1 /*
   2  * Copyright (c) 1994, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.math.*;
  29 
  30 /**
  31  * The {@code Long} class wraps a value of the primitive type {@code
  32  * long} in an object. An object of type {@code Long} contains a
  33  * single field whose type is {@code long}.
  34  *
  35  * <p> In addition, this class provides several methods for converting
  36  * a {@code long} to a {@code String} and a {@code String} to a {@code
  37  * long}, as well as other constants and methods useful when dealing
  38  * with a {@code long}.
  39  *
  40  * <p>Implementation note: The implementations of the "bit twiddling"
  41  * methods (such as {@link #highestOneBit(long) highestOneBit} and
  42  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
  43  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
  44  * Delight</i>, (Addison Wesley, 2002).
  45  *
  46  * @author  Lee Boynton
  47  * @author  Arthur van Hoff
  48  * @author  Josh Bloch
  49  * @author  Joseph D. Darcy
  50  * @since   JDK1.0
  51  */
  52 public final class Long extends Number implements Comparable<Long> {
  53     /**
  54      * A constant holding the minimum value a {@code long} can
  55      * have, -2<sup>63</sup>.
  56      */
  57     public static final long MIN_VALUE = 0x8000000000000000L;
  58 
  59     /**
  60      * A constant holding the maximum value a {@code long} can
  61      * have, 2<sup>63</sup>-1.
  62      */
  63     public static final long MAX_VALUE = 0x7fffffffffffffffL;
  64 
  65     /**
  66      * The {@code Class} instance representing the primitive type
  67      * {@code long}.
  68      *
  69      * @since   JDK1.1
  70      */
  71     @SuppressWarnings("unchecked")
  72     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
  73 
  74     /**
  75      * Returns a string representation of the first argument in the
  76      * radix specified by the second argument.
  77      *
  78      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
  79      * or larger than {@code Character.MAX_RADIX}, then the radix
  80      * {@code 10} is used instead.
  81      *
  82      * <p>If the first argument is negative, the first element of the
  83      * result is the ASCII minus sign {@code '-'}
  84      * (<code>'&#92;u002d'</code>). If the first argument is not
  85      * negative, no sign character appears in the result.
  86      *
  87      * <p>The remaining characters of the result represent the magnitude
  88      * of the first argument. If the magnitude is zero, it is
  89      * represented by a single zero character {@code '0'}
  90      * (<code>'&#92;u0030'</code>); otherwise, the first character of
  91      * the representation of the magnitude will not be the zero
  92      * character.  The following ASCII characters are used as digits:
  93      *
  94      * <blockquote>
  95      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
  96      * </blockquote>
  97      *
  98      * These are <code>'&#92;u0030'</code> through
  99      * <code>'&#92;u0039'</code> and <code>'&#92;u0061'</code> through
 100      * <code>'&#92;u007a'</code>. If {@code radix} is
 101      * <var>N</var>, then the first <var>N</var> of these characters
 102      * are used as radix-<var>N</var> digits in the order shown. Thus,
 103      * the digits for hexadecimal (radix 16) are
 104      * {@code 0123456789abcdef}. If uppercase letters are
 105      * desired, the {@link java.lang.String#toUpperCase()} method may
 106      * be called on the result:
 107      *
 108      * <blockquote>
 109      *  {@code Long.toString(n, 16).toUpperCase()}
 110      * </blockquote>
 111      *
 112      * @param   i       a {@code long} to be converted to a string.
 113      * @param   radix   the radix to use in the string representation.
 114      * @return  a string representation of the argument in the specified radix.
 115      * @see     java.lang.Character#MAX_RADIX
 116      * @see     java.lang.Character#MIN_RADIX
 117      */
 118     public static String toString(long i, int radix) {
 119         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 120             radix = 10;
 121         if (radix == 10)
 122             return toString(i);
 123         char[] buf = new char[65];
 124         int charPos = 64;
 125         boolean negative = (i < 0);
 126 
 127         if (!negative) {
 128             i = -i;
 129         }
 130 
 131         while (i <= -radix) {
 132             buf[charPos--] = Integer.digits[(int)(-(i % radix))];
 133             i = i / radix;
 134         }
 135         buf[charPos] = Integer.digits[(int)(-i)];
 136 
 137         if (negative) {
 138             buf[--charPos] = '-';
 139         }
 140 
 141         return new String(buf, charPos, (65 - charPos));
 142     }
 143 
 144     /**
 145      * Returns an unsigned string representation of the first argument
 146      * in the radix specified by the second argument.
 147      *
 148      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 149      * or larger than {@code Character.MAX_RADIX}, then the radix
 150      * {@code 10} is used instead.
 151      *
 152      * <p>Note that since the first argument is treated as an unsigned
 153      * value, no leading sign character is printed.
 154      *
 155      * <p>If the magnitude is zero, it is represented by a single zero
 156      * character {@code '0'} (<code>'&#92;u0030'</code>); otherwise,
 157      * the first character of the representation of the magnitude will
 158      * not be the zero character.
 159      *
 160      * <p>The characters used as digits and the behavior of radixes
 161      * is the same as {@link #toString(long, int) toString}.
 162      *
 163      * @param   i       an integer to be converted to an unsigned string.
 164      * @param   radix   the radix to use in the string representation.
 165      * @return  an unsigned string representation of the argument in the specified radix.
 166      * @see     #toString(long, int)
 167      * @since 1.8
 168      */
 169     public static String toUnsignedString(long i, int radix) {
 170         if (i >= 0)
 171             return toString(i, radix);
 172         else {
 173             switch (radix) {
 174             case 2:
 175                 return toBinaryString(i);
 176 
 177             case 4:
 178                 return toUnsignedString0(i, 2);
 179 
 180             case 8:
 181                 return toOctalString(i);
 182 
 183             case 10:
 184                 /*
 185                  * We can get the effect of an unsigned division by 10
 186                  * on a long value by first shifting right, yielding a
 187                  * positive value, and then dividing by 5.  This
 188                  * allows the last digit and preceding digits to be
 189                  * isolated more quickly than by an initial conversion
 190                  * to BigInteger.
 191                  */
 192                 long quot = (i >>> 1) / 5;
 193                 long rem = i - quot * 10;
 194                 return toString(quot) + rem;
 195 
 196             case 16:
 197                 return toHexString(i);
 198 
 199             case 32:
 200                 return toUnsignedString0(i, 5);
 201 
 202             default:
 203                 return toUnsignedBigInteger(i).toString(radix);
 204             }
 205         }
 206     }
 207 
 208     /**
 209      * Return a BigInteger equal to the unsigned value of the
 210      * argument.
 211      */
 212     private static BigInteger toUnsignedBigInteger(long i) {
 213         int upper = (int) ((i >> 32) & 0xffffffff);
 214         int lower = (int) i;
 215 
 216          // return (upper << 32) + lower
 217         return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
 218             add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
 219     }
 220 
 221     /**
 222      * Returns a string representation of the {@code long}
 223      * argument as an unsigned integer in base&nbsp;16.
 224      *
 225      * <p>The unsigned {@code long} value is the argument plus
 226      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 227      * equal to the argument.  This value is converted to a string of
 228      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
 229      * leading {@code 0}s.
 230      *
 231      * <p>The value of the argument can be recovered from the returned
 232      * string {@code s} by calling {@link
 233      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 234      * 16)}.
 235      *
 236      * <p>If the unsigned magnitude is zero, it is represented by a
 237      * single zero character {@code '0'} (<code>'&#92;u0030'</code>);
 238      * otherwise, the first character of the representation of the
 239      * unsigned magnitude will not be the zero character. The
 240      * following characters are used as hexadecimal digits:
 241      *
 242      * <blockquote>
 243      *  {@code 0123456789abcdef}
 244      * </blockquote>
 245      *
 246      * These are the characters <code>'&#92;u0030'</code> through
 247      * <code>'&#92;u0039'</code> and  <code>'&#92;u0061'</code> through
 248      * <code>'&#92;u0066'</code>.  If uppercase letters are desired,
 249      * the {@link java.lang.String#toUpperCase()} method may be called
 250      * on the result:
 251      *
 252      * <blockquote>
 253      *  {@code Long.toHexString(n).toUpperCase()}
 254      * </blockquote>
 255      *
 256      * @param   i   a {@code long} to be converted to a string.
 257      * @return  the string representation of the unsigned {@code long}
 258      *          value represented by the argument in hexadecimal
 259      *          (base&nbsp;16).
 260      * @see #parseUnsignedLong(String, int)
 261      * @see #toUnsignedString(long, int)
 262      * @since   JDK 1.0.2
 263      */
 264     public static String toHexString(long i) {
 265         return toUnsignedString0(i, 4);
 266     }
 267 
 268     /**
 269      * Returns a string representation of the {@code long}
 270      * argument as an unsigned integer in base&nbsp;8.
 271      *
 272      * <p>The unsigned {@code long} value is the argument plus
 273      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 274      * equal to the argument.  This value is converted to a string of
 275      * ASCII digits in octal (base&nbsp;8) with no extra leading
 276      * {@code 0}s.
 277      *
 278      * <p>The value of the argument can be recovered from the returned
 279      * string {@code s} by calling {@link
 280      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 281      * 8)}.
 282      *
 283      * <p>If the unsigned magnitude is zero, it is represented by a
 284      * single zero character {@code '0'} (<code>'&#92;u0030'</code>);
 285      * otherwise, the first character of the representation of the
 286      * unsigned magnitude will not be the zero character. The
 287      * following characters are used as octal digits:
 288      *
 289      * <blockquote>
 290      *  {@code 01234567}
 291      * </blockquote>
 292      *
 293      * These are the characters <code>'&#92;u0030'</code> through
 294      * <code>'&#92;u0037'</code>.
 295      *
 296      * @param   i   a {@code long} to be converted to a string.
 297      * @return  the string representation of the unsigned {@code long}
 298      *          value represented by the argument in octal (base&nbsp;8).
 299      * @see #parseUnsignedLong(String, int)
 300      * @see #toUnsignedString(long, int)
 301      * @since   JDK 1.0.2
 302      */
 303     public static String toOctalString(long i) {
 304         return toUnsignedString0(i, 3);
 305     }
 306 
 307     /**
 308      * Returns a string representation of the {@code long}
 309      * argument as an unsigned integer in base&nbsp;2.
 310      *
 311      * <p>The unsigned {@code long} value is the argument plus
 312      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 313      * equal to the argument.  This value is converted to a string of
 314      * ASCII digits in binary (base&nbsp;2) with no extra leading
 315      * {@code 0}s.
 316      *
 317      * <p>The value of the argument can be recovered from the returned
 318      * string {@code s} by calling {@link
 319      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 320      * 2)}.
 321      *
 322      * <p>If the unsigned magnitude is zero, it is represented by a
 323      * single zero character {@code '0'} (<code>'&#92;u0030'</code>);
 324      * otherwise, the first character of the representation of the
 325      * unsigned magnitude will not be the zero character. The
 326      * characters {@code '0'} (<code>'&#92;u0030'</code>) and {@code
 327      * '1'} (<code>'&#92;u0031'</code>) are used as binary digits.
 328      *
 329      * @param   i   a {@code long} to be converted to a string.
 330      * @return  the string representation of the unsigned {@code long}
 331      *          value represented by the argument in binary (base&nbsp;2).
 332      * @see #parseUnsignedLong(String, int)
 333      * @see #toUnsignedString(long, int)
 334      * @since   JDK 1.0.2
 335      */
 336     public static String toBinaryString(long i) {
 337         return toUnsignedString0(i, 1);
 338     }
 339 
 340     /**
 341      * Convert the integer to an unsigned number.
 342      */
 343     private static String toUnsignedString0(long i, int shift) {
 344         char[] buf = new char[64];
 345         int charPos = 64;
 346         int radix = 1 << shift;
 347         long mask = radix - 1;
 348         do {
 349             buf[--charPos] = Integer.digits[(int)(i & mask)];
 350             i >>>= shift;
 351         } while (i != 0);
 352         return new String(buf, charPos, (64 - charPos));
 353     }
 354 
 355     /**
 356      * Returns a {@code String} object representing the specified
 357      * {@code long}.  The argument is converted to signed decimal
 358      * representation and returned as a string, exactly as if the
 359      * argument and the radix 10 were given as arguments to the {@link
 360      * #toString(long, int)} method.
 361      *
 362      * @param   i   a {@code long} to be converted.
 363      * @return  a string representation of the argument in base&nbsp;10.
 364      */
 365     public static String toString(long i) {
 366         if (i == Long.MIN_VALUE)
 367             return "-9223372036854775808";
 368         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
 369         char[] buf = new char[size];
 370         getChars(i, size, buf);
 371         return new String(0, size, buf);
 372     }
 373 
 374     /**
 375      * Returns an unsigned string representation of the argument.
 376      *
 377      * The argument is converted to unsigned decimal representation
 378      * and returned as a string exactly as if the argument and radix
 379      * 10 were given as arguments to the {@link #toUnsignedString(long,
 380      * int)} method.
 381      *
 382      * @param   i  an integer to be converted to an unsigned string.
 383      * @return  an unsigned string representation of the argument.
 384      * @see     #toUnsignedString(long, int)
 385      * @since 1.8
 386      */
 387     public static String toUnsignedString(long i) {
 388         return toUnsignedString(i, 10);
 389     }
 390 
 391     /**
 392      * Places characters representing the integer i into the
 393      * character array buf. The characters are placed into
 394      * the buffer backwards starting with the least significant
 395      * digit at the specified index (exclusive), and working
 396      * backwards from there.
 397      *
 398      * Will fail if i == Long.MIN_VALUE
 399      */
 400     static void getChars(long i, int index, char[] buf) {
 401         long q;
 402         int r;
 403         int charPos = index;
 404         char sign = 0;
 405 
 406         if (i < 0) {
 407             sign = '-';
 408             i = -i;
 409         }
 410 
 411         // Get 2 digits/iteration using longs until quotient fits into an int
 412         while (i > Integer.MAX_VALUE) {
 413             q = i / 100;
 414             // really: r = i - (q * 100);
 415             r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
 416             i = q;
 417             buf[--charPos] = Integer.DigitOnes[r];
 418             buf[--charPos] = Integer.DigitTens[r];
 419         }
 420 
 421         // Get 2 digits/iteration using ints
 422         int q2;
 423         int i2 = (int)i;
 424         while (i2 >= 65536) {
 425             q2 = i2 / 100;
 426             // really: r = i2 - (q * 100);
 427             r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
 428             i2 = q2;
 429             buf[--charPos] = Integer.DigitOnes[r];
 430             buf[--charPos] = Integer.DigitTens[r];
 431         }
 432 
 433         // Fall thru to fast mode for smaller numbers
 434         // assert(i2 <= 65536, i2);
 435         for (;;) {
 436             q2 = (i2 * 52429) >>> (16+3);
 437             r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...
 438             buf[--charPos] = Integer.digits[r];
 439             i2 = q2;
 440             if (i2 == 0) break;
 441         }
 442         if (sign != 0) {
 443             buf[--charPos] = sign;
 444         }
 445     }
 446 
 447     // Requires positive x
 448     static int stringSize(long x) {
 449         long p = 10;
 450         for (int i=1; i<19; i++) {
 451             if (x < p)
 452                 return i;
 453             p = 10*p;
 454         }
 455         return 19;
 456     }
 457 
 458     /**
 459      * Parses the string argument as a signed {@code long} in the
 460      * radix specified by the second argument. The characters in the
 461      * string must all be digits of the specified radix (as determined
 462      * by whether {@link java.lang.Character#digit(char, int)} returns
 463      * a nonnegative value), except that the first character may be an
 464      * ASCII minus sign {@code '-'} (<code>'&#92;u002D'</code>) to
 465      * indicate a negative value or an ASCII plus sign {@code '+'}
 466      * (<code>'&#92;u002B'</code>) to indicate a positive value. The
 467      * resulting {@code long} value is returned.
 468      *
 469      * <p>Note that neither the character {@code L}
 470      * (<code>'&#92;u004C'</code>) nor {@code l}
 471      * (<code>'&#92;u006C'</code>) is permitted to appear at the end
 472      * of the string as a type indicator, as would be permitted in
 473      * Java programming language source code - except that either
 474      * {@code L} or {@code l} may appear as a digit for a
 475      * radix greater than 22.
 476      *
 477      * <p>An exception of type {@code NumberFormatException} is
 478      * thrown if any of the following situations occurs:
 479      * <ul>
 480      *
 481      * <li>The first argument is {@code null} or is a string of
 482      * length zero.
 483      *
 484      * <li>The {@code radix} is either smaller than {@link
 485      * java.lang.Character#MIN_RADIX} or larger than {@link
 486      * java.lang.Character#MAX_RADIX}.
 487      *
 488      * <li>Any character of the string is not a digit of the specified
 489      * radix, except that the first character may be a minus sign
 490      * {@code '-'} (<code>'&#92;u002d'</code>) or plus sign {@code
 491      * '+'} (<code>'&#92;u002B'</code>) provided that the string is
 492      * longer than length 1.
 493      *
 494      * <li>The value represented by the string is not a value of type
 495      *      {@code long}.
 496      * </ul>
 497      *
 498      * <p>Examples:
 499      * <blockquote><pre>
 500      * parseLong("0", 10) returns 0L
 501      * parseLong("473", 10) returns 473L
 502      * parseLong("+42", 10) returns 42L
 503      * parseLong("-0", 10) returns 0L
 504      * parseLong("-FF", 16) returns -255L
 505      * parseLong("1100110", 2) returns 102L
 506      * parseLong("99", 8) throws a NumberFormatException
 507      * parseLong("Hazelnut", 10) throws a NumberFormatException
 508      * parseLong("Hazelnut", 36) returns 1356099454469L
 509      * </pre></blockquote>
 510      *
 511      * @param      s       the {@code String} containing the
 512      *                     {@code long} representation to be parsed.
 513      * @param      radix   the radix to be used while parsing {@code s}.
 514      * @return     the {@code long} represented by the string argument in
 515      *             the specified radix.
 516      * @throws     NumberFormatException  if the string does not contain a
 517      *             parsable {@code long}.
 518      */
 519     public static long parseLong(String s, int radix)
 520               throws NumberFormatException
 521     {
 522         if (s == null) {
 523             throw new NumberFormatException("null");
 524         }
 525 
 526         if (radix < Character.MIN_RADIX) {
 527             throw new NumberFormatException("radix " + radix +
 528                                             " less than Character.MIN_RADIX");
 529         }
 530         if (radix > Character.MAX_RADIX) {
 531             throw new NumberFormatException("radix " + radix +
 532                                             " greater than Character.MAX_RADIX");
 533         }
 534 
 535         long result = 0;
 536         boolean negative = false;
 537         int i = 0, len = s.length();
 538         long limit = -Long.MAX_VALUE;
 539         long multmin;
 540         int digit;
 541 
 542         if (len > 0) {
 543             char firstChar = s.charAt(0);
 544             if (firstChar < '0') { // Possible leading "+" or "-"
 545                 if (firstChar == '-') {
 546                     negative = true;
 547                     limit = Long.MIN_VALUE;
 548                 } else if (firstChar != '+')
 549                     throw NumberFormatException.forInputString(s);
 550 
 551                 if (len == 1) // Cannot have lone "+" or "-"
 552                     throw NumberFormatException.forInputString(s);
 553                 i++;
 554             }
 555             multmin = limit / radix;
 556             while (i < len) {
 557                 // Accumulating negatively avoids surprises near MAX_VALUE
 558                 digit = Character.digit(s.charAt(i++),radix);
 559                 if (digit < 0) {
 560                     throw NumberFormatException.forInputString(s);
 561                 }
 562                 if (result < multmin) {
 563                     throw NumberFormatException.forInputString(s);
 564                 }
 565                 result *= radix;
 566                 if (result < limit + digit) {
 567                     throw NumberFormatException.forInputString(s);
 568                 }
 569                 result -= digit;
 570             }
 571         } else {
 572             throw NumberFormatException.forInputString(s);
 573         }
 574         return negative ? result : -result;
 575     }
 576 
 577     /**
 578      * Parses the string argument as a signed decimal {@code long}.
 579      * The characters in the string must all be decimal digits, except
 580      * that the first character may be an ASCII minus sign {@code '-'}
 581      * (<code>&#92;u002D'</code>) to indicate a negative value or an
 582      * ASCII plus sign {@code '+'} (<code>'&#92;u002B'</code>) to
 583      * indicate a positive value. The resulting {@code long} value is
 584      * returned, exactly as if the argument and the radix {@code 10}
 585      * were given as arguments to the {@link
 586      * #parseLong(java.lang.String, int)} method.
 587      *
 588      * <p>Note that neither the character {@code L}
 589      * (<code>'&#92;u004C'</code>) nor {@code l}
 590      * (<code>'&#92;u006C'</code>) is permitted to appear at the end
 591      * of the string as a type indicator, as would be permitted in
 592      * Java programming language source code.
 593      *
 594      * @param      s   a {@code String} containing the {@code long}
 595      *             representation to be parsed
 596      * @return     the {@code long} represented by the argument in
 597      *             decimal.
 598      * @throws     NumberFormatException  if the string does not contain a
 599      *             parsable {@code long}.
 600      */
 601     public static long parseLong(String s) throws NumberFormatException {
 602         return parseLong(s, 10);
 603     }
 604 
 605     /**
 606      * Parses the string argument as an unsigned integer in the radix
 607      * specified by the second argument.
 608      *
 609      * The characters in the string must all be digits of the
 610      * specified radix (as determined by whether {@link
 611      * java.lang.Character#digit(char, int)} returns a nonnegative
 612      * value), except that the first character may be an ASCII plus
 613      * sign {@code '+'} (<code>'&#92;u002B'</code>). The resulting
 614      * integer value is returned.
 615      *
 616      * <p>An exception of type {@code NumberFormatException} is
 617      * thrown if any of the following situations occurs:
 618      * <ul>
 619      * <li>The first argument is {@code null} or is a string of
 620      * length zero.
 621      *
 622      * <li>The radix is either smaller than
 623      * {@link java.lang.Character#MIN_RADIX} or
 624      * larger than {@link java.lang.Character#MAX_RADIX}.
 625      *
 626      * <li>Any character of the string is not a digit of the specified
 627      * radix, except that the first character may be a plus sign
 628      * {@code '+'} (<code>'&#92;u002B'</code>) provided that the
 629      * string is longer than length 1.
 630      *
 631      * <li>The value represented by the string is larger than the
 632      * largest unsigned {@code long}, 2<sup>64</sup>-1.
 633      *
 634      * </ul>
 635      *
 636      *
 637      * @param      s   the {@code String} containing the unsigned integer
 638      *                  representation to be parsed
 639      * @param      radix   the radix to be used while parsing {@code s}.
 640      * @return     the integer represented by the string argument in the
 641      *             specified radix.
 642      * @throws     NumberFormatException if the {@code String}
 643      *             does not contain a parsable {@code long}.
 644      * @since 1.8
 645      */
 646     public static long parseUnsignedLong(String s, int radix)
 647                 throws NumberFormatException {
 648         if (s == null)  {
 649             throw new NumberFormatException("null");
 650         }
 651 
 652         int len = s.length();
 653         if (len > 0) {
 654             char firstChar = s.charAt(0);
 655             if (firstChar == '-') {
 656                 throw new 
 657                     NumberFormatException(String.format("Illegal leading minus sign " +
 658                                                        "on unsigned string %s.", s));
 659             } else {
 660                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
 661                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
 662                     return parseLong(s, radix); 
 663                 }
 664 
 665                 // For simplicty, use BigInteger for parsing
 666                 BigInteger bi = new BigInteger(s, radix);
 667 
 668                 // Largest *unsigned* value is all ones in binary
 669                 BigInteger limit = toUnsignedBigInteger(-1L);
 670                 
 671                 if (bi.compareTo(limit) <= 0) {
 672                     return bi.longValue();
 673                 } else {
 674                     throw new
 675                     NumberFormatException(String.format("String value %s exceeds " + 
 676                                                         "range of unsigned long.", s));
 677                 }
 678             }
 679         } else {
 680             throw NumberFormatException.forInputString(s);
 681         }
 682     }
 683 
 684     /**
 685      * Parses the string argument as an unsigned decimal integer. The
 686      * characters in the string must all be decimal digits, except
 687      * that the first character may be an an ASCII plus sign {@code
 688      * '+'} (<code>'&#92;u002B'</code>). The resulting integer value
 689      * is returned, exactly as if the argument and the radix 10 were
 690      * given as arguments to the {@link
 691      * #parseUnsignedLong(java.lang.String, int)} method.
 692      *
 693      * @param s   a {@code String} containing the unsigned {@code long}
 694      *            representation to be parsed
 695      * @return    the unsigned integer value represented by the argument in decimal.
 696      * @throws    NumberFormatException  if the string does not contain a
 697      *            parsable unsigned integer.
 698      * @since 1.8
 699      */
 700     public static long parseUnsignedLong(String s) throws NumberFormatException {
 701         return parseUnsignedLong(s, 10);
 702     }
 703 
 704     /**
 705      * Returns a {@code Long} object holding the value
 706      * extracted from the specified {@code String} when parsed
 707      * with the radix given by the second argument.  The first
 708      * argument is interpreted as representing a signed
 709      * {@code long} in the radix specified by the second
 710      * argument, exactly as if the arguments were given to the {@link
 711      * #parseLong(java.lang.String, int)} method. The result is a
 712      * {@code Long} object that represents the {@code long}
 713      * value specified by the string.
 714      *
 715      * <p>In other words, this method returns a {@code Long} object equal
 716      * to the value of:
 717      *
 718      * <blockquote>
 719      *  {@code new Long(Long.parseLong(s, radix))}
 720      * </blockquote>
 721      *
 722      * @param      s       the string to be parsed
 723      * @param      radix   the radix to be used in interpreting {@code s}
 724      * @return     a {@code Long} object holding the value
 725      *             represented by the string argument in the specified
 726      *             radix.
 727      * @throws     NumberFormatException  If the {@code String} does not
 728      *             contain a parsable {@code long}.
 729      */
 730     public static Long valueOf(String s, int radix) throws NumberFormatException {
 731         return Long.valueOf(parseLong(s, radix));
 732     }
 733 
 734     /**
 735      * Returns a {@code Long} object holding the value
 736      * of the specified {@code String}. The argument is
 737      * interpreted as representing a signed decimal {@code long},
 738      * exactly as if the argument were given to the {@link
 739      * #parseLong(java.lang.String)} method. The result is a
 740      * {@code Long} object that represents the integer value
 741      * specified by the string.
 742      *
 743      * <p>In other words, this method returns a {@code Long} object
 744      * equal to the value of:
 745      *
 746      * <blockquote>
 747      *  {@code new Long(Long.parseLong(s))}
 748      * </blockquote>
 749      *
 750      * @param      s   the string to be parsed.
 751      * @return     a {@code Long} object holding the value
 752      *             represented by the string argument.
 753      * @throws     NumberFormatException  If the string cannot be parsed
 754      *             as a {@code long}.
 755      */
 756     public static Long valueOf(String s) throws NumberFormatException
 757     {
 758         return Long.valueOf(parseLong(s, 10));
 759     }
 760 
 761     private static class LongCache {
 762         private LongCache(){}
 763 
 764         static final Long cache[] = new Long[-(-128) + 127 + 1];
 765 
 766         static {
 767             for(int i = 0; i < cache.length; i++)
 768                 cache[i] = new Long(i - 128);
 769         }
 770     }
 771 
 772     /**
 773      * Returns a {@code Long} instance representing the specified
 774      * {@code long} value.
 775      * If a new {@code Long} instance is not required, this method
 776      * should generally be used in preference to the constructor
 777      * {@link #Long(long)}, as this method is likely to yield
 778      * significantly better space and time performance by caching
 779      * frequently requested values.
 780      *
 781      * Note that unlike the {@linkplain Integer#valueOf(int)
 782      * corresponding method} in the {@code Integer} class, this method
 783      * is <em>not</em> required to cache values within a particular
 784      * range.
 785      *
 786      * @param  l a long value.
 787      * @return a {@code Long} instance representing {@code l}.
 788      * @since  1.5
 789      */
 790     public static Long valueOf(long l) {
 791         final int offset = 128;
 792         if (l >= -128 && l <= 127) { // will cache
 793             return LongCache.cache[(int)l + offset];
 794         }
 795         return new Long(l);
 796     }
 797 
 798     /**
 799      * Decodes a {@code String} into a {@code Long}.
 800      * Accepts decimal, hexadecimal, and octal numbers given by the
 801      * following grammar:
 802      *
 803      * <blockquote>
 804      * <dl>
 805      * <dt><i>DecodableString:</i>
 806      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
 807      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
 808      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
 809      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
 810      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
 811      * <p>
 812      * <dt><i>Sign:</i>
 813      * <dd>{@code -}
 814      * <dd>{@code +}
 815      * </dl>
 816      * </blockquote>
 817      *
 818      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
 819      * are as defined in section 3.10.1 of
 820      * <cite>The Java&trade; Language Specification</cite>,
 821      * except that underscores are not accepted between digits.
 822      *
 823      * <p>The sequence of characters following an optional
 824      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
 825      * "{@code #}", or leading zero) is parsed as by the {@code
 826      * Long.parseLong} method with the indicated radix (10, 16, or 8).
 827      * This sequence of characters must represent a positive value or
 828      * a {@link NumberFormatException} will be thrown.  The result is
 829      * negated if first character of the specified {@code String} is
 830      * the minus sign.  No whitespace characters are permitted in the
 831      * {@code String}.
 832      *
 833      * @param     nm the {@code String} to decode.
 834      * @return    a {@code Long} object holding the {@code long}
 835      *            value represented by {@code nm}
 836      * @throws    NumberFormatException  if the {@code String} does not
 837      *            contain a parsable {@code long}.
 838      * @see java.lang.Long#parseLong(String, int)
 839      * @since 1.2
 840      */
 841     public static Long decode(String nm) throws NumberFormatException {
 842         int radix = 10;
 843         int index = 0;
 844         boolean negative = false;
 845         Long result;
 846 
 847         if (nm.length() == 0)
 848             throw new NumberFormatException("Zero length string");
 849         char firstChar = nm.charAt(0);
 850         // Handle sign, if present
 851         if (firstChar == '-') {
 852             negative = true;
 853             index++;
 854         } else if (firstChar == '+')
 855             index++;
 856 
 857         // Handle radix specifier, if present
 858         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
 859             index += 2;
 860             radix = 16;
 861         }
 862         else if (nm.startsWith("#", index)) {
 863             index ++;
 864             radix = 16;
 865         }
 866         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
 867             index ++;
 868             radix = 8;
 869         }
 870 
 871         if (nm.startsWith("-", index) || nm.startsWith("+", index))
 872             throw new NumberFormatException("Sign character in wrong position");
 873 
 874         try {
 875             result = Long.valueOf(nm.substring(index), radix);
 876             result = negative ? Long.valueOf(-result.longValue()) : result;
 877         } catch (NumberFormatException e) {
 878             // If number is Long.MIN_VALUE, we'll end up here. The next line
 879             // handles this case, and causes any genuine format error to be
 880             // rethrown.
 881             String constant = negative ? ("-" + nm.substring(index))
 882                                        : nm.substring(index);
 883             result = Long.valueOf(constant, radix);
 884         }
 885         return result;
 886     }
 887 
 888     /**
 889      * The value of the {@code Long}.
 890      *
 891      * @serial
 892      */
 893     private final long value;
 894 
 895     /**
 896      * Constructs a newly allocated {@code Long} object that
 897      * represents the specified {@code long} argument.
 898      *
 899      * @param   value   the value to be represented by the
 900      *          {@code Long} object.
 901      */
 902     public Long(long value) {
 903         this.value = value;
 904     }
 905 
 906     /**
 907      * Constructs a newly allocated {@code Long} object that
 908      * represents the {@code long} value indicated by the
 909      * {@code String} parameter. The string is converted to a
 910      * {@code long} value in exactly the manner used by the
 911      * {@code parseLong} method for radix 10.
 912      *
 913      * @param      s   the {@code String} to be converted to a
 914      *             {@code Long}.
 915      * @throws     NumberFormatException  if the {@code String} does not
 916      *             contain a parsable {@code long}.
 917      * @see        java.lang.Long#parseLong(java.lang.String, int)
 918      */
 919     public Long(String s) throws NumberFormatException {
 920         this.value = parseLong(s, 10);
 921     }
 922 
 923     /**
 924      * Returns the value of this {@code Long} as a {@code byte} after
 925      * a narrowing primitive conversion.
 926      * @jls 5.1.3 Narrowing Primitive Conversions
 927      */
 928     public byte byteValue() {
 929         return (byte)value;
 930     }
 931 
 932     /**
 933      * Returns the value of this {@code Long} as a {@code short} after
 934      * a narrowing primitive conversion.
 935      * @jls 5.1.3 Narrowing Primitive Conversions
 936      */
 937     public short shortValue() {
 938         return (short)value;
 939     }
 940 
 941     /**
 942      * Returns the value of this {@code Long} as an {@code int} after
 943      * a narrowing primitive conversion.
 944      * @jls 5.1.3 Narrowing Primitive Conversions
 945      */
 946     public int intValue() {
 947         return (int)value;
 948     }
 949 
 950     /**
 951      * Returns the value of this {@code Long} as a
 952      * {@code long} value.
 953      */
 954     public long longValue() {
 955         return value;
 956     }
 957 
 958     /**
 959      * Returns the value of this {@code Long} as a {@code float} after
 960      * a widening primitive conversion.
 961      * @jls 5.1.2 Widening Primitive Conversions
 962      */
 963     public float floatValue() {
 964         return (float)value;
 965     }
 966 
 967     /**
 968      * Returns the value of this {@code Long} as a {@code double}
 969      * after a widening primitive conversion.
 970      * @jls 5.1.2 Widening Primitive Conversions
 971      */
 972     public double doubleValue() {
 973         return (double)value;
 974     }
 975 
 976     /**
 977      * Returns a {@code String} object representing this
 978      * {@code Long}'s value.  The value is converted to signed
 979      * decimal representation and returned as a string, exactly as if
 980      * the {@code long} value were given as an argument to the
 981      * {@link java.lang.Long#toString(long)} method.
 982      *
 983      * @return  a string representation of the value of this object in
 984      *          base&nbsp;10.
 985      */
 986     public String toString() {
 987         return toString(value);
 988     }
 989 
 990     /**
 991      * Returns a hash code for this {@code Long}. The result is
 992      * the exclusive OR of the two halves of the primitive
 993      * {@code long} value held by this {@code Long}
 994      * object. That is, the hashcode is the value of the expression:
 995      *
 996      * <blockquote>
 997      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
 998      * </blockquote>
 999      *
1000      * @return  a hash code value for this object.
1001      */
1002     public int hashCode() {
1003         return (int)(value ^ (value >>> 32));
1004     }
1005 
1006     /**
1007      * Compares this object to the specified object.  The result is
1008      * {@code true} if and only if the argument is not
1009      * {@code null} and is a {@code Long} object that
1010      * contains the same {@code long} value as this object.
1011      *
1012      * @param   obj   the object to compare with.
1013      * @return  {@code true} if the objects are the same;
1014      *          {@code false} otherwise.
1015      */
1016     public boolean equals(Object obj) {
1017         if (obj instanceof Long) {
1018             return value == ((Long)obj).longValue();
1019         }
1020         return false;
1021     }
1022 
1023     /**
1024      * Determines the {@code long} value of the system property
1025      * with the specified name.
1026      *
1027      * <p>The first argument is treated as the name of a system
1028      * property.  System properties are accessible through the {@link
1029      * java.lang.System#getProperty(java.lang.String)} method. The
1030      * string value of this property is then interpreted as a {@code
1031      * long} value using the grammar supported by {@link Long#decode decode}
1032      * and a {@code Long} object representing this value is returned.
1033      *
1034      * <p>If there is no property with the specified name, if the
1035      * specified name is empty or {@code null}, or if the property
1036      * does not have the correct numeric format, then {@code null} is
1037      * returned.
1038      *
1039      * <p>In other words, this method returns a {@code Long} object
1040      * equal to the value of:
1041      *
1042      * <blockquote>
1043      *  {@code getLong(nm, null)}
1044      * </blockquote>
1045      *
1046      * @param   nm   property name.
1047      * @return  the {@code Long} value of the property.
1048      * @throws  SecurityException for the same reasons as
1049      *          {@link System#getProperty(String) System.getProperty}
1050      * @see     java.lang.System#getProperty(java.lang.String)
1051      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1052      */
1053     public static Long getLong(String nm) {
1054         return getLong(nm, null);
1055     }
1056 
1057     /**
1058      * Determines the {@code long} value of the system property
1059      * with the specified name.
1060      *
1061      * <p>The first argument is treated as the name of a system
1062      * property.  System properties are accessible through the {@link
1063      * java.lang.System#getProperty(java.lang.String)} method. The
1064      * string value of this property is then interpreted as a {@code
1065      * long} value using the grammar supported by {@link Long#decode decode}
1066      * and a {@code Long} object representing this value is returned.
1067      *
1068      * <p>The second argument is the default value. A {@code Long} object
1069      * that represents the value of the second argument is returned if there
1070      * is no property of the specified name, if the property does not have
1071      * the correct numeric format, or if the specified name is empty or null.
1072      *
1073      * <p>In other words, this method returns a {@code Long} object equal
1074      * to the value of:
1075      *
1076      * <blockquote>
1077      *  {@code getLong(nm, new Long(val))}
1078      * </blockquote>
1079      *
1080      * but in practice it may be implemented in a manner such as:
1081      *
1082      * <blockquote><pre>
1083      * Long result = getLong(nm, null);
1084      * return (result == null) ? new Long(val) : result;
1085      * </pre></blockquote>
1086      *
1087      * to avoid the unnecessary allocation of a {@code Long} object when
1088      * the default value is not needed.
1089      *
1090      * @param   nm    property name.
1091      * @param   val   default value.
1092      * @return  the {@code Long} value of the property.
1093      * @throws  SecurityException for the same reasons as
1094      *          {@link System#getProperty(String) System.getProperty}
1095      * @see     java.lang.System#getProperty(java.lang.String)
1096      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1097      */
1098     public static Long getLong(String nm, long val) {
1099         Long result = Long.getLong(nm, null);
1100         return (result == null) ? Long.valueOf(val) : result;
1101     }
1102 
1103     /**
1104      * Returns the {@code long} value of the system property with
1105      * the specified name.  The first argument is treated as the name
1106      * of a system property.  System properties are accessible through
1107      * the {@link java.lang.System#getProperty(java.lang.String)}
1108      * method. The string value of this property is then interpreted
1109      * as a {@code long} value, as per the
1110      * {@link Long#decode decode} method, and a {@code Long} object
1111      * representing this value is returned; in summary:
1112      *
1113      * <ul>
1114      * <li>If the property value begins with the two ASCII characters
1115      * {@code 0x} or the ASCII character {@code #}, not followed by
1116      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1117      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1118      * with radix 16.
1119      * <li>If the property value begins with the ASCII character
1120      * {@code 0} followed by another character, it is parsed as
1121      * an octal integer exactly as by the method {@link
1122      * #valueOf(java.lang.String, int)} with radix 8.
1123      * <li>Otherwise the property value is parsed as a decimal
1124      * integer exactly as by the method
1125      * {@link #valueOf(java.lang.String, int)} with radix 10.
1126      * </ul>
1127      *
1128      * <p>Note that, in every case, neither {@code L}
1129      * (<code>'&#92;u004C'</code>) nor {@code l}
1130      * (<code>'&#92;u006C'</code>) is permitted to appear at the end
1131      * of the property value as a type indicator, as would be
1132      * permitted in Java programming language source code.
1133      *
1134      * <p>The second argument is the default value. The default value is
1135      * returned if there is no property of the specified name, if the
1136      * property does not have the correct numeric format, or if the
1137      * specified name is empty or {@code null}.
1138      *
1139      * @param   nm   property name.
1140      * @param   val   default value.
1141      * @return  the {@code Long} value of the property.
1142      * @throws  SecurityException for the same reasons as
1143      *          {@link System#getProperty(String) System.getProperty}
1144      * @see     System#getProperty(java.lang.String)
1145      * @see     System#getProperty(java.lang.String, java.lang.String)
1146      */
1147     public static Long getLong(String nm, Long val) {
1148         String v = null;
1149         try {
1150             v = System.getProperty(nm);
1151         } catch (IllegalArgumentException | NullPointerException e) {
1152         }
1153         if (v != null) {
1154             try {
1155                 return Long.decode(v);
1156             } catch (NumberFormatException e) {
1157             }
1158         }
1159         return val;
1160     }
1161 
1162     /**
1163      * Compares two {@code Long} objects numerically.
1164      *
1165      * @param   anotherLong   the {@code Long} to be compared.
1166      * @return  the value {@code 0} if this {@code Long} is
1167      *          equal to the argument {@code Long}; a value less than
1168      *          {@code 0} if this {@code Long} is numerically less
1169      *          than the argument {@code Long}; and a value greater
1170      *          than {@code 0} if this {@code Long} is numerically
1171      *           greater than the argument {@code Long} (signed
1172      *           comparison).
1173      * @since   1.2
1174      */
1175     public int compareTo(Long anotherLong) {
1176         return compare(this.value, anotherLong.value);
1177     }
1178 
1179     /**
1180      * Compares two {@code long} values numerically.
1181      * The value returned is identical to what would be returned by:
1182      * <pre>
1183      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1184      * </pre>
1185      *
1186      * @param  x the first {@code long} to compare
1187      * @param  y the second {@code long} to compare
1188      * @return the value {@code 0} if {@code x == y};
1189      *         a value less than {@code 0} if {@code x < y}; and
1190      *         a value greater than {@code 0} if {@code x > y}
1191      * @since 1.7
1192      */
1193     public static int compare(long x, long y) {
1194         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1195     }
1196 
1197     /**
1198      * Compares two {@code long} values numerically treating the values
1199      * as unsigned.
1200      *
1201      * @param  x the first {@code long} to compare
1202      * @param  y the second {@code long} to compare
1203      * @return the value {@code 0} if {@code x == y}; a value less
1204      *         than {@code 0} if {@code x < y} as unsigned values; and
1205      *         a value greater than {@code 0} if {@code x > y} as
1206      *         unsigned values
1207      * @since 1.8
1208      */
1209     public static int compareUnsigned(long x, long y) {
1210         return compare(x + MIN_VALUE, y + MIN_VALUE);
1211     }
1212 
1213 
1214     /**
1215      * Returns the unsigned quotient of dividing the first argument by
1216      * the second where each argument is interpreted as an unsigned
1217      * value.
1218      *
1219      * In other words, return the unsigned value of {@code
1220      * (dividend / divisor)}.
1221      *
1222      * @return the unsigned quotient of the first argument divided by
1223      * the second argument
1224      * @param dividend the value to be divided
1225      * @param divisor the value doing the dividing
1226      * @since 1.8
1227      */
1228     public static long divideUnsigned(long dividend, long divisor) {
1229         if (divisor < 0L) { // signed comparison
1230             // Answer must be 0 or 1 depending on relative magnitude
1231             // of dividiend and divisor.
1232             return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
1233         }
1234 
1235         /*
1236          * For simple code, leveraging BigInteger.  Longer and faster
1237          * code written directly in terms of operations on longs is
1238          * possible; see "Hacker's Delight" for divide and remainder
1239          * algorithms.
1240          */
1241         return toUnsignedBigInteger(dividend).
1242             divide(toUnsignedBigInteger(divisor)).longValue();
1243     }
1244 
1245     /**
1246      * Returns the unsigned remainder from dividing the first argument by
1247      * the second where each argument is interpreted as an unsigned
1248      * value.
1249      *
1250      * In other words, return the unsigned value of {@code
1251      * (dividend % divisor)}.
1252      *
1253      * @return the unsigned remainder of the first argument divided by
1254      * the second argument
1255      * @param dividend the value to be divided
1256      * @param divisor the value doing the dividing
1257      * @since 1.8
1258      */
1259     public static long remainderUnsigned(long dividend, long divisor) {
1260         return toUnsignedBigInteger(dividend).
1261             remainder(toUnsignedBigInteger(divisor)).longValue();
1262     }
1263 
1264     // Bit Twiddling
1265 
1266     /**
1267      * The number of bits used to represent a {@code long} value in two's
1268      * complement binary form.
1269      *
1270      * @since 1.5
1271      */
1272     public static final int SIZE = 64;
1273 
1274     /**
1275      * Returns a {@code long} value with at most a single one-bit, in the
1276      * position of the highest-order ("leftmost") one-bit in the specified
1277      * {@code long} value.  Returns zero if the specified value has no
1278      * one-bits in its two's complement binary representation, that is, if it
1279      * is equal to zero.
1280      *
1281      * @return a {@code long} value with a single one-bit, in the position
1282      *     of the highest-order one-bit in the specified value, or zero if
1283      *     the specified value is itself equal to zero.
1284      * @since 1.5
1285      */
1286     public static long highestOneBit(long i) {
1287         // HD, Figure 3-1
1288         i |= (i >>  1);
1289         i |= (i >>  2);
1290         i |= (i >>  4);
1291         i |= (i >>  8);
1292         i |= (i >> 16);
1293         i |= (i >> 32);
1294         return i - (i >>> 1);
1295     }
1296 
1297     /**
1298      * Returns a {@code long} value with at most a single one-bit, in the
1299      * position of the lowest-order ("rightmost") one-bit in the specified
1300      * {@code long} value.  Returns zero if the specified value has no
1301      * one-bits in its two's complement binary representation, that is, if it
1302      * is equal to zero.
1303      *
1304      * @return a {@code long} value with a single one-bit, in the position
1305      *     of the lowest-order one-bit in the specified value, or zero if
1306      *     the specified value is itself equal to zero.
1307      * @since 1.5
1308      */
1309     public static long lowestOneBit(long i) {
1310         // HD, Section 2-1
1311         return i & -i;
1312     }
1313 
1314     /**
1315      * Returns the number of zero bits preceding the highest-order
1316      * ("leftmost") one-bit in the two's complement binary representation
1317      * of the specified {@code long} value.  Returns 64 if the
1318      * specified value has no one-bits in its two's complement representation,
1319      * in other words if it is equal to zero.
1320      *
1321      * <p>Note that this method is closely related to the logarithm base 2.
1322      * For all positive {@code long} values x:
1323      * <ul>
1324      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1325      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1326      * </ul>
1327      *
1328      * @return the number of zero bits preceding the highest-order
1329      *     ("leftmost") one-bit in the two's complement binary representation
1330      *     of the specified {@code long} value, or 64 if the value
1331      *     is equal to zero.
1332      * @since 1.5
1333      */
1334     public static int numberOfLeadingZeros(long i) {
1335         // HD, Figure 5-6
1336          if (i == 0)
1337             return 64;
1338         int n = 1;
1339         int x = (int)(i >>> 32);
1340         if (x == 0) { n += 32; x = (int)i; }
1341         if (x >>> 16 == 0) { n += 16; x <<= 16; }
1342         if (x >>> 24 == 0) { n +=  8; x <<=  8; }
1343         if (x >>> 28 == 0) { n +=  4; x <<=  4; }
1344         if (x >>> 30 == 0) { n +=  2; x <<=  2; }
1345         n -= x >>> 31;
1346         return n;
1347     }
1348 
1349     /**
1350      * Returns the number of zero bits following the lowest-order ("rightmost")
1351      * one-bit in the two's complement binary representation of the specified
1352      * {@code long} value.  Returns 64 if the specified value has no
1353      * one-bits in its two's complement representation, in other words if it is
1354      * equal to zero.
1355      *
1356      * @return the number of zero bits following the lowest-order ("rightmost")
1357      *     one-bit in the two's complement binary representation of the
1358      *     specified {@code long} value, or 64 if the value is equal
1359      *     to zero.
1360      * @since 1.5
1361      */
1362     public static int numberOfTrailingZeros(long i) {
1363         // HD, Figure 5-14
1364         int x, y;
1365         if (i == 0) return 64;
1366         int n = 63;
1367         y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
1368         y = x <<16; if (y != 0) { n = n -16; x = y; }
1369         y = x << 8; if (y != 0) { n = n - 8; x = y; }
1370         y = x << 4; if (y != 0) { n = n - 4; x = y; }
1371         y = x << 2; if (y != 0) { n = n - 2; x = y; }
1372         return n - ((x << 1) >>> 31);
1373     }
1374 
1375     /**
1376      * Returns the number of one-bits in the two's complement binary
1377      * representation of the specified {@code long} value.  This function is
1378      * sometimes referred to as the <i>population count</i>.
1379      *
1380      * @return the number of one-bits in the two's complement binary
1381      *     representation of the specified {@code long} value.
1382      * @since 1.5
1383      */
1384      public static int bitCount(long i) {
1385         // HD, Figure 5-14
1386         i = i - ((i >>> 1) & 0x5555555555555555L);
1387         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1388         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1389         i = i + (i >>> 8);
1390         i = i + (i >>> 16);
1391         i = i + (i >>> 32);
1392         return (int)i & 0x7f;
1393      }
1394 
1395     /**
1396      * Returns the value obtained by rotating the two's complement binary
1397      * representation of the specified {@code long} value left by the
1398      * specified number of bits.  (Bits shifted out of the left hand, or
1399      * high-order, side reenter on the right, or low-order.)
1400      *
1401      * <p>Note that left rotation with a negative distance is equivalent to
1402      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1403      * distance)}.  Note also that rotation by any multiple of 64 is a
1404      * no-op, so all but the last six bits of the rotation distance can be
1405      * ignored, even if the distance is negative: {@code rotateLeft(val,
1406      * distance) == rotateLeft(val, distance & 0x3F)}.
1407      *
1408      * @return the value obtained by rotating the two's complement binary
1409      *     representation of the specified {@code long} value left by the
1410      *     specified number of bits.
1411      * @since 1.5
1412      */
1413     public static long rotateLeft(long i, int distance) {
1414         return (i << distance) | (i >>> -distance);
1415     }
1416 
1417     /**
1418      * Returns the value obtained by rotating the two's complement binary
1419      * representation of the specified {@code long} value right by the
1420      * specified number of bits.  (Bits shifted out of the right hand, or
1421      * low-order, side reenter on the left, or high-order.)
1422      *
1423      * <p>Note that right rotation with a negative distance is equivalent to
1424      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1425      * distance)}.  Note also that rotation by any multiple of 64 is a
1426      * no-op, so all but the last six bits of the rotation distance can be
1427      * ignored, even if the distance is negative: {@code rotateRight(val,
1428      * distance) == rotateRight(val, distance & 0x3F)}.
1429      *
1430      * @return the value obtained by rotating the two's complement binary
1431      *     representation of the specified {@code long} value right by the
1432      *     specified number of bits.
1433      * @since 1.5
1434      */
1435     public static long rotateRight(long i, int distance) {
1436         return (i >>> distance) | (i << -distance);
1437     }
1438 
1439     /**
1440      * Returns the value obtained by reversing the order of the bits in the
1441      * two's complement binary representation of the specified {@code long}
1442      * value.
1443      *
1444      * @return the value obtained by reversing order of the bits in the
1445      *     specified {@code long} value.
1446      * @since 1.5
1447      */
1448     public static long reverse(long i) {
1449         // HD, Figure 7-1
1450         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1451         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1452         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1453         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1454         i = (i << 48) | ((i & 0xffff0000L) << 16) |
1455             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1456         return i;
1457     }
1458 
1459     /**
1460      * Returns the signum function of the specified {@code long} value.  (The
1461      * return value is -1 if the specified value is negative; 0 if the
1462      * specified value is zero; and 1 if the specified value is positive.)
1463      *
1464      * @return the signum function of the specified {@code long} value.
1465      * @since 1.5
1466      */
1467     public static int signum(long i) {
1468         // HD, Section 2-7
1469         return (int) ((i >> 63) | (-i >>> 63));
1470     }
1471 
1472     /**
1473      * Returns the value obtained by reversing the order of the bytes in the
1474      * two's complement representation of the specified {@code long} value.
1475      *
1476      * @return the value obtained by reversing the bytes in the specified
1477      *     {@code long} value.
1478      * @since 1.5
1479      */
1480     public static long reverseBytes(long i) {
1481         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1482         return (i << 48) | ((i & 0xffff0000L) << 16) |
1483             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1484     }
1485 
1486     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1487     private static final long serialVersionUID = 4290774380558885855L;
1488 }