1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.util.Random;
  28 import sun.misc.FpUtils;
  29 import sun.misc.DoubleConsts;
  30 
  31 /**
  32  * The class {@code StrictMath} contains methods for performing basic
  33  * numeric operations such as the elementary exponential, logarithm,
  34  * square root, and trigonometric functions.
  35  *
  36  * <p>To help ensure portability of Java programs, the definitions of
  37  * some of the numeric functions in this package require that they
  38  * produce the same results as certain published algorithms. These
  39  * algorithms are available from the well-known network library
  40  * {@code netlib} as the package "Freely Distributable Math
  41  * Library," <a
  42  * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
  43  * algorithms, which are written in the C programming language, are
  44  * then to be understood as executed with all floating-point
  45  * operations following the rules of Java floating-point arithmetic.
  46  *
  47  * <p>The Java math library is defined with respect to
  48  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
  49  * more than one definition for a function (such as
  50  * {@code acos}), use the "IEEE 754 core function" version
  51  * (residing in a file whose name begins with the letter
  52  * {@code e}).  The methods which require {@code fdlibm}
  53  * semantics are {@code sin}, {@code cos}, {@code tan},
  54  * {@code asin}, {@code acos}, {@code atan},
  55  * {@code exp}, {@code log}, {@code log10},
  56  * {@code cbrt}, {@code atan2}, {@code pow},
  57  * {@code sinh}, {@code cosh}, {@code tanh},
  58  * {@code hypot}, {@code expm1}, and {@code log1p}.
  59  *
  60  * @author  unascribed
  61  * @author  Joseph D. Darcy
  62  * @since   1.3
  63  */
  64 
  65 public final class StrictMath {
  66 
  67     /**
  68      * Don't let anyone instantiate this class.
  69      */
  70     private StrictMath() {}
  71 
  72     /**
  73      * The {@code double} value that is closer than any other to
  74      * <i>e</i>, the base of the natural logarithms.
  75      */
  76     public static final double E = 2.7182818284590452354;
  77 
  78     /**
  79      * The {@code double} value that is closer than any other to
  80      * <i>pi</i>, the ratio of the circumference of a circle to its
  81      * diameter.
  82      */
  83     public static final double PI = 3.14159265358979323846;
  84 
  85     /**
  86      * Returns the trigonometric sine of an angle. Special cases:
  87      * <ul><li>If the argument is NaN or an infinity, then the
  88      * result is NaN.
  89      * <li>If the argument is zero, then the result is a zero with the
  90      * same sign as the argument.</ul>
  91      *
  92      * @param   a   an angle, in radians.
  93      * @return  the sine of the argument.
  94      */
  95     public static native double sin(double a);
  96 
  97     /**
  98      * Returns the trigonometric cosine of an angle. Special cases:
  99      * <ul><li>If the argument is NaN or an infinity, then the
 100      * result is NaN.</ul>
 101      *
 102      * @param   a   an angle, in radians.
 103      * @return  the cosine of the argument.
 104      */
 105     public static native double cos(double a);
 106 
 107     /**
 108      * Returns the trigonometric tangent of an angle. Special cases:
 109      * <ul><li>If the argument is NaN or an infinity, then the result
 110      * is NaN.
 111      * <li>If the argument is zero, then the result is a zero with the
 112      * same sign as the argument.</ul>
 113      *
 114      * @param   a   an angle, in radians.
 115      * @return  the tangent of the argument.
 116      */
 117     public static native double tan(double a);
 118 
 119     /**
 120      * Returns the arc sine of a value; the returned angle is in the
 121      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 122      * <ul><li>If the argument is NaN or its absolute value is greater
 123      * than 1, then the result is NaN.
 124      * <li>If the argument is zero, then the result is a zero with the
 125      * same sign as the argument.</ul>
 126      *
 127      * @param   a   the value whose arc sine is to be returned.
 128      * @return  the arc sine of the argument.
 129      */
 130     public static native double asin(double a);
 131 
 132     /**
 133      * Returns the arc cosine of a value; the returned angle is in the
 134      * range 0.0 through <i>pi</i>.  Special case:
 135      * <ul><li>If the argument is NaN or its absolute value is greater
 136      * than 1, then the result is NaN.</ul>
 137      *
 138      * @param   a   the value whose arc cosine is to be returned.
 139      * @return  the arc cosine of the argument.
 140      */
 141     public static native double acos(double a);
 142 
 143     /**
 144      * Returns the arc tangent of a value; the returned angle is in the
 145      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 146      * <ul><li>If the argument is NaN, then the result is NaN.
 147      * <li>If the argument is zero, then the result is a zero with the
 148      * same sign as the argument.</ul>
 149      *
 150      * @param   a   the value whose arc tangent is to be returned.
 151      * @return  the arc tangent of the argument.
 152      */
 153     public static native double atan(double a);
 154 
 155     /**
 156      * Converts an angle measured in degrees to an approximately
 157      * equivalent angle measured in radians.  The conversion from
 158      * degrees to radians is generally inexact.
 159      *
 160      * @param   angdeg   an angle, in degrees
 161      * @return  the measurement of the angle {@code angdeg}
 162      *          in radians.
 163      */
 164     public static strictfp double toRadians(double angdeg) {
 165         return angdeg / 180.0 * PI;
 166     }
 167 
 168     /**
 169      * Converts an angle measured in radians to an approximately
 170      * equivalent angle measured in degrees.  The conversion from
 171      * radians to degrees is generally inexact; users should
 172      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 173      * equal {@code 0.0}.
 174      *
 175      * @param   angrad   an angle, in radians
 176      * @return  the measurement of the angle {@code angrad}
 177      *          in degrees.
 178      */
 179     public static strictfp double toDegrees(double angrad) {
 180         return angrad * 180.0 / PI;
 181     }
 182 
 183     /**
 184      * Returns Euler's number <i>e</i> raised to the power of a
 185      * {@code double} value. Special cases:
 186      * <ul><li>If the argument is NaN, the result is NaN.
 187      * <li>If the argument is positive infinity, then the result is
 188      * positive infinity.
 189      * <li>If the argument is negative infinity, then the result is
 190      * positive zero.</ul>
 191      *
 192      * @param   a   the exponent to raise <i>e</i> to.
 193      * @return  the value <i>e</i><sup>{@code a}</sup>,
 194      *          where <i>e</i> is the base of the natural logarithms.
 195      */
 196     public static native double exp(double a);
 197 
 198     /**
 199      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 200      * value. Special cases:
 201      * <ul><li>If the argument is NaN or less than zero, then the result
 202      * is NaN.
 203      * <li>If the argument is positive infinity, then the result is
 204      * positive infinity.
 205      * <li>If the argument is positive zero or negative zero, then the
 206      * result is negative infinity.</ul>
 207      *
 208      * @param   a   a value
 209      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 210      *          {@code a}.
 211      */
 212     public static native double log(double a);
 213 
 214 
 215     /**
 216      * Returns the base 10 logarithm of a {@code double} value.
 217      * Special cases:
 218      *
 219      * <ul><li>If the argument is NaN or less than zero, then the result
 220      * is NaN.
 221      * <li>If the argument is positive infinity, then the result is
 222      * positive infinity.
 223      * <li>If the argument is positive zero or negative zero, then the
 224      * result is negative infinity.
 225      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 226      * integer <i>n</i>, then the result is <i>n</i>.
 227      * </ul>
 228      *
 229      * @param   a   a value
 230      * @return  the base 10 logarithm of  {@code a}.
 231      * @since 1.5
 232      */
 233     public static native double log10(double a);
 234 
 235     /**
 236      * Returns the correctly rounded positive square root of a
 237      * {@code double} value.
 238      * Special cases:
 239      * <ul><li>If the argument is NaN or less than zero, then the result
 240      * is NaN.
 241      * <li>If the argument is positive infinity, then the result is positive
 242      * infinity.
 243      * <li>If the argument is positive zero or negative zero, then the
 244      * result is the same as the argument.</ul>
 245      * Otherwise, the result is the {@code double} value closest to
 246      * the true mathematical square root of the argument value.
 247      *
 248      * @param   a   a value.
 249      * @return  the positive square root of {@code a}.
 250      */
 251     public static native double sqrt(double a);
 252 
 253     /**
 254      * Returns the cube root of a {@code double} value.  For
 255      * positive finite {@code x}, {@code cbrt(-x) ==
 256      * -cbrt(x)}; that is, the cube root of a negative value is
 257      * the negative of the cube root of that value's magnitude.
 258      * Special cases:
 259      *
 260      * <ul>
 261      *
 262      * <li>If the argument is NaN, then the result is NaN.
 263      *
 264      * <li>If the argument is infinite, then the result is an infinity
 265      * with the same sign as the argument.
 266      *
 267      * <li>If the argument is zero, then the result is a zero with the
 268      * same sign as the argument.
 269      *
 270      * </ul>
 271      *
 272      * @param   a   a value.
 273      * @return  the cube root of {@code a}.
 274      * @since 1.5
 275      */
 276     public static native double cbrt(double a);
 277 
 278     /**
 279      * Computes the remainder operation on two arguments as prescribed
 280      * by the IEEE 754 standard.
 281      * The remainder value is mathematically equal to
 282      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 283      * where <i>n</i> is the mathematical integer closest to the exact
 284      * mathematical value of the quotient {@code f1/f2}, and if two
 285      * mathematical integers are equally close to {@code f1/f2},
 286      * then <i>n</i> is the integer that is even. If the remainder is
 287      * zero, its sign is the same as the sign of the first argument.
 288      * Special cases:
 289      * <ul><li>If either argument is NaN, or the first argument is infinite,
 290      * or the second argument is positive zero or negative zero, then the
 291      * result is NaN.
 292      * <li>If the first argument is finite and the second argument is
 293      * infinite, then the result is the same as the first argument.</ul>
 294      *
 295      * @param   f1   the dividend.
 296      * @param   f2   the divisor.
 297      * @return  the remainder when {@code f1} is divided by
 298      *          {@code f2}.
 299      */
 300     public static native double IEEEremainder(double f1, double f2);
 301 
 302     /**
 303      * Returns the smallest (closest to negative infinity)
 304      * {@code double} value that is greater than or equal to the
 305      * argument and is equal to a mathematical integer. Special cases:
 306      * <ul><li>If the argument value is already equal to a
 307      * mathematical integer, then the result is the same as the
 308      * argument.  <li>If the argument is NaN or an infinity or
 309      * positive zero or negative zero, then the result is the same as
 310      * the argument.  <li>If the argument value is less than zero but
 311      * greater than -1.0, then the result is negative zero.</ul> Note
 312      * that the value of {@code StrictMath.ceil(x)} is exactly the
 313      * value of {@code -StrictMath.floor(-x)}.
 314      *
 315      * @param   a   a value.
 316      * @return  the smallest (closest to negative infinity)
 317      *          floating-point value that is greater than or equal to
 318      *          the argument and is equal to a mathematical integer.
 319      */
 320     public static double ceil(double a) {
 321         return floorOrCeil(a, -0.0, 1.0, 1.0);
 322     }
 323 
 324     /**
 325      * Returns the largest (closest to positive infinity)
 326      * {@code double} value that is less than or equal to the
 327      * argument and is equal to a mathematical integer. Special cases:
 328      * <ul><li>If the argument value is already equal to a
 329      * mathematical integer, then the result is the same as the
 330      * argument.  <li>If the argument is NaN or an infinity or
 331      * positive zero or negative zero, then the result is the same as
 332      * the argument.</ul>
 333      *
 334      * @param   a   a value.
 335      * @return  the largest (closest to positive infinity)
 336      *          floating-point value that less than or equal to the argument
 337      *          and is equal to a mathematical integer.
 338      */
 339     public static double floor(double a) {
 340         return floorOrCeil(a, -1.0, 0.0, -1.0);
 341     }
 342 
 343     /**
 344      * Internal method to share logic between floor and ceil.
 345      *
 346      * @param a the value to be floored or ceiled
 347      * @param negativeBoundary result for values in (-1, 0)
 348      * @param positiveBoundary result for values in (0, 1)
 349      * @param increment value to add when the argument is non-integral
 350      */
 351     private static double floorOrCeil(double a,
 352                                       double negativeBoundary,
 353                                       double positiveBoundary,
 354                                       double sign) {
 355         int exponent = Math.getExponent(a);
 356 
 357         if (exponent < 0) {
 358             /*
 359              * Absolute value of argument is less than 1.
 360              * floorOrceil(-0.0) => -0.0
 361              * floorOrceil(+0.0) => +0.0
 362              */
 363             return ((a == 0.0) ? a :
 364                     ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
 365         } else if (exponent >= 52) {
 366             /*
 367              * Infinity, NaN, or a value so large it must be integral.
 368              */
 369             return a;
 370         }
 371         // Else the argument is either an integral value already XOR it
 372         // has to be rounded to one.
 373         assert exponent >= 0 && exponent <= 51;
 374 
 375         long doppel = Double.doubleToRawLongBits(a);
 376         long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
 377 
 378         if ( (mask & doppel) == 0L )
 379             return a; // integral value
 380         else {
 381             double result = Double.longBitsToDouble(doppel & (~mask));
 382             if (sign*a > 0.0)
 383                 result = result + sign;
 384             return result;
 385         }
 386     }
 387 
 388     /**
 389      * Returns the {@code double} value that is closest in value
 390      * to the argument and is equal to a mathematical integer. If two
 391      * {@code double} values that are mathematical integers are
 392      * equally close to the value of the argument, the result is the
 393      * integer value that is even. Special cases:
 394      * <ul><li>If the argument value is already equal to a mathematical
 395      * integer, then the result is the same as the argument.
 396      * <li>If the argument is NaN or an infinity or positive zero or negative
 397      * zero, then the result is the same as the argument.</ul>
 398      *
 399      * @param   a   a value.
 400      * @return  the closest floating-point value to {@code a} that is
 401      *          equal to a mathematical integer.
 402      * @author Joseph D. Darcy
 403      */
 404     public static double rint(double a) {
 405         /*
 406          * If the absolute value of a is not less than 2^52, it
 407          * is either a finite integer (the double format does not have
 408          * enough significand bits for a number that large to have any
 409          * fractional portion), an infinity, or a NaN.  In any of
 410          * these cases, rint of the argument is the argument.
 411          *
 412          * Otherwise, the sum (twoToThe52 + a ) will properly round
 413          * away any fractional portion of a since ulp(twoToThe52) ==
 414          * 1.0; subtracting out twoToThe52 from this sum will then be
 415          * exact and leave the rounded integer portion of a.
 416          *
 417          * This method does *not* need to be declared strictfp to get
 418          * fully reproducible results.  Whether or not a method is
 419          * declared strictfp can only make a difference in the
 420          * returned result if some operation would overflow or
 421          * underflow with strictfp semantics.  The operation
 422          * (twoToThe52 + a ) cannot overflow since large values of a
 423          * are screened out; the add cannot underflow since twoToThe52
 424          * is too large.  The subtraction ((twoToThe52 + a ) -
 425          * twoToThe52) will be exact as discussed above and thus
 426          * cannot overflow or meaningfully underflow.  Finally, the
 427          * last multiply in the return statement is by plus or minus
 428          * 1.0, which is exact too.
 429          */
 430         double twoToThe52 = (double)(1L << 52); // 2^52
 431         double sign = FpUtils.rawCopySign(1.0, a); // preserve sign info
 432         a = Math.abs(a);
 433 
 434         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
 435             a = ((twoToThe52 + a ) - twoToThe52);
 436         }
 437 
 438         return sign * a; // restore original sign
 439     }
 440 
 441     /**
 442      * Returns the angle <i>theta</i> from the conversion of rectangular
 443      * coordinates ({@code x},&nbsp;{@code y}) to polar
 444      * coordinates (r,&nbsp;<i>theta</i>).
 445      * This method computes the phase <i>theta</i> by computing an arc tangent
 446      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 447      * cases:
 448      * <ul><li>If either argument is NaN, then the result is NaN.
 449      * <li>If the first argument is positive zero and the second argument
 450      * is positive, or the first argument is positive and finite and the
 451      * second argument is positive infinity, then the result is positive
 452      * zero.
 453      * <li>If the first argument is negative zero and the second argument
 454      * is positive, or the first argument is negative and finite and the
 455      * second argument is positive infinity, then the result is negative zero.
 456      * <li>If the first argument is positive zero and the second argument
 457      * is negative, or the first argument is positive and finite and the
 458      * second argument is negative infinity, then the result is the
 459      * {@code double} value closest to <i>pi</i>.
 460      * <li>If the first argument is negative zero and the second argument
 461      * is negative, or the first argument is negative and finite and the
 462      * second argument is negative infinity, then the result is the
 463      * {@code double} value closest to -<i>pi</i>.
 464      * <li>If the first argument is positive and the second argument is
 465      * positive zero or negative zero, or the first argument is positive
 466      * infinity and the second argument is finite, then the result is the
 467      * {@code double} value closest to <i>pi</i>/2.
 468      * <li>If the first argument is negative and the second argument is
 469      * positive zero or negative zero, or the first argument is negative
 470      * infinity and the second argument is finite, then the result is the
 471      * {@code double} value closest to -<i>pi</i>/2.
 472      * <li>If both arguments are positive infinity, then the result is the
 473      * {@code double} value closest to <i>pi</i>/4.
 474      * <li>If the first argument is positive infinity and the second argument
 475      * is negative infinity, then the result is the {@code double}
 476      * value closest to 3*<i>pi</i>/4.
 477      * <li>If the first argument is negative infinity and the second argument
 478      * is positive infinity, then the result is the {@code double} value
 479      * closest to -<i>pi</i>/4.
 480      * <li>If both arguments are negative infinity, then the result is the
 481      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 482      *
 483      * @param   y   the ordinate coordinate
 484      * @param   x   the abscissa coordinate
 485      * @return  the <i>theta</i> component of the point
 486      *          (<i>r</i>,&nbsp;<i>theta</i>)
 487      *          in polar coordinates that corresponds to the point
 488      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 489      */
 490     public static native double atan2(double y, double x);
 491 
 492 
 493     /**
 494      * Returns the value of the first argument raised to the power of the
 495      * second argument. Special cases:
 496      *
 497      * <ul><li>If the second argument is positive or negative zero, then the
 498      * result is 1.0.
 499      * <li>If the second argument is 1.0, then the result is the same as the
 500      * first argument.
 501      * <li>If the second argument is NaN, then the result is NaN.
 502      * <li>If the first argument is NaN and the second argument is nonzero,
 503      * then the result is NaN.
 504      *
 505      * <li>If
 506      * <ul>
 507      * <li>the absolute value of the first argument is greater than 1
 508      * and the second argument is positive infinity, or
 509      * <li>the absolute value of the first argument is less than 1 and
 510      * the second argument is negative infinity,
 511      * </ul>
 512      * then the result is positive infinity.
 513      *
 514      * <li>If
 515      * <ul>
 516      * <li>the absolute value of the first argument is greater than 1 and
 517      * the second argument is negative infinity, or
 518      * <li>the absolute value of the
 519      * first argument is less than 1 and the second argument is positive
 520      * infinity,
 521      * </ul>
 522      * then the result is positive zero.
 523      *
 524      * <li>If the absolute value of the first argument equals 1 and the
 525      * second argument is infinite, then the result is NaN.
 526      *
 527      * <li>If
 528      * <ul>
 529      * <li>the first argument is positive zero and the second argument
 530      * is greater than zero, or
 531      * <li>the first argument is positive infinity and the second
 532      * argument is less than zero,
 533      * </ul>
 534      * then the result is positive zero.
 535      *
 536      * <li>If
 537      * <ul>
 538      * <li>the first argument is positive zero and the second argument
 539      * is less than zero, or
 540      * <li>the first argument is positive infinity and the second
 541      * argument is greater than zero,
 542      * </ul>
 543      * then the result is positive infinity.
 544      *
 545      * <li>If
 546      * <ul>
 547      * <li>the first argument is negative zero and the second argument
 548      * is greater than zero but not a finite odd integer, or
 549      * <li>the first argument is negative infinity and the second
 550      * argument is less than zero but not a finite odd integer,
 551      * </ul>
 552      * then the result is positive zero.
 553      *
 554      * <li>If
 555      * <ul>
 556      * <li>the first argument is negative zero and the second argument
 557      * is a positive finite odd integer, or
 558      * <li>the first argument is negative infinity and the second
 559      * argument is a negative finite odd integer,
 560      * </ul>
 561      * then the result is negative zero.
 562      *
 563      * <li>If
 564      * <ul>
 565      * <li>the first argument is negative zero and the second argument
 566      * is less than zero but not a finite odd integer, or
 567      * <li>the first argument is negative infinity and the second
 568      * argument is greater than zero but not a finite odd integer,
 569      * </ul>
 570      * then the result is positive infinity.
 571      *
 572      * <li>If
 573      * <ul>
 574      * <li>the first argument is negative zero and the second argument
 575      * is a negative finite odd integer, or
 576      * <li>the first argument is negative infinity and the second
 577      * argument is a positive finite odd integer,
 578      * </ul>
 579      * then the result is negative infinity.
 580      *
 581      * <li>If the first argument is finite and less than zero
 582      * <ul>
 583      * <li> if the second argument is a finite even integer, the
 584      * result is equal to the result of raising the absolute value of
 585      * the first argument to the power of the second argument
 586      *
 587      * <li>if the second argument is a finite odd integer, the result
 588      * is equal to the negative of the result of raising the absolute
 589      * value of the first argument to the power of the second
 590      * argument
 591      *
 592      * <li>if the second argument is finite and not an integer, then
 593      * the result is NaN.
 594      * </ul>
 595      *
 596      * <li>If both arguments are integers, then the result is exactly equal
 597      * to the mathematical result of raising the first argument to the power
 598      * of the second argument if that result can in fact be represented
 599      * exactly as a {@code double} value.</ul>
 600      *
 601      * <p>(In the foregoing descriptions, a floating-point value is
 602      * considered to be an integer if and only if it is finite and a
 603      * fixed point of the method {@link #ceil ceil} or,
 604      * equivalently, a fixed point of the method {@link #floor
 605      * floor}. A value is a fixed point of a one-argument
 606      * method if and only if the result of applying the method to the
 607      * value is equal to the value.)
 608      *
 609      * @param   a   base.
 610      * @param   b   the exponent.
 611      * @return  the value {@code a}<sup>{@code b}</sup>.
 612      */
 613     public static native double pow(double a, double b);
 614 
 615     /**
 616      * Returns the closest {@code int} to the argument. The
 617      * result is rounded to an integer by adding 1/2, taking the
 618      * floor of the result, and casting the result to type {@code int}.
 619      * In other words, the result is equal to the value of the expression:
 620      * <p>{@code (int)Math.floor(a + 0.5f)}
 621      *
 622      * <p>Special cases:
 623      * <ul><li>If the argument is NaN, the result is 0.
 624      * <li>If the argument is negative infinity or any value less than or
 625      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 626      * equal to the value of {@code Integer.MIN_VALUE}.
 627      * <li>If the argument is positive infinity or any value greater than or
 628      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 629      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 630      *
 631      * @param   a   a floating-point value to be rounded to an integer.
 632      * @return  the value of the argument rounded to the nearest
 633      *          {@code int} value.
 634      * @see     java.lang.Integer#MAX_VALUE
 635      * @see     java.lang.Integer#MIN_VALUE
 636      */
 637     public static int round(float a) {
 638         return (int)floor(a + 0.5f);
 639     }
 640 
 641     /**
 642      * Returns the closest {@code long} to the argument. The result
 643      * is rounded to an integer by adding 1/2, taking the floor of the
 644      * result, and casting the result to type {@code long}. In other
 645      * words, the result is equal to the value of the expression:
 646      * <p>{@code (long)Math.floor(a + 0.5d)}
 647      *
 648      * <p>Special cases:
 649      * <ul><li>If the argument is NaN, the result is 0.
 650      * <li>If the argument is negative infinity or any value less than or
 651      * equal to the value of {@code Long.MIN_VALUE}, the result is
 652      * equal to the value of {@code Long.MIN_VALUE}.
 653      * <li>If the argument is positive infinity or any value greater than or
 654      * equal to the value of {@code Long.MAX_VALUE}, the result is
 655      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 656      *
 657      * @param   a  a floating-point value to be rounded to a
 658      *          {@code long}.
 659      * @return  the value of the argument rounded to the nearest
 660      *          {@code long} value.
 661      * @see     java.lang.Long#MAX_VALUE
 662      * @see     java.lang.Long#MIN_VALUE
 663      */
 664     public static long round(double a) {
 665         return (long)floor(a + 0.5d);
 666     }
 667 
 668     private static Random randomNumberGenerator;
 669 
 670     private static synchronized Random initRNG() {
 671         Random rnd = randomNumberGenerator;
 672         return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
 673     }
 674 
 675     /**
 676      * Returns a {@code double} value with a positive sign, greater
 677      * than or equal to {@code 0.0} and less than {@code 1.0}.
 678      * Returned values are chosen pseudorandomly with (approximately)
 679      * uniform distribution from that range.
 680      *
 681      * <p>When this method is first called, it creates a single new
 682      * pseudorandom-number generator, exactly as if by the expression
 683      *
 684      * <blockquote>{@code new java.util.Random()}</blockquote>
 685      *
 686      * This new pseudorandom-number generator is used thereafter for
 687      * all calls to this method and is used nowhere else.
 688      *
 689      * <p>This method is properly synchronized to allow correct use by
 690      * more than one thread. However, if many threads need to generate
 691      * pseudorandom numbers at a great rate, it may reduce contention
 692      * for each thread to have its own pseudorandom number generator.
 693      *
 694      * @return  a pseudorandom {@code double} greater than or equal
 695      * to {@code 0.0} and less than {@code 1.0}.
 696      * @see Random#nextDouble()
 697      */
 698     public static double random() {
 699         Random rnd = randomNumberGenerator;
 700         if (rnd == null) rnd = initRNG();
 701         return rnd.nextDouble();
 702     }
 703 
 704     /**
 705      * Returns the absolute value of an {@code int} value..
 706      * If the argument is not negative, the argument is returned.
 707      * If the argument is negative, the negation of the argument is returned.
 708      *
 709      * <p>Note that if the argument is equal to the value of
 710      * {@link Integer#MIN_VALUE}, the most negative representable
 711      * {@code int} value, the result is that same value, which is
 712      * negative.
 713      *
 714      * @param   a   the  argument whose absolute value is to be determined.
 715      * @return  the absolute value of the argument.
 716      */
 717     public static int abs(int a) {
 718         return (a < 0) ? -a : a;
 719     }
 720 
 721     /**
 722      * Returns the absolute value of a {@code long} value.
 723      * If the argument is not negative, the argument is returned.
 724      * If the argument is negative, the negation of the argument is returned.
 725      *
 726      * <p>Note that if the argument is equal to the value of
 727      * {@link Long#MIN_VALUE}, the most negative representable
 728      * {@code long} value, the result is that same value, which
 729      * is negative.
 730      *
 731      * @param   a   the  argument whose absolute value is to be determined.
 732      * @return  the absolute value of the argument.
 733      */
 734     public static long abs(long a) {
 735         return (a < 0) ? -a : a;
 736     }
 737 
 738     /**
 739      * Returns the absolute value of a {@code float} value.
 740      * If the argument is not negative, the argument is returned.
 741      * If the argument is negative, the negation of the argument is returned.
 742      * Special cases:
 743      * <ul><li>If the argument is positive zero or negative zero, the
 744      * result is positive zero.
 745      * <li>If the argument is infinite, the result is positive infinity.
 746      * <li>If the argument is NaN, the result is NaN.</ul>
 747      * In other words, the result is the same as the value of the expression:
 748      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
 749      *
 750      * @param   a   the argument whose absolute value is to be determined
 751      * @return  the absolute value of the argument.
 752      */
 753     public static float abs(float a) {
 754         return (a <= 0.0F) ? 0.0F - a : a;
 755     }
 756 
 757     /**
 758      * Returns the absolute value of a {@code double} value.
 759      * If the argument is not negative, the argument is returned.
 760      * If the argument is negative, the negation of the argument is returned.
 761      * Special cases:
 762      * <ul><li>If the argument is positive zero or negative zero, the result
 763      * is positive zero.
 764      * <li>If the argument is infinite, the result is positive infinity.
 765      * <li>If the argument is NaN, the result is NaN.</ul>
 766      * In other words, the result is the same as the value of the expression:
 767      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
 768      *
 769      * @param   a   the argument whose absolute value is to be determined
 770      * @return  the absolute value of the argument.
 771      */
 772     public static double abs(double a) {
 773         return (a <= 0.0D) ? 0.0D - a : a;
 774     }
 775 
 776     /**
 777      * Returns the greater of two {@code int} values. That is, the
 778      * result is the argument closer to the value of
 779      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
 780      * the result is that same value.
 781      *
 782      * @param   a   an argument.
 783      * @param   b   another argument.
 784      * @return  the larger of {@code a} and {@code b}.
 785      */
 786     public static int max(int a, int b) {
 787         return (a >= b) ? a : b;
 788     }
 789 
 790     /**
 791      * Returns the greater of two {@code long} values. That is, the
 792      * result is the argument closer to the value of
 793      * {@link Long#MAX_VALUE}. If the arguments have the same value,
 794      * the result is that same value.
 795      *
 796      * @param   a   an argument.
 797      * @param   b   another argument.
 798      * @return  the larger of {@code a} and {@code b}.
 799         */
 800     public static long max(long a, long b) {
 801         return (a >= b) ? a : b;
 802     }
 803 
 804     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
 805     private static long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
 806     private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
 807 
 808     /**
 809      * Returns the greater of two {@code float} values.  That is,
 810      * the result is the argument closer to positive infinity. If the
 811      * arguments have the same value, the result is that same
 812      * value. If either value is NaN, then the result is NaN.  Unlike
 813      * the numerical comparison operators, this method considers
 814      * negative zero to be strictly smaller than positive zero. If one
 815      * argument is positive zero and the other negative zero, the
 816      * result is positive zero.
 817      *
 818      * @param   a   an argument.
 819      * @param   b   another argument.
 820      * @return  the larger of {@code a} and {@code b}.
 821      */
 822     public static float max(float a, float b) {
 823         if (a != a)
 824             return a;   // a is NaN
 825         if ((a == 0.0f) &&
 826             (b == 0.0f) &&
 827             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
 828             // Raw conversion ok since NaN can't map to -0.0.
 829             return b;
 830         }
 831         return (a >= b) ? a : b;
 832     }
 833 
 834     /**
 835      * Returns the greater of two {@code double} values.  That
 836      * is, the result is the argument closer to positive infinity. If
 837      * the arguments have the same value, the result is that same
 838      * value. If either value is NaN, then the result is NaN.  Unlike
 839      * the numerical comparison operators, this method considers
 840      * negative zero to be strictly smaller than positive zero. If one
 841      * argument is positive zero and the other negative zero, the
 842      * result is positive zero.
 843      *
 844      * @param   a   an argument.
 845      * @param   b   another argument.
 846      * @return  the larger of {@code a} and {@code b}.
 847      */
 848     public static double max(double a, double b) {
 849         if (a != a)
 850             return a;   // a is NaN
 851         if ((a == 0.0d) &&
 852             (b == 0.0d) &&
 853             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
 854             // Raw conversion ok since NaN can't map to -0.0.
 855             return b;
 856         }
 857         return (a >= b) ? a : b;
 858     }
 859 
 860     /**
 861      * Returns the smaller of two {@code int} values. That is,
 862      * the result the argument closer to the value of
 863      * {@link Integer#MIN_VALUE}.  If the arguments have the same
 864      * value, the result is that same value.
 865      *
 866      * @param   a   an argument.
 867      * @param   b   another argument.
 868      * @return  the smaller of {@code a} and {@code b}.
 869      */
 870     public static int min(int a, int b) {
 871         return (a <= b) ? a : b;
 872     }
 873 
 874     /**
 875      * Returns the smaller of two {@code long} values. That is,
 876      * the result is the argument closer to the value of
 877      * {@link Long#MIN_VALUE}. If the arguments have the same
 878      * value, the result is that same value.
 879      *
 880      * @param   a   an argument.
 881      * @param   b   another argument.
 882      * @return  the smaller of {@code a} and {@code b}.
 883      */
 884     public static long min(long a, long b) {
 885         return (a <= b) ? a : b;
 886     }
 887 
 888     /**
 889      * Returns the smaller of two {@code float} values.  That is,
 890      * the result is the value closer to negative infinity. If the
 891      * arguments have the same value, the result is that same
 892      * value. If either value is NaN, then the result is NaN.  Unlike
 893      * the numerical comparison operators, this method considers
 894      * negative zero to be strictly smaller than positive zero.  If
 895      * one argument is positive zero and the other is negative zero,
 896      * the result is negative zero.
 897      *
 898      * @param   a   an argument.
 899      * @param   b   another argument.
 900      * @return  the smaller of {@code a} and {@code b.}
 901      */
 902     public static float min(float a, float b) {
 903         if (a != a)
 904             return a;   // a is NaN
 905         if ((a == 0.0f) &&
 906             (b == 0.0f) &&
 907             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
 908             // Raw conversion ok since NaN can't map to -0.0.
 909             return b;
 910         }
 911         return (a <= b) ? a : b;
 912     }
 913 
 914     /**
 915      * Returns the smaller of two {@code double} values.  That
 916      * is, the result is the value closer to negative infinity. If the
 917      * arguments have the same value, the result is that same
 918      * value. If either value is NaN, then the result is NaN.  Unlike
 919      * the numerical comparison operators, this method considers
 920      * negative zero to be strictly smaller than positive zero. If one
 921      * argument is positive zero and the other is negative zero, the
 922      * result is negative zero.
 923      *
 924      * @param   a   an argument.
 925      * @param   b   another argument.
 926      * @return  the smaller of {@code a} and {@code b}.
 927      */
 928     public static double min(double a, double b) {
 929         if (a != a)
 930             return a;   // a is NaN
 931         if ((a == 0.0d) &&
 932             (b == 0.0d) &&
 933             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
 934             // Raw conversion ok since NaN can't map to -0.0.
 935             return b;
 936         }
 937         return (a <= b) ? a : b;
 938     }
 939 
 940     /**
 941      * Returns the size of an ulp of the argument.  An ulp of a
 942      * {@code double} value is the positive distance between this
 943      * floating-point value and the {@code double} value next
 944      * larger in magnitude.  Note that for non-NaN <i>x</i>,
 945      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 946      *
 947      * <p>Special Cases:
 948      * <ul>
 949      * <li> If the argument is NaN, then the result is NaN.
 950      * <li> If the argument is positive or negative infinity, then the
 951      * result is positive infinity.
 952      * <li> If the argument is positive or negative zero, then the result is
 953      * {@code Double.MIN_VALUE}.
 954      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
 955      * the result is equal to 2<sup>971</sup>.
 956      * </ul>
 957      *
 958      * @param d the floating-point value whose ulp is to be returned
 959      * @return the size of an ulp of the argument
 960      * @author Joseph D. Darcy
 961      * @since 1.5
 962      */
 963     public static double ulp(double d) {
 964         return sun.misc.FpUtils.ulp(d);
 965     }
 966 
 967     /**
 968      * Returns the size of an ulp of the argument.  An ulp of a
 969      * {@code float} value is the positive distance between this
 970      * floating-point value and the {@code float} value next
 971      * larger in magnitude.  Note that for non-NaN <i>x</i>,
 972      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 973      *
 974      * <p>Special Cases:
 975      * <ul>
 976      * <li> If the argument is NaN, then the result is NaN.
 977      * <li> If the argument is positive or negative infinity, then the
 978      * result is positive infinity.
 979      * <li> If the argument is positive or negative zero, then the result is
 980      * {@code Float.MIN_VALUE}.
 981      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
 982      * the result is equal to 2<sup>104</sup>.
 983      * </ul>
 984      *
 985      * @param f the floating-point value whose ulp is to be returned
 986      * @return the size of an ulp of the argument
 987      * @author Joseph D. Darcy
 988      * @since 1.5
 989      */
 990     public static float ulp(float f) {
 991         return sun.misc.FpUtils.ulp(f);
 992     }
 993 
 994     /**
 995      * Returns the signum function of the argument; zero if the argument
 996      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
 997      * argument is less than zero.
 998      *
 999      * <p>Special Cases:
1000      * <ul>
1001      * <li> If the argument is NaN, then the result is NaN.
1002      * <li> If the argument is positive zero or negative zero, then the
1003      *      result is the same as the argument.
1004      * </ul>
1005      *
1006      * @param d the floating-point value whose signum is to be returned
1007      * @return the signum function of the argument
1008      * @author Joseph D. Darcy
1009      * @since 1.5
1010      */
1011     public static double signum(double d) {
1012         return sun.misc.FpUtils.signum(d);
1013     }
1014 
1015     /**
1016      * Returns the signum function of the argument; zero if the argument
1017      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1018      * argument is less than zero.
1019      *
1020      * <p>Special Cases:
1021      * <ul>
1022      * <li> If the argument is NaN, then the result is NaN.
1023      * <li> If the argument is positive zero or negative zero, then the
1024      *      result is the same as the argument.
1025      * </ul>
1026      *
1027      * @param f the floating-point value whose signum is to be returned
1028      * @return the signum function of the argument
1029      * @author Joseph D. Darcy
1030      * @since 1.5
1031      */
1032     public static float signum(float f) {
1033         return sun.misc.FpUtils.signum(f);
1034     }
1035 
1036     /**
1037      * Returns the hyperbolic sine of a {@code double} value.
1038      * The hyperbolic sine of <i>x</i> is defined to be
1039      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1040      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1041      *
1042      * <p>Special cases:
1043      * <ul>
1044      *
1045      * <li>If the argument is NaN, then the result is NaN.
1046      *
1047      * <li>If the argument is infinite, then the result is an infinity
1048      * with the same sign as the argument.
1049      *
1050      * <li>If the argument is zero, then the result is a zero with the
1051      * same sign as the argument.
1052      *
1053      * </ul>
1054      *
1055      * @param   x The number whose hyperbolic sine is to be returned.
1056      * @return  The hyperbolic sine of {@code x}.
1057      * @since 1.5
1058      */
1059     public static native double sinh(double x);
1060 
1061     /**
1062      * Returns the hyperbolic cosine of a {@code double} value.
1063      * The hyperbolic cosine of <i>x</i> is defined to be
1064      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1065      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1066      *
1067      * <p>Special cases:
1068      * <ul>
1069      *
1070      * <li>If the argument is NaN, then the result is NaN.
1071      *
1072      * <li>If the argument is infinite, then the result is positive
1073      * infinity.
1074      *
1075      * <li>If the argument is zero, then the result is {@code 1.0}.
1076      *
1077      * </ul>
1078      *
1079      * @param   x The number whose hyperbolic cosine is to be returned.
1080      * @return  The hyperbolic cosine of {@code x}.
1081      * @since 1.5
1082      */
1083     public static native double cosh(double x);
1084 
1085     /**
1086      * Returns the hyperbolic tangent of a {@code double} value.
1087      * The hyperbolic tangent of <i>x</i> is defined to be
1088      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1089      * in other words, {@linkplain Math#sinh
1090      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1091      * that the absolute value of the exact tanh is always less than
1092      * 1.
1093      *
1094      * <p>Special cases:
1095      * <ul>
1096      *
1097      * <li>If the argument is NaN, then the result is NaN.
1098      *
1099      * <li>If the argument is zero, then the result is a zero with the
1100      * same sign as the argument.
1101      *
1102      * <li>If the argument is positive infinity, then the result is
1103      * {@code +1.0}.
1104      *
1105      * <li>If the argument is negative infinity, then the result is
1106      * {@code -1.0}.
1107      *
1108      * </ul>
1109      *
1110      * @param   x The number whose hyperbolic tangent is to be returned.
1111      * @return  The hyperbolic tangent of {@code x}.
1112      * @since 1.5
1113      */
1114     public static native double tanh(double x);
1115 
1116     /**
1117      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1118      * without intermediate overflow or underflow.
1119      *
1120      * <p>Special cases:
1121      * <ul>
1122      *
1123      * <li> If either argument is infinite, then the result
1124      * is positive infinity.
1125      *
1126      * <li> If either argument is NaN and neither argument is infinite,
1127      * then the result is NaN.
1128      *
1129      * </ul>
1130      *
1131      * @param x a value
1132      * @param y a value
1133      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1134      * without intermediate overflow or underflow
1135      * @since 1.5
1136      */
1137     public static native double hypot(double x, double y);
1138 
1139     /**
1140      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1141      * <i>x</i> near 0, the exact sum of
1142      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1143      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1144      *
1145      * <p>Special cases:
1146      * <ul>
1147      * <li>If the argument is NaN, the result is NaN.
1148      *
1149      * <li>If the argument is positive infinity, then the result is
1150      * positive infinity.
1151      *
1152      * <li>If the argument is negative infinity, then the result is
1153      * -1.0.
1154      *
1155      * <li>If the argument is zero, then the result is a zero with the
1156      * same sign as the argument.
1157      *
1158      * </ul>
1159      *
1160      * @param   x   the exponent to raise <i>e</i> to in the computation of
1161      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1162      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1163      * @since 1.5
1164      */
1165     public static native double expm1(double x);
1166 
1167     /**
1168      * Returns the natural logarithm of the sum of the argument and 1.
1169      * Note that for small values {@code x}, the result of
1170      * {@code log1p(x)} is much closer to the true result of ln(1
1171      * + {@code x}) than the floating-point evaluation of
1172      * {@code log(1.0+x)}.
1173      *
1174      * <p>Special cases:
1175      * <ul>
1176      *
1177      * <li>If the argument is NaN or less than -1, then the result is
1178      * NaN.
1179      *
1180      * <li>If the argument is positive infinity, then the result is
1181      * positive infinity.
1182      *
1183      * <li>If the argument is negative one, then the result is
1184      * negative infinity.
1185      *
1186      * <li>If the argument is zero, then the result is a zero with the
1187      * same sign as the argument.
1188      *
1189      * </ul>
1190      *
1191      * @param   x   a value
1192      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1193      * log of {@code x}&nbsp;+&nbsp;1
1194      * @since 1.5
1195      */
1196     public static native double log1p(double x);
1197 
1198     /**
1199      * Returns the first floating-point argument with the sign of the
1200      * second floating-point argument.  For this method, a NaN
1201      * {@code sign} argument is always treated as if it were
1202      * positive.
1203      *
1204      * @param magnitude  the parameter providing the magnitude of the result
1205      * @param sign   the parameter providing the sign of the result
1206      * @return a value with the magnitude of {@code magnitude}
1207      * and the sign of {@code sign}.
1208      * @since 1.6
1209      */
1210     public static double copySign(double magnitude, double sign) {
1211         return sun.misc.FpUtils.copySign(magnitude, sign);
1212     }
1213 
1214     /**
1215      * Returns the first floating-point argument with the sign of the
1216      * second floating-point argument.  For this method, a NaN
1217      * {@code sign} argument is always treated as if it were
1218      * positive.
1219      *
1220      * @param magnitude  the parameter providing the magnitude of the result
1221      * @param sign   the parameter providing the sign of the result
1222      * @return a value with the magnitude of {@code magnitude}
1223      * and the sign of {@code sign}.
1224      * @since 1.6
1225      */
1226     public static float copySign(float magnitude, float sign) {
1227         return sun.misc.FpUtils.copySign(magnitude, sign);
1228     }
1229     /**
1230      * Returns the unbiased exponent used in the representation of a
1231      * {@code float}.  Special cases:
1232      *
1233      * <ul>
1234      * <li>If the argument is NaN or infinite, then the result is
1235      * {@link Float#MAX_EXPONENT} + 1.
1236      * <li>If the argument is zero or subnormal, then the result is
1237      * {@link Float#MIN_EXPONENT} -1.
1238      * </ul>
1239      * @param f a {@code float} value
1240      * @since 1.6
1241      */
1242     public static int getExponent(float f) {
1243         return sun.misc.FpUtils.getExponent(f);
1244     }
1245 
1246     /**
1247      * Returns the unbiased exponent used in the representation of a
1248      * {@code double}.  Special cases:
1249      *
1250      * <ul>
1251      * <li>If the argument is NaN or infinite, then the result is
1252      * {@link Double#MAX_EXPONENT} + 1.
1253      * <li>If the argument is zero or subnormal, then the result is
1254      * {@link Double#MIN_EXPONENT} -1.
1255      * </ul>
1256      * @param d a {@code double} value
1257      * @since 1.6
1258      */
1259     public static int getExponent(double d) {
1260         return sun.misc.FpUtils.getExponent(d);
1261     }
1262 
1263     /**
1264      * Returns the floating-point number adjacent to the first
1265      * argument in the direction of the second argument.  If both
1266      * arguments compare as equal the second argument is returned.
1267      *
1268      * <p>Special cases:
1269      * <ul>
1270      * <li> If either argument is a NaN, then NaN is returned.
1271      *
1272      * <li> If both arguments are signed zeros, {@code direction}
1273      * is returned unchanged (as implied by the requirement of
1274      * returning the second argument if the arguments compare as
1275      * equal).
1276      *
1277      * <li> If {@code start} is
1278      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1279      * has a value such that the result should have a smaller
1280      * magnitude, then a zero with the same sign as {@code start}
1281      * is returned.
1282      *
1283      * <li> If {@code start} is infinite and
1284      * {@code direction} has a value such that the result should
1285      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1286      * same sign as {@code start} is returned.
1287      *
1288      * <li> If {@code start} is equal to &plusmn;
1289      * {@link Double#MAX_VALUE} and {@code direction} has a
1290      * value such that the result should have a larger magnitude, an
1291      * infinity with same sign as {@code start} is returned.
1292      * </ul>
1293      *
1294      * @param start  starting floating-point value
1295      * @param direction value indicating which of
1296      * {@code start}'s neighbors or {@code start} should
1297      * be returned
1298      * @return The floating-point number adjacent to {@code start} in the
1299      * direction of {@code direction}.
1300      * @since 1.6
1301      */
1302     public static double nextAfter(double start, double direction) {
1303         return sun.misc.FpUtils.nextAfter(start, direction);
1304     }
1305 
1306     /**
1307      * Returns the floating-point number adjacent to the first
1308      * argument in the direction of the second argument.  If both
1309      * arguments compare as equal a value equivalent to the second argument
1310      * is returned.
1311      *
1312      * <p>Special cases:
1313      * <ul>
1314      * <li> If either argument is a NaN, then NaN is returned.
1315      *
1316      * <li> If both arguments are signed zeros, a value equivalent
1317      * to {@code direction} is returned.
1318      *
1319      * <li> If {@code start} is
1320      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1321      * has a value such that the result should have a smaller
1322      * magnitude, then a zero with the same sign as {@code start}
1323      * is returned.
1324      *
1325      * <li> If {@code start} is infinite and
1326      * {@code direction} has a value such that the result should
1327      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1328      * same sign as {@code start} is returned.
1329      *
1330      * <li> If {@code start} is equal to &plusmn;
1331      * {@link Float#MAX_VALUE} and {@code direction} has a
1332      * value such that the result should have a larger magnitude, an
1333      * infinity with same sign as {@code start} is returned.
1334      * </ul>
1335      *
1336      * @param start  starting floating-point value
1337      * @param direction value indicating which of
1338      * {@code start}'s neighbors or {@code start} should
1339      * be returned
1340      * @return The floating-point number adjacent to {@code start} in the
1341      * direction of {@code direction}.
1342      * @since 1.6
1343      */
1344     public static float nextAfter(float start, double direction) {
1345         return sun.misc.FpUtils.nextAfter(start, direction);
1346     }
1347 
1348     /**
1349      * Returns the floating-point value adjacent to {@code d} in
1350      * the direction of positive infinity.  This method is
1351      * semantically equivalent to {@code nextAfter(d,
1352      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1353      * implementation may run faster than its equivalent
1354      * {@code nextAfter} call.
1355      *
1356      * <p>Special Cases:
1357      * <ul>
1358      * <li> If the argument is NaN, the result is NaN.
1359      *
1360      * <li> If the argument is positive infinity, the result is
1361      * positive infinity.
1362      *
1363      * <li> If the argument is zero, the result is
1364      * {@link Double#MIN_VALUE}
1365      *
1366      * </ul>
1367      *
1368      * @param d starting floating-point value
1369      * @return The adjacent floating-point value closer to positive
1370      * infinity.
1371      * @since 1.6
1372      */
1373     public static double nextUp(double d) {
1374         return sun.misc.FpUtils.nextUp(d);
1375     }
1376 
1377     /**
1378      * Returns the floating-point value adjacent to {@code f} in
1379      * the direction of positive infinity.  This method is
1380      * semantically equivalent to {@code nextAfter(f,
1381      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1382      * implementation may run faster than its equivalent
1383      * {@code nextAfter} call.
1384      *
1385      * <p>Special Cases:
1386      * <ul>
1387      * <li> If the argument is NaN, the result is NaN.
1388      *
1389      * <li> If the argument is positive infinity, the result is
1390      * positive infinity.
1391      *
1392      * <li> If the argument is zero, the result is
1393      * {@link Float#MIN_VALUE}
1394      *
1395      * </ul>
1396      *
1397      * @param f starting floating-point value
1398      * @return The adjacent floating-point value closer to positive
1399      * infinity.
1400      * @since 1.6
1401      */
1402     public static float nextUp(float f) {
1403         return sun.misc.FpUtils.nextUp(f);
1404     }
1405 
1406 
1407     /**
1408      * Return {@code d} &times;
1409      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1410      * by a single correctly rounded floating-point multiply to a
1411      * member of the double value set.  See the Java
1412      * Language Specification for a discussion of floating-point
1413      * value sets.  If the exponent of the result is between {@link
1414      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1415      * answer is calculated exactly.  If the exponent of the result
1416      * would be larger than {@code Double.MAX_EXPONENT}, an
1417      * infinity is returned.  Note that if the result is subnormal,
1418      * precision may be lost; that is, when {@code scalb(x, n)}
1419      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1420      * <i>x</i>.  When the result is non-NaN, the result has the same
1421      * sign as {@code d}.
1422      *
1423      * <p>Special cases:
1424      * <ul>
1425      * <li> If the first argument is NaN, NaN is returned.
1426      * <li> If the first argument is infinite, then an infinity of the
1427      * same sign is returned.
1428      * <li> If the first argument is zero, then a zero of the same
1429      * sign is returned.
1430      * </ul>
1431      *
1432      * @param d number to be scaled by a power of two.
1433      * @param scaleFactor power of 2 used to scale {@code d}
1434      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1435      * @since 1.6
1436      */
1437     public static double scalb(double d, int scaleFactor) {
1438         return sun.misc.FpUtils.scalb(d, scaleFactor);
1439     }
1440 
1441     /**
1442      * Return {@code f} &times;
1443      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1444      * by a single correctly rounded floating-point multiply to a
1445      * member of the float value set.  See the Java
1446      * Language Specification for a discussion of floating-point
1447      * value sets.  If the exponent of the result is between {@link
1448      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1449      * answer is calculated exactly.  If the exponent of the result
1450      * would be larger than {@code Float.MAX_EXPONENT}, an
1451      * infinity is returned.  Note that if the result is subnormal,
1452      * precision may be lost; that is, when {@code scalb(x, n)}
1453      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1454      * <i>x</i>.  When the result is non-NaN, the result has the same
1455      * sign as {@code f}.
1456      *
1457      * <p>Special cases:
1458      * <ul>
1459      * <li> If the first argument is NaN, NaN is returned.
1460      * <li> If the first argument is infinite, then an infinity of the
1461      * same sign is returned.
1462      * <li> If the first argument is zero, then a zero of the same
1463      * sign is returned.
1464      * </ul>
1465      *
1466      * @param f number to be scaled by a power of two.
1467      * @param scaleFactor power of 2 used to scale {@code f}
1468      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1469      * @since 1.6
1470      */
1471     public static float scalb(float f, int scaleFactor) {
1472         return sun.misc.FpUtils.scalb(f, scaleFactor);
1473     }
1474 }