1 /*
   2  * Copyright 2003 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @bug 4347132 4939441
  27  * @summary Tests for {Math, StrictMath}.cbrt
  28  * @author Joseph D. Darcy
  29  */
  30 
  31 import sun.misc.FpUtils;
  32 import sun.misc.DoubleConsts;
  33 
  34 public class CubeRootTests {
  35     private CubeRootTests(){}
  36 
  37     static final double infinityD = Double.POSITIVE_INFINITY;
  38     static final double NaNd = Double.NaN;
  39 
  40     // Initialize shared random number generator
  41     static java.util.Random rand = new java.util.Random();
  42 
  43     static int testCubeRootCase(double input, double expected) {
  44         int failures=0;
  45 
  46         double minus_input = -input;
  47         double minus_expected = -expected;
  48 
  49         failures+=Tests.test("Math.cbrt(double)", input,
  50                              Math.cbrt(input), expected);
  51         failures+=Tests.test("Math.cbrt(double)", minus_input,
  52                              Math.cbrt(minus_input), minus_expected);
  53         failures+=Tests.test("StrictMath.cbrt(double)", input,
  54                              StrictMath.cbrt(input), expected);
  55         failures+=Tests.test("StrictMath.cbrt(double)", minus_input,
  56                              StrictMath.cbrt(minus_input), minus_expected);
  57 
  58         return failures;
  59     }
  60 
  61     static int testCubeRoot() {
  62         int failures = 0;
  63         double [][] testCases = {
  64             {NaNd,                      NaNd},
  65             {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
  66             {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
  67             {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
  68             {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
  69             {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
  70             {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
  71             {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
  72             {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
  73             {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
  74             {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
  75             {Double.POSITIVE_INFINITY,  Double.POSITIVE_INFINITY},
  76             {Double.NEGATIVE_INFINITY,  Double.NEGATIVE_INFINITY},
  77             {+0.0,                      +0.0},
  78             {-0.0,                      -0.0},
  79             {+1.0,                      +1.0},
  80             {-1.0,                      -1.0},
  81             {+8.0,                      +2.0},
  82             {-8.0,                      -2.0}
  83         };
  84 
  85         for(int i = 0; i < testCases.length; i++) {
  86             failures += testCubeRootCase(testCases[i][0],
  87                                          testCases[i][1]);
  88         }
  89 
  90         // Test integer perfect cubes less than 2^53.
  91         for(int i = 0; i <= 208063; i++) {
  92             double d = i;
  93             failures += testCubeRootCase(d*d*d, (double)i);
  94         }
  95 
  96         // Test cbrt(2^(3n)) = 2^n.
  97         for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
  98             failures += testCubeRootCase(FpUtils.scalb(1.0, 3*i),
  99                                          FpUtils.scalb(1.0, i) );
 100         }
 101 
 102         // Test cbrt(2^(-3n)) = 2^-n.
 103         for(int i = -1; i >= FpUtils.ilogb(Double.MIN_VALUE)/3; i--) {
 104             failures += testCubeRootCase(FpUtils.scalb(1.0, 3*i),
 105                                          FpUtils.scalb(1.0, i) );
 106         }
 107 
 108         // Test random perfect cubes.  Create double values with
 109         // modest exponents but only have at most the 17 most
 110         // significant bits in the significand set; 17*3 = 51, which
 111         // is less than the number of bits in a double's significand.
 112         long exponentBits1 =
 113             Double.doubleToLongBits(FpUtils.scalb(1.0, 55)) &
 114             DoubleConsts.EXP_BIT_MASK;
 115         long exponentBits2=
 116             Double.doubleToLongBits(FpUtils.scalb(1.0, -55)) &
 117             DoubleConsts.EXP_BIT_MASK;
 118         for(int i = 0; i < 100; i++) {
 119             // Take 16 bits since the 17th bit is implicit in the
 120             // exponent
 121            double input1 =
 122                Double.longBitsToDouble(exponentBits1 |
 123                                        // Significand bits
 124                                        ((long) (rand.nextInt() & 0xFFFF))<<
 125                                        (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
 126            failures += testCubeRootCase(input1*input1*input1, input1);
 127 
 128            double input2 =
 129                Double.longBitsToDouble(exponentBits2 |
 130                                        // Significand bits
 131                                        ((long) (rand.nextInt() & 0xFFFF))<<
 132                                        (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
 133            failures += testCubeRootCase(input2*input2*input2, input2);
 134         }
 135 
 136         // Directly test quality of implementation properties of cbrt
 137         // for values that aren't perfect cubes.  Verify returned
 138         // result meets the 1 ulp test.  That is, we want to verify
 139         // that for positive x > 1,
 140         // y = cbrt(x),
 141         //
 142         // if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
 143         // if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
 144         //
 145         // where y_mm and y_pp are the next smaller and next larger
 146         // floating-point value to y.  In other words, if y^3 is too
 147         // big, making y larger does not improve the result; likewise,
 148         // if y^3 is too small, making y smaller does not improve the
 149         // result.
 150         //
 151         // ...-----|--?--|--?--|-----... Where is the true result?
 152         //         y_mm  y     y_pp
 153         //
 154         // The returned value y should be one of the floating-point
 155         // values braketing the true result.  However, given y, a
 156         // priori we don't know if the true result falls in [y_mm, y]
 157         // or [y, y_pp].  The above test looks at the error in x-y^3
 158         // to determine which region the true result is in; e.g. if
 159         // y^3 is smaller than x, the true result should be in [y,
 160         // y_pp].  Therefore, it would be an error for y_mm to be a
 161         // closer approximation to x^(1/3).  In this case, it is
 162         // permissible, although not ideal, for y_pp^3 to be a closer
 163         // approximation to x^(1/3) than y^3.
 164         //
 165         // We will use pow(y,3) to compute y^3.  Although pow is not
 166         // correctly rounded, StrictMath.pow should have at most 1 ulp
 167         // error.  For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ
 168         // from pow(y,3) by more than one ulp so the comparision of
 169         // errors should still be valid.
 170 
 171         for(int i = 0; i < 1000; i++) {
 172             double d = 1.0 + rand.nextDouble();
 173             double err, err_adjacent;
 174 
 175             double y1 = Math.cbrt(d);
 176             double y2 = StrictMath.cbrt(d);
 177 
 178             err = d - StrictMath.pow(y1, 3);
 179             if (err != 0.0) {
 180                 if(FpUtils.isNaN(err)) {
 181                     failures++;
 182                     System.err.println("Encountered unexpected NaN value: d = " + d +
 183                                        "\tcbrt(d) = " + y1);
 184                 } else {
 185                     if (err < 0.0) {
 186                         err_adjacent = StrictMath.pow(FpUtils.nextUp(y1), 3) - d;
 187                     }
 188                     else  { // (err > 0.0)
 189                         err_adjacent = StrictMath.pow(FpUtils.nextAfter(y1,0.0), 3) - d;
 190                     }
 191 
 192                     if (Math.abs(err) > Math.abs(err_adjacent)) {
 193                         failures++;
 194                         System.err.println("For Math.cbrt(" + d + "), returned result " +
 195                                            y1 + "is not as good as adjacent value.");
 196                     }
 197                 }
 198             }
 199 
 200 
 201             err = d - StrictMath.pow(y2, 3);
 202             if (err != 0.0) {
 203                 if(FpUtils.isNaN(err)) {
 204                     failures++;
 205                     System.err.println("Encountered unexpected NaN value: d = " + d +
 206                                        "\tcbrt(d) = " + y2);
 207                 } else {
 208                     if (err < 0.0) {
 209                         err_adjacent = StrictMath.pow(FpUtils.nextUp(y2), 3) - d;
 210                     }
 211                     else  { // (err > 0.0)
 212                         err_adjacent = StrictMath.pow(FpUtils.nextAfter(y2,0.0), 3) - d;
 213                     }
 214 
 215                     if (Math.abs(err) > Math.abs(err_adjacent)) {
 216                         failures++;
 217                         System.err.println("For StrictMath.cbrt(" + d + "), returned result " +
 218                                            y2 + "is not as good as adjacent value.");
 219                     }
 220                 }
 221             }
 222 
 223 
 224         }
 225 
 226         // Test monotonicity properites near perfect cubes; test two
 227         // numbers before and two numbers after; i.e. for
 228         //
 229         // pcNeighbors[] =
 230         // {nextDown(nextDown(pc)),
 231         // nextDown(pc),
 232         // pc,
 233         // nextUp(pc),
 234         // nextUp(nextUp(pc))}
 235         //
 236         // test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
 237         {
 238 
 239             double pcNeighbors[] = new double[5];
 240             double pcNeighborsCbrt[] = new double[5];
 241             double pcNeighborsStrictCbrt[] = new double[5];
 242 
 243             // Test near cbrt(2^(3n)) = 2^n.
 244             for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
 245                 double pc = FpUtils.scalb(1.0, 3*i);
 246 
 247                 pcNeighbors[2] = pc;
 248                 pcNeighbors[1] = FpUtils.nextDown(pc);
 249                 pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
 250                 pcNeighbors[3] = FpUtils.nextUp(pc);
 251                 pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
 252 
 253                 for(int j = 0; j < pcNeighbors.length; j++) {
 254                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
 255                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
 256                 }
 257 
 258                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
 259                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
 260                         failures++;
 261                         System.err.println("Monotonicity failure for Math.cbrt on " +
 262                                           pcNeighbors[j] + " and "  +
 263                                           pcNeighbors[j+1] + "\n\treturned " +
 264                                           pcNeighborsCbrt[j] + " and " +
 265                                           pcNeighborsCbrt[j+1] );
 266                     }
 267 
 268                     if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
 269                         failures++;
 270                         System.err.println("Monotonicity failure for StrictMath.cbrt on " +
 271                                           pcNeighbors[j] + " and "  +
 272                                           pcNeighbors[j+1] + "\n\treturned " +
 273                                           pcNeighborsStrictCbrt[j] + " and " +
 274                                           pcNeighborsStrictCbrt[j+1] );
 275                     }
 276 
 277 
 278                 }
 279 
 280             }
 281 
 282             // Test near cbrt(2^(-3n)) = 2^-n.
 283             for(int i = -1; i >= FpUtils.ilogb(Double.MIN_VALUE)/3; i--) {
 284                 double pc = FpUtils.scalb(1.0, 3*i);
 285 
 286                 pcNeighbors[2] = pc;
 287                 pcNeighbors[1] = FpUtils.nextDown(pc);
 288                 pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
 289                 pcNeighbors[3] = FpUtils.nextUp(pc);
 290                 pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
 291 
 292                 for(int j = 0; j < pcNeighbors.length; j++) {
 293                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
 294                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
 295                 }
 296 
 297                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
 298                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
 299                         failures++;
 300                         System.err.println("Monotonicity failure for Math.cbrt on " +
 301                                           pcNeighbors[j] + " and "  +
 302                                           pcNeighbors[j+1] + "\n\treturned " +
 303                                           pcNeighborsCbrt[j] + " and " +
 304                                           pcNeighborsCbrt[j+1] );
 305                     }
 306 
 307                     if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
 308                         failures++;
 309                         System.err.println("Monotonicity failure for StrictMath.cbrt on " +
 310                                           pcNeighbors[j] + " and "  +
 311                                           pcNeighbors[j+1] + "\n\treturned " +
 312                                           pcNeighborsStrictCbrt[j] + " and " +
 313                                           pcNeighborsStrictCbrt[j+1] );
 314                     }
 315 
 316 
 317                 }
 318             }
 319         }
 320 
 321         return failures;
 322     }
 323 
 324     public static void main(String argv[]) {
 325         int failures = 0;
 326 
 327         failures += testCubeRoot();
 328 
 329         if (failures > 0) {
 330             System.err.println("Testing cbrt incurred "
 331                                + failures + " failures.");
 332             throw new RuntimeException();
 333         }
 334     }
 335 
 336 }