1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsGCStats.hpp"
  33 #include "gc/cms/cmsHeap.hpp"
  34 #include "gc/cms/cmsOopClosures.inline.hpp"
  35 #include "gc/cms/compactibleFreeListSpace.hpp"
  36 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  37 #include "gc/cms/concurrentMarkSweepThread.hpp"
  38 #include "gc/cms/parNewGeneration.hpp"
  39 #include "gc/cms/promotionInfo.inline.hpp"
  40 #include "gc/cms/vmCMSOperations.hpp"
  41 #include "gc/serial/genMarkSweep.hpp"
  42 #include "gc/serial/tenuredGeneration.hpp"
  43 #include "gc/shared/adaptiveSizePolicy.hpp"
  44 #include "gc/shared/cardGeneration.inline.hpp"
  45 #include "gc/shared/cardTableRS.hpp"
  46 #include "gc/shared/collectedHeap.inline.hpp"
  47 #include "gc/shared/collectorCounters.hpp"
  48 #include "gc/shared/collectorPolicy.hpp"
  49 #include "gc/shared/gcLocker.hpp"
  50 #include "gc/shared/gcPolicyCounters.hpp"
  51 #include "gc/shared/gcTimer.hpp"
  52 #include "gc/shared/gcTrace.hpp"
  53 #include "gc/shared/gcTraceTime.inline.hpp"
  54 #include "gc/shared/genCollectedHeap.hpp"
  55 #include "gc/shared/genOopClosures.inline.hpp"
  56 #include "gc/shared/isGCActiveMark.hpp"
  57 #include "gc/shared/referencePolicy.hpp"
  58 #include "gc/shared/space.inline.hpp"
  59 #include "gc/shared/strongRootsScope.hpp"
  60 #include "gc/shared/taskqueue.inline.hpp"
  61 #include "gc/shared/weakProcessor.hpp"
  62 #include "logging/log.hpp"
  63 #include "logging/logStream.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/binaryTreeDictionary.inline.hpp"
  66 #include "memory/iterator.inline.hpp"
  67 #include "memory/padded.hpp"
  68 #include "memory/resourceArea.hpp"
  69 #include "oops/access.inline.hpp"
  70 #include "oops/oop.inline.hpp"
  71 #include "prims/jvmtiExport.hpp"
  72 #include "runtime/atomic.hpp"
  73 #include "runtime/flags/flagSetting.hpp"
  74 #include "runtime/globals_extension.hpp"
  75 #include "runtime/handles.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/timer.hpp"
  79 #include "runtime/vmThread.hpp"
  80 #include "services/memoryService.hpp"
  81 #include "services/runtimeService.hpp"
  82 #include "utilities/align.hpp"
  83 #include "utilities/stack.inline.hpp"
  84 
  85 // statics
  86 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  87 bool CMSCollector::_full_gc_requested = false;
  88 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  89 
  90 //////////////////////////////////////////////////////////////////
  91 // In support of CMS/VM thread synchronization
  92 //////////////////////////////////////////////////////////////////
  93 // We split use of the CGC_lock into 2 "levels".
  94 // The low-level locking is of the usual CGC_lock monitor. We introduce
  95 // a higher level "token" (hereafter "CMS token") built on top of the
  96 // low level monitor (hereafter "CGC lock").
  97 // The token-passing protocol gives priority to the VM thread. The
  98 // CMS-lock doesn't provide any fairness guarantees, but clients
  99 // should ensure that it is only held for very short, bounded
 100 // durations.
 101 //
 102 // When either of the CMS thread or the VM thread is involved in
 103 // collection operations during which it does not want the other
 104 // thread to interfere, it obtains the CMS token.
 105 //
 106 // If either thread tries to get the token while the other has
 107 // it, that thread waits. However, if the VM thread and CMS thread
 108 // both want the token, then the VM thread gets priority while the
 109 // CMS thread waits. This ensures, for instance, that the "concurrent"
 110 // phases of the CMS thread's work do not block out the VM thread
 111 // for long periods of time as the CMS thread continues to hog
 112 // the token. (See bug 4616232).
 113 //
 114 // The baton-passing functions are, however, controlled by the
 115 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 116 // and here the low-level CMS lock, not the high level token,
 117 // ensures mutual exclusion.
 118 //
 119 // Two important conditions that we have to satisfy:
 120 // 1. if a thread does a low-level wait on the CMS lock, then it
 121 //    relinquishes the CMS token if it were holding that token
 122 //    when it acquired the low-level CMS lock.
 123 // 2. any low-level notifications on the low-level lock
 124 //    should only be sent when a thread has relinquished the token.
 125 //
 126 // In the absence of either property, we'd have potential deadlock.
 127 //
 128 // We protect each of the CMS (concurrent and sequential) phases
 129 // with the CMS _token_, not the CMS _lock_.
 130 //
 131 // The only code protected by CMS lock is the token acquisition code
 132 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 133 // baton-passing code.
 134 //
 135 // Unfortunately, i couldn't come up with a good abstraction to factor and
 136 // hide the naked CGC_lock manipulation in the baton-passing code
 137 // further below. That's something we should try to do. Also, the proof
 138 // of correctness of this 2-level locking scheme is far from obvious,
 139 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 140 // that there may be a theoretical possibility of delay/starvation in the
 141 // low-level lock/wait/notify scheme used for the baton-passing because of
 142 // potential interference with the priority scheme embodied in the
 143 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 144 // invocation further below and marked with "XXX 20011219YSR".
 145 // Indeed, as we note elsewhere, this may become yet more slippery
 146 // in the presence of multiple CMS and/or multiple VM threads. XXX
 147 
 148 class CMSTokenSync: public StackObj {
 149  private:
 150   bool _is_cms_thread;
 151  public:
 152   CMSTokenSync(bool is_cms_thread):
 153     _is_cms_thread(is_cms_thread) {
 154     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 155            "Incorrect argument to constructor");
 156     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 157   }
 158 
 159   ~CMSTokenSync() {
 160     assert(_is_cms_thread ?
 161              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 162              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 163           "Incorrect state");
 164     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 165   }
 166 };
 167 
 168 // Convenience class that does a CMSTokenSync, and then acquires
 169 // upto three locks.
 170 class CMSTokenSyncWithLocks: public CMSTokenSync {
 171  private:
 172   // Note: locks are acquired in textual declaration order
 173   // and released in the opposite order
 174   MutexLockerEx _locker1, _locker2, _locker3;
 175  public:
 176   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 177                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 178     CMSTokenSync(is_cms_thread),
 179     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 180     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 181     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 182   { }
 183 };
 184 
 185 
 186 //////////////////////////////////////////////////////////////////
 187 //  Concurrent Mark-Sweep Generation /////////////////////////////
 188 //////////////////////////////////////////////////////////////////
 189 
 190 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 191 
 192 // This struct contains per-thread things necessary to support parallel
 193 // young-gen collection.
 194 class CMSParGCThreadState: public CHeapObj<mtGC> {
 195  public:
 196   CompactibleFreeListSpaceLAB lab;
 197   PromotionInfo promo;
 198 
 199   // Constructor.
 200   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 201     promo.setSpace(cfls);
 202   }
 203 };
 204 
 205 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 206      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 207   CardGeneration(rs, initial_byte_size, ct),
 208   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 209   _did_compact(false)
 210 {
 211   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 212   HeapWord* end    = (HeapWord*) _virtual_space.high();
 213 
 214   _direct_allocated_words = 0;
 215   NOT_PRODUCT(
 216     _numObjectsPromoted = 0;
 217     _numWordsPromoted = 0;
 218     _numObjectsAllocated = 0;
 219     _numWordsAllocated = 0;
 220   )
 221 
 222   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 223   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 224   _cmsSpace->_old_gen = this;
 225 
 226   _gc_stats = new CMSGCStats();
 227 
 228   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 229   // offsets match. The ability to tell free chunks from objects
 230   // depends on this property.
 231   debug_only(
 232     FreeChunk* junk = NULL;
 233     assert(UseCompressedClassPointers ||
 234            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 235            "Offset of FreeChunk::_prev within FreeChunk must match"
 236            "  that of OopDesc::_klass within OopDesc");
 237   )
 238 
 239   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 240   for (uint i = 0; i < ParallelGCThreads; i++) {
 241     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 242   }
 243 
 244   _incremental_collection_failed = false;
 245   // The "dilatation_factor" is the expansion that can occur on
 246   // account of the fact that the minimum object size in the CMS
 247   // generation may be larger than that in, say, a contiguous young
 248   //  generation.
 249   // Ideally, in the calculation below, we'd compute the dilatation
 250   // factor as: MinChunkSize/(promoting_gen's min object size)
 251   // Since we do not have such a general query interface for the
 252   // promoting generation, we'll instead just use the minimum
 253   // object size (which today is a header's worth of space);
 254   // note that all arithmetic is in units of HeapWords.
 255   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 256   assert(_dilatation_factor >= 1.0, "from previous assert");
 257 }
 258 
 259 
 260 // The field "_initiating_occupancy" represents the occupancy percentage
 261 // at which we trigger a new collection cycle.  Unless explicitly specified
 262 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 263 // is calculated by:
 264 //
 265 //   Let "f" be MinHeapFreeRatio in
 266 //
 267 //    _initiating_occupancy = 100-f +
 268 //                           f * (CMSTriggerRatio/100)
 269 //   where CMSTriggerRatio is the argument "tr" below.
 270 //
 271 // That is, if we assume the heap is at its desired maximum occupancy at the
 272 // end of a collection, we let CMSTriggerRatio of the (purported) free
 273 // space be allocated before initiating a new collection cycle.
 274 //
 275 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 276   assert(io <= 100 && tr <= 100, "Check the arguments");
 277   if (io >= 0) {
 278     _initiating_occupancy = (double)io / 100.0;
 279   } else {
 280     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 281                              (double)(tr * MinHeapFreeRatio) / 100.0)
 282                             / 100.0;
 283   }
 284 }
 285 
 286 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 287   assert(collector() != NULL, "no collector");
 288   collector()->ref_processor_init();
 289 }
 290 
 291 void CMSCollector::ref_processor_init() {
 292   if (_ref_processor == NULL) {
 293     // Allocate and initialize a reference processor
 294     _ref_processor =
 295       new ReferenceProcessor(&_span_based_discoverer,
 296                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 297                              ParallelGCThreads,                      // mt processing degree
 298                              _cmsGen->refs_discovery_is_mt(),        // mt discovery
 299                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 300                              _cmsGen->refs_discovery_is_atomic(),    // discovery is not atomic
 301                              &_is_alive_closure);                    // closure for liveness info
 302     // Initialize the _ref_processor field of CMSGen
 303     _cmsGen->set_ref_processor(_ref_processor);
 304 
 305   }
 306 }
 307 
 308 AdaptiveSizePolicy* CMSCollector::size_policy() {
 309   return CMSHeap::heap()->size_policy();
 310 }
 311 
 312 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 313 
 314   const char* gen_name = "old";
 315   GenCollectorPolicy* gcp = CMSHeap::heap()->gen_policy();
 316   // Generation Counters - generation 1, 1 subspace
 317   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 318       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 319 
 320   _space_counters = new GSpaceCounters(gen_name, 0,
 321                                        _virtual_space.reserved_size(),
 322                                        this, _gen_counters);
 323 }
 324 
 325 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 326   _cms_gen(cms_gen)
 327 {
 328   assert(alpha <= 100, "bad value");
 329   _saved_alpha = alpha;
 330 
 331   // Initialize the alphas to the bootstrap value of 100.
 332   _gc0_alpha = _cms_alpha = 100;
 333 
 334   _cms_begin_time.update();
 335   _cms_end_time.update();
 336 
 337   _gc0_duration = 0.0;
 338   _gc0_period = 0.0;
 339   _gc0_promoted = 0;
 340 
 341   _cms_duration = 0.0;
 342   _cms_period = 0.0;
 343   _cms_allocated = 0;
 344 
 345   _cms_used_at_gc0_begin = 0;
 346   _cms_used_at_gc0_end = 0;
 347   _allow_duty_cycle_reduction = false;
 348   _valid_bits = 0;
 349 }
 350 
 351 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 352   // TBD: CR 6909490
 353   return 1.0;
 354 }
 355 
 356 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 357 }
 358 
 359 // If promotion failure handling is on use
 360 // the padded average size of the promotion for each
 361 // young generation collection.
 362 double CMSStats::time_until_cms_gen_full() const {
 363   size_t cms_free = _cms_gen->cmsSpace()->free();
 364   CMSHeap* heap = CMSHeap::heap();
 365   size_t expected_promotion = MIN2(heap->young_gen()->capacity(),
 366                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 367   if (cms_free > expected_promotion) {
 368     // Start a cms collection if there isn't enough space to promote
 369     // for the next young collection.  Use the padded average as
 370     // a safety factor.
 371     cms_free -= expected_promotion;
 372 
 373     // Adjust by the safety factor.
 374     double cms_free_dbl = (double)cms_free;
 375     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 376     // Apply a further correction factor which tries to adjust
 377     // for recent occurance of concurrent mode failures.
 378     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 379     cms_free_dbl = cms_free_dbl * cms_adjustment;
 380 
 381     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 382                   cms_free, expected_promotion);
 383     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 384     // Add 1 in case the consumption rate goes to zero.
 385     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 386   }
 387   return 0.0;
 388 }
 389 
 390 // Compare the duration of the cms collection to the
 391 // time remaining before the cms generation is empty.
 392 // Note that the time from the start of the cms collection
 393 // to the start of the cms sweep (less than the total
 394 // duration of the cms collection) can be used.  This
 395 // has been tried and some applications experienced
 396 // promotion failures early in execution.  This was
 397 // possibly because the averages were not accurate
 398 // enough at the beginning.
 399 double CMSStats::time_until_cms_start() const {
 400   // We add "gc0_period" to the "work" calculation
 401   // below because this query is done (mostly) at the
 402   // end of a scavenge, so we need to conservatively
 403   // account for that much possible delay
 404   // in the query so as to avoid concurrent mode failures
 405   // due to starting the collection just a wee bit too
 406   // late.
 407   double work = cms_duration() + gc0_period();
 408   double deadline = time_until_cms_gen_full();
 409   // If a concurrent mode failure occurred recently, we want to be
 410   // more conservative and halve our expected time_until_cms_gen_full()
 411   if (work > deadline) {
 412     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 413                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 414     return 0.0;
 415   }
 416   return work - deadline;
 417 }
 418 
 419 #ifndef PRODUCT
 420 void CMSStats::print_on(outputStream *st) const {
 421   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 422   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 423                gc0_duration(), gc0_period(), gc0_promoted());
 424   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 425             cms_duration(), cms_period(), cms_allocated());
 426   st->print(",cms_since_beg=%g,cms_since_end=%g",
 427             cms_time_since_begin(), cms_time_since_end());
 428   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 429             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 430 
 431   if (valid()) {
 432     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 433               promotion_rate(), cms_allocation_rate());
 434     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 435               cms_consumption_rate(), time_until_cms_gen_full());
 436   }
 437   st->cr();
 438 }
 439 #endif // #ifndef PRODUCT
 440 
 441 CMSCollector::CollectorState CMSCollector::_collectorState =
 442                              CMSCollector::Idling;
 443 bool CMSCollector::_foregroundGCIsActive = false;
 444 bool CMSCollector::_foregroundGCShouldWait = false;
 445 
 446 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 447                            CardTableRS*                   ct,
 448                            ConcurrentMarkSweepPolicy*     cp):
 449   _cmsGen(cmsGen),
 450   // Adjust span to cover old (cms) gen
 451   _span(cmsGen->reserved()),
 452   _ct(ct),
 453   _span_based_discoverer(_span),
 454   _ref_processor(NULL),    // will be set later
 455   _conc_workers(NULL),     // may be set later
 456   _abort_preclean(false),
 457   _start_sampling(false),
 458   _between_prologue_and_epilogue(false),
 459   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 460   _modUnionTable((CardTable::card_shift - LogHeapWordSize),
 461                  -1 /* lock-free */, "No_lock" /* dummy */),
 462   _modUnionClosurePar(&_modUnionTable),
 463   // Construct the is_alive_closure with _span & markBitMap
 464   _is_alive_closure(_span, &_markBitMap),
 465   _restart_addr(NULL),
 466   _overflow_list(NULL),
 467   _stats(cmsGen),
 468   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 469                              //verify that this lock should be acquired with safepoint check.
 470                              Monitor::_safepoint_check_sometimes)),
 471   _eden_chunk_array(NULL),     // may be set in ctor body
 472   _eden_chunk_capacity(0),     // -- ditto --
 473   _eden_chunk_index(0),        // -- ditto --
 474   _survivor_plab_array(NULL),  // -- ditto --
 475   _survivor_chunk_array(NULL), // -- ditto --
 476   _survivor_chunk_capacity(0), // -- ditto --
 477   _survivor_chunk_index(0),    // -- ditto --
 478   _ser_pmc_preclean_ovflw(0),
 479   _ser_kac_preclean_ovflw(0),
 480   _ser_pmc_remark_ovflw(0),
 481   _par_pmc_remark_ovflw(0),
 482   _ser_kac_ovflw(0),
 483   _par_kac_ovflw(0),
 484 #ifndef PRODUCT
 485   _num_par_pushes(0),
 486 #endif
 487   _collection_count_start(0),
 488   _verifying(false),
 489   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 490   _completed_initialization(false),
 491   _collector_policy(cp),
 492   _should_unload_classes(CMSClassUnloadingEnabled),
 493   _concurrent_cycles_since_last_unload(0),
 494   _roots_scanning_options(GenCollectedHeap::SO_None),
 495   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 497   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 498   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 499   _cms_start_registered(false)
 500 {
 501   // Now expand the span and allocate the collection support structures
 502   // (MUT, marking bit map etc.) to cover both generations subject to
 503   // collection.
 504 
 505   // For use by dirty card to oop closures.
 506   _cmsGen->cmsSpace()->set_collector(this);
 507 
 508   // Allocate MUT and marking bit map
 509   {
 510     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 511     if (!_markBitMap.allocate(_span)) {
 512       log_warning(gc)("Failed to allocate CMS Bit Map");
 513       return;
 514     }
 515     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 516   }
 517   {
 518     _modUnionTable.allocate(_span);
 519     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 520   }
 521 
 522   if (!_markStack.allocate(MarkStackSize)) {
 523     log_warning(gc)("Failed to allocate CMS Marking Stack");
 524     return;
 525   }
 526 
 527   // Support for multi-threaded concurrent phases
 528   if (CMSConcurrentMTEnabled) {
 529     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 530       // just for now
 531       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 532     }
 533     if (ConcGCThreads > 1) {
 534       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 535                                  ConcGCThreads, true);
 536       if (_conc_workers == NULL) {
 537         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 538         CMSConcurrentMTEnabled = false;
 539       } else {
 540         _conc_workers->initialize_workers();
 541       }
 542     } else {
 543       CMSConcurrentMTEnabled = false;
 544     }
 545   }
 546   if (!CMSConcurrentMTEnabled) {
 547     ConcGCThreads = 0;
 548   } else {
 549     // Turn off CMSCleanOnEnter optimization temporarily for
 550     // the MT case where it's not fixed yet; see 6178663.
 551     CMSCleanOnEnter = false;
 552   }
 553   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 554          "Inconsistency");
 555   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 556   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 557 
 558   // Parallel task queues; these are shared for the
 559   // concurrent and stop-world phases of CMS, but
 560   // are not shared with parallel scavenge (ParNew).
 561   {
 562     uint i;
 563     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 564 
 565     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 566          || ParallelRefProcEnabled)
 567         && num_queues > 0) {
 568       _task_queues = new OopTaskQueueSet(num_queues);
 569       if (_task_queues == NULL) {
 570         log_warning(gc)("task_queues allocation failure.");
 571         return;
 572       }
 573       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 574       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 575       for (i = 0; i < num_queues; i++) {
 576         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 577         if (q == NULL) {
 578           log_warning(gc)("work_queue allocation failure.");
 579           return;
 580         }
 581         _task_queues->register_queue(i, q);
 582       }
 583       for (i = 0; i < num_queues; i++) {
 584         _task_queues->queue(i)->initialize();
 585         _hash_seed[i] = 17;  // copied from ParNew
 586       }
 587     }
 588   }
 589 
 590   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 591 
 592   // Clip CMSBootstrapOccupancy between 0 and 100.
 593   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 594 
 595   // Now tell CMS generations the identity of their collector
 596   ConcurrentMarkSweepGeneration::set_collector(this);
 597 
 598   // Create & start a CMS thread for this CMS collector
 599   _cmsThread = ConcurrentMarkSweepThread::start(this);
 600   assert(cmsThread() != NULL, "CMS Thread should have been created");
 601   assert(cmsThread()->collector() == this,
 602          "CMS Thread should refer to this gen");
 603   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 604 
 605   // Support for parallelizing young gen rescan
 606   CMSHeap* heap = CMSHeap::heap();
 607   _young_gen = heap->young_gen();
 608   if (heap->supports_inline_contig_alloc()) {
 609     _top_addr = heap->top_addr();
 610     _end_addr = heap->end_addr();
 611     assert(_young_gen != NULL, "no _young_gen");
 612     _eden_chunk_index = 0;
 613     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 614     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 615   }
 616 
 617   // Support for parallelizing survivor space rescan
 618   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 619     const size_t max_plab_samples =
 620       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 621 
 622     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 623     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 624     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 625     _survivor_chunk_capacity = max_plab_samples;
 626     for (uint i = 0; i < ParallelGCThreads; i++) {
 627       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 628       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 629       assert(cur->end() == 0, "Should be 0");
 630       assert(cur->array() == vec, "Should be vec");
 631       assert(cur->capacity() == max_plab_samples, "Error");
 632     }
 633   }
 634 
 635   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 636   _gc_counters = new CollectorCounters("CMS", 1);
 637   _cgc_counters = new CollectorCounters("CMS stop-the-world phases", 2);
 638   _completed_initialization = true;
 639   _inter_sweep_timer.start();  // start of time
 640 }
 641 
 642 const char* ConcurrentMarkSweepGeneration::name() const {
 643   return "concurrent mark-sweep generation";
 644 }
 645 void ConcurrentMarkSweepGeneration::update_counters() {
 646   if (UsePerfData) {
 647     _space_counters->update_all();
 648     _gen_counters->update_all();
 649   }
 650 }
 651 
 652 // this is an optimized version of update_counters(). it takes the
 653 // used value as a parameter rather than computing it.
 654 //
 655 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 656   if (UsePerfData) {
 657     _space_counters->update_used(used);
 658     _space_counters->update_capacity();
 659     _gen_counters->update_all();
 660   }
 661 }
 662 
 663 void ConcurrentMarkSweepGeneration::print() const {
 664   Generation::print();
 665   cmsSpace()->print();
 666 }
 667 
 668 #ifndef PRODUCT
 669 void ConcurrentMarkSweepGeneration::print_statistics() {
 670   cmsSpace()->printFLCensus(0);
 671 }
 672 #endif
 673 
 674 size_t
 675 ConcurrentMarkSweepGeneration::contiguous_available() const {
 676   // dld proposes an improvement in precision here. If the committed
 677   // part of the space ends in a free block we should add that to
 678   // uncommitted size in the calculation below. Will make this
 679   // change later, staying with the approximation below for the
 680   // time being. -- ysr.
 681   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 682 }
 683 
 684 size_t
 685 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 686   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 687 }
 688 
 689 size_t ConcurrentMarkSweepGeneration::max_available() const {
 690   return free() + _virtual_space.uncommitted_size();
 691 }
 692 
 693 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 694   size_t available = max_available();
 695   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 696   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 697   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 698                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 699   return res;
 700 }
 701 
 702 // At a promotion failure dump information on block layout in heap
 703 // (cms old generation).
 704 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 705   Log(gc, promotion) log;
 706   if (log.is_trace()) {
 707     LogStream ls(log.trace());
 708     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
 709   }
 710 }
 711 
 712 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 713   // Clear the promotion information.  These pointers can be adjusted
 714   // along with all the other pointers into the heap but
 715   // compaction is expected to be a rare event with
 716   // a heap using cms so don't do it without seeing the need.
 717   for (uint i = 0; i < ParallelGCThreads; i++) {
 718     _par_gc_thread_states[i]->promo.reset();
 719   }
 720 }
 721 
 722 void ConcurrentMarkSweepGeneration::compute_new_size() {
 723   assert_locked_or_safepoint(Heap_lock);
 724 
 725   // If incremental collection failed, we just want to expand
 726   // to the limit.
 727   if (incremental_collection_failed()) {
 728     clear_incremental_collection_failed();
 729     grow_to_reserved();
 730     return;
 731   }
 732 
 733   // The heap has been compacted but not reset yet.
 734   // Any metric such as free() or used() will be incorrect.
 735 
 736   CardGeneration::compute_new_size();
 737 
 738   // Reset again after a possible resizing
 739   if (did_compact()) {
 740     cmsSpace()->reset_after_compaction();
 741   }
 742 }
 743 
 744 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 745   assert_locked_or_safepoint(Heap_lock);
 746 
 747   // If incremental collection failed, we just want to expand
 748   // to the limit.
 749   if (incremental_collection_failed()) {
 750     clear_incremental_collection_failed();
 751     grow_to_reserved();
 752     return;
 753   }
 754 
 755   double free_percentage = ((double) free()) / capacity();
 756   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 757   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 758 
 759   // compute expansion delta needed for reaching desired free percentage
 760   if (free_percentage < desired_free_percentage) {
 761     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 762     assert(desired_capacity >= capacity(), "invalid expansion size");
 763     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 764     Log(gc) log;
 765     if (log.is_trace()) {
 766       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 767       log.trace("From compute_new_size: ");
 768       log.trace("  Free fraction %f", free_percentage);
 769       log.trace("  Desired free fraction %f", desired_free_percentage);
 770       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 771       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 772       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 773       CMSHeap* heap = CMSHeap::heap();
 774       size_t young_size = heap->young_gen()->capacity();
 775       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 776       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 777       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 778       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 779     }
 780     // safe if expansion fails
 781     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 782     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 783   } else {
 784     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 785     assert(desired_capacity <= capacity(), "invalid expansion size");
 786     size_t shrink_bytes = capacity() - desired_capacity;
 787     // Don't shrink unless the delta is greater than the minimum shrink we want
 788     if (shrink_bytes >= MinHeapDeltaBytes) {
 789       shrink_free_list_by(shrink_bytes);
 790     }
 791   }
 792 }
 793 
 794 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 795   return cmsSpace()->freelistLock();
 796 }
 797 
 798 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 799   CMSSynchronousYieldRequest yr;
 800   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 801   return have_lock_and_allocate(size, tlab);
 802 }
 803 
 804 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 805                                                                 bool   tlab /* ignored */) {
 806   assert_lock_strong(freelistLock());
 807   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 808   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 809   // Allocate the object live (grey) if the background collector has
 810   // started marking. This is necessary because the marker may
 811   // have passed this address and consequently this object will
 812   // not otherwise be greyed and would be incorrectly swept up.
 813   // Note that if this object contains references, the writing
 814   // of those references will dirty the card containing this object
 815   // allowing the object to be blackened (and its references scanned)
 816   // either during a preclean phase or at the final checkpoint.
 817   if (res != NULL) {
 818     // We may block here with an uninitialized object with
 819     // its mark-bit or P-bits not yet set. Such objects need
 820     // to be safely navigable by block_start().
 821     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 822     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 823     collector()->direct_allocated(res, adjustedSize);
 824     _direct_allocated_words += adjustedSize;
 825     // allocation counters
 826     NOT_PRODUCT(
 827       _numObjectsAllocated++;
 828       _numWordsAllocated += (int)adjustedSize;
 829     )
 830   }
 831   return res;
 832 }
 833 
 834 // In the case of direct allocation by mutators in a generation that
 835 // is being concurrently collected, the object must be allocated
 836 // live (grey) if the background collector has started marking.
 837 // This is necessary because the marker may
 838 // have passed this address and consequently this object will
 839 // not otherwise be greyed and would be incorrectly swept up.
 840 // Note that if this object contains references, the writing
 841 // of those references will dirty the card containing this object
 842 // allowing the object to be blackened (and its references scanned)
 843 // either during a preclean phase or at the final checkpoint.
 844 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 845   assert(_markBitMap.covers(start, size), "Out of bounds");
 846   if (_collectorState >= Marking) {
 847     MutexLockerEx y(_markBitMap.lock(),
 848                     Mutex::_no_safepoint_check_flag);
 849     // [see comments preceding SweepClosure::do_blk() below for details]
 850     //
 851     // Can the P-bits be deleted now?  JJJ
 852     //
 853     // 1. need to mark the object as live so it isn't collected
 854     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 855     // 3. need to mark the end of the object so marking, precleaning or sweeping
 856     //    can skip over uninitialized or unparsable objects. An allocated
 857     //    object is considered uninitialized for our purposes as long as
 858     //    its klass word is NULL.  All old gen objects are parsable
 859     //    as soon as they are initialized.)
 860     _markBitMap.mark(start);          // object is live
 861     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 862     _markBitMap.mark(start + size - 1);
 863                                       // mark end of object
 864   }
 865   // check that oop looks uninitialized
 866   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 867 }
 868 
 869 void CMSCollector::promoted(bool par, HeapWord* start,
 870                             bool is_obj_array, size_t obj_size) {
 871   assert(_markBitMap.covers(start), "Out of bounds");
 872   // See comment in direct_allocated() about when objects should
 873   // be allocated live.
 874   if (_collectorState >= Marking) {
 875     // we already hold the marking bit map lock, taken in
 876     // the prologue
 877     if (par) {
 878       _markBitMap.par_mark(start);
 879     } else {
 880       _markBitMap.mark(start);
 881     }
 882     // We don't need to mark the object as uninitialized (as
 883     // in direct_allocated above) because this is being done with the
 884     // world stopped and the object will be initialized by the
 885     // time the marking, precleaning or sweeping get to look at it.
 886     // But see the code for copying objects into the CMS generation,
 887     // where we need to ensure that concurrent readers of the
 888     // block offset table are able to safely navigate a block that
 889     // is in flux from being free to being allocated (and in
 890     // transition while being copied into) and subsequently
 891     // becoming a bona-fide object when the copy/promotion is complete.
 892     assert(SafepointSynchronize::is_at_safepoint(),
 893            "expect promotion only at safepoints");
 894 
 895     if (_collectorState < Sweeping) {
 896       // Mark the appropriate cards in the modUnionTable, so that
 897       // this object gets scanned before the sweep. If this is
 898       // not done, CMS generation references in the object might
 899       // not get marked.
 900       // For the case of arrays, which are otherwise precisely
 901       // marked, we need to dirty the entire array, not just its head.
 902       if (is_obj_array) {
 903         // The [par_]mark_range() method expects mr.end() below to
 904         // be aligned to the granularity of a bit's representation
 905         // in the heap. In the case of the MUT below, that's a
 906         // card size.
 907         MemRegion mr(start,
 908                      align_up(start + obj_size,
 909                               CardTable::card_size /* bytes */));
 910         if (par) {
 911           _modUnionTable.par_mark_range(mr);
 912         } else {
 913           _modUnionTable.mark_range(mr);
 914         }
 915       } else {  // not an obj array; we can just mark the head
 916         if (par) {
 917           _modUnionTable.par_mark(start);
 918         } else {
 919           _modUnionTable.mark(start);
 920         }
 921       }
 922     }
 923   }
 924 }
 925 
 926 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 927   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 928   // allocate, copy and if necessary update promoinfo --
 929   // delegate to underlying space.
 930   assert_lock_strong(freelistLock());
 931 
 932 #ifndef PRODUCT
 933   if (CMSHeap::heap()->promotion_should_fail()) {
 934     return NULL;
 935   }
 936 #endif  // #ifndef PRODUCT
 937 
 938   oop res = _cmsSpace->promote(obj, obj_size);
 939   if (res == NULL) {
 940     // expand and retry
 941     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 942     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 943     // Since this is the old generation, we don't try to promote
 944     // into a more senior generation.
 945     res = _cmsSpace->promote(obj, obj_size);
 946   }
 947   if (res != NULL) {
 948     // See comment in allocate() about when objects should
 949     // be allocated live.
 950     assert(oopDesc::is_oop(obj), "Will dereference klass pointer below");
 951     collector()->promoted(false,           // Not parallel
 952                           (HeapWord*)res, obj->is_objArray(), obj_size);
 953     // promotion counters
 954     NOT_PRODUCT(
 955       _numObjectsPromoted++;
 956       _numWordsPromoted +=
 957         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 958     )
 959   }
 960   return res;
 961 }
 962 
 963 
 964 // IMPORTANT: Notes on object size recognition in CMS.
 965 // ---------------------------------------------------
 966 // A block of storage in the CMS generation is always in
 967 // one of three states. A free block (FREE), an allocated
 968 // object (OBJECT) whose size() method reports the correct size,
 969 // and an intermediate state (TRANSIENT) in which its size cannot
 970 // be accurately determined.
 971 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 972 // -----------------------------------------------------
 973 // FREE:      klass_word & 1 == 1; mark_word holds block size
 974 //
 975 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 976 //            obj->size() computes correct size
 977 //
 978 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 979 //
 980 // STATE IDENTIFICATION: (64 bit+COOPS)
 981 // ------------------------------------
 982 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 983 //
 984 // OBJECT:    klass_word installed; klass_word != 0;
 985 //            obj->size() computes correct size
 986 //
 987 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 988 //
 989 //
 990 // STATE TRANSITION DIAGRAM
 991 //
 992 //        mut / parnew                     mut  /  parnew
 993 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 994 //  ^                                                                   |
 995 //  |------------------------ DEAD <------------------------------------|
 996 //         sweep                            mut
 997 //
 998 // While a block is in TRANSIENT state its size cannot be determined
 999 // so readers will either need to come back later or stall until
1000 // the size can be determined. Note that for the case of direct
1001 // allocation, P-bits, when available, may be used to determine the
1002 // size of an object that may not yet have been initialized.
1003 
1004 // Things to support parallel young-gen collection.
1005 oop
1006 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1007                                            oop old, markOop m,
1008                                            size_t word_sz) {
1009 #ifndef PRODUCT
1010   if (CMSHeap::heap()->promotion_should_fail()) {
1011     return NULL;
1012   }
1013 #endif  // #ifndef PRODUCT
1014 
1015   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1016   PromotionInfo* promoInfo = &ps->promo;
1017   // if we are tracking promotions, then first ensure space for
1018   // promotion (including spooling space for saving header if necessary).
1019   // then allocate and copy, then track promoted info if needed.
1020   // When tracking (see PromotionInfo::track()), the mark word may
1021   // be displaced and in this case restoration of the mark word
1022   // occurs in the (oop_since_save_marks_)iterate phase.
1023   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1024     // Out of space for allocating spooling buffers;
1025     // try expanding and allocating spooling buffers.
1026     if (!expand_and_ensure_spooling_space(promoInfo)) {
1027       return NULL;
1028     }
1029   }
1030   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1031   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1032   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1033   if (obj_ptr == NULL) {
1034      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1035      if (obj_ptr == NULL) {
1036        return NULL;
1037      }
1038   }
1039   oop obj = oop(obj_ptr);
1040   OrderAccess::storestore();
1041   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1042   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1043   // IMPORTANT: See note on object initialization for CMS above.
1044   // Otherwise, copy the object.  Here we must be careful to insert the
1045   // klass pointer last, since this marks the block as an allocated object.
1046   // Except with compressed oops it's the mark word.
1047   HeapWord* old_ptr = (HeapWord*)old;
1048   // Restore the mark word copied above.
1049   obj->set_mark_raw(m);
1050   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1051   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1052   OrderAccess::storestore();
1053 
1054   if (UseCompressedClassPointers) {
1055     // Copy gap missed by (aligned) header size calculation below
1056     obj->set_klass_gap(old->klass_gap());
1057   }
1058   if (word_sz > (size_t)oopDesc::header_size()) {
1059     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1060                                  obj_ptr + oopDesc::header_size(),
1061                                  word_sz - oopDesc::header_size());
1062   }
1063 
1064   // Now we can track the promoted object, if necessary.  We take care
1065   // to delay the transition from uninitialized to full object
1066   // (i.e., insertion of klass pointer) until after, so that it
1067   // atomically becomes a promoted object.
1068   if (promoInfo->tracking()) {
1069     promoInfo->track((PromotedObject*)obj, old->klass());
1070   }
1071   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1072   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1073   assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below");
1074 
1075   // Finally, install the klass pointer (this should be volatile).
1076   OrderAccess::storestore();
1077   obj->set_klass(old->klass());
1078   // We should now be able to calculate the right size for this object
1079   assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1080 
1081   collector()->promoted(true,          // parallel
1082                         obj_ptr, old->is_objArray(), word_sz);
1083 
1084   NOT_PRODUCT(
1085     Atomic::inc(&_numObjectsPromoted);
1086     Atomic::add(alloc_sz, &_numWordsPromoted);
1087   )
1088 
1089   return obj;
1090 }
1091 
1092 void
1093 ConcurrentMarkSweepGeneration::
1094 par_promote_alloc_done(int thread_num) {
1095   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1096   ps->lab.retire(thread_num);
1097 }
1098 
1099 void
1100 ConcurrentMarkSweepGeneration::
1101 par_oop_since_save_marks_iterate_done(int thread_num) {
1102   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1103   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1104   ps->promo.promoted_oops_iterate(dummy_cl);
1105 
1106   // Because card-scanning has been completed, subsequent phases
1107   // (e.g., reference processing) will not need to recognize which
1108   // objects have been promoted during this GC. So, we can now disable
1109   // promotion tracking.
1110   ps->promo.stopTrackingPromotions();
1111 }
1112 
1113 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1114                                                    size_t size,
1115                                                    bool   tlab)
1116 {
1117   // We allow a STW collection only if a full
1118   // collection was requested.
1119   return full || should_allocate(size, tlab); // FIX ME !!!
1120   // This and promotion failure handling are connected at the
1121   // hip and should be fixed by untying them.
1122 }
1123 
1124 bool CMSCollector::shouldConcurrentCollect() {
1125   LogTarget(Trace, gc) log;
1126 
1127   if (_full_gc_requested) {
1128     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1129     return true;
1130   }
1131 
1132   FreelistLocker x(this);
1133   // ------------------------------------------------------------------
1134   // Print out lots of information which affects the initiation of
1135   // a collection.
1136   if (log.is_enabled() && stats().valid()) {
1137     log.print("CMSCollector shouldConcurrentCollect: ");
1138 
1139     LogStream out(log);
1140     stats().print_on(&out);
1141 
1142     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1143     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1144     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1145     log.print("promotion_rate=%g", stats().promotion_rate());
1146     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1147     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1148     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1149     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1150     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1151     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1152   }
1153   // ------------------------------------------------------------------
1154 
1155   // If the estimated time to complete a cms collection (cms_duration())
1156   // is less than the estimated time remaining until the cms generation
1157   // is full, start a collection.
1158   if (!UseCMSInitiatingOccupancyOnly) {
1159     if (stats().valid()) {
1160       if (stats().time_until_cms_start() == 0.0) {
1161         return true;
1162       }
1163     } else {
1164       // We want to conservatively collect somewhat early in order
1165       // to try and "bootstrap" our CMS/promotion statistics;
1166       // this branch will not fire after the first successful CMS
1167       // collection because the stats should then be valid.
1168       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1169         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1170                   _cmsGen->occupancy(), _bootstrap_occupancy);
1171         return true;
1172       }
1173     }
1174   }
1175 
1176   // Otherwise, we start a collection cycle if
1177   // old gen want a collection cycle started. Each may use
1178   // an appropriate criterion for making this decision.
1179   // XXX We need to make sure that the gen expansion
1180   // criterion dovetails well with this. XXX NEED TO FIX THIS
1181   if (_cmsGen->should_concurrent_collect()) {
1182     log.print("CMS old gen initiated");
1183     return true;
1184   }
1185 
1186   // We start a collection if we believe an incremental collection may fail;
1187   // this is not likely to be productive in practice because it's probably too
1188   // late anyway.
1189   CMSHeap* heap = CMSHeap::heap();
1190   if (heap->incremental_collection_will_fail(true /* consult_young */)) {
1191     log.print("CMSCollector: collect because incremental collection will fail ");
1192     return true;
1193   }
1194 
1195   if (MetaspaceGC::should_concurrent_collect()) {
1196     log.print("CMSCollector: collect for metadata allocation ");
1197     return true;
1198   }
1199 
1200   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1201   if (CMSTriggerInterval >= 0) {
1202     if (CMSTriggerInterval == 0) {
1203       // Trigger always
1204       return true;
1205     }
1206 
1207     // Check the CMS time since begin (we do not check the stats validity
1208     // as we want to be able to trigger the first CMS cycle as well)
1209     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1210       if (stats().valid()) {
1211         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1212                   stats().cms_time_since_begin());
1213       } else {
1214         log.print("CMSCollector: collect because of trigger interval (first collection)");
1215       }
1216       return true;
1217     }
1218   }
1219 
1220   return false;
1221 }
1222 
1223 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1224 
1225 // Clear _expansion_cause fields of constituent generations
1226 void CMSCollector::clear_expansion_cause() {
1227   _cmsGen->clear_expansion_cause();
1228 }
1229 
1230 // We should be conservative in starting a collection cycle.  To
1231 // start too eagerly runs the risk of collecting too often in the
1232 // extreme.  To collect too rarely falls back on full collections,
1233 // which works, even if not optimum in terms of concurrent work.
1234 // As a work around for too eagerly collecting, use the flag
1235 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1236 // giving the user an easily understandable way of controlling the
1237 // collections.
1238 // We want to start a new collection cycle if any of the following
1239 // conditions hold:
1240 // . our current occupancy exceeds the configured initiating occupancy
1241 //   for this generation, or
1242 // . we recently needed to expand this space and have not, since that
1243 //   expansion, done a collection of this generation, or
1244 // . the underlying space believes that it may be a good idea to initiate
1245 //   a concurrent collection (this may be based on criteria such as the
1246 //   following: the space uses linear allocation and linear allocation is
1247 //   going to fail, or there is believed to be excessive fragmentation in
1248 //   the generation, etc... or ...
1249 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1250 //   the case of the old generation; see CR 6543076):
1251 //   we may be approaching a point at which allocation requests may fail because
1252 //   we will be out of sufficient free space given allocation rate estimates.]
1253 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1254 
1255   assert_lock_strong(freelistLock());
1256   if (occupancy() > initiating_occupancy()) {
1257     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1258                   short_name(), occupancy(), initiating_occupancy());
1259     return true;
1260   }
1261   if (UseCMSInitiatingOccupancyOnly) {
1262     return false;
1263   }
1264   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1265     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1266     return true;
1267   }
1268   return false;
1269 }
1270 
1271 void ConcurrentMarkSweepGeneration::collect(bool   full,
1272                                             bool   clear_all_soft_refs,
1273                                             size_t size,
1274                                             bool   tlab)
1275 {
1276   collector()->collect(full, clear_all_soft_refs, size, tlab);
1277 }
1278 
1279 void CMSCollector::collect(bool   full,
1280                            bool   clear_all_soft_refs,
1281                            size_t size,
1282                            bool   tlab)
1283 {
1284   // The following "if" branch is present for defensive reasons.
1285   // In the current uses of this interface, it can be replaced with:
1286   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1287   // But I am not placing that assert here to allow future
1288   // generality in invoking this interface.
1289   if (GCLocker::is_active()) {
1290     // A consistency test for GCLocker
1291     assert(GCLocker::needs_gc(), "Should have been set already");
1292     // Skip this foreground collection, instead
1293     // expanding the heap if necessary.
1294     // Need the free list locks for the call to free() in compute_new_size()
1295     compute_new_size();
1296     return;
1297   }
1298   acquire_control_and_collect(full, clear_all_soft_refs);
1299 }
1300 
1301 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1302   CMSHeap* heap = CMSHeap::heap();
1303   unsigned int gc_count = heap->total_full_collections();
1304   if (gc_count == full_gc_count) {
1305     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1306     _full_gc_requested = true;
1307     _full_gc_cause = cause;
1308     CGC_lock->notify();   // nudge CMS thread
1309   } else {
1310     assert(gc_count > full_gc_count, "Error: causal loop");
1311   }
1312 }
1313 
1314 bool CMSCollector::is_external_interruption() {
1315   GCCause::Cause cause = CMSHeap::heap()->gc_cause();
1316   return GCCause::is_user_requested_gc(cause) ||
1317          GCCause::is_serviceability_requested_gc(cause);
1318 }
1319 
1320 void CMSCollector::report_concurrent_mode_interruption() {
1321   if (is_external_interruption()) {
1322     log_debug(gc)("Concurrent mode interrupted");
1323   } else {
1324     log_debug(gc)("Concurrent mode failure");
1325     _gc_tracer_cm->report_concurrent_mode_failure();
1326   }
1327 }
1328 
1329 
1330 // The foreground and background collectors need to coordinate in order
1331 // to make sure that they do not mutually interfere with CMS collections.
1332 // When a background collection is active,
1333 // the foreground collector may need to take over (preempt) and
1334 // synchronously complete an ongoing collection. Depending on the
1335 // frequency of the background collections and the heap usage
1336 // of the application, this preemption can be seldom or frequent.
1337 // There are only certain
1338 // points in the background collection that the "collection-baton"
1339 // can be passed to the foreground collector.
1340 //
1341 // The foreground collector will wait for the baton before
1342 // starting any part of the collection.  The foreground collector
1343 // will only wait at one location.
1344 //
1345 // The background collector will yield the baton before starting a new
1346 // phase of the collection (e.g., before initial marking, marking from roots,
1347 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1348 // of the loop which switches the phases. The background collector does some
1349 // of the phases (initial mark, final re-mark) with the world stopped.
1350 // Because of locking involved in stopping the world,
1351 // the foreground collector should not block waiting for the background
1352 // collector when it is doing a stop-the-world phase.  The background
1353 // collector will yield the baton at an additional point just before
1354 // it enters a stop-the-world phase.  Once the world is stopped, the
1355 // background collector checks the phase of the collection.  If the
1356 // phase has not changed, it proceeds with the collection.  If the
1357 // phase has changed, it skips that phase of the collection.  See
1358 // the comments on the use of the Heap_lock in collect_in_background().
1359 //
1360 // Variable used in baton passing.
1361 //   _foregroundGCIsActive - Set to true by the foreground collector when
1362 //      it wants the baton.  The foreground clears it when it has finished
1363 //      the collection.
1364 //   _foregroundGCShouldWait - Set to true by the background collector
1365 //        when it is running.  The foreground collector waits while
1366 //      _foregroundGCShouldWait is true.
1367 //  CGC_lock - monitor used to protect access to the above variables
1368 //      and to notify the foreground and background collectors.
1369 //  _collectorState - current state of the CMS collection.
1370 //
1371 // The foreground collector
1372 //   acquires the CGC_lock
1373 //   sets _foregroundGCIsActive
1374 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1375 //     various locks acquired in preparation for the collection
1376 //     are released so as not to block the background collector
1377 //     that is in the midst of a collection
1378 //   proceeds with the collection
1379 //   clears _foregroundGCIsActive
1380 //   returns
1381 //
1382 // The background collector in a loop iterating on the phases of the
1383 //      collection
1384 //   acquires the CGC_lock
1385 //   sets _foregroundGCShouldWait
1386 //   if _foregroundGCIsActive is set
1387 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1388 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1389 //     and exits the loop.
1390 //   otherwise
1391 //     proceed with that phase of the collection
1392 //     if the phase is a stop-the-world phase,
1393 //       yield the baton once more just before enqueueing
1394 //       the stop-world CMS operation (executed by the VM thread).
1395 //   returns after all phases of the collection are done
1396 //
1397 
1398 void CMSCollector::acquire_control_and_collect(bool full,
1399         bool clear_all_soft_refs) {
1400   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1401   assert(!Thread::current()->is_ConcurrentGC_thread(),
1402          "shouldn't try to acquire control from self!");
1403 
1404   // Start the protocol for acquiring control of the
1405   // collection from the background collector (aka CMS thread).
1406   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1407          "VM thread should have CMS token");
1408   // Remember the possibly interrupted state of an ongoing
1409   // concurrent collection
1410   CollectorState first_state = _collectorState;
1411 
1412   // Signal to a possibly ongoing concurrent collection that
1413   // we want to do a foreground collection.
1414   _foregroundGCIsActive = true;
1415 
1416   // release locks and wait for a notify from the background collector
1417   // releasing the locks in only necessary for phases which
1418   // do yields to improve the granularity of the collection.
1419   assert_lock_strong(bitMapLock());
1420   // We need to lock the Free list lock for the space that we are
1421   // currently collecting.
1422   assert(haveFreelistLocks(), "Must be holding free list locks");
1423   bitMapLock()->unlock();
1424   releaseFreelistLocks();
1425   {
1426     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1427     if (_foregroundGCShouldWait) {
1428       // We are going to be waiting for action for the CMS thread;
1429       // it had better not be gone (for instance at shutdown)!
1430       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1431              "CMS thread must be running");
1432       // Wait here until the background collector gives us the go-ahead
1433       ConcurrentMarkSweepThread::clear_CMS_flag(
1434         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1435       // Get a possibly blocked CMS thread going:
1436       //   Note that we set _foregroundGCIsActive true above,
1437       //   without protection of the CGC_lock.
1438       CGC_lock->notify();
1439       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1440              "Possible deadlock");
1441       while (_foregroundGCShouldWait) {
1442         // wait for notification
1443         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1444         // Possibility of delay/starvation here, since CMS token does
1445         // not know to give priority to VM thread? Actually, i think
1446         // there wouldn't be any delay/starvation, but the proof of
1447         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1448       }
1449       ConcurrentMarkSweepThread::set_CMS_flag(
1450         ConcurrentMarkSweepThread::CMS_vm_has_token);
1451     }
1452   }
1453   // The CMS_token is already held.  Get back the other locks.
1454   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1455          "VM thread should have CMS token");
1456   getFreelistLocks();
1457   bitMapLock()->lock_without_safepoint_check();
1458   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1459                        p2i(Thread::current()), first_state);
1460   log_debug(gc, state)("    gets control with state %d", _collectorState);
1461 
1462   // Inform cms gen if this was due to partial collection failing.
1463   // The CMS gen may use this fact to determine its expansion policy.
1464   CMSHeap* heap = CMSHeap::heap();
1465   if (heap->incremental_collection_will_fail(false /* don't consult_young */)) {
1466     assert(!_cmsGen->incremental_collection_failed(),
1467            "Should have been noticed, reacted to and cleared");
1468     _cmsGen->set_incremental_collection_failed();
1469   }
1470 
1471   if (first_state > Idling) {
1472     report_concurrent_mode_interruption();
1473   }
1474 
1475   set_did_compact(true);
1476 
1477   // If the collection is being acquired from the background
1478   // collector, there may be references on the discovered
1479   // references lists.  Abandon those references, since some
1480   // of them may have become unreachable after concurrent
1481   // discovery; the STW compacting collector will redo discovery
1482   // more precisely, without being subject to floating garbage.
1483   // Leaving otherwise unreachable references in the discovered
1484   // lists would require special handling.
1485   ref_processor()->disable_discovery();
1486   ref_processor()->abandon_partial_discovery();
1487   ref_processor()->verify_no_references_recorded();
1488 
1489   if (first_state > Idling) {
1490     save_heap_summary();
1491   }
1492 
1493   do_compaction_work(clear_all_soft_refs);
1494 
1495   // Has the GC time limit been exceeded?
1496   size_t max_eden_size = _young_gen->max_eden_size();
1497   GCCause::Cause gc_cause = heap->gc_cause();
1498   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1499                                          _young_gen->eden()->used(),
1500                                          _cmsGen->max_capacity(),
1501                                          max_eden_size,
1502                                          full,
1503                                          gc_cause,
1504                                          heap->soft_ref_policy());
1505 
1506   // Reset the expansion cause, now that we just completed
1507   // a collection cycle.
1508   clear_expansion_cause();
1509   _foregroundGCIsActive = false;
1510   return;
1511 }
1512 
1513 // Resize the tenured generation
1514 // after obtaining the free list locks for the
1515 // two generations.
1516 void CMSCollector::compute_new_size() {
1517   assert_locked_or_safepoint(Heap_lock);
1518   FreelistLocker z(this);
1519   MetaspaceGC::compute_new_size();
1520   _cmsGen->compute_new_size_free_list();
1521 }
1522 
1523 // A work method used by the foreground collector to do
1524 // a mark-sweep-compact.
1525 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1526   CMSHeap* heap = CMSHeap::heap();
1527 
1528   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1529   gc_timer->register_gc_start();
1530 
1531   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1532   gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start());
1533 
1534   heap->pre_full_gc_dump(gc_timer);
1535 
1536   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1537 
1538   // Temporarily widen the span of the weak reference processing to
1539   // the entire heap.
1540   MemRegion new_span(CMSHeap::heap()->reserved_region());
1541   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1542   // Temporarily, clear the "is_alive_non_header" field of the
1543   // reference processor.
1544   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1545   // Temporarily make reference _processing_ single threaded (non-MT).
1546   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1547   // Temporarily make refs discovery atomic
1548   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1549   // Temporarily make reference _discovery_ single threaded (non-MT)
1550   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1551 
1552   ref_processor()->set_enqueuing_is_done(false);
1553   ref_processor()->enable_discovery();
1554   ref_processor()->setup_policy(clear_all_soft_refs);
1555   // If an asynchronous collection finishes, the _modUnionTable is
1556   // all clear.  If we are assuming the collection from an asynchronous
1557   // collection, clear the _modUnionTable.
1558   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1559     "_modUnionTable should be clear if the baton was not passed");
1560   _modUnionTable.clear_all();
1561   assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(),
1562     "mod union for klasses should be clear if the baton was passed");
1563   _ct->cld_rem_set()->clear_mod_union();
1564 
1565 
1566   // We must adjust the allocation statistics being maintained
1567   // in the free list space. We do so by reading and clearing
1568   // the sweep timer and updating the block flux rate estimates below.
1569   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1570   if (_inter_sweep_timer.is_active()) {
1571     _inter_sweep_timer.stop();
1572     // Note that we do not use this sample to update the _inter_sweep_estimate.
1573     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1574                                             _inter_sweep_estimate.padded_average(),
1575                                             _intra_sweep_estimate.padded_average());
1576   }
1577 
1578   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1579   #ifdef ASSERT
1580     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1581     size_t free_size = cms_space->free();
1582     assert(free_size ==
1583            pointer_delta(cms_space->end(), cms_space->compaction_top())
1584            * HeapWordSize,
1585       "All the free space should be compacted into one chunk at top");
1586     assert(cms_space->dictionary()->total_chunk_size(
1587                                       debug_only(cms_space->freelistLock())) == 0 ||
1588            cms_space->totalSizeInIndexedFreeLists() == 0,
1589       "All the free space should be in a single chunk");
1590     size_t num = cms_space->totalCount();
1591     assert((free_size == 0 && num == 0) ||
1592            (free_size > 0  && (num == 1 || num == 2)),
1593          "There should be at most 2 free chunks after compaction");
1594   #endif // ASSERT
1595   _collectorState = Resetting;
1596   assert(_restart_addr == NULL,
1597          "Should have been NULL'd before baton was passed");
1598   reset_stw();
1599   _cmsGen->reset_after_compaction();
1600   _concurrent_cycles_since_last_unload = 0;
1601 
1602   // Clear any data recorded in the PLAB chunk arrays.
1603   if (_survivor_plab_array != NULL) {
1604     reset_survivor_plab_arrays();
1605   }
1606 
1607   // Adjust the per-size allocation stats for the next epoch.
1608   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1609   // Restart the "inter sweep timer" for the next epoch.
1610   _inter_sweep_timer.reset();
1611   _inter_sweep_timer.start();
1612 
1613   // No longer a need to do a concurrent collection for Metaspace.
1614   MetaspaceGC::set_should_concurrent_collect(false);
1615 
1616   heap->post_full_gc_dump(gc_timer);
1617 
1618   gc_timer->register_gc_end();
1619 
1620   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1621 
1622   // For a mark-sweep-compact, compute_new_size() will be called
1623   // in the heap's do_collection() method.
1624 }
1625 
1626 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1627   Log(gc, heap) log;
1628   if (!log.is_trace()) {
1629     return;
1630   }
1631 
1632   ContiguousSpace* eden_space = _young_gen->eden();
1633   ContiguousSpace* from_space = _young_gen->from();
1634   ContiguousSpace* to_space   = _young_gen->to();
1635   // Eden
1636   if (_eden_chunk_array != NULL) {
1637     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1638               p2i(eden_space->bottom()), p2i(eden_space->top()),
1639               p2i(eden_space->end()), eden_space->capacity());
1640     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1641               _eden_chunk_index, _eden_chunk_capacity);
1642     for (size_t i = 0; i < _eden_chunk_index; i++) {
1643       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1644     }
1645   }
1646   // Survivor
1647   if (_survivor_chunk_array != NULL) {
1648     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1649               p2i(from_space->bottom()), p2i(from_space->top()),
1650               p2i(from_space->end()), from_space->capacity());
1651     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1652               _survivor_chunk_index, _survivor_chunk_capacity);
1653     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1654       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1655     }
1656   }
1657 }
1658 
1659 void CMSCollector::getFreelistLocks() const {
1660   // Get locks for all free lists in all generations that this
1661   // collector is responsible for
1662   _cmsGen->freelistLock()->lock_without_safepoint_check();
1663 }
1664 
1665 void CMSCollector::releaseFreelistLocks() const {
1666   // Release locks for all free lists in all generations that this
1667   // collector is responsible for
1668   _cmsGen->freelistLock()->unlock();
1669 }
1670 
1671 bool CMSCollector::haveFreelistLocks() const {
1672   // Check locks for all free lists in all generations that this
1673   // collector is responsible for
1674   assert_lock_strong(_cmsGen->freelistLock());
1675   PRODUCT_ONLY(ShouldNotReachHere());
1676   return true;
1677 }
1678 
1679 // A utility class that is used by the CMS collector to
1680 // temporarily "release" the foreground collector from its
1681 // usual obligation to wait for the background collector to
1682 // complete an ongoing phase before proceeding.
1683 class ReleaseForegroundGC: public StackObj {
1684  private:
1685   CMSCollector* _c;
1686  public:
1687   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1688     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1689     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1690     // allow a potentially blocked foreground collector to proceed
1691     _c->_foregroundGCShouldWait = false;
1692     if (_c->_foregroundGCIsActive) {
1693       CGC_lock->notify();
1694     }
1695     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1696            "Possible deadlock");
1697   }
1698 
1699   ~ReleaseForegroundGC() {
1700     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1701     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1702     _c->_foregroundGCShouldWait = true;
1703   }
1704 };
1705 
1706 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1707   assert(Thread::current()->is_ConcurrentGC_thread(),
1708     "A CMS asynchronous collection is only allowed on a CMS thread.");
1709 
1710   CMSHeap* heap = CMSHeap::heap();
1711   {
1712     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1713     MutexLockerEx hl(Heap_lock, safepoint_check);
1714     FreelistLocker fll(this);
1715     MutexLockerEx x(CGC_lock, safepoint_check);
1716     if (_foregroundGCIsActive) {
1717       // The foreground collector is. Skip this
1718       // background collection.
1719       assert(!_foregroundGCShouldWait, "Should be clear");
1720       return;
1721     } else {
1722       assert(_collectorState == Idling, "Should be idling before start.");
1723       _collectorState = InitialMarking;
1724       register_gc_start(cause);
1725       // Reset the expansion cause, now that we are about to begin
1726       // a new cycle.
1727       clear_expansion_cause();
1728 
1729       // Clear the MetaspaceGC flag since a concurrent collection
1730       // is starting but also clear it after the collection.
1731       MetaspaceGC::set_should_concurrent_collect(false);
1732     }
1733     // Decide if we want to enable class unloading as part of the
1734     // ensuing concurrent GC cycle.
1735     update_should_unload_classes();
1736     _full_gc_requested = false;           // acks all outstanding full gc requests
1737     _full_gc_cause = GCCause::_no_gc;
1738     // Signal that we are about to start a collection
1739     heap->increment_total_full_collections();  // ... starting a collection cycle
1740     _collection_count_start = heap->total_full_collections();
1741   }
1742 
1743   size_t prev_used = _cmsGen->used();
1744 
1745   // The change of the collection state is normally done at this level;
1746   // the exceptions are phases that are executed while the world is
1747   // stopped.  For those phases the change of state is done while the
1748   // world is stopped.  For baton passing purposes this allows the
1749   // background collector to finish the phase and change state atomically.
1750   // The foreground collector cannot wait on a phase that is done
1751   // while the world is stopped because the foreground collector already
1752   // has the world stopped and would deadlock.
1753   while (_collectorState != Idling) {
1754     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1755                          p2i(Thread::current()), _collectorState);
1756     // The foreground collector
1757     //   holds the Heap_lock throughout its collection.
1758     //   holds the CMS token (but not the lock)
1759     //     except while it is waiting for the background collector to yield.
1760     //
1761     // The foreground collector should be blocked (not for long)
1762     //   if the background collector is about to start a phase
1763     //   executed with world stopped.  If the background
1764     //   collector has already started such a phase, the
1765     //   foreground collector is blocked waiting for the
1766     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1767     //   are executed in the VM thread.
1768     //
1769     // The locking order is
1770     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1771     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1772     //   CMS token  (claimed in
1773     //                stop_world_and_do() -->
1774     //                  safepoint_synchronize() -->
1775     //                    CMSThread::synchronize())
1776 
1777     {
1778       // Check if the FG collector wants us to yield.
1779       CMSTokenSync x(true); // is cms thread
1780       if (waitForForegroundGC()) {
1781         // We yielded to a foreground GC, nothing more to be
1782         // done this round.
1783         assert(_foregroundGCShouldWait == false, "We set it to false in "
1784                "waitForForegroundGC()");
1785         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1786                              p2i(Thread::current()), _collectorState);
1787         return;
1788       } else {
1789         // The background collector can run but check to see if the
1790         // foreground collector has done a collection while the
1791         // background collector was waiting to get the CGC_lock
1792         // above.  If yes, break so that _foregroundGCShouldWait
1793         // is cleared before returning.
1794         if (_collectorState == Idling) {
1795           break;
1796         }
1797       }
1798     }
1799 
1800     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1801       "should be waiting");
1802 
1803     switch (_collectorState) {
1804       case InitialMarking:
1805         {
1806           ReleaseForegroundGC x(this);
1807           stats().record_cms_begin();
1808           VM_CMS_Initial_Mark initial_mark_op(this);
1809           VMThread::execute(&initial_mark_op);
1810         }
1811         // The collector state may be any legal state at this point
1812         // since the background collector may have yielded to the
1813         // foreground collector.
1814         break;
1815       case Marking:
1816         // initial marking in checkpointRootsInitialWork has been completed
1817         if (markFromRoots()) { // we were successful
1818           assert(_collectorState == Precleaning, "Collector state should "
1819             "have changed");
1820         } else {
1821           assert(_foregroundGCIsActive, "Internal state inconsistency");
1822         }
1823         break;
1824       case Precleaning:
1825         // marking from roots in markFromRoots has been completed
1826         preclean();
1827         assert(_collectorState == AbortablePreclean ||
1828                _collectorState == FinalMarking,
1829                "Collector state should have changed");
1830         break;
1831       case AbortablePreclean:
1832         abortable_preclean();
1833         assert(_collectorState == FinalMarking, "Collector state should "
1834           "have changed");
1835         break;
1836       case FinalMarking:
1837         {
1838           ReleaseForegroundGC x(this);
1839 
1840           VM_CMS_Final_Remark final_remark_op(this);
1841           VMThread::execute(&final_remark_op);
1842         }
1843         assert(_foregroundGCShouldWait, "block post-condition");
1844         break;
1845       case Sweeping:
1846         // final marking in checkpointRootsFinal has been completed
1847         sweep();
1848         assert(_collectorState == Resizing, "Collector state change "
1849           "to Resizing must be done under the free_list_lock");
1850 
1851       case Resizing: {
1852         // Sweeping has been completed...
1853         // At this point the background collection has completed.
1854         // Don't move the call to compute_new_size() down
1855         // into code that might be executed if the background
1856         // collection was preempted.
1857         {
1858           ReleaseForegroundGC x(this);   // unblock FG collection
1859           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1860           CMSTokenSync        z(true);   // not strictly needed.
1861           if (_collectorState == Resizing) {
1862             compute_new_size();
1863             save_heap_summary();
1864             _collectorState = Resetting;
1865           } else {
1866             assert(_collectorState == Idling, "The state should only change"
1867                    " because the foreground collector has finished the collection");
1868           }
1869         }
1870         break;
1871       }
1872       case Resetting:
1873         // CMS heap resizing has been completed
1874         reset_concurrent();
1875         assert(_collectorState == Idling, "Collector state should "
1876           "have changed");
1877 
1878         MetaspaceGC::set_should_concurrent_collect(false);
1879 
1880         stats().record_cms_end();
1881         // Don't move the concurrent_phases_end() and compute_new_size()
1882         // calls to here because a preempted background collection
1883         // has it's state set to "Resetting".
1884         break;
1885       case Idling:
1886       default:
1887         ShouldNotReachHere();
1888         break;
1889     }
1890     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1891                          p2i(Thread::current()), _collectorState);
1892     assert(_foregroundGCShouldWait, "block post-condition");
1893   }
1894 
1895   // Should this be in gc_epilogue?
1896   heap->counters()->update_counters();
1897 
1898   {
1899     // Clear _foregroundGCShouldWait and, in the event that the
1900     // foreground collector is waiting, notify it, before
1901     // returning.
1902     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1903     _foregroundGCShouldWait = false;
1904     if (_foregroundGCIsActive) {
1905       CGC_lock->notify();
1906     }
1907     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1908            "Possible deadlock");
1909   }
1910   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1911                        p2i(Thread::current()), _collectorState);
1912   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1913                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1914 }
1915 
1916 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1917   _cms_start_registered = true;
1918   _gc_timer_cm->register_gc_start();
1919   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1920 }
1921 
1922 void CMSCollector::register_gc_end() {
1923   if (_cms_start_registered) {
1924     report_heap_summary(GCWhen::AfterGC);
1925 
1926     _gc_timer_cm->register_gc_end();
1927     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1928     _cms_start_registered = false;
1929   }
1930 }
1931 
1932 void CMSCollector::save_heap_summary() {
1933   CMSHeap* heap = CMSHeap::heap();
1934   _last_heap_summary = heap->create_heap_summary();
1935   _last_metaspace_summary = heap->create_metaspace_summary();
1936 }
1937 
1938 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1939   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1940   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1941 }
1942 
1943 bool CMSCollector::waitForForegroundGC() {
1944   bool res = false;
1945   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1946          "CMS thread should have CMS token");
1947   // Block the foreground collector until the
1948   // background collectors decides whether to
1949   // yield.
1950   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1951   _foregroundGCShouldWait = true;
1952   if (_foregroundGCIsActive) {
1953     // The background collector yields to the
1954     // foreground collector and returns a value
1955     // indicating that it has yielded.  The foreground
1956     // collector can proceed.
1957     res = true;
1958     _foregroundGCShouldWait = false;
1959     ConcurrentMarkSweepThread::clear_CMS_flag(
1960       ConcurrentMarkSweepThread::CMS_cms_has_token);
1961     ConcurrentMarkSweepThread::set_CMS_flag(
1962       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1963     // Get a possibly blocked foreground thread going
1964     CGC_lock->notify();
1965     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1966                          p2i(Thread::current()), _collectorState);
1967     while (_foregroundGCIsActive) {
1968       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1969     }
1970     ConcurrentMarkSweepThread::set_CMS_flag(
1971       ConcurrentMarkSweepThread::CMS_cms_has_token);
1972     ConcurrentMarkSweepThread::clear_CMS_flag(
1973       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1974   }
1975   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1976                        p2i(Thread::current()), _collectorState);
1977   return res;
1978 }
1979 
1980 // Because of the need to lock the free lists and other structures in
1981 // the collector, common to all the generations that the collector is
1982 // collecting, we need the gc_prologues of individual CMS generations
1983 // delegate to their collector. It may have been simpler had the
1984 // current infrastructure allowed one to call a prologue on a
1985 // collector. In the absence of that we have the generation's
1986 // prologue delegate to the collector, which delegates back
1987 // some "local" work to a worker method in the individual generations
1988 // that it's responsible for collecting, while itself doing any
1989 // work common to all generations it's responsible for. A similar
1990 // comment applies to the  gc_epilogue()'s.
1991 // The role of the variable _between_prologue_and_epilogue is to
1992 // enforce the invocation protocol.
1993 void CMSCollector::gc_prologue(bool full) {
1994   // Call gc_prologue_work() for the CMSGen
1995   // we are responsible for.
1996 
1997   // The following locking discipline assumes that we are only called
1998   // when the world is stopped.
1999   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2000 
2001   // The CMSCollector prologue must call the gc_prologues for the
2002   // "generations" that it's responsible
2003   // for.
2004 
2005   assert(   Thread::current()->is_VM_thread()
2006          || (   CMSScavengeBeforeRemark
2007              && Thread::current()->is_ConcurrentGC_thread()),
2008          "Incorrect thread type for prologue execution");
2009 
2010   if (_between_prologue_and_epilogue) {
2011     // We have already been invoked; this is a gc_prologue delegation
2012     // from yet another CMS generation that we are responsible for, just
2013     // ignore it since all relevant work has already been done.
2014     return;
2015   }
2016 
2017   // set a bit saying prologue has been called; cleared in epilogue
2018   _between_prologue_and_epilogue = true;
2019   // Claim locks for common data structures, then call gc_prologue_work()
2020   // for each CMSGen.
2021 
2022   getFreelistLocks();   // gets free list locks on constituent spaces
2023   bitMapLock()->lock_without_safepoint_check();
2024 
2025   // Should call gc_prologue_work() for all cms gens we are responsible for
2026   bool duringMarking =    _collectorState >= Marking
2027                          && _collectorState < Sweeping;
2028 
2029   // The young collections clear the modified oops state, which tells if
2030   // there are any modified oops in the class. The remark phase also needs
2031   // that information. Tell the young collection to save the union of all
2032   // modified klasses.
2033   if (duringMarking) {
2034     _ct->cld_rem_set()->set_accumulate_modified_oops(true);
2035   }
2036 
2037   bool registerClosure = duringMarking;
2038 
2039   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2040 
2041   if (!full) {
2042     stats().record_gc0_begin();
2043   }
2044 }
2045 
2046 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2047 
2048   _capacity_at_prologue = capacity();
2049   _used_at_prologue = used();
2050 
2051   // We enable promotion tracking so that card-scanning can recognize
2052   // which objects have been promoted during this GC and skip them.
2053   for (uint i = 0; i < ParallelGCThreads; i++) {
2054     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2055   }
2056 
2057   // Delegate to CMScollector which knows how to coordinate between
2058   // this and any other CMS generations that it is responsible for
2059   // collecting.
2060   collector()->gc_prologue(full);
2061 }
2062 
2063 // This is a "private" interface for use by this generation's CMSCollector.
2064 // Not to be called directly by any other entity (for instance,
2065 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2066 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2067   bool registerClosure, ModUnionClosure* modUnionClosure) {
2068   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2069   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2070     "Should be NULL");
2071   if (registerClosure) {
2072     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2073   }
2074   cmsSpace()->gc_prologue();
2075   // Clear stat counters
2076   NOT_PRODUCT(
2077     assert(_numObjectsPromoted == 0, "check");
2078     assert(_numWordsPromoted   == 0, "check");
2079     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2080                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2081     _numObjectsAllocated = 0;
2082     _numWordsAllocated   = 0;
2083   )
2084 }
2085 
2086 void CMSCollector::gc_epilogue(bool full) {
2087   // The following locking discipline assumes that we are only called
2088   // when the world is stopped.
2089   assert(SafepointSynchronize::is_at_safepoint(),
2090          "world is stopped assumption");
2091 
2092   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2093   // if linear allocation blocks need to be appropriately marked to allow the
2094   // the blocks to be parsable. We also check here whether we need to nudge the
2095   // CMS collector thread to start a new cycle (if it's not already active).
2096   assert(   Thread::current()->is_VM_thread()
2097          || (   CMSScavengeBeforeRemark
2098              && Thread::current()->is_ConcurrentGC_thread()),
2099          "Incorrect thread type for epilogue execution");
2100 
2101   if (!_between_prologue_and_epilogue) {
2102     // We have already been invoked; this is a gc_epilogue delegation
2103     // from yet another CMS generation that we are responsible for, just
2104     // ignore it since all relevant work has already been done.
2105     return;
2106   }
2107   assert(haveFreelistLocks(), "must have freelist locks");
2108   assert_lock_strong(bitMapLock());
2109 
2110   _ct->cld_rem_set()->set_accumulate_modified_oops(false);
2111 
2112   _cmsGen->gc_epilogue_work(full);
2113 
2114   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2115     // in case sampling was not already enabled, enable it
2116     _start_sampling = true;
2117   }
2118   // reset _eden_chunk_array so sampling starts afresh
2119   _eden_chunk_index = 0;
2120 
2121   size_t cms_used   = _cmsGen->cmsSpace()->used();
2122 
2123   // update performance counters - this uses a special version of
2124   // update_counters() that allows the utilization to be passed as a
2125   // parameter, avoiding multiple calls to used().
2126   //
2127   _cmsGen->update_counters(cms_used);
2128 
2129   bitMapLock()->unlock();
2130   releaseFreelistLocks();
2131 
2132   if (!CleanChunkPoolAsync) {
2133     Chunk::clean_chunk_pool();
2134   }
2135 
2136   set_did_compact(false);
2137   _between_prologue_and_epilogue = false;  // ready for next cycle
2138 }
2139 
2140 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2141   collector()->gc_epilogue(full);
2142 
2143   // When using ParNew, promotion tracking should have already been
2144   // disabled. However, the prologue (which enables promotion
2145   // tracking) and epilogue are called irrespective of the type of
2146   // GC. So they will also be called before and after Full GCs, during
2147   // which promotion tracking will not be explicitly disabled. So,
2148   // it's safer to also disable it here too (to be symmetric with
2149   // enabling it in the prologue).
2150   for (uint i = 0; i < ParallelGCThreads; i++) {
2151     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2152   }
2153 }
2154 
2155 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2156   assert(!incremental_collection_failed(), "Should have been cleared");
2157   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2158   cmsSpace()->gc_epilogue();
2159     // Print stat counters
2160   NOT_PRODUCT(
2161     assert(_numObjectsAllocated == 0, "check");
2162     assert(_numWordsAllocated == 0, "check");
2163     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2164                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2165     _numObjectsPromoted = 0;
2166     _numWordsPromoted   = 0;
2167   )
2168 
2169   // Call down the chain in contiguous_available needs the freelistLock
2170   // so print this out before releasing the freeListLock.
2171   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2172 }
2173 
2174 #ifndef PRODUCT
2175 bool CMSCollector::have_cms_token() {
2176   Thread* thr = Thread::current();
2177   if (thr->is_VM_thread()) {
2178     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2179   } else if (thr->is_ConcurrentGC_thread()) {
2180     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2181   } else if (thr->is_GC_task_thread()) {
2182     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2183            ParGCRareEvent_lock->owned_by_self();
2184   }
2185   return false;
2186 }
2187 
2188 // Check reachability of the given heap address in CMS generation,
2189 // treating all other generations as roots.
2190 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2191   // We could "guarantee" below, rather than assert, but I'll
2192   // leave these as "asserts" so that an adventurous debugger
2193   // could try this in the product build provided some subset of
2194   // the conditions were met, provided they were interested in the
2195   // results and knew that the computation below wouldn't interfere
2196   // with other concurrent computations mutating the structures
2197   // being read or written.
2198   assert(SafepointSynchronize::is_at_safepoint(),
2199          "Else mutations in object graph will make answer suspect");
2200   assert(have_cms_token(), "Should hold cms token");
2201   assert(haveFreelistLocks(), "must hold free list locks");
2202   assert_lock_strong(bitMapLock());
2203 
2204   // Clear the marking bit map array before starting, but, just
2205   // for kicks, first report if the given address is already marked
2206   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2207                 _markBitMap.isMarked(addr) ? "" : " not");
2208 
2209   if (verify_after_remark()) {
2210     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2211     bool result = verification_mark_bm()->isMarked(addr);
2212     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2213                   result ? "IS" : "is NOT");
2214     return result;
2215   } else {
2216     tty->print_cr("Could not compute result");
2217     return false;
2218   }
2219 }
2220 #endif
2221 
2222 void
2223 CMSCollector::print_on_error(outputStream* st) {
2224   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2225   if (collector != NULL) {
2226     CMSBitMap* bitmap = &collector->_markBitMap;
2227     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2228     bitmap->print_on_error(st, " Bits: ");
2229 
2230     st->cr();
2231 
2232     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2233     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2234     mut_bitmap->print_on_error(st, " Bits: ");
2235   }
2236 }
2237 
2238 ////////////////////////////////////////////////////////
2239 // CMS Verification Support
2240 ////////////////////////////////////////////////////////
2241 // Following the remark phase, the following invariant
2242 // should hold -- each object in the CMS heap which is
2243 // marked in markBitMap() should be marked in the verification_mark_bm().
2244 
2245 class VerifyMarkedClosure: public BitMapClosure {
2246   CMSBitMap* _marks;
2247   bool       _failed;
2248 
2249  public:
2250   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2251 
2252   bool do_bit(size_t offset) {
2253     HeapWord* addr = _marks->offsetToHeapWord(offset);
2254     if (!_marks->isMarked(addr)) {
2255       Log(gc, verify) log;
2256       ResourceMark rm;
2257       LogStream ls(log.error());
2258       oop(addr)->print_on(&ls);
2259       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2260       _failed = true;
2261     }
2262     return true;
2263   }
2264 
2265   bool failed() { return _failed; }
2266 };
2267 
2268 bool CMSCollector::verify_after_remark() {
2269   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2270   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2271   static bool init = false;
2272 
2273   assert(SafepointSynchronize::is_at_safepoint(),
2274          "Else mutations in object graph will make answer suspect");
2275   assert(have_cms_token(),
2276          "Else there may be mutual interference in use of "
2277          " verification data structures");
2278   assert(_collectorState > Marking && _collectorState <= Sweeping,
2279          "Else marking info checked here may be obsolete");
2280   assert(haveFreelistLocks(), "must hold free list locks");
2281   assert_lock_strong(bitMapLock());
2282 
2283 
2284   // Allocate marking bit map if not already allocated
2285   if (!init) { // first time
2286     if (!verification_mark_bm()->allocate(_span)) {
2287       return false;
2288     }
2289     init = true;
2290   }
2291 
2292   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2293 
2294   // Turn off refs discovery -- so we will be tracing through refs.
2295   // This is as intended, because by this time
2296   // GC must already have cleared any refs that need to be cleared,
2297   // and traced those that need to be marked; moreover,
2298   // the marking done here is not going to interfere in any
2299   // way with the marking information used by GC.
2300   NoRefDiscovery no_discovery(ref_processor());
2301 
2302 #if COMPILER2_OR_JVMCI
2303   DerivedPointerTableDeactivate dpt_deact;
2304 #endif
2305 
2306   // Clear any marks from a previous round
2307   verification_mark_bm()->clear_all();
2308   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2309   verify_work_stacks_empty();
2310 
2311   CMSHeap* heap = CMSHeap::heap();
2312   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2313   // Update the saved marks which may affect the root scans.
2314   heap->save_marks();
2315 
2316   if (CMSRemarkVerifyVariant == 1) {
2317     // In this first variant of verification, we complete
2318     // all marking, then check if the new marks-vector is
2319     // a subset of the CMS marks-vector.
2320     verify_after_remark_work_1();
2321   } else {
2322     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2323     // In this second variant of verification, we flag an error
2324     // (i.e. an object reachable in the new marks-vector not reachable
2325     // in the CMS marks-vector) immediately, also indicating the
2326     // identify of an object (A) that references the unmarked object (B) --
2327     // presumably, a mutation to A failed to be picked up by preclean/remark?
2328     verify_after_remark_work_2();
2329   }
2330 
2331   return true;
2332 }
2333 
2334 void CMSCollector::verify_after_remark_work_1() {
2335   ResourceMark rm;
2336   HandleMark  hm;
2337   CMSHeap* heap = CMSHeap::heap();
2338 
2339   // Get a clear set of claim bits for the roots processing to work with.
2340   ClassLoaderDataGraph::clear_claimed_marks();
2341 
2342   // Mark from roots one level into CMS
2343   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2344   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2345 
2346   {
2347     StrongRootsScope srs(1);
2348 
2349     heap->cms_process_roots(&srs,
2350                            true,   // young gen as roots
2351                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2352                            should_unload_classes(),
2353                            &notOlder,
2354                            NULL);
2355   }
2356 
2357   // Now mark from the roots
2358   MarkFromRootsClosure markFromRootsClosure(this, _span,
2359     verification_mark_bm(), verification_mark_stack(),
2360     false /* don't yield */, true /* verifying */);
2361   assert(_restart_addr == NULL, "Expected pre-condition");
2362   verification_mark_bm()->iterate(&markFromRootsClosure);
2363   while (_restart_addr != NULL) {
2364     // Deal with stack overflow: by restarting at the indicated
2365     // address.
2366     HeapWord* ra = _restart_addr;
2367     markFromRootsClosure.reset(ra);
2368     _restart_addr = NULL;
2369     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2370   }
2371   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2372   verify_work_stacks_empty();
2373 
2374   // Marking completed -- now verify that each bit marked in
2375   // verification_mark_bm() is also marked in markBitMap(); flag all
2376   // errors by printing corresponding objects.
2377   VerifyMarkedClosure vcl(markBitMap());
2378   verification_mark_bm()->iterate(&vcl);
2379   if (vcl.failed()) {
2380     Log(gc, verify) log;
2381     log.error("Failed marking verification after remark");
2382     ResourceMark rm;
2383     LogStream ls(log.error());
2384     heap->print_on(&ls);
2385     fatal("CMS: failed marking verification after remark");
2386   }
2387 }
2388 
2389 class VerifyCLDOopsCLDClosure : public CLDClosure {
2390   class VerifyCLDOopsClosure : public OopClosure {
2391     CMSBitMap* _bitmap;
2392    public:
2393     VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2394     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2395     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2396   } _oop_closure;
2397  public:
2398   VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2399   void do_cld(ClassLoaderData* cld) {
2400     cld->oops_do(&_oop_closure, false, false);
2401   }
2402 };
2403 
2404 void CMSCollector::verify_after_remark_work_2() {
2405   ResourceMark rm;
2406   HandleMark  hm;
2407   CMSHeap* heap = CMSHeap::heap();
2408 
2409   // Get a clear set of claim bits for the roots processing to work with.
2410   ClassLoaderDataGraph::clear_claimed_marks();
2411 
2412   // Mark from roots one level into CMS
2413   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2414                                      markBitMap());
2415   CLDToOopClosure cld_closure(&notOlder, true);
2416 
2417   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2418 
2419   {
2420     StrongRootsScope srs(1);
2421 
2422     heap->cms_process_roots(&srs,
2423                            true,   // young gen as roots
2424                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2425                            should_unload_classes(),
2426                            &notOlder,
2427                            &cld_closure);
2428   }
2429 
2430   // Now mark from the roots
2431   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2432     verification_mark_bm(), markBitMap(), verification_mark_stack());
2433   assert(_restart_addr == NULL, "Expected pre-condition");
2434   verification_mark_bm()->iterate(&markFromRootsClosure);
2435   while (_restart_addr != NULL) {
2436     // Deal with stack overflow: by restarting at the indicated
2437     // address.
2438     HeapWord* ra = _restart_addr;
2439     markFromRootsClosure.reset(ra);
2440     _restart_addr = NULL;
2441     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2442   }
2443   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2444   verify_work_stacks_empty();
2445 
2446   VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm());
2447   ClassLoaderDataGraph::cld_do(&verify_cld_oops);
2448 
2449   // Marking completed -- now verify that each bit marked in
2450   // verification_mark_bm() is also marked in markBitMap(); flag all
2451   // errors by printing corresponding objects.
2452   VerifyMarkedClosure vcl(markBitMap());
2453   verification_mark_bm()->iterate(&vcl);
2454   assert(!vcl.failed(), "Else verification above should not have succeeded");
2455 }
2456 
2457 void ConcurrentMarkSweepGeneration::save_marks() {
2458   // delegate to CMS space
2459   cmsSpace()->save_marks();
2460 }
2461 
2462 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2463   return cmsSpace()->no_allocs_since_save_marks();
2464 }
2465 
2466 void
2467 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2468   if (freelistLock()->owned_by_self()) {
2469     Generation::oop_iterate(cl);
2470   } else {
2471     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2472     Generation::oop_iterate(cl);
2473   }
2474 }
2475 
2476 void
2477 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2478   if (freelistLock()->owned_by_self()) {
2479     Generation::object_iterate(cl);
2480   } else {
2481     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2482     Generation::object_iterate(cl);
2483   }
2484 }
2485 
2486 void
2487 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2488   if (freelistLock()->owned_by_self()) {
2489     Generation::safe_object_iterate(cl);
2490   } else {
2491     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2492     Generation::safe_object_iterate(cl);
2493   }
2494 }
2495 
2496 void
2497 ConcurrentMarkSweepGeneration::post_compact() {
2498 }
2499 
2500 void
2501 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2502   // Fix the linear allocation blocks to look like free blocks.
2503 
2504   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2505   // are not called when the heap is verified during universe initialization and
2506   // at vm shutdown.
2507   if (freelistLock()->owned_by_self()) {
2508     cmsSpace()->prepare_for_verify();
2509   } else {
2510     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2511     cmsSpace()->prepare_for_verify();
2512   }
2513 }
2514 
2515 void
2516 ConcurrentMarkSweepGeneration::verify() {
2517   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2518   // are not called when the heap is verified during universe initialization and
2519   // at vm shutdown.
2520   if (freelistLock()->owned_by_self()) {
2521     cmsSpace()->verify();
2522   } else {
2523     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2524     cmsSpace()->verify();
2525   }
2526 }
2527 
2528 void CMSCollector::verify() {
2529   _cmsGen->verify();
2530 }
2531 
2532 #ifndef PRODUCT
2533 bool CMSCollector::overflow_list_is_empty() const {
2534   assert(_num_par_pushes >= 0, "Inconsistency");
2535   if (_overflow_list == NULL) {
2536     assert(_num_par_pushes == 0, "Inconsistency");
2537   }
2538   return _overflow_list == NULL;
2539 }
2540 
2541 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2542 // merely consolidate assertion checks that appear to occur together frequently.
2543 void CMSCollector::verify_work_stacks_empty() const {
2544   assert(_markStack.isEmpty(), "Marking stack should be empty");
2545   assert(overflow_list_is_empty(), "Overflow list should be empty");
2546 }
2547 
2548 void CMSCollector::verify_overflow_empty() const {
2549   assert(overflow_list_is_empty(), "Overflow list should be empty");
2550   assert(no_preserved_marks(), "No preserved marks");
2551 }
2552 #endif // PRODUCT
2553 
2554 // Decide if we want to enable class unloading as part of the
2555 // ensuing concurrent GC cycle. We will collect and
2556 // unload classes if it's the case that:
2557 //  (a) class unloading is enabled at the command line, and
2558 //  (b) old gen is getting really full
2559 // NOTE: Provided there is no change in the state of the heap between
2560 // calls to this method, it should have idempotent results. Moreover,
2561 // its results should be monotonically increasing (i.e. going from 0 to 1,
2562 // but not 1 to 0) between successive calls between which the heap was
2563 // not collected. For the implementation below, it must thus rely on
2564 // the property that concurrent_cycles_since_last_unload()
2565 // will not decrease unless a collection cycle happened and that
2566 // _cmsGen->is_too_full() are
2567 // themselves also monotonic in that sense. See check_monotonicity()
2568 // below.
2569 void CMSCollector::update_should_unload_classes() {
2570   _should_unload_classes = false;
2571   if (CMSClassUnloadingEnabled) {
2572     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2573                               CMSClassUnloadingMaxInterval)
2574                            || _cmsGen->is_too_full();
2575   }
2576 }
2577 
2578 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2579   bool res = should_concurrent_collect();
2580   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2581   return res;
2582 }
2583 
2584 void CMSCollector::setup_cms_unloading_and_verification_state() {
2585   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2586                              || VerifyBeforeExit;
2587   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2588 
2589   // We set the proper root for this CMS cycle here.
2590   if (should_unload_classes()) {   // Should unload classes this cycle
2591     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2592     set_verifying(should_verify);    // Set verification state for this cycle
2593     return;                            // Nothing else needs to be done at this time
2594   }
2595 
2596   // Not unloading classes this cycle
2597   assert(!should_unload_classes(), "Inconsistency!");
2598 
2599   // If we are not unloading classes then add SO_AllCodeCache to root
2600   // scanning options.
2601   add_root_scanning_option(rso);
2602 
2603   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2604     set_verifying(true);
2605   } else if (verifying() && !should_verify) {
2606     // We were verifying, but some verification flags got disabled.
2607     set_verifying(false);
2608     // Exclude symbols, strings and code cache elements from root scanning to
2609     // reduce IM and RM pauses.
2610     remove_root_scanning_option(rso);
2611   }
2612 }
2613 
2614 
2615 #ifndef PRODUCT
2616 HeapWord* CMSCollector::block_start(const void* p) const {
2617   const HeapWord* addr = (HeapWord*)p;
2618   if (_span.contains(p)) {
2619     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2620       return _cmsGen->cmsSpace()->block_start(p);
2621     }
2622   }
2623   return NULL;
2624 }
2625 #endif
2626 
2627 HeapWord*
2628 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2629                                                    bool   tlab,
2630                                                    bool   parallel) {
2631   CMSSynchronousYieldRequest yr;
2632   assert(!tlab, "Can't deal with TLAB allocation");
2633   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2634   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2635   if (GCExpandToAllocateDelayMillis > 0) {
2636     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2637   }
2638   return have_lock_and_allocate(word_size, tlab);
2639 }
2640 
2641 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2642     size_t bytes,
2643     size_t expand_bytes,
2644     CMSExpansionCause::Cause cause)
2645 {
2646 
2647   bool success = expand(bytes, expand_bytes);
2648 
2649   // remember why we expanded; this information is used
2650   // by shouldConcurrentCollect() when making decisions on whether to start
2651   // a new CMS cycle.
2652   if (success) {
2653     set_expansion_cause(cause);
2654     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2655   }
2656 }
2657 
2658 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2659   HeapWord* res = NULL;
2660   MutexLocker x(ParGCRareEvent_lock);
2661   while (true) {
2662     // Expansion by some other thread might make alloc OK now:
2663     res = ps->lab.alloc(word_sz);
2664     if (res != NULL) return res;
2665     // If there's not enough expansion space available, give up.
2666     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2667       return NULL;
2668     }
2669     // Otherwise, we try expansion.
2670     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2671     // Now go around the loop and try alloc again;
2672     // A competing par_promote might beat us to the expansion space,
2673     // so we may go around the loop again if promotion fails again.
2674     if (GCExpandToAllocateDelayMillis > 0) {
2675       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2676     }
2677   }
2678 }
2679 
2680 
2681 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2682   PromotionInfo* promo) {
2683   MutexLocker x(ParGCRareEvent_lock);
2684   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2685   while (true) {
2686     // Expansion by some other thread might make alloc OK now:
2687     if (promo->ensure_spooling_space()) {
2688       assert(promo->has_spooling_space(),
2689              "Post-condition of successful ensure_spooling_space()");
2690       return true;
2691     }
2692     // If there's not enough expansion space available, give up.
2693     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2694       return false;
2695     }
2696     // Otherwise, we try expansion.
2697     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2698     // Now go around the loop and try alloc again;
2699     // A competing allocation might beat us to the expansion space,
2700     // so we may go around the loop again if allocation fails again.
2701     if (GCExpandToAllocateDelayMillis > 0) {
2702       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2703     }
2704   }
2705 }
2706 
2707 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2708   // Only shrink if a compaction was done so that all the free space
2709   // in the generation is in a contiguous block at the end.
2710   if (did_compact()) {
2711     CardGeneration::shrink(bytes);
2712   }
2713 }
2714 
2715 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2716   assert_locked_or_safepoint(Heap_lock);
2717 }
2718 
2719 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2720   assert_locked_or_safepoint(Heap_lock);
2721   assert_lock_strong(freelistLock());
2722   log_trace(gc)("Shrinking of CMS not yet implemented");
2723   return;
2724 }
2725 
2726 
2727 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2728 // phases.
2729 class CMSPhaseAccounting: public StackObj {
2730  public:
2731   CMSPhaseAccounting(CMSCollector *collector,
2732                      const char *title);
2733   ~CMSPhaseAccounting();
2734 
2735  private:
2736   CMSCollector *_collector;
2737   const char *_title;
2738   GCTraceConcTime(Info, gc) _trace_time;
2739 
2740  public:
2741   // Not MT-safe; so do not pass around these StackObj's
2742   // where they may be accessed by other threads.
2743   double wallclock_millis() {
2744     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2745   }
2746 };
2747 
2748 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2749                                        const char *title) :
2750   _collector(collector), _title(title), _trace_time(title) {
2751 
2752   _collector->resetYields();
2753   _collector->resetTimer();
2754   _collector->startTimer();
2755   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2756 }
2757 
2758 CMSPhaseAccounting::~CMSPhaseAccounting() {
2759   _collector->gc_timer_cm()->register_gc_concurrent_end();
2760   _collector->stopTimer();
2761   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2762   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2763 }
2764 
2765 // CMS work
2766 
2767 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2768 class CMSParMarkTask : public AbstractGangTask {
2769  protected:
2770   CMSCollector*     _collector;
2771   uint              _n_workers;
2772   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2773       AbstractGangTask(name),
2774       _collector(collector),
2775       _n_workers(n_workers) {}
2776   // Work method in support of parallel rescan ... of young gen spaces
2777   void do_young_space_rescan(OopsInGenClosure* cl,
2778                              ContiguousSpace* space,
2779                              HeapWord** chunk_array, size_t chunk_top);
2780   void work_on_young_gen_roots(OopsInGenClosure* cl);
2781 };
2782 
2783 // Parallel initial mark task
2784 class CMSParInitialMarkTask: public CMSParMarkTask {
2785   StrongRootsScope* _strong_roots_scope;
2786  public:
2787   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2788       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2789       _strong_roots_scope(strong_roots_scope) {}
2790   void work(uint worker_id);
2791 };
2792 
2793 // Checkpoint the roots into this generation from outside
2794 // this generation. [Note this initial checkpoint need only
2795 // be approximate -- we'll do a catch up phase subsequently.]
2796 void CMSCollector::checkpointRootsInitial() {
2797   assert(_collectorState == InitialMarking, "Wrong collector state");
2798   check_correct_thread_executing();
2799   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
2800 
2801   save_heap_summary();
2802   report_heap_summary(GCWhen::BeforeGC);
2803 
2804   ReferenceProcessor* rp = ref_processor();
2805   assert(_restart_addr == NULL, "Control point invariant");
2806   {
2807     // acquire locks for subsequent manipulations
2808     MutexLockerEx x(bitMapLock(),
2809                     Mutex::_no_safepoint_check_flag);
2810     checkpointRootsInitialWork();
2811     // enable ("weak") refs discovery
2812     rp->enable_discovery();
2813     _collectorState = Marking;
2814   }
2815 }
2816 
2817 void CMSCollector::checkpointRootsInitialWork() {
2818   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2819   assert(_collectorState == InitialMarking, "just checking");
2820 
2821   // Already have locks.
2822   assert_lock_strong(bitMapLock());
2823   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2824 
2825   // Setup the verification and class unloading state for this
2826   // CMS collection cycle.
2827   setup_cms_unloading_and_verification_state();
2828 
2829   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2830 
2831   // Reset all the PLAB chunk arrays if necessary.
2832   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2833     reset_survivor_plab_arrays();
2834   }
2835 
2836   ResourceMark rm;
2837   HandleMark  hm;
2838 
2839   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2840   CMSHeap* heap = CMSHeap::heap();
2841 
2842   verify_work_stacks_empty();
2843   verify_overflow_empty();
2844 
2845   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2846   // Update the saved marks which may affect the root scans.
2847   heap->save_marks();
2848 
2849   // weak reference processing has not started yet.
2850   ref_processor()->set_enqueuing_is_done(false);
2851 
2852   // Need to remember all newly created CLDs,
2853   // so that we can guarantee that the remark finds them.
2854   ClassLoaderDataGraph::remember_new_clds(true);
2855 
2856   // Whenever a CLD is found, it will be claimed before proceeding to mark
2857   // the klasses. The claimed marks need to be cleared before marking starts.
2858   ClassLoaderDataGraph::clear_claimed_marks();
2859 
2860   print_eden_and_survivor_chunk_arrays();
2861 
2862   {
2863 #if COMPILER2_OR_JVMCI
2864     DerivedPointerTableDeactivate dpt_deact;
2865 #endif
2866     if (CMSParallelInitialMarkEnabled) {
2867       // The parallel version.
2868       WorkGang* workers = heap->workers();
2869       assert(workers != NULL, "Need parallel worker threads.");
2870       uint n_workers = workers->active_workers();
2871 
2872       StrongRootsScope srs(n_workers);
2873 
2874       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2875       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2876       // If the total workers is greater than 1, then multiple workers
2877       // may be used at some time and the initialization has been set
2878       // such that the single threaded path cannot be used.
2879       if (workers->total_workers() > 1) {
2880         workers->run_task(&tsk);
2881       } else {
2882         tsk.work(0);
2883       }
2884     } else {
2885       // The serial version.
2886       CLDToOopClosure cld_closure(&notOlder, true);
2887       heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2888 
2889       StrongRootsScope srs(1);
2890 
2891       heap->cms_process_roots(&srs,
2892                              true,   // young gen as roots
2893                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2894                              should_unload_classes(),
2895                              &notOlder,
2896                              &cld_closure);
2897     }
2898   }
2899 
2900   // Clear mod-union table; it will be dirtied in the prologue of
2901   // CMS generation per each young generation collection.
2902 
2903   assert(_modUnionTable.isAllClear(),
2904        "Was cleared in most recent final checkpoint phase"
2905        " or no bits are set in the gc_prologue before the start of the next "
2906        "subsequent marking phase.");
2907 
2908   assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be");
2909 
2910   // Save the end of the used_region of the constituent generations
2911   // to be used to limit the extent of sweep in each generation.
2912   save_sweep_limits();
2913   verify_overflow_empty();
2914 }
2915 
2916 bool CMSCollector::markFromRoots() {
2917   // we might be tempted to assert that:
2918   // assert(!SafepointSynchronize::is_at_safepoint(),
2919   //        "inconsistent argument?");
2920   // However that wouldn't be right, because it's possible that
2921   // a safepoint is indeed in progress as a young generation
2922   // stop-the-world GC happens even as we mark in this generation.
2923   assert(_collectorState == Marking, "inconsistent state?");
2924   check_correct_thread_executing();
2925   verify_overflow_empty();
2926 
2927   // Weak ref discovery note: We may be discovering weak
2928   // refs in this generation concurrent (but interleaved) with
2929   // weak ref discovery by the young generation collector.
2930 
2931   CMSTokenSyncWithLocks ts(true, bitMapLock());
2932   GCTraceCPUTime tcpu;
2933   CMSPhaseAccounting pa(this, "Concurrent Mark");
2934   bool res = markFromRootsWork();
2935   if (res) {
2936     _collectorState = Precleaning;
2937   } else { // We failed and a foreground collection wants to take over
2938     assert(_foregroundGCIsActive, "internal state inconsistency");
2939     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2940     log_debug(gc)("bailing out to foreground collection");
2941   }
2942   verify_overflow_empty();
2943   return res;
2944 }
2945 
2946 bool CMSCollector::markFromRootsWork() {
2947   // iterate over marked bits in bit map, doing a full scan and mark
2948   // from these roots using the following algorithm:
2949   // . if oop is to the right of the current scan pointer,
2950   //   mark corresponding bit (we'll process it later)
2951   // . else (oop is to left of current scan pointer)
2952   //   push oop on marking stack
2953   // . drain the marking stack
2954 
2955   // Note that when we do a marking step we need to hold the
2956   // bit map lock -- recall that direct allocation (by mutators)
2957   // and promotion (by the young generation collector) is also
2958   // marking the bit map. [the so-called allocate live policy.]
2959   // Because the implementation of bit map marking is not
2960   // robust wrt simultaneous marking of bits in the same word,
2961   // we need to make sure that there is no such interference
2962   // between concurrent such updates.
2963 
2964   // already have locks
2965   assert_lock_strong(bitMapLock());
2966 
2967   verify_work_stacks_empty();
2968   verify_overflow_empty();
2969   bool result = false;
2970   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2971     result = do_marking_mt();
2972   } else {
2973     result = do_marking_st();
2974   }
2975   return result;
2976 }
2977 
2978 // Forward decl
2979 class CMSConcMarkingTask;
2980 
2981 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2982   CMSCollector*       _collector;
2983   CMSConcMarkingTask* _task;
2984  public:
2985   virtual void yield();
2986 
2987   // "n_threads" is the number of threads to be terminated.
2988   // "queue_set" is a set of work queues of other threads.
2989   // "collector" is the CMS collector associated with this task terminator.
2990   // "yield" indicates whether we need the gang as a whole to yield.
2991   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2992     ParallelTaskTerminator(n_threads, queue_set),
2993     _collector(collector) { }
2994 
2995   void set_task(CMSConcMarkingTask* task) {
2996     _task = task;
2997   }
2998 };
2999 
3000 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3001   CMSConcMarkingTask* _task;
3002  public:
3003   bool should_exit_termination();
3004   void set_task(CMSConcMarkingTask* task) {
3005     _task = task;
3006   }
3007 };
3008 
3009 // MT Concurrent Marking Task
3010 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3011   CMSCollector*             _collector;
3012   uint                      _n_workers;      // requested/desired # workers
3013   bool                      _result;
3014   CompactibleFreeListSpace* _cms_space;
3015   char                      _pad_front[64];   // padding to ...
3016   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3017   char                      _pad_back[64];
3018   HeapWord*                 _restart_addr;
3019 
3020   //  Exposed here for yielding support
3021   Mutex* const _bit_map_lock;
3022 
3023   // The per thread work queues, available here for stealing
3024   OopTaskQueueSet*  _task_queues;
3025 
3026   // Termination (and yielding) support
3027   CMSConcMarkingTerminator _term;
3028   CMSConcMarkingTerminatorTerminator _term_term;
3029 
3030  public:
3031   CMSConcMarkingTask(CMSCollector* collector,
3032                  CompactibleFreeListSpace* cms_space,
3033                  YieldingFlexibleWorkGang* workers,
3034                  OopTaskQueueSet* task_queues):
3035     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3036     _collector(collector),
3037     _cms_space(cms_space),
3038     _n_workers(0), _result(true),
3039     _task_queues(task_queues),
3040     _term(_n_workers, task_queues, _collector),
3041     _bit_map_lock(collector->bitMapLock())
3042   {
3043     _requested_size = _n_workers;
3044     _term.set_task(this);
3045     _term_term.set_task(this);
3046     _restart_addr = _global_finger = _cms_space->bottom();
3047   }
3048 
3049 
3050   OopTaskQueueSet* task_queues()  { return _task_queues; }
3051 
3052   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3053 
3054   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3055 
3056   CMSConcMarkingTerminator* terminator() { return &_term; }
3057 
3058   virtual void set_for_termination(uint active_workers) {
3059     terminator()->reset_for_reuse(active_workers);
3060   }
3061 
3062   void work(uint worker_id);
3063   bool should_yield() {
3064     return    ConcurrentMarkSweepThread::should_yield()
3065            && !_collector->foregroundGCIsActive();
3066   }
3067 
3068   virtual void coordinator_yield();  // stuff done by coordinator
3069   bool result() { return _result; }
3070 
3071   void reset(HeapWord* ra) {
3072     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3073     _restart_addr = _global_finger = ra;
3074     _term.reset_for_reuse();
3075   }
3076 
3077   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3078                                            OopTaskQueue* work_q);
3079 
3080  private:
3081   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3082   void do_work_steal(int i);
3083   void bump_global_finger(HeapWord* f);
3084 };
3085 
3086 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3087   assert(_task != NULL, "Error");
3088   return _task->yielding();
3089   // Note that we do not need the disjunct || _task->should_yield() above
3090   // because we want terminating threads to yield only if the task
3091   // is already in the midst of yielding, which happens only after at least one
3092   // thread has yielded.
3093 }
3094 
3095 void CMSConcMarkingTerminator::yield() {
3096   if (_task->should_yield()) {
3097     _task->yield();
3098   } else {
3099     ParallelTaskTerminator::yield();
3100   }
3101 }
3102 
3103 ////////////////////////////////////////////////////////////////
3104 // Concurrent Marking Algorithm Sketch
3105 ////////////////////////////////////////////////////////////////
3106 // Until all tasks exhausted (both spaces):
3107 // -- claim next available chunk
3108 // -- bump global finger via CAS
3109 // -- find first object that starts in this chunk
3110 //    and start scanning bitmap from that position
3111 // -- scan marked objects for oops
3112 // -- CAS-mark target, and if successful:
3113 //    . if target oop is above global finger (volatile read)
3114 //      nothing to do
3115 //    . if target oop is in chunk and above local finger
3116 //        then nothing to do
3117 //    . else push on work-queue
3118 // -- Deal with possible overflow issues:
3119 //    . local work-queue overflow causes stuff to be pushed on
3120 //      global (common) overflow queue
3121 //    . always first empty local work queue
3122 //    . then get a batch of oops from global work queue if any
3123 //    . then do work stealing
3124 // -- When all tasks claimed (both spaces)
3125 //    and local work queue empty,
3126 //    then in a loop do:
3127 //    . check global overflow stack; steal a batch of oops and trace
3128 //    . try to steal from other threads oif GOS is empty
3129 //    . if neither is available, offer termination
3130 // -- Terminate and return result
3131 //
3132 void CMSConcMarkingTask::work(uint worker_id) {
3133   elapsedTimer _timer;
3134   ResourceMark rm;
3135   HandleMark hm;
3136 
3137   DEBUG_ONLY(_collector->verify_overflow_empty();)
3138 
3139   // Before we begin work, our work queue should be empty
3140   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3141   // Scan the bitmap covering _cms_space, tracing through grey objects.
3142   _timer.start();
3143   do_scan_and_mark(worker_id, _cms_space);
3144   _timer.stop();
3145   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3146 
3147   // ... do work stealing
3148   _timer.reset();
3149   _timer.start();
3150   do_work_steal(worker_id);
3151   _timer.stop();
3152   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3153   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3154   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3155   // Note that under the current task protocol, the
3156   // following assertion is true even of the spaces
3157   // expanded since the completion of the concurrent
3158   // marking. XXX This will likely change under a strict
3159   // ABORT semantics.
3160   // After perm removal the comparison was changed to
3161   // greater than or equal to from strictly greater than.
3162   // Before perm removal the highest address sweep would
3163   // have been at the end of perm gen but now is at the
3164   // end of the tenured gen.
3165   assert(_global_finger >=  _cms_space->end(),
3166          "All tasks have been completed");
3167   DEBUG_ONLY(_collector->verify_overflow_empty();)
3168 }
3169 
3170 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3171   HeapWord* read = _global_finger;
3172   HeapWord* cur  = read;
3173   while (f > read) {
3174     cur = read;
3175     read = Atomic::cmpxchg(f, &_global_finger, cur);
3176     if (cur == read) {
3177       // our cas succeeded
3178       assert(_global_finger >= f, "protocol consistency");
3179       break;
3180     }
3181   }
3182 }
3183 
3184 // This is really inefficient, and should be redone by
3185 // using (not yet available) block-read and -write interfaces to the
3186 // stack and the work_queue. XXX FIX ME !!!
3187 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3188                                                       OopTaskQueue* work_q) {
3189   // Fast lock-free check
3190   if (ovflw_stk->length() == 0) {
3191     return false;
3192   }
3193   assert(work_q->size() == 0, "Shouldn't steal");
3194   MutexLockerEx ml(ovflw_stk->par_lock(),
3195                    Mutex::_no_safepoint_check_flag);
3196   // Grab up to 1/4 the size of the work queue
3197   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3198                     (size_t)ParGCDesiredObjsFromOverflowList);
3199   num = MIN2(num, ovflw_stk->length());
3200   for (int i = (int) num; i > 0; i--) {
3201     oop cur = ovflw_stk->pop();
3202     assert(cur != NULL, "Counted wrong?");
3203     work_q->push(cur);
3204   }
3205   return num > 0;
3206 }
3207 
3208 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3209   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3210   int n_tasks = pst->n_tasks();
3211   // We allow that there may be no tasks to do here because
3212   // we are restarting after a stack overflow.
3213   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3214   uint nth_task = 0;
3215 
3216   HeapWord* aligned_start = sp->bottom();
3217   if (sp->used_region().contains(_restart_addr)) {
3218     // Align down to a card boundary for the start of 0th task
3219     // for this space.
3220     aligned_start = align_down(_restart_addr, CardTable::card_size);
3221   }
3222 
3223   size_t chunk_size = sp->marking_task_size();
3224   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3225     // Having claimed the nth task in this space,
3226     // compute the chunk that it corresponds to:
3227     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3228                                aligned_start + (nth_task+1)*chunk_size);
3229     // Try and bump the global finger via a CAS;
3230     // note that we need to do the global finger bump
3231     // _before_ taking the intersection below, because
3232     // the task corresponding to that region will be
3233     // deemed done even if the used_region() expands
3234     // because of allocation -- as it almost certainly will
3235     // during start-up while the threads yield in the
3236     // closure below.
3237     HeapWord* finger = span.end();
3238     bump_global_finger(finger);   // atomically
3239     // There are null tasks here corresponding to chunks
3240     // beyond the "top" address of the space.
3241     span = span.intersection(sp->used_region());
3242     if (!span.is_empty()) {  // Non-null task
3243       HeapWord* prev_obj;
3244       assert(!span.contains(_restart_addr) || nth_task == 0,
3245              "Inconsistency");
3246       if (nth_task == 0) {
3247         // For the 0th task, we'll not need to compute a block_start.
3248         if (span.contains(_restart_addr)) {
3249           // In the case of a restart because of stack overflow,
3250           // we might additionally skip a chunk prefix.
3251           prev_obj = _restart_addr;
3252         } else {
3253           prev_obj = span.start();
3254         }
3255       } else {
3256         // We want to skip the first object because
3257         // the protocol is to scan any object in its entirety
3258         // that _starts_ in this span; a fortiori, any
3259         // object starting in an earlier span is scanned
3260         // as part of an earlier claimed task.
3261         // Below we use the "careful" version of block_start
3262         // so we do not try to navigate uninitialized objects.
3263         prev_obj = sp->block_start_careful(span.start());
3264         // Below we use a variant of block_size that uses the
3265         // Printezis bits to avoid waiting for allocated
3266         // objects to become initialized/parsable.
3267         while (prev_obj < span.start()) {
3268           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3269           if (sz > 0) {
3270             prev_obj += sz;
3271           } else {
3272             // In this case we may end up doing a bit of redundant
3273             // scanning, but that appears unavoidable, short of
3274             // locking the free list locks; see bug 6324141.
3275             break;
3276           }
3277         }
3278       }
3279       if (prev_obj < span.end()) {
3280         MemRegion my_span = MemRegion(prev_obj, span.end());
3281         // Do the marking work within a non-empty span --
3282         // the last argument to the constructor indicates whether the
3283         // iteration should be incremental with periodic yields.
3284         ParMarkFromRootsClosure cl(this, _collector, my_span,
3285                                    &_collector->_markBitMap,
3286                                    work_queue(i),
3287                                    &_collector->_markStack);
3288         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3289       } // else nothing to do for this task
3290     }   // else nothing to do for this task
3291   }
3292   // We'd be tempted to assert here that since there are no
3293   // more tasks left to claim in this space, the global_finger
3294   // must exceed space->top() and a fortiori space->end(). However,
3295   // that would not quite be correct because the bumping of
3296   // global_finger occurs strictly after the claiming of a task,
3297   // so by the time we reach here the global finger may not yet
3298   // have been bumped up by the thread that claimed the last
3299   // task.
3300   pst->all_tasks_completed();
3301 }
3302 
3303 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3304  private:
3305   CMSCollector* _collector;
3306   CMSConcMarkingTask* _task;
3307   MemRegion     _span;
3308   CMSBitMap*    _bit_map;
3309   CMSMarkStack* _overflow_stack;
3310   OopTaskQueue* _work_queue;
3311  protected:
3312   DO_OOP_WORK_DEFN
3313  public:
3314   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3315                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3316     MetadataAwareOopClosure(collector->ref_processor()),
3317     _collector(collector),
3318     _task(task),
3319     _span(collector->_span),
3320     _work_queue(work_queue),
3321     _bit_map(bit_map),
3322     _overflow_stack(overflow_stack)
3323   { }
3324   virtual void do_oop(oop* p);
3325   virtual void do_oop(narrowOop* p);
3326 
3327   void trim_queue(size_t max);
3328   void handle_stack_overflow(HeapWord* lost);
3329   void do_yield_check() {
3330     if (_task->should_yield()) {
3331       _task->yield();
3332     }
3333   }
3334 };
3335 
3336 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3337 
3338 // Grey object scanning during work stealing phase --
3339 // the salient assumption here is that any references
3340 // that are in these stolen objects being scanned must
3341 // already have been initialized (else they would not have
3342 // been published), so we do not need to check for
3343 // uninitialized objects before pushing here.
3344 void ParConcMarkingClosure::do_oop(oop obj) {
3345   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3346   HeapWord* addr = (HeapWord*)obj;
3347   // Check if oop points into the CMS generation
3348   // and is not marked
3349   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3350     // a white object ...
3351     // If we manage to "claim" the object, by being the
3352     // first thread to mark it, then we push it on our
3353     // marking stack
3354     if (_bit_map->par_mark(addr)) {     // ... now grey
3355       // push on work queue (grey set)
3356       bool simulate_overflow = false;
3357       NOT_PRODUCT(
3358         if (CMSMarkStackOverflowALot &&
3359             _collector->simulate_overflow()) {
3360           // simulate a stack overflow
3361           simulate_overflow = true;
3362         }
3363       )
3364       if (simulate_overflow ||
3365           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3366         // stack overflow
3367         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3368         // We cannot assert that the overflow stack is full because
3369         // it may have been emptied since.
3370         assert(simulate_overflow ||
3371                _work_queue->size() == _work_queue->max_elems(),
3372               "Else push should have succeeded");
3373         handle_stack_overflow(addr);
3374       }
3375     } // Else, some other thread got there first
3376     do_yield_check();
3377   }
3378 }
3379 
3380 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3381 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3382 
3383 void ParConcMarkingClosure::trim_queue(size_t max) {
3384   while (_work_queue->size() > max) {
3385     oop new_oop;
3386     if (_work_queue->pop_local(new_oop)) {
3387       assert(oopDesc::is_oop(new_oop), "Should be an oop");
3388       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3389       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3390       new_oop->oop_iterate(this);  // do_oop() above
3391       do_yield_check();
3392     }
3393   }
3394 }
3395 
3396 // Upon stack overflow, we discard (part of) the stack,
3397 // remembering the least address amongst those discarded
3398 // in CMSCollector's _restart_address.
3399 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3400   // We need to do this under a mutex to prevent other
3401   // workers from interfering with the work done below.
3402   MutexLockerEx ml(_overflow_stack->par_lock(),
3403                    Mutex::_no_safepoint_check_flag);
3404   // Remember the least grey address discarded
3405   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3406   _collector->lower_restart_addr(ra);
3407   _overflow_stack->reset();  // discard stack contents
3408   _overflow_stack->expand(); // expand the stack if possible
3409 }
3410 
3411 
3412 void CMSConcMarkingTask::do_work_steal(int i) {
3413   OopTaskQueue* work_q = work_queue(i);
3414   oop obj_to_scan;
3415   CMSBitMap* bm = &(_collector->_markBitMap);
3416   CMSMarkStack* ovflw = &(_collector->_markStack);
3417   int* seed = _collector->hash_seed(i);
3418   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3419   while (true) {
3420     cl.trim_queue(0);
3421     assert(work_q->size() == 0, "Should have been emptied above");
3422     if (get_work_from_overflow_stack(ovflw, work_q)) {
3423       // Can't assert below because the work obtained from the
3424       // overflow stack may already have been stolen from us.
3425       // assert(work_q->size() > 0, "Work from overflow stack");
3426       continue;
3427     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3428       assert(oopDesc::is_oop(obj_to_scan), "Should be an oop");
3429       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3430       obj_to_scan->oop_iterate(&cl);
3431     } else if (terminator()->offer_termination(&_term_term)) {
3432       assert(work_q->size() == 0, "Impossible!");
3433       break;
3434     } else if (yielding() || should_yield()) {
3435       yield();
3436     }
3437   }
3438 }
3439 
3440 // This is run by the CMS (coordinator) thread.
3441 void CMSConcMarkingTask::coordinator_yield() {
3442   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3443          "CMS thread should hold CMS token");
3444   // First give up the locks, then yield, then re-lock
3445   // We should probably use a constructor/destructor idiom to
3446   // do this unlock/lock or modify the MutexUnlocker class to
3447   // serve our purpose. XXX
3448   assert_lock_strong(_bit_map_lock);
3449   _bit_map_lock->unlock();
3450   ConcurrentMarkSweepThread::desynchronize(true);
3451   _collector->stopTimer();
3452   _collector->incrementYields();
3453 
3454   // It is possible for whichever thread initiated the yield request
3455   // not to get a chance to wake up and take the bitmap lock between
3456   // this thread releasing it and reacquiring it. So, while the
3457   // should_yield() flag is on, let's sleep for a bit to give the
3458   // other thread a chance to wake up. The limit imposed on the number
3459   // of iterations is defensive, to avoid any unforseen circumstances
3460   // putting us into an infinite loop. Since it's always been this
3461   // (coordinator_yield()) method that was observed to cause the
3462   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3463   // which is by default non-zero. For the other seven methods that
3464   // also perform the yield operation, as are using a different
3465   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3466   // can enable the sleeping for those methods too, if necessary.
3467   // See 6442774.
3468   //
3469   // We really need to reconsider the synchronization between the GC
3470   // thread and the yield-requesting threads in the future and we
3471   // should really use wait/notify, which is the recommended
3472   // way of doing this type of interaction. Additionally, we should
3473   // consolidate the eight methods that do the yield operation and they
3474   // are almost identical into one for better maintainability and
3475   // readability. See 6445193.
3476   //
3477   // Tony 2006.06.29
3478   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3479                    ConcurrentMarkSweepThread::should_yield() &&
3480                    !CMSCollector::foregroundGCIsActive(); ++i) {
3481     os::sleep(Thread::current(), 1, false);
3482   }
3483 
3484   ConcurrentMarkSweepThread::synchronize(true);
3485   _bit_map_lock->lock_without_safepoint_check();
3486   _collector->startTimer();
3487 }
3488 
3489 bool CMSCollector::do_marking_mt() {
3490   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3491   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3492                                                                   conc_workers()->active_workers(),
3493                                                                   Threads::number_of_non_daemon_threads());
3494   num_workers = conc_workers()->update_active_workers(num_workers);
3495   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3496 
3497   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3498 
3499   CMSConcMarkingTask tsk(this,
3500                          cms_space,
3501                          conc_workers(),
3502                          task_queues());
3503 
3504   // Since the actual number of workers we get may be different
3505   // from the number we requested above, do we need to do anything different
3506   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3507   // class?? XXX
3508   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3509 
3510   // Refs discovery is already non-atomic.
3511   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3512   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3513   conc_workers()->start_task(&tsk);
3514   while (tsk.yielded()) {
3515     tsk.coordinator_yield();
3516     conc_workers()->continue_task(&tsk);
3517   }
3518   // If the task was aborted, _restart_addr will be non-NULL
3519   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3520   while (_restart_addr != NULL) {
3521     // XXX For now we do not make use of ABORTED state and have not
3522     // yet implemented the right abort semantics (even in the original
3523     // single-threaded CMS case). That needs some more investigation
3524     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3525     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3526     // If _restart_addr is non-NULL, a marking stack overflow
3527     // occurred; we need to do a fresh marking iteration from the
3528     // indicated restart address.
3529     if (_foregroundGCIsActive) {
3530       // We may be running into repeated stack overflows, having
3531       // reached the limit of the stack size, while making very
3532       // slow forward progress. It may be best to bail out and
3533       // let the foreground collector do its job.
3534       // Clear _restart_addr, so that foreground GC
3535       // works from scratch. This avoids the headache of
3536       // a "rescan" which would otherwise be needed because
3537       // of the dirty mod union table & card table.
3538       _restart_addr = NULL;
3539       return false;
3540     }
3541     // Adjust the task to restart from _restart_addr
3542     tsk.reset(_restart_addr);
3543     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3544                   _restart_addr);
3545     _restart_addr = NULL;
3546     // Get the workers going again
3547     conc_workers()->start_task(&tsk);
3548     while (tsk.yielded()) {
3549       tsk.coordinator_yield();
3550       conc_workers()->continue_task(&tsk);
3551     }
3552   }
3553   assert(tsk.completed(), "Inconsistency");
3554   assert(tsk.result() == true, "Inconsistency");
3555   return true;
3556 }
3557 
3558 bool CMSCollector::do_marking_st() {
3559   ResourceMark rm;
3560   HandleMark   hm;
3561 
3562   // Temporarily make refs discovery single threaded (non-MT)
3563   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3564   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3565     &_markStack, CMSYield);
3566   // the last argument to iterate indicates whether the iteration
3567   // should be incremental with periodic yields.
3568   _markBitMap.iterate(&markFromRootsClosure);
3569   // If _restart_addr is non-NULL, a marking stack overflow
3570   // occurred; we need to do a fresh iteration from the
3571   // indicated restart address.
3572   while (_restart_addr != NULL) {
3573     if (_foregroundGCIsActive) {
3574       // We may be running into repeated stack overflows, having
3575       // reached the limit of the stack size, while making very
3576       // slow forward progress. It may be best to bail out and
3577       // let the foreground collector do its job.
3578       // Clear _restart_addr, so that foreground GC
3579       // works from scratch. This avoids the headache of
3580       // a "rescan" which would otherwise be needed because
3581       // of the dirty mod union table & card table.
3582       _restart_addr = NULL;
3583       return false;  // indicating failure to complete marking
3584     }
3585     // Deal with stack overflow:
3586     // we restart marking from _restart_addr
3587     HeapWord* ra = _restart_addr;
3588     markFromRootsClosure.reset(ra);
3589     _restart_addr = NULL;
3590     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3591   }
3592   return true;
3593 }
3594 
3595 void CMSCollector::preclean() {
3596   check_correct_thread_executing();
3597   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3598   verify_work_stacks_empty();
3599   verify_overflow_empty();
3600   _abort_preclean = false;
3601   if (CMSPrecleaningEnabled) {
3602     if (!CMSEdenChunksRecordAlways) {
3603       _eden_chunk_index = 0;
3604     }
3605     size_t used = get_eden_used();
3606     size_t capacity = get_eden_capacity();
3607     // Don't start sampling unless we will get sufficiently
3608     // many samples.
3609     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3610                 * CMSScheduleRemarkEdenPenetration)) {
3611       _start_sampling = true;
3612     } else {
3613       _start_sampling = false;
3614     }
3615     GCTraceCPUTime tcpu;
3616     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3617     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3618   }
3619   CMSTokenSync x(true); // is cms thread
3620   if (CMSPrecleaningEnabled) {
3621     sample_eden();
3622     _collectorState = AbortablePreclean;
3623   } else {
3624     _collectorState = FinalMarking;
3625   }
3626   verify_work_stacks_empty();
3627   verify_overflow_empty();
3628 }
3629 
3630 // Try and schedule the remark such that young gen
3631 // occupancy is CMSScheduleRemarkEdenPenetration %.
3632 void CMSCollector::abortable_preclean() {
3633   check_correct_thread_executing();
3634   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3635   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3636 
3637   // If Eden's current occupancy is below this threshold,
3638   // immediately schedule the remark; else preclean
3639   // past the next scavenge in an effort to
3640   // schedule the pause as described above. By choosing
3641   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3642   // we will never do an actual abortable preclean cycle.
3643   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3644     GCTraceCPUTime tcpu;
3645     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3646     // We need more smarts in the abortable preclean
3647     // loop below to deal with cases where allocation
3648     // in young gen is very very slow, and our precleaning
3649     // is running a losing race against a horde of
3650     // mutators intent on flooding us with CMS updates
3651     // (dirty cards).
3652     // One, admittedly dumb, strategy is to give up
3653     // after a certain number of abortable precleaning loops
3654     // or after a certain maximum time. We want to make
3655     // this smarter in the next iteration.
3656     // XXX FIX ME!!! YSR
3657     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3658     while (!(should_abort_preclean() ||
3659              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3660       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3661       cumworkdone += workdone;
3662       loops++;
3663       // Voluntarily terminate abortable preclean phase if we have
3664       // been at it for too long.
3665       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3666           loops >= CMSMaxAbortablePrecleanLoops) {
3667         log_debug(gc)(" CMS: abort preclean due to loops ");
3668         break;
3669       }
3670       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3671         log_debug(gc)(" CMS: abort preclean due to time ");
3672         break;
3673       }
3674       // If we are doing little work each iteration, we should
3675       // take a short break.
3676       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3677         // Sleep for some time, waiting for work to accumulate
3678         stopTimer();
3679         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3680         startTimer();
3681         waited++;
3682       }
3683     }
3684     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3685                                loops, waited, cumworkdone);
3686   }
3687   CMSTokenSync x(true); // is cms thread
3688   if (_collectorState != Idling) {
3689     assert(_collectorState == AbortablePreclean,
3690            "Spontaneous state transition?");
3691     _collectorState = FinalMarking;
3692   } // Else, a foreground collection completed this CMS cycle.
3693   return;
3694 }
3695 
3696 // Respond to an Eden sampling opportunity
3697 void CMSCollector::sample_eden() {
3698   // Make sure a young gc cannot sneak in between our
3699   // reading and recording of a sample.
3700   assert(Thread::current()->is_ConcurrentGC_thread(),
3701          "Only the cms thread may collect Eden samples");
3702   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3703          "Should collect samples while holding CMS token");
3704   if (!_start_sampling) {
3705     return;
3706   }
3707   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3708   // is populated by the young generation.
3709   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3710     if (_eden_chunk_index < _eden_chunk_capacity) {
3711       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3712       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3713              "Unexpected state of Eden");
3714       // We'd like to check that what we just sampled is an oop-start address;
3715       // however, we cannot do that here since the object may not yet have been
3716       // initialized. So we'll instead do the check when we _use_ this sample
3717       // later.
3718       if (_eden_chunk_index == 0 ||
3719           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3720                          _eden_chunk_array[_eden_chunk_index-1])
3721            >= CMSSamplingGrain)) {
3722         _eden_chunk_index++;  // commit sample
3723       }
3724     }
3725   }
3726   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3727     size_t used = get_eden_used();
3728     size_t capacity = get_eden_capacity();
3729     assert(used <= capacity, "Unexpected state of Eden");
3730     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3731       _abort_preclean = true;
3732     }
3733   }
3734 }
3735 
3736 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3737   assert(_collectorState == Precleaning ||
3738          _collectorState == AbortablePreclean, "incorrect state");
3739   ResourceMark rm;
3740   HandleMark   hm;
3741 
3742   // Precleaning is currently not MT but the reference processor
3743   // may be set for MT.  Disable it temporarily here.
3744   ReferenceProcessor* rp = ref_processor();
3745   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3746 
3747   // Do one pass of scrubbing the discovered reference lists
3748   // to remove any reference objects with strongly-reachable
3749   // referents.
3750   if (clean_refs) {
3751     CMSPrecleanRefsYieldClosure yield_cl(this);
3752     assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
3753     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3754                                    &_markStack, true /* preclean */);
3755     CMSDrainMarkingStackClosure complete_trace(this,
3756                                    _span, &_markBitMap, &_markStack,
3757                                    &keep_alive, true /* preclean */);
3758 
3759     // We don't want this step to interfere with a young
3760     // collection because we don't want to take CPU
3761     // or memory bandwidth away from the young GC threads
3762     // (which may be as many as there are CPUs).
3763     // Note that we don't need to protect ourselves from
3764     // interference with mutators because they can't
3765     // manipulate the discovered reference lists nor affect
3766     // the computed reachability of the referents, the
3767     // only properties manipulated by the precleaning
3768     // of these reference lists.
3769     stopTimer();
3770     CMSTokenSyncWithLocks x(true /* is cms thread */,
3771                             bitMapLock());
3772     startTimer();
3773     sample_eden();
3774 
3775     // The following will yield to allow foreground
3776     // collection to proceed promptly. XXX YSR:
3777     // The code in this method may need further
3778     // tweaking for better performance and some restructuring
3779     // for cleaner interfaces.
3780     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3781     rp->preclean_discovered_references(
3782           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3783           gc_timer);
3784   }
3785 
3786   if (clean_survivor) {  // preclean the active survivor space(s)
3787     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3788                              &_markBitMap, &_modUnionTable,
3789                              &_markStack, true /* precleaning phase */);
3790     stopTimer();
3791     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3792                              bitMapLock());
3793     startTimer();
3794     unsigned int before_count =
3795       CMSHeap::heap()->total_collections();
3796     SurvivorSpacePrecleanClosure
3797       sss_cl(this, _span, &_markBitMap, &_markStack,
3798              &pam_cl, before_count, CMSYield);
3799     _young_gen->from()->object_iterate_careful(&sss_cl);
3800     _young_gen->to()->object_iterate_careful(&sss_cl);
3801   }
3802   MarkRefsIntoAndScanClosure
3803     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3804              &_markStack, this, CMSYield,
3805              true /* precleaning phase */);
3806   // CAUTION: The following closure has persistent state that may need to
3807   // be reset upon a decrease in the sequence of addresses it
3808   // processes.
3809   ScanMarkedObjectsAgainCarefullyClosure
3810     smoac_cl(this, _span,
3811       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3812 
3813   // Preclean dirty cards in ModUnionTable and CardTable using
3814   // appropriate convergence criterion;
3815   // repeat CMSPrecleanIter times unless we find that
3816   // we are losing.
3817   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3818   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3819          "Bad convergence multiplier");
3820   assert(CMSPrecleanThreshold >= 100,
3821          "Unreasonably low CMSPrecleanThreshold");
3822 
3823   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3824   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3825        numIter < CMSPrecleanIter;
3826        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3827     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3828     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3829     // Either there are very few dirty cards, so re-mark
3830     // pause will be small anyway, or our pre-cleaning isn't
3831     // that much faster than the rate at which cards are being
3832     // dirtied, so we might as well stop and re-mark since
3833     // precleaning won't improve our re-mark time by much.
3834     if (curNumCards <= CMSPrecleanThreshold ||
3835         (numIter > 0 &&
3836          (curNumCards * CMSPrecleanDenominator >
3837          lastNumCards * CMSPrecleanNumerator))) {
3838       numIter++;
3839       cumNumCards += curNumCards;
3840       break;
3841     }
3842   }
3843 
3844   preclean_cld(&mrias_cl, _cmsGen->freelistLock());
3845 
3846   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3847   cumNumCards += curNumCards;
3848   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3849                              curNumCards, cumNumCards, numIter);
3850   return cumNumCards;   // as a measure of useful work done
3851 }
3852 
3853 // PRECLEANING NOTES:
3854 // Precleaning involves:
3855 // . reading the bits of the modUnionTable and clearing the set bits.
3856 // . For the cards corresponding to the set bits, we scan the
3857 //   objects on those cards. This means we need the free_list_lock
3858 //   so that we can safely iterate over the CMS space when scanning
3859 //   for oops.
3860 // . When we scan the objects, we'll be both reading and setting
3861 //   marks in the marking bit map, so we'll need the marking bit map.
3862 // . For protecting _collector_state transitions, we take the CGC_lock.
3863 //   Note that any races in the reading of of card table entries by the
3864 //   CMS thread on the one hand and the clearing of those entries by the
3865 //   VM thread or the setting of those entries by the mutator threads on the
3866 //   other are quite benign. However, for efficiency it makes sense to keep
3867 //   the VM thread from racing with the CMS thread while the latter is
3868 //   dirty card info to the modUnionTable. We therefore also use the
3869 //   CGC_lock to protect the reading of the card table and the mod union
3870 //   table by the CM thread.
3871 // . We run concurrently with mutator updates, so scanning
3872 //   needs to be done carefully  -- we should not try to scan
3873 //   potentially uninitialized objects.
3874 //
3875 // Locking strategy: While holding the CGC_lock, we scan over and
3876 // reset a maximal dirty range of the mod union / card tables, then lock
3877 // the free_list_lock and bitmap lock to do a full marking, then
3878 // release these locks; and repeat the cycle. This allows for a
3879 // certain amount of fairness in the sharing of these locks between
3880 // the CMS collector on the one hand, and the VM thread and the
3881 // mutators on the other.
3882 
3883 // NOTE: preclean_mod_union_table() and preclean_card_table()
3884 // further below are largely identical; if you need to modify
3885 // one of these methods, please check the other method too.
3886 
3887 size_t CMSCollector::preclean_mod_union_table(
3888   ConcurrentMarkSweepGeneration* old_gen,
3889   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3890   verify_work_stacks_empty();
3891   verify_overflow_empty();
3892 
3893   // strategy: starting with the first card, accumulate contiguous
3894   // ranges of dirty cards; clear these cards, then scan the region
3895   // covered by these cards.
3896 
3897   // Since all of the MUT is committed ahead, we can just use
3898   // that, in case the generations expand while we are precleaning.
3899   // It might also be fine to just use the committed part of the
3900   // generation, but we might potentially miss cards when the
3901   // generation is rapidly expanding while we are in the midst
3902   // of precleaning.
3903   HeapWord* startAddr = old_gen->reserved().start();
3904   HeapWord* endAddr   = old_gen->reserved().end();
3905 
3906   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3907 
3908   size_t numDirtyCards, cumNumDirtyCards;
3909   HeapWord *nextAddr, *lastAddr;
3910   for (cumNumDirtyCards = numDirtyCards = 0,
3911        nextAddr = lastAddr = startAddr;
3912        nextAddr < endAddr;
3913        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3914 
3915     ResourceMark rm;
3916     HandleMark   hm;
3917 
3918     MemRegion dirtyRegion;
3919     {
3920       stopTimer();
3921       // Potential yield point
3922       CMSTokenSync ts(true);
3923       startTimer();
3924       sample_eden();
3925       // Get dirty region starting at nextOffset (inclusive),
3926       // simultaneously clearing it.
3927       dirtyRegion =
3928         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3929       assert(dirtyRegion.start() >= nextAddr,
3930              "returned region inconsistent?");
3931     }
3932     // Remember where the next search should begin.
3933     // The returned region (if non-empty) is a right open interval,
3934     // so lastOffset is obtained from the right end of that
3935     // interval.
3936     lastAddr = dirtyRegion.end();
3937     // Should do something more transparent and less hacky XXX
3938     numDirtyCards =
3939       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3940 
3941     // We'll scan the cards in the dirty region (with periodic
3942     // yields for foreground GC as needed).
3943     if (!dirtyRegion.is_empty()) {
3944       assert(numDirtyCards > 0, "consistency check");
3945       HeapWord* stop_point = NULL;
3946       stopTimer();
3947       // Potential yield point
3948       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3949                                bitMapLock());
3950       startTimer();
3951       {
3952         verify_work_stacks_empty();
3953         verify_overflow_empty();
3954         sample_eden();
3955         stop_point =
3956           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3957       }
3958       if (stop_point != NULL) {
3959         // The careful iteration stopped early either because it found an
3960         // uninitialized object, or because we were in the midst of an
3961         // "abortable preclean", which should now be aborted. Redirty
3962         // the bits corresponding to the partially-scanned or unscanned
3963         // cards. We'll either restart at the next block boundary or
3964         // abort the preclean.
3965         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3966                "Should only be AbortablePreclean.");
3967         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3968         if (should_abort_preclean()) {
3969           break; // out of preclean loop
3970         } else {
3971           // Compute the next address at which preclean should pick up;
3972           // might need bitMapLock in order to read P-bits.
3973           lastAddr = next_card_start_after_block(stop_point);
3974         }
3975       }
3976     } else {
3977       assert(lastAddr == endAddr, "consistency check");
3978       assert(numDirtyCards == 0, "consistency check");
3979       break;
3980     }
3981   }
3982   verify_work_stacks_empty();
3983   verify_overflow_empty();
3984   return cumNumDirtyCards;
3985 }
3986 
3987 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3988 // below are largely identical; if you need to modify
3989 // one of these methods, please check the other method too.
3990 
3991 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3992   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3993   // strategy: it's similar to precleamModUnionTable above, in that
3994   // we accumulate contiguous ranges of dirty cards, mark these cards
3995   // precleaned, then scan the region covered by these cards.
3996   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3997   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3998 
3999   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4000 
4001   size_t numDirtyCards, cumNumDirtyCards;
4002   HeapWord *lastAddr, *nextAddr;
4003 
4004   for (cumNumDirtyCards = numDirtyCards = 0,
4005        nextAddr = lastAddr = startAddr;
4006        nextAddr < endAddr;
4007        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4008 
4009     ResourceMark rm;
4010     HandleMark   hm;
4011 
4012     MemRegion dirtyRegion;
4013     {
4014       // See comments in "Precleaning notes" above on why we
4015       // do this locking. XXX Could the locking overheads be
4016       // too high when dirty cards are sparse? [I don't think so.]
4017       stopTimer();
4018       CMSTokenSync x(true); // is cms thread
4019       startTimer();
4020       sample_eden();
4021       // Get and clear dirty region from card table
4022       dirtyRegion = _ct->dirty_card_range_after_reset(MemRegion(nextAddr, endAddr),
4023                                                       true,
4024                                                       CardTable::precleaned_card_val());
4025 
4026       assert(dirtyRegion.start() >= nextAddr,
4027              "returned region inconsistent?");
4028     }
4029     lastAddr = dirtyRegion.end();
4030     numDirtyCards =
4031       dirtyRegion.word_size()/CardTable::card_size_in_words;
4032 
4033     if (!dirtyRegion.is_empty()) {
4034       stopTimer();
4035       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4036       startTimer();
4037       sample_eden();
4038       verify_work_stacks_empty();
4039       verify_overflow_empty();
4040       HeapWord* stop_point =
4041         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4042       if (stop_point != NULL) {
4043         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4044                "Should only be AbortablePreclean.");
4045         _ct->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4046         if (should_abort_preclean()) {
4047           break; // out of preclean loop
4048         } else {
4049           // Compute the next address at which preclean should pick up.
4050           lastAddr = next_card_start_after_block(stop_point);
4051         }
4052       }
4053     } else {
4054       break;
4055     }
4056   }
4057   verify_work_stacks_empty();
4058   verify_overflow_empty();
4059   return cumNumDirtyCards;
4060 }
4061 
4062 class PrecleanCLDClosure : public CLDClosure {
4063   MetadataAwareOopsInGenClosure* _cm_closure;
4064  public:
4065   PrecleanCLDClosure(MetadataAwareOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {}
4066   void do_cld(ClassLoaderData* cld) {
4067     if (cld->has_accumulated_modified_oops()) {
4068       cld->clear_accumulated_modified_oops();
4069 
4070       _cm_closure->do_cld(cld);
4071     }
4072   }
4073 };
4074 
4075 // The freelist lock is needed to prevent asserts, is it really needed?
4076 void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4077 
4078   cl->set_freelistLock(freelistLock);
4079 
4080   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4081 
4082   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4083   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4084   PrecleanCLDClosure preclean_closure(cl);
4085   ClassLoaderDataGraph::cld_do(&preclean_closure);
4086 
4087   verify_work_stacks_empty();
4088   verify_overflow_empty();
4089 }
4090 
4091 void CMSCollector::checkpointRootsFinal() {
4092   assert(_collectorState == FinalMarking, "incorrect state transition?");
4093   check_correct_thread_executing();
4094   // world is stopped at this checkpoint
4095   assert(SafepointSynchronize::is_at_safepoint(),
4096          "world should be stopped");
4097   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
4098 
4099   verify_work_stacks_empty();
4100   verify_overflow_empty();
4101 
4102   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4103                 _young_gen->used() / K, _young_gen->capacity() / K);
4104   {
4105     if (CMSScavengeBeforeRemark) {
4106       CMSHeap* heap = CMSHeap::heap();
4107       // Temporarily set flag to false, GCH->do_collection will
4108       // expect it to be false and set to true
4109       FlagSetting fl(heap->_is_gc_active, false);
4110 
4111       heap->do_collection(true,                      // full (i.e. force, see below)
4112                           false,                     // !clear_all_soft_refs
4113                           0,                         // size
4114                           false,                     // is_tlab
4115                           GenCollectedHeap::YoungGen // type
4116         );
4117     }
4118     FreelistLocker x(this);
4119     MutexLockerEx y(bitMapLock(),
4120                     Mutex::_no_safepoint_check_flag);
4121     checkpointRootsFinalWork();
4122   }
4123   verify_work_stacks_empty();
4124   verify_overflow_empty();
4125 }
4126 
4127 void CMSCollector::checkpointRootsFinalWork() {
4128   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4129 
4130   assert(haveFreelistLocks(), "must have free list locks");
4131   assert_lock_strong(bitMapLock());
4132 
4133   ResourceMark rm;
4134   HandleMark   hm;
4135 
4136   CMSHeap* heap = CMSHeap::heap();
4137 
4138   if (should_unload_classes()) {
4139     CodeCache::gc_prologue();
4140   }
4141   assert(haveFreelistLocks(), "must have free list locks");
4142   assert_lock_strong(bitMapLock());
4143 
4144   // We might assume that we need not fill TLAB's when
4145   // CMSScavengeBeforeRemark is set, because we may have just done
4146   // a scavenge which would have filled all TLAB's -- and besides
4147   // Eden would be empty. This however may not always be the case --
4148   // for instance although we asked for a scavenge, it may not have
4149   // happened because of a JNI critical section. We probably need
4150   // a policy for deciding whether we can in that case wait until
4151   // the critical section releases and then do the remark following
4152   // the scavenge, and skip it here. In the absence of that policy,
4153   // or of an indication of whether the scavenge did indeed occur,
4154   // we cannot rely on TLAB's having been filled and must do
4155   // so here just in case a scavenge did not happen.
4156   heap->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4157   // Update the saved marks which may affect the root scans.
4158   heap->save_marks();
4159 
4160   print_eden_and_survivor_chunk_arrays();
4161 
4162   {
4163 #if COMPILER2_OR_JVMCI
4164     DerivedPointerTableDeactivate dpt_deact;
4165 #endif
4166 
4167     // Note on the role of the mod union table:
4168     // Since the marker in "markFromRoots" marks concurrently with
4169     // mutators, it is possible for some reachable objects not to have been
4170     // scanned. For instance, an only reference to an object A was
4171     // placed in object B after the marker scanned B. Unless B is rescanned,
4172     // A would be collected. Such updates to references in marked objects
4173     // are detected via the mod union table which is the set of all cards
4174     // dirtied since the first checkpoint in this GC cycle and prior to
4175     // the most recent young generation GC, minus those cleaned up by the
4176     // concurrent precleaning.
4177     if (CMSParallelRemarkEnabled) {
4178       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4179       do_remark_parallel();
4180     } else {
4181       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4182       do_remark_non_parallel();
4183     }
4184   }
4185   verify_work_stacks_empty();
4186   verify_overflow_empty();
4187 
4188   {
4189     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4190     refProcessingWork();
4191   }
4192   verify_work_stacks_empty();
4193   verify_overflow_empty();
4194 
4195   if (should_unload_classes()) {
4196     CodeCache::gc_epilogue();
4197   }
4198   JvmtiExport::gc_epilogue();
4199 
4200   // If we encountered any (marking stack / work queue) overflow
4201   // events during the current CMS cycle, take appropriate
4202   // remedial measures, where possible, so as to try and avoid
4203   // recurrence of that condition.
4204   assert(_markStack.isEmpty(), "No grey objects");
4205   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4206                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4207   if (ser_ovflw > 0) {
4208     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4209                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4210     _markStack.expand();
4211     _ser_pmc_remark_ovflw = 0;
4212     _ser_pmc_preclean_ovflw = 0;
4213     _ser_kac_preclean_ovflw = 0;
4214     _ser_kac_ovflw = 0;
4215   }
4216   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4217      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4218                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4219      _par_pmc_remark_ovflw = 0;
4220     _par_kac_ovflw = 0;
4221   }
4222    if (_markStack._hit_limit > 0) {
4223      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4224                           _markStack._hit_limit);
4225    }
4226    if (_markStack._failed_double > 0) {
4227      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4228                           _markStack._failed_double, _markStack.capacity());
4229    }
4230   _markStack._hit_limit = 0;
4231   _markStack._failed_double = 0;
4232 
4233   if ((VerifyAfterGC || VerifyDuringGC) &&
4234       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4235     verify_after_remark();
4236   }
4237 
4238   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4239 
4240   // Change under the freelistLocks.
4241   _collectorState = Sweeping;
4242   // Call isAllClear() under bitMapLock
4243   assert(_modUnionTable.isAllClear(),
4244       "Should be clear by end of the final marking");
4245   assert(_ct->cld_rem_set()->mod_union_is_clear(),
4246       "Should be clear by end of the final marking");
4247 }
4248 
4249 void CMSParInitialMarkTask::work(uint worker_id) {
4250   elapsedTimer _timer;
4251   ResourceMark rm;
4252   HandleMark   hm;
4253 
4254   // ---------- scan from roots --------------
4255   _timer.start();
4256   CMSHeap* heap = CMSHeap::heap();
4257   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4258 
4259   // ---------- young gen roots --------------
4260   {
4261     work_on_young_gen_roots(&par_mri_cl);
4262     _timer.stop();
4263     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4264   }
4265 
4266   // ---------- remaining roots --------------
4267   _timer.reset();
4268   _timer.start();
4269 
4270   CLDToOopClosure cld_closure(&par_mri_cl, true);
4271 
4272   heap->cms_process_roots(_strong_roots_scope,
4273                           false,     // yg was scanned above
4274                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4275                           _collector->should_unload_classes(),
4276                           &par_mri_cl,
4277                           &cld_closure);
4278   assert(_collector->should_unload_classes()
4279          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4280          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4281   _timer.stop();
4282   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4283 }
4284 
4285 // Parallel remark task
4286 class CMSParRemarkTask: public CMSParMarkTask {
4287   CompactibleFreeListSpace* _cms_space;
4288 
4289   // The per-thread work queues, available here for stealing.
4290   OopTaskQueueSet*       _task_queues;
4291   ParallelTaskTerminator _term;
4292   StrongRootsScope*      _strong_roots_scope;
4293 
4294  public:
4295   // A value of 0 passed to n_workers will cause the number of
4296   // workers to be taken from the active workers in the work gang.
4297   CMSParRemarkTask(CMSCollector* collector,
4298                    CompactibleFreeListSpace* cms_space,
4299                    uint n_workers, WorkGang* workers,
4300                    OopTaskQueueSet* task_queues,
4301                    StrongRootsScope* strong_roots_scope):
4302     CMSParMarkTask("Rescan roots and grey objects in parallel",
4303                    collector, n_workers),
4304     _cms_space(cms_space),
4305     _task_queues(task_queues),
4306     _term(n_workers, task_queues),
4307     _strong_roots_scope(strong_roots_scope) { }
4308 
4309   OopTaskQueueSet* task_queues() { return _task_queues; }
4310 
4311   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4312 
4313   ParallelTaskTerminator* terminator() { return &_term; }
4314   uint n_workers() { return _n_workers; }
4315 
4316   void work(uint worker_id);
4317 
4318  private:
4319   // ... of  dirty cards in old space
4320   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4321                                   ParMarkRefsIntoAndScanClosure* cl);
4322 
4323   // ... work stealing for the above
4324   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4325 };
4326 
4327 class RemarkCLDClosure : public CLDClosure {
4328   CLDToOopClosure _cm_closure;
4329  public:
4330   RemarkCLDClosure(OopClosure* oop_closure) : _cm_closure(oop_closure) {}
4331   void do_cld(ClassLoaderData* cld) {
4332     // Check if we have modified any oops in the CLD during the concurrent marking.
4333     if (cld->has_accumulated_modified_oops()) {
4334       cld->clear_accumulated_modified_oops();
4335 
4336       // We could have transfered the current modified marks to the accumulated marks,
4337       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4338     } else if (cld->has_modified_oops()) {
4339       // Don't clear anything, this info is needed by the next young collection.
4340     } else {
4341       // No modified oops in the ClassLoaderData.
4342       return;
4343     }
4344 
4345     // The klass has modified fields, need to scan the klass.
4346     _cm_closure.do_cld(cld);
4347   }
4348 };
4349 
4350 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4351   ParNewGeneration* young_gen = _collector->_young_gen;
4352   ContiguousSpace* eden_space = young_gen->eden();
4353   ContiguousSpace* from_space = young_gen->from();
4354   ContiguousSpace* to_space   = young_gen->to();
4355 
4356   HeapWord** eca = _collector->_eden_chunk_array;
4357   size_t     ect = _collector->_eden_chunk_index;
4358   HeapWord** sca = _collector->_survivor_chunk_array;
4359   size_t     sct = _collector->_survivor_chunk_index;
4360 
4361   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4362   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4363 
4364   do_young_space_rescan(cl, to_space, NULL, 0);
4365   do_young_space_rescan(cl, from_space, sca, sct);
4366   do_young_space_rescan(cl, eden_space, eca, ect);
4367 }
4368 
4369 // work_queue(i) is passed to the closure
4370 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4371 // also is passed to do_dirty_card_rescan_tasks() and to
4372 // do_work_steal() to select the i-th task_queue.
4373 
4374 void CMSParRemarkTask::work(uint worker_id) {
4375   elapsedTimer _timer;
4376   ResourceMark rm;
4377   HandleMark   hm;
4378 
4379   // ---------- rescan from roots --------------
4380   _timer.start();
4381   CMSHeap* heap = CMSHeap::heap();
4382   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4383     _collector->_span, _collector->ref_processor(),
4384     &(_collector->_markBitMap),
4385     work_queue(worker_id));
4386 
4387   // Rescan young gen roots first since these are likely
4388   // coarsely partitioned and may, on that account, constitute
4389   // the critical path; thus, it's best to start off that
4390   // work first.
4391   // ---------- young gen roots --------------
4392   {
4393     work_on_young_gen_roots(&par_mrias_cl);
4394     _timer.stop();
4395     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4396   }
4397 
4398   // ---------- remaining roots --------------
4399   _timer.reset();
4400   _timer.start();
4401   heap->cms_process_roots(_strong_roots_scope,
4402                           false,     // yg was scanned above
4403                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4404                           _collector->should_unload_classes(),
4405                           &par_mrias_cl,
4406                           NULL);     // The dirty klasses will be handled below
4407 
4408   assert(_collector->should_unload_classes()
4409          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4410          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4411   _timer.stop();
4412   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4413 
4414   // ---------- unhandled CLD scanning ----------
4415   if (worker_id == 0) { // Single threaded at the moment.
4416     _timer.reset();
4417     _timer.start();
4418 
4419     // Scan all new class loader data objects and new dependencies that were
4420     // introduced during concurrent marking.
4421     ResourceMark rm;
4422     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4423     for (int i = 0; i < array->length(); i++) {
4424       par_mrias_cl.do_cld_nv(array->at(i));
4425     }
4426 
4427     // We don't need to keep track of new CLDs anymore.
4428     ClassLoaderDataGraph::remember_new_clds(false);
4429 
4430     _timer.stop();
4431     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4432   }
4433 
4434   // We might have added oops to ClassLoaderData::_handles during the
4435   // concurrent marking phase. These oops do not always point to newly allocated objects
4436   // that are guaranteed to be kept alive.  Hence,
4437   // we do have to revisit the _handles block during the remark phase.
4438 
4439   // ---------- dirty CLD scanning ----------
4440   if (worker_id == 0) { // Single threaded at the moment.
4441     _timer.reset();
4442     _timer.start();
4443 
4444     // Scan all classes that was dirtied during the concurrent marking phase.
4445     RemarkCLDClosure remark_closure(&par_mrias_cl);
4446     ClassLoaderDataGraph::cld_do(&remark_closure);
4447 
4448     _timer.stop();
4449     log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4450   }
4451 
4452 
4453   // ---------- rescan dirty cards ------------
4454   _timer.reset();
4455   _timer.start();
4456 
4457   // Do the rescan tasks for each of the two spaces
4458   // (cms_space) in turn.
4459   // "worker_id" is passed to select the task_queue for "worker_id"
4460   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4461   _timer.stop();
4462   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4463 
4464   // ---------- steal work from other threads ...
4465   // ---------- ... and drain overflow list.
4466   _timer.reset();
4467   _timer.start();
4468   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4469   _timer.stop();
4470   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4471 }
4472 
4473 void
4474 CMSParMarkTask::do_young_space_rescan(
4475   OopsInGenClosure* cl, ContiguousSpace* space,
4476   HeapWord** chunk_array, size_t chunk_top) {
4477   // Until all tasks completed:
4478   // . claim an unclaimed task
4479   // . compute region boundaries corresponding to task claimed
4480   //   using chunk_array
4481   // . par_oop_iterate(cl) over that region
4482 
4483   ResourceMark rm;
4484   HandleMark   hm;
4485 
4486   SequentialSubTasksDone* pst = space->par_seq_tasks();
4487 
4488   uint nth_task = 0;
4489   uint n_tasks  = pst->n_tasks();
4490 
4491   if (n_tasks > 0) {
4492     assert(pst->valid(), "Uninitialized use?");
4493     HeapWord *start, *end;
4494     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4495       // We claimed task # nth_task; compute its boundaries.
4496       if (chunk_top == 0) {  // no samples were taken
4497         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4498         start = space->bottom();
4499         end   = space->top();
4500       } else if (nth_task == 0) {
4501         start = space->bottom();
4502         end   = chunk_array[nth_task];
4503       } else if (nth_task < (uint)chunk_top) {
4504         assert(nth_task >= 1, "Control point invariant");
4505         start = chunk_array[nth_task - 1];
4506         end   = chunk_array[nth_task];
4507       } else {
4508         assert(nth_task == (uint)chunk_top, "Control point invariant");
4509         start = chunk_array[chunk_top - 1];
4510         end   = space->top();
4511       }
4512       MemRegion mr(start, end);
4513       // Verify that mr is in space
4514       assert(mr.is_empty() || space->used_region().contains(mr),
4515              "Should be in space");
4516       // Verify that "start" is an object boundary
4517       assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())),
4518              "Should be an oop");
4519       space->par_oop_iterate(mr, cl);
4520     }
4521     pst->all_tasks_completed();
4522   }
4523 }
4524 
4525 void
4526 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4527   CompactibleFreeListSpace* sp, int i,
4528   ParMarkRefsIntoAndScanClosure* cl) {
4529   // Until all tasks completed:
4530   // . claim an unclaimed task
4531   // . compute region boundaries corresponding to task claimed
4532   // . transfer dirty bits ct->mut for that region
4533   // . apply rescanclosure to dirty mut bits for that region
4534 
4535   ResourceMark rm;
4536   HandleMark   hm;
4537 
4538   OopTaskQueue* work_q = work_queue(i);
4539   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4540   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4541   // CAUTION: This closure has state that persists across calls to
4542   // the work method dirty_range_iterate_clear() in that it has
4543   // embedded in it a (subtype of) UpwardsObjectClosure. The
4544   // use of that state in the embedded UpwardsObjectClosure instance
4545   // assumes that the cards are always iterated (even if in parallel
4546   // by several threads) in monotonically increasing order per each
4547   // thread. This is true of the implementation below which picks
4548   // card ranges (chunks) in monotonically increasing order globally
4549   // and, a-fortiori, in monotonically increasing order per thread
4550   // (the latter order being a subsequence of the former).
4551   // If the work code below is ever reorganized into a more chaotic
4552   // work-partitioning form than the current "sequential tasks"
4553   // paradigm, the use of that persistent state will have to be
4554   // revisited and modified appropriately. See also related
4555   // bug 4756801 work on which should examine this code to make
4556   // sure that the changes there do not run counter to the
4557   // assumptions made here and necessary for correctness and
4558   // efficiency. Note also that this code might yield inefficient
4559   // behavior in the case of very large objects that span one or
4560   // more work chunks. Such objects would potentially be scanned
4561   // several times redundantly. Work on 4756801 should try and
4562   // address that performance anomaly if at all possible. XXX
4563   MemRegion  full_span  = _collector->_span;
4564   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4565   MarkFromDirtyCardsClosure
4566     greyRescanClosure(_collector, full_span, // entire span of interest
4567                       sp, bm, work_q, cl);
4568 
4569   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4570   assert(pst->valid(), "Uninitialized use?");
4571   uint nth_task = 0;
4572   const int alignment = CardTable::card_size * BitsPerWord;
4573   MemRegion span = sp->used_region();
4574   HeapWord* start_addr = span.start();
4575   HeapWord* end_addr = align_up(span.end(), alignment);
4576   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4577   assert(is_aligned(start_addr, alignment), "Check alignment");
4578   assert(is_aligned(chunk_size, alignment), "Check alignment");
4579 
4580   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4581     // Having claimed the nth_task, compute corresponding mem-region,
4582     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4583     // The alignment restriction ensures that we do not need any
4584     // synchronization with other gang-workers while setting or
4585     // clearing bits in thus chunk of the MUT.
4586     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4587                                     start_addr + (nth_task+1)*chunk_size);
4588     // The last chunk's end might be way beyond end of the
4589     // used region. In that case pull back appropriately.
4590     if (this_span.end() > end_addr) {
4591       this_span.set_end(end_addr);
4592       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4593     }
4594     // Iterate over the dirty cards covering this chunk, marking them
4595     // precleaned, and setting the corresponding bits in the mod union
4596     // table. Since we have been careful to partition at Card and MUT-word
4597     // boundaries no synchronization is needed between parallel threads.
4598     _collector->_ct->dirty_card_iterate(this_span,
4599                                                  &modUnionClosure);
4600 
4601     // Having transferred these marks into the modUnionTable,
4602     // rescan the marked objects on the dirty cards in the modUnionTable.
4603     // Even if this is at a synchronous collection, the initial marking
4604     // may have been done during an asynchronous collection so there
4605     // may be dirty bits in the mod-union table.
4606     _collector->_modUnionTable.dirty_range_iterate_clear(
4607                   this_span, &greyRescanClosure);
4608     _collector->_modUnionTable.verifyNoOneBitsInRange(
4609                                  this_span.start(),
4610                                  this_span.end());
4611   }
4612   pst->all_tasks_completed();  // declare that i am done
4613 }
4614 
4615 // . see if we can share work_queues with ParNew? XXX
4616 void
4617 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4618                                 int* seed) {
4619   OopTaskQueue* work_q = work_queue(i);
4620   NOT_PRODUCT(int num_steals = 0;)
4621   oop obj_to_scan;
4622   CMSBitMap* bm = &(_collector->_markBitMap);
4623 
4624   while (true) {
4625     // Completely finish any left over work from (an) earlier round(s)
4626     cl->trim_queue(0);
4627     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4628                                          (size_t)ParGCDesiredObjsFromOverflowList);
4629     // Now check if there's any work in the overflow list
4630     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4631     // only affects the number of attempts made to get work from the
4632     // overflow list and does not affect the number of workers.  Just
4633     // pass ParallelGCThreads so this behavior is unchanged.
4634     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4635                                                 work_q,
4636                                                 ParallelGCThreads)) {
4637       // found something in global overflow list;
4638       // not yet ready to go stealing work from others.
4639       // We'd like to assert(work_q->size() != 0, ...)
4640       // because we just took work from the overflow list,
4641       // but of course we can't since all of that could have
4642       // been already stolen from us.
4643       // "He giveth and He taketh away."
4644       continue;
4645     }
4646     // Verify that we have no work before we resort to stealing
4647     assert(work_q->size() == 0, "Have work, shouldn't steal");
4648     // Try to steal from other queues that have work
4649     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4650       NOT_PRODUCT(num_steals++;)
4651       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
4652       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4653       // Do scanning work
4654       obj_to_scan->oop_iterate(cl);
4655       // Loop around, finish this work, and try to steal some more
4656     } else if (terminator()->offer_termination()) {
4657         break;  // nirvana from the infinite cycle
4658     }
4659   }
4660   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4661   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4662          "Else our work is not yet done");
4663 }
4664 
4665 // Record object boundaries in _eden_chunk_array by sampling the eden
4666 // top in the slow-path eden object allocation code path and record
4667 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4668 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4669 // sampling in sample_eden() that activates during the part of the
4670 // preclean phase.
4671 void CMSCollector::sample_eden_chunk() {
4672   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4673     if (_eden_chunk_lock->try_lock()) {
4674       // Record a sample. This is the critical section. The contents
4675       // of the _eden_chunk_array have to be non-decreasing in the
4676       // address order.
4677       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4678       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4679              "Unexpected state of Eden");
4680       if (_eden_chunk_index == 0 ||
4681           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4682            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4683                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4684         _eden_chunk_index++;  // commit sample
4685       }
4686       _eden_chunk_lock->unlock();
4687     }
4688   }
4689 }
4690 
4691 // Return a thread-local PLAB recording array, as appropriate.
4692 void* CMSCollector::get_data_recorder(int thr_num) {
4693   if (_survivor_plab_array != NULL &&
4694       (CMSPLABRecordAlways ||
4695        (_collectorState > Marking && _collectorState < FinalMarking))) {
4696     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4697     ChunkArray* ca = &_survivor_plab_array[thr_num];
4698     ca->reset();   // clear it so that fresh data is recorded
4699     return (void*) ca;
4700   } else {
4701     return NULL;
4702   }
4703 }
4704 
4705 // Reset all the thread-local PLAB recording arrays
4706 void CMSCollector::reset_survivor_plab_arrays() {
4707   for (uint i = 0; i < ParallelGCThreads; i++) {
4708     _survivor_plab_array[i].reset();
4709   }
4710 }
4711 
4712 // Merge the per-thread plab arrays into the global survivor chunk
4713 // array which will provide the partitioning of the survivor space
4714 // for CMS initial scan and rescan.
4715 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4716                                               int no_of_gc_threads) {
4717   assert(_survivor_plab_array  != NULL, "Error");
4718   assert(_survivor_chunk_array != NULL, "Error");
4719   assert(_collectorState == FinalMarking ||
4720          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4721   for (int j = 0; j < no_of_gc_threads; j++) {
4722     _cursor[j] = 0;
4723   }
4724   HeapWord* top = surv->top();
4725   size_t i;
4726   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4727     HeapWord* min_val = top;          // Higher than any PLAB address
4728     uint      min_tid = 0;            // position of min_val this round
4729     for (int j = 0; j < no_of_gc_threads; j++) {
4730       ChunkArray* cur_sca = &_survivor_plab_array[j];
4731       if (_cursor[j] == cur_sca->end()) {
4732         continue;
4733       }
4734       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4735       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4736       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4737       if (cur_val < min_val) {
4738         min_tid = j;
4739         min_val = cur_val;
4740       } else {
4741         assert(cur_val < top, "All recorded addresses should be less");
4742       }
4743     }
4744     // At this point min_val and min_tid are respectively
4745     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4746     // and the thread (j) that witnesses that address.
4747     // We record this address in the _survivor_chunk_array[i]
4748     // and increment _cursor[min_tid] prior to the next round i.
4749     if (min_val == top) {
4750       break;
4751     }
4752     _survivor_chunk_array[i] = min_val;
4753     _cursor[min_tid]++;
4754   }
4755   // We are all done; record the size of the _survivor_chunk_array
4756   _survivor_chunk_index = i; // exclusive: [0, i)
4757   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4758   // Verify that we used up all the recorded entries
4759   #ifdef ASSERT
4760     size_t total = 0;
4761     for (int j = 0; j < no_of_gc_threads; j++) {
4762       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4763       total += _cursor[j];
4764     }
4765     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4766     // Check that the merged array is in sorted order
4767     if (total > 0) {
4768       for (size_t i = 0; i < total - 1; i++) {
4769         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4770                                      i, p2i(_survivor_chunk_array[i]));
4771         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4772                "Not sorted");
4773       }
4774     }
4775   #endif // ASSERT
4776 }
4777 
4778 // Set up the space's par_seq_tasks structure for work claiming
4779 // for parallel initial scan and rescan of young gen.
4780 // See ParRescanTask where this is currently used.
4781 void
4782 CMSCollector::
4783 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4784   assert(n_threads > 0, "Unexpected n_threads argument");
4785 
4786   // Eden space
4787   if (!_young_gen->eden()->is_empty()) {
4788     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4789     assert(!pst->valid(), "Clobbering existing data?");
4790     // Each valid entry in [0, _eden_chunk_index) represents a task.
4791     size_t n_tasks = _eden_chunk_index + 1;
4792     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4793     // Sets the condition for completion of the subtask (how many threads
4794     // need to finish in order to be done).
4795     pst->set_n_threads(n_threads);
4796     pst->set_n_tasks((int)n_tasks);
4797   }
4798 
4799   // Merge the survivor plab arrays into _survivor_chunk_array
4800   if (_survivor_plab_array != NULL) {
4801     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4802   } else {
4803     assert(_survivor_chunk_index == 0, "Error");
4804   }
4805 
4806   // To space
4807   {
4808     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4809     assert(!pst->valid(), "Clobbering existing data?");
4810     // Sets the condition for completion of the subtask (how many threads
4811     // need to finish in order to be done).
4812     pst->set_n_threads(n_threads);
4813     pst->set_n_tasks(1);
4814     assert(pst->valid(), "Error");
4815   }
4816 
4817   // From space
4818   {
4819     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4820     assert(!pst->valid(), "Clobbering existing data?");
4821     size_t n_tasks = _survivor_chunk_index + 1;
4822     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4823     // Sets the condition for completion of the subtask (how many threads
4824     // need to finish in order to be done).
4825     pst->set_n_threads(n_threads);
4826     pst->set_n_tasks((int)n_tasks);
4827     assert(pst->valid(), "Error");
4828   }
4829 }
4830 
4831 // Parallel version of remark
4832 void CMSCollector::do_remark_parallel() {
4833   CMSHeap* heap = CMSHeap::heap();
4834   WorkGang* workers = heap->workers();
4835   assert(workers != NULL, "Need parallel worker threads.");
4836   // Choose to use the number of GC workers most recently set
4837   // into "active_workers".
4838   uint n_workers = workers->active_workers();
4839 
4840   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4841 
4842   StrongRootsScope srs(n_workers);
4843 
4844   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4845 
4846   // We won't be iterating over the cards in the card table updating
4847   // the younger_gen cards, so we shouldn't call the following else
4848   // the verification code as well as subsequent younger_refs_iterate
4849   // code would get confused. XXX
4850   // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4851 
4852   // The young gen rescan work will not be done as part of
4853   // process_roots (which currently doesn't know how to
4854   // parallelize such a scan), but rather will be broken up into
4855   // a set of parallel tasks (via the sampling that the [abortable]
4856   // preclean phase did of eden, plus the [two] tasks of
4857   // scanning the [two] survivor spaces. Further fine-grain
4858   // parallelization of the scanning of the survivor spaces
4859   // themselves, and of precleaning of the young gen itself
4860   // is deferred to the future.
4861   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4862 
4863   // The dirty card rescan work is broken up into a "sequence"
4864   // of parallel tasks (per constituent space) that are dynamically
4865   // claimed by the parallel threads.
4866   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4867 
4868   // It turns out that even when we're using 1 thread, doing the work in a
4869   // separate thread causes wide variance in run times.  We can't help this
4870   // in the multi-threaded case, but we special-case n=1 here to get
4871   // repeatable measurements of the 1-thread overhead of the parallel code.
4872   if (n_workers > 1) {
4873     // Make refs discovery MT-safe, if it isn't already: it may not
4874     // necessarily be so, since it's possible that we are doing
4875     // ST marking.
4876     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4877     workers->run_task(&tsk);
4878   } else {
4879     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4880     tsk.work(0);
4881   }
4882 
4883   // restore, single-threaded for now, any preserved marks
4884   // as a result of work_q overflow
4885   restore_preserved_marks_if_any();
4886 }
4887 
4888 // Non-parallel version of remark
4889 void CMSCollector::do_remark_non_parallel() {
4890   ResourceMark rm;
4891   HandleMark   hm;
4892   CMSHeap* heap = CMSHeap::heap();
4893   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4894 
4895   MarkRefsIntoAndScanClosure
4896     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4897              &_markStack, this,
4898              false /* should_yield */, false /* not precleaning */);
4899   MarkFromDirtyCardsClosure
4900     markFromDirtyCardsClosure(this, _span,
4901                               NULL,  // space is set further below
4902                               &_markBitMap, &_markStack, &mrias_cl);
4903   {
4904     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4905     // Iterate over the dirty cards, setting the corresponding bits in the
4906     // mod union table.
4907     {
4908       ModUnionClosure modUnionClosure(&_modUnionTable);
4909       _ct->dirty_card_iterate(_cmsGen->used_region(),
4910                               &modUnionClosure);
4911     }
4912     // Having transferred these marks into the modUnionTable, we just need
4913     // to rescan the marked objects on the dirty cards in the modUnionTable.
4914     // The initial marking may have been done during an asynchronous
4915     // collection so there may be dirty bits in the mod-union table.
4916     const int alignment = CardTable::card_size * BitsPerWord;
4917     {
4918       // ... First handle dirty cards in CMS gen
4919       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4920       MemRegion ur = _cmsGen->used_region();
4921       HeapWord* lb = ur.start();
4922       HeapWord* ub = align_up(ur.end(), alignment);
4923       MemRegion cms_span(lb, ub);
4924       _modUnionTable.dirty_range_iterate_clear(cms_span,
4925                                                &markFromDirtyCardsClosure);
4926       verify_work_stacks_empty();
4927       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4928     }
4929   }
4930   if (VerifyDuringGC &&
4931       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4932     HandleMark hm;  // Discard invalid handles created during verification
4933     Universe::verify();
4934   }
4935   {
4936     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4937 
4938     verify_work_stacks_empty();
4939 
4940     heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4941     StrongRootsScope srs(1);
4942 
4943     heap->cms_process_roots(&srs,
4944                             true,  // young gen as roots
4945                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
4946                             should_unload_classes(),
4947                             &mrias_cl,
4948                             NULL); // The dirty klasses will be handled below
4949 
4950     assert(should_unload_classes()
4951            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4952            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4953   }
4954 
4955   {
4956     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4957 
4958     verify_work_stacks_empty();
4959 
4960     // Scan all class loader data objects that might have been introduced
4961     // during concurrent marking.
4962     ResourceMark rm;
4963     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4964     for (int i = 0; i < array->length(); i++) {
4965       mrias_cl.do_cld_nv(array->at(i));
4966     }
4967 
4968     // We don't need to keep track of new CLDs anymore.
4969     ClassLoaderDataGraph::remember_new_clds(false);
4970 
4971     verify_work_stacks_empty();
4972   }
4973 
4974   // We might have added oops to ClassLoaderData::_handles during the
4975   // concurrent marking phase. These oops do not point to newly allocated objects
4976   // that are guaranteed to be kept alive.  Hence,
4977   // we do have to revisit the _handles block during the remark phase.
4978   {
4979     GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan", _gc_timer_cm);
4980 
4981     verify_work_stacks_empty();
4982 
4983     RemarkCLDClosure remark_closure(&mrias_cl);
4984     ClassLoaderDataGraph::cld_do(&remark_closure);
4985 
4986     verify_work_stacks_empty();
4987   }
4988 
4989   verify_work_stacks_empty();
4990   // Restore evacuated mark words, if any, used for overflow list links
4991   restore_preserved_marks_if_any();
4992 
4993   verify_overflow_empty();
4994 }
4995 
4996 ////////////////////////////////////////////////////////
4997 // Parallel Reference Processing Task Proxy Class
4998 ////////////////////////////////////////////////////////
4999 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5000   OopTaskQueueSet*       _queues;
5001   ParallelTaskTerminator _terminator;
5002  public:
5003   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5004     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5005   ParallelTaskTerminator* terminator() { return &_terminator; }
5006   OopTaskQueueSet* queues() { return _queues; }
5007 };
5008 
5009 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5010   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5011   CMSCollector*          _collector;
5012   CMSBitMap*             _mark_bit_map;
5013   const MemRegion        _span;
5014   ProcessTask&           _task;
5015 
5016 public:
5017   CMSRefProcTaskProxy(ProcessTask&     task,
5018                       CMSCollector*    collector,
5019                       const MemRegion& span,
5020                       CMSBitMap*       mark_bit_map,
5021                       AbstractWorkGang* workers,
5022                       OopTaskQueueSet* task_queues):
5023     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5024       task_queues,
5025       workers->active_workers()),
5026     _task(task),
5027     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5028   {
5029     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5030            "Inconsistency in _span");
5031   }
5032 
5033   OopTaskQueueSet* task_queues() { return queues(); }
5034 
5035   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5036 
5037   void do_work_steal(int i,
5038                      CMSParDrainMarkingStackClosure* drain,
5039                      CMSParKeepAliveClosure* keep_alive,
5040                      int* seed);
5041 
5042   virtual void work(uint worker_id);
5043 };
5044 
5045 void CMSRefProcTaskProxy::work(uint worker_id) {
5046   ResourceMark rm;
5047   HandleMark hm;
5048   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5049   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5050                                         _mark_bit_map,
5051                                         work_queue(worker_id));
5052   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5053                                                  _mark_bit_map,
5054                                                  work_queue(worker_id));
5055   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5056   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5057   if (_task.marks_oops_alive()) {
5058     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5059                   _collector->hash_seed(worker_id));
5060   }
5061   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5062   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5063 }
5064 
5065 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5066   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5067    _span(span),
5068    _bit_map(bit_map),
5069    _work_queue(work_queue),
5070    _mark_and_push(collector, span, bit_map, work_queue),
5071    _low_water_mark(MIN2((work_queue->max_elems()/4),
5072                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5073 { }
5074 
5075 // . see if we can share work_queues with ParNew? XXX
5076 void CMSRefProcTaskProxy::do_work_steal(int i,
5077   CMSParDrainMarkingStackClosure* drain,
5078   CMSParKeepAliveClosure* keep_alive,
5079   int* seed) {
5080   OopTaskQueue* work_q = work_queue(i);
5081   NOT_PRODUCT(int num_steals = 0;)
5082   oop obj_to_scan;
5083 
5084   while (true) {
5085     // Completely finish any left over work from (an) earlier round(s)
5086     drain->trim_queue(0);
5087     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5088                                          (size_t)ParGCDesiredObjsFromOverflowList);
5089     // Now check if there's any work in the overflow list
5090     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5091     // only affects the number of attempts made to get work from the
5092     // overflow list and does not affect the number of workers.  Just
5093     // pass ParallelGCThreads so this behavior is unchanged.
5094     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5095                                                 work_q,
5096                                                 ParallelGCThreads)) {
5097       // Found something in global overflow list;
5098       // not yet ready to go stealing work from others.
5099       // We'd like to assert(work_q->size() != 0, ...)
5100       // because we just took work from the overflow list,
5101       // but of course we can't, since all of that might have
5102       // been already stolen from us.
5103       continue;
5104     }
5105     // Verify that we have no work before we resort to stealing
5106     assert(work_q->size() == 0, "Have work, shouldn't steal");
5107     // Try to steal from other queues that have work
5108     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5109       NOT_PRODUCT(num_steals++;)
5110       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
5111       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5112       // Do scanning work
5113       obj_to_scan->oop_iterate(keep_alive);
5114       // Loop around, finish this work, and try to steal some more
5115     } else if (terminator()->offer_termination()) {
5116       break;  // nirvana from the infinite cycle
5117     }
5118   }
5119   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5120 }
5121 
5122 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5123 {
5124   CMSHeap* heap = CMSHeap::heap();
5125   WorkGang* workers = heap->workers();
5126   assert(workers != NULL, "Need parallel worker threads.");
5127   CMSRefProcTaskProxy rp_task(task, &_collector,
5128                               _collector.ref_processor_span(),
5129                               _collector.markBitMap(),
5130                               workers, _collector.task_queues());
5131   workers->run_task(&rp_task);
5132 }
5133 
5134 void CMSCollector::refProcessingWork() {
5135   ResourceMark rm;
5136   HandleMark   hm;
5137 
5138   ReferenceProcessor* rp = ref_processor();
5139   assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
5140   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5141   // Process weak references.
5142   rp->setup_policy(false);
5143   verify_work_stacks_empty();
5144 
5145   ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_queues());
5146   {
5147     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5148 
5149     // Setup keep_alive and complete closures.
5150     CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5151                                             &_markStack, false /* !preclean */);
5152     CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5153                                   _span, &_markBitMap, &_markStack,
5154                                   &cmsKeepAliveClosure, false /* !preclean */);
5155 
5156     ReferenceProcessorStats stats;
5157     if (rp->processing_is_mt()) {
5158       // Set the degree of MT here.  If the discovery is done MT, there
5159       // may have been a different number of threads doing the discovery
5160       // and a different number of discovered lists may have Ref objects.
5161       // That is OK as long as the Reference lists are balanced (see
5162       // balance_all_queues() and balance_queues()).
5163       CMSHeap* heap = CMSHeap::heap();
5164       uint active_workers = ParallelGCThreads;
5165       WorkGang* workers = heap->workers();
5166       if (workers != NULL) {
5167         active_workers = workers->active_workers();
5168         // The expectation is that active_workers will have already
5169         // been set to a reasonable value.  If it has not been set,
5170         // investigate.
5171         assert(active_workers > 0, "Should have been set during scavenge");
5172       }
5173       rp->set_active_mt_degree(active_workers);
5174       CMSRefProcTaskExecutor task_executor(*this);
5175       stats = rp->process_discovered_references(&_is_alive_closure,
5176                                         &cmsKeepAliveClosure,
5177                                         &cmsDrainMarkingStackClosure,
5178                                         &task_executor,
5179                                         &pt);
5180     } else {
5181       stats = rp->process_discovered_references(&_is_alive_closure,
5182                                         &cmsKeepAliveClosure,
5183                                         &cmsDrainMarkingStackClosure,
5184                                         NULL,
5185                                         &pt);
5186     }
5187     _gc_tracer_cm->report_gc_reference_stats(stats);
5188     pt.print_all_references();
5189   }
5190 
5191   // This is the point where the entire marking should have completed.
5192   verify_work_stacks_empty();
5193 
5194   {
5195     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer_cm);
5196     WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl);
5197   }
5198 
5199   if (should_unload_classes()) {
5200     {
5201       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5202 
5203       // Unload classes and purge the SystemDictionary.
5204       bool purged_class = SystemDictionary::do_unloading(_gc_timer_cm);
5205 
5206       // Unload nmethods.
5207       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5208 
5209       // Prune dead klasses from subklass/sibling/implementor lists.
5210       Klass::clean_weak_klass_links(purged_class);
5211     }
5212 
5213     {
5214       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5215       // Clean up unreferenced symbols in symbol table.
5216       SymbolTable::unlink();
5217     }
5218 
5219     {
5220       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5221       // Delete entries for dead interned strings.
5222       StringTable::unlink(&_is_alive_closure);
5223     }
5224   }
5225 
5226   // Restore any preserved marks as a result of mark stack or
5227   // work queue overflow
5228   restore_preserved_marks_if_any();  // done single-threaded for now
5229 
5230   rp->set_enqueuing_is_done(true);
5231   rp->verify_no_references_recorded();
5232 }
5233 
5234 #ifndef PRODUCT
5235 void CMSCollector::check_correct_thread_executing() {
5236   Thread* t = Thread::current();
5237   // Only the VM thread or the CMS thread should be here.
5238   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5239          "Unexpected thread type");
5240   // If this is the vm thread, the foreground process
5241   // should not be waiting.  Note that _foregroundGCIsActive is
5242   // true while the foreground collector is waiting.
5243   if (_foregroundGCShouldWait) {
5244     // We cannot be the VM thread
5245     assert(t->is_ConcurrentGC_thread(),
5246            "Should be CMS thread");
5247   } else {
5248     // We can be the CMS thread only if we are in a stop-world
5249     // phase of CMS collection.
5250     if (t->is_ConcurrentGC_thread()) {
5251       assert(_collectorState == InitialMarking ||
5252              _collectorState == FinalMarking,
5253              "Should be a stop-world phase");
5254       // The CMS thread should be holding the CMS_token.
5255       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5256              "Potential interference with concurrently "
5257              "executing VM thread");
5258     }
5259   }
5260 }
5261 #endif
5262 
5263 void CMSCollector::sweep() {
5264   assert(_collectorState == Sweeping, "just checking");
5265   check_correct_thread_executing();
5266   verify_work_stacks_empty();
5267   verify_overflow_empty();
5268   increment_sweep_count();
5269   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
5270 
5271   _inter_sweep_timer.stop();
5272   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5273 
5274   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5275   _intra_sweep_timer.reset();
5276   _intra_sweep_timer.start();
5277   {
5278     GCTraceCPUTime tcpu;
5279     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5280     // First sweep the old gen
5281     {
5282       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5283                                bitMapLock());
5284       sweepWork(_cmsGen);
5285     }
5286 
5287     // Update Universe::_heap_*_at_gc figures.
5288     // We need all the free list locks to make the abstract state
5289     // transition from Sweeping to Resetting. See detailed note
5290     // further below.
5291     {
5292       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5293       // Update heap occupancy information which is used as
5294       // input to soft ref clearing policy at the next gc.
5295       Universe::update_heap_info_at_gc();
5296       _collectorState = Resizing;
5297     }
5298   }
5299   verify_work_stacks_empty();
5300   verify_overflow_empty();
5301 
5302   if (should_unload_classes()) {
5303     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5304     // requires that the virtual spaces are stable and not deleted.
5305     ClassLoaderDataGraph::set_should_purge(true);
5306   }
5307 
5308   _intra_sweep_timer.stop();
5309   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5310 
5311   _inter_sweep_timer.reset();
5312   _inter_sweep_timer.start();
5313 
5314   // We need to use a monotonically non-decreasing time in ms
5315   // or we will see time-warp warnings and os::javaTimeMillis()
5316   // does not guarantee monotonicity.
5317   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5318   update_time_of_last_gc(now);
5319 
5320   // NOTE on abstract state transitions:
5321   // Mutators allocate-live and/or mark the mod-union table dirty
5322   // based on the state of the collection.  The former is done in
5323   // the interval [Marking, Sweeping] and the latter in the interval
5324   // [Marking, Sweeping).  Thus the transitions into the Marking state
5325   // and out of the Sweeping state must be synchronously visible
5326   // globally to the mutators.
5327   // The transition into the Marking state happens with the world
5328   // stopped so the mutators will globally see it.  Sweeping is
5329   // done asynchronously by the background collector so the transition
5330   // from the Sweeping state to the Resizing state must be done
5331   // under the freelistLock (as is the check for whether to
5332   // allocate-live and whether to dirty the mod-union table).
5333   assert(_collectorState == Resizing, "Change of collector state to"
5334     " Resizing must be done under the freelistLocks (plural)");
5335 
5336   // Now that sweeping has been completed, we clear
5337   // the incremental_collection_failed flag,
5338   // thus inviting a younger gen collection to promote into
5339   // this generation. If such a promotion may still fail,
5340   // the flag will be set again when a young collection is
5341   // attempted.
5342   CMSHeap* heap = CMSHeap::heap();
5343   heap->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5344   heap->update_full_collections_completed(_collection_count_start);
5345 }
5346 
5347 // FIX ME!!! Looks like this belongs in CFLSpace, with
5348 // CMSGen merely delegating to it.
5349 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5350   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5351   HeapWord*  minAddr        = _cmsSpace->bottom();
5352   HeapWord*  largestAddr    =
5353     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5354   if (largestAddr == NULL) {
5355     // The dictionary appears to be empty.  In this case
5356     // try to coalesce at the end of the heap.
5357     largestAddr = _cmsSpace->end();
5358   }
5359   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5360   size_t nearLargestOffset =
5361     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5362   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5363                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5364   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5365 }
5366 
5367 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5368   return addr >= _cmsSpace->nearLargestChunk();
5369 }
5370 
5371 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5372   return _cmsSpace->find_chunk_at_end();
5373 }
5374 
5375 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5376                                                     bool full) {
5377   // If the young generation has been collected, gather any statistics
5378   // that are of interest at this point.
5379   bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation);
5380   if (!full && current_is_young) {
5381     // Gather statistics on the young generation collection.
5382     collector()->stats().record_gc0_end(used());
5383   }
5384 }
5385 
5386 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5387   // We iterate over the space(s) underlying this generation,
5388   // checking the mark bit map to see if the bits corresponding
5389   // to specific blocks are marked or not. Blocks that are
5390   // marked are live and are not swept up. All remaining blocks
5391   // are swept up, with coalescing on-the-fly as we sweep up
5392   // contiguous free and/or garbage blocks:
5393   // We need to ensure that the sweeper synchronizes with allocators
5394   // and stop-the-world collectors. In particular, the following
5395   // locks are used:
5396   // . CMS token: if this is held, a stop the world collection cannot occur
5397   // . freelistLock: if this is held no allocation can occur from this
5398   //                 generation by another thread
5399   // . bitMapLock: if this is held, no other thread can access or update
5400   //
5401 
5402   // Note that we need to hold the freelistLock if we use
5403   // block iterate below; else the iterator might go awry if
5404   // a mutator (or promotion) causes block contents to change
5405   // (for instance if the allocator divvies up a block).
5406   // If we hold the free list lock, for all practical purposes
5407   // young generation GC's can't occur (they'll usually need to
5408   // promote), so we might as well prevent all young generation
5409   // GC's while we do a sweeping step. For the same reason, we might
5410   // as well take the bit map lock for the entire duration
5411 
5412   // check that we hold the requisite locks
5413   assert(have_cms_token(), "Should hold cms token");
5414   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5415   assert_lock_strong(old_gen->freelistLock());
5416   assert_lock_strong(bitMapLock());
5417 
5418   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5419   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5420   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5421                                           _inter_sweep_estimate.padded_average(),
5422                                           _intra_sweep_estimate.padded_average());
5423   old_gen->setNearLargestChunk();
5424 
5425   {
5426     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5427     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5428     // We need to free-up/coalesce garbage/blocks from a
5429     // co-terminal free run. This is done in the SweepClosure
5430     // destructor; so, do not remove this scope, else the
5431     // end-of-sweep-census below will be off by a little bit.
5432   }
5433   old_gen->cmsSpace()->sweep_completed();
5434   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5435   if (should_unload_classes()) {                // unloaded classes this cycle,
5436     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5437   } else {                                      // did not unload classes,
5438     _concurrent_cycles_since_last_unload++;     // ... increment count
5439   }
5440 }
5441 
5442 // Reset CMS data structures (for now just the marking bit map)
5443 // preparatory for the next cycle.
5444 void CMSCollector::reset_concurrent() {
5445   CMSTokenSyncWithLocks ts(true, bitMapLock());
5446 
5447   // If the state is not "Resetting", the foreground  thread
5448   // has done a collection and the resetting.
5449   if (_collectorState != Resetting) {
5450     assert(_collectorState == Idling, "The state should only change"
5451       " because the foreground collector has finished the collection");
5452     return;
5453   }
5454 
5455   {
5456     // Clear the mark bitmap (no grey objects to start with)
5457     // for the next cycle.
5458     GCTraceCPUTime tcpu;
5459     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5460 
5461     HeapWord* curAddr = _markBitMap.startWord();
5462     while (curAddr < _markBitMap.endWord()) {
5463       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5464       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5465       _markBitMap.clear_large_range(chunk);
5466       if (ConcurrentMarkSweepThread::should_yield() &&
5467           !foregroundGCIsActive() &&
5468           CMSYield) {
5469         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5470                "CMS thread should hold CMS token");
5471         assert_lock_strong(bitMapLock());
5472         bitMapLock()->unlock();
5473         ConcurrentMarkSweepThread::desynchronize(true);
5474         stopTimer();
5475         incrementYields();
5476 
5477         // See the comment in coordinator_yield()
5478         for (unsigned i = 0; i < CMSYieldSleepCount &&
5479                          ConcurrentMarkSweepThread::should_yield() &&
5480                          !CMSCollector::foregroundGCIsActive(); ++i) {
5481           os::sleep(Thread::current(), 1, false);
5482         }
5483 
5484         ConcurrentMarkSweepThread::synchronize(true);
5485         bitMapLock()->lock_without_safepoint_check();
5486         startTimer();
5487       }
5488       curAddr = chunk.end();
5489     }
5490     // A successful mostly concurrent collection has been done.
5491     // Because only the full (i.e., concurrent mode failure) collections
5492     // are being measured for gc overhead limits, clean the "near" flag
5493     // and count.
5494     size_policy()->reset_gc_overhead_limit_count();
5495     _collectorState = Idling;
5496   }
5497 
5498   register_gc_end();
5499 }
5500 
5501 // Same as above but for STW paths
5502 void CMSCollector::reset_stw() {
5503   // already have the lock
5504   assert(_collectorState == Resetting, "just checking");
5505   assert_lock_strong(bitMapLock());
5506   GCIdMark gc_id_mark(_cmsThread->gc_id());
5507   _markBitMap.clear_all();
5508   _collectorState = Idling;
5509   register_gc_end();
5510 }
5511 
5512 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5513   GCTraceCPUTime tcpu;
5514   TraceCollectorStats tcs_cgc(cgc_counters());
5515 
5516   switch (op) {
5517     case CMS_op_checkpointRootsInitial: {
5518       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5519       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5520       checkpointRootsInitial();
5521       break;
5522     }
5523     case CMS_op_checkpointRootsFinal: {
5524       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5525       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5526       checkpointRootsFinal();
5527       break;
5528     }
5529     default:
5530       fatal("No such CMS_op");
5531   }
5532 }
5533 
5534 #ifndef PRODUCT
5535 size_t const CMSCollector::skip_header_HeapWords() {
5536   return FreeChunk::header_size();
5537 }
5538 
5539 // Try and collect here conditions that should hold when
5540 // CMS thread is exiting. The idea is that the foreground GC
5541 // thread should not be blocked if it wants to terminate
5542 // the CMS thread and yet continue to run the VM for a while
5543 // after that.
5544 void CMSCollector::verify_ok_to_terminate() const {
5545   assert(Thread::current()->is_ConcurrentGC_thread(),
5546          "should be called by CMS thread");
5547   assert(!_foregroundGCShouldWait, "should be false");
5548   // We could check here that all the various low-level locks
5549   // are not held by the CMS thread, but that is overkill; see
5550   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5551   // is checked.
5552 }
5553 #endif
5554 
5555 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5556    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5557           "missing Printezis mark?");
5558   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5559   size_t size = pointer_delta(nextOneAddr + 1, addr);
5560   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5561          "alignment problem");
5562   assert(size >= 3, "Necessary for Printezis marks to work");
5563   return size;
5564 }
5565 
5566 // A variant of the above (block_size_using_printezis_bits()) except
5567 // that we return 0 if the P-bits are not yet set.
5568 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5569   if (_markBitMap.isMarked(addr + 1)) {
5570     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5571     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5572     size_t size = pointer_delta(nextOneAddr + 1, addr);
5573     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5574            "alignment problem");
5575     assert(size >= 3, "Necessary for Printezis marks to work");
5576     return size;
5577   }
5578   return 0;
5579 }
5580 
5581 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5582   size_t sz = 0;
5583   oop p = (oop)addr;
5584   if (p->klass_or_null_acquire() != NULL) {
5585     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5586   } else {
5587     sz = block_size_using_printezis_bits(addr);
5588   }
5589   assert(sz > 0, "size must be nonzero");
5590   HeapWord* next_block = addr + sz;
5591   HeapWord* next_card  = align_up(next_block, CardTable::card_size);
5592   assert(align_down((uintptr_t)addr,      CardTable::card_size) <
5593          align_down((uintptr_t)next_card, CardTable::card_size),
5594          "must be different cards");
5595   return next_card;
5596 }
5597 
5598 
5599 // CMS Bit Map Wrapper /////////////////////////////////////////
5600 
5601 // Construct a CMS bit map infrastructure, but don't create the
5602 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5603 // further below.
5604 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5605   _bm(),
5606   _shifter(shifter),
5607   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5608                                     Monitor::_safepoint_check_sometimes) : NULL)
5609 {
5610   _bmStartWord = 0;
5611   _bmWordSize  = 0;
5612 }
5613 
5614 bool CMSBitMap::allocate(MemRegion mr) {
5615   _bmStartWord = mr.start();
5616   _bmWordSize  = mr.word_size();
5617   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5618                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5619   if (!brs.is_reserved()) {
5620     log_warning(gc)("CMS bit map allocation failure");
5621     return false;
5622   }
5623   // For now we'll just commit all of the bit map up front.
5624   // Later on we'll try to be more parsimonious with swap.
5625   if (!_virtual_space.initialize(brs, brs.size())) {
5626     log_warning(gc)("CMS bit map backing store failure");
5627     return false;
5628   }
5629   assert(_virtual_space.committed_size() == brs.size(),
5630          "didn't reserve backing store for all of CMS bit map?");
5631   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5632          _bmWordSize, "inconsistency in bit map sizing");
5633   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5634 
5635   // bm.clear(); // can we rely on getting zero'd memory? verify below
5636   assert(isAllClear(),
5637          "Expected zero'd memory from ReservedSpace constructor");
5638   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5639          "consistency check");
5640   return true;
5641 }
5642 
5643 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5644   HeapWord *next_addr, *end_addr, *last_addr;
5645   assert_locked();
5646   assert(covers(mr), "out-of-range error");
5647   // XXX assert that start and end are appropriately aligned
5648   for (next_addr = mr.start(), end_addr = mr.end();
5649        next_addr < end_addr; next_addr = last_addr) {
5650     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5651     last_addr = dirty_region.end();
5652     if (!dirty_region.is_empty()) {
5653       cl->do_MemRegion(dirty_region);
5654     } else {
5655       assert(last_addr == end_addr, "program logic");
5656       return;
5657     }
5658   }
5659 }
5660 
5661 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5662   _bm.print_on_error(st, prefix);
5663 }
5664 
5665 #ifndef PRODUCT
5666 void CMSBitMap::assert_locked() const {
5667   CMSLockVerifier::assert_locked(lock());
5668 }
5669 
5670 bool CMSBitMap::covers(MemRegion mr) const {
5671   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5672   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5673          "size inconsistency");
5674   return (mr.start() >= _bmStartWord) &&
5675          (mr.end()   <= endWord());
5676 }
5677 
5678 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5679     return (start >= _bmStartWord && (start + size) <= endWord());
5680 }
5681 
5682 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5683   // verify that there are no 1 bits in the interval [left, right)
5684   FalseBitMapClosure falseBitMapClosure;
5685   iterate(&falseBitMapClosure, left, right);
5686 }
5687 
5688 void CMSBitMap::region_invariant(MemRegion mr)
5689 {
5690   assert_locked();
5691   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5692   assert(!mr.is_empty(), "unexpected empty region");
5693   assert(covers(mr), "mr should be covered by bit map");
5694   // convert address range into offset range
5695   size_t start_ofs = heapWordToOffset(mr.start());
5696   // Make sure that end() is appropriately aligned
5697   assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))),
5698          "Misaligned mr.end()");
5699   size_t end_ofs   = heapWordToOffset(mr.end());
5700   assert(end_ofs > start_ofs, "Should mark at least one bit");
5701 }
5702 
5703 #endif
5704 
5705 bool CMSMarkStack::allocate(size_t size) {
5706   // allocate a stack of the requisite depth
5707   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5708                    size * sizeof(oop)));
5709   if (!rs.is_reserved()) {
5710     log_warning(gc)("CMSMarkStack allocation failure");
5711     return false;
5712   }
5713   if (!_virtual_space.initialize(rs, rs.size())) {
5714     log_warning(gc)("CMSMarkStack backing store failure");
5715     return false;
5716   }
5717   assert(_virtual_space.committed_size() == rs.size(),
5718          "didn't reserve backing store for all of CMS stack?");
5719   _base = (oop*)(_virtual_space.low());
5720   _index = 0;
5721   _capacity = size;
5722   NOT_PRODUCT(_max_depth = 0);
5723   return true;
5724 }
5725 
5726 // XXX FIX ME !!! In the MT case we come in here holding a
5727 // leaf lock. For printing we need to take a further lock
5728 // which has lower rank. We need to recalibrate the two
5729 // lock-ranks involved in order to be able to print the
5730 // messages below. (Or defer the printing to the caller.
5731 // For now we take the expedient path of just disabling the
5732 // messages for the problematic case.)
5733 void CMSMarkStack::expand() {
5734   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5735   if (_capacity == MarkStackSizeMax) {
5736     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5737       // We print a warning message only once per CMS cycle.
5738       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5739     }
5740     return;
5741   }
5742   // Double capacity if possible
5743   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5744   // Do not give up existing stack until we have managed to
5745   // get the double capacity that we desired.
5746   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5747                    new_capacity * sizeof(oop)));
5748   if (rs.is_reserved()) {
5749     // Release the backing store associated with old stack
5750     _virtual_space.release();
5751     // Reinitialize virtual space for new stack
5752     if (!_virtual_space.initialize(rs, rs.size())) {
5753       fatal("Not enough swap for expanded marking stack");
5754     }
5755     _base = (oop*)(_virtual_space.low());
5756     _index = 0;
5757     _capacity = new_capacity;
5758   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5759     // Failed to double capacity, continue;
5760     // we print a detail message only once per CMS cycle.
5761     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5762                         _capacity / K, new_capacity / K);
5763   }
5764 }
5765 
5766 
5767 // Closures
5768 // XXX: there seems to be a lot of code  duplication here;
5769 // should refactor and consolidate common code.
5770 
5771 // This closure is used to mark refs into the CMS generation in
5772 // the CMS bit map. Called at the first checkpoint. This closure
5773 // assumes that we do not need to re-mark dirty cards; if the CMS
5774 // generation on which this is used is not an oldest
5775 // generation then this will lose younger_gen cards!
5776 
5777 MarkRefsIntoClosure::MarkRefsIntoClosure(
5778   MemRegion span, CMSBitMap* bitMap):
5779     _span(span),
5780     _bitMap(bitMap)
5781 {
5782   assert(ref_discoverer() == NULL, "deliberately left NULL");
5783   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5784 }
5785 
5786 void MarkRefsIntoClosure::do_oop(oop obj) {
5787   // if p points into _span, then mark corresponding bit in _markBitMap
5788   assert(oopDesc::is_oop(obj), "expected an oop");
5789   HeapWord* addr = (HeapWord*)obj;
5790   if (_span.contains(addr)) {
5791     // this should be made more efficient
5792     _bitMap->mark(addr);
5793   }
5794 }
5795 
5796 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5797 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5798 
5799 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5800   MemRegion span, CMSBitMap* bitMap):
5801     _span(span),
5802     _bitMap(bitMap)
5803 {
5804   assert(ref_discoverer() == NULL, "deliberately left NULL");
5805   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5806 }
5807 
5808 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5809   // if p points into _span, then mark corresponding bit in _markBitMap
5810   assert(oopDesc::is_oop(obj), "expected an oop");
5811   HeapWord* addr = (HeapWord*)obj;
5812   if (_span.contains(addr)) {
5813     // this should be made more efficient
5814     _bitMap->par_mark(addr);
5815   }
5816 }
5817 
5818 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5819 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5820 
5821 // A variant of the above, used for CMS marking verification.
5822 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5823   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5824     _span(span),
5825     _verification_bm(verification_bm),
5826     _cms_bm(cms_bm)
5827 {
5828   assert(ref_discoverer() == NULL, "deliberately left NULL");
5829   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5830 }
5831 
5832 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5833   // if p points into _span, then mark corresponding bit in _markBitMap
5834   assert(oopDesc::is_oop(obj), "expected an oop");
5835   HeapWord* addr = (HeapWord*)obj;
5836   if (_span.contains(addr)) {
5837     _verification_bm->mark(addr);
5838     if (!_cms_bm->isMarked(addr)) {
5839       Log(gc, verify) log;
5840       ResourceMark rm;
5841       LogStream ls(log.error());
5842       oop(addr)->print_on(&ls);
5843       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5844       fatal("... aborting");
5845     }
5846   }
5847 }
5848 
5849 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5850 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5851 
5852 //////////////////////////////////////////////////
5853 // MarkRefsIntoAndScanClosure
5854 //////////////////////////////////////////////////
5855 
5856 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5857                                                        ReferenceDiscoverer* rd,
5858                                                        CMSBitMap* bit_map,
5859                                                        CMSBitMap* mod_union_table,
5860                                                        CMSMarkStack*  mark_stack,
5861                                                        CMSCollector* collector,
5862                                                        bool should_yield,
5863                                                        bool concurrent_precleaning):
5864   _collector(collector),
5865   _span(span),
5866   _bit_map(bit_map),
5867   _mark_stack(mark_stack),
5868   _pushAndMarkClosure(collector, span, rd, bit_map, mod_union_table,
5869                       mark_stack, concurrent_precleaning),
5870   _yield(should_yield),
5871   _concurrent_precleaning(concurrent_precleaning),
5872   _freelistLock(NULL)
5873 {
5874   // FIXME: Should initialize in base class constructor.
5875   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
5876   set_ref_discoverer_internal(rd);
5877 }
5878 
5879 // This closure is used to mark refs into the CMS generation at the
5880 // second (final) checkpoint, and to scan and transitively follow
5881 // the unmarked oops. It is also used during the concurrent precleaning
5882 // phase while scanning objects on dirty cards in the CMS generation.
5883 // The marks are made in the marking bit map and the marking stack is
5884 // used for keeping the (newly) grey objects during the scan.
5885 // The parallel version (Par_...) appears further below.
5886 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5887   if (obj != NULL) {
5888     assert(oopDesc::is_oop(obj), "expected an oop");
5889     HeapWord* addr = (HeapWord*)obj;
5890     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5891     assert(_collector->overflow_list_is_empty(),
5892            "overflow list should be empty");
5893     if (_span.contains(addr) &&
5894         !_bit_map->isMarked(addr)) {
5895       // mark bit map (object is now grey)
5896       _bit_map->mark(addr);
5897       // push on marking stack (stack should be empty), and drain the
5898       // stack by applying this closure to the oops in the oops popped
5899       // from the stack (i.e. blacken the grey objects)
5900       bool res = _mark_stack->push(obj);
5901       assert(res, "Should have space to push on empty stack");
5902       do {
5903         oop new_oop = _mark_stack->pop();
5904         assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
5905         assert(_bit_map->isMarked((HeapWord*)new_oop),
5906                "only grey objects on this stack");
5907         // iterate over the oops in this oop, marking and pushing
5908         // the ones in CMS heap (i.e. in _span).
5909         new_oop->oop_iterate(&_pushAndMarkClosure);
5910         // check if it's time to yield
5911         do_yield_check();
5912       } while (!_mark_stack->isEmpty() ||
5913                (!_concurrent_precleaning && take_from_overflow_list()));
5914         // if marking stack is empty, and we are not doing this
5915         // during precleaning, then check the overflow list
5916     }
5917     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5918     assert(_collector->overflow_list_is_empty(),
5919            "overflow list was drained above");
5920 
5921     assert(_collector->no_preserved_marks(),
5922            "All preserved marks should have been restored above");
5923   }
5924 }
5925 
5926 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5927 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5928 
5929 void MarkRefsIntoAndScanClosure::do_yield_work() {
5930   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5931          "CMS thread should hold CMS token");
5932   assert_lock_strong(_freelistLock);
5933   assert_lock_strong(_bit_map->lock());
5934   // relinquish the free_list_lock and bitMaplock()
5935   _bit_map->lock()->unlock();
5936   _freelistLock->unlock();
5937   ConcurrentMarkSweepThread::desynchronize(true);
5938   _collector->stopTimer();
5939   _collector->incrementYields();
5940 
5941   // See the comment in coordinator_yield()
5942   for (unsigned i = 0;
5943        i < CMSYieldSleepCount &&
5944        ConcurrentMarkSweepThread::should_yield() &&
5945        !CMSCollector::foregroundGCIsActive();
5946        ++i) {
5947     os::sleep(Thread::current(), 1, false);
5948   }
5949 
5950   ConcurrentMarkSweepThread::synchronize(true);
5951   _freelistLock->lock_without_safepoint_check();
5952   _bit_map->lock()->lock_without_safepoint_check();
5953   _collector->startTimer();
5954 }
5955 
5956 ///////////////////////////////////////////////////////////
5957 // ParMarkRefsIntoAndScanClosure: a parallel version of
5958 //                                MarkRefsIntoAndScanClosure
5959 ///////////////////////////////////////////////////////////
5960 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
5961   CMSCollector* collector, MemRegion span, ReferenceDiscoverer* rd,
5962   CMSBitMap* bit_map, OopTaskQueue* work_queue):
5963   _span(span),
5964   _bit_map(bit_map),
5965   _work_queue(work_queue),
5966   _low_water_mark(MIN2((work_queue->max_elems()/4),
5967                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
5968   _parPushAndMarkClosure(collector, span, rd, bit_map, work_queue)
5969 {
5970   // FIXME: Should initialize in base class constructor.
5971   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
5972   set_ref_discoverer_internal(rd);
5973 }
5974 
5975 // This closure is used to mark refs into the CMS generation at the
5976 // second (final) checkpoint, and to scan and transitively follow
5977 // the unmarked oops. The marks are made in the marking bit map and
5978 // the work_queue is used for keeping the (newly) grey objects during
5979 // the scan phase whence they are also available for stealing by parallel
5980 // threads. Since the marking bit map is shared, updates are
5981 // synchronized (via CAS).
5982 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
5983   if (obj != NULL) {
5984     // Ignore mark word because this could be an already marked oop
5985     // that may be chained at the end of the overflow list.
5986     assert(oopDesc::is_oop(obj, true), "expected an oop");
5987     HeapWord* addr = (HeapWord*)obj;
5988     if (_span.contains(addr) &&
5989         !_bit_map->isMarked(addr)) {
5990       // mark bit map (object will become grey):
5991       // It is possible for several threads to be
5992       // trying to "claim" this object concurrently;
5993       // the unique thread that succeeds in marking the
5994       // object first will do the subsequent push on
5995       // to the work queue (or overflow list).
5996       if (_bit_map->par_mark(addr)) {
5997         // push on work_queue (which may not be empty), and trim the
5998         // queue to an appropriate length by applying this closure to
5999         // the oops in the oops popped from the stack (i.e. blacken the
6000         // grey objects)
6001         bool res = _work_queue->push(obj);
6002         assert(res, "Low water mark should be less than capacity?");
6003         trim_queue(_low_water_mark);
6004       } // Else, another thread claimed the object
6005     }
6006   }
6007 }
6008 
6009 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6010 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6011 
6012 // This closure is used to rescan the marked objects on the dirty cards
6013 // in the mod union table and the card table proper.
6014 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6015   oop p, MemRegion mr) {
6016 
6017   size_t size = 0;
6018   HeapWord* addr = (HeapWord*)p;
6019   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6020   assert(_span.contains(addr), "we are scanning the CMS generation");
6021   // check if it's time to yield
6022   if (do_yield_check()) {
6023     // We yielded for some foreground stop-world work,
6024     // and we have been asked to abort this ongoing preclean cycle.
6025     return 0;
6026   }
6027   if (_bitMap->isMarked(addr)) {
6028     // it's marked; is it potentially uninitialized?
6029     if (p->klass_or_null_acquire() != NULL) {
6030         // an initialized object; ignore mark word in verification below
6031         // since we are running concurrent with mutators
6032         assert(oopDesc::is_oop(p, true), "should be an oop");
6033         if (p->is_objArray()) {
6034           // objArrays are precisely marked; restrict scanning
6035           // to dirty cards only.
6036           size = CompactibleFreeListSpace::adjustObjectSize(
6037                    p->oop_iterate_size(_scanningClosure, mr));
6038         } else {
6039           // A non-array may have been imprecisely marked; we need
6040           // to scan object in its entirety.
6041           size = CompactibleFreeListSpace::adjustObjectSize(
6042                    p->oop_iterate_size(_scanningClosure));
6043         }
6044       #ifdef ASSERT
6045         size_t direct_size =
6046           CompactibleFreeListSpace::adjustObjectSize(p->size());
6047         assert(size == direct_size, "Inconsistency in size");
6048         assert(size >= 3, "Necessary for Printezis marks to work");
6049         HeapWord* start_pbit = addr + 1;
6050         HeapWord* end_pbit = addr + size - 1;
6051         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6052                "inconsistent Printezis mark");
6053         // Verify inner mark bits (between Printezis bits) are clear,
6054         // but don't repeat if there are multiple dirty regions for
6055         // the same object, to avoid potential O(N^2) performance.
6056         if (addr != _last_scanned_object) {
6057           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6058           _last_scanned_object = addr;
6059         }
6060       #endif // ASSERT
6061     } else {
6062       // An uninitialized object.
6063       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6064       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6065       size = pointer_delta(nextOneAddr + 1, addr);
6066       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6067              "alignment problem");
6068       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6069       // will dirty the card when the klass pointer is installed in the
6070       // object (signaling the completion of initialization).
6071     }
6072   } else {
6073     // Either a not yet marked object or an uninitialized object
6074     if (p->klass_or_null_acquire() == NULL) {
6075       // An uninitialized object, skip to the next card, since
6076       // we may not be able to read its P-bits yet.
6077       assert(size == 0, "Initial value");
6078     } else {
6079       // An object not (yet) reached by marking: we merely need to
6080       // compute its size so as to go look at the next block.
6081       assert(oopDesc::is_oop(p, true), "should be an oop");
6082       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6083     }
6084   }
6085   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6086   return size;
6087 }
6088 
6089 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6090   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6091          "CMS thread should hold CMS token");
6092   assert_lock_strong(_freelistLock);
6093   assert_lock_strong(_bitMap->lock());
6094   // relinquish the free_list_lock and bitMaplock()
6095   _bitMap->lock()->unlock();
6096   _freelistLock->unlock();
6097   ConcurrentMarkSweepThread::desynchronize(true);
6098   _collector->stopTimer();
6099   _collector->incrementYields();
6100 
6101   // See the comment in coordinator_yield()
6102   for (unsigned i = 0; i < CMSYieldSleepCount &&
6103                    ConcurrentMarkSweepThread::should_yield() &&
6104                    !CMSCollector::foregroundGCIsActive(); ++i) {
6105     os::sleep(Thread::current(), 1, false);
6106   }
6107 
6108   ConcurrentMarkSweepThread::synchronize(true);
6109   _freelistLock->lock_without_safepoint_check();
6110   _bitMap->lock()->lock_without_safepoint_check();
6111   _collector->startTimer();
6112 }
6113 
6114 
6115 //////////////////////////////////////////////////////////////////
6116 // SurvivorSpacePrecleanClosure
6117 //////////////////////////////////////////////////////////////////
6118 // This (single-threaded) closure is used to preclean the oops in
6119 // the survivor spaces.
6120 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6121 
6122   HeapWord* addr = (HeapWord*)p;
6123   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6124   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6125   assert(p->klass_or_null() != NULL, "object should be initialized");
6126   // an initialized object; ignore mark word in verification below
6127   // since we are running concurrent with mutators
6128   assert(oopDesc::is_oop(p, true), "should be an oop");
6129   // Note that we do not yield while we iterate over
6130   // the interior oops of p, pushing the relevant ones
6131   // on our marking stack.
6132   size_t size = p->oop_iterate_size(_scanning_closure);
6133   do_yield_check();
6134   // Observe that below, we do not abandon the preclean
6135   // phase as soon as we should; rather we empty the
6136   // marking stack before returning. This is to satisfy
6137   // some existing assertions. In general, it may be a
6138   // good idea to abort immediately and complete the marking
6139   // from the grey objects at a later time.
6140   while (!_mark_stack->isEmpty()) {
6141     oop new_oop = _mark_stack->pop();
6142     assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
6143     assert(_bit_map->isMarked((HeapWord*)new_oop),
6144            "only grey objects on this stack");
6145     // iterate over the oops in this oop, marking and pushing
6146     // the ones in CMS heap (i.e. in _span).
6147     new_oop->oop_iterate(_scanning_closure);
6148     // check if it's time to yield
6149     do_yield_check();
6150   }
6151   unsigned int after_count =
6152     CMSHeap::heap()->total_collections();
6153   bool abort = (_before_count != after_count) ||
6154                _collector->should_abort_preclean();
6155   return abort ? 0 : size;
6156 }
6157 
6158 void SurvivorSpacePrecleanClosure::do_yield_work() {
6159   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6160          "CMS thread should hold CMS token");
6161   assert_lock_strong(_bit_map->lock());
6162   // Relinquish the bit map lock
6163   _bit_map->lock()->unlock();
6164   ConcurrentMarkSweepThread::desynchronize(true);
6165   _collector->stopTimer();
6166   _collector->incrementYields();
6167 
6168   // See the comment in coordinator_yield()
6169   for (unsigned i = 0; i < CMSYieldSleepCount &&
6170                        ConcurrentMarkSweepThread::should_yield() &&
6171                        !CMSCollector::foregroundGCIsActive(); ++i) {
6172     os::sleep(Thread::current(), 1, false);
6173   }
6174 
6175   ConcurrentMarkSweepThread::synchronize(true);
6176   _bit_map->lock()->lock_without_safepoint_check();
6177   _collector->startTimer();
6178 }
6179 
6180 // This closure is used to rescan the marked objects on the dirty cards
6181 // in the mod union table and the card table proper. In the parallel
6182 // case, although the bitMap is shared, we do a single read so the
6183 // isMarked() query is "safe".
6184 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6185   // Ignore mark word because we are running concurrent with mutators
6186   assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6187   HeapWord* addr = (HeapWord*)p;
6188   assert(_span.contains(addr), "we are scanning the CMS generation");
6189   bool is_obj_array = false;
6190   #ifdef ASSERT
6191     if (!_parallel) {
6192       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6193       assert(_collector->overflow_list_is_empty(),
6194              "overflow list should be empty");
6195 
6196     }
6197   #endif // ASSERT
6198   if (_bit_map->isMarked(addr)) {
6199     // Obj arrays are precisely marked, non-arrays are not;
6200     // so we scan objArrays precisely and non-arrays in their
6201     // entirety.
6202     if (p->is_objArray()) {
6203       is_obj_array = true;
6204       if (_parallel) {
6205         p->oop_iterate(_par_scan_closure, mr);
6206       } else {
6207         p->oop_iterate(_scan_closure, mr);
6208       }
6209     } else {
6210       if (_parallel) {
6211         p->oop_iterate(_par_scan_closure);
6212       } else {
6213         p->oop_iterate(_scan_closure);
6214       }
6215     }
6216   }
6217   #ifdef ASSERT
6218     if (!_parallel) {
6219       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6220       assert(_collector->overflow_list_is_empty(),
6221              "overflow list should be empty");
6222 
6223     }
6224   #endif // ASSERT
6225   return is_obj_array;
6226 }
6227 
6228 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6229                         MemRegion span,
6230                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6231                         bool should_yield, bool verifying):
6232   _collector(collector),
6233   _span(span),
6234   _bitMap(bitMap),
6235   _mut(&collector->_modUnionTable),
6236   _markStack(markStack),
6237   _yield(should_yield),
6238   _skipBits(0)
6239 {
6240   assert(_markStack->isEmpty(), "stack should be empty");
6241   _finger = _bitMap->startWord();
6242   _threshold = _finger;
6243   assert(_collector->_restart_addr == NULL, "Sanity check");
6244   assert(_span.contains(_finger), "Out of bounds _finger?");
6245   DEBUG_ONLY(_verifying = verifying;)
6246 }
6247 
6248 void MarkFromRootsClosure::reset(HeapWord* addr) {
6249   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6250   assert(_span.contains(addr), "Out of bounds _finger?");
6251   _finger = addr;
6252   _threshold = align_up(_finger, CardTable::card_size);
6253 }
6254 
6255 // Should revisit to see if this should be restructured for
6256 // greater efficiency.
6257 bool MarkFromRootsClosure::do_bit(size_t offset) {
6258   if (_skipBits > 0) {
6259     _skipBits--;
6260     return true;
6261   }
6262   // convert offset into a HeapWord*
6263   HeapWord* addr = _bitMap->startWord() + offset;
6264   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6265          "address out of range");
6266   assert(_bitMap->isMarked(addr), "tautology");
6267   if (_bitMap->isMarked(addr+1)) {
6268     // this is an allocated but not yet initialized object
6269     assert(_skipBits == 0, "tautology");
6270     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6271     oop p = oop(addr);
6272     if (p->klass_or_null_acquire() == NULL) {
6273       DEBUG_ONLY(if (!_verifying) {)
6274         // We re-dirty the cards on which this object lies and increase
6275         // the _threshold so that we'll come back to scan this object
6276         // during the preclean or remark phase. (CMSCleanOnEnter)
6277         if (CMSCleanOnEnter) {
6278           size_t sz = _collector->block_size_using_printezis_bits(addr);
6279           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6280           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6281           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6282           // Bump _threshold to end_card_addr; note that
6283           // _threshold cannot possibly exceed end_card_addr, anyhow.
6284           // This prevents future clearing of the card as the scan proceeds
6285           // to the right.
6286           assert(_threshold <= end_card_addr,
6287                  "Because we are just scanning into this object");
6288           if (_threshold < end_card_addr) {
6289             _threshold = end_card_addr;
6290           }
6291           if (p->klass_or_null_acquire() != NULL) {
6292             // Redirty the range of cards...
6293             _mut->mark_range(redirty_range);
6294           } // ...else the setting of klass will dirty the card anyway.
6295         }
6296       DEBUG_ONLY(})
6297       return true;
6298     }
6299   }
6300   scanOopsInOop(addr);
6301   return true;
6302 }
6303 
6304 // We take a break if we've been at this for a while,
6305 // so as to avoid monopolizing the locks involved.
6306 void MarkFromRootsClosure::do_yield_work() {
6307   // First give up the locks, then yield, then re-lock
6308   // We should probably use a constructor/destructor idiom to
6309   // do this unlock/lock or modify the MutexUnlocker class to
6310   // serve our purpose. XXX
6311   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6312          "CMS thread should hold CMS token");
6313   assert_lock_strong(_bitMap->lock());
6314   _bitMap->lock()->unlock();
6315   ConcurrentMarkSweepThread::desynchronize(true);
6316   _collector->stopTimer();
6317   _collector->incrementYields();
6318 
6319   // See the comment in coordinator_yield()
6320   for (unsigned i = 0; i < CMSYieldSleepCount &&
6321                        ConcurrentMarkSweepThread::should_yield() &&
6322                        !CMSCollector::foregroundGCIsActive(); ++i) {
6323     os::sleep(Thread::current(), 1, false);
6324   }
6325 
6326   ConcurrentMarkSweepThread::synchronize(true);
6327   _bitMap->lock()->lock_without_safepoint_check();
6328   _collector->startTimer();
6329 }
6330 
6331 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6332   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6333   assert(_markStack->isEmpty(),
6334          "should drain stack to limit stack usage");
6335   // convert ptr to an oop preparatory to scanning
6336   oop obj = oop(ptr);
6337   // Ignore mark word in verification below, since we
6338   // may be running concurrent with mutators.
6339   assert(oopDesc::is_oop(obj, true), "should be an oop");
6340   assert(_finger <= ptr, "_finger runneth ahead");
6341   // advance the finger to right end of this object
6342   _finger = ptr + obj->size();
6343   assert(_finger > ptr, "we just incremented it above");
6344   // On large heaps, it may take us some time to get through
6345   // the marking phase. During
6346   // this time it's possible that a lot of mutations have
6347   // accumulated in the card table and the mod union table --
6348   // these mutation records are redundant until we have
6349   // actually traced into the corresponding card.
6350   // Here, we check whether advancing the finger would make
6351   // us cross into a new card, and if so clear corresponding
6352   // cards in the MUT (preclean them in the card-table in the
6353   // future).
6354 
6355   DEBUG_ONLY(if (!_verifying) {)
6356     // The clean-on-enter optimization is disabled by default,
6357     // until we fix 6178663.
6358     if (CMSCleanOnEnter && (_finger > _threshold)) {
6359       // [_threshold, _finger) represents the interval
6360       // of cards to be cleared  in MUT (or precleaned in card table).
6361       // The set of cards to be cleared is all those that overlap
6362       // with the interval [_threshold, _finger); note that
6363       // _threshold is always kept card-aligned but _finger isn't
6364       // always card-aligned.
6365       HeapWord* old_threshold = _threshold;
6366       assert(is_aligned(old_threshold, CardTable::card_size),
6367              "_threshold should always be card-aligned");
6368       _threshold = align_up(_finger, CardTable::card_size);
6369       MemRegion mr(old_threshold, _threshold);
6370       assert(!mr.is_empty(), "Control point invariant");
6371       assert(_span.contains(mr), "Should clear within span");
6372       _mut->clear_range(mr);
6373     }
6374   DEBUG_ONLY(})
6375   // Note: the finger doesn't advance while we drain
6376   // the stack below.
6377   PushOrMarkClosure pushOrMarkClosure(_collector,
6378                                       _span, _bitMap, _markStack,
6379                                       _finger, this);
6380   bool res = _markStack->push(obj);
6381   assert(res, "Empty non-zero size stack should have space for single push");
6382   while (!_markStack->isEmpty()) {
6383     oop new_oop = _markStack->pop();
6384     // Skip verifying header mark word below because we are
6385     // running concurrent with mutators.
6386     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6387     // now scan this oop's oops
6388     new_oop->oop_iterate(&pushOrMarkClosure);
6389     do_yield_check();
6390   }
6391   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6392 }
6393 
6394 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6395                        CMSCollector* collector, MemRegion span,
6396                        CMSBitMap* bit_map,
6397                        OopTaskQueue* work_queue,
6398                        CMSMarkStack*  overflow_stack):
6399   _collector(collector),
6400   _whole_span(collector->_span),
6401   _span(span),
6402   _bit_map(bit_map),
6403   _mut(&collector->_modUnionTable),
6404   _work_queue(work_queue),
6405   _overflow_stack(overflow_stack),
6406   _skip_bits(0),
6407   _task(task)
6408 {
6409   assert(_work_queue->size() == 0, "work_queue should be empty");
6410   _finger = span.start();
6411   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6412   assert(_span.contains(_finger), "Out of bounds _finger?");
6413 }
6414 
6415 // Should revisit to see if this should be restructured for
6416 // greater efficiency.
6417 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6418   if (_skip_bits > 0) {
6419     _skip_bits--;
6420     return true;
6421   }
6422   // convert offset into a HeapWord*
6423   HeapWord* addr = _bit_map->startWord() + offset;
6424   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6425          "address out of range");
6426   assert(_bit_map->isMarked(addr), "tautology");
6427   if (_bit_map->isMarked(addr+1)) {
6428     // this is an allocated object that might not yet be initialized
6429     assert(_skip_bits == 0, "tautology");
6430     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6431     oop p = oop(addr);
6432     if (p->klass_or_null_acquire() == NULL) {
6433       // in the case of Clean-on-Enter optimization, redirty card
6434       // and avoid clearing card by increasing  the threshold.
6435       return true;
6436     }
6437   }
6438   scan_oops_in_oop(addr);
6439   return true;
6440 }
6441 
6442 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6443   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6444   // Should we assert that our work queue is empty or
6445   // below some drain limit?
6446   assert(_work_queue->size() == 0,
6447          "should drain stack to limit stack usage");
6448   // convert ptr to an oop preparatory to scanning
6449   oop obj = oop(ptr);
6450   // Ignore mark word in verification below, since we
6451   // may be running concurrent with mutators.
6452   assert(oopDesc::is_oop(obj, true), "should be an oop");
6453   assert(_finger <= ptr, "_finger runneth ahead");
6454   // advance the finger to right end of this object
6455   _finger = ptr + obj->size();
6456   assert(_finger > ptr, "we just incremented it above");
6457   // On large heaps, it may take us some time to get through
6458   // the marking phase. During
6459   // this time it's possible that a lot of mutations have
6460   // accumulated in the card table and the mod union table --
6461   // these mutation records are redundant until we have
6462   // actually traced into the corresponding card.
6463   // Here, we check whether advancing the finger would make
6464   // us cross into a new card, and if so clear corresponding
6465   // cards in the MUT (preclean them in the card-table in the
6466   // future).
6467 
6468   // The clean-on-enter optimization is disabled by default,
6469   // until we fix 6178663.
6470   if (CMSCleanOnEnter && (_finger > _threshold)) {
6471     // [_threshold, _finger) represents the interval
6472     // of cards to be cleared  in MUT (or precleaned in card table).
6473     // The set of cards to be cleared is all those that overlap
6474     // with the interval [_threshold, _finger); note that
6475     // _threshold is always kept card-aligned but _finger isn't
6476     // always card-aligned.
6477     HeapWord* old_threshold = _threshold;
6478     assert(is_aligned(old_threshold, CardTable::card_size),
6479            "_threshold should always be card-aligned");
6480     _threshold = align_up(_finger, CardTable::card_size);
6481     MemRegion mr(old_threshold, _threshold);
6482     assert(!mr.is_empty(), "Control point invariant");
6483     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6484     _mut->clear_range(mr);
6485   }
6486 
6487   // Note: the local finger doesn't advance while we drain
6488   // the stack below, but the global finger sure can and will.
6489   HeapWord* volatile* gfa = _task->global_finger_addr();
6490   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6491                                          _span, _bit_map,
6492                                          _work_queue,
6493                                          _overflow_stack,
6494                                          _finger,
6495                                          gfa, this);
6496   bool res = _work_queue->push(obj);   // overflow could occur here
6497   assert(res, "Will hold once we use workqueues");
6498   while (true) {
6499     oop new_oop;
6500     if (!_work_queue->pop_local(new_oop)) {
6501       // We emptied our work_queue; check if there's stuff that can
6502       // be gotten from the overflow stack.
6503       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6504             _overflow_stack, _work_queue)) {
6505         do_yield_check();
6506         continue;
6507       } else {  // done
6508         break;
6509       }
6510     }
6511     // Skip verifying header mark word below because we are
6512     // running concurrent with mutators.
6513     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6514     // now scan this oop's oops
6515     new_oop->oop_iterate(&pushOrMarkClosure);
6516     do_yield_check();
6517   }
6518   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6519 }
6520 
6521 // Yield in response to a request from VM Thread or
6522 // from mutators.
6523 void ParMarkFromRootsClosure::do_yield_work() {
6524   assert(_task != NULL, "sanity");
6525   _task->yield();
6526 }
6527 
6528 // A variant of the above used for verifying CMS marking work.
6529 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6530                         MemRegion span,
6531                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6532                         CMSMarkStack*  mark_stack):
6533   _collector(collector),
6534   _span(span),
6535   _verification_bm(verification_bm),
6536   _cms_bm(cms_bm),
6537   _mark_stack(mark_stack),
6538   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6539                       mark_stack)
6540 {
6541   assert(_mark_stack->isEmpty(), "stack should be empty");
6542   _finger = _verification_bm->startWord();
6543   assert(_collector->_restart_addr == NULL, "Sanity check");
6544   assert(_span.contains(_finger), "Out of bounds _finger?");
6545 }
6546 
6547 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6548   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6549   assert(_span.contains(addr), "Out of bounds _finger?");
6550   _finger = addr;
6551 }
6552 
6553 // Should revisit to see if this should be restructured for
6554 // greater efficiency.
6555 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6556   // convert offset into a HeapWord*
6557   HeapWord* addr = _verification_bm->startWord() + offset;
6558   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6559          "address out of range");
6560   assert(_verification_bm->isMarked(addr), "tautology");
6561   assert(_cms_bm->isMarked(addr), "tautology");
6562 
6563   assert(_mark_stack->isEmpty(),
6564          "should drain stack to limit stack usage");
6565   // convert addr to an oop preparatory to scanning
6566   oop obj = oop(addr);
6567   assert(oopDesc::is_oop(obj), "should be an oop");
6568   assert(_finger <= addr, "_finger runneth ahead");
6569   // advance the finger to right end of this object
6570   _finger = addr + obj->size();
6571   assert(_finger > addr, "we just incremented it above");
6572   // Note: the finger doesn't advance while we drain
6573   // the stack below.
6574   bool res = _mark_stack->push(obj);
6575   assert(res, "Empty non-zero size stack should have space for single push");
6576   while (!_mark_stack->isEmpty()) {
6577     oop new_oop = _mark_stack->pop();
6578     assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop");
6579     // now scan this oop's oops
6580     new_oop->oop_iterate(&_pam_verify_closure);
6581   }
6582   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6583   return true;
6584 }
6585 
6586 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6587   CMSCollector* collector, MemRegion span,
6588   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6589   CMSMarkStack*  mark_stack):
6590   MetadataAwareOopClosure(collector->ref_processor()),
6591   _collector(collector),
6592   _span(span),
6593   _verification_bm(verification_bm),
6594   _cms_bm(cms_bm),
6595   _mark_stack(mark_stack)
6596 { }
6597 
6598 template <class T> void PushAndMarkVerifyClosure::do_oop_work(T *p) {
6599   oop obj = RawAccess<>::oop_load(p);
6600   do_oop(obj);
6601 }
6602 
6603 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6604 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6605 
6606 // Upon stack overflow, we discard (part of) the stack,
6607 // remembering the least address amongst those discarded
6608 // in CMSCollector's _restart_address.
6609 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6610   // Remember the least grey address discarded
6611   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6612   _collector->lower_restart_addr(ra);
6613   _mark_stack->reset();  // discard stack contents
6614   _mark_stack->expand(); // expand the stack if possible
6615 }
6616 
6617 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6618   assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6619   HeapWord* addr = (HeapWord*)obj;
6620   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6621     // Oop lies in _span and isn't yet grey or black
6622     _verification_bm->mark(addr);            // now grey
6623     if (!_cms_bm->isMarked(addr)) {
6624       Log(gc, verify) log;
6625       ResourceMark rm;
6626       LogStream ls(log.error());
6627       oop(addr)->print_on(&ls);
6628       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6629       fatal("... aborting");
6630     }
6631 
6632     if (!_mark_stack->push(obj)) { // stack overflow
6633       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6634       assert(_mark_stack->isFull(), "Else push should have succeeded");
6635       handle_stack_overflow(addr);
6636     }
6637     // anything including and to the right of _finger
6638     // will be scanned as we iterate over the remainder of the
6639     // bit map
6640   }
6641 }
6642 
6643 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6644                      MemRegion span,
6645                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6646                      HeapWord* finger, MarkFromRootsClosure* parent) :
6647   MetadataAwareOopClosure(collector->ref_processor()),
6648   _collector(collector),
6649   _span(span),
6650   _bitMap(bitMap),
6651   _markStack(markStack),
6652   _finger(finger),
6653   _parent(parent)
6654 { }
6655 
6656 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6657                                            MemRegion span,
6658                                            CMSBitMap* bit_map,
6659                                            OopTaskQueue* work_queue,
6660                                            CMSMarkStack*  overflow_stack,
6661                                            HeapWord* finger,
6662                                            HeapWord* volatile* global_finger_addr,
6663                                            ParMarkFromRootsClosure* parent) :
6664   MetadataAwareOopClosure(collector->ref_processor()),
6665   _collector(collector),
6666   _whole_span(collector->_span),
6667   _span(span),
6668   _bit_map(bit_map),
6669   _work_queue(work_queue),
6670   _overflow_stack(overflow_stack),
6671   _finger(finger),
6672   _global_finger_addr(global_finger_addr),
6673   _parent(parent)
6674 { }
6675 
6676 // Assumes thread-safe access by callers, who are
6677 // responsible for mutual exclusion.
6678 void CMSCollector::lower_restart_addr(HeapWord* low) {
6679   assert(_span.contains(low), "Out of bounds addr");
6680   if (_restart_addr == NULL) {
6681     _restart_addr = low;
6682   } else {
6683     _restart_addr = MIN2(_restart_addr, low);
6684   }
6685 }
6686 
6687 // Upon stack overflow, we discard (part of) the stack,
6688 // remembering the least address amongst those discarded
6689 // in CMSCollector's _restart_address.
6690 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6691   // Remember the least grey address discarded
6692   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6693   _collector->lower_restart_addr(ra);
6694   _markStack->reset();  // discard stack contents
6695   _markStack->expand(); // expand the stack if possible
6696 }
6697 
6698 // Upon stack overflow, we discard (part of) the stack,
6699 // remembering the least address amongst those discarded
6700 // in CMSCollector's _restart_address.
6701 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6702   // We need to do this under a mutex to prevent other
6703   // workers from interfering with the work done below.
6704   MutexLockerEx ml(_overflow_stack->par_lock(),
6705                    Mutex::_no_safepoint_check_flag);
6706   // Remember the least grey address discarded
6707   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6708   _collector->lower_restart_addr(ra);
6709   _overflow_stack->reset();  // discard stack contents
6710   _overflow_stack->expand(); // expand the stack if possible
6711 }
6712 
6713 void PushOrMarkClosure::do_oop(oop obj) {
6714   // Ignore mark word because we are running concurrent with mutators.
6715   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6716   HeapWord* addr = (HeapWord*)obj;
6717   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6718     // Oop lies in _span and isn't yet grey or black
6719     _bitMap->mark(addr);            // now grey
6720     if (addr < _finger) {
6721       // the bit map iteration has already either passed, or
6722       // sampled, this bit in the bit map; we'll need to
6723       // use the marking stack to scan this oop's oops.
6724       bool simulate_overflow = false;
6725       NOT_PRODUCT(
6726         if (CMSMarkStackOverflowALot &&
6727             _collector->simulate_overflow()) {
6728           // simulate a stack overflow
6729           simulate_overflow = true;
6730         }
6731       )
6732       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6733         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6734         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6735         handle_stack_overflow(addr);
6736       }
6737     }
6738     // anything including and to the right of _finger
6739     // will be scanned as we iterate over the remainder of the
6740     // bit map
6741     do_yield_check();
6742   }
6743 }
6744 
6745 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6746 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6747 
6748 void ParPushOrMarkClosure::do_oop(oop obj) {
6749   // Ignore mark word because we are running concurrent with mutators.
6750   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6751   HeapWord* addr = (HeapWord*)obj;
6752   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6753     // Oop lies in _span and isn't yet grey or black
6754     // We read the global_finger (volatile read) strictly after marking oop
6755     bool res = _bit_map->par_mark(addr);    // now grey
6756     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6757     // Should we push this marked oop on our stack?
6758     // -- if someone else marked it, nothing to do
6759     // -- if target oop is above global finger nothing to do
6760     // -- if target oop is in chunk and above local finger
6761     //      then nothing to do
6762     // -- else push on work queue
6763     if (   !res       // someone else marked it, they will deal with it
6764         || (addr >= *gfa)  // will be scanned in a later task
6765         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6766       return;
6767     }
6768     // the bit map iteration has already either passed, or
6769     // sampled, this bit in the bit map; we'll need to
6770     // use the marking stack to scan this oop's oops.
6771     bool simulate_overflow = false;
6772     NOT_PRODUCT(
6773       if (CMSMarkStackOverflowALot &&
6774           _collector->simulate_overflow()) {
6775         // simulate a stack overflow
6776         simulate_overflow = true;
6777       }
6778     )
6779     if (simulate_overflow ||
6780         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6781       // stack overflow
6782       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6783       // We cannot assert that the overflow stack is full because
6784       // it may have been emptied since.
6785       assert(simulate_overflow ||
6786              _work_queue->size() == _work_queue->max_elems(),
6787             "Else push should have succeeded");
6788       handle_stack_overflow(addr);
6789     }
6790     do_yield_check();
6791   }
6792 }
6793 
6794 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6795 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6796 
6797 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6798                                        MemRegion span,
6799                                        ReferenceDiscoverer* rd,
6800                                        CMSBitMap* bit_map,
6801                                        CMSBitMap* mod_union_table,
6802                                        CMSMarkStack*  mark_stack,
6803                                        bool           concurrent_precleaning):
6804   MetadataAwareOopClosure(rd),
6805   _collector(collector),
6806   _span(span),
6807   _bit_map(bit_map),
6808   _mod_union_table(mod_union_table),
6809   _mark_stack(mark_stack),
6810   _concurrent_precleaning(concurrent_precleaning)
6811 {
6812   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6813 }
6814 
6815 // Grey object rescan during pre-cleaning and second checkpoint phases --
6816 // the non-parallel version (the parallel version appears further below.)
6817 void PushAndMarkClosure::do_oop(oop obj) {
6818   // Ignore mark word verification. If during concurrent precleaning,
6819   // the object monitor may be locked. If during the checkpoint
6820   // phases, the object may already have been reached by a  different
6821   // path and may be at the end of the global overflow list (so
6822   // the mark word may be NULL).
6823   assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */),
6824          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6825   HeapWord* addr = (HeapWord*)obj;
6826   // Check if oop points into the CMS generation
6827   // and is not marked
6828   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6829     // a white object ...
6830     _bit_map->mark(addr);         // ... now grey
6831     // push on the marking stack (grey set)
6832     bool simulate_overflow = false;
6833     NOT_PRODUCT(
6834       if (CMSMarkStackOverflowALot &&
6835           _collector->simulate_overflow()) {
6836         // simulate a stack overflow
6837         simulate_overflow = true;
6838       }
6839     )
6840     if (simulate_overflow || !_mark_stack->push(obj)) {
6841       if (_concurrent_precleaning) {
6842          // During precleaning we can just dirty the appropriate card(s)
6843          // in the mod union table, thus ensuring that the object remains
6844          // in the grey set  and continue. In the case of object arrays
6845          // we need to dirty all of the cards that the object spans,
6846          // since the rescan of object arrays will be limited to the
6847          // dirty cards.
6848          // Note that no one can be interfering with us in this action
6849          // of dirtying the mod union table, so no locking or atomics
6850          // are required.
6851          if (obj->is_objArray()) {
6852            size_t sz = obj->size();
6853            HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6854            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6855            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6856            _mod_union_table->mark_range(redirty_range);
6857          } else {
6858            _mod_union_table->mark(addr);
6859          }
6860          _collector->_ser_pmc_preclean_ovflw++;
6861       } else {
6862          // During the remark phase, we need to remember this oop
6863          // in the overflow list.
6864          _collector->push_on_overflow_list(obj);
6865          _collector->_ser_pmc_remark_ovflw++;
6866       }
6867     }
6868   }
6869 }
6870 
6871 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6872                                              MemRegion span,
6873                                              ReferenceDiscoverer* rd,
6874                                              CMSBitMap* bit_map,
6875                                              OopTaskQueue* work_queue):
6876   MetadataAwareOopClosure(rd),
6877   _collector(collector),
6878   _span(span),
6879   _bit_map(bit_map),
6880   _work_queue(work_queue)
6881 {
6882   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6883 }
6884 
6885 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6886 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6887 
6888 // Grey object rescan during second checkpoint phase --
6889 // the parallel version.
6890 void ParPushAndMarkClosure::do_oop(oop obj) {
6891   // In the assert below, we ignore the mark word because
6892   // this oop may point to an already visited object that is
6893   // on the overflow stack (in which case the mark word has
6894   // been hijacked for chaining into the overflow stack --
6895   // if this is the last object in the overflow stack then
6896   // its mark word will be NULL). Because this object may
6897   // have been subsequently popped off the global overflow
6898   // stack, and the mark word possibly restored to the prototypical
6899   // value, by the time we get to examined this failing assert in
6900   // the debugger, is_oop_or_null(false) may subsequently start
6901   // to hold.
6902   assert(oopDesc::is_oop_or_null(obj, true),
6903          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6904   HeapWord* addr = (HeapWord*)obj;
6905   // Check if oop points into the CMS generation
6906   // and is not marked
6907   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6908     // a white object ...
6909     // If we manage to "claim" the object, by being the
6910     // first thread to mark it, then we push it on our
6911     // marking stack
6912     if (_bit_map->par_mark(addr)) {     // ... now grey
6913       // push on work queue (grey set)
6914       bool simulate_overflow = false;
6915       NOT_PRODUCT(
6916         if (CMSMarkStackOverflowALot &&
6917             _collector->par_simulate_overflow()) {
6918           // simulate a stack overflow
6919           simulate_overflow = true;
6920         }
6921       )
6922       if (simulate_overflow || !_work_queue->push(obj)) {
6923         _collector->par_push_on_overflow_list(obj);
6924         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6925       }
6926     } // Else, some other thread got there first
6927   }
6928 }
6929 
6930 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6931 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6932 
6933 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6934   Mutex* bml = _collector->bitMapLock();
6935   assert_lock_strong(bml);
6936   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6937          "CMS thread should hold CMS token");
6938 
6939   bml->unlock();
6940   ConcurrentMarkSweepThread::desynchronize(true);
6941 
6942   _collector->stopTimer();
6943   _collector->incrementYields();
6944 
6945   // See the comment in coordinator_yield()
6946   for (unsigned i = 0; i < CMSYieldSleepCount &&
6947                        ConcurrentMarkSweepThread::should_yield() &&
6948                        !CMSCollector::foregroundGCIsActive(); ++i) {
6949     os::sleep(Thread::current(), 1, false);
6950   }
6951 
6952   ConcurrentMarkSweepThread::synchronize(true);
6953   bml->lock();
6954 
6955   _collector->startTimer();
6956 }
6957 
6958 bool CMSPrecleanRefsYieldClosure::should_return() {
6959   if (ConcurrentMarkSweepThread::should_yield()) {
6960     do_yield_work();
6961   }
6962   return _collector->foregroundGCIsActive();
6963 }
6964 
6965 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
6966   assert(((size_t)mr.start())%CardTable::card_size_in_words == 0,
6967          "mr should be aligned to start at a card boundary");
6968   // We'd like to assert:
6969   // assert(mr.word_size()%CardTable::card_size_in_words == 0,
6970   //        "mr should be a range of cards");
6971   // However, that would be too strong in one case -- the last
6972   // partition ends at _unallocated_block which, in general, can be
6973   // an arbitrary boundary, not necessarily card aligned.
6974   _num_dirty_cards += mr.word_size()/CardTable::card_size_in_words;
6975   _space->object_iterate_mem(mr, &_scan_cl);
6976 }
6977 
6978 SweepClosure::SweepClosure(CMSCollector* collector,
6979                            ConcurrentMarkSweepGeneration* g,
6980                            CMSBitMap* bitMap, bool should_yield) :
6981   _collector(collector),
6982   _g(g),
6983   _sp(g->cmsSpace()),
6984   _limit(_sp->sweep_limit()),
6985   _freelistLock(_sp->freelistLock()),
6986   _bitMap(bitMap),
6987   _yield(should_yield),
6988   _inFreeRange(false),           // No free range at beginning of sweep
6989   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
6990   _lastFreeRangeCoalesced(false),
6991   _freeFinger(g->used_region().start())
6992 {
6993   NOT_PRODUCT(
6994     _numObjectsFreed = 0;
6995     _numWordsFreed   = 0;
6996     _numObjectsLive = 0;
6997     _numWordsLive = 0;
6998     _numObjectsAlreadyFree = 0;
6999     _numWordsAlreadyFree = 0;
7000     _last_fc = NULL;
7001 
7002     _sp->initializeIndexedFreeListArrayReturnedBytes();
7003     _sp->dictionary()->initialize_dict_returned_bytes();
7004   )
7005   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7006          "sweep _limit out of bounds");
7007   log_develop_trace(gc, sweep)("====================");
7008   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7009 }
7010 
7011 void SweepClosure::print_on(outputStream* st) const {
7012   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7013                p2i(_sp->bottom()), p2i(_sp->end()));
7014   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7015   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7016   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7017   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7018                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7019 }
7020 
7021 #ifndef PRODUCT
7022 // Assertion checking only:  no useful work in product mode --
7023 // however, if any of the flags below become product flags,
7024 // you may need to review this code to see if it needs to be
7025 // enabled in product mode.
7026 SweepClosure::~SweepClosure() {
7027   assert_lock_strong(_freelistLock);
7028   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7029          "sweep _limit out of bounds");
7030   if (inFreeRange()) {
7031     Log(gc, sweep) log;
7032     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7033     ResourceMark rm;
7034     LogStream ls(log.error());
7035     print_on(&ls);
7036     ShouldNotReachHere();
7037   }
7038 
7039   if (log_is_enabled(Debug, gc, sweep)) {
7040     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7041                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7042     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7043                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7044     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7045     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7046   }
7047 
7048   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7049     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7050     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7051     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7052     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7053                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7054   }
7055   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7056   log_develop_trace(gc, sweep)("================");
7057 }
7058 #endif  // PRODUCT
7059 
7060 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7061     bool freeRangeInFreeLists) {
7062   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7063                                p2i(freeFinger), freeRangeInFreeLists);
7064   assert(!inFreeRange(), "Trampling existing free range");
7065   set_inFreeRange(true);
7066   set_lastFreeRangeCoalesced(false);
7067 
7068   set_freeFinger(freeFinger);
7069   set_freeRangeInFreeLists(freeRangeInFreeLists);
7070   if (CMSTestInFreeList) {
7071     if (freeRangeInFreeLists) {
7072       FreeChunk* fc = (FreeChunk*) freeFinger;
7073       assert(fc->is_free(), "A chunk on the free list should be free.");
7074       assert(fc->size() > 0, "Free range should have a size");
7075       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7076     }
7077   }
7078 }
7079 
7080 // Note that the sweeper runs concurrently with mutators. Thus,
7081 // it is possible for direct allocation in this generation to happen
7082 // in the middle of the sweep. Note that the sweeper also coalesces
7083 // contiguous free blocks. Thus, unless the sweeper and the allocator
7084 // synchronize appropriately freshly allocated blocks may get swept up.
7085 // This is accomplished by the sweeper locking the free lists while
7086 // it is sweeping. Thus blocks that are determined to be free are
7087 // indeed free. There is however one additional complication:
7088 // blocks that have been allocated since the final checkpoint and
7089 // mark, will not have been marked and so would be treated as
7090 // unreachable and swept up. To prevent this, the allocator marks
7091 // the bit map when allocating during the sweep phase. This leads,
7092 // however, to a further complication -- objects may have been allocated
7093 // but not yet initialized -- in the sense that the header isn't yet
7094 // installed. The sweeper can not then determine the size of the block
7095 // in order to skip over it. To deal with this case, we use a technique
7096 // (due to Printezis) to encode such uninitialized block sizes in the
7097 // bit map. Since the bit map uses a bit per every HeapWord, but the
7098 // CMS generation has a minimum object size of 3 HeapWords, it follows
7099 // that "normal marks" won't be adjacent in the bit map (there will
7100 // always be at least two 0 bits between successive 1 bits). We make use
7101 // of these "unused" bits to represent uninitialized blocks -- the bit
7102 // corresponding to the start of the uninitialized object and the next
7103 // bit are both set. Finally, a 1 bit marks the end of the object that
7104 // started with the two consecutive 1 bits to indicate its potentially
7105 // uninitialized state.
7106 
7107 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7108   FreeChunk* fc = (FreeChunk*)addr;
7109   size_t res;
7110 
7111   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7112   // than "addr == _limit" because although _limit was a block boundary when
7113   // we started the sweep, it may no longer be one because heap expansion
7114   // may have caused us to coalesce the block ending at the address _limit
7115   // with a newly expanded chunk (this happens when _limit was set to the
7116   // previous _end of the space), so we may have stepped past _limit:
7117   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7118   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7119     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7120            "sweep _limit out of bounds");
7121     assert(addr < _sp->end(), "addr out of bounds");
7122     // Flush any free range we might be holding as a single
7123     // coalesced chunk to the appropriate free list.
7124     if (inFreeRange()) {
7125       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7126              "freeFinger() " PTR_FORMAT " is out of bounds", p2i(freeFinger()));
7127       flush_cur_free_chunk(freeFinger(),
7128                            pointer_delta(addr, freeFinger()));
7129       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7130                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7131                                    lastFreeRangeCoalesced() ? 1 : 0);
7132     }
7133 
7134     // help the iterator loop finish
7135     return pointer_delta(_sp->end(), addr);
7136   }
7137 
7138   assert(addr < _limit, "sweep invariant");
7139   // check if we should yield
7140   do_yield_check(addr);
7141   if (fc->is_free()) {
7142     // Chunk that is already free
7143     res = fc->size();
7144     do_already_free_chunk(fc);
7145     debug_only(_sp->verifyFreeLists());
7146     // If we flush the chunk at hand in lookahead_and_flush()
7147     // and it's coalesced with a preceding chunk, then the
7148     // process of "mangling" the payload of the coalesced block
7149     // will cause erasure of the size information from the
7150     // (erstwhile) header of all the coalesced blocks but the
7151     // first, so the first disjunct in the assert will not hold
7152     // in that specific case (in which case the second disjunct
7153     // will hold).
7154     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7155            "Otherwise the size info doesn't change at this step");
7156     NOT_PRODUCT(
7157       _numObjectsAlreadyFree++;
7158       _numWordsAlreadyFree += res;
7159     )
7160     NOT_PRODUCT(_last_fc = fc;)
7161   } else if (!_bitMap->isMarked(addr)) {
7162     // Chunk is fresh garbage
7163     res = do_garbage_chunk(fc);
7164     debug_only(_sp->verifyFreeLists());
7165     NOT_PRODUCT(
7166       _numObjectsFreed++;
7167       _numWordsFreed += res;
7168     )
7169   } else {
7170     // Chunk that is alive.
7171     res = do_live_chunk(fc);
7172     debug_only(_sp->verifyFreeLists());
7173     NOT_PRODUCT(
7174         _numObjectsLive++;
7175         _numWordsLive += res;
7176     )
7177   }
7178   return res;
7179 }
7180 
7181 // For the smart allocation, record following
7182 //  split deaths - a free chunk is removed from its free list because
7183 //      it is being split into two or more chunks.
7184 //  split birth - a free chunk is being added to its free list because
7185 //      a larger free chunk has been split and resulted in this free chunk.
7186 //  coal death - a free chunk is being removed from its free list because
7187 //      it is being coalesced into a large free chunk.
7188 //  coal birth - a free chunk is being added to its free list because
7189 //      it was created when two or more free chunks where coalesced into
7190 //      this free chunk.
7191 //
7192 // These statistics are used to determine the desired number of free
7193 // chunks of a given size.  The desired number is chosen to be relative
7194 // to the end of a CMS sweep.  The desired number at the end of a sweep
7195 // is the
7196 //      count-at-end-of-previous-sweep (an amount that was enough)
7197 //              - count-at-beginning-of-current-sweep  (the excess)
7198 //              + split-births  (gains in this size during interval)
7199 //              - split-deaths  (demands on this size during interval)
7200 // where the interval is from the end of one sweep to the end of the
7201 // next.
7202 //
7203 // When sweeping the sweeper maintains an accumulated chunk which is
7204 // the chunk that is made up of chunks that have been coalesced.  That
7205 // will be termed the left-hand chunk.  A new chunk of garbage that
7206 // is being considered for coalescing will be referred to as the
7207 // right-hand chunk.
7208 //
7209 // When making a decision on whether to coalesce a right-hand chunk with
7210 // the current left-hand chunk, the current count vs. the desired count
7211 // of the left-hand chunk is considered.  Also if the right-hand chunk
7212 // is near the large chunk at the end of the heap (see
7213 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7214 // left-hand chunk is coalesced.
7215 //
7216 // When making a decision about whether to split a chunk, the desired count
7217 // vs. the current count of the candidate to be split is also considered.
7218 // If the candidate is underpopulated (currently fewer chunks than desired)
7219 // a chunk of an overpopulated (currently more chunks than desired) size may
7220 // be chosen.  The "hint" associated with a free list, if non-null, points
7221 // to a free list which may be overpopulated.
7222 //
7223 
7224 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7225   const size_t size = fc->size();
7226   // Chunks that cannot be coalesced are not in the
7227   // free lists.
7228   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7229     assert(_sp->verify_chunk_in_free_list(fc),
7230            "free chunk should be in free lists");
7231   }
7232   // a chunk that is already free, should not have been
7233   // marked in the bit map
7234   HeapWord* const addr = (HeapWord*) fc;
7235   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7236   // Verify that the bit map has no bits marked between
7237   // addr and purported end of this block.
7238   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7239 
7240   // Some chunks cannot be coalesced under any circumstances.
7241   // See the definition of cantCoalesce().
7242   if (!fc->cantCoalesce()) {
7243     // This chunk can potentially be coalesced.
7244     // All the work is done in
7245     do_post_free_or_garbage_chunk(fc, size);
7246     // Note that if the chunk is not coalescable (the else arm
7247     // below), we unconditionally flush, without needing to do
7248     // a "lookahead," as we do below.
7249     if (inFreeRange()) lookahead_and_flush(fc, size);
7250   } else {
7251     // Code path common to both original and adaptive free lists.
7252 
7253     // cant coalesce with previous block; this should be treated
7254     // as the end of a free run if any
7255     if (inFreeRange()) {
7256       // we kicked some butt; time to pick up the garbage
7257       assert(freeFinger() < addr, "freeFinger points too high");
7258       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7259     }
7260     // else, nothing to do, just continue
7261   }
7262 }
7263 
7264 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7265   // This is a chunk of garbage.  It is not in any free list.
7266   // Add it to a free list or let it possibly be coalesced into
7267   // a larger chunk.
7268   HeapWord* const addr = (HeapWord*) fc;
7269   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7270 
7271   // Verify that the bit map has no bits marked between
7272   // addr and purported end of just dead object.
7273   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7274   do_post_free_or_garbage_chunk(fc, size);
7275 
7276   assert(_limit >= addr + size,
7277          "A freshly garbage chunk can't possibly straddle over _limit");
7278   if (inFreeRange()) lookahead_and_flush(fc, size);
7279   return size;
7280 }
7281 
7282 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7283   HeapWord* addr = (HeapWord*) fc;
7284   // The sweeper has just found a live object. Return any accumulated
7285   // left hand chunk to the free lists.
7286   if (inFreeRange()) {
7287     assert(freeFinger() < addr, "freeFinger points too high");
7288     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7289   }
7290 
7291   // This object is live: we'd normally expect this to be
7292   // an oop, and like to assert the following:
7293   // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop");
7294   // However, as we commented above, this may be an object whose
7295   // header hasn't yet been initialized.
7296   size_t size;
7297   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7298   if (_bitMap->isMarked(addr + 1)) {
7299     // Determine the size from the bit map, rather than trying to
7300     // compute it from the object header.
7301     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7302     size = pointer_delta(nextOneAddr + 1, addr);
7303     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7304            "alignment problem");
7305 
7306 #ifdef ASSERT
7307       if (oop(addr)->klass_or_null_acquire() != NULL) {
7308         // Ignore mark word because we are running concurrent with mutators
7309         assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7310         assert(size ==
7311                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7312                "P-mark and computed size do not agree");
7313       }
7314 #endif
7315 
7316   } else {
7317     // This should be an initialized object that's alive.
7318     assert(oop(addr)->klass_or_null_acquire() != NULL,
7319            "Should be an initialized object");
7320     // Ignore mark word because we are running concurrent with mutators
7321     assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7322     // Verify that the bit map has no bits marked between
7323     // addr and purported end of this block.
7324     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7325     assert(size >= 3, "Necessary for Printezis marks to work");
7326     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7327     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7328   }
7329   return size;
7330 }
7331 
7332 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7333                                                  size_t chunkSize) {
7334   // do_post_free_or_garbage_chunk() should only be called in the case
7335   // of the adaptive free list allocator.
7336   const bool fcInFreeLists = fc->is_free();
7337   assert((HeapWord*)fc <= _limit, "sweep invariant");
7338   if (CMSTestInFreeList && fcInFreeLists) {
7339     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7340   }
7341 
7342   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7343 
7344   HeapWord* const fc_addr = (HeapWord*) fc;
7345 
7346   bool coalesce = false;
7347   const size_t left  = pointer_delta(fc_addr, freeFinger());
7348   const size_t right = chunkSize;
7349   switch (FLSCoalescePolicy) {
7350     // numeric value forms a coalition aggressiveness metric
7351     case 0:  { // never coalesce
7352       coalesce = false;
7353       break;
7354     }
7355     case 1: { // coalesce if left & right chunks on overpopulated lists
7356       coalesce = _sp->coalOverPopulated(left) &&
7357                  _sp->coalOverPopulated(right);
7358       break;
7359     }
7360     case 2: { // coalesce if left chunk on overpopulated list (default)
7361       coalesce = _sp->coalOverPopulated(left);
7362       break;
7363     }
7364     case 3: { // coalesce if left OR right chunk on overpopulated list
7365       coalesce = _sp->coalOverPopulated(left) ||
7366                  _sp->coalOverPopulated(right);
7367       break;
7368     }
7369     case 4: { // always coalesce
7370       coalesce = true;
7371       break;
7372     }
7373     default:
7374      ShouldNotReachHere();
7375   }
7376 
7377   // Should the current free range be coalesced?
7378   // If the chunk is in a free range and either we decided to coalesce above
7379   // or the chunk is near the large block at the end of the heap
7380   // (isNearLargestChunk() returns true), then coalesce this chunk.
7381   const bool doCoalesce = inFreeRange()
7382                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7383   if (doCoalesce) {
7384     // Coalesce the current free range on the left with the new
7385     // chunk on the right.  If either is on a free list,
7386     // it must be removed from the list and stashed in the closure.
7387     if (freeRangeInFreeLists()) {
7388       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7389       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7390              "Size of free range is inconsistent with chunk size.");
7391       if (CMSTestInFreeList) {
7392         assert(_sp->verify_chunk_in_free_list(ffc),
7393                "Chunk is not in free lists");
7394       }
7395       _sp->coalDeath(ffc->size());
7396       _sp->removeFreeChunkFromFreeLists(ffc);
7397       set_freeRangeInFreeLists(false);
7398     }
7399     if (fcInFreeLists) {
7400       _sp->coalDeath(chunkSize);
7401       assert(fc->size() == chunkSize,
7402         "The chunk has the wrong size or is not in the free lists");
7403       _sp->removeFreeChunkFromFreeLists(fc);
7404     }
7405     set_lastFreeRangeCoalesced(true);
7406     print_free_block_coalesced(fc);
7407   } else {  // not in a free range and/or should not coalesce
7408     // Return the current free range and start a new one.
7409     if (inFreeRange()) {
7410       // In a free range but cannot coalesce with the right hand chunk.
7411       // Put the current free range into the free lists.
7412       flush_cur_free_chunk(freeFinger(),
7413                            pointer_delta(fc_addr, freeFinger()));
7414     }
7415     // Set up for new free range.  Pass along whether the right hand
7416     // chunk is in the free lists.
7417     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7418   }
7419 }
7420 
7421 // Lookahead flush:
7422 // If we are tracking a free range, and this is the last chunk that
7423 // we'll look at because its end crosses past _limit, we'll preemptively
7424 // flush it along with any free range we may be holding on to. Note that
7425 // this can be the case only for an already free or freshly garbage
7426 // chunk. If this block is an object, it can never straddle
7427 // over _limit. The "straddling" occurs when _limit is set at
7428 // the previous end of the space when this cycle started, and
7429 // a subsequent heap expansion caused the previously co-terminal
7430 // free block to be coalesced with the newly expanded portion,
7431 // thus rendering _limit a non-block-boundary making it dangerous
7432 // for the sweeper to step over and examine.
7433 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7434   assert(inFreeRange(), "Should only be called if currently in a free range.");
7435   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7436   assert(_sp->used_region().contains(eob - 1),
7437          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7438          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7439          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7440          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7441   if (eob >= _limit) {
7442     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7443     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7444                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7445                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7446                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7447     // Return the storage we are tracking back into the free lists.
7448     log_develop_trace(gc, sweep)("Flushing ... ");
7449     assert(freeFinger() < eob, "Error");
7450     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7451   }
7452 }
7453 
7454 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7455   assert(inFreeRange(), "Should only be called if currently in a free range.");
7456   assert(size > 0,
7457     "A zero sized chunk cannot be added to the free lists.");
7458   if (!freeRangeInFreeLists()) {
7459     if (CMSTestInFreeList) {
7460       FreeChunk* fc = (FreeChunk*) chunk;
7461       fc->set_size(size);
7462       assert(!_sp->verify_chunk_in_free_list(fc),
7463              "chunk should not be in free lists yet");
7464     }
7465     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7466     // A new free range is going to be starting.  The current
7467     // free range has not been added to the free lists yet or
7468     // was removed so add it back.
7469     // If the current free range was coalesced, then the death
7470     // of the free range was recorded.  Record a birth now.
7471     if (lastFreeRangeCoalesced()) {
7472       _sp->coalBirth(size);
7473     }
7474     _sp->addChunkAndRepairOffsetTable(chunk, size,
7475             lastFreeRangeCoalesced());
7476   } else {
7477     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7478   }
7479   set_inFreeRange(false);
7480   set_freeRangeInFreeLists(false);
7481 }
7482 
7483 // We take a break if we've been at this for a while,
7484 // so as to avoid monopolizing the locks involved.
7485 void SweepClosure::do_yield_work(HeapWord* addr) {
7486   // Return current free chunk being used for coalescing (if any)
7487   // to the appropriate freelist.  After yielding, the next
7488   // free block encountered will start a coalescing range of
7489   // free blocks.  If the next free block is adjacent to the
7490   // chunk just flushed, they will need to wait for the next
7491   // sweep to be coalesced.
7492   if (inFreeRange()) {
7493     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7494   }
7495 
7496   // First give up the locks, then yield, then re-lock.
7497   // We should probably use a constructor/destructor idiom to
7498   // do this unlock/lock or modify the MutexUnlocker class to
7499   // serve our purpose. XXX
7500   assert_lock_strong(_bitMap->lock());
7501   assert_lock_strong(_freelistLock);
7502   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7503          "CMS thread should hold CMS token");
7504   _bitMap->lock()->unlock();
7505   _freelistLock->unlock();
7506   ConcurrentMarkSweepThread::desynchronize(true);
7507   _collector->stopTimer();
7508   _collector->incrementYields();
7509 
7510   // See the comment in coordinator_yield()
7511   for (unsigned i = 0; i < CMSYieldSleepCount &&
7512                        ConcurrentMarkSweepThread::should_yield() &&
7513                        !CMSCollector::foregroundGCIsActive(); ++i) {
7514     os::sleep(Thread::current(), 1, false);
7515   }
7516 
7517   ConcurrentMarkSweepThread::synchronize(true);
7518   _freelistLock->lock();
7519   _bitMap->lock()->lock_without_safepoint_check();
7520   _collector->startTimer();
7521 }
7522 
7523 #ifndef PRODUCT
7524 // This is actually very useful in a product build if it can
7525 // be called from the debugger.  Compile it into the product
7526 // as needed.
7527 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7528   return debug_cms_space->verify_chunk_in_free_list(fc);
7529 }
7530 #endif
7531 
7532 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7533   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7534                                p2i(fc), fc->size());
7535 }
7536 
7537 // CMSIsAliveClosure
7538 bool CMSIsAliveClosure::do_object_b(oop obj) {
7539   HeapWord* addr = (HeapWord*)obj;
7540   return addr != NULL &&
7541          (!_span.contains(addr) || _bit_map->isMarked(addr));
7542 }
7543 
7544 
7545 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7546                       MemRegion span,
7547                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7548                       bool cpc):
7549   _collector(collector),
7550   _span(span),
7551   _bit_map(bit_map),
7552   _mark_stack(mark_stack),
7553   _concurrent_precleaning(cpc) {
7554   assert(!_span.is_empty(), "Empty span could spell trouble");
7555 }
7556 
7557 
7558 // CMSKeepAliveClosure: the serial version
7559 void CMSKeepAliveClosure::do_oop(oop obj) {
7560   HeapWord* addr = (HeapWord*)obj;
7561   if (_span.contains(addr) &&
7562       !_bit_map->isMarked(addr)) {
7563     _bit_map->mark(addr);
7564     bool simulate_overflow = false;
7565     NOT_PRODUCT(
7566       if (CMSMarkStackOverflowALot &&
7567           _collector->simulate_overflow()) {
7568         // simulate a stack overflow
7569         simulate_overflow = true;
7570       }
7571     )
7572     if (simulate_overflow || !_mark_stack->push(obj)) {
7573       if (_concurrent_precleaning) {
7574         // We dirty the overflown object and let the remark
7575         // phase deal with it.
7576         assert(_collector->overflow_list_is_empty(), "Error");
7577         // In the case of object arrays, we need to dirty all of
7578         // the cards that the object spans. No locking or atomics
7579         // are needed since no one else can be mutating the mod union
7580         // table.
7581         if (obj->is_objArray()) {
7582           size_t sz = obj->size();
7583           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
7584           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7585           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7586           _collector->_modUnionTable.mark_range(redirty_range);
7587         } else {
7588           _collector->_modUnionTable.mark(addr);
7589         }
7590         _collector->_ser_kac_preclean_ovflw++;
7591       } else {
7592         _collector->push_on_overflow_list(obj);
7593         _collector->_ser_kac_ovflw++;
7594       }
7595     }
7596   }
7597 }
7598 
7599 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7600 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7601 
7602 // CMSParKeepAliveClosure: a parallel version of the above.
7603 // The work queues are private to each closure (thread),
7604 // but (may be) available for stealing by other threads.
7605 void CMSParKeepAliveClosure::do_oop(oop obj) {
7606   HeapWord* addr = (HeapWord*)obj;
7607   if (_span.contains(addr) &&
7608       !_bit_map->isMarked(addr)) {
7609     // In general, during recursive tracing, several threads
7610     // may be concurrently getting here; the first one to
7611     // "tag" it, claims it.
7612     if (_bit_map->par_mark(addr)) {
7613       bool res = _work_queue->push(obj);
7614       assert(res, "Low water mark should be much less than capacity");
7615       // Do a recursive trim in the hope that this will keep
7616       // stack usage lower, but leave some oops for potential stealers
7617       trim_queue(_low_water_mark);
7618     } // Else, another thread got there first
7619   }
7620 }
7621 
7622 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7623 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7624 
7625 void CMSParKeepAliveClosure::trim_queue(uint max) {
7626   while (_work_queue->size() > max) {
7627     oop new_oop;
7628     if (_work_queue->pop_local(new_oop)) {
7629       assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
7630       assert(_bit_map->isMarked((HeapWord*)new_oop),
7631              "no white objects on this stack!");
7632       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7633       // iterate over the oops in this oop, marking and pushing
7634       // the ones in CMS heap (i.e. in _span).
7635       new_oop->oop_iterate(&_mark_and_push);
7636     }
7637   }
7638 }
7639 
7640 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7641                                 CMSCollector* collector,
7642                                 MemRegion span, CMSBitMap* bit_map,
7643                                 OopTaskQueue* work_queue):
7644   _collector(collector),
7645   _span(span),
7646   _bit_map(bit_map),
7647   _work_queue(work_queue) { }
7648 
7649 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7650   HeapWord* addr = (HeapWord*)obj;
7651   if (_span.contains(addr) &&
7652       !_bit_map->isMarked(addr)) {
7653     if (_bit_map->par_mark(addr)) {
7654       bool simulate_overflow = false;
7655       NOT_PRODUCT(
7656         if (CMSMarkStackOverflowALot &&
7657             _collector->par_simulate_overflow()) {
7658           // simulate a stack overflow
7659           simulate_overflow = true;
7660         }
7661       )
7662       if (simulate_overflow || !_work_queue->push(obj)) {
7663         _collector->par_push_on_overflow_list(obj);
7664         _collector->_par_kac_ovflw++;
7665       }
7666     } // Else another thread got there already
7667   }
7668 }
7669 
7670 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7671 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7672 
7673 //////////////////////////////////////////////////////////////////
7674 //  CMSExpansionCause                /////////////////////////////
7675 //////////////////////////////////////////////////////////////////
7676 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7677   switch (cause) {
7678     case _no_expansion:
7679       return "No expansion";
7680     case _satisfy_free_ratio:
7681       return "Free ratio";
7682     case _satisfy_promotion:
7683       return "Satisfy promotion";
7684     case _satisfy_allocation:
7685       return "allocation";
7686     case _allocate_par_lab:
7687       return "Par LAB";
7688     case _allocate_par_spooling_space:
7689       return "Par Spooling Space";
7690     case _adaptive_size_policy:
7691       return "Ergonomics";
7692     default:
7693       return "unknown";
7694   }
7695 }
7696 
7697 void CMSDrainMarkingStackClosure::do_void() {
7698   // the max number to take from overflow list at a time
7699   const size_t num = _mark_stack->capacity()/4;
7700   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7701          "Overflow list should be NULL during concurrent phases");
7702   while (!_mark_stack->isEmpty() ||
7703          // if stack is empty, check the overflow list
7704          _collector->take_from_overflow_list(num, _mark_stack)) {
7705     oop obj = _mark_stack->pop();
7706     HeapWord* addr = (HeapWord*)obj;
7707     assert(_span.contains(addr), "Should be within span");
7708     assert(_bit_map->isMarked(addr), "Should be marked");
7709     assert(oopDesc::is_oop(obj), "Should be an oop");
7710     obj->oop_iterate(_keep_alive);
7711   }
7712 }
7713 
7714 void CMSParDrainMarkingStackClosure::do_void() {
7715   // drain queue
7716   trim_queue(0);
7717 }
7718 
7719 // Trim our work_queue so its length is below max at return
7720 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7721   while (_work_queue->size() > max) {
7722     oop new_oop;
7723     if (_work_queue->pop_local(new_oop)) {
7724       assert(oopDesc::is_oop(new_oop), "Expected an oop");
7725       assert(_bit_map->isMarked((HeapWord*)new_oop),
7726              "no white objects on this stack!");
7727       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7728       // iterate over the oops in this oop, marking and pushing
7729       // the ones in CMS heap (i.e. in _span).
7730       new_oop->oop_iterate(&_mark_and_push);
7731     }
7732   }
7733 }
7734 
7735 ////////////////////////////////////////////////////////////////////
7736 // Support for Marking Stack Overflow list handling and related code
7737 ////////////////////////////////////////////////////////////////////
7738 // Much of the following code is similar in shape and spirit to the
7739 // code used in ParNewGC. We should try and share that code
7740 // as much as possible in the future.
7741 
7742 #ifndef PRODUCT
7743 // Debugging support for CMSStackOverflowALot
7744 
7745 // It's OK to call this multi-threaded;  the worst thing
7746 // that can happen is that we'll get a bunch of closely
7747 // spaced simulated overflows, but that's OK, in fact
7748 // probably good as it would exercise the overflow code
7749 // under contention.
7750 bool CMSCollector::simulate_overflow() {
7751   if (_overflow_counter-- <= 0) { // just being defensive
7752     _overflow_counter = CMSMarkStackOverflowInterval;
7753     return true;
7754   } else {
7755     return false;
7756   }
7757 }
7758 
7759 bool CMSCollector::par_simulate_overflow() {
7760   return simulate_overflow();
7761 }
7762 #endif
7763 
7764 // Single-threaded
7765 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7766   assert(stack->isEmpty(), "Expected precondition");
7767   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7768   size_t i = num;
7769   oop  cur = _overflow_list;
7770   const markOop proto = markOopDesc::prototype();
7771   NOT_PRODUCT(ssize_t n = 0;)
7772   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7773     next = oop(cur->mark_raw());
7774     cur->set_mark_raw(proto);   // until proven otherwise
7775     assert(oopDesc::is_oop(cur), "Should be an oop");
7776     bool res = stack->push(cur);
7777     assert(res, "Bit off more than can chew?");
7778     NOT_PRODUCT(n++;)
7779   }
7780   _overflow_list = cur;
7781 #ifndef PRODUCT
7782   assert(_num_par_pushes >= n, "Too many pops?");
7783   _num_par_pushes -=n;
7784 #endif
7785   return !stack->isEmpty();
7786 }
7787 
7788 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7789 // (MT-safe) Get a prefix of at most "num" from the list.
7790 // The overflow list is chained through the mark word of
7791 // each object in the list. We fetch the entire list,
7792 // break off a prefix of the right size and return the
7793 // remainder. If other threads try to take objects from
7794 // the overflow list at that time, they will wait for
7795 // some time to see if data becomes available. If (and
7796 // only if) another thread places one or more object(s)
7797 // on the global list before we have returned the suffix
7798 // to the global list, we will walk down our local list
7799 // to find its end and append the global list to
7800 // our suffix before returning it. This suffix walk can
7801 // prove to be expensive (quadratic in the amount of traffic)
7802 // when there are many objects in the overflow list and
7803 // there is much producer-consumer contention on the list.
7804 // *NOTE*: The overflow list manipulation code here and
7805 // in ParNewGeneration:: are very similar in shape,
7806 // except that in the ParNew case we use the old (from/eden)
7807 // copy of the object to thread the list via its klass word.
7808 // Because of the common code, if you make any changes in
7809 // the code below, please check the ParNew version to see if
7810 // similar changes might be needed.
7811 // CR 6797058 has been filed to consolidate the common code.
7812 bool CMSCollector::par_take_from_overflow_list(size_t num,
7813                                                OopTaskQueue* work_q,
7814                                                int no_of_gc_threads) {
7815   assert(work_q->size() == 0, "First empty local work queue");
7816   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7817   if (_overflow_list == NULL) {
7818     return false;
7819   }
7820   // Grab the entire list; we'll put back a suffix
7821   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7822   Thread* tid = Thread::current();
7823   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7824   // set to ParallelGCThreads.
7825   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7826   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7827   // If the list is busy, we spin for a short while,
7828   // sleeping between attempts to get the list.
7829   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7830     os::sleep(tid, sleep_time_millis, false);
7831     if (_overflow_list == NULL) {
7832       // Nothing left to take
7833       return false;
7834     } else if (_overflow_list != BUSY) {
7835       // Try and grab the prefix
7836       prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7837     }
7838   }
7839   // If the list was found to be empty, or we spun long
7840   // enough, we give up and return empty-handed. If we leave
7841   // the list in the BUSY state below, it must be the case that
7842   // some other thread holds the overflow list and will set it
7843   // to a non-BUSY state in the future.
7844   if (prefix == NULL || prefix == BUSY) {
7845      // Nothing to take or waited long enough
7846      if (prefix == NULL) {
7847        // Write back the NULL in case we overwrote it with BUSY above
7848        // and it is still the same value.
7849        Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7850      }
7851      return false;
7852   }
7853   assert(prefix != NULL && prefix != BUSY, "Error");
7854   size_t i = num;
7855   oop cur = prefix;
7856   // Walk down the first "num" objects, unless we reach the end.
7857   for (; i > 1 && cur->mark_raw() != NULL; cur = oop(cur->mark_raw()), i--);
7858   if (cur->mark_raw() == NULL) {
7859     // We have "num" or fewer elements in the list, so there
7860     // is nothing to return to the global list.
7861     // Write back the NULL in lieu of the BUSY we wrote
7862     // above, if it is still the same value.
7863     if (_overflow_list == BUSY) {
7864       Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7865     }
7866   } else {
7867     // Chop off the suffix and return it to the global list.
7868     assert(cur->mark_raw() != BUSY, "Error");
7869     oop suffix_head = cur->mark_raw(); // suffix will be put back on global list
7870     cur->set_mark_raw(NULL);           // break off suffix
7871     // It's possible that the list is still in the empty(busy) state
7872     // we left it in a short while ago; in that case we may be
7873     // able to place back the suffix without incurring the cost
7874     // of a walk down the list.
7875     oop observed_overflow_list = _overflow_list;
7876     oop cur_overflow_list = observed_overflow_list;
7877     bool attached = false;
7878     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7879       observed_overflow_list =
7880         Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7881       if (cur_overflow_list == observed_overflow_list) {
7882         attached = true;
7883         break;
7884       } else cur_overflow_list = observed_overflow_list;
7885     }
7886     if (!attached) {
7887       // Too bad, someone else sneaked in (at least) an element; we'll need
7888       // to do a splice. Find tail of suffix so we can prepend suffix to global
7889       // list.
7890       for (cur = suffix_head; cur->mark_raw() != NULL; cur = (oop)(cur->mark_raw()));
7891       oop suffix_tail = cur;
7892       assert(suffix_tail != NULL && suffix_tail->mark_raw() == NULL,
7893              "Tautology");
7894       observed_overflow_list = _overflow_list;
7895       do {
7896         cur_overflow_list = observed_overflow_list;
7897         if (cur_overflow_list != BUSY) {
7898           // Do the splice ...
7899           suffix_tail->set_mark_raw(markOop(cur_overflow_list));
7900         } else { // cur_overflow_list == BUSY
7901           suffix_tail->set_mark_raw(NULL);
7902         }
7903         // ... and try to place spliced list back on overflow_list ...
7904         observed_overflow_list =
7905           Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7906       } while (cur_overflow_list != observed_overflow_list);
7907       // ... until we have succeeded in doing so.
7908     }
7909   }
7910 
7911   // Push the prefix elements on work_q
7912   assert(prefix != NULL, "control point invariant");
7913   const markOop proto = markOopDesc::prototype();
7914   oop next;
7915   NOT_PRODUCT(ssize_t n = 0;)
7916   for (cur = prefix; cur != NULL; cur = next) {
7917     next = oop(cur->mark_raw());
7918     cur->set_mark_raw(proto);   // until proven otherwise
7919     assert(oopDesc::is_oop(cur), "Should be an oop");
7920     bool res = work_q->push(cur);
7921     assert(res, "Bit off more than we can chew?");
7922     NOT_PRODUCT(n++;)
7923   }
7924 #ifndef PRODUCT
7925   assert(_num_par_pushes >= n, "Too many pops?");
7926   Atomic::sub(n, &_num_par_pushes);
7927 #endif
7928   return true;
7929 }
7930 
7931 // Single-threaded
7932 void CMSCollector::push_on_overflow_list(oop p) {
7933   NOT_PRODUCT(_num_par_pushes++;)
7934   assert(oopDesc::is_oop(p), "Not an oop");
7935   preserve_mark_if_necessary(p);
7936   p->set_mark_raw((markOop)_overflow_list);
7937   _overflow_list = p;
7938 }
7939 
7940 // Multi-threaded; use CAS to prepend to overflow list
7941 void CMSCollector::par_push_on_overflow_list(oop p) {
7942   NOT_PRODUCT(Atomic::inc(&_num_par_pushes);)
7943   assert(oopDesc::is_oop(p), "Not an oop");
7944   par_preserve_mark_if_necessary(p);
7945   oop observed_overflow_list = _overflow_list;
7946   oop cur_overflow_list;
7947   do {
7948     cur_overflow_list = observed_overflow_list;
7949     if (cur_overflow_list != BUSY) {
7950       p->set_mark_raw(markOop(cur_overflow_list));
7951     } else {
7952       p->set_mark_raw(NULL);
7953     }
7954     observed_overflow_list =
7955       Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list);
7956   } while (cur_overflow_list != observed_overflow_list);
7957 }
7958 #undef BUSY
7959 
7960 // Single threaded
7961 // General Note on GrowableArray: pushes may silently fail
7962 // because we are (temporarily) out of C-heap for expanding
7963 // the stack. The problem is quite ubiquitous and affects
7964 // a lot of code in the JVM. The prudent thing for GrowableArray
7965 // to do (for now) is to exit with an error. However, that may
7966 // be too draconian in some cases because the caller may be
7967 // able to recover without much harm. For such cases, we
7968 // should probably introduce a "soft_push" method which returns
7969 // an indication of success or failure with the assumption that
7970 // the caller may be able to recover from a failure; code in
7971 // the VM can then be changed, incrementally, to deal with such
7972 // failures where possible, thus, incrementally hardening the VM
7973 // in such low resource situations.
7974 void CMSCollector::preserve_mark_work(oop p, markOop m) {
7975   _preserved_oop_stack.push(p);
7976   _preserved_mark_stack.push(m);
7977   assert(m == p->mark_raw(), "Mark word changed");
7978   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
7979          "bijection");
7980 }
7981 
7982 // Single threaded
7983 void CMSCollector::preserve_mark_if_necessary(oop p) {
7984   markOop m = p->mark_raw();
7985   if (m->must_be_preserved(p)) {
7986     preserve_mark_work(p, m);
7987   }
7988 }
7989 
7990 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
7991   markOop m = p->mark_raw();
7992   if (m->must_be_preserved(p)) {
7993     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
7994     // Even though we read the mark word without holding
7995     // the lock, we are assured that it will not change
7996     // because we "own" this oop, so no other thread can
7997     // be trying to push it on the overflow list; see
7998     // the assertion in preserve_mark_work() that checks
7999     // that m == p->mark_raw().
8000     preserve_mark_work(p, m);
8001   }
8002 }
8003 
8004 // We should be able to do this multi-threaded,
8005 // a chunk of stack being a task (this is
8006 // correct because each oop only ever appears
8007 // once in the overflow list. However, it's
8008 // not very easy to completely overlap this with
8009 // other operations, so will generally not be done
8010 // until all work's been completed. Because we
8011 // expect the preserved oop stack (set) to be small,
8012 // it's probably fine to do this single-threaded.
8013 // We can explore cleverer concurrent/overlapped/parallel
8014 // processing of preserved marks if we feel the
8015 // need for this in the future. Stack overflow should
8016 // be so rare in practice and, when it happens, its
8017 // effect on performance so great that this will
8018 // likely just be in the noise anyway.
8019 void CMSCollector::restore_preserved_marks_if_any() {
8020   assert(SafepointSynchronize::is_at_safepoint(),
8021          "world should be stopped");
8022   assert(Thread::current()->is_ConcurrentGC_thread() ||
8023          Thread::current()->is_VM_thread(),
8024          "should be single-threaded");
8025   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8026          "bijection");
8027 
8028   while (!_preserved_oop_stack.is_empty()) {
8029     oop p = _preserved_oop_stack.pop();
8030     assert(oopDesc::is_oop(p), "Should be an oop");
8031     assert(_span.contains(p), "oop should be in _span");
8032     assert(p->mark_raw() == markOopDesc::prototype(),
8033            "Set when taken from overflow list");
8034     markOop m = _preserved_mark_stack.pop();
8035     p->set_mark_raw(m);
8036   }
8037   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8038          "stacks were cleared above");
8039 }
8040 
8041 #ifndef PRODUCT
8042 bool CMSCollector::no_preserved_marks() const {
8043   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8044 }
8045 #endif
8046 
8047 // Transfer some number of overflown objects to usual marking
8048 // stack. Return true if some objects were transferred.
8049 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8050   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8051                     (size_t)ParGCDesiredObjsFromOverflowList);
8052 
8053   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8054   assert(_collector->overflow_list_is_empty() || res,
8055          "If list is not empty, we should have taken something");
8056   assert(!res || !_mark_stack->isEmpty(),
8057          "If we took something, it should now be on our stack");
8058   return res;
8059 }
8060 
8061 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8062   size_t res = _sp->block_size_no_stall(addr, _collector);
8063   if (_sp->block_is_obj(addr)) {
8064     if (_live_bit_map->isMarked(addr)) {
8065       // It can't have been dead in a previous cycle
8066       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8067     } else {
8068       _dead_bit_map->mark(addr);      // mark the dead object
8069     }
8070   }
8071   // Could be 0, if the block size could not be computed without stalling.
8072   return res;
8073 }
8074 
8075 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8076   GCMemoryManager* manager = CMSHeap::heap()->old_manager();
8077   switch (phase) {
8078     case CMSCollector::InitialMarking:
8079       initialize(manager /* GC manager */ ,
8080                  cause   /* cause of the GC */,
8081                  true    /* recordGCBeginTime */,
8082                  true    /* recordPreGCUsage */,
8083                  false   /* recordPeakUsage */,
8084                  false   /* recordPostGCusage */,
8085                  true    /* recordAccumulatedGCTime */,
8086                  false   /* recordGCEndTime */,
8087                  false   /* countCollection */  );
8088       break;
8089 
8090     case CMSCollector::FinalMarking:
8091       initialize(manager /* GC manager */ ,
8092                  cause   /* cause of the GC */,
8093                  false   /* recordGCBeginTime */,
8094                  false   /* recordPreGCUsage */,
8095                  false   /* recordPeakUsage */,
8096                  false   /* recordPostGCusage */,
8097                  true    /* recordAccumulatedGCTime */,
8098                  false   /* recordGCEndTime */,
8099                  false   /* countCollection */  );
8100       break;
8101 
8102     case CMSCollector::Sweeping:
8103       initialize(manager /* GC manager */ ,
8104                  cause   /* cause of the GC */,
8105                  false   /* recordGCBeginTime */,
8106                  false   /* recordPreGCUsage */,
8107                  true    /* recordPeakUsage */,
8108                  true    /* recordPostGCusage */,
8109                  false   /* recordAccumulatedGCTime */,
8110                  true    /* recordGCEndTime */,
8111                  true    /* countCollection */  );
8112       break;
8113 
8114     default:
8115       ShouldNotReachHere();
8116   }
8117 }