1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "gc/parallel/gcTaskManager.hpp"
  33 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  34 #include "gc/parallel/parMarkBitMap.inline.hpp"
  35 #include "gc/parallel/pcTasks.hpp"
  36 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  37 #include "gc/parallel/psCompactionManager.inline.hpp"
  38 #include "gc/parallel/psOldGen.hpp"
  39 #include "gc/parallel/psParallelCompact.inline.hpp"
  40 #include "gc/parallel/psPromotionManager.inline.hpp"
  41 #include "gc/parallel/psScavenge.hpp"
  42 #include "gc/parallel/psYoungGen.hpp"
  43 #include "gc/shared/gcCause.hpp"
  44 #include "gc/shared/gcHeapSummary.hpp"
  45 #include "gc/shared/gcId.hpp"
  46 #include "gc/shared/gcLocker.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.inline.hpp"
  50 #include "gc/shared/isGCActiveMark.hpp"
  51 #include "gc/shared/referencePolicy.hpp"
  52 #include "gc/shared/referenceProcessor.hpp"
  53 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  54 #include "gc/shared/spaceDecorator.hpp"
  55 #include "gc/shared/weakProcessor.hpp"
  56 #include "logging/log.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/resourceArea.hpp"
  59 #include "oops/access.inline.hpp"
  60 #include "oops/instanceClassLoaderKlass.inline.hpp"
  61 #include "oops/instanceKlass.inline.hpp"
  62 #include "oops/instanceMirrorKlass.inline.hpp"
  63 #include "oops/methodData.hpp"
  64 #include "oops/objArrayKlass.inline.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/safepoint.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "services/management.hpp"
  71 #include "services/memTracker.hpp"
  72 #include "services/memoryService.hpp"
  73 #include "utilities/align.hpp"
  74 #include "utilities/debug.hpp"
  75 #include "utilities/events.hpp"
  76 #include "utilities/formatBuffer.hpp"
  77 #include "utilities/macros.hpp"
  78 #include "utilities/stack.inline.hpp"
  79 
  80 #include <math.h>
  81 
  82 // All sizes are in HeapWords.
  83 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  84 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  85 const size_t ParallelCompactData::RegionSizeBytes =
  86   RegionSize << LogHeapWordSize;
  87 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  88 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  89 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  90 
  91 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  92 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  93 const size_t ParallelCompactData::BlockSizeBytes  =
  94   BlockSize << LogHeapWordSize;
  95 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  96 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  97 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  98 
  99 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
 100 const size_t ParallelCompactData::Log2BlocksPerRegion =
 101   Log2RegionSize - Log2BlockSize;
 102 
 103 const ParallelCompactData::RegionData::region_sz_t
 104 ParallelCompactData::RegionData::dc_shift = 27;
 105 
 106 const ParallelCompactData::RegionData::region_sz_t
 107 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 108 
 109 const ParallelCompactData::RegionData::region_sz_t
 110 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 111 
 112 const ParallelCompactData::RegionData::region_sz_t
 113 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 114 
 115 const ParallelCompactData::RegionData::region_sz_t
 116 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 117 
 118 const ParallelCompactData::RegionData::region_sz_t
 119 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 120 
 121 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 122 
 123 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 124 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 125 
 126 double PSParallelCompact::_dwl_mean;
 127 double PSParallelCompact::_dwl_std_dev;
 128 double PSParallelCompact::_dwl_first_term;
 129 double PSParallelCompact::_dwl_adjustment;
 130 #ifdef  ASSERT
 131 bool   PSParallelCompact::_dwl_initialized = false;
 132 #endif  // #ifdef ASSERT
 133 
 134 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 135                        HeapWord* destination)
 136 {
 137   assert(src_region_idx != 0, "invalid src_region_idx");
 138   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 139   assert(destination != NULL, "invalid destination argument");
 140 
 141   _src_region_idx = src_region_idx;
 142   _partial_obj_size = partial_obj_size;
 143   _destination = destination;
 144 
 145   // These fields may not be updated below, so make sure they're clear.
 146   assert(_dest_region_addr == NULL, "should have been cleared");
 147   assert(_first_src_addr == NULL, "should have been cleared");
 148 
 149   // Determine the number of destination regions for the partial object.
 150   HeapWord* const last_word = destination + partial_obj_size - 1;
 151   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 152   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 153   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 154 
 155   if (beg_region_addr == end_region_addr) {
 156     // One destination region.
 157     _destination_count = 1;
 158     if (end_region_addr == destination) {
 159       // The destination falls on a region boundary, thus the first word of the
 160       // partial object will be the first word copied to the destination region.
 161       _dest_region_addr = end_region_addr;
 162       _first_src_addr = sd.region_to_addr(src_region_idx);
 163     }
 164   } else {
 165     // Two destination regions.  When copied, the partial object will cross a
 166     // destination region boundary, so a word somewhere within the partial
 167     // object will be the first word copied to the second destination region.
 168     _destination_count = 2;
 169     _dest_region_addr = end_region_addr;
 170     const size_t ofs = pointer_delta(end_region_addr, destination);
 171     assert(ofs < _partial_obj_size, "sanity");
 172     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 173   }
 174 }
 175 
 176 void SplitInfo::clear()
 177 {
 178   _src_region_idx = 0;
 179   _partial_obj_size = 0;
 180   _destination = NULL;
 181   _destination_count = 0;
 182   _dest_region_addr = NULL;
 183   _first_src_addr = NULL;
 184   assert(!is_valid(), "sanity");
 185 }
 186 
 187 #ifdef  ASSERT
 188 void SplitInfo::verify_clear()
 189 {
 190   assert(_src_region_idx == 0, "not clear");
 191   assert(_partial_obj_size == 0, "not clear");
 192   assert(_destination == NULL, "not clear");
 193   assert(_destination_count == 0, "not clear");
 194   assert(_dest_region_addr == NULL, "not clear");
 195   assert(_first_src_addr == NULL, "not clear");
 196 }
 197 #endif  // #ifdef ASSERT
 198 
 199 
 200 void PSParallelCompact::print_on_error(outputStream* st) {
 201   _mark_bitmap.print_on_error(st);
 202 }
 203 
 204 #ifndef PRODUCT
 205 const char* PSParallelCompact::space_names[] = {
 206   "old ", "eden", "from", "to  "
 207 };
 208 
 209 void PSParallelCompact::print_region_ranges() {
 210   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 211     return;
 212   }
 213   Log(gc, compaction) log;
 214   ResourceMark rm;
 215   LogStream ls(log.trace());
 216   Universe::print_on(&ls);
 217   log.trace("space  bottom     top        end        new_top");
 218   log.trace("------ ---------- ---------- ---------- ----------");
 219 
 220   for (unsigned int id = 0; id < last_space_id; ++id) {
 221     const MutableSpace* space = _space_info[id].space();
 222     log.trace("%u %s "
 223               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 224               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 225               id, space_names[id],
 226               summary_data().addr_to_region_idx(space->bottom()),
 227               summary_data().addr_to_region_idx(space->top()),
 228               summary_data().addr_to_region_idx(space->end()),
 229               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 230   }
 231 }
 232 
 233 void
 234 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 235 {
 236 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 237 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 238 
 239   ParallelCompactData& sd = PSParallelCompact::summary_data();
 240   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 241   log_develop_trace(gc, compaction)(
 242       REGION_IDX_FORMAT " " PTR_FORMAT " "
 243       REGION_IDX_FORMAT " " PTR_FORMAT " "
 244       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 245       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 246       i, p2i(c->data_location()), dci, p2i(c->destination()),
 247       c->partial_obj_size(), c->live_obj_size(),
 248       c->data_size(), c->source_region(), c->destination_count());
 249 
 250 #undef  REGION_IDX_FORMAT
 251 #undef  REGION_DATA_FORMAT
 252 }
 253 
 254 void
 255 print_generic_summary_data(ParallelCompactData& summary_data,
 256                            HeapWord* const beg_addr,
 257                            HeapWord* const end_addr)
 258 {
 259   size_t total_words = 0;
 260   size_t i = summary_data.addr_to_region_idx(beg_addr);
 261   const size_t last = summary_data.addr_to_region_idx(end_addr);
 262   HeapWord* pdest = 0;
 263 
 264   while (i < last) {
 265     ParallelCompactData::RegionData* c = summary_data.region(i);
 266     if (c->data_size() != 0 || c->destination() != pdest) {
 267       print_generic_summary_region(i, c);
 268       total_words += c->data_size();
 269       pdest = c->destination();
 270     }
 271     ++i;
 272   }
 273 
 274   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 275 }
 276 
 277 void
 278 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 279                                               HeapWord* const beg_addr,
 280                                               HeapWord* const end_addr) {
 281   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 282 }
 283 
 284 void
 285 print_generic_summary_data(ParallelCompactData& summary_data,
 286                            SpaceInfo* space_info)
 287 {
 288   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 289     return;
 290   }
 291 
 292   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 293     const MutableSpace* space = space_info[id].space();
 294     print_generic_summary_data(summary_data, space->bottom(),
 295                                MAX2(space->top(), space_info[id].new_top()));
 296   }
 297 }
 298 
 299 void
 300 print_initial_summary_data(ParallelCompactData& summary_data,
 301                            const MutableSpace* space) {
 302   if (space->top() == space->bottom()) {
 303     return;
 304   }
 305 
 306   const size_t region_size = ParallelCompactData::RegionSize;
 307   typedef ParallelCompactData::RegionData RegionData;
 308   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 309   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 310   const RegionData* c = summary_data.region(end_region - 1);
 311   HeapWord* end_addr = c->destination() + c->data_size();
 312   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 313 
 314   // Print (and count) the full regions at the beginning of the space.
 315   size_t full_region_count = 0;
 316   size_t i = summary_data.addr_to_region_idx(space->bottom());
 317   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 318     ParallelCompactData::RegionData* c = summary_data.region(i);
 319     log_develop_trace(gc, compaction)(
 320         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 321         i, p2i(c->destination()),
 322         c->partial_obj_size(), c->live_obj_size(),
 323         c->data_size(), c->source_region(), c->destination_count());
 324     ++full_region_count;
 325     ++i;
 326   }
 327 
 328   size_t live_to_right = live_in_space - full_region_count * region_size;
 329 
 330   double max_reclaimed_ratio = 0.0;
 331   size_t max_reclaimed_ratio_region = 0;
 332   size_t max_dead_to_right = 0;
 333   size_t max_live_to_right = 0;
 334 
 335   // Print the 'reclaimed ratio' for regions while there is something live in
 336   // the region or to the right of it.  The remaining regions are empty (and
 337   // uninteresting), and computing the ratio will result in division by 0.
 338   while (i < end_region && live_to_right > 0) {
 339     c = summary_data.region(i);
 340     HeapWord* const region_addr = summary_data.region_to_addr(i);
 341     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 342     const size_t dead_to_right = used_to_right - live_to_right;
 343     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 344 
 345     if (reclaimed_ratio > max_reclaimed_ratio) {
 346             max_reclaimed_ratio = reclaimed_ratio;
 347             max_reclaimed_ratio_region = i;
 348             max_dead_to_right = dead_to_right;
 349             max_live_to_right = live_to_right;
 350     }
 351 
 352     ParallelCompactData::RegionData* c = summary_data.region(i);
 353     log_develop_trace(gc, compaction)(
 354         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 355         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 356         i, p2i(c->destination()),
 357         c->partial_obj_size(), c->live_obj_size(),
 358         c->data_size(), c->source_region(), c->destination_count(),
 359         reclaimed_ratio, dead_to_right, live_to_right);
 360 
 361 
 362     live_to_right -= c->data_size();
 363     ++i;
 364   }
 365 
 366   // Any remaining regions are empty.  Print one more if there is one.
 367   if (i < end_region) {
 368     ParallelCompactData::RegionData* c = summary_data.region(i);
 369     log_develop_trace(gc, compaction)(
 370         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 371          i, p2i(c->destination()),
 372          c->partial_obj_size(), c->live_obj_size(),
 373          c->data_size(), c->source_region(), c->destination_count());
 374   }
 375 
 376   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 377                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 378 }
 379 
 380 void
 381 print_initial_summary_data(ParallelCompactData& summary_data,
 382                            SpaceInfo* space_info) {
 383   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 384     return;
 385   }
 386 
 387   unsigned int id = PSParallelCompact::old_space_id;
 388   const MutableSpace* space;
 389   do {
 390     space = space_info[id].space();
 391     print_initial_summary_data(summary_data, space);
 392   } while (++id < PSParallelCompact::eden_space_id);
 393 
 394   do {
 395     space = space_info[id].space();
 396     print_generic_summary_data(summary_data, space->bottom(), space->top());
 397   } while (++id < PSParallelCompact::last_space_id);
 398 }
 399 #endif  // #ifndef PRODUCT
 400 
 401 #ifdef  ASSERT
 402 size_t add_obj_count;
 403 size_t add_obj_size;
 404 size_t mark_bitmap_count;
 405 size_t mark_bitmap_size;
 406 #endif  // #ifdef ASSERT
 407 
 408 ParallelCompactData::ParallelCompactData()
 409 {
 410   _region_start = 0;
 411 
 412   _region_vspace = 0;
 413   _reserved_byte_size = 0;
 414   _region_data = 0;
 415   _region_count = 0;
 416 
 417   _block_vspace = 0;
 418   _block_data = 0;
 419   _block_count = 0;
 420 }
 421 
 422 bool ParallelCompactData::initialize(MemRegion covered_region)
 423 {
 424   _region_start = covered_region.start();
 425   const size_t region_size = covered_region.word_size();
 426   DEBUG_ONLY(_region_end = _region_start + region_size;)
 427 
 428   assert(region_align_down(_region_start) == _region_start,
 429          "region start not aligned");
 430   assert((region_size & RegionSizeOffsetMask) == 0,
 431          "region size not a multiple of RegionSize");
 432 
 433   bool result = initialize_region_data(region_size) && initialize_block_data();
 434   return result;
 435 }
 436 
 437 PSVirtualSpace*
 438 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 439 {
 440   const size_t raw_bytes = count * element_size;
 441   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 442   const size_t granularity = os::vm_allocation_granularity();
 443   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 444 
 445   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 446     MAX2(page_sz, granularity);
 447   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 448   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 449                        rs.size());
 450 
 451   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 452 
 453   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 454   if (vspace != 0) {
 455     if (vspace->expand_by(_reserved_byte_size)) {
 456       return vspace;
 457     }
 458     delete vspace;
 459     // Release memory reserved in the space.
 460     rs.release();
 461   }
 462 
 463   return 0;
 464 }
 465 
 466 bool ParallelCompactData::initialize_region_data(size_t region_size)
 467 {
 468   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 469   _region_vspace = create_vspace(count, sizeof(RegionData));
 470   if (_region_vspace != 0) {
 471     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 472     _region_count = count;
 473     return true;
 474   }
 475   return false;
 476 }
 477 
 478 bool ParallelCompactData::initialize_block_data()
 479 {
 480   assert(_region_count != 0, "region data must be initialized first");
 481   const size_t count = _region_count << Log2BlocksPerRegion;
 482   _block_vspace = create_vspace(count, sizeof(BlockData));
 483   if (_block_vspace != 0) {
 484     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 485     _block_count = count;
 486     return true;
 487   }
 488   return false;
 489 }
 490 
 491 void ParallelCompactData::clear()
 492 {
 493   memset(_region_data, 0, _region_vspace->committed_size());
 494   memset(_block_data, 0, _block_vspace->committed_size());
 495 }
 496 
 497 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 498   assert(beg_region <= _region_count, "beg_region out of range");
 499   assert(end_region <= _region_count, "end_region out of range");
 500   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 501 
 502   const size_t region_cnt = end_region - beg_region;
 503   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 504 
 505   const size_t beg_block = beg_region * BlocksPerRegion;
 506   const size_t block_cnt = region_cnt * BlocksPerRegion;
 507   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 508 }
 509 
 510 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 511 {
 512   const RegionData* cur_cp = region(region_idx);
 513   const RegionData* const end_cp = region(region_count() - 1);
 514 
 515   HeapWord* result = region_to_addr(region_idx);
 516   if (cur_cp < end_cp) {
 517     do {
 518       result += cur_cp->partial_obj_size();
 519     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 520   }
 521   return result;
 522 }
 523 
 524 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 525 {
 526   const size_t obj_ofs = pointer_delta(addr, _region_start);
 527   const size_t beg_region = obj_ofs >> Log2RegionSize;
 528   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 529 
 530   DEBUG_ONLY(Atomic::inc(&add_obj_count);)
 531   DEBUG_ONLY(Atomic::add(len, &add_obj_size);)
 532 
 533   if (beg_region == end_region) {
 534     // All in one region.
 535     _region_data[beg_region].add_live_obj(len);
 536     return;
 537   }
 538 
 539   // First region.
 540   const size_t beg_ofs = region_offset(addr);
 541   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 542 
 543   Klass* klass = ((oop)addr)->klass();
 544   // Middle regions--completely spanned by this object.
 545   for (size_t region = beg_region + 1; region < end_region; ++region) {
 546     _region_data[region].set_partial_obj_size(RegionSize);
 547     _region_data[region].set_partial_obj_addr(addr);
 548   }
 549 
 550   // Last region.
 551   const size_t end_ofs = region_offset(addr + len - 1);
 552   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 553   _region_data[end_region].set_partial_obj_addr(addr);
 554 }
 555 
 556 void
 557 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 558 {
 559   assert(region_offset(beg) == 0, "not RegionSize aligned");
 560   assert(region_offset(end) == 0, "not RegionSize aligned");
 561 
 562   size_t cur_region = addr_to_region_idx(beg);
 563   const size_t end_region = addr_to_region_idx(end);
 564   HeapWord* addr = beg;
 565   while (cur_region < end_region) {
 566     _region_data[cur_region].set_destination(addr);
 567     _region_data[cur_region].set_destination_count(0);
 568     _region_data[cur_region].set_source_region(cur_region);
 569     _region_data[cur_region].set_data_location(addr);
 570 
 571     // Update live_obj_size so the region appears completely full.
 572     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 573     _region_data[cur_region].set_live_obj_size(live_size);
 574 
 575     ++cur_region;
 576     addr += RegionSize;
 577   }
 578 }
 579 
 580 // Find the point at which a space can be split and, if necessary, record the
 581 // split point.
 582 //
 583 // If the current src region (which overflowed the destination space) doesn't
 584 // have a partial object, the split point is at the beginning of the current src
 585 // region (an "easy" split, no extra bookkeeping required).
 586 //
 587 // If the current src region has a partial object, the split point is in the
 588 // region where that partial object starts (call it the split_region).  If
 589 // split_region has a partial object, then the split point is just after that
 590 // partial object (a "hard" split where we have to record the split data and
 591 // zero the partial_obj_size field).  With a "hard" split, we know that the
 592 // partial_obj ends within split_region because the partial object that caused
 593 // the overflow starts in split_region.  If split_region doesn't have a partial
 594 // obj, then the split is at the beginning of split_region (another "easy"
 595 // split).
 596 HeapWord*
 597 ParallelCompactData::summarize_split_space(size_t src_region,
 598                                            SplitInfo& split_info,
 599                                            HeapWord* destination,
 600                                            HeapWord* target_end,
 601                                            HeapWord** target_next)
 602 {
 603   assert(destination <= target_end, "sanity");
 604   assert(destination + _region_data[src_region].data_size() > target_end,
 605     "region should not fit into target space");
 606   assert(is_region_aligned(target_end), "sanity");
 607 
 608   size_t split_region = src_region;
 609   HeapWord* split_destination = destination;
 610   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 611 
 612   if (destination + partial_obj_size > target_end) {
 613     // The split point is just after the partial object (if any) in the
 614     // src_region that contains the start of the object that overflowed the
 615     // destination space.
 616     //
 617     // Find the start of the "overflow" object and set split_region to the
 618     // region containing it.
 619     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 620     split_region = addr_to_region_idx(overflow_obj);
 621 
 622     // Clear the source_region field of all destination regions whose first word
 623     // came from data after the split point (a non-null source_region field
 624     // implies a region must be filled).
 625     //
 626     // An alternative to the simple loop below:  clear during post_compact(),
 627     // which uses memcpy instead of individual stores, and is easy to
 628     // parallelize.  (The downside is that it clears the entire RegionData
 629     // object as opposed to just one field.)
 630     //
 631     // post_compact() would have to clear the summary data up to the highest
 632     // address that was written during the summary phase, which would be
 633     //
 634     //         max(top, max(new_top, clear_top))
 635     //
 636     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 637     // to target_end.
 638     const RegionData* const sr = region(split_region);
 639     const size_t beg_idx =
 640       addr_to_region_idx(region_align_up(sr->destination() +
 641                                          sr->partial_obj_size()));
 642     const size_t end_idx = addr_to_region_idx(target_end);
 643 
 644     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 645     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 646       _region_data[idx].set_source_region(0);
 647     }
 648 
 649     // Set split_destination and partial_obj_size to reflect the split region.
 650     split_destination = sr->destination();
 651     partial_obj_size = sr->partial_obj_size();
 652   }
 653 
 654   // The split is recorded only if a partial object extends onto the region.
 655   if (partial_obj_size != 0) {
 656     _region_data[split_region].set_partial_obj_size(0);
 657     split_info.record(split_region, partial_obj_size, split_destination);
 658   }
 659 
 660   // Setup the continuation addresses.
 661   *target_next = split_destination + partial_obj_size;
 662   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 663 
 664   if (log_develop_is_enabled(Trace, gc, compaction)) {
 665     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 666     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 667                                       split_type, p2i(source_next), split_region, partial_obj_size);
 668     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 669                                       split_type, p2i(split_destination),
 670                                       addr_to_region_idx(split_destination),
 671                                       p2i(*target_next));
 672 
 673     if (partial_obj_size != 0) {
 674       HeapWord* const po_beg = split_info.destination();
 675       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 676       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 677                                         split_type,
 678                                         p2i(po_beg), addr_to_region_idx(po_beg),
 679                                         p2i(po_end), addr_to_region_idx(po_end));
 680     }
 681   }
 682 
 683   return source_next;
 684 }
 685 
 686 bool ParallelCompactData::summarize(SplitInfo& split_info,
 687                                     HeapWord* source_beg, HeapWord* source_end,
 688                                     HeapWord** source_next,
 689                                     HeapWord* target_beg, HeapWord* target_end,
 690                                     HeapWord** target_next)
 691 {
 692   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 693   log_develop_trace(gc, compaction)(
 694       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 695       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 696       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 697       p2i(target_beg), p2i(target_end), p2i(*target_next));
 698 
 699   size_t cur_region = addr_to_region_idx(source_beg);
 700   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 701 
 702   HeapWord *dest_addr = target_beg;
 703   while (cur_region < end_region) {
 704     // The destination must be set even if the region has no data.
 705     _region_data[cur_region].set_destination(dest_addr);
 706 
 707     size_t words = _region_data[cur_region].data_size();
 708     if (words > 0) {
 709       // If cur_region does not fit entirely into the target space, find a point
 710       // at which the source space can be 'split' so that part is copied to the
 711       // target space and the rest is copied elsewhere.
 712       if (dest_addr + words > target_end) {
 713         assert(source_next != NULL, "source_next is NULL when splitting");
 714         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 715                                              target_end, target_next);
 716         return false;
 717       }
 718 
 719       // Compute the destination_count for cur_region, and if necessary, update
 720       // source_region for a destination region.  The source_region field is
 721       // updated if cur_region is the first (left-most) region to be copied to a
 722       // destination region.
 723       //
 724       // The destination_count calculation is a bit subtle.  A region that has
 725       // data that compacts into itself does not count itself as a destination.
 726       // This maintains the invariant that a zero count means the region is
 727       // available and can be claimed and then filled.
 728       uint destination_count = 0;
 729       if (split_info.is_split(cur_region)) {
 730         // The current region has been split:  the partial object will be copied
 731         // to one destination space and the remaining data will be copied to
 732         // another destination space.  Adjust the initial destination_count and,
 733         // if necessary, set the source_region field if the partial object will
 734         // cross a destination region boundary.
 735         destination_count = split_info.destination_count();
 736         if (destination_count == 2) {
 737           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 738           _region_data[dest_idx].set_source_region(cur_region);
 739         }
 740       }
 741 
 742       HeapWord* const last_addr = dest_addr + words - 1;
 743       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 744       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 745 
 746       // Initially assume that the destination regions will be the same and
 747       // adjust the value below if necessary.  Under this assumption, if
 748       // cur_region == dest_region_2, then cur_region will be compacted
 749       // completely into itself.
 750       destination_count += cur_region == dest_region_2 ? 0 : 1;
 751       if (dest_region_1 != dest_region_2) {
 752         // Destination regions differ; adjust destination_count.
 753         destination_count += 1;
 754         // Data from cur_region will be copied to the start of dest_region_2.
 755         _region_data[dest_region_2].set_source_region(cur_region);
 756       } else if (region_offset(dest_addr) == 0) {
 757         // Data from cur_region will be copied to the start of the destination
 758         // region.
 759         _region_data[dest_region_1].set_source_region(cur_region);
 760       }
 761 
 762       _region_data[cur_region].set_destination_count(destination_count);
 763       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 764       dest_addr += words;
 765     }
 766 
 767     ++cur_region;
 768   }
 769 
 770   *target_next = dest_addr;
 771   return true;
 772 }
 773 
 774 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 775   assert(addr != NULL, "Should detect NULL oop earlier");
 776   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 777   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 778 
 779   // Region covering the object.
 780   RegionData* const region_ptr = addr_to_region_ptr(addr);
 781   HeapWord* result = region_ptr->destination();
 782 
 783   // If the entire Region is live, the new location is region->destination + the
 784   // offset of the object within in the Region.
 785 
 786   // Run some performance tests to determine if this special case pays off.  It
 787   // is worth it for pointers into the dense prefix.  If the optimization to
 788   // avoid pointer updates in regions that only point to the dense prefix is
 789   // ever implemented, this should be revisited.
 790   if (region_ptr->data_size() == RegionSize) {
 791     result += region_offset(addr);
 792     return result;
 793   }
 794 
 795   // Otherwise, the new location is region->destination + block offset + the
 796   // number of live words in the Block that are (a) to the left of addr and (b)
 797   // due to objects that start in the Block.
 798 
 799   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 800   // threads may fill the block table for a region (harmless, since it is
 801   // idempotent).
 802   if (!region_ptr->blocks_filled()) {
 803     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 804     region_ptr->set_blocks_filled();
 805   }
 806 
 807   HeapWord* const search_start = block_align_down(addr);
 808   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 809 
 810   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 811   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 812   result += block_offset + live;
 813   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 814   return result;
 815 }
 816 
 817 #ifdef ASSERT
 818 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 819 {
 820   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 821   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 822   for (const size_t* p = beg; p < end; ++p) {
 823     assert(*p == 0, "not zero");
 824   }
 825 }
 826 
 827 void ParallelCompactData::verify_clear()
 828 {
 829   verify_clear(_region_vspace);
 830   verify_clear(_block_vspace);
 831 }
 832 #endif  // #ifdef ASSERT
 833 
 834 STWGCTimer          PSParallelCompact::_gc_timer;
 835 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 836 elapsedTimer        PSParallelCompact::_accumulated_time;
 837 unsigned int        PSParallelCompact::_total_invocations = 0;
 838 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 839 jlong               PSParallelCompact::_time_of_last_gc = 0;
 840 CollectorCounters*  PSParallelCompact::_counters = NULL;
 841 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 842 ParallelCompactData PSParallelCompact::_summary_data;
 843 
 844 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 845 
 846 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 847 
 848 void PSParallelCompact::post_initialize() {
 849   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 850   _span_based_discoverer.set_span(heap->reserved_region());
 851   _ref_processor =
 852     new ReferenceProcessor(&_span_based_discoverer,
 853                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 854                            ParallelGCThreads,   // mt processing degree
 855                            true,                // mt discovery
 856                            ParallelGCThreads,   // mt discovery degree
 857                            true,                // atomic_discovery
 858                            &_is_alive_closure,  // non-header is alive closure
 859                            false);              // disable adjusting number of processing threads
 860   _counters = new CollectorCounters("PSParallelCompact", 1);
 861 
 862   // Initialize static fields in ParCompactionManager.
 863   ParCompactionManager::initialize(mark_bitmap());
 864 }
 865 
 866 bool PSParallelCompact::initialize() {
 867   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 868   MemRegion mr = heap->reserved_region();
 869 
 870   // Was the old gen get allocated successfully?
 871   if (!heap->old_gen()->is_allocated()) {
 872     return false;
 873   }
 874 
 875   initialize_space_info();
 876   initialize_dead_wood_limiter();
 877 
 878   if (!_mark_bitmap.initialize(mr)) {
 879     vm_shutdown_during_initialization(
 880       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 881       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 882       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 883     return false;
 884   }
 885 
 886   if (!_summary_data.initialize(mr)) {
 887     vm_shutdown_during_initialization(
 888       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 889       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 890       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 891     return false;
 892   }
 893 
 894   return true;
 895 }
 896 
 897 void PSParallelCompact::initialize_space_info()
 898 {
 899   memset(&_space_info, 0, sizeof(_space_info));
 900 
 901   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 902   PSYoungGen* young_gen = heap->young_gen();
 903 
 904   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 905   _space_info[eden_space_id].set_space(young_gen->eden_space());
 906   _space_info[from_space_id].set_space(young_gen->from_space());
 907   _space_info[to_space_id].set_space(young_gen->to_space());
 908 
 909   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 910 }
 911 
 912 void PSParallelCompact::initialize_dead_wood_limiter()
 913 {
 914   const size_t max = 100;
 915   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 916   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 917   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 918   DEBUG_ONLY(_dwl_initialized = true;)
 919   _dwl_adjustment = normal_distribution(1.0);
 920 }
 921 
 922 void
 923 PSParallelCompact::clear_data_covering_space(SpaceId id)
 924 {
 925   // At this point, top is the value before GC, new_top() is the value that will
 926   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 927   // should be marked above top.  The summary data is cleared to the larger of
 928   // top & new_top.
 929   MutableSpace* const space = _space_info[id].space();
 930   HeapWord* const bot = space->bottom();
 931   HeapWord* const top = space->top();
 932   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 933 
 934   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 935   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 936   _mark_bitmap.clear_range(beg_bit, end_bit);
 937 
 938   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 939   const size_t end_region =
 940     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 941   _summary_data.clear_range(beg_region, end_region);
 942 
 943   // Clear the data used to 'split' regions.
 944   SplitInfo& split_info = _space_info[id].split_info();
 945   if (split_info.is_valid()) {
 946     split_info.clear();
 947   }
 948   DEBUG_ONLY(split_info.verify_clear();)
 949 }
 950 
 951 void PSParallelCompact::pre_compact()
 952 {
 953   // Update the from & to space pointers in space_info, since they are swapped
 954   // at each young gen gc.  Do the update unconditionally (even though a
 955   // promotion failure does not swap spaces) because an unknown number of young
 956   // collections will have swapped the spaces an unknown number of times.
 957   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 958   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 959   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 960   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 961 
 962   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 963   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 964 
 965   // Increment the invocation count
 966   heap->increment_total_collections(true);
 967 
 968   // We need to track unique mark sweep invocations as well.
 969   _total_invocations++;
 970 
 971   heap->print_heap_before_gc();
 972   heap->trace_heap_before_gc(&_gc_tracer);
 973 
 974   // Fill in TLABs
 975   heap->ensure_parsability(true);  // retire TLABs
 976 
 977   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 978     HandleMark hm;  // Discard invalid handles created during verification
 979     Universe::verify("Before GC");
 980   }
 981 
 982   // Verify object start arrays
 983   if (VerifyObjectStartArray &&
 984       VerifyBeforeGC) {
 985     heap->old_gen()->verify_object_start_array();
 986   }
 987 
 988   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 989   DEBUG_ONLY(summary_data().verify_clear();)
 990 
 991   // Have worker threads release resources the next time they run a task.
 992   gc_task_manager()->release_all_resources();
 993 
 994   ParCompactionManager::reset_all_bitmap_query_caches();
 995 }
 996 
 997 void PSParallelCompact::post_compact()
 998 {
 999   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
1000 
1001   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1002     // Clear the marking bitmap, summary data and split info.
1003     clear_data_covering_space(SpaceId(id));
1004     // Update top().  Must be done after clearing the bitmap and summary data.
1005     _space_info[id].publish_new_top();
1006   }
1007 
1008   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1009   MutableSpace* const from_space = _space_info[from_space_id].space();
1010   MutableSpace* const to_space   = _space_info[to_space_id].space();
1011 
1012   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1013   bool eden_empty = eden_space->is_empty();
1014   if (!eden_empty) {
1015     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1016                                             heap->young_gen(), heap->old_gen());
1017   }
1018 
1019   // Update heap occupancy information which is used as input to the soft ref
1020   // clearing policy at the next gc.
1021   Universe::update_heap_info_at_gc();
1022 
1023   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1024     to_space->is_empty();
1025 
1026   PSCardTable* ct = heap->card_table();
1027   MemRegion old_mr = heap->old_gen()->reserved();
1028   if (young_gen_empty) {
1029     ct->clear(MemRegion(old_mr.start(), old_mr.end()));
1030   } else {
1031     ct->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1032   }
1033 
1034   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1035   ClassLoaderDataGraph::purge();
1036   MetaspaceUtils::verify_metrics();
1037 
1038   CodeCache::gc_epilogue();
1039   JvmtiExport::gc_epilogue();
1040 
1041 #if COMPILER2_OR_JVMCI
1042   DerivedPointerTable::update_pointers();
1043 #endif
1044 
1045   if (ZapUnusedHeapArea) {
1046     heap->gen_mangle_unused_area();
1047   }
1048 
1049   // Update time of last GC
1050   reset_millis_since_last_gc();
1051 }
1052 
1053 HeapWord*
1054 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1055                                                     bool maximum_compaction)
1056 {
1057   const size_t region_size = ParallelCompactData::RegionSize;
1058   const ParallelCompactData& sd = summary_data();
1059 
1060   const MutableSpace* const space = _space_info[id].space();
1061   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1062   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1063   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1064 
1065   // Skip full regions at the beginning of the space--they are necessarily part
1066   // of the dense prefix.
1067   size_t full_count = 0;
1068   const RegionData* cp;
1069   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1070     ++full_count;
1071   }
1072 
1073   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1074   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1075   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1076   if (maximum_compaction || cp == end_cp || interval_ended) {
1077     _maximum_compaction_gc_num = total_invocations();
1078     return sd.region_to_addr(cp);
1079   }
1080 
1081   HeapWord* const new_top = _space_info[id].new_top();
1082   const size_t space_live = pointer_delta(new_top, space->bottom());
1083   const size_t space_used = space->used_in_words();
1084   const size_t space_capacity = space->capacity_in_words();
1085 
1086   const double cur_density = double(space_live) / space_capacity;
1087   const double deadwood_density =
1088     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1089   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1090 
1091   if (TraceParallelOldGCDensePrefix) {
1092     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1093                   cur_density, deadwood_density, deadwood_goal);
1094     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1095                   "space_cap=" SIZE_FORMAT,
1096                   space_live, space_used,
1097                   space_capacity);
1098   }
1099 
1100   // XXX - Use binary search?
1101   HeapWord* dense_prefix = sd.region_to_addr(cp);
1102   const RegionData* full_cp = cp;
1103   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1104   while (cp < end_cp) {
1105     HeapWord* region_destination = cp->destination();
1106     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1107     if (TraceParallelOldGCDensePrefix && Verbose) {
1108       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1109                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1110                     sd.region(cp), p2i(region_destination),
1111                     p2i(dense_prefix), cur_deadwood);
1112     }
1113 
1114     if (cur_deadwood >= deadwood_goal) {
1115       // Found the region that has the correct amount of deadwood to the left.
1116       // This typically occurs after crossing a fairly sparse set of regions, so
1117       // iterate backwards over those sparse regions, looking for the region
1118       // that has the lowest density of live objects 'to the right.'
1119       size_t space_to_left = sd.region(cp) * region_size;
1120       size_t live_to_left = space_to_left - cur_deadwood;
1121       size_t space_to_right = space_capacity - space_to_left;
1122       size_t live_to_right = space_live - live_to_left;
1123       double density_to_right = double(live_to_right) / space_to_right;
1124       while (cp > full_cp) {
1125         --cp;
1126         const size_t prev_region_live_to_right = live_to_right -
1127           cp->data_size();
1128         const size_t prev_region_space_to_right = space_to_right + region_size;
1129         double prev_region_density_to_right =
1130           double(prev_region_live_to_right) / prev_region_space_to_right;
1131         if (density_to_right <= prev_region_density_to_right) {
1132           return dense_prefix;
1133         }
1134         if (TraceParallelOldGCDensePrefix && Verbose) {
1135           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1136                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1137                         prev_region_density_to_right);
1138         }
1139         dense_prefix -= region_size;
1140         live_to_right = prev_region_live_to_right;
1141         space_to_right = prev_region_space_to_right;
1142         density_to_right = prev_region_density_to_right;
1143       }
1144       return dense_prefix;
1145     }
1146 
1147     dense_prefix += region_size;
1148     ++cp;
1149   }
1150 
1151   return dense_prefix;
1152 }
1153 
1154 #ifndef PRODUCT
1155 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1156                                                  const SpaceId id,
1157                                                  const bool maximum_compaction,
1158                                                  HeapWord* const addr)
1159 {
1160   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1161   RegionData* const cp = summary_data().region(region_idx);
1162   const MutableSpace* const space = _space_info[id].space();
1163   HeapWord* const new_top = _space_info[id].new_top();
1164 
1165   const size_t space_live = pointer_delta(new_top, space->bottom());
1166   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1167   const size_t space_cap = space->capacity_in_words();
1168   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1169   const size_t live_to_right = new_top - cp->destination();
1170   const size_t dead_to_right = space->top() - addr - live_to_right;
1171 
1172   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1173                 "spl=" SIZE_FORMAT " "
1174                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1175                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1176                 " ratio=%10.8f",
1177                 algorithm, p2i(addr), region_idx,
1178                 space_live,
1179                 dead_to_left, dead_to_left_pct,
1180                 dead_to_right, live_to_right,
1181                 double(dead_to_right) / live_to_right);
1182 }
1183 #endif  // #ifndef PRODUCT
1184 
1185 // Return a fraction indicating how much of the generation can be treated as
1186 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1187 // based on the density of live objects in the generation to determine a limit,
1188 // which is then adjusted so the return value is min_percent when the density is
1189 // 1.
1190 //
1191 // The following table shows some return values for a different values of the
1192 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1193 // min_percent is 1.
1194 //
1195 //                          fraction allowed as dead wood
1196 //         -----------------------------------------------------------------
1197 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1198 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1199 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1200 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1201 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1202 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1203 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1204 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1205 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1206 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1207 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1208 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1209 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1210 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1211 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1212 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1213 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1214 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1215 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1216 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1217 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1218 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1219 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1220 
1221 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1222 {
1223   assert(_dwl_initialized, "uninitialized");
1224 
1225   // The raw limit is the value of the normal distribution at x = density.
1226   const double raw_limit = normal_distribution(density);
1227 
1228   // Adjust the raw limit so it becomes the minimum when the density is 1.
1229   //
1230   // First subtract the adjustment value (which is simply the precomputed value
1231   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1232   // Then add the minimum value, so the minimum is returned when the density is
1233   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1234   const double min = double(min_percent) / 100.0;
1235   const double limit = raw_limit - _dwl_adjustment + min;
1236   return MAX2(limit, 0.0);
1237 }
1238 
1239 ParallelCompactData::RegionData*
1240 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1241                                            const RegionData* end)
1242 {
1243   const size_t region_size = ParallelCompactData::RegionSize;
1244   ParallelCompactData& sd = summary_data();
1245   size_t left = sd.region(beg);
1246   size_t right = end > beg ? sd.region(end) - 1 : left;
1247 
1248   // Binary search.
1249   while (left < right) {
1250     // Equivalent to (left + right) / 2, but does not overflow.
1251     const size_t middle = left + (right - left) / 2;
1252     RegionData* const middle_ptr = sd.region(middle);
1253     HeapWord* const dest = middle_ptr->destination();
1254     HeapWord* const addr = sd.region_to_addr(middle);
1255     assert(dest != NULL, "sanity");
1256     assert(dest <= addr, "must move left");
1257 
1258     if (middle > left && dest < addr) {
1259       right = middle - 1;
1260     } else if (middle < right && middle_ptr->data_size() == region_size) {
1261       left = middle + 1;
1262     } else {
1263       return middle_ptr;
1264     }
1265   }
1266   return sd.region(left);
1267 }
1268 
1269 ParallelCompactData::RegionData*
1270 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1271                                           const RegionData* end,
1272                                           size_t dead_words)
1273 {
1274   ParallelCompactData& sd = summary_data();
1275   size_t left = sd.region(beg);
1276   size_t right = end > beg ? sd.region(end) - 1 : left;
1277 
1278   // Binary search.
1279   while (left < right) {
1280     // Equivalent to (left + right) / 2, but does not overflow.
1281     const size_t middle = left + (right - left) / 2;
1282     RegionData* const middle_ptr = sd.region(middle);
1283     HeapWord* const dest = middle_ptr->destination();
1284     HeapWord* const addr = sd.region_to_addr(middle);
1285     assert(dest != NULL, "sanity");
1286     assert(dest <= addr, "must move left");
1287 
1288     const size_t dead_to_left = pointer_delta(addr, dest);
1289     if (middle > left && dead_to_left > dead_words) {
1290       right = middle - 1;
1291     } else if (middle < right && dead_to_left < dead_words) {
1292       left = middle + 1;
1293     } else {
1294       return middle_ptr;
1295     }
1296   }
1297   return sd.region(left);
1298 }
1299 
1300 // The result is valid during the summary phase, after the initial summarization
1301 // of each space into itself, and before final summarization.
1302 inline double
1303 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1304                                    HeapWord* const bottom,
1305                                    HeapWord* const top,
1306                                    HeapWord* const new_top)
1307 {
1308   ParallelCompactData& sd = summary_data();
1309 
1310   assert(cp != NULL, "sanity");
1311   assert(bottom != NULL, "sanity");
1312   assert(top != NULL, "sanity");
1313   assert(new_top != NULL, "sanity");
1314   assert(top >= new_top, "summary data problem?");
1315   assert(new_top > bottom, "space is empty; should not be here");
1316   assert(new_top >= cp->destination(), "sanity");
1317   assert(top >= sd.region_to_addr(cp), "sanity");
1318 
1319   HeapWord* const destination = cp->destination();
1320   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1321   const size_t compacted_region_live = pointer_delta(new_top, destination);
1322   const size_t compacted_region_used = pointer_delta(top,
1323                                                      sd.region_to_addr(cp));
1324   const size_t reclaimable = compacted_region_used - compacted_region_live;
1325 
1326   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1327   return double(reclaimable) / divisor;
1328 }
1329 
1330 // Return the address of the end of the dense prefix, a.k.a. the start of the
1331 // compacted region.  The address is always on a region boundary.
1332 //
1333 // Completely full regions at the left are skipped, since no compaction can
1334 // occur in those regions.  Then the maximum amount of dead wood to allow is
1335 // computed, based on the density (amount live / capacity) of the generation;
1336 // the region with approximately that amount of dead space to the left is
1337 // identified as the limit region.  Regions between the last completely full
1338 // region and the limit region are scanned and the one that has the best
1339 // (maximum) reclaimed_ratio() is selected.
1340 HeapWord*
1341 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1342                                         bool maximum_compaction)
1343 {
1344   const size_t region_size = ParallelCompactData::RegionSize;
1345   const ParallelCompactData& sd = summary_data();
1346 
1347   const MutableSpace* const space = _space_info[id].space();
1348   HeapWord* const top = space->top();
1349   HeapWord* const top_aligned_up = sd.region_align_up(top);
1350   HeapWord* const new_top = _space_info[id].new_top();
1351   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1352   HeapWord* const bottom = space->bottom();
1353   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1354   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1355   const RegionData* const new_top_cp =
1356     sd.addr_to_region_ptr(new_top_aligned_up);
1357 
1358   // Skip full regions at the beginning of the space--they are necessarily part
1359   // of the dense prefix.
1360   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1361   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1362          space->is_empty(), "no dead space allowed to the left");
1363   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1364          "region must have dead space");
1365 
1366   // The gc number is saved whenever a maximum compaction is done, and used to
1367   // determine when the maximum compaction interval has expired.  This avoids
1368   // successive max compactions for different reasons.
1369   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1370   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1371   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1372     total_invocations() == HeapFirstMaximumCompactionCount;
1373   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1374     _maximum_compaction_gc_num = total_invocations();
1375     return sd.region_to_addr(full_cp);
1376   }
1377 
1378   const size_t space_live = pointer_delta(new_top, bottom);
1379   const size_t space_used = space->used_in_words();
1380   const size_t space_capacity = space->capacity_in_words();
1381 
1382   const double density = double(space_live) / double(space_capacity);
1383   const size_t min_percent_free = MarkSweepDeadRatio;
1384   const double limiter = dead_wood_limiter(density, min_percent_free);
1385   const size_t dead_wood_max = space_used - space_live;
1386   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1387                                       dead_wood_max);
1388 
1389   if (TraceParallelOldGCDensePrefix) {
1390     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1391                   "space_cap=" SIZE_FORMAT,
1392                   space_live, space_used,
1393                   space_capacity);
1394     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1395                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1396                   density, min_percent_free, limiter,
1397                   dead_wood_max, dead_wood_limit);
1398   }
1399 
1400   // Locate the region with the desired amount of dead space to the left.
1401   const RegionData* const limit_cp =
1402     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1403 
1404   // Scan from the first region with dead space to the limit region and find the
1405   // one with the best (largest) reclaimed ratio.
1406   double best_ratio = 0.0;
1407   const RegionData* best_cp = full_cp;
1408   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1409     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1410     if (tmp_ratio > best_ratio) {
1411       best_cp = cp;
1412       best_ratio = tmp_ratio;
1413     }
1414   }
1415 
1416   return sd.region_to_addr(best_cp);
1417 }
1418 
1419 void PSParallelCompact::summarize_spaces_quick()
1420 {
1421   for (unsigned int i = 0; i < last_space_id; ++i) {
1422     const MutableSpace* space = _space_info[i].space();
1423     HeapWord** nta = _space_info[i].new_top_addr();
1424     bool result = _summary_data.summarize(_space_info[i].split_info(),
1425                                           space->bottom(), space->top(), NULL,
1426                                           space->bottom(), space->end(), nta);
1427     assert(result, "space must fit into itself");
1428     _space_info[i].set_dense_prefix(space->bottom());
1429   }
1430 }
1431 
1432 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1433 {
1434   HeapWord* const dense_prefix_end = dense_prefix(id);
1435   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1436   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1437   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1438     // Only enough dead space is filled so that any remaining dead space to the
1439     // left is larger than the minimum filler object.  (The remainder is filled
1440     // during the copy/update phase.)
1441     //
1442     // The size of the dead space to the right of the boundary is not a
1443     // concern, since compaction will be able to use whatever space is
1444     // available.
1445     //
1446     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1447     // surrounds the space to be filled with an object.
1448     //
1449     // In the 32-bit VM, each bit represents two 32-bit words:
1450     //                              +---+
1451     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1452     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1453     //                              +---+
1454     //
1455     // In the 64-bit VM, each bit represents one 64-bit word:
1456     //                              +------------+
1457     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1458     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1459     //                              +------------+
1460     //                          +-------+
1461     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1462     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1463     //                          +-------+
1464     //                      +-----------+
1465     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1466     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1467     //                      +-----------+
1468     //                          +-------+
1469     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1470     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1471     //                          +-------+
1472 
1473     // Initially assume case a, c or e will apply.
1474     size_t obj_len = CollectedHeap::min_fill_size();
1475     HeapWord* obj_beg = dense_prefix_end - obj_len;
1476 
1477 #ifdef  _LP64
1478     if (MinObjAlignment > 1) { // object alignment > heap word size
1479       // Cases a, c or e.
1480     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1481       // Case b above.
1482       obj_beg = dense_prefix_end - 1;
1483     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1484                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1485       // Case d above.
1486       obj_beg = dense_prefix_end - 3;
1487       obj_len = 3;
1488     }
1489 #endif  // #ifdef _LP64
1490 
1491     CollectedHeap::fill_with_object(obj_beg, obj_len);
1492     _mark_bitmap.mark_obj(obj_beg, obj_len);
1493     _summary_data.add_obj(obj_beg, obj_len);
1494     assert(start_array(id) != NULL, "sanity");
1495     start_array(id)->allocate_block(obj_beg);
1496   }
1497 }
1498 
1499 void
1500 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1501 {
1502   assert(id < last_space_id, "id out of range");
1503   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1504          "should have been reset in summarize_spaces_quick()");
1505 
1506   const MutableSpace* space = _space_info[id].space();
1507   if (_space_info[id].new_top() != space->bottom()) {
1508     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1509     _space_info[id].set_dense_prefix(dense_prefix_end);
1510 
1511 #ifndef PRODUCT
1512     if (TraceParallelOldGCDensePrefix) {
1513       print_dense_prefix_stats("ratio", id, maximum_compaction,
1514                                dense_prefix_end);
1515       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1516       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1517     }
1518 #endif  // #ifndef PRODUCT
1519 
1520     // Recompute the summary data, taking into account the dense prefix.  If
1521     // every last byte will be reclaimed, then the existing summary data which
1522     // compacts everything can be left in place.
1523     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1524       // If dead space crosses the dense prefix boundary, it is (at least
1525       // partially) filled with a dummy object, marked live and added to the
1526       // summary data.  This simplifies the copy/update phase and must be done
1527       // before the final locations of objects are determined, to prevent
1528       // leaving a fragment of dead space that is too small to fill.
1529       fill_dense_prefix_end(id);
1530 
1531       // Compute the destination of each Region, and thus each object.
1532       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1533       _summary_data.summarize(_space_info[id].split_info(),
1534                               dense_prefix_end, space->top(), NULL,
1535                               dense_prefix_end, space->end(),
1536                               _space_info[id].new_top_addr());
1537     }
1538   }
1539 
1540   if (log_develop_is_enabled(Trace, gc, compaction)) {
1541     const size_t region_size = ParallelCompactData::RegionSize;
1542     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1543     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1544     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1545     HeapWord* const new_top = _space_info[id].new_top();
1546     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1547     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1548     log_develop_trace(gc, compaction)(
1549         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1550         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1551         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1552         id, space->capacity_in_words(), p2i(dense_prefix_end),
1553         dp_region, dp_words / region_size,
1554         cr_words / region_size, p2i(new_top));
1555   }
1556 }
1557 
1558 #ifndef PRODUCT
1559 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1560                                           HeapWord* dst_beg, HeapWord* dst_end,
1561                                           SpaceId src_space_id,
1562                                           HeapWord* src_beg, HeapWord* src_end)
1563 {
1564   log_develop_trace(gc, compaction)(
1565       "Summarizing %d [%s] into %d [%s]:  "
1566       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1567       SIZE_FORMAT "-" SIZE_FORMAT " "
1568       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1569       SIZE_FORMAT "-" SIZE_FORMAT,
1570       src_space_id, space_names[src_space_id],
1571       dst_space_id, space_names[dst_space_id],
1572       p2i(src_beg), p2i(src_end),
1573       _summary_data.addr_to_region_idx(src_beg),
1574       _summary_data.addr_to_region_idx(src_end),
1575       p2i(dst_beg), p2i(dst_end),
1576       _summary_data.addr_to_region_idx(dst_beg),
1577       _summary_data.addr_to_region_idx(dst_end));
1578 }
1579 #endif  // #ifndef PRODUCT
1580 
1581 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1582                                       bool maximum_compaction)
1583 {
1584   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1585 
1586 #ifdef  ASSERT
1587   if (TraceParallelOldGCMarkingPhase) {
1588     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1589                   "add_obj_bytes=" SIZE_FORMAT,
1590                   add_obj_count, add_obj_size * HeapWordSize);
1591     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1592                   "mark_bitmap_bytes=" SIZE_FORMAT,
1593                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1594   }
1595 #endif  // #ifdef ASSERT
1596 
1597   // Quick summarization of each space into itself, to see how much is live.
1598   summarize_spaces_quick();
1599 
1600   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1601   NOT_PRODUCT(print_region_ranges());
1602   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1603 
1604   // The amount of live data that will end up in old space (assuming it fits).
1605   size_t old_space_total_live = 0;
1606   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1607     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1608                                           _space_info[id].space()->bottom());
1609   }
1610 
1611   MutableSpace* const old_space = _space_info[old_space_id].space();
1612   const size_t old_capacity = old_space->capacity_in_words();
1613   if (old_space_total_live > old_capacity) {
1614     // XXX - should also try to expand
1615     maximum_compaction = true;
1616   }
1617 
1618   // Old generations.
1619   summarize_space(old_space_id, maximum_compaction);
1620 
1621   // Summarize the remaining spaces in the young gen.  The initial target space
1622   // is the old gen.  If a space does not fit entirely into the target, then the
1623   // remainder is compacted into the space itself and that space becomes the new
1624   // target.
1625   SpaceId dst_space_id = old_space_id;
1626   HeapWord* dst_space_end = old_space->end();
1627   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1628   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1629     const MutableSpace* space = _space_info[id].space();
1630     const size_t live = pointer_delta(_space_info[id].new_top(),
1631                                       space->bottom());
1632     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1633 
1634     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1635                                   SpaceId(id), space->bottom(), space->top());)
1636     if (live > 0 && live <= available) {
1637       // All the live data will fit.
1638       bool done = _summary_data.summarize(_space_info[id].split_info(),
1639                                           space->bottom(), space->top(),
1640                                           NULL,
1641                                           *new_top_addr, dst_space_end,
1642                                           new_top_addr);
1643       assert(done, "space must fit into old gen");
1644 
1645       // Reset the new_top value for the space.
1646       _space_info[id].set_new_top(space->bottom());
1647     } else if (live > 0) {
1648       // Attempt to fit part of the source space into the target space.
1649       HeapWord* next_src_addr = NULL;
1650       bool done = _summary_data.summarize(_space_info[id].split_info(),
1651                                           space->bottom(), space->top(),
1652                                           &next_src_addr,
1653                                           *new_top_addr, dst_space_end,
1654                                           new_top_addr);
1655       assert(!done, "space should not fit into old gen");
1656       assert(next_src_addr != NULL, "sanity");
1657 
1658       // The source space becomes the new target, so the remainder is compacted
1659       // within the space itself.
1660       dst_space_id = SpaceId(id);
1661       dst_space_end = space->end();
1662       new_top_addr = _space_info[id].new_top_addr();
1663       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1664                                     space->bottom(), dst_space_end,
1665                                     SpaceId(id), next_src_addr, space->top());)
1666       done = _summary_data.summarize(_space_info[id].split_info(),
1667                                      next_src_addr, space->top(),
1668                                      NULL,
1669                                      space->bottom(), dst_space_end,
1670                                      new_top_addr);
1671       assert(done, "space must fit when compacted into itself");
1672       assert(*new_top_addr <= space->top(), "usage should not grow");
1673     }
1674   }
1675 
1676   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1677   NOT_PRODUCT(print_region_ranges());
1678   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1679 }
1680 
1681 // This method should contain all heap-specific policy for invoking a full
1682 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1683 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1684 // before full gc, or any other specialized behavior, it needs to be added here.
1685 //
1686 // Note that this method should only be called from the vm_thread while at a
1687 // safepoint.
1688 //
1689 // Note that the all_soft_refs_clear flag in the collector policy
1690 // may be true because this method can be called without intervening
1691 // activity.  For example when the heap space is tight and full measure
1692 // are being taken to free space.
1693 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1694   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1695   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1696          "should be in vm thread");
1697 
1698   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1699   GCCause::Cause gc_cause = heap->gc_cause();
1700   assert(!heap->is_gc_active(), "not reentrant");
1701 
1702   PSAdaptiveSizePolicy* policy = heap->size_policy();
1703   IsGCActiveMark mark;
1704 
1705   if (ScavengeBeforeFullGC) {
1706     PSScavenge::invoke_no_policy();
1707   }
1708 
1709   const bool clear_all_soft_refs =
1710     heap->soft_ref_policy()->should_clear_all_soft_refs();
1711 
1712   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1713                                       maximum_heap_compaction);
1714 }
1715 
1716 // This method contains no policy. You should probably
1717 // be calling invoke() instead.
1718 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1719   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1720   assert(ref_processor() != NULL, "Sanity");
1721 
1722   if (GCLocker::check_active_before_gc()) {
1723     return false;
1724   }
1725 
1726   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1727 
1728   GCIdMark gc_id_mark;
1729   _gc_timer.register_gc_start();
1730   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1731 
1732   TimeStamp marking_start;
1733   TimeStamp compaction_start;
1734   TimeStamp collection_exit;
1735 
1736   GCCause::Cause gc_cause = heap->gc_cause();
1737   PSYoungGen* young_gen = heap->young_gen();
1738   PSOldGen* old_gen = heap->old_gen();
1739   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1740 
1741   // The scope of casr should end after code that can change
1742   // CollectorPolicy::_should_clear_all_soft_refs.
1743   ClearedAllSoftRefs casr(maximum_heap_compaction,
1744                           heap->soft_ref_policy());
1745 
1746   if (ZapUnusedHeapArea) {
1747     // Save information needed to minimize mangling
1748     heap->record_gen_tops_before_GC();
1749   }
1750 
1751   // Make sure data structures are sane, make the heap parsable, and do other
1752   // miscellaneous bookkeeping.
1753   pre_compact();
1754 
1755   PreGCValues pre_gc_values(heap);
1756 
1757   // Get the compaction manager reserved for the VM thread.
1758   ParCompactionManager* const vmthread_cm =
1759     ParCompactionManager::manager_array(gc_task_manager()->workers());
1760 
1761   {
1762     ResourceMark rm;
1763     HandleMark hm;
1764 
1765     // Set the number of GC threads to be used in this collection
1766     gc_task_manager()->set_active_gang();
1767     gc_task_manager()->task_idle_workers();
1768 
1769     GCTraceCPUTime tcpu;
1770     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1771 
1772     heap->pre_full_gc_dump(&_gc_timer);
1773 
1774     TraceCollectorStats tcs(counters());
1775     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause);
1776 
1777     if (log_is_enabled(Debug, gc, heap, exit)) {
1778       accumulated_time()->start();
1779     }
1780 
1781     // Let the size policy know we're starting
1782     size_policy->major_collection_begin();
1783 
1784     CodeCache::gc_prologue();
1785 
1786 #if COMPILER2_OR_JVMCI
1787     DerivedPointerTable::clear();
1788 #endif
1789 
1790     ref_processor()->enable_discovery();
1791     ref_processor()->setup_policy(maximum_heap_compaction);
1792 
1793     bool marked_for_unloading = false;
1794 
1795     marking_start.update();
1796     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1797 
1798     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1799       && GCCause::is_user_requested_gc(gc_cause);
1800     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1801 
1802 #if COMPILER2_OR_JVMCI
1803     assert(DerivedPointerTable::is_active(), "Sanity");
1804     DerivedPointerTable::set_active(false);
1805 #endif
1806 
1807     // adjust_roots() updates Universe::_intArrayKlassObj which is
1808     // needed by the compaction for filling holes in the dense prefix.
1809     adjust_roots(vmthread_cm);
1810 
1811     compaction_start.update();
1812     compact();
1813 
1814     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1815     // done before resizing.
1816     post_compact();
1817 
1818     // Let the size policy know we're done
1819     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1820 
1821     if (UseAdaptiveSizePolicy) {
1822       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1823       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1824                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1825 
1826       // Don't check if the size_policy is ready here.  Let
1827       // the size_policy check that internally.
1828       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1829           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1830         // Swap the survivor spaces if from_space is empty. The
1831         // resize_young_gen() called below is normally used after
1832         // a successful young GC and swapping of survivor spaces;
1833         // otherwise, it will fail to resize the young gen with
1834         // the current implementation.
1835         if (young_gen->from_space()->is_empty()) {
1836           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1837           young_gen->swap_spaces();
1838         }
1839 
1840         // Calculate optimal free space amounts
1841         assert(young_gen->max_size() >
1842           young_gen->from_space()->capacity_in_bytes() +
1843           young_gen->to_space()->capacity_in_bytes(),
1844           "Sizes of space in young gen are out-of-bounds");
1845 
1846         size_t young_live = young_gen->used_in_bytes();
1847         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1848         size_t old_live = old_gen->used_in_bytes();
1849         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1850         size_t max_old_gen_size = old_gen->max_gen_size();
1851         size_t max_eden_size = young_gen->max_size() -
1852           young_gen->from_space()->capacity_in_bytes() -
1853           young_gen->to_space()->capacity_in_bytes();
1854 
1855         // Used for diagnostics
1856         size_policy->clear_generation_free_space_flags();
1857 
1858         size_policy->compute_generations_free_space(young_live,
1859                                                     eden_live,
1860                                                     old_live,
1861                                                     cur_eden,
1862                                                     max_old_gen_size,
1863                                                     max_eden_size,
1864                                                     true /* full gc*/);
1865 
1866         size_policy->check_gc_overhead_limit(young_live,
1867                                              eden_live,
1868                                              max_old_gen_size,
1869                                              max_eden_size,
1870                                              true /* full gc*/,
1871                                              gc_cause,
1872                                              heap->soft_ref_policy());
1873 
1874         size_policy->decay_supplemental_growth(true /* full gc*/);
1875 
1876         heap->resize_old_gen(
1877           size_policy->calculated_old_free_size_in_bytes());
1878 
1879         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1880                                size_policy->calculated_survivor_size_in_bytes());
1881       }
1882 
1883       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1884     }
1885 
1886     if (UsePerfData) {
1887       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1888       counters->update_counters();
1889       counters->update_old_capacity(old_gen->capacity_in_bytes());
1890       counters->update_young_capacity(young_gen->capacity_in_bytes());
1891     }
1892 
1893     heap->resize_all_tlabs();
1894 
1895     // Resize the metaspace capacity after a collection
1896     MetaspaceGC::compute_new_size();
1897 
1898     if (log_is_enabled(Debug, gc, heap, exit)) {
1899       accumulated_time()->stop();
1900     }
1901 
1902     young_gen->print_used_change(pre_gc_values.young_gen_used());
1903     old_gen->print_used_change(pre_gc_values.old_gen_used());
1904     MetaspaceUtils::print_metaspace_change(pre_gc_values.metadata_used());
1905 
1906     // Track memory usage and detect low memory
1907     MemoryService::track_memory_usage();
1908     heap->update_counters();
1909     gc_task_manager()->release_idle_workers();
1910 
1911     heap->post_full_gc_dump(&_gc_timer);
1912   }
1913 
1914 #ifdef ASSERT
1915   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1916     ParCompactionManager* const cm =
1917       ParCompactionManager::manager_array(int(i));
1918     assert(cm->marking_stack()->is_empty(),       "should be empty");
1919     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1920   }
1921 #endif // ASSERT
1922 
1923   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1924     HandleMark hm;  // Discard invalid handles created during verification
1925     Universe::verify("After GC");
1926   }
1927 
1928   // Re-verify object start arrays
1929   if (VerifyObjectStartArray &&
1930       VerifyAfterGC) {
1931     old_gen->verify_object_start_array();
1932   }
1933 
1934   if (ZapUnusedHeapArea) {
1935     old_gen->object_space()->check_mangled_unused_area_complete();
1936   }
1937 
1938   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1939 
1940   collection_exit.update();
1941 
1942   heap->print_heap_after_gc();
1943   heap->trace_heap_after_gc(&_gc_tracer);
1944 
1945   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1946                          marking_start.ticks(), compaction_start.ticks(),
1947                          collection_exit.ticks());
1948   gc_task_manager()->print_task_time_stamps();
1949 
1950 #ifdef TRACESPINNING
1951   ParallelTaskTerminator::print_termination_counts();
1952 #endif
1953 
1954   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1955 
1956   _gc_timer.register_gc_end();
1957 
1958   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1959   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1960 
1961   return true;
1962 }
1963 
1964 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1965                                              PSYoungGen* young_gen,
1966                                              PSOldGen* old_gen) {
1967   MutableSpace* const eden_space = young_gen->eden_space();
1968   assert(!eden_space->is_empty(), "eden must be non-empty");
1969   assert(young_gen->virtual_space()->alignment() ==
1970          old_gen->virtual_space()->alignment(), "alignments do not match");
1971 
1972   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
1973     return false;
1974   }
1975 
1976   // Both generations must be completely committed.
1977   if (young_gen->virtual_space()->uncommitted_size() != 0) {
1978     return false;
1979   }
1980   if (old_gen->virtual_space()->uncommitted_size() != 0) {
1981     return false;
1982   }
1983 
1984   // Figure out how much to take from eden.  Include the average amount promoted
1985   // in the total; otherwise the next young gen GC will simply bail out to a
1986   // full GC.
1987   const size_t alignment = old_gen->virtual_space()->alignment();
1988   const size_t eden_used = eden_space->used_in_bytes();
1989   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
1990   const size_t absorb_size = align_up(eden_used + promoted, alignment);
1991   const size_t eden_capacity = eden_space->capacity_in_bytes();
1992 
1993   if (absorb_size >= eden_capacity) {
1994     return false; // Must leave some space in eden.
1995   }
1996 
1997   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
1998   if (new_young_size < young_gen->min_gen_size()) {
1999     return false; // Respect young gen minimum size.
2000   }
2001 
2002   log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
2003                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2004                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2005                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2006                         absorb_size / K,
2007                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2008                         young_gen->from_space()->used_in_bytes() / K,
2009                         young_gen->to_space()->used_in_bytes() / K,
2010                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2011 
2012   // Fill the unused part of the old gen.
2013   MutableSpace* const old_space = old_gen->object_space();
2014   HeapWord* const unused_start = old_space->top();
2015   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2016 
2017   if (unused_words > 0) {
2018     if (unused_words < CollectedHeap::min_fill_size()) {
2019       return false;  // If the old gen cannot be filled, must give up.
2020     }
2021     CollectedHeap::fill_with_objects(unused_start, unused_words);
2022   }
2023 
2024   // Take the live data from eden and set both top and end in the old gen to
2025   // eden top.  (Need to set end because reset_after_change() mangles the region
2026   // from end to virtual_space->high() in debug builds).
2027   HeapWord* const new_top = eden_space->top();
2028   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2029                                         absorb_size);
2030   young_gen->reset_after_change();
2031   old_space->set_top(new_top);
2032   old_space->set_end(new_top);
2033   old_gen->reset_after_change();
2034 
2035   // Update the object start array for the filler object and the data from eden.
2036   ObjectStartArray* const start_array = old_gen->start_array();
2037   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2038     start_array->allocate_block(p);
2039   }
2040 
2041   // Could update the promoted average here, but it is not typically updated at
2042   // full GCs and the value to use is unclear.  Something like
2043   //
2044   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2045 
2046   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2047   return true;
2048 }
2049 
2050 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2051   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2052     "shouldn't return NULL");
2053   return ParallelScavengeHeap::gc_task_manager();
2054 }
2055 
2056 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
2057 private:
2058   GCTaskQueue* _q;
2059 
2060 public:
2061   PCAddThreadRootsMarkingTaskClosure(GCTaskQueue* q) : _q(q) { }
2062   void do_thread(Thread* t) {
2063     _q->enqueue(new ThreadRootsMarkingTask(t));
2064   }
2065 };
2066 
2067 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2068                                       bool maximum_heap_compaction,
2069                                       ParallelOldTracer *gc_tracer) {
2070   // Recursively traverse all live objects and mark them
2071   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2072 
2073   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2074   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2075   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2076   TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2077   ParallelTaskTerminator terminator(active_gc_threads, qset);
2078 
2079   ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2080   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2081 
2082   // Need new claim bits before marking starts.
2083   ClassLoaderDataGraph::clear_claimed_marks();
2084 
2085   {
2086     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2087 
2088     ParallelScavengeHeap::ParStrongRootsScope psrs;
2089 
2090     GCTaskQueue* q = GCTaskQueue::create();
2091 
2092     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2093     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2094     // We scan the thread roots in parallel
2095     PCAddThreadRootsMarkingTaskClosure cl(q);
2096     Threads::java_threads_and_vm_thread_do(&cl);
2097     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2098     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2099     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2100     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2101     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2102     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2103 
2104     if (active_gc_threads > 1) {
2105       for (uint j = 0; j < active_gc_threads; j++) {
2106         q->enqueue(new StealMarkingTask(&terminator));
2107       }
2108     }
2109 
2110     gc_task_manager()->execute_and_wait(q);
2111   }
2112 
2113   // Process reference objects found during marking
2114   {
2115     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2116 
2117     ReferenceProcessorStats stats;
2118     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
2119 
2120     if (ref_processor()->processing_is_mt()) {
2121       ref_processor()->set_active_mt_degree(active_gc_threads);
2122 
2123       RefProcTaskExecutor task_executor;
2124       stats = ref_processor()->process_discovered_references(
2125         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2126         &task_executor, &pt);
2127     } else {
2128       stats = ref_processor()->process_discovered_references(
2129         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2130         &pt);
2131     }
2132 
2133     gc_tracer->report_gc_reference_stats(stats);
2134     pt.print_all_references();
2135   }
2136 
2137   // This is the point where the entire marking should have completed.
2138   assert(cm->marking_stacks_empty(), "Marking should have completed");
2139 
2140   {
2141     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
2142     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
2143   }
2144 
2145   {
2146     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2147 
2148     // Follow system dictionary roots and unload classes.
2149     bool purged_class = SystemDictionary::do_unloading(&_gc_timer);
2150 
2151     // Unload nmethods.
2152     CodeCache::do_unloading(is_alive_closure(), purged_class);
2153 
2154     // Prune dead klasses from subklass/sibling/implementor lists.
2155     Klass::clean_weak_klass_links(purged_class);
2156   }
2157 
2158   {
2159     GCTraceTime(Debug, gc, phases) t("Scrub String Table", &_gc_timer);
2160     // Delete entries for dead interned strings.
2161     StringTable::unlink(is_alive_closure());
2162   }
2163 
2164   {
2165     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", &_gc_timer);
2166     // Clean up unreferenced symbols in symbol table.
2167     SymbolTable::unlink();
2168   }
2169 
2170   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2171 }
2172 
2173 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2174   // Adjust the pointers to reflect the new locations
2175   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2176 
2177   // Need new claim bits when tracing through and adjusting pointers.
2178   ClassLoaderDataGraph::clear_claimed_marks();
2179 
2180   PSParallelCompact::AdjustPointerClosure oop_closure(cm);
2181 
2182   // General strong roots.
2183   Universe::oops_do(&oop_closure);
2184   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2185   Threads::oops_do(&oop_closure, NULL);
2186   ObjectSynchronizer::oops_do(&oop_closure);
2187   Management::oops_do(&oop_closure);
2188   JvmtiExport::oops_do(&oop_closure);
2189   SystemDictionary::oops_do(&oop_closure);
2190   CLDToOopClosure cld_closure(&oop_closure);
2191   ClassLoaderDataGraph::cld_do(&cld_closure);
2192 
2193   // Now adjust pointers in remaining weak roots.  (All of which should
2194   // have been cleared if they pointed to non-surviving objects.)
2195   WeakProcessor::oops_do(&oop_closure);
2196 
2197   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2198   CodeCache::blobs_do(&adjust_from_blobs);
2199   AOTLoader::oops_do(&oop_closure);
2200   StringTable::oops_do(&oop_closure);
2201   ref_processor()->weak_oops_do(&oop_closure);
2202   // Roots were visited so references into the young gen in roots
2203   // may have been scanned.  Process them also.
2204   // Should the reference processor have a span that excludes
2205   // young gen objects?
2206   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2207 }
2208 
2209 // Helper class to print 8 region numbers per line and then print the total at the end.
2210 class FillableRegionLogger : public StackObj {
2211 private:
2212   Log(gc, compaction) log;
2213   static const int LineLength = 8;
2214   size_t _regions[LineLength];
2215   int _next_index;
2216   bool _enabled;
2217   size_t _total_regions;
2218 public:
2219   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
2220   ~FillableRegionLogger() {
2221     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2222   }
2223 
2224   void print_line() {
2225     if (!_enabled || _next_index == 0) {
2226       return;
2227     }
2228     FormatBuffer<> line("Fillable: ");
2229     for (int i = 0; i < _next_index; i++) {
2230       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2231     }
2232     log.trace("%s", line.buffer());
2233     _next_index = 0;
2234   }
2235 
2236   void handle(size_t region) {
2237     if (!_enabled) {
2238       return;
2239     }
2240     _regions[_next_index++] = region;
2241     if (_next_index == LineLength) {
2242       print_line();
2243     }
2244     _total_regions++;
2245   }
2246 };
2247 
2248 void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2249                                                       uint parallel_gc_threads)
2250 {
2251   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2252 
2253   // Find the threads that are active
2254   unsigned int which = 0;
2255 
2256   // Find all regions that are available (can be filled immediately) and
2257   // distribute them to the thread stacks.  The iteration is done in reverse
2258   // order (high to low) so the regions will be removed in ascending order.
2259 
2260   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2261 
2262   which = 0;
2263   // id + 1 is used to test termination so unsigned  can
2264   // be used with an old_space_id == 0.
2265   FillableRegionLogger region_logger;
2266   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2267     SpaceInfo* const space_info = _space_info + id;
2268     MutableSpace* const space = space_info->space();
2269     HeapWord* const new_top = space_info->new_top();
2270 
2271     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2272     const size_t end_region =
2273       sd.addr_to_region_idx(sd.region_align_up(new_top));
2274 
2275     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2276       if (sd.region(cur)->claim_unsafe()) {
2277         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2278         cm->region_stack()->push(cur);
2279         region_logger.handle(cur);
2280         // Assign regions to tasks in round-robin fashion.
2281         if (++which == parallel_gc_threads) {
2282           which = 0;
2283         }
2284       }
2285     }
2286     region_logger.print_line();
2287   }
2288 }
2289 
2290 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2291 
2292 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2293                                                     uint parallel_gc_threads) {
2294   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2295 
2296   ParallelCompactData& sd = PSParallelCompact::summary_data();
2297 
2298   // Iterate over all the spaces adding tasks for updating
2299   // regions in the dense prefix.  Assume that 1 gc thread
2300   // will work on opening the gaps and the remaining gc threads
2301   // will work on the dense prefix.
2302   unsigned int space_id;
2303   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2304     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2305     const MutableSpace* const space = _space_info[space_id].space();
2306 
2307     if (dense_prefix_end == space->bottom()) {
2308       // There is no dense prefix for this space.
2309       continue;
2310     }
2311 
2312     // The dense prefix is before this region.
2313     size_t region_index_end_dense_prefix =
2314         sd.addr_to_region_idx(dense_prefix_end);
2315     RegionData* const dense_prefix_cp =
2316       sd.region(region_index_end_dense_prefix);
2317     assert(dense_prefix_end == space->end() ||
2318            dense_prefix_cp->available() ||
2319            dense_prefix_cp->claimed(),
2320            "The region after the dense prefix should always be ready to fill");
2321 
2322     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2323 
2324     // Is there dense prefix work?
2325     size_t total_dense_prefix_regions =
2326       region_index_end_dense_prefix - region_index_start;
2327     // How many regions of the dense prefix should be given to
2328     // each thread?
2329     if (total_dense_prefix_regions > 0) {
2330       uint tasks_for_dense_prefix = 1;
2331       if (total_dense_prefix_regions <=
2332           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2333         // Don't over partition.  This assumes that
2334         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2335         // so there are not many regions to process.
2336         tasks_for_dense_prefix = parallel_gc_threads;
2337       } else {
2338         // Over partition
2339         tasks_for_dense_prefix = parallel_gc_threads *
2340           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2341       }
2342       size_t regions_per_thread = total_dense_prefix_regions /
2343         tasks_for_dense_prefix;
2344       // Give each thread at least 1 region.
2345       if (regions_per_thread == 0) {
2346         regions_per_thread = 1;
2347       }
2348 
2349       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2350         if (region_index_start >= region_index_end_dense_prefix) {
2351           break;
2352         }
2353         // region_index_end is not processed
2354         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2355                                        region_index_end_dense_prefix);
2356         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2357                                              region_index_start,
2358                                              region_index_end));
2359         region_index_start = region_index_end;
2360       }
2361     }
2362     // This gets any part of the dense prefix that did not
2363     // fit evenly.
2364     if (region_index_start < region_index_end_dense_prefix) {
2365       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2366                                            region_index_start,
2367                                            region_index_end_dense_prefix));
2368     }
2369   }
2370 }
2371 
2372 void PSParallelCompact::enqueue_region_stealing_tasks(
2373                                      GCTaskQueue* q,
2374                                      ParallelTaskTerminator* terminator_ptr,
2375                                      uint parallel_gc_threads) {
2376   GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2377 
2378   // Once a thread has drained it's stack, it should try to steal regions from
2379   // other threads.
2380   for (uint j = 0; j < parallel_gc_threads; j++) {
2381     q->enqueue(new CompactionWithStealingTask(terminator_ptr));
2382   }
2383 }
2384 
2385 #ifdef ASSERT
2386 // Write a histogram of the number of times the block table was filled for a
2387 // region.
2388 void PSParallelCompact::write_block_fill_histogram()
2389 {
2390   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2391     return;
2392   }
2393 
2394   Log(gc, compaction) log;
2395   ResourceMark rm;
2396   LogStream ls(log.trace());
2397   outputStream* out = &ls;
2398 
2399   typedef ParallelCompactData::RegionData rd_t;
2400   ParallelCompactData& sd = summary_data();
2401 
2402   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2403     MutableSpace* const spc = _space_info[id].space();
2404     if (spc->bottom() != spc->top()) {
2405       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2406       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2407       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2408 
2409       size_t histo[5] = { 0, 0, 0, 0, 0 };
2410       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2411       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2412 
2413       for (const rd_t* cur = beg; cur < end; ++cur) {
2414         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2415       }
2416       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2417       for (size_t i = 0; i < histo_len; ++i) {
2418         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2419                    histo[i], 100.0 * histo[i] / region_cnt);
2420       }
2421       out->cr();
2422     }
2423   }
2424 }
2425 #endif // #ifdef ASSERT
2426 
2427 void PSParallelCompact::compact() {
2428   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2429 
2430   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2431   PSOldGen* old_gen = heap->old_gen();
2432   old_gen->start_array()->reset();
2433   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2434   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2435   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2436   ParallelTaskTerminator terminator(active_gc_threads, qset);
2437 
2438   GCTaskQueue* q = GCTaskQueue::create();
2439   prepare_region_draining_tasks(q, active_gc_threads);
2440   enqueue_dense_prefix_tasks(q, active_gc_threads);
2441   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2442 
2443   {
2444     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2445 
2446     gc_task_manager()->execute_and_wait(q);
2447 
2448 #ifdef  ASSERT
2449     // Verify that all regions have been processed before the deferred updates.
2450     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2451       verify_complete(SpaceId(id));
2452     }
2453 #endif
2454   }
2455 
2456   {
2457     // Update the deferred objects, if any.  Any compaction manager can be used.
2458     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2459     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2460     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2461       update_deferred_objects(cm, SpaceId(id));
2462     }
2463   }
2464 
2465   DEBUG_ONLY(write_block_fill_histogram());
2466 }
2467 
2468 #ifdef  ASSERT
2469 void PSParallelCompact::verify_complete(SpaceId space_id) {
2470   // All Regions between space bottom() to new_top() should be marked as filled
2471   // and all Regions between new_top() and top() should be available (i.e.,
2472   // should have been emptied).
2473   ParallelCompactData& sd = summary_data();
2474   SpaceInfo si = _space_info[space_id];
2475   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2476   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2477   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2478   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2479   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2480 
2481   bool issued_a_warning = false;
2482 
2483   size_t cur_region;
2484   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2485     const RegionData* const c = sd.region(cur_region);
2486     if (!c->completed()) {
2487       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2488                       cur_region, c->destination_count());
2489       issued_a_warning = true;
2490     }
2491   }
2492 
2493   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2494     const RegionData* const c = sd.region(cur_region);
2495     if (!c->available()) {
2496       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2497                       cur_region, c->destination_count());
2498       issued_a_warning = true;
2499     }
2500   }
2501 
2502   if (issued_a_warning) {
2503     print_region_ranges();
2504   }
2505 }
2506 #endif  // #ifdef ASSERT
2507 
2508 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2509   _start_array->allocate_block(addr);
2510   compaction_manager()->update_contents(oop(addr));
2511 }
2512 
2513 // Update interior oops in the ranges of regions [beg_region, end_region).
2514 void
2515 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2516                                                        SpaceId space_id,
2517                                                        size_t beg_region,
2518                                                        size_t end_region) {
2519   ParallelCompactData& sd = summary_data();
2520   ParMarkBitMap* const mbm = mark_bitmap();
2521 
2522   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2523   HeapWord* const end_addr = sd.region_to_addr(end_region);
2524   assert(beg_region <= end_region, "bad region range");
2525   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2526 
2527 #ifdef  ASSERT
2528   // Claim the regions to avoid triggering an assert when they are marked as
2529   // filled.
2530   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2531     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2532   }
2533 #endif  // #ifdef ASSERT
2534 
2535   if (beg_addr != space(space_id)->bottom()) {
2536     // Find the first live object or block of dead space that *starts* in this
2537     // range of regions.  If a partial object crosses onto the region, skip it;
2538     // it will be marked for 'deferred update' when the object head is
2539     // processed.  If dead space crosses onto the region, it is also skipped; it
2540     // will be filled when the prior region is processed.  If neither of those
2541     // apply, the first word in the region is the start of a live object or dead
2542     // space.
2543     assert(beg_addr > space(space_id)->bottom(), "sanity");
2544     const RegionData* const cp = sd.region(beg_region);
2545     if (cp->partial_obj_size() != 0) {
2546       beg_addr = sd.partial_obj_end(beg_region);
2547     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2548       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2549     }
2550   }
2551 
2552   if (beg_addr < end_addr) {
2553     // A live object or block of dead space starts in this range of Regions.
2554      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2555 
2556     // Create closures and iterate.
2557     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2558     FillClosure fill_closure(cm, space_id);
2559     ParMarkBitMap::IterationStatus status;
2560     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2561                           dense_prefix_end);
2562     if (status == ParMarkBitMap::incomplete) {
2563       update_closure.do_addr(update_closure.source());
2564     }
2565   }
2566 
2567   // Mark the regions as filled.
2568   RegionData* const beg_cp = sd.region(beg_region);
2569   RegionData* const end_cp = sd.region(end_region);
2570   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2571     cp->set_completed();
2572   }
2573 }
2574 
2575 // Return the SpaceId for the space containing addr.  If addr is not in the
2576 // heap, last_space_id is returned.  In debug mode it expects the address to be
2577 // in the heap and asserts such.
2578 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2579   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2580 
2581   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2582     if (_space_info[id].space()->contains(addr)) {
2583       return SpaceId(id);
2584     }
2585   }
2586 
2587   assert(false, "no space contains the addr");
2588   return last_space_id;
2589 }
2590 
2591 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2592                                                 SpaceId id) {
2593   assert(id < last_space_id, "bad space id");
2594 
2595   ParallelCompactData& sd = summary_data();
2596   const SpaceInfo* const space_info = _space_info + id;
2597   ObjectStartArray* const start_array = space_info->start_array();
2598 
2599   const MutableSpace* const space = space_info->space();
2600   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2601   HeapWord* const beg_addr = space_info->dense_prefix();
2602   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2603 
2604   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2605   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2606   const RegionData* cur_region;
2607   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2608     HeapWord* const addr = cur_region->deferred_obj_addr();
2609     if (addr != NULL) {
2610       if (start_array != NULL) {
2611         start_array->allocate_block(addr);
2612       }
2613       cm->update_contents(oop(addr));
2614       assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2615     }
2616   }
2617 }
2618 
2619 // Skip over count live words starting from beg, and return the address of the
2620 // next live word.  Unless marked, the word corresponding to beg is assumed to
2621 // be dead.  Callers must either ensure beg does not correspond to the middle of
2622 // an object, or account for those live words in some other way.  Callers must
2623 // also ensure that there are enough live words in the range [beg, end) to skip.
2624 HeapWord*
2625 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2626 {
2627   assert(count > 0, "sanity");
2628 
2629   ParMarkBitMap* m = mark_bitmap();
2630   idx_t bits_to_skip = m->words_to_bits(count);
2631   idx_t cur_beg = m->addr_to_bit(beg);
2632   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2633 
2634   do {
2635     cur_beg = m->find_obj_beg(cur_beg, search_end);
2636     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2637     const size_t obj_bits = cur_end - cur_beg + 1;
2638     if (obj_bits > bits_to_skip) {
2639       return m->bit_to_addr(cur_beg + bits_to_skip);
2640     }
2641     bits_to_skip -= obj_bits;
2642     cur_beg = cur_end + 1;
2643   } while (bits_to_skip > 0);
2644 
2645   // Skipping the desired number of words landed just past the end of an object.
2646   // Find the start of the next object.
2647   cur_beg = m->find_obj_beg(cur_beg, search_end);
2648   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2649   return m->bit_to_addr(cur_beg);
2650 }
2651 
2652 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2653                                             SpaceId src_space_id,
2654                                             size_t src_region_idx)
2655 {
2656   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2657 
2658   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2659   if (split_info.dest_region_addr() == dest_addr) {
2660     // The partial object ending at the split point contains the first word to
2661     // be copied to dest_addr.
2662     return split_info.first_src_addr();
2663   }
2664 
2665   const ParallelCompactData& sd = summary_data();
2666   ParMarkBitMap* const bitmap = mark_bitmap();
2667   const size_t RegionSize = ParallelCompactData::RegionSize;
2668 
2669   assert(sd.is_region_aligned(dest_addr), "not aligned");
2670   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2671   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2672   HeapWord* const src_region_destination = src_region_ptr->destination();
2673 
2674   assert(dest_addr >= src_region_destination, "wrong src region");
2675   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2676 
2677   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2678   HeapWord* const src_region_end = src_region_beg + RegionSize;
2679 
2680   HeapWord* addr = src_region_beg;
2681   if (dest_addr == src_region_destination) {
2682     // Return the first live word in the source region.
2683     if (partial_obj_size == 0) {
2684       addr = bitmap->find_obj_beg(addr, src_region_end);
2685       assert(addr < src_region_end, "no objects start in src region");
2686     }
2687     return addr;
2688   }
2689 
2690   // Must skip some live data.
2691   size_t words_to_skip = dest_addr - src_region_destination;
2692   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2693 
2694   if (partial_obj_size >= words_to_skip) {
2695     // All the live words to skip are part of the partial object.
2696     addr += words_to_skip;
2697     if (partial_obj_size == words_to_skip) {
2698       // Find the first live word past the partial object.
2699       addr = bitmap->find_obj_beg(addr, src_region_end);
2700       assert(addr < src_region_end, "wrong src region");
2701     }
2702     return addr;
2703   }
2704 
2705   // Skip over the partial object (if any).
2706   if (partial_obj_size != 0) {
2707     words_to_skip -= partial_obj_size;
2708     addr += partial_obj_size;
2709   }
2710 
2711   // Skip over live words due to objects that start in the region.
2712   addr = skip_live_words(addr, src_region_end, words_to_skip);
2713   assert(addr < src_region_end, "wrong src region");
2714   return addr;
2715 }
2716 
2717 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2718                                                      SpaceId src_space_id,
2719                                                      size_t beg_region,
2720                                                      HeapWord* end_addr)
2721 {
2722   ParallelCompactData& sd = summary_data();
2723 
2724 #ifdef ASSERT
2725   MutableSpace* const src_space = _space_info[src_space_id].space();
2726   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2727   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2728          "src_space_id does not match beg_addr");
2729   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2730          "src_space_id does not match end_addr");
2731 #endif // #ifdef ASSERT
2732 
2733   RegionData* const beg = sd.region(beg_region);
2734   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2735 
2736   // Regions up to new_top() are enqueued if they become available.
2737   HeapWord* const new_top = _space_info[src_space_id].new_top();
2738   RegionData* const enqueue_end =
2739     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2740 
2741   for (RegionData* cur = beg; cur < end; ++cur) {
2742     assert(cur->data_size() > 0, "region must have live data");
2743     cur->decrement_destination_count();
2744     if (cur < enqueue_end && cur->available() && cur->claim()) {
2745       cm->push_region(sd.region(cur));
2746     }
2747   }
2748 }
2749 
2750 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2751                                           SpaceId& src_space_id,
2752                                           HeapWord*& src_space_top,
2753                                           HeapWord* end_addr)
2754 {
2755   typedef ParallelCompactData::RegionData RegionData;
2756 
2757   ParallelCompactData& sd = PSParallelCompact::summary_data();
2758   const size_t region_size = ParallelCompactData::RegionSize;
2759 
2760   size_t src_region_idx = 0;
2761 
2762   // Skip empty regions (if any) up to the top of the space.
2763   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2764   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2765   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2766   const RegionData* const top_region_ptr =
2767     sd.addr_to_region_ptr(top_aligned_up);
2768   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2769     ++src_region_ptr;
2770   }
2771 
2772   if (src_region_ptr < top_region_ptr) {
2773     // The next source region is in the current space.  Update src_region_idx
2774     // and the source address to match src_region_ptr.
2775     src_region_idx = sd.region(src_region_ptr);
2776     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2777     if (src_region_addr > closure.source()) {
2778       closure.set_source(src_region_addr);
2779     }
2780     return src_region_idx;
2781   }
2782 
2783   // Switch to a new source space and find the first non-empty region.
2784   unsigned int space_id = src_space_id + 1;
2785   assert(space_id < last_space_id, "not enough spaces");
2786 
2787   HeapWord* const destination = closure.destination();
2788 
2789   do {
2790     MutableSpace* space = _space_info[space_id].space();
2791     HeapWord* const bottom = space->bottom();
2792     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2793 
2794     // Iterate over the spaces that do not compact into themselves.
2795     if (bottom_cp->destination() != bottom) {
2796       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2797       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2798 
2799       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2800         if (src_cp->live_obj_size() > 0) {
2801           // Found it.
2802           assert(src_cp->destination() == destination,
2803                  "first live obj in the space must match the destination");
2804           assert(src_cp->partial_obj_size() == 0,
2805                  "a space cannot begin with a partial obj");
2806 
2807           src_space_id = SpaceId(space_id);
2808           src_space_top = space->top();
2809           const size_t src_region_idx = sd.region(src_cp);
2810           closure.set_source(sd.region_to_addr(src_region_idx));
2811           return src_region_idx;
2812         } else {
2813           assert(src_cp->data_size() == 0, "sanity");
2814         }
2815       }
2816     }
2817   } while (++space_id < last_space_id);
2818 
2819   assert(false, "no source region was found");
2820   return 0;
2821 }
2822 
2823 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2824 {
2825   typedef ParMarkBitMap::IterationStatus IterationStatus;
2826   const size_t RegionSize = ParallelCompactData::RegionSize;
2827   ParMarkBitMap* const bitmap = mark_bitmap();
2828   ParallelCompactData& sd = summary_data();
2829   RegionData* const region_ptr = sd.region(region_idx);
2830 
2831   // Get the items needed to construct the closure.
2832   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2833   SpaceId dest_space_id = space_id(dest_addr);
2834   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2835   HeapWord* new_top = _space_info[dest_space_id].new_top();
2836   assert(dest_addr < new_top, "sanity");
2837   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2838 
2839   // Get the source region and related info.
2840   size_t src_region_idx = region_ptr->source_region();
2841   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2842   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2843 
2844   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2845   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2846 
2847   // Adjust src_region_idx to prepare for decrementing destination counts (the
2848   // destination count is not decremented when a region is copied to itself).
2849   if (src_region_idx == region_idx) {
2850     src_region_idx += 1;
2851   }
2852 
2853   if (bitmap->is_unmarked(closure.source())) {
2854     // The first source word is in the middle of an object; copy the remainder
2855     // of the object or as much as will fit.  The fact that pointer updates were
2856     // deferred will be noted when the object header is processed.
2857     HeapWord* const old_src_addr = closure.source();
2858     closure.copy_partial_obj();
2859     if (closure.is_full()) {
2860       decrement_destination_counts(cm, src_space_id, src_region_idx,
2861                                    closure.source());
2862       region_ptr->set_deferred_obj_addr(NULL);
2863       region_ptr->set_completed();
2864       return;
2865     }
2866 
2867     HeapWord* const end_addr = sd.region_align_down(closure.source());
2868     if (sd.region_align_down(old_src_addr) != end_addr) {
2869       // The partial object was copied from more than one source region.
2870       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2871 
2872       // Move to the next source region, possibly switching spaces as well.  All
2873       // args except end_addr may be modified.
2874       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2875                                        end_addr);
2876     }
2877   }
2878 
2879   do {
2880     HeapWord* const cur_addr = closure.source();
2881     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2882                                     src_space_top);
2883     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2884 
2885     if (status == ParMarkBitMap::incomplete) {
2886       // The last obj that starts in the source region does not end in the
2887       // region.
2888       assert(closure.source() < end_addr, "sanity");
2889       HeapWord* const obj_beg = closure.source();
2890       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2891                                        src_space_top);
2892       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2893       if (obj_end < range_end) {
2894         // The end was found; the entire object will fit.
2895         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2896         assert(status != ParMarkBitMap::would_overflow, "sanity");
2897       } else {
2898         // The end was not found; the object will not fit.
2899         assert(range_end < src_space_top, "obj cannot cross space boundary");
2900         status = ParMarkBitMap::would_overflow;
2901       }
2902     }
2903 
2904     if (status == ParMarkBitMap::would_overflow) {
2905       // The last object did not fit.  Note that interior oop updates were
2906       // deferred, then copy enough of the object to fill the region.
2907       region_ptr->set_deferred_obj_addr(closure.destination());
2908       status = closure.copy_until_full(); // copies from closure.source()
2909 
2910       decrement_destination_counts(cm, src_space_id, src_region_idx,
2911                                    closure.source());
2912       region_ptr->set_completed();
2913       return;
2914     }
2915 
2916     if (status == ParMarkBitMap::full) {
2917       decrement_destination_counts(cm, src_space_id, src_region_idx,
2918                                    closure.source());
2919       region_ptr->set_deferred_obj_addr(NULL);
2920       region_ptr->set_completed();
2921       return;
2922     }
2923 
2924     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2925 
2926     // Move to the next source region, possibly switching spaces as well.  All
2927     // args except end_addr may be modified.
2928     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2929                                      end_addr);
2930   } while (true);
2931 }
2932 
2933 void PSParallelCompact::fill_blocks(size_t region_idx)
2934 {
2935   // Fill in the block table elements for the specified region.  Each block
2936   // table element holds the number of live words in the region that are to the
2937   // left of the first object that starts in the block.  Thus only blocks in
2938   // which an object starts need to be filled.
2939   //
2940   // The algorithm scans the section of the bitmap that corresponds to the
2941   // region, keeping a running total of the live words.  When an object start is
2942   // found, if it's the first to start in the block that contains it, the
2943   // current total is written to the block table element.
2944   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2945   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2946   const size_t RegionSize = ParallelCompactData::RegionSize;
2947 
2948   ParallelCompactData& sd = summary_data();
2949   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2950   if (partial_obj_size >= RegionSize) {
2951     return; // No objects start in this region.
2952   }
2953 
2954   // Ensure the first loop iteration decides that the block has changed.
2955   size_t cur_block = sd.block_count();
2956 
2957   const ParMarkBitMap* const bitmap = mark_bitmap();
2958 
2959   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2960   assert((size_t)1 << Log2BitsPerBlock ==
2961          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2962 
2963   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2964   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2965   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2966   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2967   while (beg_bit < range_end) {
2968     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2969     if (new_block != cur_block) {
2970       cur_block = new_block;
2971       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2972     }
2973 
2974     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2975     if (end_bit < range_end - 1) {
2976       live_bits += end_bit - beg_bit + 1;
2977       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2978     } else {
2979       return;
2980     }
2981   }
2982 }
2983 
2984 void
2985 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
2986   const MutableSpace* sp = space(space_id);
2987   if (sp->is_empty()) {
2988     return;
2989   }
2990 
2991   ParallelCompactData& sd = PSParallelCompact::summary_data();
2992   ParMarkBitMap* const bitmap = mark_bitmap();
2993   HeapWord* const dp_addr = dense_prefix(space_id);
2994   HeapWord* beg_addr = sp->bottom();
2995   HeapWord* end_addr = sp->top();
2996 
2997   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
2998 
2999   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3000   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3001   if (beg_region < dp_region) {
3002     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3003   }
3004 
3005   // The destination of the first live object that starts in the region is one
3006   // past the end of the partial object entering the region (if any).
3007   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3008   HeapWord* const new_top = _space_info[space_id].new_top();
3009   assert(new_top >= dest_addr, "bad new_top value");
3010   const size_t words = pointer_delta(new_top, dest_addr);
3011 
3012   if (words > 0) {
3013     ObjectStartArray* start_array = _space_info[space_id].start_array();
3014     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3015 
3016     ParMarkBitMap::IterationStatus status;
3017     status = bitmap->iterate(&closure, dest_addr, end_addr);
3018     assert(status == ParMarkBitMap::full, "iteration not complete");
3019     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3020            "live objects skipped because closure is full");
3021   }
3022 }
3023 
3024 jlong PSParallelCompact::millis_since_last_gc() {
3025   // We need a monotonically non-decreasing time in ms but
3026   // os::javaTimeMillis() does not guarantee monotonicity.
3027   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3028   jlong ret_val = now - _time_of_last_gc;
3029   // XXX See note in genCollectedHeap::millis_since_last_gc().
3030   if (ret_val < 0) {
3031     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3032     return 0;
3033   }
3034   return ret_val;
3035 }
3036 
3037 void PSParallelCompact::reset_millis_since_last_gc() {
3038   // We need a monotonically non-decreasing time in ms but
3039   // os::javaTimeMillis() does not guarantee monotonicity.
3040   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3041 }
3042 
3043 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3044 {
3045   if (source() != destination()) {
3046     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3047     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3048   }
3049   update_state(words_remaining());
3050   assert(is_full(), "sanity");
3051   return ParMarkBitMap::full;
3052 }
3053 
3054 void MoveAndUpdateClosure::copy_partial_obj()
3055 {
3056   size_t words = words_remaining();
3057 
3058   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3059   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3060   if (end_addr < range_end) {
3061     words = bitmap()->obj_size(source(), end_addr);
3062   }
3063 
3064   // This test is necessary; if omitted, the pointer updates to a partial object
3065   // that crosses the dense prefix boundary could be overwritten.
3066   if (source() != destination()) {
3067     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3068     Copy::aligned_conjoint_words(source(), destination(), words);
3069   }
3070   update_state(words);
3071 }
3072 
3073 void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3074   PSParallelCompact::AdjustPointerClosure closure(cm);
3075   if (UseCompressedOops) {
3076     oop_oop_iterate_oop_maps<narrowOop>(obj, &closure);
3077   } else {
3078     oop_oop_iterate_oop_maps<oop>(obj, &closure);
3079   }
3080 }
3081 
3082 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3083   InstanceKlass::oop_pc_update_pointers(obj, cm);
3084 
3085   PSParallelCompact::AdjustPointerClosure closure(cm);
3086   if (UseCompressedOops) {
3087     oop_oop_iterate_statics<narrowOop>(obj, &closure);
3088   } else {
3089     oop_oop_iterate_statics<oop>(obj, &closure);
3090   }
3091 }
3092 
3093 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3094   InstanceKlass::oop_pc_update_pointers(obj, cm);
3095 }
3096 
3097 #ifdef ASSERT
3098 template <class T> static void trace_reference_gc(const char *s, oop obj,
3099                                                   T* referent_addr,
3100                                                   T* discovered_addr) {
3101   log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj));
3102   log_develop_trace(gc, ref)("     referent_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3103                              p2i(referent_addr), referent_addr ? p2i((oop)RawAccess<>::oop_load(referent_addr)) : NULL);
3104   log_develop_trace(gc, ref)("     discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3105                              p2i(discovered_addr), discovered_addr ? p2i((oop)RawAccess<>::oop_load(discovered_addr)) : NULL);
3106 }
3107 #endif
3108 
3109 template <class T>
3110 static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) {
3111   T* referent_addr = (T*)java_lang_ref_Reference::referent_addr_raw(obj);
3112   PSParallelCompact::adjust_pointer(referent_addr, cm);
3113   T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr_raw(obj);
3114   PSParallelCompact::adjust_pointer(discovered_addr, cm);
3115   debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3116                                 referent_addr, discovered_addr);)
3117 }
3118 
3119 void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3120   InstanceKlass::oop_pc_update_pointers(obj, cm);
3121 
3122   if (UseCompressedOops) {
3123     oop_pc_update_pointers_specialized<narrowOop>(obj, cm);
3124   } else {
3125     oop_pc_update_pointers_specialized<oop>(obj, cm);
3126   }
3127 }
3128 
3129 void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3130   assert(obj->is_objArray(), "obj must be obj array");
3131   PSParallelCompact::AdjustPointerClosure closure(cm);
3132   if (UseCompressedOops) {
3133     oop_oop_iterate_elements<narrowOop>(objArrayOop(obj), &closure);
3134   } else {
3135     oop_oop_iterate_elements<oop>(objArrayOop(obj), &closure);
3136   }
3137 }
3138 
3139 void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3140   assert(obj->is_typeArray(),"must be a type array");
3141 }
3142 
3143 ParMarkBitMapClosure::IterationStatus
3144 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3145   assert(destination() != NULL, "sanity");
3146   assert(bitmap()->obj_size(addr) == words, "bad size");
3147 
3148   _source = addr;
3149   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3150          destination(), "wrong destination");
3151 
3152   if (words > words_remaining()) {
3153     return ParMarkBitMap::would_overflow;
3154   }
3155 
3156   // The start_array must be updated even if the object is not moving.
3157   if (_start_array != NULL) {
3158     _start_array->allocate_block(destination());
3159   }
3160 
3161   if (destination() != source()) {
3162     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3163     Copy::aligned_conjoint_words(source(), destination(), words);
3164   }
3165 
3166   oop moved_oop = (oop) destination();
3167   compaction_manager()->update_contents(moved_oop);
3168   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3169 
3170   update_state(words);
3171   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3172   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3173 }
3174 
3175 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3176                                      ParCompactionManager* cm,
3177                                      PSParallelCompact::SpaceId space_id) :
3178   ParMarkBitMapClosure(mbm, cm),
3179   _space_id(space_id),
3180   _start_array(PSParallelCompact::start_array(space_id))
3181 {
3182 }
3183 
3184 // Updates the references in the object to their new values.
3185 ParMarkBitMapClosure::IterationStatus
3186 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3187   do_addr(addr);
3188   return ParMarkBitMap::incomplete;
3189 }
3190 
3191 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3192   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3193   _start_array(PSParallelCompact::start_array(space_id))
3194 {
3195   assert(space_id == PSParallelCompact::old_space_id,
3196          "cannot use FillClosure in the young gen");
3197 }
3198 
3199 ParMarkBitMapClosure::IterationStatus
3200 FillClosure::do_addr(HeapWord* addr, size_t size) {
3201   CollectedHeap::fill_with_objects(addr, size);
3202   HeapWord* const end = addr + size;
3203   do {
3204     _start_array->allocate_block(addr);
3205     addr += oop(addr)->size();
3206   } while (addr < end);
3207   return ParMarkBitMap::incomplete;
3208 }