1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1ThreadLocalData.hpp"
  57 #include "gc/g1/g1YCTypes.hpp"
  58 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  59 #include "gc/g1/heapRegion.inline.hpp"
  60 #include "gc/g1/heapRegionRemSet.hpp"
  61 #include "gc/g1/heapRegionSet.inline.hpp"
  62 #include "gc/g1/vm_operations_g1.hpp"
  63 #include "gc/shared/adaptiveSizePolicy.hpp"
  64 #include "gc/shared/gcHeapSummary.hpp"
  65 #include "gc/shared/gcId.hpp"
  66 #include "gc/shared/gcLocker.hpp"
  67 #include "gc/shared/gcTimer.hpp"
  68 #include "gc/shared/gcTrace.hpp"
  69 #include "gc/shared/gcTraceTime.inline.hpp"
  70 #include "gc/shared/generationSpec.hpp"
  71 #include "gc/shared/isGCActiveMark.hpp"
  72 #include "gc/shared/preservedMarks.inline.hpp"
  73 #include "gc/shared/suspendibleThreadSet.hpp"
  74 #include "gc/shared/referenceProcessor.inline.hpp"
  75 #include "gc/shared/taskqueue.inline.hpp"
  76 #include "gc/shared/weakProcessor.hpp"
  77 #include "logging/log.hpp"
  78 #include "memory/allocation.hpp"
  79 #include "memory/iterator.hpp"
  80 #include "memory/resourceArea.hpp"
  81 #include "oops/access.inline.hpp"
  82 #include "oops/compressedOops.inline.hpp"
  83 #include "oops/oop.inline.hpp"
  84 #include "prims/resolvedMethodTable.hpp"
  85 #include "runtime/atomic.hpp"
  86 #include "runtime/flags/flagSetting.hpp"
  87 #include "runtime/handles.inline.hpp"
  88 #include "runtime/init.hpp"
  89 #include "runtime/orderAccess.hpp"
  90 #include "runtime/threadSMR.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "utilities/align.hpp"
  93 #include "utilities/globalDefinitions.hpp"
  94 #include "utilities/stack.inline.hpp"
  95 
  96 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  97 
  98 // INVARIANTS/NOTES
  99 //
 100 // All allocation activity covered by the G1CollectedHeap interface is
 101 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 102 // and allocate_new_tlab, which are the "entry" points to the
 103 // allocation code from the rest of the JVM.  (Note that this does not
 104 // apply to TLAB allocation, which is not part of this interface: it
 105 // is done by clients of this interface.)
 106 
 107 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 108  private:
 109   size_t _num_dirtied;
 110   G1CollectedHeap* _g1h;
 111   G1CardTable* _g1_ct;
 112 
 113   HeapRegion* region_for_card(jbyte* card_ptr) const {
 114     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 115   }
 116 
 117   bool will_become_free(HeapRegion* hr) const {
 118     // A region will be freed by free_collection_set if the region is in the
 119     // collection set and has not had an evacuation failure.
 120     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 121   }
 122 
 123  public:
 124   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 125     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 126 
 127   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 128     HeapRegion* hr = region_for_card(card_ptr);
 129 
 130     // Should only dirty cards in regions that won't be freed.
 131     if (!will_become_free(hr)) {
 132       *card_ptr = G1CardTable::dirty_card_val();
 133       _num_dirtied++;
 134     }
 135 
 136     return true;
 137   }
 138 
 139   size_t num_dirtied()   const { return _num_dirtied; }
 140 };
 141 
 142 
 143 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 144   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 145 }
 146 
 147 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 148   // The from card cache is not the memory that is actually committed. So we cannot
 149   // take advantage of the zero_filled parameter.
 150   reset_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 
 154 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 155                                              MemRegion mr) {
 156   return new HeapRegion(hrs_index, bot(), mr);
 157 }
 158 
 159 // Private methods.
 160 
 161 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 162   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 163          "the only time we use this to allocate a humongous region is "
 164          "when we are allocating a single humongous region");
 165 
 166   HeapRegion* res = _hrm.allocate_free_region(is_old);
 167 
 168   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 169     // Currently, only attempts to allocate GC alloc regions set
 170     // do_expand to true. So, we should only reach here during a
 171     // safepoint. If this assumption changes we might have to
 172     // reconsider the use of _expand_heap_after_alloc_failure.
 173     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 174 
 175     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 176                               word_size * HeapWordSize);
 177 
 178     if (expand(word_size * HeapWordSize)) {
 179       // Given that expand() succeeded in expanding the heap, and we
 180       // always expand the heap by an amount aligned to the heap
 181       // region size, the free list should in theory not be empty.
 182       // In either case allocate_free_region() will check for NULL.
 183       res = _hrm.allocate_free_region(is_old);
 184     } else {
 185       _expand_heap_after_alloc_failure = false;
 186     }
 187   }
 188   return res;
 189 }
 190 
 191 HeapWord*
 192 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 193                                                            uint num_regions,
 194                                                            size_t word_size) {
 195   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 196   assert(is_humongous(word_size), "word_size should be humongous");
 197   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 198 
 199   // Index of last region in the series.
 200   uint last = first + num_regions - 1;
 201 
 202   // We need to initialize the region(s) we just discovered. This is
 203   // a bit tricky given that it can happen concurrently with
 204   // refinement threads refining cards on these regions and
 205   // potentially wanting to refine the BOT as they are scanning
 206   // those cards (this can happen shortly after a cleanup; see CR
 207   // 6991377). So we have to set up the region(s) carefully and in
 208   // a specific order.
 209 
 210   // The word size sum of all the regions we will allocate.
 211   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 212   assert(word_size <= word_size_sum, "sanity");
 213 
 214   // This will be the "starts humongous" region.
 215   HeapRegion* first_hr = region_at(first);
 216   // The header of the new object will be placed at the bottom of
 217   // the first region.
 218   HeapWord* new_obj = first_hr->bottom();
 219   // This will be the new top of the new object.
 220   HeapWord* obj_top = new_obj + word_size;
 221 
 222   // First, we need to zero the header of the space that we will be
 223   // allocating. When we update top further down, some refinement
 224   // threads might try to scan the region. By zeroing the header we
 225   // ensure that any thread that will try to scan the region will
 226   // come across the zero klass word and bail out.
 227   //
 228   // NOTE: It would not have been correct to have used
 229   // CollectedHeap::fill_with_object() and make the space look like
 230   // an int array. The thread that is doing the allocation will
 231   // later update the object header to a potentially different array
 232   // type and, for a very short period of time, the klass and length
 233   // fields will be inconsistent. This could cause a refinement
 234   // thread to calculate the object size incorrectly.
 235   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 236 
 237   // Next, pad out the unused tail of the last region with filler
 238   // objects, for improved usage accounting.
 239   // How many words we use for filler objects.
 240   size_t word_fill_size = word_size_sum - word_size;
 241 
 242   // How many words memory we "waste" which cannot hold a filler object.
 243   size_t words_not_fillable = 0;
 244 
 245   if (word_fill_size >= min_fill_size()) {
 246     fill_with_objects(obj_top, word_fill_size);
 247   } else if (word_fill_size > 0) {
 248     // We have space to fill, but we cannot fit an object there.
 249     words_not_fillable = word_fill_size;
 250     word_fill_size = 0;
 251   }
 252 
 253   // We will set up the first region as "starts humongous". This
 254   // will also update the BOT covering all the regions to reflect
 255   // that there is a single object that starts at the bottom of the
 256   // first region.
 257   first_hr->set_starts_humongous(obj_top, word_fill_size);
 258   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 259   // Then, if there are any, we will set up the "continues
 260   // humongous" regions.
 261   HeapRegion* hr = NULL;
 262   for (uint i = first + 1; i <= last; ++i) {
 263     hr = region_at(i);
 264     hr->set_continues_humongous(first_hr);
 265     _g1_policy->remset_tracker()->update_at_allocate(hr);
 266   }
 267 
 268   // Up to this point no concurrent thread would have been able to
 269   // do any scanning on any region in this series. All the top
 270   // fields still point to bottom, so the intersection between
 271   // [bottom,top] and [card_start,card_end] will be empty. Before we
 272   // update the top fields, we'll do a storestore to make sure that
 273   // no thread sees the update to top before the zeroing of the
 274   // object header and the BOT initialization.
 275   OrderAccess::storestore();
 276 
 277   // Now, we will update the top fields of the "continues humongous"
 278   // regions except the last one.
 279   for (uint i = first; i < last; ++i) {
 280     hr = region_at(i);
 281     hr->set_top(hr->end());
 282   }
 283 
 284   hr = region_at(last);
 285   // If we cannot fit a filler object, we must set top to the end
 286   // of the humongous object, otherwise we cannot iterate the heap
 287   // and the BOT will not be complete.
 288   hr->set_top(hr->end() - words_not_fillable);
 289 
 290   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 291          "obj_top should be in last region");
 292 
 293   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 294 
 295   assert(words_not_fillable == 0 ||
 296          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 297          "Miscalculation in humongous allocation");
 298 
 299   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 300 
 301   for (uint i = first; i <= last; ++i) {
 302     hr = region_at(i);
 303     _humongous_set.add(hr);
 304     _hr_printer.alloc(hr);
 305   }
 306 
 307   return new_obj;
 308 }
 309 
 310 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 311   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 312   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 313 }
 314 
 315 // If could fit into free regions w/o expansion, try.
 316 // Otherwise, if can expand, do so.
 317 // Otherwise, if using ex regions might help, try with ex given back.
 318 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 319   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 320 
 321   _verifier->verify_region_sets_optional();
 322 
 323   uint first = G1_NO_HRM_INDEX;
 324   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 325 
 326   if (obj_regions == 1) {
 327     // Only one region to allocate, try to use a fast path by directly allocating
 328     // from the free lists. Do not try to expand here, we will potentially do that
 329     // later.
 330     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 331     if (hr != NULL) {
 332       first = hr->hrm_index();
 333     }
 334   } else {
 335     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 336     // are lucky enough to find some.
 337     first = _hrm.find_contiguous_only_empty(obj_regions);
 338     if (first != G1_NO_HRM_INDEX) {
 339       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 340     }
 341   }
 342 
 343   if (first == G1_NO_HRM_INDEX) {
 344     // Policy: We could not find enough regions for the humongous object in the
 345     // free list. Look through the heap to find a mix of free and uncommitted regions.
 346     // If so, try expansion.
 347     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 348     if (first != G1_NO_HRM_INDEX) {
 349       // We found something. Make sure these regions are committed, i.e. expand
 350       // the heap. Alternatively we could do a defragmentation GC.
 351       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 352                                     word_size * HeapWordSize);
 353 
 354       _hrm.expand_at(first, obj_regions, workers());
 355       g1_policy()->record_new_heap_size(num_regions());
 356 
 357 #ifdef ASSERT
 358       for (uint i = first; i < first + obj_regions; ++i) {
 359         HeapRegion* hr = region_at(i);
 360         assert(hr->is_free(), "sanity");
 361         assert(hr->is_empty(), "sanity");
 362         assert(is_on_master_free_list(hr), "sanity");
 363       }
 364 #endif
 365       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 366     } else {
 367       // Policy: Potentially trigger a defragmentation GC.
 368     }
 369   }
 370 
 371   HeapWord* result = NULL;
 372   if (first != G1_NO_HRM_INDEX) {
 373     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 374     assert(result != NULL, "it should always return a valid result");
 375 
 376     // A successful humongous object allocation changes the used space
 377     // information of the old generation so we need to recalculate the
 378     // sizes and update the jstat counters here.
 379     g1mm()->update_sizes();
 380   }
 381 
 382   _verifier->verify_region_sets_optional();
 383 
 384   return result;
 385 }
 386 
 387 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 388                                              size_t requested_size,
 389                                              size_t* actual_size) {
 390   assert_heap_not_locked_and_not_at_safepoint();
 391   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 392 
 393   return attempt_allocation(min_size, requested_size, actual_size);
 394 }
 395 
 396 HeapWord*
 397 G1CollectedHeap::mem_allocate(size_t word_size,
 398                               bool*  gc_overhead_limit_was_exceeded) {
 399   assert_heap_not_locked_and_not_at_safepoint();
 400 
 401   if (is_humongous(word_size)) {
 402     return attempt_allocation_humongous(word_size);
 403   }
 404   size_t dummy = 0;
 405   return attempt_allocation(word_size, word_size, &dummy);
 406 }
 407 
 408 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 409   ResourceMark rm; // For retrieving the thread names in log messages.
 410 
 411   // Make sure you read the note in attempt_allocation_humongous().
 412 
 413   assert_heap_not_locked_and_not_at_safepoint();
 414   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 415          "be called for humongous allocation requests");
 416 
 417   // We should only get here after the first-level allocation attempt
 418   // (attempt_allocation()) failed to allocate.
 419 
 420   // We will loop until a) we manage to successfully perform the
 421   // allocation or b) we successfully schedule a collection which
 422   // fails to perform the allocation. b) is the only case when we'll
 423   // return NULL.
 424   HeapWord* result = NULL;
 425   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 426     bool should_try_gc;
 427     uint gc_count_before;
 428 
 429     {
 430       MutexLockerEx x(Heap_lock);
 431       result = _allocator->attempt_allocation_locked(word_size);
 432       if (result != NULL) {
 433         return result;
 434       }
 435 
 436       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 437       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 438       // waiting because the GCLocker is active to not wait too long.
 439       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 440         // No need for an ergo message here, can_expand_young_list() does this when
 441         // it returns true.
 442         result = _allocator->attempt_allocation_force(word_size);
 443         if (result != NULL) {
 444           return result;
 445         }
 446       }
 447       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 448       // the GCLocker initiated GC has been performed and then retry. This includes
 449       // the case when the GC Locker is not active but has not been performed.
 450       should_try_gc = !GCLocker::needs_gc();
 451       // Read the GC count while still holding the Heap_lock.
 452       gc_count_before = total_collections();
 453     }
 454 
 455     if (should_try_gc) {
 456       bool succeeded;
 457       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 458                                    GCCause::_g1_inc_collection_pause);
 459       if (result != NULL) {
 460         assert(succeeded, "only way to get back a non-NULL result");
 461         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 462                              Thread::current()->name(), p2i(result));
 463         return result;
 464       }
 465 
 466       if (succeeded) {
 467         // We successfully scheduled a collection which failed to allocate. No
 468         // point in trying to allocate further. We'll just return NULL.
 469         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 470                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 471         return NULL;
 472       }
 473       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 474                            Thread::current()->name(), word_size);
 475     } else {
 476       // Failed to schedule a collection.
 477       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 478         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 479                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 480         return NULL;
 481       }
 482       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 483       // The GCLocker is either active or the GCLocker initiated
 484       // GC has not yet been performed. Stall until it is and
 485       // then retry the allocation.
 486       GCLocker::stall_until_clear();
 487       gclocker_retry_count += 1;
 488     }
 489 
 490     // We can reach here if we were unsuccessful in scheduling a
 491     // collection (because another thread beat us to it) or if we were
 492     // stalled due to the GC locker. In either can we should retry the
 493     // allocation attempt in case another thread successfully
 494     // performed a collection and reclaimed enough space. We do the
 495     // first attempt (without holding the Heap_lock) here and the
 496     // follow-on attempt will be at the start of the next loop
 497     // iteration (after taking the Heap_lock).
 498     size_t dummy = 0;
 499     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 500     if (result != NULL) {
 501       return result;
 502     }
 503 
 504     // Give a warning if we seem to be looping forever.
 505     if ((QueuedAllocationWarningCount > 0) &&
 506         (try_count % QueuedAllocationWarningCount == 0)) {
 507       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 508                              Thread::current()->name(), try_count, word_size);
 509     }
 510   }
 511 
 512   ShouldNotReachHere();
 513   return NULL;
 514 }
 515 
 516 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 517   assert_at_safepoint_on_vm_thread();
 518   if (_archive_allocator == NULL) {
 519     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 520   }
 521 }
 522 
 523 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 524   // Allocations in archive regions cannot be of a size that would be considered
 525   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 526   // may be different at archive-restore time.
 527   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 528 }
 529 
 530 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 531   assert_at_safepoint_on_vm_thread();
 532   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 533   if (is_archive_alloc_too_large(word_size)) {
 534     return NULL;
 535   }
 536   return _archive_allocator->archive_mem_allocate(word_size);
 537 }
 538 
 539 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 540                                               size_t end_alignment_in_bytes) {
 541   assert_at_safepoint_on_vm_thread();
 542   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 543 
 544   // Call complete_archive to do the real work, filling in the MemRegion
 545   // array with the archive regions.
 546   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 547   delete _archive_allocator;
 548   _archive_allocator = NULL;
 549 }
 550 
 551 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 552   assert(ranges != NULL, "MemRegion array NULL");
 553   assert(count != 0, "No MemRegions provided");
 554   MemRegion reserved = _hrm.reserved();
 555   for (size_t i = 0; i < count; i++) {
 556     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 557       return false;
 558     }
 559   }
 560   return true;
 561 }
 562 
 563 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 564                                             size_t count,
 565                                             bool open) {
 566   assert(!is_init_completed(), "Expect to be called at JVM init time");
 567   assert(ranges != NULL, "MemRegion array NULL");
 568   assert(count != 0, "No MemRegions provided");
 569   MutexLockerEx x(Heap_lock);
 570 
 571   MemRegion reserved = _hrm.reserved();
 572   HeapWord* prev_last_addr = NULL;
 573   HeapRegion* prev_last_region = NULL;
 574 
 575   // Temporarily disable pretouching of heap pages. This interface is used
 576   // when mmap'ing archived heap data in, so pre-touching is wasted.
 577   FlagSetting fs(AlwaysPreTouch, false);
 578 
 579   // Enable archive object checking used by G1MarkSweep. We have to let it know
 580   // about each archive range, so that objects in those ranges aren't marked.
 581   G1ArchiveAllocator::enable_archive_object_check();
 582 
 583   // For each specified MemRegion range, allocate the corresponding G1
 584   // regions and mark them as archive regions. We expect the ranges
 585   // in ascending starting address order, without overlap.
 586   for (size_t i = 0; i < count; i++) {
 587     MemRegion curr_range = ranges[i];
 588     HeapWord* start_address = curr_range.start();
 589     size_t word_size = curr_range.word_size();
 590     HeapWord* last_address = curr_range.last();
 591     size_t commits = 0;
 592 
 593     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 594               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 595               p2i(start_address), p2i(last_address));
 596     guarantee(start_address > prev_last_addr,
 597               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 598               p2i(start_address), p2i(prev_last_addr));
 599     prev_last_addr = last_address;
 600 
 601     // Check for ranges that start in the same G1 region in which the previous
 602     // range ended, and adjust the start address so we don't try to allocate
 603     // the same region again. If the current range is entirely within that
 604     // region, skip it, just adjusting the recorded top.
 605     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 606     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 607       start_address = start_region->end();
 608       if (start_address > last_address) {
 609         increase_used(word_size * HeapWordSize);
 610         start_region->set_top(last_address + 1);
 611         continue;
 612       }
 613       start_region->set_top(start_address);
 614       curr_range = MemRegion(start_address, last_address + 1);
 615       start_region = _hrm.addr_to_region(start_address);
 616     }
 617 
 618     // Perform the actual region allocation, exiting if it fails.
 619     // Then note how much new space we have allocated.
 620     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 621       return false;
 622     }
 623     increase_used(word_size * HeapWordSize);
 624     if (commits != 0) {
 625       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 626                                 HeapRegion::GrainWords * HeapWordSize * commits);
 627 
 628     }
 629 
 630     // Mark each G1 region touched by the range as archive, add it to
 631     // the old set, and set top.
 632     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 633     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 634     prev_last_region = last_region;
 635 
 636     while (curr_region != NULL) {
 637       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 638              "Region already in use (index %u)", curr_region->hrm_index());
 639       if (open) {
 640         curr_region->set_open_archive();
 641       } else {
 642         curr_region->set_closed_archive();
 643       }
 644       _hr_printer.alloc(curr_region);
 645       _old_set.add(curr_region);
 646       HeapWord* top;
 647       HeapRegion* next_region;
 648       if (curr_region != last_region) {
 649         top = curr_region->end();
 650         next_region = _hrm.next_region_in_heap(curr_region);
 651       } else {
 652         top = last_address + 1;
 653         next_region = NULL;
 654       }
 655       curr_region->set_top(top);
 656       curr_region->set_first_dead(top);
 657       curr_region->set_end_of_live(top);
 658       curr_region = next_region;
 659     }
 660 
 661     // Notify mark-sweep of the archive
 662     G1ArchiveAllocator::set_range_archive(curr_range, open);
 663   }
 664   return true;
 665 }
 666 
 667 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 668   assert(!is_init_completed(), "Expect to be called at JVM init time");
 669   assert(ranges != NULL, "MemRegion array NULL");
 670   assert(count != 0, "No MemRegions provided");
 671   MemRegion reserved = _hrm.reserved();
 672   HeapWord *prev_last_addr = NULL;
 673   HeapRegion* prev_last_region = NULL;
 674 
 675   // For each MemRegion, create filler objects, if needed, in the G1 regions
 676   // that contain the address range. The address range actually within the
 677   // MemRegion will not be modified. That is assumed to have been initialized
 678   // elsewhere, probably via an mmap of archived heap data.
 679   MutexLockerEx x(Heap_lock);
 680   for (size_t i = 0; i < count; i++) {
 681     HeapWord* start_address = ranges[i].start();
 682     HeapWord* last_address = ranges[i].last();
 683 
 684     assert(reserved.contains(start_address) && reserved.contains(last_address),
 685            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 686            p2i(start_address), p2i(last_address));
 687     assert(start_address > prev_last_addr,
 688            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 689            p2i(start_address), p2i(prev_last_addr));
 690 
 691     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 692     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 693     HeapWord* bottom_address = start_region->bottom();
 694 
 695     // Check for a range beginning in the same region in which the
 696     // previous one ended.
 697     if (start_region == prev_last_region) {
 698       bottom_address = prev_last_addr + 1;
 699     }
 700 
 701     // Verify that the regions were all marked as archive regions by
 702     // alloc_archive_regions.
 703     HeapRegion* curr_region = start_region;
 704     while (curr_region != NULL) {
 705       guarantee(curr_region->is_archive(),
 706                 "Expected archive region at index %u", curr_region->hrm_index());
 707       if (curr_region != last_region) {
 708         curr_region = _hrm.next_region_in_heap(curr_region);
 709       } else {
 710         curr_region = NULL;
 711       }
 712     }
 713 
 714     prev_last_addr = last_address;
 715     prev_last_region = last_region;
 716 
 717     // Fill the memory below the allocated range with dummy object(s),
 718     // if the region bottom does not match the range start, or if the previous
 719     // range ended within the same G1 region, and there is a gap.
 720     if (start_address != bottom_address) {
 721       size_t fill_size = pointer_delta(start_address, bottom_address);
 722       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 723       increase_used(fill_size * HeapWordSize);
 724     }
 725   }
 726 }
 727 
 728 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 729                                                      size_t desired_word_size,
 730                                                      size_t* actual_word_size) {
 731   assert_heap_not_locked_and_not_at_safepoint();
 732   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 733          "be called for humongous allocation requests");
 734 
 735   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 736 
 737   if (result == NULL) {
 738     *actual_word_size = desired_word_size;
 739     result = attempt_allocation_slow(desired_word_size);
 740   }
 741 
 742   assert_heap_not_locked();
 743   if (result != NULL) {
 744     assert(*actual_word_size != 0, "Actual size must have been set here");
 745     dirty_young_block(result, *actual_word_size);
 746   } else {
 747     *actual_word_size = 0;
 748   }
 749 
 750   return result;
 751 }
 752 
 753 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 754   assert(!is_init_completed(), "Expect to be called at JVM init time");
 755   assert(ranges != NULL, "MemRegion array NULL");
 756   assert(count != 0, "No MemRegions provided");
 757   MemRegion reserved = _hrm.reserved();
 758   HeapWord* prev_last_addr = NULL;
 759   HeapRegion* prev_last_region = NULL;
 760   size_t size_used = 0;
 761   size_t uncommitted_regions = 0;
 762 
 763   // For each Memregion, free the G1 regions that constitute it, and
 764   // notify mark-sweep that the range is no longer to be considered 'archive.'
 765   MutexLockerEx x(Heap_lock);
 766   for (size_t i = 0; i < count; i++) {
 767     HeapWord* start_address = ranges[i].start();
 768     HeapWord* last_address = ranges[i].last();
 769 
 770     assert(reserved.contains(start_address) && reserved.contains(last_address),
 771            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 772            p2i(start_address), p2i(last_address));
 773     assert(start_address > prev_last_addr,
 774            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 775            p2i(start_address), p2i(prev_last_addr));
 776     size_used += ranges[i].byte_size();
 777     prev_last_addr = last_address;
 778 
 779     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 780     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 781 
 782     // Check for ranges that start in the same G1 region in which the previous
 783     // range ended, and adjust the start address so we don't try to free
 784     // the same region again. If the current range is entirely within that
 785     // region, skip it.
 786     if (start_region == prev_last_region) {
 787       start_address = start_region->end();
 788       if (start_address > last_address) {
 789         continue;
 790       }
 791       start_region = _hrm.addr_to_region(start_address);
 792     }
 793     prev_last_region = last_region;
 794 
 795     // After verifying that each region was marked as an archive region by
 796     // alloc_archive_regions, set it free and empty and uncommit it.
 797     HeapRegion* curr_region = start_region;
 798     while (curr_region != NULL) {
 799       guarantee(curr_region->is_archive(),
 800                 "Expected archive region at index %u", curr_region->hrm_index());
 801       uint curr_index = curr_region->hrm_index();
 802       _old_set.remove(curr_region);
 803       curr_region->set_free();
 804       curr_region->set_top(curr_region->bottom());
 805       if (curr_region != last_region) {
 806         curr_region = _hrm.next_region_in_heap(curr_region);
 807       } else {
 808         curr_region = NULL;
 809       }
 810       _hrm.shrink_at(curr_index, 1);
 811       uncommitted_regions++;
 812     }
 813 
 814     // Notify mark-sweep that this is no longer an archive range.
 815     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 816   }
 817 
 818   if (uncommitted_regions != 0) {
 819     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 820                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 821   }
 822   decrease_used(size_used);
 823 }
 824 
 825 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 826   ResourceMark rm; // For retrieving the thread names in log messages.
 827 
 828   // The structure of this method has a lot of similarities to
 829   // attempt_allocation_slow(). The reason these two were not merged
 830   // into a single one is that such a method would require several "if
 831   // allocation is not humongous do this, otherwise do that"
 832   // conditional paths which would obscure its flow. In fact, an early
 833   // version of this code did use a unified method which was harder to
 834   // follow and, as a result, it had subtle bugs that were hard to
 835   // track down. So keeping these two methods separate allows each to
 836   // be more readable. It will be good to keep these two in sync as
 837   // much as possible.
 838 
 839   assert_heap_not_locked_and_not_at_safepoint();
 840   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 841          "should only be called for humongous allocations");
 842 
 843   // Humongous objects can exhaust the heap quickly, so we should check if we
 844   // need to start a marking cycle at each humongous object allocation. We do
 845   // the check before we do the actual allocation. The reason for doing it
 846   // before the allocation is that we avoid having to keep track of the newly
 847   // allocated memory while we do a GC.
 848   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 849                                            word_size)) {
 850     collect(GCCause::_g1_humongous_allocation);
 851   }
 852 
 853   // We will loop until a) we manage to successfully perform the
 854   // allocation or b) we successfully schedule a collection which
 855   // fails to perform the allocation. b) is the only case when we'll
 856   // return NULL.
 857   HeapWord* result = NULL;
 858   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 859     bool should_try_gc;
 860     uint gc_count_before;
 861 
 862 
 863     {
 864       MutexLockerEx x(Heap_lock);
 865 
 866       // Given that humongous objects are not allocated in young
 867       // regions, we'll first try to do the allocation without doing a
 868       // collection hoping that there's enough space in the heap.
 869       result = humongous_obj_allocate(word_size);
 870       if (result != NULL) {
 871         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 872         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 873         return result;
 874       }
 875 
 876       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 877       // the GCLocker initiated GC has been performed and then retry. This includes
 878       // the case when the GC Locker is not active but has not been performed.
 879       should_try_gc = !GCLocker::needs_gc();
 880       // Read the GC count while still holding the Heap_lock.
 881       gc_count_before = total_collections();
 882     }
 883 
 884     if (should_try_gc) {
 885       bool succeeded;
 886       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 887                                    GCCause::_g1_humongous_allocation);
 888       if (result != NULL) {
 889         assert(succeeded, "only way to get back a non-NULL result");
 890         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 891                              Thread::current()->name(), p2i(result));
 892         return result;
 893       }
 894 
 895       if (succeeded) {
 896         // We successfully scheduled a collection which failed to allocate. No
 897         // point in trying to allocate further. We'll just return NULL.
 898         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 899                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 900         return NULL;
 901       }
 902       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 903                            Thread::current()->name(), word_size);
 904     } else {
 905       // Failed to schedule a collection.
 906       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 907         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 908                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 909         return NULL;
 910       }
 911       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 912       // The GCLocker is either active or the GCLocker initiated
 913       // GC has not yet been performed. Stall until it is and
 914       // then retry the allocation.
 915       GCLocker::stall_until_clear();
 916       gclocker_retry_count += 1;
 917     }
 918 
 919 
 920     // We can reach here if we were unsuccessful in scheduling a
 921     // collection (because another thread beat us to it) or if we were
 922     // stalled due to the GC locker. In either can we should retry the
 923     // allocation attempt in case another thread successfully
 924     // performed a collection and reclaimed enough space.
 925     // Humongous object allocation always needs a lock, so we wait for the retry
 926     // in the next iteration of the loop, unlike for the regular iteration case.
 927     // Give a warning if we seem to be looping forever.
 928 
 929     if ((QueuedAllocationWarningCount > 0) &&
 930         (try_count % QueuedAllocationWarningCount == 0)) {
 931       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 932                              Thread::current()->name(), try_count, word_size);
 933     }
 934   }
 935 
 936   ShouldNotReachHere();
 937   return NULL;
 938 }
 939 
 940 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 941                                                            bool expect_null_mutator_alloc_region) {
 942   assert_at_safepoint_on_vm_thread();
 943   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 944          "the current alloc region was unexpectedly found to be non-NULL");
 945 
 946   if (!is_humongous(word_size)) {
 947     return _allocator->attempt_allocation_locked(word_size);
 948   } else {
 949     HeapWord* result = humongous_obj_allocate(word_size);
 950     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 951       collector_state()->set_initiate_conc_mark_if_possible(true);
 952     }
 953     return result;
 954   }
 955 
 956   ShouldNotReachHere();
 957 }
 958 
 959 class PostCompactionPrinterClosure: public HeapRegionClosure {
 960 private:
 961   G1HRPrinter* _hr_printer;
 962 public:
 963   bool do_heap_region(HeapRegion* hr) {
 964     assert(!hr->is_young(), "not expecting to find young regions");
 965     _hr_printer->post_compaction(hr);
 966     return false;
 967   }
 968 
 969   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 970     : _hr_printer(hr_printer) { }
 971 };
 972 
 973 void G1CollectedHeap::print_hrm_post_compaction() {
 974   if (_hr_printer.is_active()) {
 975     PostCompactionPrinterClosure cl(hr_printer());
 976     heap_region_iterate(&cl);
 977   }
 978 }
 979 
 980 void G1CollectedHeap::abort_concurrent_cycle() {
 981   // If we start the compaction before the CM threads finish
 982   // scanning the root regions we might trip them over as we'll
 983   // be moving objects / updating references. So let's wait until
 984   // they are done. By telling them to abort, they should complete
 985   // early.
 986   _cm->root_regions()->abort();
 987   _cm->root_regions()->wait_until_scan_finished();
 988 
 989   // Disable discovery and empty the discovered lists
 990   // for the CM ref processor.
 991   _ref_processor_cm->disable_discovery();
 992   _ref_processor_cm->abandon_partial_discovery();
 993   _ref_processor_cm->verify_no_references_recorded();
 994 
 995   // Abandon current iterations of concurrent marking and concurrent
 996   // refinement, if any are in progress.
 997   concurrent_mark()->concurrent_cycle_abort();
 998 }
 999 
1000 void G1CollectedHeap::prepare_heap_for_full_collection() {
1001   // Make sure we'll choose a new allocation region afterwards.
1002   _allocator->release_mutator_alloc_region();
1003   _allocator->abandon_gc_alloc_regions();
1004   g1_rem_set()->cleanupHRRS();
1005 
1006   // We may have added regions to the current incremental collection
1007   // set between the last GC or pause and now. We need to clear the
1008   // incremental collection set and then start rebuilding it afresh
1009   // after this full GC.
1010   abandon_collection_set(collection_set());
1011 
1012   tear_down_region_sets(false /* free_list_only */);
1013 }
1014 
1015 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1016   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1017   assert(used() == recalculate_used(), "Should be equal");
1018   _verifier->verify_region_sets_optional();
1019   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1020   _verifier->check_bitmaps("Full GC Start");
1021 }
1022 
1023 void G1CollectedHeap::prepare_heap_for_mutators() {
1024   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1025   ClassLoaderDataGraph::purge();
1026   MetaspaceUtils::verify_metrics();
1027 
1028   // Prepare heap for normal collections.
1029   assert(num_free_regions() == 0, "we should not have added any free regions");
1030   rebuild_region_sets(false /* free_list_only */);
1031   abort_refinement();
1032   resize_if_necessary_after_full_collection();
1033 
1034   // Rebuild the strong code root lists for each region
1035   rebuild_strong_code_roots();
1036 
1037   // Start a new incremental collection set for the next pause
1038   start_new_collection_set();
1039 
1040   _allocator->init_mutator_alloc_region();
1041 
1042   // Post collection state updates.
1043   MetaspaceGC::compute_new_size();
1044 }
1045 
1046 void G1CollectedHeap::abort_refinement() {
1047   if (_hot_card_cache->use_cache()) {
1048     _hot_card_cache->reset_hot_cache();
1049   }
1050 
1051   // Discard all remembered set updates.
1052   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1053   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1054 }
1055 
1056 void G1CollectedHeap::verify_after_full_collection() {
1057   _hrm.verify_optional();
1058   _verifier->verify_region_sets_optional();
1059   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1060   // Clear the previous marking bitmap, if needed for bitmap verification.
1061   // Note we cannot do this when we clear the next marking bitmap in
1062   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1063   // objects marked during a full GC against the previous bitmap.
1064   // But we need to clear it before calling check_bitmaps below since
1065   // the full GC has compacted objects and updated TAMS but not updated
1066   // the prev bitmap.
1067   if (G1VerifyBitmaps) {
1068     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1069     _cm->clear_prev_bitmap(workers());
1070   }
1071   _verifier->check_bitmaps("Full GC End");
1072 
1073   // At this point there should be no regions in the
1074   // entire heap tagged as young.
1075   assert(check_young_list_empty(), "young list should be empty at this point");
1076 
1077   // Note: since we've just done a full GC, concurrent
1078   // marking is no longer active. Therefore we need not
1079   // re-enable reference discovery for the CM ref processor.
1080   // That will be done at the start of the next marking cycle.
1081   // We also know that the STW processor should no longer
1082   // discover any new references.
1083   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1084   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1085   _ref_processor_stw->verify_no_references_recorded();
1086   _ref_processor_cm->verify_no_references_recorded();
1087 }
1088 
1089 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1090   // Post collection logging.
1091   // We should do this after we potentially resize the heap so
1092   // that all the COMMIT / UNCOMMIT events are generated before
1093   // the compaction events.
1094   print_hrm_post_compaction();
1095   heap_transition->print();
1096   print_heap_after_gc();
1097   print_heap_regions();
1098 #ifdef TRACESPINNING
1099   ParallelTaskTerminator::print_termination_counts();
1100 #endif
1101 }
1102 
1103 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1104                                          bool clear_all_soft_refs) {
1105   assert_at_safepoint_on_vm_thread();
1106 
1107   if (GCLocker::check_active_before_gc()) {
1108     // Full GC was not completed.
1109     return false;
1110   }
1111 
1112   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1113       soft_ref_policy()->should_clear_all_soft_refs();
1114 
1115   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1116   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1117 
1118   collector.prepare_collection();
1119   collector.collect();
1120   collector.complete_collection();
1121 
1122   // Full collection was successfully completed.
1123   return true;
1124 }
1125 
1126 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1127   // Currently, there is no facility in the do_full_collection(bool) API to notify
1128   // the caller that the collection did not succeed (e.g., because it was locked
1129   // out by the GC locker). So, right now, we'll ignore the return value.
1130   bool dummy = do_full_collection(true,                /* explicit_gc */
1131                                   clear_all_soft_refs);
1132 }
1133 
1134 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1135   // Capacity, free and used after the GC counted as full regions to
1136   // include the waste in the following calculations.
1137   const size_t capacity_after_gc = capacity();
1138   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1139 
1140   // This is enforced in arguments.cpp.
1141   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1142          "otherwise the code below doesn't make sense");
1143 
1144   // We don't have floating point command-line arguments
1145   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1146   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1147   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1148   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1149 
1150   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1151   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1152 
1153   // We have to be careful here as these two calculations can overflow
1154   // 32-bit size_t's.
1155   double used_after_gc_d = (double) used_after_gc;
1156   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1157   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1158 
1159   // Let's make sure that they are both under the max heap size, which
1160   // by default will make them fit into a size_t.
1161   double desired_capacity_upper_bound = (double) max_heap_size;
1162   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1163                                     desired_capacity_upper_bound);
1164   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1165                                     desired_capacity_upper_bound);
1166 
1167   // We can now safely turn them into size_t's.
1168   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1169   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1170 
1171   // This assert only makes sense here, before we adjust them
1172   // with respect to the min and max heap size.
1173   assert(minimum_desired_capacity <= maximum_desired_capacity,
1174          "minimum_desired_capacity = " SIZE_FORMAT ", "
1175          "maximum_desired_capacity = " SIZE_FORMAT,
1176          minimum_desired_capacity, maximum_desired_capacity);
1177 
1178   // Should not be greater than the heap max size. No need to adjust
1179   // it with respect to the heap min size as it's a lower bound (i.e.,
1180   // we'll try to make the capacity larger than it, not smaller).
1181   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1182   // Should not be less than the heap min size. No need to adjust it
1183   // with respect to the heap max size as it's an upper bound (i.e.,
1184   // we'll try to make the capacity smaller than it, not greater).
1185   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1186 
1187   if (capacity_after_gc < minimum_desired_capacity) {
1188     // Don't expand unless it's significant
1189     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1190 
1191     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1192                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1193                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1194                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1195 
1196     expand(expand_bytes, _workers);
1197 
1198     // No expansion, now see if we want to shrink
1199   } else if (capacity_after_gc > maximum_desired_capacity) {
1200     // Capacity too large, compute shrinking size
1201     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1202 
1203     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1204                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1205                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1206                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1207 
1208     shrink(shrink_bytes);
1209   }
1210 }
1211 
1212 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1213                                                             bool do_gc,
1214                                                             bool clear_all_soft_refs,
1215                                                             bool expect_null_mutator_alloc_region,
1216                                                             bool* gc_succeeded) {
1217   *gc_succeeded = true;
1218   // Let's attempt the allocation first.
1219   HeapWord* result =
1220     attempt_allocation_at_safepoint(word_size,
1221                                     expect_null_mutator_alloc_region);
1222   if (result != NULL) {
1223     return result;
1224   }
1225 
1226   // In a G1 heap, we're supposed to keep allocation from failing by
1227   // incremental pauses.  Therefore, at least for now, we'll favor
1228   // expansion over collection.  (This might change in the future if we can
1229   // do something smarter than full collection to satisfy a failed alloc.)
1230   result = expand_and_allocate(word_size);
1231   if (result != NULL) {
1232     return result;
1233   }
1234 
1235   if (do_gc) {
1236     // Expansion didn't work, we'll try to do a Full GC.
1237     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1238                                        clear_all_soft_refs);
1239   }
1240 
1241   return NULL;
1242 }
1243 
1244 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1245                                                      bool* succeeded) {
1246   assert_at_safepoint_on_vm_thread();
1247 
1248   // Attempts to allocate followed by Full GC.
1249   HeapWord* result =
1250     satisfy_failed_allocation_helper(word_size,
1251                                      true,  /* do_gc */
1252                                      false, /* clear_all_soft_refs */
1253                                      false, /* expect_null_mutator_alloc_region */
1254                                      succeeded);
1255 
1256   if (result != NULL || !*succeeded) {
1257     return result;
1258   }
1259 
1260   // Attempts to allocate followed by Full GC that will collect all soft references.
1261   result = satisfy_failed_allocation_helper(word_size,
1262                                             true, /* do_gc */
1263                                             true, /* clear_all_soft_refs */
1264                                             true, /* expect_null_mutator_alloc_region */
1265                                             succeeded);
1266 
1267   if (result != NULL || !*succeeded) {
1268     return result;
1269   }
1270 
1271   // Attempts to allocate, no GC
1272   result = satisfy_failed_allocation_helper(word_size,
1273                                             false, /* do_gc */
1274                                             false, /* clear_all_soft_refs */
1275                                             true,  /* expect_null_mutator_alloc_region */
1276                                             succeeded);
1277 
1278   if (result != NULL) {
1279     return result;
1280   }
1281 
1282   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1283          "Flag should have been handled and cleared prior to this point");
1284 
1285   // What else?  We might try synchronous finalization later.  If the total
1286   // space available is large enough for the allocation, then a more
1287   // complete compaction phase than we've tried so far might be
1288   // appropriate.
1289   return NULL;
1290 }
1291 
1292 // Attempting to expand the heap sufficiently
1293 // to support an allocation of the given "word_size".  If
1294 // successful, perform the allocation and return the address of the
1295 // allocated block, or else "NULL".
1296 
1297 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1298   assert_at_safepoint_on_vm_thread();
1299 
1300   _verifier->verify_region_sets_optional();
1301 
1302   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1303   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1304                             word_size * HeapWordSize);
1305 
1306 
1307   if (expand(expand_bytes, _workers)) {
1308     _hrm.verify_optional();
1309     _verifier->verify_region_sets_optional();
1310     return attempt_allocation_at_safepoint(word_size,
1311                                            false /* expect_null_mutator_alloc_region */);
1312   }
1313   return NULL;
1314 }
1315 
1316 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1317   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1318   aligned_expand_bytes = align_up(aligned_expand_bytes,
1319                                        HeapRegion::GrainBytes);
1320 
1321   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1322                             expand_bytes, aligned_expand_bytes);
1323 
1324   if (is_maximal_no_gc()) {
1325     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1326     return false;
1327   }
1328 
1329   double expand_heap_start_time_sec = os::elapsedTime();
1330   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1331   assert(regions_to_expand > 0, "Must expand by at least one region");
1332 
1333   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1334   if (expand_time_ms != NULL) {
1335     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1336   }
1337 
1338   if (expanded_by > 0) {
1339     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1340     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1341     g1_policy()->record_new_heap_size(num_regions());
1342   } else {
1343     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1344 
1345     // The expansion of the virtual storage space was unsuccessful.
1346     // Let's see if it was because we ran out of swap.
1347     if (G1ExitOnExpansionFailure &&
1348         _hrm.available() >= regions_to_expand) {
1349       // We had head room...
1350       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1351     }
1352   }
1353   return regions_to_expand > 0;
1354 }
1355 
1356 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1357   size_t aligned_shrink_bytes =
1358     ReservedSpace::page_align_size_down(shrink_bytes);
1359   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1360                                          HeapRegion::GrainBytes);
1361   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1362 
1363   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1364   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1365 
1366 
1367   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1368                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1369   if (num_regions_removed > 0) {
1370     g1_policy()->record_new_heap_size(num_regions());
1371   } else {
1372     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1373   }
1374 }
1375 
1376 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1377   _verifier->verify_region_sets_optional();
1378 
1379   // We should only reach here at the end of a Full GC which means we
1380   // should not not be holding to any GC alloc regions. The method
1381   // below will make sure of that and do any remaining clean up.
1382   _allocator->abandon_gc_alloc_regions();
1383 
1384   // Instead of tearing down / rebuilding the free lists here, we
1385   // could instead use the remove_all_pending() method on free_list to
1386   // remove only the ones that we need to remove.
1387   tear_down_region_sets(true /* free_list_only */);
1388   shrink_helper(shrink_bytes);
1389   rebuild_region_sets(true /* free_list_only */);
1390 
1391   _hrm.verify_optional();
1392   _verifier->verify_region_sets_optional();
1393 }
1394 
1395 // Public methods.
1396 
1397 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1398   CollectedHeap(),
1399   _young_gen_sampling_thread(NULL),
1400   _collector_policy(collector_policy),
1401   _soft_ref_policy(),
1402   _card_table(NULL),
1403   _memory_manager("G1 Young Generation", "end of minor GC"),
1404   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1405   _eden_pool(NULL),
1406   _survivor_pool(NULL),
1407   _old_pool(NULL),
1408   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1409   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1410   _g1_policy(new G1Policy(_gc_timer_stw)),
1411   _collection_set(this, _g1_policy),
1412   _dirty_card_queue_set(false),
1413   _ref_processor_stw(NULL),
1414   _is_alive_closure_stw(this),
1415   _is_subject_to_discovery_stw(this),
1416   _ref_processor_cm(NULL),
1417   _is_alive_closure_cm(this),
1418   _is_subject_to_discovery_cm(this),
1419   _bot(NULL),
1420   _hot_card_cache(NULL),
1421   _g1_rem_set(NULL),
1422   _cr(NULL),
1423   _g1mm(NULL),
1424   _preserved_marks_set(true /* in_c_heap */),
1425   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1426   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1427   _humongous_reclaim_candidates(),
1428   _has_humongous_reclaim_candidates(false),
1429   _archive_allocator(NULL),
1430   _summary_bytes_used(0),
1431   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1432   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1433   _expand_heap_after_alloc_failure(true),
1434   _old_marking_cycles_started(0),
1435   _old_marking_cycles_completed(0),
1436   _in_cset_fast_test() {
1437 
1438   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1439                           /* are_GC_task_threads */true,
1440                           /* are_ConcurrentGC_threads */false);
1441   _workers->initialize_workers();
1442   _verifier = new G1HeapVerifier(this);
1443 
1444   _allocator = new G1Allocator(this);
1445 
1446   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1447 
1448   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1449 
1450   // Override the default _filler_array_max_size so that no humongous filler
1451   // objects are created.
1452   _filler_array_max_size = _humongous_object_threshold_in_words;
1453 
1454   uint n_queues = ParallelGCThreads;
1455   _task_queues = new RefToScanQueueSet(n_queues);
1456 
1457   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1458 
1459   for (uint i = 0; i < n_queues; i++) {
1460     RefToScanQueue* q = new RefToScanQueue();
1461     q->initialize();
1462     _task_queues->register_queue(i, q);
1463     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1464   }
1465 
1466   // Initialize the G1EvacuationFailureALot counters and flags.
1467   NOT_PRODUCT(reset_evacuation_should_fail();)
1468 
1469   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1470 }
1471 
1472 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1473                                                                  size_t size,
1474                                                                  size_t translation_factor) {
1475   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1476   // Allocate a new reserved space, preferring to use large pages.
1477   ReservedSpace rs(size, preferred_page_size);
1478   G1RegionToSpaceMapper* result  =
1479     G1RegionToSpaceMapper::create_mapper(rs,
1480                                          size,
1481                                          rs.alignment(),
1482                                          HeapRegion::GrainBytes,
1483                                          translation_factor,
1484                                          mtGC);
1485 
1486   os::trace_page_sizes_for_requested_size(description,
1487                                           size,
1488                                           preferred_page_size,
1489                                           rs.alignment(),
1490                                           rs.base(),
1491                                           rs.size());
1492 
1493   return result;
1494 }
1495 
1496 jint G1CollectedHeap::initialize_concurrent_refinement() {
1497   jint ecode = JNI_OK;
1498   _cr = G1ConcurrentRefine::create(&ecode);
1499   return ecode;
1500 }
1501 
1502 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1503   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1504   if (_young_gen_sampling_thread->osthread() == NULL) {
1505     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1506     return JNI_ENOMEM;
1507   }
1508   return JNI_OK;
1509 }
1510 
1511 jint G1CollectedHeap::initialize() {
1512   os::enable_vtime();
1513 
1514   // Necessary to satisfy locking discipline assertions.
1515 
1516   MutexLocker x(Heap_lock);
1517 
1518   // While there are no constraints in the GC code that HeapWordSize
1519   // be any particular value, there are multiple other areas in the
1520   // system which believe this to be true (e.g. oop->object_size in some
1521   // cases incorrectly returns the size in wordSize units rather than
1522   // HeapWordSize).
1523   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1524 
1525   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1526   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1527   size_t heap_alignment = collector_policy()->heap_alignment();
1528 
1529   // Ensure that the sizes are properly aligned.
1530   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1531   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1532   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1533 
1534   // Reserve the maximum.
1535 
1536   // When compressed oops are enabled, the preferred heap base
1537   // is calculated by subtracting the requested size from the
1538   // 32Gb boundary and using the result as the base address for
1539   // heap reservation. If the requested size is not aligned to
1540   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1541   // into the ReservedHeapSpace constructor) then the actual
1542   // base of the reserved heap may end up differing from the
1543   // address that was requested (i.e. the preferred heap base).
1544   // If this happens then we could end up using a non-optimal
1545   // compressed oops mode.
1546 
1547   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1548                                                  heap_alignment);
1549 
1550   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1551 
1552   // Create the barrier set for the entire reserved region.
1553   G1CardTable* ct = new G1CardTable(reserved_region());
1554   ct->initialize();
1555   G1BarrierSet* bs = new G1BarrierSet(ct);
1556   bs->initialize();
1557   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1558   BarrierSet::set_barrier_set(bs);
1559   _card_table = ct;
1560 
1561   // Create the hot card cache.
1562   _hot_card_cache = new G1HotCardCache(this);
1563 
1564   // Carve out the G1 part of the heap.
1565   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1566   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1567   G1RegionToSpaceMapper* heap_storage =
1568     G1RegionToSpaceMapper::create_mapper(g1_rs,
1569                                          g1_rs.size(),
1570                                          page_size,
1571                                          HeapRegion::GrainBytes,
1572                                          1,
1573                                          mtJavaHeap);
1574   os::trace_page_sizes("Heap",
1575                        collector_policy()->min_heap_byte_size(),
1576                        max_byte_size,
1577                        page_size,
1578                        heap_rs.base(),
1579                        heap_rs.size());
1580   heap_storage->set_mapping_changed_listener(&_listener);
1581 
1582   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1583   G1RegionToSpaceMapper* bot_storage =
1584     create_aux_memory_mapper("Block Offset Table",
1585                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1586                              G1BlockOffsetTable::heap_map_factor());
1587 
1588   G1RegionToSpaceMapper* cardtable_storage =
1589     create_aux_memory_mapper("Card Table",
1590                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1591                              G1CardTable::heap_map_factor());
1592 
1593   G1RegionToSpaceMapper* card_counts_storage =
1594     create_aux_memory_mapper("Card Counts Table",
1595                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1596                              G1CardCounts::heap_map_factor());
1597 
1598   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1599   G1RegionToSpaceMapper* prev_bitmap_storage =
1600     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1601   G1RegionToSpaceMapper* next_bitmap_storage =
1602     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1603 
1604   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1605   _card_table->initialize(cardtable_storage);
1606   // Do later initialization work for concurrent refinement.
1607   _hot_card_cache->initialize(card_counts_storage);
1608 
1609   // 6843694 - ensure that the maximum region index can fit
1610   // in the remembered set structures.
1611   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1612   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1613 
1614   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1615   // start within the first card.
1616   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1617   // Also create a G1 rem set.
1618   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1619   _g1_rem_set->initialize(max_capacity(), max_regions());
1620 
1621   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1622   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1623   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1624             "too many cards per region");
1625 
1626   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1627 
1628   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1629 
1630   {
1631     HeapWord* start = _hrm.reserved().start();
1632     HeapWord* end = _hrm.reserved().end();
1633     size_t granularity = HeapRegion::GrainBytes;
1634 
1635     _in_cset_fast_test.initialize(start, end, granularity);
1636     _humongous_reclaim_candidates.initialize(start, end, granularity);
1637   }
1638 
1639   // Create the G1ConcurrentMark data structure and thread.
1640   // (Must do this late, so that "max_regions" is defined.)
1641   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1642   if (_cm == NULL || !_cm->completed_initialization()) {
1643     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1644     return JNI_ENOMEM;
1645   }
1646   _cm_thread = _cm->cm_thread();
1647 
1648   // Now expand into the initial heap size.
1649   if (!expand(init_byte_size, _workers)) {
1650     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1651     return JNI_ENOMEM;
1652   }
1653 
1654   // Perform any initialization actions delegated to the policy.
1655   g1_policy()->init(this, &_collection_set);
1656 
1657   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1658                                                  SATB_Q_FL_lock,
1659                                                  G1SATBProcessCompletedThreshold,
1660                                                  Shared_SATB_Q_lock);
1661 
1662   jint ecode = initialize_concurrent_refinement();
1663   if (ecode != JNI_OK) {
1664     return ecode;
1665   }
1666 
1667   ecode = initialize_young_gen_sampling_thread();
1668   if (ecode != JNI_OK) {
1669     return ecode;
1670   }
1671 
1672   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1673                                                   DirtyCardQ_FL_lock,
1674                                                   (int)concurrent_refine()->yellow_zone(),
1675                                                   (int)concurrent_refine()->red_zone(),
1676                                                   Shared_DirtyCardQ_lock,
1677                                                   NULL,  // fl_owner
1678                                                   true); // init_free_ids
1679 
1680   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1681                                     DirtyCardQ_FL_lock,
1682                                     -1, // never trigger processing
1683                                     -1, // no limit on length
1684                                     Shared_DirtyCardQ_lock,
1685                                     &G1BarrierSet::dirty_card_queue_set());
1686 
1687   // Here we allocate the dummy HeapRegion that is required by the
1688   // G1AllocRegion class.
1689   HeapRegion* dummy_region = _hrm.get_dummy_region();
1690 
1691   // We'll re-use the same region whether the alloc region will
1692   // require BOT updates or not and, if it doesn't, then a non-young
1693   // region will complain that it cannot support allocations without
1694   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1695   dummy_region->set_eden();
1696   // Make sure it's full.
1697   dummy_region->set_top(dummy_region->end());
1698   G1AllocRegion::setup(this, dummy_region);
1699 
1700   _allocator->init_mutator_alloc_region();
1701 
1702   // Do create of the monitoring and management support so that
1703   // values in the heap have been properly initialized.
1704   _g1mm = new G1MonitoringSupport(this);
1705 
1706   G1StringDedup::initialize();
1707 
1708   _preserved_marks_set.init(ParallelGCThreads);
1709 
1710   _collection_set.initialize(max_regions());
1711 
1712   return JNI_OK;
1713 }
1714 
1715 void G1CollectedHeap::initialize_serviceability() {
1716   _eden_pool = new G1EdenPool(this);
1717   _survivor_pool = new G1SurvivorPool(this);
1718   _old_pool = new G1OldGenPool(this);
1719 
1720   _full_gc_memory_manager.add_pool(_eden_pool);
1721   _full_gc_memory_manager.add_pool(_survivor_pool);
1722   _full_gc_memory_manager.add_pool(_old_pool);
1723 
1724   _memory_manager.add_pool(_eden_pool);
1725   _memory_manager.add_pool(_survivor_pool);
1726 
1727 }
1728 
1729 void G1CollectedHeap::stop() {
1730   // Stop all concurrent threads. We do this to make sure these threads
1731   // do not continue to execute and access resources (e.g. logging)
1732   // that are destroyed during shutdown.
1733   _cr->stop();
1734   _young_gen_sampling_thread->stop();
1735   _cm_thread->stop();
1736   if (G1StringDedup::is_enabled()) {
1737     G1StringDedup::stop();
1738   }
1739 }
1740 
1741 void G1CollectedHeap::safepoint_synchronize_begin() {
1742   SuspendibleThreadSet::synchronize();
1743 }
1744 
1745 void G1CollectedHeap::safepoint_synchronize_end() {
1746   SuspendibleThreadSet::desynchronize();
1747 }
1748 
1749 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1750   return HeapRegion::max_region_size();
1751 }
1752 
1753 void G1CollectedHeap::post_initialize() {
1754   CollectedHeap::post_initialize();
1755   ref_processing_init();
1756 }
1757 
1758 void G1CollectedHeap::ref_processing_init() {
1759   // Reference processing in G1 currently works as follows:
1760   //
1761   // * There are two reference processor instances. One is
1762   //   used to record and process discovered references
1763   //   during concurrent marking; the other is used to
1764   //   record and process references during STW pauses
1765   //   (both full and incremental).
1766   // * Both ref processors need to 'span' the entire heap as
1767   //   the regions in the collection set may be dotted around.
1768   //
1769   // * For the concurrent marking ref processor:
1770   //   * Reference discovery is enabled at initial marking.
1771   //   * Reference discovery is disabled and the discovered
1772   //     references processed etc during remarking.
1773   //   * Reference discovery is MT (see below).
1774   //   * Reference discovery requires a barrier (see below).
1775   //   * Reference processing may or may not be MT
1776   //     (depending on the value of ParallelRefProcEnabled
1777   //     and ParallelGCThreads).
1778   //   * A full GC disables reference discovery by the CM
1779   //     ref processor and abandons any entries on it's
1780   //     discovered lists.
1781   //
1782   // * For the STW processor:
1783   //   * Non MT discovery is enabled at the start of a full GC.
1784   //   * Processing and enqueueing during a full GC is non-MT.
1785   //   * During a full GC, references are processed after marking.
1786   //
1787   //   * Discovery (may or may not be MT) is enabled at the start
1788   //     of an incremental evacuation pause.
1789   //   * References are processed near the end of a STW evacuation pause.
1790   //   * For both types of GC:
1791   //     * Discovery is atomic - i.e. not concurrent.
1792   //     * Reference discovery will not need a barrier.
1793 
1794   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1795 
1796   // Concurrent Mark ref processor
1797   _ref_processor_cm =
1798     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1799                            mt_processing,                                  // mt processing
1800                            ParallelGCThreads,                              // degree of mt processing
1801                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1802                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1803                            false,                                          // Reference discovery is not atomic
1804                            &_is_alive_closure_cm);                         // is alive closure
1805 
1806   // STW ref processor
1807   _ref_processor_stw =
1808     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1809                            mt_processing,                        // mt processing
1810                            ParallelGCThreads,                    // degree of mt processing
1811                            (ParallelGCThreads > 1),              // mt discovery
1812                            ParallelGCThreads,                    // degree of mt discovery
1813                            true,                                 // Reference discovery is atomic
1814                            &_is_alive_closure_stw);              // is alive closure
1815 }
1816 
1817 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1818   return _collector_policy;
1819 }
1820 
1821 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1822   return &_soft_ref_policy;
1823 }
1824 
1825 size_t G1CollectedHeap::capacity() const {
1826   return _hrm.length() * HeapRegion::GrainBytes;
1827 }
1828 
1829 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1830   return _hrm.total_free_bytes();
1831 }
1832 
1833 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1834   _hot_card_cache->drain(cl, worker_i);
1835 }
1836 
1837 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1838   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1839   size_t n_completed_buffers = 0;
1840   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1841     n_completed_buffers++;
1842   }
1843   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1844   dcqs.clear_n_completed_buffers();
1845   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1846 }
1847 
1848 // Computes the sum of the storage used by the various regions.
1849 size_t G1CollectedHeap::used() const {
1850   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1851   if (_archive_allocator != NULL) {
1852     result += _archive_allocator->used();
1853   }
1854   return result;
1855 }
1856 
1857 size_t G1CollectedHeap::used_unlocked() const {
1858   return _summary_bytes_used;
1859 }
1860 
1861 class SumUsedClosure: public HeapRegionClosure {
1862   size_t _used;
1863 public:
1864   SumUsedClosure() : _used(0) {}
1865   bool do_heap_region(HeapRegion* r) {
1866     _used += r->used();
1867     return false;
1868   }
1869   size_t result() { return _used; }
1870 };
1871 
1872 size_t G1CollectedHeap::recalculate_used() const {
1873   double recalculate_used_start = os::elapsedTime();
1874 
1875   SumUsedClosure blk;
1876   heap_region_iterate(&blk);
1877 
1878   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1879   return blk.result();
1880 }
1881 
1882 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1883   switch (cause) {
1884     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1885     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1886     case GCCause::_wb_conc_mark:                        return true;
1887     default :                                           return false;
1888   }
1889 }
1890 
1891 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1892   switch (cause) {
1893     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1894     case GCCause::_g1_humongous_allocation: return true;
1895     default:                                return is_user_requested_concurrent_full_gc(cause);
1896   }
1897 }
1898 
1899 #ifndef PRODUCT
1900 void G1CollectedHeap::allocate_dummy_regions() {
1901   // Let's fill up most of the region
1902   size_t word_size = HeapRegion::GrainWords - 1024;
1903   // And as a result the region we'll allocate will be humongous.
1904   guarantee(is_humongous(word_size), "sanity");
1905 
1906   // _filler_array_max_size is set to humongous object threshold
1907   // but temporarily change it to use CollectedHeap::fill_with_object().
1908   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1909 
1910   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1911     // Let's use the existing mechanism for the allocation
1912     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1913     if (dummy_obj != NULL) {
1914       MemRegion mr(dummy_obj, word_size);
1915       CollectedHeap::fill_with_object(mr);
1916     } else {
1917       // If we can't allocate once, we probably cannot allocate
1918       // again. Let's get out of the loop.
1919       break;
1920     }
1921   }
1922 }
1923 #endif // !PRODUCT
1924 
1925 void G1CollectedHeap::increment_old_marking_cycles_started() {
1926   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1927          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1928          "Wrong marking cycle count (started: %d, completed: %d)",
1929          _old_marking_cycles_started, _old_marking_cycles_completed);
1930 
1931   _old_marking_cycles_started++;
1932 }
1933 
1934 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1935   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1936 
1937   // We assume that if concurrent == true, then the caller is a
1938   // concurrent thread that was joined the Suspendible Thread
1939   // Set. If there's ever a cheap way to check this, we should add an
1940   // assert here.
1941 
1942   // Given that this method is called at the end of a Full GC or of a
1943   // concurrent cycle, and those can be nested (i.e., a Full GC can
1944   // interrupt a concurrent cycle), the number of full collections
1945   // completed should be either one (in the case where there was no
1946   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1947   // behind the number of full collections started.
1948 
1949   // This is the case for the inner caller, i.e. a Full GC.
1950   assert(concurrent ||
1951          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1952          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1953          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1954          "is inconsistent with _old_marking_cycles_completed = %u",
1955          _old_marking_cycles_started, _old_marking_cycles_completed);
1956 
1957   // This is the case for the outer caller, i.e. the concurrent cycle.
1958   assert(!concurrent ||
1959          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1960          "for outer caller (concurrent cycle): "
1961          "_old_marking_cycles_started = %u "
1962          "is inconsistent with _old_marking_cycles_completed = %u",
1963          _old_marking_cycles_started, _old_marking_cycles_completed);
1964 
1965   _old_marking_cycles_completed += 1;
1966 
1967   // We need to clear the "in_progress" flag in the CM thread before
1968   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1969   // is set) so that if a waiter requests another System.gc() it doesn't
1970   // incorrectly see that a marking cycle is still in progress.
1971   if (concurrent) {
1972     _cm_thread->set_idle();
1973   }
1974 
1975   // This notify_all() will ensure that a thread that called
1976   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1977   // and it's waiting for a full GC to finish will be woken up. It is
1978   // waiting in VM_G1CollectForAllocation::doit_epilogue().
1979   FullGCCount_lock->notify_all();
1980 }
1981 
1982 void G1CollectedHeap::collect(GCCause::Cause cause) {
1983   assert_heap_not_locked();
1984 
1985   uint gc_count_before;
1986   uint old_marking_count_before;
1987   uint full_gc_count_before;
1988   bool retry_gc;
1989 
1990   do {
1991     retry_gc = false;
1992 
1993     {
1994       MutexLocker ml(Heap_lock);
1995 
1996       // Read the GC count while holding the Heap_lock
1997       gc_count_before = total_collections();
1998       full_gc_count_before = total_full_collections();
1999       old_marking_count_before = _old_marking_cycles_started;
2000     }
2001 
2002     if (should_do_concurrent_full_gc(cause)) {
2003       // Schedule an initial-mark evacuation pause that will start a
2004       // concurrent cycle. We're setting word_size to 0 which means that
2005       // we are not requesting a post-GC allocation.
2006       VM_G1CollectForAllocation op(0,     /* word_size */
2007                                    gc_count_before,
2008                                    cause,
2009                                    true,  /* should_initiate_conc_mark */
2010                                    g1_policy()->max_pause_time_ms());
2011       VMThread::execute(&op);
2012       if (!op.pause_succeeded()) {
2013         if (old_marking_count_before == _old_marking_cycles_started) {
2014           retry_gc = op.should_retry_gc();
2015         } else {
2016           // A Full GC happened while we were trying to schedule the
2017           // initial-mark GC. No point in starting a new cycle given
2018           // that the whole heap was collected anyway.
2019         }
2020 
2021         if (retry_gc) {
2022           if (GCLocker::is_active_and_needs_gc()) {
2023             GCLocker::stall_until_clear();
2024           }
2025         }
2026       }
2027     } else {
2028       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2029           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2030 
2031         // Schedule a standard evacuation pause. We're setting word_size
2032         // to 0 which means that we are not requesting a post-GC allocation.
2033         VM_G1CollectForAllocation op(0,     /* word_size */
2034                                      gc_count_before,
2035                                      cause,
2036                                      false, /* should_initiate_conc_mark */
2037                                      g1_policy()->max_pause_time_ms());
2038         VMThread::execute(&op);
2039       } else {
2040         // Schedule a Full GC.
2041         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2042         VMThread::execute(&op);
2043       }
2044     }
2045   } while (retry_gc);
2046 }
2047 
2048 bool G1CollectedHeap::is_in(const void* p) const {
2049   if (_hrm.reserved().contains(p)) {
2050     // Given that we know that p is in the reserved space,
2051     // heap_region_containing() should successfully
2052     // return the containing region.
2053     HeapRegion* hr = heap_region_containing(p);
2054     return hr->is_in(p);
2055   } else {
2056     return false;
2057   }
2058 }
2059 
2060 #ifdef ASSERT
2061 bool G1CollectedHeap::is_in_exact(const void* p) const {
2062   bool contains = reserved_region().contains(p);
2063   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2064   if (contains && available) {
2065     return true;
2066   } else {
2067     return false;
2068   }
2069 }
2070 #endif
2071 
2072 // Iteration functions.
2073 
2074 // Iterates an ObjectClosure over all objects within a HeapRegion.
2075 
2076 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2077   ObjectClosure* _cl;
2078 public:
2079   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2080   bool do_heap_region(HeapRegion* r) {
2081     if (!r->is_continues_humongous()) {
2082       r->object_iterate(_cl);
2083     }
2084     return false;
2085   }
2086 };
2087 
2088 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2089   IterateObjectClosureRegionClosure blk(cl);
2090   heap_region_iterate(&blk);
2091 }
2092 
2093 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2094   _hrm.iterate(cl);
2095 }
2096 
2097 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2098                                                                  HeapRegionClaimer *hrclaimer,
2099                                                                  uint worker_id) const {
2100   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2101 }
2102 
2103 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2104                                                          HeapRegionClaimer *hrclaimer) const {
2105   _hrm.par_iterate(cl, hrclaimer, 0);
2106 }
2107 
2108 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2109   _collection_set.iterate(cl);
2110 }
2111 
2112 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2113   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2114 }
2115 
2116 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2117   HeapRegion* hr = heap_region_containing(addr);
2118   return hr->block_start(addr);
2119 }
2120 
2121 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2122   HeapRegion* hr = heap_region_containing(addr);
2123   return hr->block_size(addr);
2124 }
2125 
2126 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2127   HeapRegion* hr = heap_region_containing(addr);
2128   return hr->block_is_obj(addr);
2129 }
2130 
2131 bool G1CollectedHeap::supports_tlab_allocation() const {
2132   return true;
2133 }
2134 
2135 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2136   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2137 }
2138 
2139 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2140   return _eden.length() * HeapRegion::GrainBytes;
2141 }
2142 
2143 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2144 // must be equal to the humongous object limit.
2145 size_t G1CollectedHeap::max_tlab_size() const {
2146   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2147 }
2148 
2149 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2150   return _allocator->unsafe_max_tlab_alloc();
2151 }
2152 
2153 size_t G1CollectedHeap::max_capacity() const {
2154   return _hrm.reserved().byte_size();
2155 }
2156 
2157 jlong G1CollectedHeap::millis_since_last_gc() {
2158   // See the notes in GenCollectedHeap::millis_since_last_gc()
2159   // for more information about the implementation.
2160   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2161     _g1_policy->collection_pause_end_millis();
2162   if (ret_val < 0) {
2163     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2164       ". returning zero instead.", ret_val);
2165     return 0;
2166   }
2167   return ret_val;
2168 }
2169 
2170 void G1CollectedHeap::deduplicate_string(oop str) {
2171   assert(java_lang_String::is_instance(str), "invariant");
2172 
2173   if (G1StringDedup::is_enabled()) {
2174     G1StringDedup::deduplicate(str);
2175   }
2176 }
2177 
2178 void G1CollectedHeap::prepare_for_verify() {
2179   _verifier->prepare_for_verify();
2180 }
2181 
2182 void G1CollectedHeap::verify(VerifyOption vo) {
2183   _verifier->verify(vo);
2184 }
2185 
2186 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2187   return true;
2188 }
2189 
2190 const char* const* G1CollectedHeap::concurrent_phases() const {
2191   return _cm_thread->concurrent_phases();
2192 }
2193 
2194 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2195   return _cm_thread->request_concurrent_phase(phase);
2196 }
2197 
2198 class PrintRegionClosure: public HeapRegionClosure {
2199   outputStream* _st;
2200 public:
2201   PrintRegionClosure(outputStream* st) : _st(st) {}
2202   bool do_heap_region(HeapRegion* r) {
2203     r->print_on(_st);
2204     return false;
2205   }
2206 };
2207 
2208 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2209                                        const HeapRegion* hr,
2210                                        const VerifyOption vo) const {
2211   switch (vo) {
2212   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2213   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2214   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2215   default:                            ShouldNotReachHere();
2216   }
2217   return false; // keep some compilers happy
2218 }
2219 
2220 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2221                                        const VerifyOption vo) const {
2222   switch (vo) {
2223   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2224   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2225   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2226   default:                            ShouldNotReachHere();
2227   }
2228   return false; // keep some compilers happy
2229 }
2230 
2231 void G1CollectedHeap::print_heap_regions() const {
2232   LogTarget(Trace, gc, heap, region) lt;
2233   if (lt.is_enabled()) {
2234     LogStream ls(lt);
2235     print_regions_on(&ls);
2236   }
2237 }
2238 
2239 void G1CollectedHeap::print_on(outputStream* st) const {
2240   st->print(" %-20s", "garbage-first heap");
2241   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2242             capacity()/K, used_unlocked()/K);
2243   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2244             p2i(_hrm.reserved().start()),
2245             p2i(_hrm.reserved().end()));
2246   st->cr();
2247   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2248   uint young_regions = young_regions_count();
2249   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2250             (size_t) young_regions * HeapRegion::GrainBytes / K);
2251   uint survivor_regions = survivor_regions_count();
2252   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2253             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2254   st->cr();
2255   MetaspaceUtils::print_on(st);
2256 }
2257 
2258 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2259   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2260                "HS=humongous(starts), HC=humongous(continues), "
2261                "CS=collection set, F=free, A=archive, "
2262                "TAMS=top-at-mark-start (previous, next)");
2263   PrintRegionClosure blk(st);
2264   heap_region_iterate(&blk);
2265 }
2266 
2267 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2268   print_on(st);
2269 
2270   // Print the per-region information.
2271   print_regions_on(st);
2272 }
2273 
2274 void G1CollectedHeap::print_on_error(outputStream* st) const {
2275   this->CollectedHeap::print_on_error(st);
2276 
2277   if (_cm != NULL) {
2278     st->cr();
2279     _cm->print_on_error(st);
2280   }
2281 }
2282 
2283 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2284   workers()->print_worker_threads_on(st);
2285   _cm_thread->print_on(st);
2286   st->cr();
2287   _cm->print_worker_threads_on(st);
2288   _cr->print_threads_on(st);
2289   _young_gen_sampling_thread->print_on(st);
2290   if (G1StringDedup::is_enabled()) {
2291     G1StringDedup::print_worker_threads_on(st);
2292   }
2293 }
2294 
2295 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2296   workers()->threads_do(tc);
2297   tc->do_thread(_cm_thread);
2298   _cm->threads_do(tc);
2299   _cr->threads_do(tc);
2300   tc->do_thread(_young_gen_sampling_thread);
2301   if (G1StringDedup::is_enabled()) {
2302     G1StringDedup::threads_do(tc);
2303   }
2304 }
2305 
2306 void G1CollectedHeap::print_tracing_info() const {
2307   g1_rem_set()->print_summary_info();
2308   concurrent_mark()->print_summary_info();
2309 }
2310 
2311 #ifndef PRODUCT
2312 // Helpful for debugging RSet issues.
2313 
2314 class PrintRSetsClosure : public HeapRegionClosure {
2315 private:
2316   const char* _msg;
2317   size_t _occupied_sum;
2318 
2319 public:
2320   bool do_heap_region(HeapRegion* r) {
2321     HeapRegionRemSet* hrrs = r->rem_set();
2322     size_t occupied = hrrs->occupied();
2323     _occupied_sum += occupied;
2324 
2325     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2326     if (occupied == 0) {
2327       tty->print_cr("  RSet is empty");
2328     } else {
2329       hrrs->print();
2330     }
2331     tty->print_cr("----------");
2332     return false;
2333   }
2334 
2335   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2336     tty->cr();
2337     tty->print_cr("========================================");
2338     tty->print_cr("%s", msg);
2339     tty->cr();
2340   }
2341 
2342   ~PrintRSetsClosure() {
2343     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2344     tty->print_cr("========================================");
2345     tty->cr();
2346   }
2347 };
2348 
2349 void G1CollectedHeap::print_cset_rsets() {
2350   PrintRSetsClosure cl("Printing CSet RSets");
2351   collection_set_iterate(&cl);
2352 }
2353 
2354 void G1CollectedHeap::print_all_rsets() {
2355   PrintRSetsClosure cl("Printing All RSets");;
2356   heap_region_iterate(&cl);
2357 }
2358 #endif // PRODUCT
2359 
2360 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2361 
2362   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2363   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2364   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2365 
2366   size_t eden_capacity_bytes =
2367     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2368 
2369   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2370   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2371                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2372 }
2373 
2374 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2375   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2376                        stats->unused(), stats->used(), stats->region_end_waste(),
2377                        stats->regions_filled(), stats->direct_allocated(),
2378                        stats->failure_used(), stats->failure_waste());
2379 }
2380 
2381 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2382   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2383   gc_tracer->report_gc_heap_summary(when, heap_summary);
2384 
2385   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2386   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2387 }
2388 
2389 G1CollectedHeap* G1CollectedHeap::heap() {
2390   CollectedHeap* heap = Universe::heap();
2391   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2392   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2393   return (G1CollectedHeap*)heap;
2394 }
2395 
2396 void G1CollectedHeap::gc_prologue(bool full) {
2397   // always_do_update_barrier = false;
2398   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2399 
2400   // This summary needs to be printed before incrementing total collections.
2401   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2402 
2403   // Update common counters.
2404   increment_total_collections(full /* full gc */);
2405   if (full) {
2406     increment_old_marking_cycles_started();
2407   }
2408 
2409   // Fill TLAB's and such
2410   double start = os::elapsedTime();
2411   accumulate_statistics_all_tlabs();
2412   ensure_parsability(true);
2413   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2414 }
2415 
2416 void G1CollectedHeap::gc_epilogue(bool full) {
2417   // Update common counters.
2418   if (full) {
2419     // Update the number of full collections that have been completed.
2420     increment_old_marking_cycles_completed(false /* concurrent */);
2421   }
2422 
2423   // We are at the end of the GC. Total collections has already been increased.
2424   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2425 
2426   // FIXME: what is this about?
2427   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2428   // is set.
2429 #if COMPILER2_OR_JVMCI
2430   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2431 #endif
2432   // always_do_update_barrier = true;
2433 
2434   double start = os::elapsedTime();
2435   resize_all_tlabs();
2436   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2437 
2438   MemoryService::track_memory_usage();
2439   // We have just completed a GC. Update the soft reference
2440   // policy with the new heap occupancy
2441   Universe::update_heap_info_at_gc();
2442 }
2443 
2444 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2445                                                uint gc_count_before,
2446                                                bool* succeeded,
2447                                                GCCause::Cause gc_cause) {
2448   assert_heap_not_locked_and_not_at_safepoint();
2449   VM_G1CollectForAllocation op(word_size,
2450                                gc_count_before,
2451                                gc_cause,
2452                                false, /* should_initiate_conc_mark */
2453                                g1_policy()->max_pause_time_ms());
2454   VMThread::execute(&op);
2455 
2456   HeapWord* result = op.result();
2457   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2458   assert(result == NULL || ret_succeeded,
2459          "the result should be NULL if the VM did not succeed");
2460   *succeeded = ret_succeeded;
2461 
2462   assert_heap_not_locked();
2463   return result;
2464 }
2465 
2466 void G1CollectedHeap::do_concurrent_mark() {
2467   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2468   if (!_cm_thread->in_progress()) {
2469     _cm_thread->set_started();
2470     CGC_lock->notify();
2471   }
2472 }
2473 
2474 size_t G1CollectedHeap::pending_card_num() {
2475   size_t extra_cards = 0;
2476   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2477     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2478     extra_cards += dcq.size();
2479   }
2480   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2481   size_t buffer_size = dcqs.buffer_size();
2482   size_t buffer_num = dcqs.completed_buffers_num();
2483 
2484   return buffer_size * buffer_num + extra_cards;
2485 }
2486 
2487 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2488   // We don't nominate objects with many remembered set entries, on
2489   // the assumption that such objects are likely still live.
2490   HeapRegionRemSet* rem_set = r->rem_set();
2491 
2492   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2493          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2494          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2495 }
2496 
2497 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2498  private:
2499   size_t _total_humongous;
2500   size_t _candidate_humongous;
2501 
2502   DirtyCardQueue _dcq;
2503 
2504   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2505     assert(region->is_starts_humongous(), "Must start a humongous object");
2506 
2507     oop obj = oop(region->bottom());
2508 
2509     // Dead objects cannot be eager reclaim candidates. Due to class
2510     // unloading it is unsafe to query their classes so we return early.
2511     if (g1h->is_obj_dead(obj, region)) {
2512       return false;
2513     }
2514 
2515     // If we do not have a complete remembered set for the region, then we can
2516     // not be sure that we have all references to it.
2517     if (!region->rem_set()->is_complete()) {
2518       return false;
2519     }
2520     // Candidate selection must satisfy the following constraints
2521     // while concurrent marking is in progress:
2522     //
2523     // * In order to maintain SATB invariants, an object must not be
2524     // reclaimed if it was allocated before the start of marking and
2525     // has not had its references scanned.  Such an object must have
2526     // its references (including type metadata) scanned to ensure no
2527     // live objects are missed by the marking process.  Objects
2528     // allocated after the start of concurrent marking don't need to
2529     // be scanned.
2530     //
2531     // * An object must not be reclaimed if it is on the concurrent
2532     // mark stack.  Objects allocated after the start of concurrent
2533     // marking are never pushed on the mark stack.
2534     //
2535     // Nominating only objects allocated after the start of concurrent
2536     // marking is sufficient to meet both constraints.  This may miss
2537     // some objects that satisfy the constraints, but the marking data
2538     // structures don't support efficiently performing the needed
2539     // additional tests or scrubbing of the mark stack.
2540     //
2541     // However, we presently only nominate is_typeArray() objects.
2542     // A humongous object containing references induces remembered
2543     // set entries on other regions.  In order to reclaim such an
2544     // object, those remembered sets would need to be cleaned up.
2545     //
2546     // We also treat is_typeArray() objects specially, allowing them
2547     // to be reclaimed even if allocated before the start of
2548     // concurrent mark.  For this we rely on mark stack insertion to
2549     // exclude is_typeArray() objects, preventing reclaiming an object
2550     // that is in the mark stack.  We also rely on the metadata for
2551     // such objects to be built-in and so ensured to be kept live.
2552     // Frequent allocation and drop of large binary blobs is an
2553     // important use case for eager reclaim, and this special handling
2554     // may reduce needed headroom.
2555 
2556     return obj->is_typeArray() &&
2557            g1h->is_potential_eager_reclaim_candidate(region);
2558   }
2559 
2560  public:
2561   RegisterHumongousWithInCSetFastTestClosure()
2562   : _total_humongous(0),
2563     _candidate_humongous(0),
2564     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2565   }
2566 
2567   virtual bool do_heap_region(HeapRegion* r) {
2568     if (!r->is_starts_humongous()) {
2569       return false;
2570     }
2571     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2572 
2573     bool is_candidate = humongous_region_is_candidate(g1h, r);
2574     uint rindex = r->hrm_index();
2575     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2576     if (is_candidate) {
2577       _candidate_humongous++;
2578       g1h->register_humongous_region_with_cset(rindex);
2579       // Is_candidate already filters out humongous object with large remembered sets.
2580       // If we have a humongous object with a few remembered sets, we simply flush these
2581       // remembered set entries into the DCQS. That will result in automatic
2582       // re-evaluation of their remembered set entries during the following evacuation
2583       // phase.
2584       if (!r->rem_set()->is_empty()) {
2585         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2586                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2587         G1CardTable* ct = g1h->card_table();
2588         HeapRegionRemSetIterator hrrs(r->rem_set());
2589         size_t card_index;
2590         while (hrrs.has_next(card_index)) {
2591           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2592           // The remembered set might contain references to already freed
2593           // regions. Filter out such entries to avoid failing card table
2594           // verification.
2595           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2596             if (*card_ptr != G1CardTable::dirty_card_val()) {
2597               *card_ptr = G1CardTable::dirty_card_val();
2598               _dcq.enqueue(card_ptr);
2599             }
2600           }
2601         }
2602         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2603                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2604                hrrs.n_yielded(), r->rem_set()->occupied());
2605         // We should only clear the card based remembered set here as we will not
2606         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2607         // (and probably never) we do not enter this path if there are other kind of
2608         // remembered sets for this region.
2609         r->rem_set()->clear_locked(true /* only_cardset */);
2610         // Clear_locked() above sets the state to Empty. However we want to continue
2611         // collecting remembered set entries for humongous regions that were not
2612         // reclaimed.
2613         r->rem_set()->set_state_complete();
2614       }
2615       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2616     }
2617     _total_humongous++;
2618 
2619     return false;
2620   }
2621 
2622   size_t total_humongous() const { return _total_humongous; }
2623   size_t candidate_humongous() const { return _candidate_humongous; }
2624 
2625   void flush_rem_set_entries() { _dcq.flush(); }
2626 };
2627 
2628 void G1CollectedHeap::register_humongous_regions_with_cset() {
2629   if (!G1EagerReclaimHumongousObjects) {
2630     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2631     return;
2632   }
2633   double time = os::elapsed_counter();
2634 
2635   // Collect reclaim candidate information and register candidates with cset.
2636   RegisterHumongousWithInCSetFastTestClosure cl;
2637   heap_region_iterate(&cl);
2638 
2639   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2640   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2641                                                                   cl.total_humongous(),
2642                                                                   cl.candidate_humongous());
2643   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2644 
2645   // Finally flush all remembered set entries to re-check into the global DCQS.
2646   cl.flush_rem_set_entries();
2647 }
2648 
2649 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2650   public:
2651     bool do_heap_region(HeapRegion* hr) {
2652       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2653         hr->verify_rem_set();
2654       }
2655       return false;
2656     }
2657 };
2658 
2659 uint G1CollectedHeap::num_task_queues() const {
2660   return _task_queues->size();
2661 }
2662 
2663 #if TASKQUEUE_STATS
2664 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2665   st->print_raw_cr("GC Task Stats");
2666   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2667   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2668 }
2669 
2670 void G1CollectedHeap::print_taskqueue_stats() const {
2671   if (!log_is_enabled(Trace, gc, task, stats)) {
2672     return;
2673   }
2674   Log(gc, task, stats) log;
2675   ResourceMark rm;
2676   LogStream ls(log.trace());
2677   outputStream* st = &ls;
2678 
2679   print_taskqueue_stats_hdr(st);
2680 
2681   TaskQueueStats totals;
2682   const uint n = num_task_queues();
2683   for (uint i = 0; i < n; ++i) {
2684     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2685     totals += task_queue(i)->stats;
2686   }
2687   st->print_raw("tot "); totals.print(st); st->cr();
2688 
2689   DEBUG_ONLY(totals.verify());
2690 }
2691 
2692 void G1CollectedHeap::reset_taskqueue_stats() {
2693   const uint n = num_task_queues();
2694   for (uint i = 0; i < n; ++i) {
2695     task_queue(i)->stats.reset();
2696   }
2697 }
2698 #endif // TASKQUEUE_STATS
2699 
2700 void G1CollectedHeap::wait_for_root_region_scanning() {
2701   double scan_wait_start = os::elapsedTime();
2702   // We have to wait until the CM threads finish scanning the
2703   // root regions as it's the only way to ensure that all the
2704   // objects on them have been correctly scanned before we start
2705   // moving them during the GC.
2706   bool waited = _cm->root_regions()->wait_until_scan_finished();
2707   double wait_time_ms = 0.0;
2708   if (waited) {
2709     double scan_wait_end = os::elapsedTime();
2710     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2711   }
2712   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2713 }
2714 
2715 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2716 private:
2717   G1HRPrinter* _hr_printer;
2718 public:
2719   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2720 
2721   virtual bool do_heap_region(HeapRegion* r) {
2722     _hr_printer->cset(r);
2723     return false;
2724   }
2725 };
2726 
2727 void G1CollectedHeap::start_new_collection_set() {
2728   collection_set()->start_incremental_building();
2729 
2730   clear_cset_fast_test();
2731 
2732   guarantee(_eden.length() == 0, "eden should have been cleared");
2733   g1_policy()->transfer_survivors_to_cset(survivor());
2734 }
2735 
2736 bool
2737 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2738   assert_at_safepoint_on_vm_thread();
2739   guarantee(!is_gc_active(), "collection is not reentrant");
2740 
2741   if (GCLocker::check_active_before_gc()) {
2742     return false;
2743   }
2744 
2745   _gc_timer_stw->register_gc_start();
2746 
2747   GCIdMark gc_id_mark;
2748   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2749 
2750   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2751   ResourceMark rm;
2752 
2753   g1_policy()->note_gc_start();
2754 
2755   wait_for_root_region_scanning();
2756 
2757   print_heap_before_gc();
2758   print_heap_regions();
2759   trace_heap_before_gc(_gc_tracer_stw);
2760 
2761   _verifier->verify_region_sets_optional();
2762   _verifier->verify_dirty_young_regions();
2763 
2764   // We should not be doing initial mark unless the conc mark thread is running
2765   if (!_cm_thread->should_terminate()) {
2766     // This call will decide whether this pause is an initial-mark
2767     // pause. If it is, in_initial_mark_gc() will return true
2768     // for the duration of this pause.
2769     g1_policy()->decide_on_conc_mark_initiation();
2770   }
2771 
2772   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2773   assert(!collector_state()->in_initial_mark_gc() ||
2774           collector_state()->in_young_only_phase(), "sanity");
2775 
2776   // We also do not allow mixed GCs during marking.
2777   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2778 
2779   // Record whether this pause is an initial mark. When the current
2780   // thread has completed its logging output and it's safe to signal
2781   // the CM thread, the flag's value in the policy has been reset.
2782   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2783 
2784   // Inner scope for scope based logging, timers, and stats collection
2785   {
2786     EvacuationInfo evacuation_info;
2787 
2788     if (collector_state()->in_initial_mark_gc()) {
2789       // We are about to start a marking cycle, so we increment the
2790       // full collection counter.
2791       increment_old_marking_cycles_started();
2792       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2793     }
2794 
2795     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2796 
2797     GCTraceCPUTime tcpu;
2798 
2799     G1HeapVerifier::G1VerifyType verify_type;
2800     FormatBuffer<> gc_string("Pause ");
2801     if (collector_state()->in_initial_mark_gc()) {
2802       gc_string.append("Initial Mark");
2803       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2804     } else if (collector_state()->in_young_only_phase()) {
2805       gc_string.append("Young");
2806       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2807     } else {
2808       gc_string.append("Mixed");
2809       verify_type = G1HeapVerifier::G1VerifyMixed;
2810     }
2811     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2812 
2813     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2814                                                                   workers()->active_workers(),
2815                                                                   Threads::number_of_non_daemon_threads());
2816     active_workers = workers()->update_active_workers(active_workers);
2817     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2818 
2819     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2820     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2821 
2822     G1HeapTransition heap_transition(this);
2823     size_t heap_used_bytes_before_gc = used();
2824 
2825     // Don't dynamically change the number of GC threads this early.  A value of
2826     // 0 is used to indicate serial work.  When parallel work is done,
2827     // it will be set.
2828 
2829     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2830       IsGCActiveMark x;
2831 
2832       gc_prologue(false);
2833 
2834       if (VerifyRememberedSets) {
2835         log_info(gc, verify)("[Verifying RemSets before GC]");
2836         VerifyRegionRemSetClosure v_cl;
2837         heap_region_iterate(&v_cl);
2838       }
2839 
2840       _verifier->verify_before_gc(verify_type);
2841 
2842       _verifier->check_bitmaps("GC Start");
2843 
2844 #if COMPILER2_OR_JVMCI
2845       DerivedPointerTable::clear();
2846 #endif
2847 
2848       // Please see comment in g1CollectedHeap.hpp and
2849       // G1CollectedHeap::ref_processing_init() to see how
2850       // reference processing currently works in G1.
2851 
2852       // Enable discovery in the STW reference processor
2853       _ref_processor_stw->enable_discovery();
2854 
2855       {
2856         // We want to temporarily turn off discovery by the
2857         // CM ref processor, if necessary, and turn it back on
2858         // on again later if we do. Using a scoped
2859         // NoRefDiscovery object will do this.
2860         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2861 
2862         // Forget the current alloc region (we might even choose it to be part
2863         // of the collection set!).
2864         _allocator->release_mutator_alloc_region();
2865 
2866         // This timing is only used by the ergonomics to handle our pause target.
2867         // It is unclear why this should not include the full pause. We will
2868         // investigate this in CR 7178365.
2869         //
2870         // Preserving the old comment here if that helps the investigation:
2871         //
2872         // The elapsed time induced by the start time below deliberately elides
2873         // the possible verification above.
2874         double sample_start_time_sec = os::elapsedTime();
2875 
2876         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2877 
2878         if (collector_state()->in_initial_mark_gc()) {
2879           concurrent_mark()->pre_initial_mark();
2880         }
2881 
2882         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2883 
2884         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2885 
2886         // Make sure the remembered sets are up to date. This needs to be
2887         // done before register_humongous_regions_with_cset(), because the
2888         // remembered sets are used there to choose eager reclaim candidates.
2889         // If the remembered sets are not up to date we might miss some
2890         // entries that need to be handled.
2891         g1_rem_set()->cleanupHRRS();
2892 
2893         register_humongous_regions_with_cset();
2894 
2895         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2896 
2897         // We call this after finalize_cset() to
2898         // ensure that the CSet has been finalized.
2899         _cm->verify_no_cset_oops();
2900 
2901         if (_hr_printer.is_active()) {
2902           G1PrintCollectionSetClosure cl(&_hr_printer);
2903           _collection_set.iterate(&cl);
2904         }
2905 
2906         // Initialize the GC alloc regions.
2907         _allocator->init_gc_alloc_regions(evacuation_info);
2908 
2909         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2910         pre_evacuate_collection_set();
2911 
2912         // Actually do the work...
2913         evacuate_collection_set(&per_thread_states);
2914 
2915         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2916 
2917         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2918         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2919 
2920         eagerly_reclaim_humongous_regions();
2921 
2922         record_obj_copy_mem_stats();
2923         _survivor_evac_stats.adjust_desired_plab_sz();
2924         _old_evac_stats.adjust_desired_plab_sz();
2925 
2926         double start = os::elapsedTime();
2927         start_new_collection_set();
2928         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2929 
2930         if (evacuation_failed()) {
2931           set_used(recalculate_used());
2932           if (_archive_allocator != NULL) {
2933             _archive_allocator->clear_used();
2934           }
2935           for (uint i = 0; i < ParallelGCThreads; i++) {
2936             if (_evacuation_failed_info_array[i].has_failed()) {
2937               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2938             }
2939           }
2940         } else {
2941           // The "used" of the the collection set have already been subtracted
2942           // when they were freed.  Add in the bytes evacuated.
2943           increase_used(g1_policy()->bytes_copied_during_gc());
2944         }
2945 
2946         if (collector_state()->in_initial_mark_gc()) {
2947           // We have to do this before we notify the CM threads that
2948           // they can start working to make sure that all the
2949           // appropriate initialization is done on the CM object.
2950           concurrent_mark()->post_initial_mark();
2951           // Note that we don't actually trigger the CM thread at
2952           // this point. We do that later when we're sure that
2953           // the current thread has completed its logging output.
2954         }
2955 
2956         allocate_dummy_regions();
2957 
2958         _allocator->init_mutator_alloc_region();
2959 
2960         {
2961           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2962           if (expand_bytes > 0) {
2963             size_t bytes_before = capacity();
2964             // No need for an ergo logging here,
2965             // expansion_amount() does this when it returns a value > 0.
2966             double expand_ms;
2967             if (!expand(expand_bytes, _workers, &expand_ms)) {
2968               // We failed to expand the heap. Cannot do anything about it.
2969             }
2970             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
2971           }
2972         }
2973 
2974         // We redo the verification but now wrt to the new CSet which
2975         // has just got initialized after the previous CSet was freed.
2976         _cm->verify_no_cset_oops();
2977 
2978         // This timing is only used by the ergonomics to handle our pause target.
2979         // It is unclear why this should not include the full pause. We will
2980         // investigate this in CR 7178365.
2981         double sample_end_time_sec = os::elapsedTime();
2982         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
2983         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
2984         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
2985 
2986         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
2987         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
2988 
2989         if (VerifyRememberedSets) {
2990           log_info(gc, verify)("[Verifying RemSets after GC]");
2991           VerifyRegionRemSetClosure v_cl;
2992           heap_region_iterate(&v_cl);
2993         }
2994 
2995         _verifier->verify_after_gc(verify_type);
2996         _verifier->check_bitmaps("GC End");
2997 
2998         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
2999         _ref_processor_stw->verify_no_references_recorded();
3000 
3001         // CM reference discovery will be re-enabled if necessary.
3002       }
3003 
3004 #ifdef TRACESPINNING
3005       ParallelTaskTerminator::print_termination_counts();
3006 #endif
3007 
3008       gc_epilogue(false);
3009     }
3010 
3011     // Print the remainder of the GC log output.
3012     if (evacuation_failed()) {
3013       log_info(gc)("To-space exhausted");
3014     }
3015 
3016     g1_policy()->print_phases();
3017     heap_transition.print();
3018 
3019     // It is not yet to safe to tell the concurrent mark to
3020     // start as we have some optional output below. We don't want the
3021     // output from the concurrent mark thread interfering with this
3022     // logging output either.
3023 
3024     _hrm.verify_optional();
3025     _verifier->verify_region_sets_optional();
3026 
3027     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3028     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3029 
3030     print_heap_after_gc();
3031     print_heap_regions();
3032     trace_heap_after_gc(_gc_tracer_stw);
3033 
3034     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3035     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3036     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3037     // before any GC notifications are raised.
3038     g1mm()->update_sizes();
3039 
3040     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3041     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3042     _gc_timer_stw->register_gc_end();
3043     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3044   }
3045   // It should now be safe to tell the concurrent mark thread to start
3046   // without its logging output interfering with the logging output
3047   // that came from the pause.
3048 
3049   if (should_start_conc_mark) {
3050     // CAUTION: after the doConcurrentMark() call below,
3051     // the concurrent marking thread(s) could be running
3052     // concurrently with us. Make sure that anything after
3053     // this point does not assume that we are the only GC thread
3054     // running. Note: of course, the actual marking work will
3055     // not start until the safepoint itself is released in
3056     // SuspendibleThreadSet::desynchronize().
3057     do_concurrent_mark();
3058   }
3059 
3060   return true;
3061 }
3062 
3063 void G1CollectedHeap::remove_self_forwarding_pointers() {
3064   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3065   workers()->run_task(&rsfp_task);
3066 }
3067 
3068 void G1CollectedHeap::restore_after_evac_failure() {
3069   double remove_self_forwards_start = os::elapsedTime();
3070 
3071   remove_self_forwarding_pointers();
3072   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3073   _preserved_marks_set.restore(&task_executor);
3074 
3075   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3076 }
3077 
3078 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3079   if (!_evacuation_failed) {
3080     _evacuation_failed = true;
3081   }
3082 
3083   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3084   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3085 }
3086 
3087 bool G1ParEvacuateFollowersClosure::offer_termination() {
3088   G1ParScanThreadState* const pss = par_scan_state();
3089   start_term_time();
3090   const bool res = terminator()->offer_termination();
3091   end_term_time();
3092   return res;
3093 }
3094 
3095 void G1ParEvacuateFollowersClosure::do_void() {
3096   G1ParScanThreadState* const pss = par_scan_state();
3097   pss->trim_queue();
3098   do {
3099     pss->steal_and_trim_queue(queues());
3100   } while (!offer_termination());
3101 }
3102 
3103 class G1ParTask : public AbstractGangTask {
3104 protected:
3105   G1CollectedHeap*         _g1h;
3106   G1ParScanThreadStateSet* _pss;
3107   RefToScanQueueSet*       _queues;
3108   G1RootProcessor*         _root_processor;
3109   ParallelTaskTerminator   _terminator;
3110   uint                     _n_workers;
3111 
3112 public:
3113   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3114     : AbstractGangTask("G1 collection"),
3115       _g1h(g1h),
3116       _pss(per_thread_states),
3117       _queues(task_queues),
3118       _root_processor(root_processor),
3119       _terminator(n_workers, _queues),
3120       _n_workers(n_workers)
3121   {}
3122 
3123   void work(uint worker_id) {
3124     if (worker_id >= _n_workers) return;  // no work needed this round
3125 
3126     double start_sec = os::elapsedTime();
3127     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3128 
3129     {
3130       ResourceMark rm;
3131       HandleMark   hm;
3132 
3133       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3134 
3135       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3136       pss->set_ref_discoverer(rp);
3137 
3138       double start_strong_roots_sec = os::elapsedTime();
3139 
3140       _root_processor->evacuate_roots(pss, worker_id);
3141 
3142       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3143       // treating the nmethods visited to act as roots for concurrent marking.
3144       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3145       // objects copied by the current evacuation.
3146       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3147 
3148       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3149 
3150       double term_sec = 0.0;
3151       size_t evac_term_attempts = 0;
3152       {
3153         double start = os::elapsedTime();
3154         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3155         evac.do_void();
3156 
3157         evac_term_attempts = evac.term_attempts();
3158         term_sec = evac.term_time();
3159         double elapsed_sec = os::elapsedTime() - start;
3160 
3161         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3162         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3163         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3164         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3165       }
3166 
3167       assert(pss->queue_is_empty(), "should be empty");
3168 
3169       if (log_is_enabled(Debug, gc, task, stats)) {
3170         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3171         size_t lab_waste;
3172         size_t lab_undo_waste;
3173         pss->waste(lab_waste, lab_undo_waste);
3174         _g1h->print_termination_stats(worker_id,
3175                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3176                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3177                                       term_sec * 1000.0,                          /* evac term time */
3178                                       evac_term_attempts,                         /* evac term attempts */
3179                                       lab_waste,                                  /* alloc buffer waste */
3180                                       lab_undo_waste                              /* undo waste */
3181                                       );
3182       }
3183 
3184       // Close the inner scope so that the ResourceMark and HandleMark
3185       // destructors are executed here and are included as part of the
3186       // "GC Worker Time".
3187     }
3188     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3189   }
3190 };
3191 
3192 void G1CollectedHeap::print_termination_stats_hdr() {
3193   log_debug(gc, task, stats)("GC Termination Stats");
3194   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3195   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3196   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3197 }
3198 
3199 void G1CollectedHeap::print_termination_stats(uint worker_id,
3200                                               double elapsed_ms,
3201                                               double strong_roots_ms,
3202                                               double term_ms,
3203                                               size_t term_attempts,
3204                                               size_t alloc_buffer_waste,
3205                                               size_t undo_waste) const {
3206   log_debug(gc, task, stats)
3207               ("%3d %9.2f %9.2f %6.2f "
3208                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3209                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3210                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3211                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3212                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3213                alloc_buffer_waste * HeapWordSize / K,
3214                undo_waste * HeapWordSize / K);
3215 }
3216 
3217 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3218 private:
3219   BoolObjectClosure* _is_alive;
3220   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3221 
3222   int _initial_string_table_size;
3223   int _initial_symbol_table_size;
3224 
3225   bool  _process_strings;
3226   int _strings_processed;
3227   int _strings_removed;
3228 
3229   bool  _process_symbols;
3230   int _symbols_processed;
3231   int _symbols_removed;
3232 
3233   bool _process_string_dedup;
3234 
3235 public:
3236   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3237     AbstractGangTask("String/Symbol Unlinking"),
3238     _is_alive(is_alive),
3239     _dedup_closure(is_alive, NULL, false),
3240     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3241     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3242     _process_string_dedup(process_string_dedup) {
3243 
3244     _initial_string_table_size = StringTable::the_table()->table_size();
3245     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3246     if (process_strings) {
3247       StringTable::clear_parallel_claimed_index();
3248     }
3249     if (process_symbols) {
3250       SymbolTable::clear_parallel_claimed_index();
3251     }
3252   }
3253 
3254   ~G1StringAndSymbolCleaningTask() {
3255     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3256               "claim value %d after unlink less than initial string table size %d",
3257               StringTable::parallel_claimed_index(), _initial_string_table_size);
3258     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3259               "claim value %d after unlink less than initial symbol table size %d",
3260               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3261 
3262     log_info(gc, stringtable)(
3263         "Cleaned string and symbol table, "
3264         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3265         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3266         strings_processed(), strings_removed(),
3267         symbols_processed(), symbols_removed());
3268   }
3269 
3270   void work(uint worker_id) {
3271     int strings_processed = 0;
3272     int strings_removed = 0;
3273     int symbols_processed = 0;
3274     int symbols_removed = 0;
3275     if (_process_strings) {
3276       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3277       Atomic::add(strings_processed, &_strings_processed);
3278       Atomic::add(strings_removed, &_strings_removed);
3279     }
3280     if (_process_symbols) {
3281       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3282       Atomic::add(symbols_processed, &_symbols_processed);
3283       Atomic::add(symbols_removed, &_symbols_removed);
3284     }
3285     if (_process_string_dedup) {
3286       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3287     }
3288   }
3289 
3290   size_t strings_processed() const { return (size_t)_strings_processed; }
3291   size_t strings_removed()   const { return (size_t)_strings_removed; }
3292 
3293   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3294   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3295 };
3296 
3297 class G1CodeCacheUnloadingTask {
3298 private:
3299   static Monitor* _lock;
3300 
3301   BoolObjectClosure* const _is_alive;
3302   const bool               _unloading_occurred;
3303   const uint               _num_workers;
3304 
3305   // Variables used to claim nmethods.
3306   CompiledMethod* _first_nmethod;
3307   CompiledMethod* volatile _claimed_nmethod;
3308 
3309   // The list of nmethods that need to be processed by the second pass.
3310   CompiledMethod* volatile _postponed_list;
3311   volatile uint            _num_entered_barrier;
3312 
3313  public:
3314   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3315       _is_alive(is_alive),
3316       _unloading_occurred(unloading_occurred),
3317       _num_workers(num_workers),
3318       _first_nmethod(NULL),
3319       _claimed_nmethod(NULL),
3320       _postponed_list(NULL),
3321       _num_entered_barrier(0)
3322   {
3323     CompiledMethod::increase_unloading_clock();
3324     // Get first alive nmethod
3325     CompiledMethodIterator iter = CompiledMethodIterator();
3326     if(iter.next_alive()) {
3327       _first_nmethod = iter.method();
3328     }
3329     _claimed_nmethod = _first_nmethod;
3330   }
3331 
3332   ~G1CodeCacheUnloadingTask() {
3333     CodeCache::verify_clean_inline_caches();
3334 
3335     CodeCache::set_needs_cache_clean(false);
3336     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3337 
3338     CodeCache::verify_icholder_relocations();
3339   }
3340 
3341  private:
3342   void add_to_postponed_list(CompiledMethod* nm) {
3343       CompiledMethod* old;
3344       do {
3345         old = _postponed_list;
3346         nm->set_unloading_next(old);
3347       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3348   }
3349 
3350   void clean_nmethod(CompiledMethod* nm) {
3351     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3352 
3353     if (postponed) {
3354       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3355       add_to_postponed_list(nm);
3356     }
3357 
3358     // Mark that this thread has been cleaned/unloaded.
3359     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3360     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3361   }
3362 
3363   void clean_nmethod_postponed(CompiledMethod* nm) {
3364     nm->do_unloading_parallel_postponed();
3365   }
3366 
3367   static const int MaxClaimNmethods = 16;
3368 
3369   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3370     CompiledMethod* first;
3371     CompiledMethodIterator last;
3372 
3373     do {
3374       *num_claimed_nmethods = 0;
3375 
3376       first = _claimed_nmethod;
3377       last = CompiledMethodIterator(first);
3378 
3379       if (first != NULL) {
3380 
3381         for (int i = 0; i < MaxClaimNmethods; i++) {
3382           if (!last.next_alive()) {
3383             break;
3384           }
3385           claimed_nmethods[i] = last.method();
3386           (*num_claimed_nmethods)++;
3387         }
3388       }
3389 
3390     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3391   }
3392 
3393   CompiledMethod* claim_postponed_nmethod() {
3394     CompiledMethod* claim;
3395     CompiledMethod* next;
3396 
3397     do {
3398       claim = _postponed_list;
3399       if (claim == NULL) {
3400         return NULL;
3401       }
3402 
3403       next = claim->unloading_next();
3404 
3405     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3406 
3407     return claim;
3408   }
3409 
3410  public:
3411   // Mark that we're done with the first pass of nmethod cleaning.
3412   void barrier_mark(uint worker_id) {
3413     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3414     _num_entered_barrier++;
3415     if (_num_entered_barrier == _num_workers) {
3416       ml.notify_all();
3417     }
3418   }
3419 
3420   // See if we have to wait for the other workers to
3421   // finish their first-pass nmethod cleaning work.
3422   void barrier_wait(uint worker_id) {
3423     if (_num_entered_barrier < _num_workers) {
3424       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3425       while (_num_entered_barrier < _num_workers) {
3426           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3427       }
3428     }
3429   }
3430 
3431   // Cleaning and unloading of nmethods. Some work has to be postponed
3432   // to the second pass, when we know which nmethods survive.
3433   void work_first_pass(uint worker_id) {
3434     // The first nmethods is claimed by the first worker.
3435     if (worker_id == 0 && _first_nmethod != NULL) {
3436       clean_nmethod(_first_nmethod);
3437       _first_nmethod = NULL;
3438     }
3439 
3440     int num_claimed_nmethods;
3441     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3442 
3443     while (true) {
3444       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3445 
3446       if (num_claimed_nmethods == 0) {
3447         break;
3448       }
3449 
3450       for (int i = 0; i < num_claimed_nmethods; i++) {
3451         clean_nmethod(claimed_nmethods[i]);
3452       }
3453     }
3454   }
3455 
3456   void work_second_pass(uint worker_id) {
3457     CompiledMethod* nm;
3458     // Take care of postponed nmethods.
3459     while ((nm = claim_postponed_nmethod()) != NULL) {
3460       clean_nmethod_postponed(nm);
3461     }
3462   }
3463 };
3464 
3465 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3466 
3467 class G1KlassCleaningTask : public StackObj {
3468   volatile int                            _clean_klass_tree_claimed;
3469   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3470 
3471  public:
3472   G1KlassCleaningTask() :
3473       _clean_klass_tree_claimed(0),
3474       _klass_iterator() {
3475   }
3476 
3477  private:
3478   bool claim_clean_klass_tree_task() {
3479     if (_clean_klass_tree_claimed) {
3480       return false;
3481     }
3482 
3483     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3484   }
3485 
3486   InstanceKlass* claim_next_klass() {
3487     Klass* klass;
3488     do {
3489       klass =_klass_iterator.next_klass();
3490     } while (klass != NULL && !klass->is_instance_klass());
3491 
3492     // this can be null so don't call InstanceKlass::cast
3493     return static_cast<InstanceKlass*>(klass);
3494   }
3495 
3496 public:
3497 
3498   void clean_klass(InstanceKlass* ik) {
3499     ik->clean_weak_instanceklass_links();
3500   }
3501 
3502   void work() {
3503     ResourceMark rm;
3504 
3505     // One worker will clean the subklass/sibling klass tree.
3506     if (claim_clean_klass_tree_task()) {
3507       Klass::clean_subklass_tree();
3508     }
3509 
3510     // All workers will help cleaning the classes,
3511     InstanceKlass* klass;
3512     while ((klass = claim_next_klass()) != NULL) {
3513       clean_klass(klass);
3514     }
3515   }
3516 };
3517 
3518 class G1ResolvedMethodCleaningTask : public StackObj {
3519   volatile int       _resolved_method_task_claimed;
3520 public:
3521   G1ResolvedMethodCleaningTask() :
3522       _resolved_method_task_claimed(0) {}
3523 
3524   bool claim_resolved_method_task() {
3525     if (_resolved_method_task_claimed) {
3526       return false;
3527     }
3528     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3529   }
3530 
3531   // These aren't big, one thread can do it all.
3532   void work() {
3533     if (claim_resolved_method_task()) {
3534       ResolvedMethodTable::unlink();
3535     }
3536   }
3537 };
3538 
3539 
3540 // To minimize the remark pause times, the tasks below are done in parallel.
3541 class G1ParallelCleaningTask : public AbstractGangTask {
3542 private:
3543   bool                          _unloading_occurred;
3544   G1StringAndSymbolCleaningTask _string_symbol_task;
3545   G1CodeCacheUnloadingTask      _code_cache_task;
3546   G1KlassCleaningTask           _klass_cleaning_task;
3547   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3548 
3549 public:
3550   // The constructor is run in the VMThread.
3551   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3552       AbstractGangTask("Parallel Cleaning"),
3553       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3554       _code_cache_task(num_workers, is_alive, unloading_occurred),
3555       _klass_cleaning_task(),
3556       _unloading_occurred(unloading_occurred),
3557       _resolved_method_cleaning_task() {
3558   }
3559 
3560   // The parallel work done by all worker threads.
3561   void work(uint worker_id) {
3562     // Do first pass of code cache cleaning.
3563     _code_cache_task.work_first_pass(worker_id);
3564 
3565     // Let the threads mark that the first pass is done.
3566     _code_cache_task.barrier_mark(worker_id);
3567 
3568     // Clean the Strings and Symbols.
3569     _string_symbol_task.work(worker_id);
3570 
3571     // Clean unreferenced things in the ResolvedMethodTable
3572     _resolved_method_cleaning_task.work();
3573 
3574     // Wait for all workers to finish the first code cache cleaning pass.
3575     _code_cache_task.barrier_wait(worker_id);
3576 
3577     // Do the second code cache cleaning work, which realize on
3578     // the liveness information gathered during the first pass.
3579     _code_cache_task.work_second_pass(worker_id);
3580 
3581     // Clean all klasses that were not unloaded.
3582     // The weak metadata in klass doesn't need to be
3583     // processed if there was no unloading.
3584     if (_unloading_occurred) {
3585       _klass_cleaning_task.work();
3586     }
3587   }
3588 };
3589 
3590 
3591 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3592                                         bool class_unloading_occurred) {
3593   uint n_workers = workers()->active_workers();
3594 
3595   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3596   workers()->run_task(&g1_unlink_task);
3597 }
3598 
3599 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3600                                        bool process_strings,
3601                                        bool process_symbols,
3602                                        bool process_string_dedup) {
3603   if (!process_strings && !process_symbols && !process_string_dedup) {
3604     // Nothing to clean.
3605     return;
3606   }
3607 
3608   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3609   workers()->run_task(&g1_unlink_task);
3610 
3611 }
3612 
3613 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3614  private:
3615   DirtyCardQueueSet* _queue;
3616   G1CollectedHeap* _g1h;
3617  public:
3618   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3619     _queue(queue), _g1h(g1h) { }
3620 
3621   virtual void work(uint worker_id) {
3622     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3623     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3624 
3625     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3626     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3627 
3628     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3629   }
3630 };
3631 
3632 void G1CollectedHeap::redirty_logged_cards() {
3633   double redirty_logged_cards_start = os::elapsedTime();
3634 
3635   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3636   dirty_card_queue_set().reset_for_par_iteration();
3637   workers()->run_task(&redirty_task);
3638 
3639   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3640   dcq.merge_bufferlists(&dirty_card_queue_set());
3641   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3642 
3643   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3644 }
3645 
3646 // Weak Reference Processing support
3647 
3648 bool G1STWIsAliveClosure::do_object_b(oop p) {
3649   // An object is reachable if it is outside the collection set,
3650   // or is inside and copied.
3651   return !_g1h->is_in_cset(p) || p->is_forwarded();
3652 }
3653 
3654 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3655   assert(obj != NULL, "must not be NULL");
3656   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3657   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3658   // may falsely indicate that this is not the case here: however the collection set only
3659   // contains old regions when concurrent mark is not running.
3660   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3661 }
3662 
3663 // Non Copying Keep Alive closure
3664 class G1KeepAliveClosure: public OopClosure {
3665   G1CollectedHeap*_g1h;
3666 public:
3667   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3668   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3669   void do_oop(oop* p) {
3670     oop obj = *p;
3671     assert(obj != NULL, "the caller should have filtered out NULL values");
3672 
3673     const InCSetState cset_state =_g1h->in_cset_state(obj);
3674     if (!cset_state.is_in_cset_or_humongous()) {
3675       return;
3676     }
3677     if (cset_state.is_in_cset()) {
3678       assert( obj->is_forwarded(), "invariant" );
3679       *p = obj->forwardee();
3680     } else {
3681       assert(!obj->is_forwarded(), "invariant" );
3682       assert(cset_state.is_humongous(),
3683              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3684      _g1h->set_humongous_is_live(obj);
3685     }
3686   }
3687 };
3688 
3689 // Copying Keep Alive closure - can be called from both
3690 // serial and parallel code as long as different worker
3691 // threads utilize different G1ParScanThreadState instances
3692 // and different queues.
3693 
3694 class G1CopyingKeepAliveClosure: public OopClosure {
3695   G1CollectedHeap*         _g1h;
3696   OopClosure*              _copy_non_heap_obj_cl;
3697   G1ParScanThreadState*    _par_scan_state;
3698 
3699 public:
3700   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3701                             OopClosure* non_heap_obj_cl,
3702                             G1ParScanThreadState* pss):
3703     _g1h(g1h),
3704     _copy_non_heap_obj_cl(non_heap_obj_cl),
3705     _par_scan_state(pss)
3706   {}
3707 
3708   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3709   virtual void do_oop(      oop* p) { do_oop_work(p); }
3710 
3711   template <class T> void do_oop_work(T* p) {
3712     oop obj = RawAccess<>::oop_load(p);
3713 
3714     if (_g1h->is_in_cset_or_humongous(obj)) {
3715       // If the referent object has been forwarded (either copied
3716       // to a new location or to itself in the event of an
3717       // evacuation failure) then we need to update the reference
3718       // field and, if both reference and referent are in the G1
3719       // heap, update the RSet for the referent.
3720       //
3721       // If the referent has not been forwarded then we have to keep
3722       // it alive by policy. Therefore we have copy the referent.
3723       //
3724       // If the reference field is in the G1 heap then we can push
3725       // on the PSS queue. When the queue is drained (after each
3726       // phase of reference processing) the object and it's followers
3727       // will be copied, the reference field set to point to the
3728       // new location, and the RSet updated. Otherwise we need to
3729       // use the the non-heap or metadata closures directly to copy
3730       // the referent object and update the pointer, while avoiding
3731       // updating the RSet.
3732 
3733       if (_g1h->is_in_g1_reserved(p)) {
3734         _par_scan_state->push_on_queue(p);
3735       } else {
3736         assert(!Metaspace::contains((const void*)p),
3737                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3738         _copy_non_heap_obj_cl->do_oop(p);
3739       }
3740     }
3741   }
3742 };
3743 
3744 // Serial drain queue closure. Called as the 'complete_gc'
3745 // closure for each discovered list in some of the
3746 // reference processing phases.
3747 
3748 class G1STWDrainQueueClosure: public VoidClosure {
3749 protected:
3750   G1CollectedHeap* _g1h;
3751   G1ParScanThreadState* _par_scan_state;
3752 
3753   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3754 
3755 public:
3756   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3757     _g1h(g1h),
3758     _par_scan_state(pss)
3759   { }
3760 
3761   void do_void() {
3762     G1ParScanThreadState* const pss = par_scan_state();
3763     pss->trim_queue();
3764   }
3765 };
3766 
3767 // Parallel Reference Processing closures
3768 
3769 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3770 // processing during G1 evacuation pauses.
3771 
3772 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3773 private:
3774   G1CollectedHeap*          _g1h;
3775   G1ParScanThreadStateSet*  _pss;
3776   RefToScanQueueSet*        _queues;
3777   WorkGang*                 _workers;
3778   uint                      _active_workers;
3779 
3780 public:
3781   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3782                            G1ParScanThreadStateSet* per_thread_states,
3783                            WorkGang* workers,
3784                            RefToScanQueueSet *task_queues,
3785                            uint n_workers) :
3786     _g1h(g1h),
3787     _pss(per_thread_states),
3788     _queues(task_queues),
3789     _workers(workers),
3790     _active_workers(n_workers)
3791   {
3792     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3793   }
3794 
3795   // Executes the given task using concurrent marking worker threads.
3796   virtual void execute(ProcessTask& task);
3797 };
3798 
3799 // Gang task for possibly parallel reference processing
3800 
3801 class G1STWRefProcTaskProxy: public AbstractGangTask {
3802   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3803   ProcessTask&     _proc_task;
3804   G1CollectedHeap* _g1h;
3805   G1ParScanThreadStateSet* _pss;
3806   RefToScanQueueSet* _task_queues;
3807   ParallelTaskTerminator* _terminator;
3808 
3809 public:
3810   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3811                         G1CollectedHeap* g1h,
3812                         G1ParScanThreadStateSet* per_thread_states,
3813                         RefToScanQueueSet *task_queues,
3814                         ParallelTaskTerminator* terminator) :
3815     AbstractGangTask("Process reference objects in parallel"),
3816     _proc_task(proc_task),
3817     _g1h(g1h),
3818     _pss(per_thread_states),
3819     _task_queues(task_queues),
3820     _terminator(terminator)
3821   {}
3822 
3823   virtual void work(uint worker_id) {
3824     // The reference processing task executed by a single worker.
3825     ResourceMark rm;
3826     HandleMark   hm;
3827 
3828     G1STWIsAliveClosure is_alive(_g1h);
3829 
3830     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3831     pss->set_ref_discoverer(NULL);
3832 
3833     // Keep alive closure.
3834     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3835 
3836     // Complete GC closure
3837     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3838 
3839     // Call the reference processing task's work routine.
3840     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3841 
3842     // Note we cannot assert that the refs array is empty here as not all
3843     // of the processing tasks (specifically phase2 - pp2_work) execute
3844     // the complete_gc closure (which ordinarily would drain the queue) so
3845     // the queue may not be empty.
3846   }
3847 };
3848 
3849 // Driver routine for parallel reference processing.
3850 // Creates an instance of the ref processing gang
3851 // task and has the worker threads execute it.
3852 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3853   assert(_workers != NULL, "Need parallel worker threads.");
3854 
3855   ParallelTaskTerminator terminator(_active_workers, _queues);
3856   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3857 
3858   _workers->run_task(&proc_task_proxy);
3859 }
3860 
3861 // End of weak reference support closures
3862 
3863 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3864   double ref_proc_start = os::elapsedTime();
3865 
3866   ReferenceProcessor* rp = _ref_processor_stw;
3867   assert(rp->discovery_enabled(), "should have been enabled");
3868 
3869   // Closure to test whether a referent is alive.
3870   G1STWIsAliveClosure is_alive(this);
3871 
3872   // Even when parallel reference processing is enabled, the processing
3873   // of JNI refs is serial and performed serially by the current thread
3874   // rather than by a worker. The following PSS will be used for processing
3875   // JNI refs.
3876 
3877   // Use only a single queue for this PSS.
3878   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3879   pss->set_ref_discoverer(NULL);
3880   assert(pss->queue_is_empty(), "pre-condition");
3881 
3882   // Keep alive closure.
3883   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
3884 
3885   // Serial Complete GC closure
3886   G1STWDrainQueueClosure drain_queue(this, pss);
3887 
3888   // Setup the soft refs policy...
3889   rp->setup_policy(false);
3890 
3891   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3892 
3893   ReferenceProcessorStats stats;
3894   if (!rp->processing_is_mt()) {
3895     // Serial reference processing...
3896     stats = rp->process_discovered_references(&is_alive,
3897                                               &keep_alive,
3898                                               &drain_queue,
3899                                               NULL,
3900                                               pt);
3901   } else {
3902     uint no_of_gc_workers = workers()->active_workers();
3903 
3904     // Parallel reference processing
3905     assert(no_of_gc_workers <= rp->max_num_queues(),
3906            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3907            no_of_gc_workers,  rp->max_num_queues());
3908 
3909     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
3910     stats = rp->process_discovered_references(&is_alive,
3911                                               &keep_alive,
3912                                               &drain_queue,
3913                                               &par_task_executor,
3914                                               pt);
3915   }
3916 
3917   _gc_tracer_stw->report_gc_reference_stats(stats);
3918 
3919   // We have completed copying any necessary live referent objects.
3920   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3921 
3922   make_pending_list_reachable();
3923 
3924   rp->verify_no_references_recorded();
3925 
3926   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3927   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3928 }
3929 
3930 void G1CollectedHeap::make_pending_list_reachable() {
3931   if (collector_state()->in_initial_mark_gc()) {
3932     oop pll_head = Universe::reference_pending_list();
3933     if (pll_head != NULL) {
3934       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3935       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3936     }
3937   }
3938 }
3939 
3940 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3941   double merge_pss_time_start = os::elapsedTime();
3942   per_thread_states->flush();
3943   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3944 }
3945 
3946 void G1CollectedHeap::pre_evacuate_collection_set() {
3947   _expand_heap_after_alloc_failure = true;
3948   _evacuation_failed = false;
3949 
3950   // Disable the hot card cache.
3951   _hot_card_cache->reset_hot_cache_claimed_index();
3952   _hot_card_cache->set_use_cache(false);
3953 
3954   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3955   _preserved_marks_set.assert_empty();
3956 
3957   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3958 
3959   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3960   if (collector_state()->in_initial_mark_gc()) {
3961     double start_clear_claimed_marks = os::elapsedTime();
3962 
3963     ClassLoaderDataGraph::clear_claimed_marks();
3964 
3965     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3966     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3967   }
3968 }
3969 
3970 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3971   // Should G1EvacuationFailureALot be in effect for this GC?
3972   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3973 
3974   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3975 
3976   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3977 
3978   double start_par_time_sec = os::elapsedTime();
3979   double end_par_time_sec;
3980 
3981   {
3982     const uint n_workers = workers()->active_workers();
3983     G1RootProcessor root_processor(this, n_workers);
3984     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3985 
3986     print_termination_stats_hdr();
3987 
3988     workers()->run_task(&g1_par_task);
3989     end_par_time_sec = os::elapsedTime();
3990 
3991     // Closing the inner scope will execute the destructor
3992     // for the G1RootProcessor object. We record the current
3993     // elapsed time before closing the scope so that time
3994     // taken for the destructor is NOT included in the
3995     // reported parallel time.
3996   }
3997 
3998   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3999   phase_times->record_par_time(par_time_ms);
4000 
4001   double code_root_fixup_time_ms =
4002         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4003   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4004 }
4005 
4006 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4007   // Also cleans the card table from temporary duplicate detection information used
4008   // during UpdateRS/ScanRS.
4009   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4010 
4011   // Process any discovered reference objects - we have
4012   // to do this _before_ we retire the GC alloc regions
4013   // as we may have to copy some 'reachable' referent
4014   // objects (and their reachable sub-graphs) that were
4015   // not copied during the pause.
4016   process_discovered_references(per_thread_states);
4017 
4018   // FIXME
4019   // CM's reference processing also cleans up the string and symbol tables.
4020   // Should we do that here also? We could, but it is a serial operation
4021   // and could significantly increase the pause time.
4022 
4023   G1STWIsAliveClosure is_alive(this);
4024   G1KeepAliveClosure keep_alive(this);
4025 
4026   {
4027     double start = os::elapsedTime();
4028 
4029     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4030 
4031     double time_ms = (os::elapsedTime() - start) * 1000.0;
4032     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4033   }
4034 
4035   if (G1StringDedup::is_enabled()) {
4036     double fixup_start = os::elapsedTime();
4037 
4038     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4039 
4040     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4041     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4042   }
4043 
4044   if (evacuation_failed()) {
4045     restore_after_evac_failure();
4046 
4047     // Reset the G1EvacuationFailureALot counters and flags
4048     // Note: the values are reset only when an actual
4049     // evacuation failure occurs.
4050     NOT_PRODUCT(reset_evacuation_should_fail();)
4051   }
4052 
4053   _preserved_marks_set.assert_empty();
4054 
4055   _allocator->release_gc_alloc_regions(evacuation_info);
4056 
4057   merge_per_thread_state_info(per_thread_states);
4058 
4059   // Reset and re-enable the hot card cache.
4060   // Note the counts for the cards in the regions in the
4061   // collection set are reset when the collection set is freed.
4062   _hot_card_cache->reset_hot_cache();
4063   _hot_card_cache->set_use_cache(true);
4064 
4065   purge_code_root_memory();
4066 
4067   redirty_logged_cards();
4068 #if COMPILER2_OR_JVMCI
4069   double start = os::elapsedTime();
4070   DerivedPointerTable::update_pointers();
4071   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4072 #endif
4073   g1_policy()->print_age_table();
4074 }
4075 
4076 void G1CollectedHeap::record_obj_copy_mem_stats() {
4077   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4078 
4079   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4080                                                create_g1_evac_summary(&_old_evac_stats));
4081 }
4082 
4083 void G1CollectedHeap::free_region(HeapRegion* hr,
4084                                   FreeRegionList* free_list,
4085                                   bool skip_remset,
4086                                   bool skip_hot_card_cache,
4087                                   bool locked) {
4088   assert(!hr->is_free(), "the region should not be free");
4089   assert(!hr->is_empty(), "the region should not be empty");
4090   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4091   assert(free_list != NULL, "pre-condition");
4092 
4093   if (G1VerifyBitmaps) {
4094     MemRegion mr(hr->bottom(), hr->end());
4095     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4096   }
4097 
4098   // Clear the card counts for this region.
4099   // Note: we only need to do this if the region is not young
4100   // (since we don't refine cards in young regions).
4101   if (!skip_hot_card_cache && !hr->is_young()) {
4102     _hot_card_cache->reset_card_counts(hr);
4103   }
4104   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4105   _g1_policy->remset_tracker()->update_at_free(hr);
4106   free_list->add_ordered(hr);
4107 }
4108 
4109 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4110                                             FreeRegionList* free_list) {
4111   assert(hr->is_humongous(), "this is only for humongous regions");
4112   assert(free_list != NULL, "pre-condition");
4113   hr->clear_humongous();
4114   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4115 }
4116 
4117 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4118                                            const uint humongous_regions_removed) {
4119   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4120     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4121     _old_set.bulk_remove(old_regions_removed);
4122     _humongous_set.bulk_remove(humongous_regions_removed);
4123   }
4124 
4125 }
4126 
4127 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4128   assert(list != NULL, "list can't be null");
4129   if (!list->is_empty()) {
4130     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4131     _hrm.insert_list_into_free_list(list);
4132   }
4133 }
4134 
4135 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4136   decrease_used(bytes);
4137 }
4138 
4139 class G1FreeCollectionSetTask : public AbstractGangTask {
4140 private:
4141 
4142   // Closure applied to all regions in the collection set to do work that needs to
4143   // be done serially in a single thread.
4144   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4145   private:
4146     EvacuationInfo* _evacuation_info;
4147     const size_t* _surviving_young_words;
4148 
4149     // Bytes used in successfully evacuated regions before the evacuation.
4150     size_t _before_used_bytes;
4151     // Bytes used in unsucessfully evacuated regions before the evacuation
4152     size_t _after_used_bytes;
4153 
4154     size_t _bytes_allocated_in_old_since_last_gc;
4155 
4156     size_t _failure_used_words;
4157     size_t _failure_waste_words;
4158 
4159     FreeRegionList _local_free_list;
4160   public:
4161     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4162       HeapRegionClosure(),
4163       _evacuation_info(evacuation_info),
4164       _surviving_young_words(surviving_young_words),
4165       _before_used_bytes(0),
4166       _after_used_bytes(0),
4167       _bytes_allocated_in_old_since_last_gc(0),
4168       _failure_used_words(0),
4169       _failure_waste_words(0),
4170       _local_free_list("Local Region List for CSet Freeing") {
4171     }
4172 
4173     virtual bool do_heap_region(HeapRegion* r) {
4174       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4175 
4176       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4177       g1h->clear_in_cset(r);
4178 
4179       if (r->is_young()) {
4180         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4181                "Young index %d is wrong for region %u of type %s with %u young regions",
4182                r->young_index_in_cset(),
4183                r->hrm_index(),
4184                r->get_type_str(),
4185                g1h->collection_set()->young_region_length());
4186         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4187         r->record_surv_words_in_group(words_survived);
4188       }
4189 
4190       if (!r->evacuation_failed()) {
4191         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4192         _before_used_bytes += r->used();
4193         g1h->free_region(r,
4194                          &_local_free_list,
4195                          true, /* skip_remset */
4196                          true, /* skip_hot_card_cache */
4197                          true  /* locked */);
4198       } else {
4199         r->uninstall_surv_rate_group();
4200         r->set_young_index_in_cset(-1);
4201         r->set_evacuation_failed(false);
4202         // When moving a young gen region to old gen, we "allocate" that whole region
4203         // there. This is in addition to any already evacuated objects. Notify the
4204         // policy about that.
4205         // Old gen regions do not cause an additional allocation: both the objects
4206         // still in the region and the ones already moved are accounted for elsewhere.
4207         if (r->is_young()) {
4208           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4209         }
4210         // The region is now considered to be old.
4211         r->set_old();
4212         // Do some allocation statistics accounting. Regions that failed evacuation
4213         // are always made old, so there is no need to update anything in the young
4214         // gen statistics, but we need to update old gen statistics.
4215         size_t used_words = r->marked_bytes() / HeapWordSize;
4216 
4217         _failure_used_words += used_words;
4218         _failure_waste_words += HeapRegion::GrainWords - used_words;
4219 
4220         g1h->old_set_add(r);
4221         _after_used_bytes += r->used();
4222       }
4223       return false;
4224     }
4225 
4226     void complete_work() {
4227       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4228 
4229       _evacuation_info->set_regions_freed(_local_free_list.length());
4230       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4231 
4232       g1h->prepend_to_freelist(&_local_free_list);
4233       g1h->decrement_summary_bytes(_before_used_bytes);
4234 
4235       G1Policy* policy = g1h->g1_policy();
4236       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4237 
4238       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4239     }
4240   };
4241 
4242   G1CollectionSet* _collection_set;
4243   G1SerialFreeCollectionSetClosure _cl;
4244   const size_t* _surviving_young_words;
4245 
4246   size_t _rs_lengths;
4247 
4248   volatile jint _serial_work_claim;
4249 
4250   struct WorkItem {
4251     uint region_idx;
4252     bool is_young;
4253     bool evacuation_failed;
4254 
4255     WorkItem(HeapRegion* r) {
4256       region_idx = r->hrm_index();
4257       is_young = r->is_young();
4258       evacuation_failed = r->evacuation_failed();
4259     }
4260   };
4261 
4262   volatile size_t _parallel_work_claim;
4263   size_t _num_work_items;
4264   WorkItem* _work_items;
4265 
4266   void do_serial_work() {
4267     // Need to grab the lock to be allowed to modify the old region list.
4268     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4269     _collection_set->iterate(&_cl);
4270   }
4271 
4272   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4273     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4274 
4275     HeapRegion* r = g1h->region_at(region_idx);
4276     assert(!g1h->is_on_master_free_list(r), "sanity");
4277 
4278     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4279 
4280     if (!is_young) {
4281       g1h->_hot_card_cache->reset_card_counts(r);
4282     }
4283 
4284     if (!evacuation_failed) {
4285       r->rem_set()->clear_locked();
4286     }
4287   }
4288 
4289   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4290   private:
4291     size_t _cur_idx;
4292     WorkItem* _work_items;
4293   public:
4294     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4295 
4296     virtual bool do_heap_region(HeapRegion* r) {
4297       _work_items[_cur_idx++] = WorkItem(r);
4298       return false;
4299     }
4300   };
4301 
4302   void prepare_work() {
4303     G1PrepareFreeCollectionSetClosure cl(_work_items);
4304     _collection_set->iterate(&cl);
4305   }
4306 
4307   void complete_work() {
4308     _cl.complete_work();
4309 
4310     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4311     policy->record_max_rs_lengths(_rs_lengths);
4312     policy->cset_regions_freed();
4313   }
4314 public:
4315   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4316     AbstractGangTask("G1 Free Collection Set"),
4317     _cl(evacuation_info, surviving_young_words),
4318     _collection_set(collection_set),
4319     _surviving_young_words(surviving_young_words),
4320     _serial_work_claim(0),
4321     _rs_lengths(0),
4322     _parallel_work_claim(0),
4323     _num_work_items(collection_set->region_length()),
4324     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4325     prepare_work();
4326   }
4327 
4328   ~G1FreeCollectionSetTask() {
4329     complete_work();
4330     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4331   }
4332 
4333   // Chunk size for work distribution. The chosen value has been determined experimentally
4334   // to be a good tradeoff between overhead and achievable parallelism.
4335   static uint chunk_size() { return 32; }
4336 
4337   virtual void work(uint worker_id) {
4338     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4339 
4340     // Claim serial work.
4341     if (_serial_work_claim == 0) {
4342       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4343       if (value == 0) {
4344         double serial_time = os::elapsedTime();
4345         do_serial_work();
4346         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4347       }
4348     }
4349 
4350     // Start parallel work.
4351     double young_time = 0.0;
4352     bool has_young_time = false;
4353     double non_young_time = 0.0;
4354     bool has_non_young_time = false;
4355 
4356     while (true) {
4357       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4358       size_t cur = end - chunk_size();
4359 
4360       if (cur >= _num_work_items) {
4361         break;
4362       }
4363 
4364       double start_time = os::elapsedTime();
4365 
4366       end = MIN2(end, _num_work_items);
4367 
4368       for (; cur < end; cur++) {
4369         bool is_young = _work_items[cur].is_young;
4370 
4371         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4372 
4373         double end_time = os::elapsedTime();
4374         double time_taken = end_time - start_time;
4375         if (is_young) {
4376           young_time += time_taken;
4377           has_young_time = true;
4378         } else {
4379           non_young_time += time_taken;
4380           has_non_young_time = true;
4381         }
4382         start_time = end_time;
4383       }
4384     }
4385 
4386     if (has_young_time) {
4387       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4388     }
4389     if (has_non_young_time) {
4390       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4391     }
4392   }
4393 };
4394 
4395 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4396   _eden.clear();
4397 
4398   double free_cset_start_time = os::elapsedTime();
4399 
4400   {
4401     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4402     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4403 
4404     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4405 
4406     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4407                         cl.name(),
4408                         num_workers,
4409                         _collection_set.region_length());
4410     workers()->run_task(&cl, num_workers);
4411   }
4412   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4413 
4414   collection_set->clear();
4415 }
4416 
4417 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4418  private:
4419   FreeRegionList* _free_region_list;
4420   HeapRegionSet* _proxy_set;
4421   uint _humongous_objects_reclaimed;
4422   uint _humongous_regions_reclaimed;
4423   size_t _freed_bytes;
4424  public:
4425 
4426   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4427     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4428   }
4429 
4430   virtual bool do_heap_region(HeapRegion* r) {
4431     if (!r->is_starts_humongous()) {
4432       return false;
4433     }
4434 
4435     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4436 
4437     oop obj = (oop)r->bottom();
4438     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4439 
4440     // The following checks whether the humongous object is live are sufficient.
4441     // The main additional check (in addition to having a reference from the roots
4442     // or the young gen) is whether the humongous object has a remembered set entry.
4443     //
4444     // A humongous object cannot be live if there is no remembered set for it
4445     // because:
4446     // - there can be no references from within humongous starts regions referencing
4447     // the object because we never allocate other objects into them.
4448     // (I.e. there are no intra-region references that may be missed by the
4449     // remembered set)
4450     // - as soon there is a remembered set entry to the humongous starts region
4451     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4452     // until the end of a concurrent mark.
4453     //
4454     // It is not required to check whether the object has been found dead by marking
4455     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4456     // all objects allocated during that time are considered live.
4457     // SATB marking is even more conservative than the remembered set.
4458     // So if at this point in the collection there is no remembered set entry,
4459     // nobody has a reference to it.
4460     // At the start of collection we flush all refinement logs, and remembered sets
4461     // are completely up-to-date wrt to references to the humongous object.
4462     //
4463     // Other implementation considerations:
4464     // - never consider object arrays at this time because they would pose
4465     // considerable effort for cleaning up the the remembered sets. This is
4466     // required because stale remembered sets might reference locations that
4467     // are currently allocated into.
4468     uint region_idx = r->hrm_index();
4469     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4470         !r->rem_set()->is_empty()) {
4471       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4472                                region_idx,
4473                                (size_t)obj->size() * HeapWordSize,
4474                                p2i(r->bottom()),
4475                                r->rem_set()->occupied(),
4476                                r->rem_set()->strong_code_roots_list_length(),
4477                                next_bitmap->is_marked(r->bottom()),
4478                                g1h->is_humongous_reclaim_candidate(region_idx),
4479                                obj->is_typeArray()
4480                               );
4481       return false;
4482     }
4483 
4484     guarantee(obj->is_typeArray(),
4485               "Only eagerly reclaiming type arrays is supported, but the object "
4486               PTR_FORMAT " is not.", p2i(r->bottom()));
4487 
4488     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4489                              region_idx,
4490                              (size_t)obj->size() * HeapWordSize,
4491                              p2i(r->bottom()),
4492                              r->rem_set()->occupied(),
4493                              r->rem_set()->strong_code_roots_list_length(),
4494                              next_bitmap->is_marked(r->bottom()),
4495                              g1h->is_humongous_reclaim_candidate(region_idx),
4496                              obj->is_typeArray()
4497                             );
4498 
4499     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4500     cm->humongous_object_eagerly_reclaimed(r);
4501     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4502            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4503            region_idx,
4504            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4505            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4506     _humongous_objects_reclaimed++;
4507     do {
4508       HeapRegion* next = g1h->next_region_in_humongous(r);
4509       _freed_bytes += r->used();
4510       r->set_containing_set(NULL);
4511       _humongous_regions_reclaimed++;
4512       g1h->free_humongous_region(r, _free_region_list);
4513       r = next;
4514     } while (r != NULL);
4515 
4516     return false;
4517   }
4518 
4519   uint humongous_objects_reclaimed() {
4520     return _humongous_objects_reclaimed;
4521   }
4522 
4523   uint humongous_regions_reclaimed() {
4524     return _humongous_regions_reclaimed;
4525   }
4526 
4527   size_t bytes_freed() const {
4528     return _freed_bytes;
4529   }
4530 };
4531 
4532 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4533   assert_at_safepoint_on_vm_thread();
4534 
4535   if (!G1EagerReclaimHumongousObjects ||
4536       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4537     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4538     return;
4539   }
4540 
4541   double start_time = os::elapsedTime();
4542 
4543   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4544 
4545   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4546   heap_region_iterate(&cl);
4547 
4548   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4549 
4550   G1HRPrinter* hrp = hr_printer();
4551   if (hrp->is_active()) {
4552     FreeRegionListIterator iter(&local_cleanup_list);
4553     while (iter.more_available()) {
4554       HeapRegion* hr = iter.get_next();
4555       hrp->cleanup(hr);
4556     }
4557   }
4558 
4559   prepend_to_freelist(&local_cleanup_list);
4560   decrement_summary_bytes(cl.bytes_freed());
4561 
4562   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4563                                                                     cl.humongous_objects_reclaimed());
4564 }
4565 
4566 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4567 public:
4568   virtual bool do_heap_region(HeapRegion* r) {
4569     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4570     G1CollectedHeap::heap()->clear_in_cset(r);
4571     r->set_young_index_in_cset(-1);
4572     return false;
4573   }
4574 };
4575 
4576 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4577   G1AbandonCollectionSetClosure cl;
4578   collection_set->iterate(&cl);
4579 
4580   collection_set->clear();
4581   collection_set->stop_incremental_building();
4582 }
4583 
4584 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4585   return _allocator->is_retained_old_region(hr);
4586 }
4587 
4588 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4589   _eden.add(hr);
4590   _g1_policy->set_region_eden(hr);
4591 }
4592 
4593 #ifdef ASSERT
4594 
4595 class NoYoungRegionsClosure: public HeapRegionClosure {
4596 private:
4597   bool _success;
4598 public:
4599   NoYoungRegionsClosure() : _success(true) { }
4600   bool do_heap_region(HeapRegion* r) {
4601     if (r->is_young()) {
4602       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4603                             p2i(r->bottom()), p2i(r->end()));
4604       _success = false;
4605     }
4606     return false;
4607   }
4608   bool success() { return _success; }
4609 };
4610 
4611 bool G1CollectedHeap::check_young_list_empty() {
4612   bool ret = (young_regions_count() == 0);
4613 
4614   NoYoungRegionsClosure closure;
4615   heap_region_iterate(&closure);
4616   ret = ret && closure.success();
4617 
4618   return ret;
4619 }
4620 
4621 #endif // ASSERT
4622 
4623 class TearDownRegionSetsClosure : public HeapRegionClosure {
4624 private:
4625   HeapRegionSet *_old_set;
4626 
4627 public:
4628   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4629 
4630   bool do_heap_region(HeapRegion* r) {
4631     if (r->is_old()) {
4632       _old_set->remove(r);
4633     } else if(r->is_young()) {
4634       r->uninstall_surv_rate_group();
4635     } else {
4636       // We ignore free regions, we'll empty the free list afterwards.
4637       // We ignore humongous regions, we're not tearing down the
4638       // humongous regions set.
4639       assert(r->is_free() || r->is_humongous(),
4640              "it cannot be another type");
4641     }
4642     return false;
4643   }
4644 
4645   ~TearDownRegionSetsClosure() {
4646     assert(_old_set->is_empty(), "post-condition");
4647   }
4648 };
4649 
4650 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4651   assert_at_safepoint_on_vm_thread();
4652 
4653   if (!free_list_only) {
4654     TearDownRegionSetsClosure cl(&_old_set);
4655     heap_region_iterate(&cl);
4656 
4657     // Note that emptying the _young_list is postponed and instead done as
4658     // the first step when rebuilding the regions sets again. The reason for
4659     // this is that during a full GC string deduplication needs to know if
4660     // a collected region was young or old when the full GC was initiated.
4661   }
4662   _hrm.remove_all_free_regions();
4663 }
4664 
4665 void G1CollectedHeap::increase_used(size_t bytes) {
4666   _summary_bytes_used += bytes;
4667 }
4668 
4669 void G1CollectedHeap::decrease_used(size_t bytes) {
4670   assert(_summary_bytes_used >= bytes,
4671          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4672          _summary_bytes_used, bytes);
4673   _summary_bytes_used -= bytes;
4674 }
4675 
4676 void G1CollectedHeap::set_used(size_t bytes) {
4677   _summary_bytes_used = bytes;
4678 }
4679 
4680 class RebuildRegionSetsClosure : public HeapRegionClosure {
4681 private:
4682   bool            _free_list_only;
4683   HeapRegionSet*   _old_set;
4684   HeapRegionManager*   _hrm;
4685   size_t          _total_used;
4686 
4687 public:
4688   RebuildRegionSetsClosure(bool free_list_only,
4689                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4690     _free_list_only(free_list_only),
4691     _old_set(old_set), _hrm(hrm), _total_used(0) {
4692     assert(_hrm->num_free_regions() == 0, "pre-condition");
4693     if (!free_list_only) {
4694       assert(_old_set->is_empty(), "pre-condition");
4695     }
4696   }
4697 
4698   bool do_heap_region(HeapRegion* r) {
4699     // After full GC, no region should have a remembered set.
4700     r->rem_set()->clear(true);
4701     if (r->is_empty()) {
4702       // Add free regions to the free list
4703       r->set_free();
4704       _hrm->insert_into_free_list(r);
4705     } else if (!_free_list_only) {
4706 
4707       if (r->is_humongous()) {
4708         // We ignore humongous regions. We left the humongous set unchanged.
4709       } else {
4710         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4711         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4712         r->move_to_old();
4713         _old_set->add(r);
4714       }
4715       _total_used += r->used();
4716     }
4717 
4718     return false;
4719   }
4720 
4721   size_t total_used() {
4722     return _total_used;
4723   }
4724 };
4725 
4726 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4727   assert_at_safepoint_on_vm_thread();
4728 
4729   if (!free_list_only) {
4730     _eden.clear();
4731     _survivor.clear();
4732   }
4733 
4734   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4735   heap_region_iterate(&cl);
4736 
4737   if (!free_list_only) {
4738     set_used(cl.total_used());
4739     if (_archive_allocator != NULL) {
4740       _archive_allocator->clear_used();
4741     }
4742   }
4743   assert(used_unlocked() == recalculate_used(),
4744          "inconsistent used_unlocked(), "
4745          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4746          used_unlocked(), recalculate_used());
4747 }
4748 
4749 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4750   HeapRegion* hr = heap_region_containing(p);
4751   return hr->is_in(p);
4752 }
4753 
4754 // Methods for the mutator alloc region
4755 
4756 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4757                                                       bool force) {
4758   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4759   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4760   if (force || should_allocate) {
4761     HeapRegion* new_alloc_region = new_region(word_size,
4762                                               false /* is_old */,
4763                                               false /* do_expand */);
4764     if (new_alloc_region != NULL) {
4765       set_region_short_lived_locked(new_alloc_region);
4766       _hr_printer.alloc(new_alloc_region, !should_allocate);
4767       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4768       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4769       return new_alloc_region;
4770     }
4771   }
4772   return NULL;
4773 }
4774 
4775 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4776                                                   size_t allocated_bytes) {
4777   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4778   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4779 
4780   collection_set()->add_eden_region(alloc_region);
4781   increase_used(allocated_bytes);
4782   _hr_printer.retire(alloc_region);
4783   // We update the eden sizes here, when the region is retired,
4784   // instead of when it's allocated, since this is the point that its
4785   // used space has been recored in _summary_bytes_used.
4786   g1mm()->update_eden_size();
4787 }
4788 
4789 // Methods for the GC alloc regions
4790 
4791 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4792   if (dest.is_old()) {
4793     return true;
4794   } else {
4795     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4796   }
4797 }
4798 
4799 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4800   assert(FreeList_lock->owned_by_self(), "pre-condition");
4801 
4802   if (!has_more_regions(dest)) {
4803     return NULL;
4804   }
4805 
4806   const bool is_survivor = dest.is_young();
4807 
4808   HeapRegion* new_alloc_region = new_region(word_size,
4809                                             !is_survivor,
4810                                             true /* do_expand */);
4811   if (new_alloc_region != NULL) {
4812     if (is_survivor) {
4813       new_alloc_region->set_survivor();
4814       _survivor.add(new_alloc_region);
4815       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4816     } else {
4817       new_alloc_region->set_old();
4818       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4819     }
4820     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4821     _hr_printer.alloc(new_alloc_region);
4822     bool during_im = collector_state()->in_initial_mark_gc();
4823     new_alloc_region->note_start_of_copying(during_im);
4824     return new_alloc_region;
4825   }
4826   return NULL;
4827 }
4828 
4829 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4830                                              size_t allocated_bytes,
4831                                              InCSetState dest) {
4832   bool during_im = collector_state()->in_initial_mark_gc();
4833   alloc_region->note_end_of_copying(during_im);
4834   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4835   if (dest.is_old()) {
4836     _old_set.add(alloc_region);
4837   }
4838   _hr_printer.retire(alloc_region);
4839 }
4840 
4841 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4842   bool expanded = false;
4843   uint index = _hrm.find_highest_free(&expanded);
4844 
4845   if (index != G1_NO_HRM_INDEX) {
4846     if (expanded) {
4847       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4848                                 HeapRegion::GrainWords * HeapWordSize);
4849     }
4850     _hrm.allocate_free_regions_starting_at(index, 1);
4851     return region_at(index);
4852   }
4853   return NULL;
4854 }
4855 
4856 // Optimized nmethod scanning
4857 
4858 class RegisterNMethodOopClosure: public OopClosure {
4859   G1CollectedHeap* _g1h;
4860   nmethod* _nm;
4861 
4862   template <class T> void do_oop_work(T* p) {
4863     T heap_oop = RawAccess<>::oop_load(p);
4864     if (!CompressedOops::is_null(heap_oop)) {
4865       oop obj = CompressedOops::decode_not_null(heap_oop);
4866       HeapRegion* hr = _g1h->heap_region_containing(obj);
4867       assert(!hr->is_continues_humongous(),
4868              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4869              " starting at " HR_FORMAT,
4870              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4871 
4872       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4873       hr->add_strong_code_root_locked(_nm);
4874     }
4875   }
4876 
4877 public:
4878   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4879     _g1h(g1h), _nm(nm) {}
4880 
4881   void do_oop(oop* p)       { do_oop_work(p); }
4882   void do_oop(narrowOop* p) { do_oop_work(p); }
4883 };
4884 
4885 class UnregisterNMethodOopClosure: public OopClosure {
4886   G1CollectedHeap* _g1h;
4887   nmethod* _nm;
4888 
4889   template <class T> void do_oop_work(T* p) {
4890     T heap_oop = RawAccess<>::oop_load(p);
4891     if (!CompressedOops::is_null(heap_oop)) {
4892       oop obj = CompressedOops::decode_not_null(heap_oop);
4893       HeapRegion* hr = _g1h->heap_region_containing(obj);
4894       assert(!hr->is_continues_humongous(),
4895              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4896              " starting at " HR_FORMAT,
4897              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4898 
4899       hr->remove_strong_code_root(_nm);
4900     }
4901   }
4902 
4903 public:
4904   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4905     _g1h(g1h), _nm(nm) {}
4906 
4907   void do_oop(oop* p)       { do_oop_work(p); }
4908   void do_oop(narrowOop* p) { do_oop_work(p); }
4909 };
4910 
4911 // Returns true if the reference points to an object that
4912 // can move in an incremental collection.
4913 bool G1CollectedHeap::is_scavengable(oop obj) {
4914   HeapRegion* hr = heap_region_containing(obj);
4915   return !hr->is_pinned();
4916 }
4917 
4918 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4919   guarantee(nm != NULL, "sanity");
4920   RegisterNMethodOopClosure reg_cl(this, nm);
4921   nm->oops_do(&reg_cl);
4922 }
4923 
4924 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4925   guarantee(nm != NULL, "sanity");
4926   UnregisterNMethodOopClosure reg_cl(this, nm);
4927   nm->oops_do(&reg_cl, true);
4928 }
4929 
4930 void G1CollectedHeap::purge_code_root_memory() {
4931   double purge_start = os::elapsedTime();
4932   G1CodeRootSet::purge();
4933   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4934   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4935 }
4936 
4937 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4938   G1CollectedHeap* _g1h;
4939 
4940 public:
4941   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4942     _g1h(g1h) {}
4943 
4944   void do_code_blob(CodeBlob* cb) {
4945     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4946     if (nm == NULL) {
4947       return;
4948     }
4949 
4950     if (ScavengeRootsInCode) {
4951       _g1h->register_nmethod(nm);
4952     }
4953   }
4954 };
4955 
4956 void G1CollectedHeap::rebuild_strong_code_roots() {
4957   RebuildStrongCodeRootClosure blob_cl(this);
4958   CodeCache::blobs_do(&blob_cl);
4959 }
4960 
4961 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4962   GrowableArray<GCMemoryManager*> memory_managers(2);
4963   memory_managers.append(&_memory_manager);
4964   memory_managers.append(&_full_gc_memory_manager);
4965   return memory_managers;
4966 }
4967 
4968 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4969   GrowableArray<MemoryPool*> memory_pools(3);
4970   memory_pools.append(_eden_pool);
4971   memory_pools.append(_survivor_pool);
4972   memory_pools.append(_old_pool);
4973   return memory_pools;
4974 }