix_signal, harmlessly.
3041 bool os::Aix::signal_handlers_are_installed = false;
3042 
3043 // For signal-chaining
3044 struct sigaction sigact[NSIG];
3045 sigset_t sigs;
3046 bool os::Aix::libjsig_is_loaded = false;
3047 typedef struct sigaction *(*get_signal_t)(int);
3048 get_signal_t os::Aix::get_signal_action = NULL;
3049 
3050 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3051   struct sigaction *actp = NULL;
3052 
3053   if (libjsig_is_loaded) {
3054     // Retrieve the old signal handler from libjsig
3055     actp = (*get_signal_action)(sig);
3056   }
3057   if (actp == NULL) {
3058     // Retrieve the preinstalled signal handler from jvm
3059     actp = get_preinstalled_handler(sig);
3060   }
3061 
3062   return actp;
3063 }
3064 
3065 static bool call_chained_handler(struct sigaction *actp, int sig,
3066                                  siginfo_t *siginfo, void *context) {
3067   // Call the old signal handler
3068   if (actp->sa_handler == SIG_DFL) {
3069     // It's more reasonable to let jvm treat it as an unexpected exception
3070     // instead of taking the default action.
3071     return false;
3072   } else if (actp->sa_handler != SIG_IGN) {
3073     if ((actp->sa_flags & SA_NODEFER) == 0) {
3074       // automaticlly block the signal
3075       sigaddset(&(actp->sa_mask), sig);
3076     }
3077 
3078     sa_handler_t hand = NULL;
3079     sa_sigaction_t sa = NULL;
3080     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3081     // retrieve the chained handler
3082     if (siginfo_flag_set) {
3083       sa = actp->sa_sigaction;
3084     } else {
3085       hand = actp->sa_handler;
3086     }
3087 
3088     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3089       actp->sa_handler = SIG_DFL;
3090     }
3091 
3092     // try to honor the signal mask
3093     sigset_t oset;
3094     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3095 
3096     // call into the chained handler
3097     if (siginfo_flag_set) {
3098       (*sa)(sig, siginfo, context);
3099     } else {
3100       (*hand)(sig);
3101     }
3102 
3103     // restore the signal mask
3104     pthread_sigmask(SIG_SETMASK, &oset, 0);
3105   }
3106   // Tell jvm's signal handler the signal is taken care of.
3107   return true;
3108 }
3109 
3110 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3111   bool chained = false;
3112   // signal-chaining
3113   if (UseSignalChaining) {
3114     struct sigaction *actp = get_chained_signal_action(sig);
3115     if (actp != NULL) {
3116       chained = call_chained_handler(actp, sig, siginfo, context);
3117     }
3118   }
3119   return chained;
3120 }
3121 
3122 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3123   if (sigismember(&sigs, sig)) {
3124     return &sigact[sig];
3125   }
3126   return NULL;
3127 }
3128 
3129 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3130   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3131   sigact[sig] = oldAct;
3132   sigaddset(&sigs, sig);
3133 }
3134 
3135 // for diagnostic
3136 int sigflags[NSIG];
3137 
3138 int os::Aix::get_our_sigflags(int sig) {
3139   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3140   return sigflags[sig];
3141 }
3142 
3143 void os::Aix::set_our_sigflags(int sig, int flags) {
3144   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3145   if (sig > 0 && sig < NSIG) {
3146     sigflags[sig] = flags;
3147   }
3148 }
3149 
3150 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3151   // Check for overwrite.
3152   struct sigaction oldAct;
3153   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3154 
3155   void* oldhand = oldAct.sa_sigaction
3156     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3157     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3158   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3159       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3160       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3161     if (AllowUserSignalHandlers || !set_installed) {
3162       // Do not overwrite; user takes responsibility to forward to us.
3163       return;
3164     } else if (UseSignalChaining) {
3165       // save the old handler in jvm
3166       save_preinstalled_handler(sig, oldAct);
3167       // libjsig also interposes the sigaction() call below and saves the
3168       // old sigaction on it own.
3169     } else {
3170       fatal("Encountered unexpected pre-existing sigaction handler "
3171             "%#lx for signal %d.", (long)oldhand, sig);
3172     }
3173   }
3174 
3175   struct sigaction sigAct;
3176   sigfillset(&(sigAct.sa_mask));
3177   if (!set_installed) {
3178     sigAct.sa_handler = SIG_DFL;
3179     sigAct.sa_flags = SA_RESTART;
3180   } else {
3181     sigAct.sa_sigaction = javaSignalHandler;
3182     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3183   }
3184   // Save flags, which are set by ours
3185   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3186   sigflags[sig] = sigAct.sa_flags;
3187 
3188   int ret = sigaction(sig, &sigAct, &oldAct);
3189   assert(ret == 0, "check");
3190 
3191   void* oldhand2 = oldAct.sa_sigaction
3192                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3193                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3194   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3195 }
3196 
3197 // install signal handlers for signals that HotSpot needs to
3198 // handle in order to support Java-level exception handling.
3199 void os::Aix::install_signal_handlers() {
3200   if (!signal_handlers_are_installed) {
3201     signal_handlers_are_installed = true;
3202 
3203     // signal-chaining
3204     typedef void (*signal_setting_t)();
3205     signal_setting_t begin_signal_setting = NULL;
3206     signal_setting_t end_signal_setting = NULL;
3207     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3208                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3209     if (begin_signal_setting != NULL) {
3210       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3211                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3212       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3213                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3214       libjsig_is_loaded = true;
3215       assert(UseSignalChaining, "should enable signal-chaining");
3216     }
3217     if (libjsig_is_loaded) {
3218       // Tell libjsig jvm is setting signal handlers.
3219       (*begin_signal_setting)();
3220     }
3221 
3222     ::sigemptyset(&sigs);
3223     set_signal_handler(SIGSEGV, true);
3224     set_signal_handler(SIGPIPE, true);
3225     set_signal_handler(SIGBUS, true);
3226     set_signal_handler(SIGILL, true);
3227     set_signal_handler(SIGFPE, true);
3228     set_signal_handler(SIGTRAP, true);
3229     set_signal_handler(SIGXFSZ, true);
3230 
3231     if (libjsig_is_loaded) {
3232       // Tell libjsig jvm finishes setting signal handlers.
3233       (*end_signal_setting)();
3234     }
3235 
3236     // We don't activate signal checker if libjsig is in place, we trust ourselves
3237     // and if UserSignalHandler is installed all bets are off.
3238     // Log that signal checking is off only if -verbose:jni is specified.
3239     if (CheckJNICalls) {
3240       if (libjsig_is_loaded) {
3241         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3242         check_signals = false;
3243       }
3244       if (AllowUserSignalHandlers) {
3245         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3246         check_signals = false;
3247       }
3248       // Need to initialize check_signal_done.
3249       ::sigemptyset(&check_signal_done);
3250     }
3251   }
3252 }
3253 
3254 static const char* get_signal_handler_name(address handler,
3255                                            char* buf, int buflen) {
3256   int offset;
3257   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3258   if (found) {
3259     // skip directory names
3260     const char *p1, *p2;
3261     p1 = buf;
3262     size_t len = strlen(os::file_separator());
3263     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3264     // The way os::dll_address_to_library_name is implemented on Aix
3265     // right now, it always returns -1 for the offset which is not
3266     // terribly informative.
3267     // Will fix that. For now, omit the offset.
3268     jio_snprintf(buf, buflen, "%s", p1);
3269   } else {
3270     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3271   }
3272   return buf;
3273 }
3274 
3275 static void print_signal_handler(outputStream* st, int sig,
3276                                  char* buf, size_t buflen) {
3277   struct sigaction sa;
3278   sigaction(sig, NULL, &sa);
3279 
3280   st->print("%s: ", os::exception_name(sig, buf, buflen));
3281 
3282   address handler = (sa.sa_flags & SA_SIGINFO)
3283     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3284     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3285 
3286   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3287     st->print("SIG_DFL");
3288   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3289     st->print("SIG_IGN");
3290   } else {
3291     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3292   }
3293 
3294   // Print readable mask.
3295   st->print(", sa_mask[0]=");
3296   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3297 
3298   address rh = VMError::get_resetted_sighandler(sig);
3299   // May be, handler was resetted by VMError?
3300   if (rh != NULL) {
3301     handler = rh;
3302     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3303   }
3304 
3305   // Print textual representation of sa_flags.
3306   st->print(", sa_flags=");
3307   os::Posix::print_sa_flags(st, sa.sa_flags);
3308 
3309   // Check: is it our handler?
3310   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3311       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3312     // It is our signal handler.
3313     // Check for flags, reset system-used one!
3314     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3315       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3316                 os::Aix::get_our_sigflags(sig));
3317     }
3318   }
3319   st->cr();
3320 }
3321 
3322 #define DO_SIGNAL_CHECK(sig) \
3323   if (!sigismember(&check_signal_done, sig)) \
3324     os::Aix::check_signal_handler(sig)
3325 
3326 // This method is a periodic task to check for misbehaving JNI applications
3327 // under CheckJNI, we can add any periodic checks here
3328 
3329 void os::run_periodic_checks() {
3330 
3331   if (check_signals == false) return;
3332 
3333   // SEGV and BUS if overridden could potentially prevent
3334   // generation of hs*.log in the event of a crash, debugging
3335   // such a case can be very challenging, so we absolutely
3336   // check the following for a good measure:
3337   DO_SIGNAL_CHECK(SIGSEGV);
3338   DO_SIGNAL_CHECK(SIGILL);
3339   DO_SIGNAL_CHECK(SIGFPE);
3340   DO_SIGNAL_CHECK(SIGBUS);
3341   DO_SIGNAL_CHECK(SIGPIPE);
3342   DO_SIGNAL_CHECK(SIGXFSZ);
3343   if (UseSIGTRAP) {
3344     DO_SIGNAL_CHECK(SIGTRAP);
3345   }
3346 
3347   // ReduceSignalUsage allows the user to override these handlers
3348   // see comments at the very top and jvm_md.h
3349   if (!ReduceSignalUsage) {
3350     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3351     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3352     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3353     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3354   }
3355 
3356   DO_SIGNAL_CHECK(SR_signum);
3357 }
3358 
3359 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3360 
3361 static os_sigaction_t os_sigaction = NULL;
3362 
3363 void os::Aix::check_signal_handler(int sig) {
3364   char buf[O_BUFLEN];
3365   address jvmHandler = NULL;
3366 
3367   struct sigaction act;
3368   if (os_sigaction == NULL) {
3369     // only trust the default sigaction, in case it has been interposed
3370     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3371     if (os_sigaction == NULL) return;
3372   }
3373 
3374   os_sigaction(sig, (struct sigaction*)NULL, &act);
3375 
3376   address thisHandler = (act.sa_flags & SA_SIGINFO)
3377     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3378     : CAST_FROM_FN_PTR(address, act.sa_handler);
3379 
3380   switch(sig) {
3381   case SIGSEGV:
3382   case SIGBUS:
3383   case SIGFPE:
3384   case SIGPIPE:
3385   case SIGILL:
3386   case SIGXFSZ:
3387     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3388     break;
3389 
3390   case SHUTDOWN1_SIGNAL:
3391   case SHUTDOWN2_SIGNAL:
3392   case SHUTDOWN3_SIGNAL:
3393   case BREAK_SIGNAL:
3394     jvmHandler = (address)user_handler();
3395     break;
3396 
3397   default:
3398     if (sig == SR_signum) {
3399       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3400     } else {
3401       return;
3402     }
3403     break;
3404   }
3405 
3406   if (thisHandler != jvmHandler) {
3407     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3408     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3409     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3410     // No need to check this sig any longer
3411     sigaddset(&check_signal_done, sig);
3412     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3413     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3414       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3415                     exception_name(sig, buf, O_BUFLEN));
3416     }
3417   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3418     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3419     tty->print("expected:");
3420     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3421     tty->cr();
3422     tty->print("  found:");
3423     os::Posix::print_sa_flags(tty, act.sa_flags);
3424     tty->cr();
3425     // No need to check this sig any longer
3426     sigaddset(&check_signal_done, sig);
3427   }
3428 
3429   // Dump all the signal
3430   if (sigismember(&check_signal_done, sig)) {
3431     print_signal_handlers(tty, buf, O_BUFLEN);
3432   }
3433 }
3434 
3435 // To install functions for atexit system call
3436 extern "C" {
3437   static void perfMemory_exit_helper() {
3438     perfMemory_exit();
3439   }
3440 }
3441 
3442 // This is called _before_ the most of global arguments have been parsed.
3443 void os::init(void) {
3444   // This is basic, we want to know if that ever changes.
3445   // (Shared memory boundary is supposed to be a 256M aligned.)
3446   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3447 
3448   // Record process break at startup.
3449   g_brk_at_startup = (address) ::sbrk(0);
3450   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3451 
3452   // First off, we need to know whether we run on AIX or PASE, and
3453   // the OS level we run on.
3454   os::Aix::initialize_os_info();
3455 
3456   // Scan environment (SPEC1170 behaviour, etc).
3457   os::Aix::scan_environment();
3458 
3459   // Probe multipage support.
3460   query_multipage_support();
3461 
3462   // Act like we only have one page size by eliminating corner cases which
3463   // we did not support very well anyway.
3464   // We have two input conditions:
3465   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3466   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3467   //    setting.
3468   //    Data segment page size is important for us because it defines the thread stack page
3469   //    size, which is needed for guard page handling, stack banging etc.
3470   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3471   //    and should be allocated with 64k pages.
3472   //
3473   // So, we do the following:
3474   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3475   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3476   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3477   // 64k          no              --- AIX 5.2 ? ---
3478   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3479 
3480   // We explicitly leave no option to change page size, because only upgrading would work,
3481   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3482 
3483   if (g_multipage_support.datapsize == 4*K) {
3484     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3485     if (g_multipage_support.can_use_64K_pages) {
3486       // .. but we are able to use 64K pages dynamically.
3487       // This would be typical for java launchers which are not linked
3488       // with datapsize=64K (like, any other launcher but our own).
3489       //
3490       // In this case it would be smart to allocate the java heap with 64K
3491       // to get the performance benefit, and to fake 64k pages for the
3492       // data segment (when dealing with thread stacks).
3493       //
3494       // However, leave a possibility to downgrade to 4K, using
3495       // -XX:-Use64KPages.
3496       if (Use64KPages) {
3497         trcVerbose("64K page mode (faked for data segment)");
3498         Aix::_page_size = 64*K;
3499       } else {
3500         trcVerbose("4K page mode (Use64KPages=off)");
3501         Aix::_page_size = 4*K;
3502       }
3503     } else {
3504       // .. and not able to allocate 64k pages dynamically. Here, just
3505       // fall back to 4K paged mode and use mmap for everything.
3506       trcVerbose("4K page mode");
3507       Aix::_page_size = 4*K;
3508       FLAG_SET_ERGO(bool, Use64KPages, false);
3509     }
3510   } else {
3511     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3512     // This normally means that we can allocate 64k pages dynamically.
3513     // (There is one special case where this may be false: EXTSHM=on.
3514     // but we decided to not support that mode).
3515     assert0(g_multipage_support.can_use_64K_pages);
3516     Aix::_page_size = 64*K;
3517     trcVerbose("64K page mode");
3518     FLAG_SET_ERGO(bool, Use64KPages, true);
3519   }
3520 
3521   // For now UseLargePages is just ignored.
3522   FLAG_SET_ERGO(bool, UseLargePages, false);
3523   _page_sizes[0] = 0;
3524 
3525   // debug trace
3526   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3527 
3528   // Next, we need to initialize libo4 and libperfstat libraries.
3529   if (os::Aix::on_pase()) {
3530     os::Aix::initialize_libo4();
3531   } else {
3532     os::Aix::initialize_libperfstat();
3533   }
3534 
3535   // Reset the perfstat information provided by ODM.
3536   if (os::Aix::on_aix()) {
3537     libperfstat::perfstat_reset();
3538   }
3539 
3540   // Now initialze basic system properties. Note that for some of the values we
3541   // need libperfstat etc.
3542   os::Aix::initialize_system_info();
3543 
3544   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3545 
3546   init_random(1234567);
3547 
3548   // _main_thread points to the thread that created/loaded the JVM.
3549   Aix::_main_thread = pthread_self();
3550 
3551   initial_time_count = os::elapsed_counter();
3552 
3553   os::Posix::init();
3554 }
3555 
3556 // This is called _after_ the global arguments have been parsed.
3557 jint os::init_2(void) {
3558 
3559   os::Posix::init_2();
3560 
3561   if (os::Aix::on_pase()) {
3562     trcVerbose("Running on PASE.");
3563   } else {
3564     trcVerbose("Running on AIX (not PASE).");
3565   }
3566 
3567   trcVerbose("processor count: %d", os::_processor_count);
3568   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3569 
3570   // Initially build up the loaded dll map.
3571   LoadedLibraries::reload();
3572   if (Verbose) {
3573     trcVerbose("Loaded Libraries: ");
3574     LoadedLibraries::print(tty);
3575   }
3576 
3577   // initialize suspend/resume support - must do this before signal_sets_init()
3578   if (SR_initialize() != 0) {
3579     perror("SR_initialize failed");
3580     return JNI_ERR;
3581   }
3582 
3583   Aix::signal_sets_init();
3584   Aix::install_signal_handlers();
3585   // Initialize data for jdk.internal.misc.Signal
3586   if (!ReduceSignalUsage) {
3587     jdk_misc_signal_init();
3588   }
3589 
3590   // Check and sets minimum stack sizes against command line options
3591   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3592     return JNI_ERR;
3593   }
3594 
3595   if (UseNUMA) {
3596     UseNUMA = false;
3597     warning("NUMA optimizations are not available on this OS.");
3598   }
3599 
3600   if (MaxFDLimit) {
3601     // Set the number of file descriptors to max. print out error
3602     // if getrlimit/setrlimit fails but continue regardless.
3603     struct rlimit nbr_files;
3604     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3605     if (status != 0) {
3606       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3607     } else {
3608       nbr_files.rlim_cur = nbr_files.rlim_max;
3609       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3610       if (status != 0) {
3611         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3612       }
3613     }
3614   }
3615 
3616   if (PerfAllowAtExitRegistration) {
3617     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3618     // At exit functions can be delayed until process exit time, which
3619     // can be problematic for embedded VM situations. Embedded VMs should
3620     // call DestroyJavaVM() to assure that VM resources are released.
3621 
3622     // Note: perfMemory_exit_helper atexit function may be removed in
3623     // the future if the appropriate cleanup code can be added to the
3624     // VM_Exit VMOperation's doit method.
3625     if (atexit(perfMemory_exit_helper) != 0) {
3626       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3627     }
3628   }
3629 
3630   return JNI_OK;
3631 }
3632 
3633 // Mark the polling page as unreadable
3634 void os::make_polling_page_unreadable(void) {
3635   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3636     fatal("Could not disable polling page");
3637   }
3638 };
3639 
3640 // Mark the polling page as readable
3641 void os::make_polling_page_readable(void) {
3642   // Changed according to os_linux.cpp.
3643   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3644     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3645   }
3646 };
3647 
3648 int os::active_processor_count() {
3649   // User has overridden the number of active processors
3650   if (ActiveProcessorCount > 0) {
3651     log_trace(os)("active_processor_count: "
3652                   "active processor count set by user : %d",
3653                   ActiveProcessorCount);
3654     return ActiveProcessorCount;
3655   }
3656 
3657   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3658   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3659   return online_cpus;
3660 }
3661 
3662 void os::set_native_thread_name(const char *name) {
3663   // Not yet implemented.
3664   return;
3665 }
3666 
3667 bool os::distribute_processes(uint length, uint* distribution) {
3668   // Not yet implemented.
3669   return false;
3670 }
3671 
3672 bool os::bind_to_processor(uint processor_id) {
3673   // Not yet implemented.
3674   return false;
3675 }
3676 
3677 void os::SuspendedThreadTask::internal_do_task() {
3678   if (do_suspend(_thread->osthread())) {
3679     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3680     do_task(context);
3681     do_resume(_thread->osthread());
3682   }
3683 }
3684 
3685 ////////////////////////////////////////////////////////////////////////////////
3686 // debug support
3687 
3688 bool os::find(address addr, outputStream* st) {
3689 
3690   st->print(PTR_FORMAT ": ", addr);
3691 
3692   loaded_module_t lm;
3693   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3694       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3695     st->print_cr("%s", lm.path);
3696     return true;
3697   }
3698 
3699   return false;
3700 }
3701 
3702 ////////////////////////////////////////////////////////////////////////////////
3703 // misc
3704 
3705 // This does not do anything on Aix. This is basically a hook for being
3706 // able to use structured exception handling (thread-local exception filters)
3707 // on, e.g., Win32.
3708 void
3709 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3710                          JavaCallArguments* args, Thread* thread) {
3711   f(value, method, args, thread);
3712 }
3713 
3714 void os::print_statistics() {
3715 }
3716 
3717 bool os::message_box(const char* title, const char* message) {
3718   int i;
3719   fdStream err(defaultStream::error_fd());
3720   for (i = 0; i < 78; i++) err.print_raw("=");
3721   err.cr();
3722   err.print_raw_cr(title);
3723   for (i = 0; i < 78; i++) err.print_raw("-");
3724   err.cr();
3725   err.print_raw_cr(message);
3726   for (i = 0; i < 78; i++) err.print_raw("=");
3727   err.cr();
3728 
3729   char buf[16];
3730   // Prevent process from exiting upon "read error" without consuming all CPU
3731   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3732 
3733   return buf[0] == 'y' || buf[0] == 'Y';
3734 }
3735 
3736 int os::stat(const char *path, struct stat *sbuf) {
3737   char pathbuf[MAX_PATH];
3738   if (strlen(path) > MAX_PATH - 1) {
3739     errno = ENAMETOOLONG;
3740     return -1;
3741   }
3742   os::native_path(strcpy(pathbuf, path));
3743   return ::stat(pathbuf, sbuf);
3744 }
3745 
3746 // Is a (classpath) directory empty?
3747 bool os::dir_is_empty(const char* path) {
3748   DIR *dir = NULL;
3749   struct dirent *ptr;
3750 
3751   dir = opendir(path);
3752   if (dir == NULL) return true;
3753 
3754   /* Scan the directory */
3755   bool result = true;
3756   char buf[sizeof(struct dirent) + MAX_PATH];
3757   while (result && (ptr = ::readdir(dir)) != NULL) {
3758     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3759       result = false;
3760     }
3761   }
3762   closedir(dir);
3763   return result;
3764 }
3765 
3766 // This code originates from JDK's sysOpen and open64_w
3767 // from src/solaris/hpi/src/system_md.c
3768 
3769 int os::open(const char *path, int oflag, int mode) {
3770 
3771   if (strlen(path) > MAX_PATH - 1) {
3772     errno = ENAMETOOLONG;
3773     return -1;
3774   }
3775   int fd;
3776 
3777   fd = ::open64(path, oflag, mode);
3778   if (fd == -1) return -1;
3779 
3780   // If the open succeeded, the file might still be a directory.
3781   {
3782     struct stat64 buf64;
3783     int ret = ::fstat64(fd, &buf64);
3784     int st_mode = buf64.st_mode;
3785 
3786     if (ret != -1) {
3787       if ((st_mode & S_IFMT) == S_IFDIR) {
3788         errno = EISDIR;
3789         ::close(fd);
3790         return -1;
3791       }
3792     } else {
3793       ::close(fd);
3794       return -1;
3795     }
3796   }
3797 
3798   // All file descriptors that are opened in the JVM and not
3799   // specifically destined for a subprocess should have the
3800   // close-on-exec flag set. If we don't set it, then careless 3rd
3801   // party native code might fork and exec without closing all
3802   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3803   // UNIXProcess.c), and this in turn might:
3804   //
3805   // - cause end-of-file to fail to be detected on some file
3806   //   descriptors, resulting in mysterious hangs, or
3807   //
3808   // - might cause an fopen in the subprocess to fail on a system
3809   //   suffering from bug 1085341.
3810   //
3811   // (Yes, the default setting of the close-on-exec flag is a Unix
3812   // design flaw.)
3813   //
3814   // See:
3815   // 1085341: 32-bit stdio routines should support file descriptors >255
3816   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3817   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3818 #ifdef FD_CLOEXEC
3819   {
3820     int flags = ::fcntl(fd, F_GETFD);
3821     if (flags != -1)
3822       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3823   }
3824 #endif
3825 
3826   return fd;
3827 }
3828 
3829 // create binary file, rewriting existing file if required
3830 int os::create_binary_file(const char* path, bool rewrite_existing) {
3831   int oflags = O_WRONLY | O_CREAT;
3832   if (!rewrite_existing) {
3833     oflags |= O_EXCL;
3834   }
3835   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3836 }
3837 
3838 // return current position of file pointer
3839 jlong os::current_file_offset(int fd) {
3840   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3841 }
3842 
3843 // move file pointer to the specified offset
3844 jlong os::seek_to_file_offset(int fd, jlong offset) {
3845   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3846 }
3847 
3848 // This code originates from JDK's sysAvailable
3849 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3850 
3851 int os::available(int fd, jlong *bytes) {
3852   jlong cur, end;
3853   int mode;
3854   struct stat64 buf64;
3855 
3856   if (::fstat64(fd, &buf64) >= 0) {
3857     mode = buf64.st_mode;
3858     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3859       int n;
3860       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3861         *bytes = n;
3862         return 1;
3863       }
3864     }
3865   }
3866   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3867     return 0;
3868   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3869     return 0;
3870   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3871     return 0;
3872   }
3873   *bytes = end - cur;
3874   return 1;
3875 }
3876 
3877 // Map a block of memory.
3878 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3879                         char *addr, size_t bytes, bool read_only,
3880                         bool allow_exec) {
3881   int prot;
3882   int flags = MAP_PRIVATE;
3883 
3884   if (read_only) {
3885     prot = PROT_READ;
3886     flags = MAP_SHARED;
3887   } else {
3888     prot = PROT_READ | PROT_WRITE;
3889     flags = MAP_PRIVATE;
3890   }
3891 
3892   if (allow_exec) {
3893     prot |= PROT_EXEC;
3894   }
3895 
3896   if (addr != NULL) {
3897     flags |= MAP_FIXED;
3898   }
3899 
3900   // Allow anonymous mappings if 'fd' is -1.
3901   if (fd == -1) {
3902     flags |= MAP_ANONYMOUS;
3903   }
3904 
3905   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3906                                      fd, file_offset);
3907   if (mapped_address == MAP_FAILED) {
3908     return NULL;
3909   }
3910   return mapped_address;
3911 }
3912 
3913 // Remap a block of memory.
3914 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3915                           char *addr, size_t bytes, bool read_only,
3916                           bool allow_exec) {
3917   // same as map_memory() on this OS
3918   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3919                         allow_exec);
3920 }
3921 
3922 // Unmap a block of memory.
3923 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3924   return munmap(addr, bytes) == 0;
3925 }
3926 
3927 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3928 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3929 // of a thread.
3930 //
3931 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3932 // the fast estimate available on the platform.
3933 
3934 jlong os::current_thread_cpu_time() {
3935   // return user + sys since the cost is the same
3936   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3937   assert(n >= 0, "negative CPU time");
3938   return n;
3939 }
3940 
3941 jlong os::thread_cpu_time(Thread* thread) {
3942   // consistent with what current_thread_cpu_time() returns
3943   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3944   assert(n >= 0, "negative CPU time");
3945   return n;
3946 }
3947 
3948 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3949   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3950   assert(n >= 0, "negative CPU time");
3951   return n;
3952 }
3953 
3954 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3955   bool error = false;
3956 
3957   jlong sys_time = 0;
3958   jlong user_time = 0;
3959 
3960   // Reimplemented using getthrds64().
3961   //
3962   // Works like this:
3963   // For the thread in question, get the kernel thread id. Then get the
3964   // kernel thread statistics using that id.
3965   //
3966   // This only works of course when no pthread scheduling is used,
3967   // i.e. there is a 1:1 relationship to kernel threads.
3968   // On AIX, see AIXTHREAD_SCOPE variable.
3969 
3970   pthread_t pthtid = thread->osthread()->pthread_id();
3971 
3972   // retrieve kernel thread id for the pthread:
3973   tid64_t tid = 0;
3974   struct __pthrdsinfo pinfo;
3975   // I just love those otherworldly IBM APIs which force me to hand down
3976   // dummy buffers for stuff I dont care for...
3977   char dummy[1];
3978   int dummy_size = sizeof(dummy);
3979   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3980                           dummy, &dummy_size) == 0) {
3981     tid = pinfo.__pi_tid;
3982   } else {
3983     tty->print_cr("pthread_getthrds_np failed.");
3984     error = true;
3985   }
3986 
3987   // retrieve kernel timing info for that kernel thread
3988   if (!error) {
3989     struct thrdentry64 thrdentry;
3990     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3991       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3992       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3993     } else {
3994       tty->print_cr("pthread_getthrds_np failed.");
3995       error = true;
3996     }
3997   }
3998 
3999   if (p_sys_time) {
4000     *p_sys_time = sys_time;
4001   }
4002 
4003   if (p_user_time) {
4004     *p_user_time = user_time;
4005   }
4006 
4007   if (error) {
4008     return false;
4009   }
4010 
4011   return true;
4012 }
4013 
4014 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4015   jlong sys_time;
4016   jlong user_time;
4017 
4018   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
4019     return -1;
4020   }
4021 
4022   return user_sys_cpu_time ? sys_time + user_time : user_time;
4023 }
4024 
4025 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4026   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4027   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4028   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4029   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4030 }
4031 
4032 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4033   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4034   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4035   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4036   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4037 }
4038 
4039 bool os::is_thread_cpu_time_supported() {
4040   return true;
4041 }
4042 
4043 // System loadavg support. Returns -1 if load average cannot be obtained.
4044 // For now just return the system wide load average (no processor sets).
4045 int os::loadavg(double values[], int nelem) {
4046 
4047   guarantee(nelem >= 0 && nelem <= 3, "argument error");
4048   guarantee(values, "argument error");
4049 
4050   if (os::Aix::on_pase()) {
4051 
4052     // AS/400 PASE: use libo4 porting library
4053     double v[3] = { 0.0, 0.0, 0.0 };
4054 
4055     if (libo4::get_load_avg(v, v + 1, v + 2)) {
4056       for (int i = 0; i < nelem; i ++) {
4057         values[i] = v[i];
4058       }
4059       return nelem;
4060     } else {
4061       return -1;
4062     }
4063 
4064   } else {
4065 
4066     // AIX: use libperfstat
4067     libperfstat::cpuinfo_t ci;
4068     if (libperfstat::get_cpuinfo(&ci)) {
4069       for (int i = 0; i < nelem; i++) {
4070         values[i] = ci.loadavg[i];
4071       }
4072     } else {
4073       return -1;
4074     }
4075     return nelem;
4076   }
4077 }
4078 
4079 void os::pause() {
4080   char filename[MAX_PATH];
4081   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4082     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4083   } else {
4084     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4085   }
4086 
4087   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4088   if (fd != -1) {
4089     struct stat buf;
4090     ::close(fd);
4091     while (::stat(filename, &buf) == 0) {
4092       (void)::poll(NULL, 0, 100);
4093     }
4094   } else {
4095     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4096   }
4097 }
4098 
4099 bool os::is_primordial_thread(void) {
4100   if (pthread_self() == (pthread_t)1) {
4101     return true;
4102   } else {
4103     return false;
4104   }
4105 }
4106 
4107 // OS recognitions (PASE/AIX, OS level) call this before calling any
4108 // one of Aix::on_pase(), Aix::os_version() static
4109 void os::Aix::initialize_os_info() {
4110 
4111   assert(_on_pase == -1 && _os_version == 0, "already called.");
4112 
4113   struct utsname uts;
4114   memset(&uts, 0, sizeof(uts));
4115   strcpy(uts.sysname, "?");
4116   if (::uname(&uts) == -1) {
4117     trcVerbose("uname failed (%d)", errno);
4118     guarantee(0, "Could not determine whether we run on AIX or PASE");
4119   } else {
4120     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4121                "node \"%s\" machine \"%s\"\n",
4122                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4123     const int major = atoi(uts.version);
4124     assert(major > 0, "invalid OS version");
4125     const int minor = atoi(uts.release);
4126     assert(minor > 0, "invalid OS release");
4127     _os_version = (major << 24) | (minor << 16);
4128     char ver_str[20] = {0};
4129     char *name_str = "unknown OS";
4130     if (strcmp(uts.sysname, "OS400") == 0) {
4131       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4132       _on_pase = 1;
4133       if (os_version_short() < 0x0504) {
4134         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4135         assert(false, "OS/400 release too old.");
4136       }
4137       name_str = "OS/400 (pase)";
4138       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4139     } else if (strcmp(uts.sysname, "AIX") == 0) {
4140       // We run on AIX. We do not support versions older than AIX 5.3.
4141       _on_pase = 0;
4142       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4143       odmWrapper::determine_os_kernel_version(&_os_version);
4144       if (os_version_short() < 0x0503) {
4145         trcVerbose("AIX release older than AIX 5.3 not supported.");
4146         assert(false, "AIX release too old.");
4147       }
4148       name_str = "AIX";
4149       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4150                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4151     } else {
4152       assert(false, name_str);
4153     }
4154     trcVerbose("We run on %s %s", name_str, ver_str);
4155   }
4156 
4157   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4158 } // end: os::Aix::initialize_os_info()
4159 
4160 // Scan environment for important settings which might effect the VM.
4161 // Trace out settings. Warn about invalid settings and/or correct them.
4162 //
4163 // Must run after os::Aix::initialue_os_info().
4164 void os::Aix::scan_environment() {
4165 
4166   char* p;
4167   int rc;
4168 
4169   // Warn explicity if EXTSHM=ON is used. That switch changes how
4170   // System V shared memory behaves. One effect is that page size of
4171   // shared memory cannot be change dynamically, effectivly preventing
4172   // large pages from working.
4173   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4174   // recommendation is (in OSS notes) to switch it off.
4175   p = ::getenv("EXTSHM");
4176   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4177   if (p && strcasecmp(p, "ON") == 0) {
4178     _extshm = 1;
4179     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4180     if (!AllowExtshm) {
4181       // We allow under certain conditions the user to continue. However, we want this
4182       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4183       // that the VM is not able to allocate 64k pages for the heap.
4184       // We do not want to run with reduced performance.
4185       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4186     }
4187   } else {
4188     _extshm = 0;
4189   }
4190 
4191   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4192   // Not tested, not supported.
4193   //
4194   // Note that it might be worth the trouble to test and to require it, if only to
4195   // get useful return codes for mprotect.
4196   //
4197   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4198   // exec() ? before loading the libjvm ? ....)
4199   p = ::getenv("XPG_SUS_ENV");
4200   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4201   if (p && strcmp(p, "ON") == 0) {
4202     _xpg_sus_mode = 1;
4203     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4204     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4205     // clobber address ranges. If we ever want to support that, we have to do some
4206     // testing first.
4207     guarantee(false, "XPG_SUS_ENV=ON not supported");
4208   } else {
4209     _xpg_sus_mode = 0;
4210   }
4211 
4212   if (os::Aix::on_pase()) {
4213     p = ::getenv("QIBM_MULTI_THREADED");
4214     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4215   }
4216 
4217   p = ::getenv("LDR_CNTRL");
4218   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4219   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4220     if (p && ::strstr(p, "TEXTPSIZE")) {
4221       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4222         "you may experience hangs or crashes on OS/400 V7R1.");
4223     }
4224   }
4225 
4226   p = ::getenv("AIXTHREAD_GUARDPAGES");
4227   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4228 
4229 } // end: os::Aix::scan_environment()
4230 
4231 // PASE: initialize the libo4 library (PASE porting library).
4232 void os::Aix::initialize_libo4() {
4233   guarantee(os::Aix::on_pase(), "OS/400 only.");
4234   if (!libo4::init()) {
4235     trcVerbose("libo4 initialization failed.");
4236     assert(false, "libo4 initialization failed");
4237   } else {
4238     trcVerbose("libo4 initialized.");
4239   }
4240 }
4241 
4242 // AIX: initialize the libperfstat library.
4243 void os::Aix::initialize_libperfstat() {
4244   assert(os::Aix::on_aix(), "AIX only");
4245   if (!libperfstat::init()) {
4246     trcVerbose("libperfstat initialization failed.");
4247     assert(false, "libperfstat initialization failed");
4248   } else {
4249     trcVerbose("libperfstat initialized.");
4250   }
4251 }
4252 
4253 /////////////////////////////////////////////////////////////////////////////
4254 // thread stack
4255 
4256 // Get the current stack base from the OS (actually, the pthread library).
4257 // Note: usually not page aligned.
4258 address os::current_stack_base() {
4259   AixMisc::stackbounds_t bounds;
4260   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4261   guarantee(rc, "Unable to retrieve stack bounds.");
4262   return bounds.base;
4263 }
4264 
4265 // Get the current stack size from the OS (actually, the pthread library).
4266 // Returned size is such that (base - size) is always aligned to page size.
4267 size_t os::current_stack_size() {
4268   AixMisc::stackbounds_t bounds;
4269   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4270   guarantee(rc, "Unable to retrieve stack bounds.");
4271   // Align the returned stack size such that the stack low address
4272   // is aligned to page size (Note: base is usually not and we do not care).
4273   // We need to do this because caller code will assume stack low address is
4274   // page aligned and will place guard pages without checking.
4275   address low = bounds.base - bounds.size;
4276   address low_aligned = (address)align_up(low, os::vm_page_size());
4277   size_t s = bounds.base - low_aligned;
4278   return s;
4279 }
4280 
4281 extern char** environ;
4282 
4283 // Run the specified command in a separate process. Return its exit value,
4284 // or -1 on failure (e.g. can't fork a new process).
4285 // Unlike system(), this function can be called from signal handler. It
4286 // doesn't block SIGINT et al.
4287 int os::fork_and_exec(char* cmd) {
4288   char * argv[4] = {"sh", "-c", cmd, NULL};
4289 
4290   pid_t pid = fork();
4291 
4292   if (pid < 0) {
4293     // fork failed
4294     return -1;
4295 
4296   } else if (pid == 0) {
4297     // child process
4298 
4299     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4300     execve("/usr/bin/sh", argv, environ);
4301 
4302     // execve failed
4303     _exit(-1);
4304 
4305   } else {
4306     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4307     // care about the actual exit code, for now.
4308 
4309     int status;
4310 
4311     // Wait for the child process to exit. This returns immediately if
4312     // the child has already exited. */
4313     while (waitpid(pid, &status, 0) < 0) {
4314       switch (errno) {
4315         case ECHILD: return 0;
4316         case EINTR: break;
4317         default: return -1;
4318       }
4319     }
4320 
4321     if (WIFEXITED(status)) {
4322       // The child exited normally; get its exit code.
4323       return WEXITSTATUS(status);
4324     } else if (WIFSIGNALED(status)) {
4325       // The child exited because of a signal.
4326       // The best value to return is 0x80 + signal number,
4327       // because that is what all Unix shells do, and because
4328       // it allows callers to distinguish between process exit and
4329       // process death by signal.
4330       return 0x80 + WTERMSIG(status);
4331     } else {
4332       // Unknown exit code; pass it through.
4333       return status;
4334     }
4335   }
4336   return -1;
4337 }
4338 
4339 // Get the default path to the core file
4340 // Returns the length of the string
4341 int os::get_core_path(char* buffer, size_t bufferSize) {
4342   const char* p = get_current_directory(buffer, bufferSize);
4343 
4344   if (p == NULL) {
4345     assert(p != NULL, "failed to get current directory");
4346     return 0;
4347   }
4348 
4349   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4350                                                p, current_process_id());
4351 
4352   return strlen(buffer);
4353 }
4354 
4355 #ifndef PRODUCT
4356 void TestReserveMemorySpecial_test() {
4357   // No tests available for this platform
4358 }
4359 #endif
4360 
4361 bool os::start_debugging(char *buf, int buflen) {
4362   int len = (int)strlen(buf);
4363   char *p = &buf[len];
4364 
4365   jio_snprintf(p, buflen -len,
4366                  "\n\n"
4367                  "Do you want to debug the problem?\n\n"
4368                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4369                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4370                  "Otherwise, press RETURN to abort...",
4371                  os::current_process_id(),
4372                  os::current_thread_id(), thread_self());
4373 
4374   bool yes = os::message_box("Unexpected Error", buf);
4375 
4376   if (yes) {
4377     // yes, user asked VM to launch debugger
4378     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4379 
4380     os::fork_and_exec(buf);
4381     yes = false;
4382   }
4383   return yes;
4384 }
4385 
4386 static inline time_t get_mtime(const char* filename) {
4387   struct stat st;
4388   int ret = os::stat(filename, &st);
4389   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
4390   return st.st_mtime;
4391 }
4392 
4393 int os::compare_file_modified_times(const char* file1, const char* file2) {
4394   time_t t1 = get_mtime(file1);
4395   time_t t2 = get_mtime(file2);
4396   return t1 - t2;
4397 }