1 /*
   2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Sun designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Sun in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  22  * CA 95054 USA or visit www.sun.com if you need additional information or
  23  * have any questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import com.sun.tools.javac.code.*;
  31 import com.sun.tools.javac.jvm.*;
  32 import com.sun.tools.javac.tree.*;
  33 import com.sun.tools.javac.util.*;
  34 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  35 import com.sun.tools.javac.util.List;
  36 
  37 import com.sun.tools.javac.code.Symbol.*;
  38 import com.sun.tools.javac.tree.JCTree.*;
  39 import com.sun.tools.javac.code.Type.*;
  40 
  41 import com.sun.tools.javac.jvm.Target;
  42 
  43 import static com.sun.tools.javac.code.Flags.*;
  44 import static com.sun.tools.javac.code.Kinds.*;
  45 import static com.sun.tools.javac.code.TypeTags.*;
  46 import static com.sun.tools.javac.jvm.ByteCodes.*;
  47 
  48 /** This pass translates away some syntactic sugar: inner classes,
  49  *  class literals, assertions, foreach loops, etc.
  50  *
  51  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
  52  *  you write code that depends on this, you do so at your own risk.
  53  *  This code and its internal interfaces are subject to change or
  54  *  deletion without notice.</b>
  55  */
  56 public class Lower extends TreeTranslator {
  57     protected static final Context.Key<Lower> lowerKey =
  58         new Context.Key<Lower>();
  59 
  60     public static Lower instance(Context context) {
  61         Lower instance = context.get(lowerKey);
  62         if (instance == null)
  63             instance = new Lower(context);
  64         return instance;
  65     }
  66 
  67     private Names names;
  68     private Log log;
  69     private Symtab syms;
  70     private Resolve rs;
  71     private Check chk;
  72     private Attr attr;
  73     private TreeMaker make;
  74     private DiagnosticPosition make_pos;
  75     private ClassWriter writer;
  76     private ClassReader reader;
  77     private ConstFold cfolder;
  78     private Target target;
  79     private Source source;
  80     private boolean allowEnums;
  81     private final Name dollarAssertionsDisabled;
  82     private final Name classDollar;
  83     private Types types;
  84     private boolean debugLower;
  85 
  86     protected Lower(Context context) {
  87         context.put(lowerKey, this);
  88         names = Names.instance(context);
  89         log = Log.instance(context);
  90         syms = Symtab.instance(context);
  91         rs = Resolve.instance(context);
  92         chk = Check.instance(context);
  93         attr = Attr.instance(context);
  94         make = TreeMaker.instance(context);
  95         writer = ClassWriter.instance(context);
  96         reader = ClassReader.instance(context);
  97         cfolder = ConstFold.instance(context);
  98         target = Target.instance(context);
  99         source = Source.instance(context);
 100         allowEnums = source.allowEnums();
 101         dollarAssertionsDisabled = names.
 102             fromString(target.syntheticNameChar() + "assertionsDisabled");
 103         classDollar = names.
 104             fromString("class" + target.syntheticNameChar());
 105 
 106         types = Types.instance(context);
 107         Options options = Options.instance(context);
 108         debugLower = options.get("debuglower") != null;
 109     }
 110 
 111     /** The currently enclosing class.
 112      */
 113     ClassSymbol currentClass;
 114 
 115     /** A queue of all translated classes.
 116      */
 117     ListBuffer<JCTree> translated;
 118 
 119     /** Environment for symbol lookup, set by translateTopLevelClass.
 120      */
 121     Env<AttrContext> attrEnv;
 122 
 123     /** A hash table mapping syntax trees to their ending source positions.
 124      */
 125     Map<JCTree, Integer> endPositions;
 126 
 127 /**************************************************************************
 128  * Global mappings
 129  *************************************************************************/
 130 
 131     /** A hash table mapping local classes to their definitions.
 132      */
 133     Map<ClassSymbol, JCClassDecl> classdefs;
 134 
 135     /** A hash table mapping virtual accessed symbols in outer subclasses
 136      *  to the actually referred symbol in superclasses.
 137      */
 138     Map<Symbol,Symbol> actualSymbols;
 139 
 140     /** The current method definition.
 141      */
 142     JCMethodDecl currentMethodDef;
 143 
 144     /** The current method symbol.
 145      */
 146     MethodSymbol currentMethodSym;
 147 
 148     /** The currently enclosing outermost class definition.
 149      */
 150     JCClassDecl outermostClassDef;
 151 
 152     /** The currently enclosing outermost member definition.
 153      */
 154     JCTree outermostMemberDef;
 155 
 156     /** A navigator class for assembling a mapping from local class symbols
 157      *  to class definition trees.
 158      *  There is only one case; all other cases simply traverse down the tree.
 159      */
 160     class ClassMap extends TreeScanner {
 161 
 162         /** All encountered class defs are entered into classdefs table.
 163          */
 164         public void visitClassDef(JCClassDecl tree) {
 165             classdefs.put(tree.sym, tree);
 166             super.visitClassDef(tree);
 167         }
 168     }
 169     ClassMap classMap = new ClassMap();
 170 
 171     /** Map a class symbol to its definition.
 172      *  @param c    The class symbol of which we want to determine the definition.
 173      */
 174     JCClassDecl classDef(ClassSymbol c) {
 175         // First lookup the class in the classdefs table.
 176         JCClassDecl def = classdefs.get(c);
 177         if (def == null && outermostMemberDef != null) {
 178             // If this fails, traverse outermost member definition, entering all
 179             // local classes into classdefs, and try again.
 180             classMap.scan(outermostMemberDef);
 181             def = classdefs.get(c);
 182         }
 183         if (def == null) {
 184             // If this fails, traverse outermost class definition, entering all
 185             // local classes into classdefs, and try again.
 186             classMap.scan(outermostClassDef);
 187             def = classdefs.get(c);
 188         }
 189         return def;
 190     }
 191 
 192     /** A hash table mapping class symbols to lists of free variables.
 193      *  accessed by them. Only free variables of the method immediately containing
 194      *  a class are associated with that class.
 195      */
 196     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 197 
 198     /** A navigator class for collecting the free variables accessed
 199      *  from a local class.
 200      *  There is only one case; all other cases simply traverse down the tree.
 201      */
 202     class FreeVarCollector extends TreeScanner {
 203 
 204         /** The owner of the local class.
 205          */
 206         Symbol owner;
 207 
 208         /** The local class.
 209          */
 210         ClassSymbol clazz;
 211 
 212         /** The list of owner's variables accessed from within the local class,
 213          *  without any duplicates.
 214          */
 215         List<VarSymbol> fvs;
 216 
 217         FreeVarCollector(ClassSymbol clazz) {
 218             this.clazz = clazz;
 219             this.owner = clazz.owner;
 220             this.fvs = List.nil();
 221         }
 222 
 223         /** Add free variable to fvs list unless it is already there.
 224          */
 225         private void addFreeVar(VarSymbol v) {
 226             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
 227                 if (l.head == v) return;
 228             fvs = fvs.prepend(v);
 229         }
 230 
 231         /** Add all free variables of class c to fvs list
 232          *  unless they are already there.
 233          */
 234         private void addFreeVars(ClassSymbol c) {
 235             List<VarSymbol> fvs = freevarCache.get(c);
 236             if (fvs != null) {
 237                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 238                     addFreeVar(l.head);
 239                 }
 240             }
 241         }
 242 
 243         /** If tree refers to a variable in owner of local class, add it to
 244          *  free variables list.
 245          */
 246         public void visitIdent(JCIdent tree) {
 247             result = tree;
 248             visitSymbol(tree.sym);
 249         }
 250         // where
 251         private void visitSymbol(Symbol _sym) {
 252             Symbol sym = _sym;
 253             if (sym.kind == VAR || sym.kind == MTH) {
 254                 while (sym != null && sym.owner != owner)
 255                     sym = proxies.lookup(proxyName(sym.name)).sym;
 256                 if (sym != null && sym.owner == owner) {
 257                     VarSymbol v = (VarSymbol)sym;
 258                     if (v.getConstValue() == null) {
 259                         addFreeVar(v);
 260                     }
 261                 } else {
 262                     if (outerThisStack.head != null &&
 263                         outerThisStack.head != _sym)
 264                         visitSymbol(outerThisStack.head);
 265                 }
 266             }
 267         }
 268 
 269         /** If tree refers to a class instance creation expression
 270          *  add all free variables of the freshly created class.
 271          */
 272         public void visitNewClass(JCNewClass tree) {
 273             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 274             addFreeVars(c);
 275             if (tree.encl == null &&
 276                 c.hasOuterInstance() &&
 277                 outerThisStack.head != null)
 278                 visitSymbol(outerThisStack.head);
 279             super.visitNewClass(tree);
 280         }
 281 
 282         /** If tree refers to a qualified this or super expression
 283          *  for anything but the current class, add the outer this
 284          *  stack as a free variable.
 285          */
 286         public void visitSelect(JCFieldAccess tree) {
 287             if ((tree.name == names._this || tree.name == names._super) &&
 288                 tree.selected.type.tsym != clazz &&
 289                 outerThisStack.head != null)
 290                 visitSymbol(outerThisStack.head);
 291             super.visitSelect(tree);
 292         }
 293 
 294         /** If tree refers to a superclass constructor call,
 295          *  add all free variables of the superclass.
 296          */
 297         public void visitApply(JCMethodInvocation tree) {
 298             if (TreeInfo.name(tree.meth) == names._super) {
 299                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 300                 Symbol constructor = TreeInfo.symbol(tree.meth);
 301                 ClassSymbol c = (ClassSymbol)constructor.owner;
 302                 if (c.hasOuterInstance() &&
 303                     tree.meth.getTag() != JCTree.SELECT &&
 304                     outerThisStack.head != null)
 305                     visitSymbol(outerThisStack.head);
 306             }
 307             super.visitApply(tree);
 308         }
 309     }
 310 
 311     /** Return the variables accessed from within a local class, which
 312      *  are declared in the local class' owner.
 313      *  (in reverse order of first access).
 314      */
 315     List<VarSymbol> freevars(ClassSymbol c)  {
 316         if ((c.owner.kind & (VAR | MTH)) != 0) {
 317             List<VarSymbol> fvs = freevarCache.get(c);
 318             if (fvs == null) {
 319                 FreeVarCollector collector = new FreeVarCollector(c);
 320                 collector.scan(classDef(c));
 321                 fvs = collector.fvs;
 322                 freevarCache.put(c, fvs);
 323             }
 324             return fvs;
 325         } else {
 326             return List.nil();
 327         }
 328     }
 329 
 330     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
 331 
 332     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 333         EnumMapping map = enumSwitchMap.get(enumClass);
 334         if (map == null)
 335             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
 336         return map;
 337     }
 338 
 339     /** This map gives a translation table to be used for enum
 340      *  switches.
 341      *
 342      *  <p>For each enum that appears as the type of a switch
 343      *  expression, we maintain an EnumMapping to assist in the
 344      *  translation, as exemplified by the following example:
 345      *
 346      *  <p>we translate
 347      *  <pre>
 348      *          switch(colorExpression) {
 349      *          case red: stmt1;
 350      *          case green: stmt2;
 351      *          }
 352      *  </pre>
 353      *  into
 354      *  <pre>
 355      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 356      *          case 1: stmt1;
 357      *          case 2: stmt2
 358      *          }
 359      *  </pre>
 360      *  with the auxiliary table initialized as follows:
 361      *  <pre>
 362      *          class Outer$0 {
 363      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 364      *              static {
 365      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 366      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 367      *              }
 368      *          }
 369      *  </pre>
 370      *  class EnumMapping provides mapping data and support methods for this translation.
 371      */
 372     class EnumMapping {
 373         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 374             this.forEnum = forEnum;
 375             this.values = new LinkedHashMap<VarSymbol,Integer>();
 376             this.pos = pos;
 377             Name varName = names
 378                 .fromString(target.syntheticNameChar() +
 379                             "SwitchMap" +
 380                             target.syntheticNameChar() +
 381                             writer.xClassName(forEnum.type).toString()
 382                             .replace('/', '.')
 383                             .replace('.', target.syntheticNameChar()));
 384             ClassSymbol outerCacheClass = outerCacheClass();
 385             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 386                                         varName,
 387                                         new ArrayType(syms.intType, syms.arrayClass),
 388                                         outerCacheClass);
 389             enterSynthetic(pos, mapVar, outerCacheClass.members());
 390         }
 391 
 392         DiagnosticPosition pos = null;
 393 
 394         // the next value to use
 395         int next = 1; // 0 (unused map elements) go to the default label
 396 
 397         // the enum for which this is a map
 398         final TypeSymbol forEnum;
 399 
 400         // the field containing the map
 401         final VarSymbol mapVar;
 402 
 403         // the mapped values
 404         final Map<VarSymbol,Integer> values;
 405 
 406         JCLiteral forConstant(VarSymbol v) {
 407             Integer result = values.get(v);
 408             if (result == null)
 409                 values.put(v, result = next++);
 410             return make.Literal(result);
 411         }
 412 
 413         // generate the field initializer for the map
 414         void translate() {
 415             make.at(pos.getStartPosition());
 416             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 417 
 418             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 419             MethodSymbol valuesMethod = lookupMethod(pos,
 420                                                      names.values,
 421                                                      forEnum.type,
 422                                                      List.<Type>nil());
 423             JCExpression size = make // Color.values().length
 424                 .Select(make.App(make.QualIdent(valuesMethod)),
 425                         syms.lengthVar);
 426             JCExpression mapVarInit = make
 427                 .NewArray(make.Type(syms.intType), List.of(size), null)
 428                 .setType(new ArrayType(syms.intType, syms.arrayClass));
 429 
 430             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 431             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
 432             Symbol ordinalMethod = lookupMethod(pos,
 433                                                 names.ordinal,
 434                                                 forEnum.type,
 435                                                 List.<Type>nil());
 436             List<JCCatch> catcher = List.<JCCatch>nil()
 437                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 438                                                               syms.noSuchFieldErrorType,
 439                                                               syms.noSymbol),
 440                                                 null),
 441                                     make.Block(0, List.<JCStatement>nil())));
 442             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 443                 VarSymbol enumerator = e.getKey();
 444                 Integer mappedValue = e.getValue();
 445                 JCExpression assign = make
 446                     .Assign(make.Indexed(mapVar,
 447                                          make.App(make.Select(make.QualIdent(enumerator),
 448                                                               ordinalMethod))),
 449                             make.Literal(mappedValue))
 450                     .setType(syms.intType);
 451                 JCStatement exec = make.Exec(assign);
 452                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 453                 stmts.append(_try);
 454             }
 455 
 456             owner.defs = owner.defs
 457                 .prepend(make.Block(STATIC, stmts.toList()))
 458                 .prepend(make.VarDef(mapVar, mapVarInit));
 459         }
 460     }
 461 
 462 
 463 /**************************************************************************
 464  * Tree building blocks
 465  *************************************************************************/
 466 
 467     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 468      *  pos as make_pos, for use in diagnostics.
 469      **/
 470     TreeMaker make_at(DiagnosticPosition pos) {
 471         make_pos = pos;
 472         return make.at(pos);
 473     }
 474 
 475     /** Make an attributed tree representing a literal. This will be an
 476      *  Ident node in the case of boolean literals, a Literal node in all
 477      *  other cases.
 478      *  @param type       The literal's type.
 479      *  @param value      The literal's value.
 480      */
 481     JCExpression makeLit(Type type, Object value) {
 482         return make.Literal(type.tag, value).setType(type.constType(value));
 483     }
 484 
 485     /** Make an attributed tree representing null.
 486      */
 487     JCExpression makeNull() {
 488         return makeLit(syms.botType, null);
 489     }
 490 
 491     /** Make an attributed class instance creation expression.
 492      *  @param ctype    The class type.
 493      *  @param args     The constructor arguments.
 494      */
 495     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 496         JCNewClass tree = make.NewClass(null,
 497             null, make.QualIdent(ctype.tsym), args, null);
 498         tree.constructor = rs.resolveConstructor(
 499             make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
 500         tree.type = ctype;
 501         return tree;
 502     }
 503 
 504     /** Make an attributed unary expression.
 505      *  @param optag    The operators tree tag.
 506      *  @param arg      The operator's argument.
 507      */
 508     JCUnary makeUnary(int optag, JCExpression arg) {
 509         JCUnary tree = make.Unary(optag, arg);
 510         tree.operator = rs.resolveUnaryOperator(
 511             make_pos, optag, attrEnv, arg.type);
 512         tree.type = tree.operator.type.getReturnType();
 513         return tree;
 514     }
 515 
 516     /** Make an attributed binary expression.
 517      *  @param optag    The operators tree tag.
 518      *  @param lhs      The operator's left argument.
 519      *  @param rhs      The operator's right argument.
 520      */
 521     JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
 522         JCBinary tree = make.Binary(optag, lhs, rhs);
 523         tree.operator = rs.resolveBinaryOperator(
 524             make_pos, optag, attrEnv, lhs.type, rhs.type);
 525         tree.type = tree.operator.type.getReturnType();
 526         return tree;
 527     }
 528 
 529     /** Make an attributed assignop expression.
 530      *  @param optag    The operators tree tag.
 531      *  @param lhs      The operator's left argument.
 532      *  @param rhs      The operator's right argument.
 533      */
 534     JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
 535         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 536         tree.operator = rs.resolveBinaryOperator(
 537             make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
 538         tree.type = lhs.type;
 539         return tree;
 540     }
 541 
 542     /** Convert tree into string object, unless it has already a
 543      *  reference type..
 544      */
 545     JCExpression makeString(JCExpression tree) {
 546         if (tree.type.tag >= CLASS) {
 547             return tree;
 548         } else {
 549             Symbol valueOfSym = lookupMethod(tree.pos(),
 550                                              names.valueOf,
 551                                              syms.stringType,
 552                                              List.of(tree.type));
 553             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 554         }
 555     }
 556 
 557     /** Create an empty anonymous class definition and enter and complete
 558      *  its symbol. Return the class definition's symbol.
 559      *  and create
 560      *  @param flags    The class symbol's flags
 561      *  @param owner    The class symbol's owner
 562      */
 563     ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
 564         // Create class symbol.
 565         ClassSymbol c = reader.defineClass(names.empty, owner);
 566         c.flatname = chk.localClassName(c);
 567         c.sourcefile = owner.sourcefile;
 568         c.completer = null;
 569         c.members_field = new Scope(c);
 570         c.flags_field = flags;
 571         ClassType ctype = (ClassType) c.type;
 572         ctype.supertype_field = syms.objectType;
 573         ctype.interfaces_field = List.nil();
 574 
 575         JCClassDecl odef = classDef(owner);
 576 
 577         // Enter class symbol in owner scope and compiled table.
 578         enterSynthetic(odef.pos(), c, owner.members());
 579         chk.compiled.put(c.flatname, c);
 580 
 581         // Create class definition tree.
 582         JCClassDecl cdef = make.ClassDef(
 583             make.Modifiers(flags), names.empty,
 584             List.<JCTypeParameter>nil(),
 585             null, List.<JCExpression>nil(), List.<JCTree>nil());
 586         cdef.sym = c;
 587         cdef.type = c.type;
 588 
 589         // Append class definition tree to owner's definitions.
 590         odef.defs = odef.defs.prepend(cdef);
 591 
 592         return c;
 593     }
 594 
 595 /**************************************************************************
 596  * Symbol manipulation utilities
 597  *************************************************************************/
 598 
 599     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 600      *  @param pos           Position for error reporting.
 601      *  @param sym           The symbol.
 602      *  @param s             The scope.
 603      */
 604     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
 605         s.enter(sym);
 606     }
 607 
 608     /** Check whether synthetic symbols generated during lowering conflict
 609      *  with user-defined symbols.
 610      *
 611      *  @param translatedTrees lowered class trees
 612      */
 613     void checkConflicts(List<JCTree> translatedTrees) {
 614         for (JCTree t : translatedTrees) {
 615             t.accept(conflictsChecker);
 616         }
 617     }
 618 
 619     JCTree.Visitor conflictsChecker = new TreeScanner() {
 620 
 621         TypeSymbol currentClass;
 622 
 623         @Override
 624         public void visitMethodDef(JCMethodDecl that) {
 625             chk.checkConflicts(that.pos(), that.sym, currentClass);
 626             super.visitMethodDef(that);
 627         }
 628 
 629         @Override
 630         public void visitVarDef(JCVariableDecl that) {
 631             if (that.sym.owner.kind == TYP) {
 632                 chk.checkConflicts(that.pos(), that.sym, currentClass);
 633             }
 634             super.visitVarDef(that);
 635         }
 636 
 637         @Override
 638         public void visitClassDef(JCClassDecl that) {
 639             TypeSymbol prevCurrentClass = currentClass;
 640             currentClass = that.sym;
 641             try {
 642                 super.visitClassDef(that);
 643             }
 644             finally {
 645                 currentClass = prevCurrentClass;
 646             }
 647         }
 648     };
 649 
 650     /** Look up a synthetic name in a given scope.
 651      *  @param scope        The scope.
 652      *  @param name         The name.
 653      */
 654     private Symbol lookupSynthetic(Name name, Scope s) {
 655         Symbol sym = s.lookup(name).sym;
 656         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 657     }
 658 
 659     /** Look up a method in a given scope.
 660      */
 661     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 662         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
 663     }
 664 
 665     /** Look up a constructor.
 666      */
 667     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
 668         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
 669     }
 670 
 671     /** Look up a field.
 672      */
 673     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
 674         return rs.resolveInternalField(pos, attrEnv, qual, name);
 675     }
 676 
 677 /**************************************************************************
 678  * Access methods
 679  *************************************************************************/
 680 
 681     /** Access codes for dereferencing, assignment,
 682      *  and pre/post increment/decrement.
 683      *  Access codes for assignment operations are determined by method accessCode
 684      *  below.
 685      *
 686      *  All access codes for accesses to the current class are even.
 687      *  If a member of the superclass should be accessed instead (because
 688      *  access was via a qualified super), add one to the corresponding code
 689      *  for the current class, making the number odd.
 690      *  This numbering scheme is used by the backend to decide whether
 691      *  to issue an invokevirtual or invokespecial call.
 692      *
 693      *  @see Gen.visitSelect(Select tree)
 694      */
 695     private static final int
 696         DEREFcode = 0,
 697         ASSIGNcode = 2,
 698         PREINCcode = 4,
 699         PREDECcode = 6,
 700         POSTINCcode = 8,
 701         POSTDECcode = 10,
 702         FIRSTASGOPcode = 12;
 703 
 704     /** Number of access codes
 705      */
 706     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
 707 
 708     /** A mapping from symbols to their access numbers.
 709      */
 710     private Map<Symbol,Integer> accessNums;
 711 
 712     /** A mapping from symbols to an array of access symbols, indexed by
 713      *  access code.
 714      */
 715     private Map<Symbol,MethodSymbol[]> accessSyms;
 716 
 717     /** A mapping from (constructor) symbols to access constructor symbols.
 718      */
 719     private Map<Symbol,MethodSymbol> accessConstrs;
 720 
 721     /** A queue for all accessed symbols.
 722      */
 723     private ListBuffer<Symbol> accessed;
 724 
 725     /** Map bytecode of binary operation to access code of corresponding
 726      *  assignment operation. This is always an even number.
 727      */
 728     private static int accessCode(int bytecode) {
 729         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
 730             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
 731         else if (bytecode == ByteCodes.string_add)
 732             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
 733         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
 734             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
 735         else
 736             return -1;
 737     }
 738 
 739     /** return access code for identifier,
 740      *  @param tree     The tree representing the identifier use.
 741      *  @param enclOp   The closest enclosing operation node of tree,
 742      *                  null if tree is not a subtree of an operation.
 743      */
 744     private static int accessCode(JCTree tree, JCTree enclOp) {
 745         if (enclOp == null)
 746             return DEREFcode;
 747         else if (enclOp.getTag() == JCTree.ASSIGN &&
 748                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 749             return ASSIGNcode;
 750         else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
 751                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
 752             return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
 753         else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
 754                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
 755             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
 756         else
 757             return DEREFcode;
 758     }
 759 
 760     /** Return binary operator that corresponds to given access code.
 761      */
 762     private OperatorSymbol binaryAccessOperator(int acode) {
 763         for (Scope.Entry e = syms.predefClass.members().elems;
 764              e != null;
 765              e = e.sibling) {
 766             if (e.sym instanceof OperatorSymbol) {
 767                 OperatorSymbol op = (OperatorSymbol)e.sym;
 768                 if (accessCode(op.opcode) == acode) return op;
 769             }
 770         }
 771         return null;
 772     }
 773 
 774     /** Return tree tag for assignment operation corresponding
 775      *  to given binary operator.
 776      */
 777     private static int treeTag(OperatorSymbol operator) {
 778         switch (operator.opcode) {
 779         case ByteCodes.ior: case ByteCodes.lor:
 780             return JCTree.BITOR_ASG;
 781         case ByteCodes.ixor: case ByteCodes.lxor:
 782             return JCTree.BITXOR_ASG;
 783         case ByteCodes.iand: case ByteCodes.land:
 784             return JCTree.BITAND_ASG;
 785         case ByteCodes.ishl: case ByteCodes.lshl:
 786         case ByteCodes.ishll: case ByteCodes.lshll:
 787             return JCTree.SL_ASG;
 788         case ByteCodes.ishr: case ByteCodes.lshr:
 789         case ByteCodes.ishrl: case ByteCodes.lshrl:
 790             return JCTree.SR_ASG;
 791         case ByteCodes.iushr: case ByteCodes.lushr:
 792         case ByteCodes.iushrl: case ByteCodes.lushrl:
 793             return JCTree.USR_ASG;
 794         case ByteCodes.iadd: case ByteCodes.ladd:
 795         case ByteCodes.fadd: case ByteCodes.dadd:
 796         case ByteCodes.string_add:
 797             return JCTree.PLUS_ASG;
 798         case ByteCodes.isub: case ByteCodes.lsub:
 799         case ByteCodes.fsub: case ByteCodes.dsub:
 800             return JCTree.MINUS_ASG;
 801         case ByteCodes.imul: case ByteCodes.lmul:
 802         case ByteCodes.fmul: case ByteCodes.dmul:
 803             return JCTree.MUL_ASG;
 804         case ByteCodes.idiv: case ByteCodes.ldiv:
 805         case ByteCodes.fdiv: case ByteCodes.ddiv:
 806             return JCTree.DIV_ASG;
 807         case ByteCodes.imod: case ByteCodes.lmod:
 808         case ByteCodes.fmod: case ByteCodes.dmod:
 809             return JCTree.MOD_ASG;
 810         default:
 811             throw new AssertionError();
 812         }
 813     }
 814 
 815     /** The name of the access method with number `anum' and access code `acode'.
 816      */
 817     Name accessName(int anum, int acode) {
 818         return names.fromString(
 819             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
 820     }
 821 
 822     /** Return access symbol for a private or protected symbol from an inner class.
 823      *  @param sym        The accessed private symbol.
 824      *  @param tree       The accessing tree.
 825      *  @param enclOp     The closest enclosing operation node of tree,
 826      *                    null if tree is not a subtree of an operation.
 827      *  @param protAccess Is access to a protected symbol in another
 828      *                    package?
 829      *  @param refSuper   Is access via a (qualified) C.super?
 830      */
 831     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
 832                               boolean protAccess, boolean refSuper) {
 833         ClassSymbol accOwner = refSuper && protAccess
 834             // For access via qualified super (T.super.x), place the
 835             // access symbol on T.
 836             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
 837             // Otherwise pretend that the owner of an accessed
 838             // protected symbol is the enclosing class of the current
 839             // class which is a subclass of the symbol's owner.
 840             : accessClass(sym, protAccess, tree);
 841 
 842         Symbol vsym = sym;
 843         if (sym.owner != accOwner) {
 844             vsym = sym.clone(accOwner);
 845             actualSymbols.put(vsym, sym);
 846         }
 847 
 848         Integer anum              // The access number of the access method.
 849             = accessNums.get(vsym);
 850         if (anum == null) {
 851             anum = accessed.length();
 852             accessNums.put(vsym, anum);
 853             accessSyms.put(vsym, new MethodSymbol[NCODES]);
 854             accessed.append(vsym);
 855             // System.out.println("accessing " + vsym + " in " + vsym.location());
 856         }
 857 
 858         int acode;                // The access code of the access method.
 859         List<Type> argtypes;      // The argument types of the access method.
 860         Type restype;             // The result type of the access method.
 861         List<Type> thrown;        // The thrown exceptions of the access method.
 862         switch (vsym.kind) {
 863         case VAR:
 864             acode = accessCode(tree, enclOp);
 865             if (acode >= FIRSTASGOPcode) {
 866                 OperatorSymbol operator = binaryAccessOperator(acode);
 867                 if (operator.opcode == string_add)
 868                     argtypes = List.of(syms.objectType);
 869                 else
 870                     argtypes = operator.type.getParameterTypes().tail;
 871             } else if (acode == ASSIGNcode)
 872                 argtypes = List.of(vsym.erasure(types));
 873             else
 874                 argtypes = List.nil();
 875             restype = vsym.erasure(types);
 876             thrown = List.nil();
 877             break;
 878         case MTH:
 879             acode = DEREFcode;
 880             argtypes = vsym.erasure(types).getParameterTypes();
 881             restype = vsym.erasure(types).getReturnType();
 882             thrown = vsym.type.getThrownTypes();
 883             break;
 884         default:
 885             throw new AssertionError();
 886         }
 887 
 888         // For references via qualified super, increment acode by one,
 889         // making it odd.
 890         if (protAccess && refSuper) acode++;
 891 
 892         // Instance access methods get instance as first parameter.
 893         // For protected symbols this needs to be the instance as a member
 894         // of the type containing the accessed symbol, not the class
 895         // containing the access method.
 896         if ((vsym.flags() & STATIC) == 0) {
 897             argtypes = argtypes.prepend(vsym.owner.erasure(types));
 898         }
 899         MethodSymbol[] accessors = accessSyms.get(vsym);
 900         MethodSymbol accessor = accessors[acode];
 901         if (accessor == null) {
 902             accessor = new MethodSymbol(
 903                 STATIC | SYNTHETIC,
 904                 accessName(anum.intValue(), acode),
 905                 new MethodType(argtypes, restype, thrown, syms.methodClass),
 906                 accOwner);
 907             enterSynthetic(tree.pos(), accessor, accOwner.members());
 908             accessors[acode] = accessor;
 909         }
 910         return accessor;
 911     }
 912 
 913     /** The qualifier to be used for accessing a symbol in an outer class.
 914      *  This is either C.sym or C.this.sym, depending on whether or not
 915      *  sym is static.
 916      *  @param sym   The accessed symbol.
 917      */
 918     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
 919         return (sym.flags() & STATIC) != 0
 920             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
 921             : makeOwnerThis(pos, sym, true);
 922     }
 923 
 924     /** Do we need an access method to reference private symbol?
 925      */
 926     boolean needsPrivateAccess(Symbol sym) {
 927         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
 928             return false;
 929         } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
 930             // private constructor in local class: relax protection
 931             sym.flags_field &= ~PRIVATE;
 932             return false;
 933         } else {
 934             return true;
 935         }
 936     }
 937 
 938     /** Do we need an access method to reference symbol in other package?
 939      */
 940     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
 941         if ((sym.flags() & PROTECTED) == 0 ||
 942             sym.owner.owner == currentClass.owner || // fast special case
 943             sym.packge() == currentClass.packge())
 944             return false;
 945         if (!currentClass.isSubClass(sym.owner, types))
 946             return true;
 947         if ((sym.flags() & STATIC) != 0 ||
 948             tree.getTag() != JCTree.SELECT ||
 949             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
 950             return false;
 951         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
 952     }
 953 
 954     /** The class in which an access method for given symbol goes.
 955      *  @param sym        The access symbol
 956      *  @param protAccess Is access to a protected symbol in another
 957      *                    package?
 958      */
 959     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
 960         if (protAccess) {
 961             Symbol qualifier = null;
 962             ClassSymbol c = currentClass;
 963             if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
 964                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
 965                 while (!qualifier.isSubClass(c, types)) {
 966                     c = c.owner.enclClass();
 967                 }
 968                 return c;
 969             } else {
 970                 while (!c.isSubClass(sym.owner, types)) {
 971                     c = c.owner.enclClass();
 972                 }
 973             }
 974             return c;
 975         } else {
 976             // the symbol is private
 977             return sym.owner.enclClass();
 978         }
 979     }
 980 
 981     /** Ensure that identifier is accessible, return tree accessing the identifier.
 982      *  @param sym      The accessed symbol.
 983      *  @param tree     The tree referring to the symbol.
 984      *  @param enclOp   The closest enclosing operation node of tree,
 985      *                  null if tree is not a subtree of an operation.
 986      *  @param refSuper Is access via a (qualified) C.super?
 987      */
 988     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
 989         // Access a free variable via its proxy, or its proxy's proxy
 990         while (sym.kind == VAR && sym.owner.kind == MTH &&
 991             sym.owner.enclClass() != currentClass) {
 992             // A constant is replaced by its constant value.
 993             Object cv = ((VarSymbol)sym).getConstValue();
 994             if (cv != null) {
 995                 make.at(tree.pos);
 996                 return makeLit(sym.type, cv);
 997             }
 998             // Otherwise replace the variable by its proxy.
 999             sym = proxies.lookup(proxyName(sym.name)).sym;
1000             assert sym != null && (sym.flags_field & FINAL) != 0;
1001             tree = make.at(tree.pos).Ident(sym);
1002         }
1003         JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
1004         switch (sym.kind) {
1005         case TYP:
1006             if (sym.owner.kind != PCK) {
1007                 // Convert type idents to
1008                 // <flat name> or <package name> . <flat name>
1009                 Name flatname = Convert.shortName(sym.flatName());
1010                 while (base != null &&
1011                        TreeInfo.symbol(base) != null &&
1012                        TreeInfo.symbol(base).kind != PCK) {
1013                     base = (base.getTag() == JCTree.SELECT)
1014                         ? ((JCFieldAccess) base).selected
1015                         : null;
1016                 }
1017                 if (tree.getTag() == JCTree.IDENT) {
1018                     ((JCIdent) tree).name = flatname;
1019                 } else if (base == null) {
1020                     tree = make.at(tree.pos).Ident(sym);
1021                     ((JCIdent) tree).name = flatname;
1022                 } else {
1023                     ((JCFieldAccess) tree).selected = base;
1024                     ((JCFieldAccess) tree).name = flatname;
1025                 }
1026             }
1027             break;
1028         case MTH: case VAR:
1029             if (sym.owner.kind == TYP) {
1030 
1031                 // Access methods are required for
1032                 //  - private members,
1033                 //  - protected members in a superclass of an
1034                 //    enclosing class contained in another package.
1035                 //  - all non-private members accessed via a qualified super.
1036                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1037                     || needsProtectedAccess(sym, tree);
1038                 boolean accReq = protAccess || needsPrivateAccess(sym);
1039 
1040                 // A base has to be supplied for
1041                 //  - simple identifiers accessing variables in outer classes.
1042                 boolean baseReq =
1043                     base == null &&
1044                     sym.owner != syms.predefClass &&
1045                     !sym.isMemberOf(currentClass, types);
1046 
1047                 if (accReq || baseReq) {
1048                     make.at(tree.pos);
1049 
1050                     // Constants are replaced by their constant value.
1051                     if (sym.kind == VAR) {
1052                         Object cv = ((VarSymbol)sym).getConstValue();
1053                         if (cv != null) return makeLit(sym.type, cv);
1054                     }
1055 
1056                     // Private variables and methods are replaced by calls
1057                     // to their access methods.
1058                     if (accReq) {
1059                         List<JCExpression> args = List.nil();
1060                         if ((sym.flags() & STATIC) == 0) {
1061                             // Instance access methods get instance
1062                             // as first parameter.
1063                             if (base == null)
1064                                 base = makeOwnerThis(tree.pos(), sym, true);
1065                             args = args.prepend(base);
1066                             base = null;   // so we don't duplicate code
1067                         }
1068                         Symbol access = accessSymbol(sym, tree,
1069                                                      enclOp, protAccess,
1070                                                      refSuper);
1071                         JCExpression receiver = make.Select(
1072                             base != null ? base : make.QualIdent(access.owner),
1073                             access);
1074                         return make.App(receiver, args);
1075 
1076                     // Other accesses to members of outer classes get a
1077                     // qualifier.
1078                     } else if (baseReq) {
1079                         return make.at(tree.pos).Select(
1080                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1081                     }
1082                 }
1083             }
1084         }
1085         return tree;
1086     }
1087 
1088     /** Ensure that identifier is accessible, return tree accessing the identifier.
1089      *  @param tree     The identifier tree.
1090      */
1091     JCExpression access(JCExpression tree) {
1092         Symbol sym = TreeInfo.symbol(tree);
1093         return sym == null ? tree : access(sym, tree, null, false);
1094     }
1095 
1096     /** Return access constructor for a private constructor,
1097      *  or the constructor itself, if no access constructor is needed.
1098      *  @param pos       The position to report diagnostics, if any.
1099      *  @param constr    The private constructor.
1100      */
1101     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1102         if (needsPrivateAccess(constr)) {
1103             ClassSymbol accOwner = constr.owner.enclClass();
1104             MethodSymbol aconstr = accessConstrs.get(constr);
1105             if (aconstr == null) {
1106                 List<Type> argtypes = constr.type.getParameterTypes();
1107                 if ((accOwner.flags_field & ENUM) != 0)
1108                     argtypes = argtypes
1109                         .prepend(syms.intType)
1110                         .prepend(syms.stringType);
1111                 aconstr = new MethodSymbol(
1112                     SYNTHETIC,
1113                     names.init,
1114                     new MethodType(
1115                         argtypes.append(
1116                             accessConstructorTag().erasure(types)),
1117                         constr.type.getReturnType(),
1118                         constr.type.getThrownTypes(),
1119                         syms.methodClass),
1120                     accOwner);
1121                 enterSynthetic(pos, aconstr, accOwner.members());
1122                 accessConstrs.put(constr, aconstr);
1123                 accessed.append(constr);
1124             }
1125             return aconstr;
1126         } else {
1127             return constr;
1128         }
1129     }
1130 
1131     /** Return an anonymous class nested in this toplevel class.
1132      */
1133     ClassSymbol accessConstructorTag() {
1134         ClassSymbol topClass = currentClass.outermostClass();
1135         Name flatname = names.fromString("" + topClass.getQualifiedName() +
1136                                          target.syntheticNameChar() +
1137                                          "1");
1138         ClassSymbol ctag = chk.compiled.get(flatname);
1139         if (ctag == null)
1140             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
1141         return ctag;
1142     }
1143 
1144     /** Add all required access methods for a private symbol to enclosing class.
1145      *  @param sym       The symbol.
1146      */
1147     void makeAccessible(Symbol sym) {
1148         JCClassDecl cdef = classDef(sym.owner.enclClass());
1149         assert cdef != null : "class def not found: " + sym + " in " + sym.owner;
1150         if (sym.name == names.init) {
1151             cdef.defs = cdef.defs.prepend(
1152                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1153         } else {
1154             MethodSymbol[] accessors = accessSyms.get(sym);
1155             for (int i = 0; i < NCODES; i++) {
1156                 if (accessors[i] != null)
1157                     cdef.defs = cdef.defs.prepend(
1158                         accessDef(cdef.pos, sym, accessors[i], i));
1159             }
1160         }
1161     }
1162 
1163     /** Construct definition of an access method.
1164      *  @param pos        The source code position of the definition.
1165      *  @param vsym       The private or protected symbol.
1166      *  @param accessor   The access method for the symbol.
1167      *  @param acode      The access code.
1168      */
1169     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1170 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1171         currentClass = vsym.owner.enclClass();
1172         make.at(pos);
1173         JCMethodDecl md = make.MethodDef(accessor, null);
1174 
1175         // Find actual symbol
1176         Symbol sym = actualSymbols.get(vsym);
1177         if (sym == null) sym = vsym;
1178 
1179         JCExpression ref;           // The tree referencing the private symbol.
1180         List<JCExpression> args;    // Any additional arguments to be passed along.
1181         if ((sym.flags() & STATIC) != 0) {
1182             ref = make.Ident(sym);
1183             args = make.Idents(md.params);
1184         } else {
1185             ref = make.Select(make.Ident(md.params.head), sym);
1186             args = make.Idents(md.params.tail);
1187         }
1188         JCStatement stat;          // The statement accessing the private symbol.
1189         if (sym.kind == VAR) {
1190             // Normalize out all odd access codes by taking floor modulo 2:
1191             int acode1 = acode - (acode & 1);
1192 
1193             JCExpression expr;      // The access method's return value.
1194             switch (acode1) {
1195             case DEREFcode:
1196                 expr = ref;
1197                 break;
1198             case ASSIGNcode:
1199                 expr = make.Assign(ref, args.head);
1200                 break;
1201             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
1202                 expr = makeUnary(
1203                     ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
1204                 break;
1205             default:
1206                 expr = make.Assignop(
1207                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
1208                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
1209             }
1210             stat = make.Return(expr.setType(sym.type));
1211         } else {
1212             stat = make.Call(make.App(ref, args));
1213         }
1214         md.body = make.Block(0, List.of(stat));
1215 
1216         // Make sure all parameters, result types and thrown exceptions
1217         // are accessible.
1218         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1219             l.head.vartype = access(l.head.vartype);
1220         md.restype = access(md.restype);
1221         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1222             l.head = access(l.head);
1223 
1224         return md;
1225     }
1226 
1227     /** Construct definition of an access constructor.
1228      *  @param pos        The source code position of the definition.
1229      *  @param constr     The private constructor.
1230      *  @param accessor   The access method for the constructor.
1231      */
1232     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1233         make.at(pos);
1234         JCMethodDecl md = make.MethodDef(accessor,
1235                                       accessor.externalType(types),
1236                                       null);
1237         JCIdent callee = make.Ident(names._this);
1238         callee.sym = constr;
1239         callee.type = constr.type;
1240         md.body =
1241             make.Block(0, List.<JCStatement>of(
1242                 make.Call(
1243                     make.App(
1244                         callee,
1245                         make.Idents(md.params.reverse().tail.reverse())))));
1246         return md;
1247     }
1248 
1249 /**************************************************************************
1250  * Free variables proxies and this$n
1251  *************************************************************************/
1252 
1253     /** A scope containing all free variable proxies for currently translated
1254      *  class, as well as its this$n symbol (if needed).
1255      *  Proxy scopes are nested in the same way classes are.
1256      *  Inside a constructor, proxies and any this$n symbol are duplicated
1257      *  in an additional innermost scope, where they represent the constructor
1258      *  parameters.
1259      */
1260     Scope proxies;
1261 
1262     /** A stack containing the this$n field of the currently translated
1263      *  classes (if needed) in innermost first order.
1264      *  Inside a constructor, proxies and any this$n symbol are duplicated
1265      *  in an additional innermost scope, where they represent the constructor
1266      *  parameters.
1267      */
1268     List<VarSymbol> outerThisStack;
1269 
1270     /** The name of a free variable proxy.
1271      */
1272     Name proxyName(Name name) {
1273         return names.fromString("val" + target.syntheticNameChar() + name);
1274     }
1275 
1276     /** Proxy definitions for all free variables in given list, in reverse order.
1277      *  @param pos        The source code position of the definition.
1278      *  @param freevars   The free variables.
1279      *  @param owner      The class in which the definitions go.
1280      */
1281     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
1282         long flags = FINAL | SYNTHETIC;
1283         if (owner.kind == TYP &&
1284             target.usePrivateSyntheticFields())
1285             flags |= PRIVATE;
1286         List<JCVariableDecl> defs = List.nil();
1287         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1288             VarSymbol v = l.head;
1289             VarSymbol proxy = new VarSymbol(
1290                 flags, proxyName(v.name), v.erasure(types), owner);
1291             proxies.enter(proxy);
1292             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1293             vd.vartype = access(vd.vartype);
1294             defs = defs.prepend(vd);
1295         }
1296         return defs;
1297     }
1298 
1299     /** The name of a this$n field
1300      *  @param type   The class referenced by the this$n field
1301      */
1302     Name outerThisName(Type type, Symbol owner) {
1303         Type t = type.getEnclosingType();
1304         int nestingLevel = 0;
1305         while (t.tag == CLASS) {
1306             t = t.getEnclosingType();
1307             nestingLevel++;
1308         }
1309         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1310         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
1311             result = names.fromString(result.toString() + target.syntheticNameChar());
1312         return result;
1313     }
1314 
1315     /** Definition for this$n field.
1316      *  @param pos        The source code position of the definition.
1317      *  @param owner      The class in which the definition goes.
1318      */
1319     JCVariableDecl outerThisDef(int pos, Symbol owner) {
1320         long flags = FINAL | SYNTHETIC;
1321         if (owner.kind == TYP &&
1322             target.usePrivateSyntheticFields())
1323             flags |= PRIVATE;
1324         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
1325         VarSymbol outerThis = new VarSymbol(
1326             flags, outerThisName(target, owner), target, owner);
1327         outerThisStack = outerThisStack.prepend(outerThis);
1328         JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
1329         vd.vartype = access(vd.vartype);
1330         return vd;
1331     }
1332 
1333     /** Return a list of trees that load the free variables in given list,
1334      *  in reverse order.
1335      *  @param pos          The source code position to be used for the trees.
1336      *  @param freevars     The list of free variables.
1337      */
1338     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1339         List<JCExpression> args = List.nil();
1340         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1341             args = args.prepend(loadFreevar(pos, l.head));
1342         return args;
1343     }
1344 //where
1345         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1346             return access(v, make.at(pos).Ident(v), null, false);
1347         }
1348 
1349     /** Construct a tree simulating the expression <C.this>.
1350      *  @param pos           The source code position to be used for the tree.
1351      *  @param c             The qualifier class.
1352      */
1353     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1354         if (currentClass == c) {
1355             // in this case, `this' works fine
1356             return make.at(pos).This(c.erasure(types));
1357         } else {
1358             // need to go via this$n
1359             return makeOuterThis(pos, c);
1360         }
1361     }
1362 
1363     /** Construct a tree that represents the outer instance
1364      *  <C.this>. Never pick the current `this'.
1365      *  @param pos           The source code position to be used for the tree.
1366      *  @param c             The qualifier class.
1367      */
1368     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1369         List<VarSymbol> ots = outerThisStack;
1370         if (ots.isEmpty()) {
1371             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1372             assert false;
1373             return makeNull();
1374         }
1375         VarSymbol ot = ots.head;
1376         JCExpression tree = access(make.at(pos).Ident(ot));
1377         TypeSymbol otc = ot.type.tsym;
1378         while (otc != c) {
1379             do {
1380                 ots = ots.tail;
1381                 if (ots.isEmpty()) {
1382                     log.error(pos,
1383                               "no.encl.instance.of.type.in.scope",
1384                               c);
1385                     assert false; // should have been caught in Attr
1386                     return tree;
1387                 }
1388                 ot = ots.head;
1389             } while (ot.owner != otc);
1390             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1391                 chk.earlyRefError(pos, c);
1392                 assert false; // should have been caught in Attr
1393                 return makeNull();
1394             }
1395             tree = access(make.at(pos).Select(tree, ot));
1396             otc = ot.type.tsym;
1397         }
1398         return tree;
1399     }
1400 
1401     /** Construct a tree that represents the closest outer instance
1402      *  <C.this> such that the given symbol is a member of C.
1403      *  @param pos           The source code position to be used for the tree.
1404      *  @param sym           The accessed symbol.
1405      *  @param preciseMatch  should we accept a type that is a subtype of
1406      *                       sym's owner, even if it doesn't contain sym
1407      *                       due to hiding, overriding, or non-inheritance
1408      *                       due to protection?
1409      */
1410     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1411         Symbol c = sym.owner;
1412         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1413                          : currentClass.isSubClass(sym.owner, types)) {
1414             // in this case, `this' works fine
1415             return make.at(pos).This(c.erasure(types));
1416         } else {
1417             // need to go via this$n
1418             return makeOwnerThisN(pos, sym, preciseMatch);
1419         }
1420     }
1421 
1422     /**
1423      * Similar to makeOwnerThis but will never pick "this".
1424      */
1425     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1426         Symbol c = sym.owner;
1427         List<VarSymbol> ots = outerThisStack;
1428         if (ots.isEmpty()) {
1429             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1430             assert false;
1431             return makeNull();
1432         }
1433         VarSymbol ot = ots.head;
1434         JCExpression tree = access(make.at(pos).Ident(ot));
1435         TypeSymbol otc = ot.type.tsym;
1436         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1437             do {
1438                 ots = ots.tail;
1439                 if (ots.isEmpty()) {
1440                     log.error(pos,
1441                         "no.encl.instance.of.type.in.scope",
1442                         c);
1443                     assert false;
1444                     return tree;
1445                 }
1446                 ot = ots.head;
1447             } while (ot.owner != otc);
1448             tree = access(make.at(pos).Select(tree, ot));
1449             otc = ot.type.tsym;
1450         }
1451         return tree;
1452     }
1453 
1454     /** Return tree simulating the assignment <this.name = name>, where
1455      *  name is the name of a free variable.
1456      */
1457     JCStatement initField(int pos, Name name) {
1458         Scope.Entry e = proxies.lookup(name);
1459         Symbol rhs = e.sym;
1460         assert rhs.owner.kind == MTH;
1461         Symbol lhs = e.next().sym;
1462         assert rhs.owner.owner == lhs.owner;
1463         make.at(pos);
1464         return
1465             make.Exec(
1466                 make.Assign(
1467                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1468                     make.Ident(rhs)).setType(lhs.erasure(types)));
1469     }
1470 
1471     /** Return tree simulating the assignment <this.this$n = this$n>.
1472      */
1473     JCStatement initOuterThis(int pos) {
1474         VarSymbol rhs = outerThisStack.head;
1475         assert rhs.owner.kind == MTH;
1476         VarSymbol lhs = outerThisStack.tail.head;
1477         assert rhs.owner.owner == lhs.owner;
1478         make.at(pos);
1479         return
1480             make.Exec(
1481                 make.Assign(
1482                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1483                     make.Ident(rhs)).setType(lhs.erasure(types)));
1484     }
1485 
1486 /**************************************************************************
1487  * Code for .class
1488  *************************************************************************/
1489 
1490     /** Return the symbol of a class to contain a cache of
1491      *  compiler-generated statics such as class$ and the
1492      *  $assertionsDisabled flag.  We create an anonymous nested class
1493      *  (unless one already exists) and return its symbol.  However,
1494      *  for backward compatibility in 1.4 and earlier we use the
1495      *  top-level class itself.
1496      */
1497     private ClassSymbol outerCacheClass() {
1498         ClassSymbol clazz = outermostClassDef.sym;
1499         if ((clazz.flags() & INTERFACE) == 0 &&
1500             !target.useInnerCacheClass()) return clazz;
1501         Scope s = clazz.members();
1502         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
1503             if (e.sym.kind == TYP &&
1504                 e.sym.name == names.empty &&
1505                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
1506         return makeEmptyClass(STATIC | SYNTHETIC, clazz);
1507     }
1508 
1509     /** Return symbol for "class$" method. If there is no method definition
1510      *  for class$, construct one as follows:
1511      *
1512      *    class class$(String x0) {
1513      *      try {
1514      *        return Class.forName(x0);
1515      *      } catch (ClassNotFoundException x1) {
1516      *        throw new NoClassDefFoundError(x1.getMessage());
1517      *      }
1518      *    }
1519      */
1520     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
1521         ClassSymbol outerCacheClass = outerCacheClass();
1522         MethodSymbol classDollarSym =
1523             (MethodSymbol)lookupSynthetic(classDollar,
1524                                           outerCacheClass.members());
1525         if (classDollarSym == null) {
1526             classDollarSym = new MethodSymbol(
1527                 STATIC | SYNTHETIC,
1528                 classDollar,
1529                 new MethodType(
1530                     List.of(syms.stringType),
1531                     types.erasure(syms.classType),
1532                     List.<Type>nil(),
1533                     syms.methodClass),
1534                 outerCacheClass);
1535             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
1536 
1537             JCMethodDecl md = make.MethodDef(classDollarSym, null);
1538             try {
1539                 md.body = classDollarSymBody(pos, md);
1540             } catch (CompletionFailure ex) {
1541                 md.body = make.Block(0, List.<JCStatement>nil());
1542                 chk.completionError(pos, ex);
1543             }
1544             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1545             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
1546         }
1547         return classDollarSym;
1548     }
1549 
1550     /** Generate code for class$(String name). */
1551     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
1552         MethodSymbol classDollarSym = md.sym;
1553         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
1554 
1555         JCBlock returnResult;
1556 
1557         // in 1.4.2 and above, we use
1558         // Class.forName(String name, boolean init, ClassLoader loader);
1559         // which requires we cache the current loader in cl$
1560         if (target.classLiteralsNoInit()) {
1561             // clsym = "private static ClassLoader cl$"
1562             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
1563                                             names.fromString("cl" + target.syntheticNameChar()),
1564                                             syms.classLoaderType,
1565                                             outerCacheClass);
1566             enterSynthetic(pos, clsym, outerCacheClass.members());
1567 
1568             // emit "private static ClassLoader cl$;"
1569             JCVariableDecl cldef = make.VarDef(clsym, null);
1570             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1571             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
1572 
1573             // newcache := "new cache$1[0]"
1574             JCNewArray newcache = make.
1575                 NewArray(make.Type(outerCacheClass.type),
1576                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
1577                          null);
1578             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
1579                                           syms.arrayClass);
1580 
1581             // forNameSym := java.lang.Class.forName(
1582             //     String s,boolean init,ClassLoader loader)
1583             Symbol forNameSym = lookupMethod(make_pos, names.forName,
1584                                              types.erasure(syms.classType),
1585                                              List.of(syms.stringType,
1586                                                      syms.booleanType,
1587                                                      syms.classLoaderType));
1588             // clvalue := "(cl$ == null) ?
1589             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
1590             JCExpression clvalue =
1591                 make.Conditional(
1592                     makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
1593                     make.Assign(
1594                         make.Ident(clsym),
1595                         makeCall(
1596                             makeCall(makeCall(newcache,
1597                                               names.getClass,
1598                                               List.<JCExpression>nil()),
1599                                      names.getComponentType,
1600                                      List.<JCExpression>nil()),
1601                             names.getClassLoader,
1602                             List.<JCExpression>nil())).setType(syms.classLoaderType),
1603                     make.Ident(clsym)).setType(syms.classLoaderType);
1604 
1605             // returnResult := "{ return Class.forName(param1, false, cl$); }"
1606             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
1607                                               makeLit(syms.booleanType, 0),
1608                                               clvalue);
1609             returnResult = make.
1610                 Block(0, List.<JCStatement>of(make.
1611                               Call(make. // return
1612                                    App(make.
1613                                        Ident(forNameSym), args))));
1614         } else {
1615             // forNameSym := java.lang.Class.forName(String s)
1616             Symbol forNameSym = lookupMethod(make_pos,
1617                                              names.forName,
1618                                              types.erasure(syms.classType),
1619                                              List.of(syms.stringType));
1620             // returnResult := "{ return Class.forName(param1); }"
1621             returnResult = make.
1622                 Block(0, List.of(make.
1623                           Call(make. // return
1624                               App(make.
1625                                   QualIdent(forNameSym),
1626                                   List.<JCExpression>of(make.
1627                                                         Ident(md.params.
1628                                                               head.sym))))));
1629         }
1630 
1631         // catchParam := ClassNotFoundException e1
1632         VarSymbol catchParam =
1633             new VarSymbol(0, make.paramName(1),
1634                           syms.classNotFoundExceptionType,
1635                           classDollarSym);
1636 
1637         JCStatement rethrow;
1638         if (target.hasInitCause()) {
1639             // rethrow = "throw new NoClassDefFoundError().initCause(e);
1640             JCTree throwExpr =
1641                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
1642                                       List.<JCExpression>nil()),
1643                          names.initCause,
1644                          List.<JCExpression>of(make.Ident(catchParam)));
1645             rethrow = make.Throw(throwExpr);
1646         } else {
1647             // getMessageSym := ClassNotFoundException.getMessage()
1648             Symbol getMessageSym = lookupMethod(make_pos,
1649                                                 names.getMessage,
1650                                                 syms.classNotFoundExceptionType,
1651                                                 List.<Type>nil());
1652             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
1653             rethrow = make.
1654                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
1655                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
1656                                                                      getMessageSym),
1657                                                          List.<JCExpression>nil()))));
1658         }
1659 
1660         // rethrowStmt := "( $rethrow )"
1661         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
1662 
1663         // catchBlock := "catch ($catchParam) $rethrowStmt"
1664         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
1665                                       rethrowStmt);
1666 
1667         // tryCatch := "try $returnResult $catchBlock"
1668         JCStatement tryCatch = make.Try(returnResult,
1669                                         List.of(catchBlock), null);
1670 
1671         return make.Block(0, List.of(tryCatch));
1672     }
1673     // where
1674         /** Create an attributed tree of the form left.name(). */
1675         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
1676             assert left.type != null;
1677             Symbol funcsym = lookupMethod(make_pos, name, left.type,
1678                                           TreeInfo.types(args));
1679             return make.App(make.Select(left, funcsym), args);
1680         }
1681 
1682     /** The Name Of The variable to cache T.class values.
1683      *  @param sig      The signature of type T.
1684      */
1685     private Name cacheName(String sig) {
1686         StringBuffer buf = new StringBuffer();
1687         if (sig.startsWith("[")) {
1688             buf = buf.append("array");
1689             while (sig.startsWith("[")) {
1690                 buf = buf.append(target.syntheticNameChar());
1691                 sig = sig.substring(1);
1692             }
1693             if (sig.startsWith("L")) {
1694                 sig = sig.substring(0, sig.length() - 1);
1695             }
1696         } else {
1697             buf = buf.append("class" + target.syntheticNameChar());
1698         }
1699         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
1700         return names.fromString(buf.toString());
1701     }
1702 
1703     /** The variable symbol that caches T.class values.
1704      *  If none exists yet, create a definition.
1705      *  @param sig      The signature of type T.
1706      *  @param pos      The position to report diagnostics, if any.
1707      */
1708     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
1709         ClassSymbol outerCacheClass = outerCacheClass();
1710         Name cname = cacheName(sig);
1711         VarSymbol cacheSym =
1712             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
1713         if (cacheSym == null) {
1714             cacheSym = new VarSymbol(
1715                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
1716             enterSynthetic(pos, cacheSym, outerCacheClass.members());
1717 
1718             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
1719             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1720             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
1721         }
1722         return cacheSym;
1723     }
1724 
1725     /** The tree simulating a T.class expression.
1726      *  @param clazz      The tree identifying type T.
1727      */
1728     private JCExpression classOf(JCTree clazz) {
1729         return classOfType(clazz.type, clazz.pos());
1730     }
1731 
1732     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
1733         switch (type.tag) {
1734         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
1735         case DOUBLE: case BOOLEAN: case VOID:
1736             // replace with <BoxedClass>.TYPE
1737             ClassSymbol c = types.boxedClass(type);
1738             Symbol typeSym =
1739                 rs.access(
1740                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
1741                     pos, c.type, names.TYPE, true);
1742             if (typeSym.kind == VAR)
1743                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
1744             return make.QualIdent(typeSym);
1745         case CLASS: case ARRAY:
1746             if (target.hasClassLiterals()) {
1747                 VarSymbol sym = new VarSymbol(
1748                         STATIC | PUBLIC | FINAL, names._class,
1749                         syms.classType, type.tsym);
1750                 return make_at(pos).Select(make.Type(type), sym);
1751             }
1752             // replace with <cache == null ? cache = class$(tsig) : cache>
1753             // where
1754             //  - <tsig>  is the type signature of T,
1755             //  - <cache> is the cache variable for tsig.
1756             String sig =
1757                 writer.xClassName(type).toString().replace('/', '.');
1758             Symbol cs = cacheSym(pos, sig);
1759             return make_at(pos).Conditional(
1760                 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
1761                 make.Assign(
1762                     make.Ident(cs),
1763                     make.App(
1764                         make.Ident(classDollarSym(pos)),
1765                         List.<JCExpression>of(make.Literal(CLASS, sig)
1766                                               .setType(syms.stringType))))
1767                 .setType(types.erasure(syms.classType)),
1768                 make.Ident(cs)).setType(types.erasure(syms.classType));
1769         default:
1770             throw new AssertionError();
1771         }
1772     }
1773 
1774 /**************************************************************************
1775  * Code for enabling/disabling assertions.
1776  *************************************************************************/
1777 
1778     // This code is not particularly robust if the user has
1779     // previously declared a member named '$assertionsDisabled'.
1780     // The same faulty idiom also appears in the translation of
1781     // class literals above.  We should report an error if a
1782     // previous declaration is not synthetic.
1783 
1784     private JCExpression assertFlagTest(DiagnosticPosition pos) {
1785         // Outermost class may be either true class or an interface.
1786         ClassSymbol outermostClass = outermostClassDef.sym;
1787 
1788         // note that this is a class, as an interface can't contain a statement.
1789         ClassSymbol container = currentClass;
1790 
1791         VarSymbol assertDisabledSym =
1792             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
1793                                        container.members());
1794         if (assertDisabledSym == null) {
1795             assertDisabledSym =
1796                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
1797                               dollarAssertionsDisabled,
1798                               syms.booleanType,
1799                               container);
1800             enterSynthetic(pos, assertDisabledSym, container.members());
1801             Symbol desiredAssertionStatusSym = lookupMethod(pos,
1802                                                             names.desiredAssertionStatus,
1803                                                             types.erasure(syms.classType),
1804                                                             List.<Type>nil());
1805             JCClassDecl containerDef = classDef(container);
1806             make_at(containerDef.pos());
1807             JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
1808                     classOfType(types.erasure(outermostClass.type),
1809                                 containerDef.pos()),
1810                     desiredAssertionStatusSym)));
1811             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
1812                                                    notStatus);
1813             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
1814         }
1815         make_at(pos);
1816         return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
1817     }
1818 
1819 
1820 /**************************************************************************
1821  * Building blocks for let expressions
1822  *************************************************************************/
1823 
1824     interface TreeBuilder {
1825         JCTree build(JCTree arg);
1826     }
1827 
1828     /** Construct an expression using the builder, with the given rval
1829      *  expression as an argument to the builder.  However, the rval
1830      *  expression must be computed only once, even if used multiple
1831      *  times in the result of the builder.  We do that by
1832      *  constructing a "let" expression that saves the rvalue into a
1833      *  temporary variable and then uses the temporary variable in
1834      *  place of the expression built by the builder.  The complete
1835      *  resulting expression is of the form
1836      *  <pre>
1837      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
1838      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
1839      *  </pre>
1840      *  where <code><b>TEMP</b></code> is a newly declared variable
1841      *  in the let expression.
1842      */
1843     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
1844         rval = TreeInfo.skipParens(rval);
1845         switch (rval.getTag()) {
1846         case JCTree.LITERAL:
1847             return builder.build(rval);
1848         case JCTree.IDENT:
1849             JCIdent id = (JCIdent) rval;
1850             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
1851                 return builder.build(rval);
1852         }
1853         VarSymbol var =
1854             new VarSymbol(FINAL|SYNTHETIC,
1855                           names.fromString(
1856                                           target.syntheticNameChar()
1857                                           + "" + rval.hashCode()),
1858                                       type,
1859                                       currentMethodSym);
1860         rval = convert(rval,type);
1861         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
1862         JCTree built = builder.build(make.Ident(var));
1863         JCTree res = make.LetExpr(def, built);
1864         res.type = built.type;
1865         return res;
1866     }
1867 
1868     // same as above, with the type of the temporary variable computed
1869     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
1870         return abstractRval(rval, rval.type, builder);
1871     }
1872 
1873     // same as above, but for an expression that may be used as either
1874     // an rvalue or an lvalue.  This requires special handling for
1875     // Select expressions, where we place the left-hand-side of the
1876     // select in a temporary, and for Indexed expressions, where we
1877     // place both the indexed expression and the index value in temps.
1878     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
1879         lval = TreeInfo.skipParens(lval);
1880         switch (lval.getTag()) {
1881         case JCTree.IDENT:
1882             return builder.build(lval);
1883         case JCTree.SELECT: {
1884             final JCFieldAccess s = (JCFieldAccess)lval;
1885             JCTree selected = TreeInfo.skipParens(s.selected);
1886             Symbol lid = TreeInfo.symbol(s.selected);
1887             if (lid != null && lid.kind == TYP) return builder.build(lval);
1888             return abstractRval(s.selected, new TreeBuilder() {
1889                     public JCTree build(final JCTree selected) {
1890                         return builder.build(make.Select((JCExpression)selected, s.sym));
1891                     }
1892                 });
1893         }
1894         case JCTree.INDEXED: {
1895             final JCArrayAccess i = (JCArrayAccess)lval;
1896             return abstractRval(i.indexed, new TreeBuilder() {
1897                     public JCTree build(final JCTree indexed) {
1898                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
1899                                 public JCTree build(final JCTree index) {
1900                                     JCTree newLval = make.Indexed((JCExpression)indexed,
1901                                                                 (JCExpression)index);
1902                                     newLval.setType(i.type);
1903                                     return builder.build(newLval);
1904                                 }
1905                             });
1906                     }
1907                 });
1908         }
1909         case JCTree.TYPECAST: {
1910             return abstractLval(((JCTypeCast)lval).expr, builder);
1911         }
1912         }
1913         throw new AssertionError(lval);
1914     }
1915 
1916     // evaluate and discard the first expression, then evaluate the second.
1917     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
1918         return abstractRval(expr1, new TreeBuilder() {
1919                 public JCTree build(final JCTree discarded) {
1920                     return expr2;
1921                 }
1922             });
1923     }
1924 
1925 /**************************************************************************
1926  * Translation methods
1927  *************************************************************************/
1928 
1929     /** Visitor argument: enclosing operator node.
1930      */
1931     private JCExpression enclOp;
1932 
1933     /** Visitor method: Translate a single node.
1934      *  Attach the source position from the old tree to its replacement tree.
1935      */
1936     public <T extends JCTree> T translate(T tree) {
1937         if (tree == null) {
1938             return null;
1939         } else {
1940             make_at(tree.pos());
1941             T result = super.translate(tree);
1942             if (endPositions != null && result != tree) {
1943                 Integer endPos = endPositions.remove(tree);
1944                 if (endPos != null) endPositions.put(result, endPos);
1945             }
1946             return result;
1947         }
1948     }
1949 
1950     /** Visitor method: Translate a single node, boxing or unboxing if needed.
1951      */
1952     public <T extends JCTree> T translate(T tree, Type type) {
1953         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
1954     }
1955 
1956     /** Visitor method: Translate tree.
1957      */
1958     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
1959         JCExpression prevEnclOp = this.enclOp;
1960         this.enclOp = enclOp;
1961         T res = translate(tree);
1962         this.enclOp = prevEnclOp;
1963         return res;
1964     }
1965 
1966     /** Visitor method: Translate list of trees.
1967      */
1968     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
1969         JCExpression prevEnclOp = this.enclOp;
1970         this.enclOp = enclOp;
1971         List<T> res = translate(trees);
1972         this.enclOp = prevEnclOp;
1973         return res;
1974     }
1975 
1976     /** Visitor method: Translate list of trees.
1977      */
1978     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
1979         if (trees == null) return null;
1980         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
1981             l.head = translate(l.head, type);
1982         return trees;
1983     }
1984 
1985     public void visitTopLevel(JCCompilationUnit tree) {
1986         if (tree.packageAnnotations.nonEmpty()) {
1987             Name name = names.package_info;
1988             long flags = Flags.ABSTRACT | Flags.INTERFACE;
1989             if (target.isPackageInfoSynthetic())
1990                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
1991                 flags = flags | Flags.SYNTHETIC;
1992             JCClassDecl packageAnnotationsClass
1993                 = make.ClassDef(make.Modifiers(flags,
1994                                                tree.packageAnnotations),
1995                                 name, List.<JCTypeParameter>nil(),
1996                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
1997             ClassSymbol c = reader.enterClass(name, tree.packge);
1998             c.flatname = names.fromString(tree.packge + "." + name);
1999             c.sourcefile = tree.sourcefile;
2000             c.completer = null;
2001             c.members_field = new Scope(c);
2002             c.flags_field = flags;
2003             c.attributes_field = tree.packge.attributes_field;
2004             ClassType ctype = (ClassType) c.type;
2005             ctype.supertype_field = syms.objectType;
2006             ctype.interfaces_field = List.nil();
2007             packageAnnotationsClass.sym = c;
2008 
2009 
2010             translated.append(packageAnnotationsClass);
2011         }
2012     }
2013 
2014     public void visitClassDef(JCClassDecl tree) {
2015         ClassSymbol currentClassPrev = currentClass;
2016         MethodSymbol currentMethodSymPrev = currentMethodSym;
2017         currentClass = tree.sym;
2018         currentMethodSym = null;
2019         classdefs.put(currentClass, tree);
2020 
2021         proxies = proxies.dup(currentClass);
2022         List<VarSymbol> prevOuterThisStack = outerThisStack;
2023 
2024         // If this is an enum definition
2025         if ((tree.mods.flags & ENUM) != 0 &&
2026             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2027             visitEnumDef(tree);
2028 
2029         // If this is a nested class, define a this$n field for
2030         // it and add to proxies.
2031         JCVariableDecl otdef = null;
2032         if (currentClass.hasOuterInstance())
2033             otdef = outerThisDef(tree.pos, currentClass);
2034 
2035         // If this is a local class, define proxies for all its free variables.
2036         List<JCVariableDecl> fvdefs = freevarDefs(
2037             tree.pos, freevars(currentClass), currentClass);
2038 
2039         // Recursively translate superclass, interfaces.
2040         tree.extending = translate(tree.extending);
2041         tree.implementing = translate(tree.implementing);
2042 
2043         // Recursively translate members, taking into account that new members
2044         // might be created during the translation and prepended to the member
2045         // list `tree.defs'.
2046         List<JCTree> seen = List.nil();
2047         while (tree.defs != seen) {
2048             List<JCTree> unseen = tree.defs;
2049             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2050                 JCTree outermostMemberDefPrev = outermostMemberDef;
2051                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2052                 l.head = translate(l.head);
2053                 outermostMemberDef = outermostMemberDefPrev;
2054             }
2055             seen = unseen;
2056         }
2057 
2058         // Convert a protected modifier to public, mask static modifier.
2059         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2060         tree.mods.flags &= ClassFlags;
2061 
2062         // Convert name to flat representation, replacing '.' by '$'.
2063         tree.name = Convert.shortName(currentClass.flatName());
2064 
2065         // Add this$n and free variables proxy definitions to class.
2066         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2067             tree.defs = tree.defs.prepend(l.head);
2068             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2069         }
2070         if (currentClass.hasOuterInstance()) {
2071             tree.defs = tree.defs.prepend(otdef);
2072             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2073         }
2074 
2075         proxies = proxies.leave();
2076         outerThisStack = prevOuterThisStack;
2077 
2078         // Append translated tree to `translated' queue.
2079         translated.append(tree);
2080 
2081         currentClass = currentClassPrev;
2082         currentMethodSym = currentMethodSymPrev;
2083 
2084         // Return empty block {} as a placeholder for an inner class.
2085         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
2086     }
2087 
2088     /** Translate an enum class. */
2089     private void visitEnumDef(JCClassDecl tree) {
2090         make_at(tree.pos());
2091 
2092         // add the supertype, if needed
2093         if (tree.extending == null)
2094             tree.extending = make.Type(types.supertype(tree.type));
2095 
2096         // classOfType adds a cache field to tree.defs unless
2097         // target.hasClassLiterals().
2098         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2099             setType(types.erasure(syms.classType));
2100 
2101         // process each enumeration constant, adding implicit constructor parameters
2102         int nextOrdinal = 0;
2103         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
2104         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
2105         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
2106         for (List<JCTree> defs = tree.defs;
2107              defs.nonEmpty();
2108              defs=defs.tail) {
2109             if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2110                 JCVariableDecl var = (JCVariableDecl)defs.head;
2111                 visitEnumConstantDef(var, nextOrdinal++);
2112                 values.append(make.QualIdent(var.sym));
2113                 enumDefs.append(var);
2114             } else {
2115                 otherDefs.append(defs.head);
2116             }
2117         }
2118 
2119         // private static final T[] #VALUES = { a, b, c };
2120         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
2121         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
2122             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2123         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2124         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2125                                             valuesName,
2126                                             arrayType,
2127                                             tree.type.tsym);
2128         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2129                                           List.<JCExpression>nil(),
2130                                           values.toList());
2131         newArray.type = arrayType;
2132         enumDefs.append(make.VarDef(valuesVar, newArray));
2133         tree.sym.members().enter(valuesVar);
2134 
2135         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
2136                                         tree.type, List.<Type>nil());
2137         List<JCStatement> valuesBody;
2138         if (useClone()) {
2139             // return (T[]) $VALUES.clone();
2140             JCTypeCast valuesResult =
2141                 make.TypeCast(valuesSym.type.getReturnType(),
2142                               make.App(make.Select(make.Ident(valuesVar),
2143                                                    syms.arrayCloneMethod)));
2144             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
2145         } else {
2146             // template: T[] $result = new T[$values.length];
2147             Name resultName = names.fromString(target.syntheticNameChar() + "result");
2148             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
2149                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
2150             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2151                                                 resultName,
2152                                                 arrayType,
2153                                                 valuesSym);
2154             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2155                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2156                                   null);
2157             resultArray.type = arrayType;
2158             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2159 
2160             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2161             if (systemArraycopyMethod == null) {
2162                 systemArraycopyMethod =
2163                     new MethodSymbol(PUBLIC | STATIC,
2164                                      names.fromString("arraycopy"),
2165                                      new MethodType(List.<Type>of(syms.objectType,
2166                                                             syms.intType,
2167                                                             syms.objectType,
2168                                                             syms.intType,
2169                                                             syms.intType),
2170                                                     syms.voidType,
2171                                                     List.<Type>nil(),
2172                                                     syms.methodClass),
2173                                      syms.systemType.tsym);
2174             }
2175             JCStatement copy =
2176                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2177                                                systemArraycopyMethod),
2178                           List.of(make.Ident(valuesVar), make.Literal(0),
2179                                   make.Ident(resultVar), make.Literal(0),
2180                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2181 
2182             // template: return $result;
2183             JCStatement ret = make.Return(make.Ident(resultVar));
2184             valuesBody = List.<JCStatement>of(decl, copy, ret);
2185         }
2186 
2187         JCMethodDecl valuesDef =
2188              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
2189 
2190         enumDefs.append(valuesDef);
2191 
2192         if (debugLower)
2193             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2194 
2195         /** The template for the following code is:
2196          *
2197          *     public static E valueOf(String name) {
2198          *         return (E)Enum.valueOf(E.class, name);
2199          *     }
2200          *
2201          *  where E is tree.sym
2202          */
2203         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2204                          names.valueOf,
2205                          tree.sym.type,
2206                          List.of(syms.stringType));
2207         assert (valueOfSym.flags() & STATIC) != 0;
2208         VarSymbol nameArgSym = valueOfSym.params.head;
2209         JCIdent nameVal = make.Ident(nameArgSym);
2210         JCStatement enum_ValueOf =
2211             make.Return(make.TypeCast(tree.sym.type,
2212                                       makeCall(make.Ident(syms.enumSym),
2213                                                names.valueOf,
2214                                                List.of(e_class, nameVal))));
2215         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2216                                            make.Block(0, List.of(enum_ValueOf)));
2217         nameVal.sym = valueOf.params.head.sym;
2218         if (debugLower)
2219             System.err.println(tree.sym + ".valueOf = " + valueOf);
2220         enumDefs.append(valueOf);
2221 
2222         enumDefs.appendList(otherDefs.toList());
2223         tree.defs = enumDefs.toList();
2224 
2225         // Add the necessary members for the EnumCompatibleMode
2226         if (target.compilerBootstrap(tree.sym)) {
2227             addEnumCompatibleMembers(tree);
2228         }
2229     }
2230         // where
2231         private MethodSymbol systemArraycopyMethod;
2232         private boolean useClone() {
2233             try {
2234                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
2235                 return (e.sym != null);
2236             }
2237             catch (CompletionFailure e) {
2238                 return false;
2239             }
2240         }
2241 
2242     /** Translate an enumeration constant and its initializer. */
2243     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2244         JCNewClass varDef = (JCNewClass)var.init;
2245         varDef.args = varDef.args.
2246             prepend(makeLit(syms.intType, ordinal)).
2247             prepend(makeLit(syms.stringType, var.name.toString()));
2248     }
2249 
2250     public void visitMethodDef(JCMethodDecl tree) {
2251         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2252             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2253             // argument list for each constructor of an enum.
2254             JCVariableDecl nameParam = make_at(tree.pos()).
2255                 Param(names.fromString(target.syntheticNameChar() +
2256                                        "enum" + target.syntheticNameChar() + "name"),
2257                       syms.stringType, tree.sym);
2258             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2259 
2260             JCVariableDecl ordParam = make.
2261                 Param(names.fromString(target.syntheticNameChar() +
2262                                        "enum" + target.syntheticNameChar() +
2263                                        "ordinal"),
2264                       syms.intType, tree.sym);
2265             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2266 
2267             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2268 
2269             MethodSymbol m = tree.sym;
2270             Type olderasure = m.erasure(types);
2271             m.erasure_field = new MethodType(
2272                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2273                 olderasure.getReturnType(),
2274                 olderasure.getThrownTypes(),
2275                 syms.methodClass);
2276 
2277             if (target.compilerBootstrap(m.owner)) {
2278                 // Initialize synthetic name field
2279                 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
2280                                                     tree.sym.owner.members());
2281                 JCIdent nameIdent = make.Ident(nameParam.sym);
2282                 JCIdent id1 = make.Ident(nameVarSym);
2283                 JCAssign newAssign = make.Assign(id1, nameIdent);
2284                 newAssign.type = id1.type;
2285                 JCExpressionStatement nameAssign = make.Exec(newAssign);
2286                 nameAssign.type = id1.type;
2287                 tree.body.stats = tree.body.stats.prepend(nameAssign);
2288 
2289                 // Initialize synthetic ordinal field
2290                 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
2291                                                        tree.sym.owner.members());
2292                 JCIdent ordIdent = make.Ident(ordParam.sym);
2293                 id1 = make.Ident(ordinalVarSym);
2294                 newAssign = make.Assign(id1, ordIdent);
2295                 newAssign.type = id1.type;
2296                 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
2297                 ordinalAssign.type = id1.type;
2298                 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
2299             }
2300         }
2301 
2302         JCMethodDecl prevMethodDef = currentMethodDef;
2303         MethodSymbol prevMethodSym = currentMethodSym;
2304         try {
2305             currentMethodDef = tree;
2306             currentMethodSym = tree.sym;
2307             visitMethodDefInternal(tree);
2308         } finally {
2309             currentMethodDef = prevMethodDef;
2310             currentMethodSym = prevMethodSym;
2311         }
2312     }
2313     //where
2314     private void visitMethodDefInternal(JCMethodDecl tree) {
2315         if (tree.name == names.init &&
2316             (currentClass.isInner() ||
2317              (currentClass.owner.kind & (VAR | MTH)) != 0)) {
2318             // We are seeing a constructor of an inner class.
2319             MethodSymbol m = tree.sym;
2320 
2321             // Push a new proxy scope for constructor parameters.
2322             // and create definitions for any this$n and proxy parameters.
2323             proxies = proxies.dup(m);
2324             List<VarSymbol> prevOuterThisStack = outerThisStack;
2325             List<VarSymbol> fvs = freevars(currentClass);
2326             JCVariableDecl otdef = null;
2327             if (currentClass.hasOuterInstance())
2328                 otdef = outerThisDef(tree.pos, m);
2329             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
2330 
2331             // Recursively translate result type, parameters and thrown list.
2332             tree.restype = translate(tree.restype);
2333             tree.params = translateVarDefs(tree.params);
2334             tree.thrown = translate(tree.thrown);
2335 
2336             // when compiling stubs, don't process body
2337             if (tree.body == null) {
2338                 result = tree;
2339                 return;
2340             }
2341 
2342             // Add this$n (if needed) in front of and free variables behind
2343             // constructor parameter list.
2344             tree.params = tree.params.appendList(fvdefs);
2345             if (currentClass.hasOuterInstance())
2346                 tree.params = tree.params.prepend(otdef);
2347 
2348             // If this is an initial constructor, i.e., it does not start with
2349             // this(...), insert initializers for this$n and proxies
2350             // before (pre-1.4, after) the call to superclass constructor.
2351             JCStatement selfCall = translate(tree.body.stats.head);
2352 
2353             List<JCStatement> added = List.nil();
2354             if (fvs.nonEmpty()) {
2355                 List<Type> addedargtypes = List.nil();
2356                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2357                     if (TreeInfo.isInitialConstructor(tree))
2358                         added = added.prepend(
2359                             initField(tree.body.pos, proxyName(l.head.name)));
2360                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2361                 }
2362                 Type olderasure = m.erasure(types);
2363                 m.erasure_field = new MethodType(
2364                     olderasure.getParameterTypes().appendList(addedargtypes),
2365                     olderasure.getReturnType(),
2366                     olderasure.getThrownTypes(),
2367                     syms.methodClass);
2368             }
2369             if (currentClass.hasOuterInstance() &&
2370                 TreeInfo.isInitialConstructor(tree))
2371             {
2372                 added = added.prepend(initOuterThis(tree.body.pos));
2373             }
2374 
2375             // pop local variables from proxy stack
2376             proxies = proxies.leave();
2377 
2378             // recursively translate following local statements and
2379             // combine with this- or super-call
2380             List<JCStatement> stats = translate(tree.body.stats.tail);
2381             if (target.initializeFieldsBeforeSuper())
2382                 tree.body.stats = stats.prepend(selfCall).prependList(added);
2383             else
2384                 tree.body.stats = stats.prependList(added).prepend(selfCall);
2385 
2386             outerThisStack = prevOuterThisStack;
2387         } else {
2388             super.visitMethodDef(tree);
2389         }
2390         result = tree;
2391     }
2392 
2393     public void visitAnnotatedType(JCAnnotatedType tree) {
2394         tree.underlyingType = translate(tree.underlyingType);
2395         result = tree.underlyingType;
2396     }
2397 
2398     public void visitTypeCast(JCTypeCast tree) {
2399         tree.clazz = translate(tree.clazz);
2400         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2401             tree.expr = translate(tree.expr, tree.type);
2402         else
2403             tree.expr = translate(tree.expr);
2404         result = tree;
2405     }
2406 
2407     public void visitNewClass(JCNewClass tree) {
2408         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
2409 
2410         // Box arguments, if necessary
2411         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
2412         List<Type> argTypes = tree.constructor.type.getParameterTypes();
2413         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
2414         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
2415         tree.varargsElement = null;
2416 
2417         // If created class is local, add free variables after
2418         // explicit constructor arguments.
2419         if ((c.owner.kind & (VAR | MTH)) != 0) {
2420             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2421         }
2422 
2423         // If an access constructor is used, append null as a last argument.
2424         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
2425         if (constructor != tree.constructor) {
2426             tree.args = tree.args.append(makeNull());
2427             tree.constructor = constructor;
2428         }
2429 
2430         // If created class has an outer instance, and new is qualified, pass
2431         // qualifier as first argument. If new is not qualified, pass the
2432         // correct outer instance as first argument.
2433         if (c.hasOuterInstance()) {
2434             JCExpression thisArg;
2435             if (tree.encl != null) {
2436                 thisArg = attr.makeNullCheck(translate(tree.encl));
2437                 thisArg.type = tree.encl.type;
2438             } else if ((c.owner.kind & (MTH | VAR)) != 0) {
2439                 // local class
2440                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
2441             } else {
2442                 // nested class
2443                 thisArg = makeOwnerThis(tree.pos(), c, false);
2444             }
2445             tree.args = tree.args.prepend(thisArg);
2446         }
2447         tree.encl = null;
2448 
2449         // If we have an anonymous class, create its flat version, rather
2450         // than the class or interface following new.
2451         if (tree.def != null) {
2452             translate(tree.def);
2453             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
2454             tree.def = null;
2455         } else {
2456             tree.clazz = access(c, tree.clazz, enclOp, false);
2457         }
2458         result = tree;
2459     }
2460 
2461     // Simplify conditionals with known constant controlling expressions.
2462     // This allows us to avoid generating supporting declarations for
2463     // the dead code, which will not be eliminated during code generation.
2464     // Note that Flow.isFalse and Flow.isTrue only return true
2465     // for constant expressions in the sense of JLS 15.27, which
2466     // are guaranteed to have no side-effects.  More aggressive
2467     // constant propagation would require that we take care to
2468     // preserve possible side-effects in the condition expression.
2469 
2470     /** Visitor method for conditional expressions.
2471      */
2472     public void visitConditional(JCConditional tree) {
2473         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2474         if (cond.type.isTrue()) {
2475             result = convert(translate(tree.truepart, tree.type), tree.type);
2476         } else if (cond.type.isFalse()) {
2477             result = convert(translate(tree.falsepart, tree.type), tree.type);
2478         } else {
2479             // Condition is not a compile-time constant.
2480             tree.truepart = translate(tree.truepart, tree.type);
2481             tree.falsepart = translate(tree.falsepart, tree.type);
2482             result = tree;
2483         }
2484     }
2485 //where
2486         private JCTree convert(JCTree tree, Type pt) {
2487             if (tree.type == pt) return tree;
2488             JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
2489             result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
2490                                                            : pt;
2491             return result;
2492         }
2493 
2494     /** Visitor method for if statements.
2495      */
2496     public void visitIf(JCIf tree) {
2497         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2498         if (cond.type.isTrue()) {
2499             result = translate(tree.thenpart);
2500         } else if (cond.type.isFalse()) {
2501             if (tree.elsepart != null) {
2502                 result = translate(tree.elsepart);
2503             } else {
2504                 result = make.Skip();
2505             }
2506         } else {
2507             // Condition is not a compile-time constant.
2508             tree.thenpart = translate(tree.thenpart);
2509             tree.elsepart = translate(tree.elsepart);
2510             result = tree;
2511         }
2512     }
2513 
2514     /** Visitor method for assert statements. Translate them away.
2515      */
2516     public void visitAssert(JCAssert tree) {
2517         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
2518         tree.cond = translate(tree.cond, syms.booleanType);
2519         if (!tree.cond.type.isTrue()) {
2520             JCExpression cond = assertFlagTest(tree.pos());
2521             List<JCExpression> exnArgs = (tree.detail == null) ?
2522                 List.<JCExpression>nil() : List.of(translate(tree.detail));
2523             if (!tree.cond.type.isFalse()) {
2524                 cond = makeBinary
2525                     (JCTree.AND,
2526                      cond,
2527                      makeUnary(JCTree.NOT, tree.cond));
2528             }
2529             result =
2530                 make.If(cond,
2531                         make_at(detailPos).
2532                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
2533                         null);
2534         } else {
2535             result = make.Skip();
2536         }
2537     }
2538 
2539     public void visitApply(JCMethodInvocation tree) {
2540         Symbol meth = TreeInfo.symbol(tree.meth);
2541         List<Type> argtypes = meth.type.getParameterTypes();
2542         if (allowEnums &&
2543             meth.name==names.init &&
2544             meth.owner == syms.enumSym)
2545             argtypes = argtypes.tail.tail;
2546         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
2547         tree.varargsElement = null;
2548         Name methName = TreeInfo.name(tree.meth);
2549         if (meth.name==names.init) {
2550             // We are seeing a this(...) or super(...) constructor call.
2551             // If an access constructor is used, append null as a last argument.
2552             Symbol constructor = accessConstructor(tree.pos(), meth);
2553             if (constructor != meth) {
2554                 tree.args = tree.args.append(makeNull());
2555                 TreeInfo.setSymbol(tree.meth, constructor);
2556             }
2557 
2558             // If we are calling a constructor of a local class, add
2559             // free variables after explicit constructor arguments.
2560             ClassSymbol c = (ClassSymbol)constructor.owner;
2561             if ((c.owner.kind & (VAR | MTH)) != 0) {
2562                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2563             }
2564 
2565             // If we are calling a constructor of an enum class, pass
2566             // along the name and ordinal arguments
2567             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
2568                 List<JCVariableDecl> params = currentMethodDef.params;
2569                 if (currentMethodSym.owner.hasOuterInstance())
2570                     params = params.tail; // drop this$n
2571                 tree.args = tree.args
2572                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
2573                     .prepend(make.Ident(params.head.sym)); // name
2574             }
2575 
2576             // If we are calling a constructor of a class with an outer
2577             // instance, and the call
2578             // is qualified, pass qualifier as first argument in front of
2579             // the explicit constructor arguments. If the call
2580             // is not qualified, pass the correct outer instance as
2581             // first argument.
2582             if (c.hasOuterInstance()) {
2583                 JCExpression thisArg;
2584                 if (tree.meth.getTag() == JCTree.SELECT) {
2585                     thisArg = attr.
2586                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
2587                     tree.meth = make.Ident(constructor);
2588                     ((JCIdent) tree.meth).name = methName;
2589                 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
2590                     // local class or this() call
2591                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
2592                 } else {
2593                     // super() call of nested class
2594                     thisArg = makeOwnerThis(tree.meth.pos(), c, false);
2595                 }
2596                 tree.args = tree.args.prepend(thisArg);
2597             }
2598         } else {
2599             // We are seeing a normal method invocation; translate this as usual.
2600             tree.meth = translate(tree.meth);
2601 
2602             // If the translated method itself is an Apply tree, we are
2603             // seeing an access method invocation. In this case, append
2604             // the method arguments to the arguments of the access method.
2605             if (tree.meth.getTag() == JCTree.APPLY) {
2606                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
2607                 app.args = tree.args.prependList(app.args);
2608                 result = app;
2609                 return;
2610             }
2611         }
2612         result = tree;
2613     }
2614 
2615     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
2616         List<JCExpression> args = _args;
2617         if (parameters.isEmpty()) return args;
2618         boolean anyChanges = false;
2619         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
2620         while (parameters.tail.nonEmpty()) {
2621             JCExpression arg = translate(args.head, parameters.head);
2622             anyChanges |= (arg != args.head);
2623             result.append(arg);
2624             args = args.tail;
2625             parameters = parameters.tail;
2626         }
2627         Type parameter = parameters.head;
2628         if (varargsElement != null) {
2629             anyChanges = true;
2630             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
2631             while (args.nonEmpty()) {
2632                 JCExpression arg = translate(args.head, varargsElement);
2633                 elems.append(arg);
2634                 args = args.tail;
2635             }
2636             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
2637                                                List.<JCExpression>nil(),
2638                                                elems.toList());
2639             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
2640             result.append(boxedArgs);
2641         } else {
2642             if (args.length() != 1) throw new AssertionError(args);
2643             JCExpression arg = translate(args.head, parameter);
2644             anyChanges |= (arg != args.head);
2645             result.append(arg);
2646             if (!anyChanges) return _args;
2647         }
2648         return result.toList();
2649     }
2650 
2651     /** Expand a boxing or unboxing conversion if needed. */
2652     @SuppressWarnings("unchecked") // XXX unchecked
2653     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
2654         boolean havePrimitive = tree.type.isPrimitive();
2655         if (havePrimitive == type.isPrimitive())
2656             return tree;
2657         if (havePrimitive) {
2658             Type unboxedTarget = types.unboxedType(type);
2659             if (unboxedTarget.tag != NONE) {
2660                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
2661                     tree.type = unboxedTarget.constType(tree.type.constValue());
2662                 return (T)boxPrimitive((JCExpression)tree, type);
2663             } else {
2664                 tree = (T)boxPrimitive((JCExpression)tree);
2665             }
2666         } else {
2667             tree = (T)unbox((JCExpression)tree, type);
2668         }
2669         return tree;
2670     }
2671 
2672     /** Box up a single primitive expression. */
2673     JCExpression boxPrimitive(JCExpression tree) {
2674         return boxPrimitive(tree, types.boxedClass(tree.type).type);
2675     }
2676 
2677     /** Box up a single primitive expression. */
2678     JCExpression boxPrimitive(JCExpression tree, Type box) {
2679         make_at(tree.pos());
2680         if (target.boxWithConstructors()) {
2681             Symbol ctor = lookupConstructor(tree.pos(),
2682                                             box,
2683                                             List.<Type>nil()
2684                                             .prepend(tree.type));
2685             return make.Create(ctor, List.of(tree));
2686         } else {
2687             Symbol valueOfSym = lookupMethod(tree.pos(),
2688                                              names.valueOf,
2689                                              box,
2690                                              List.<Type>nil()
2691                                              .prepend(tree.type));
2692             return make.App(make.QualIdent(valueOfSym), List.of(tree));
2693         }
2694     }
2695 
2696     /** Unbox an object to a primitive value. */
2697     JCExpression unbox(JCExpression tree, Type primitive) {
2698         Type unboxedType = types.unboxedType(tree.type);
2699         // note: the "primitive" parameter is not used.  There muse be
2700         // a conversion from unboxedType to primitive.
2701         make_at(tree.pos());
2702         Symbol valueSym = lookupMethod(tree.pos(),
2703                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
2704                                        tree.type,
2705                                        List.<Type>nil());
2706         return make.App(make.Select(tree, valueSym));
2707     }
2708 
2709     /** Visitor method for parenthesized expressions.
2710      *  If the subexpression has changed, omit the parens.
2711      */
2712     public void visitParens(JCParens tree) {
2713         JCTree expr = translate(tree.expr);
2714         result = ((expr == tree.expr) ? tree : expr);
2715     }
2716 
2717     public void visitIndexed(JCArrayAccess tree) {
2718         tree.indexed = translate(tree.indexed);
2719         tree.index = translate(tree.index, syms.intType);
2720         result = tree;
2721     }
2722 
2723     public void visitAssign(JCAssign tree) {
2724         tree.lhs = translate(tree.lhs, tree);
2725         tree.rhs = translate(tree.rhs, tree.lhs.type);
2726 
2727         // If translated left hand side is an Apply, we are
2728         // seeing an access method invocation. In this case, append
2729         // right hand side as last argument of the access method.
2730         if (tree.lhs.getTag() == JCTree.APPLY) {
2731             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2732             app.args = List.of(tree.rhs).prependList(app.args);
2733             result = app;
2734         } else {
2735             result = tree;
2736         }
2737     }
2738 
2739     public void visitAssignop(final JCAssignOp tree) {
2740         if (!tree.lhs.type.isPrimitive() &&
2741             tree.operator.type.getReturnType().isPrimitive()) {
2742             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
2743             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
2744             // (but without recomputing x)
2745             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
2746                     public JCTree build(final JCTree lhs) {
2747                         int newTag = tree.getTag() - JCTree.ASGOffset;
2748                         // Erasure (TransTypes) can change the type of
2749                         // tree.lhs.  However, we can still get the
2750                         // unerased type of tree.lhs as it is stored
2751                         // in tree.type in Attr.
2752                         Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
2753                                                                       newTag,
2754                                                                       attrEnv,
2755                                                                       tree.type,
2756                                                                       tree.rhs.type);
2757                         JCExpression expr = (JCExpression)lhs;
2758                         if (expr.type != tree.type)
2759                             expr = make.TypeCast(tree.type, expr);
2760                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
2761                         opResult.operator = newOperator;
2762                         opResult.type = newOperator.type.getReturnType();
2763                         JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
2764                                                           opResult);
2765                         return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
2766                     }
2767                 });
2768             result = translate(newTree);
2769             return;
2770         }
2771         tree.lhs = translate(tree.lhs, tree);
2772         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
2773 
2774         // If translated left hand side is an Apply, we are
2775         // seeing an access method invocation. In this case, append
2776         // right hand side as last argument of the access method.
2777         if (tree.lhs.getTag() == JCTree.APPLY) {
2778             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2779             // if operation is a += on strings,
2780             // make sure to convert argument to string
2781             JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
2782               ? makeString(tree.rhs)
2783               : tree.rhs;
2784             app.args = List.of(rhs).prependList(app.args);
2785             result = app;
2786         } else {
2787             result = tree;
2788         }
2789     }
2790 
2791     /** Lower a tree of the form e++ or e-- where e is an object type */
2792     JCTree lowerBoxedPostop(final JCUnary tree) {
2793         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
2794         // or
2795         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
2796         // where OP is += or -=
2797         final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
2798         return abstractLval(tree.arg, new TreeBuilder() {
2799                 public JCTree build(final JCTree tmp1) {
2800                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
2801                             public JCTree build(final JCTree tmp2) {
2802                                 int opcode = (tree.getTag() == JCTree.POSTINC)
2803                                     ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
2804                                 JCTree lhs = cast
2805                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
2806                                     : tmp1;
2807                                 JCTree update = makeAssignop(opcode,
2808                                                              lhs,
2809                                                              make.Literal(1));
2810                                 return makeComma(update, tmp2);
2811                             }
2812                         });
2813                 }
2814             });
2815     }
2816 
2817     public void visitUnary(JCUnary tree) {
2818         boolean isUpdateOperator =
2819             JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
2820         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
2821             switch(tree.getTag()) {
2822             case JCTree.PREINC:            // ++ e
2823                     // translate to e += 1
2824             case JCTree.PREDEC:            // -- e
2825                     // translate to e -= 1
2826                 {
2827                     int opcode = (tree.getTag() == JCTree.PREINC)
2828                         ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
2829                     JCAssignOp newTree = makeAssignop(opcode,
2830                                                     tree.arg,
2831                                                     make.Literal(1));
2832                     result = translate(newTree, tree.type);
2833                     return;
2834                 }
2835             case JCTree.POSTINC:           // e ++
2836             case JCTree.POSTDEC:           // e --
2837                 {
2838                     result = translate(lowerBoxedPostop(tree), tree.type);
2839                     return;
2840                 }
2841             }
2842             throw new AssertionError(tree);
2843         }
2844 
2845         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
2846 
2847         if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
2848             tree.type = cfolder.fold1(bool_not, tree.arg.type);
2849         }
2850 
2851         // If translated left hand side is an Apply, we are
2852         // seeing an access method invocation. In this case, return
2853         // that access method invocation as result.
2854         if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
2855             result = tree.arg;
2856         } else {
2857             result = tree;
2858         }
2859     }
2860 
2861     public void visitBinary(JCBinary tree) {
2862         List<Type> formals = tree.operator.type.getParameterTypes();
2863         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
2864         switch (tree.getTag()) {
2865         case JCTree.OR:
2866             if (lhs.type.isTrue()) {
2867                 result = lhs;
2868                 return;
2869             }
2870             if (lhs.type.isFalse()) {
2871                 result = translate(tree.rhs, formals.tail.head);
2872                 return;
2873             }
2874             break;
2875         case JCTree.AND:
2876             if (lhs.type.isFalse()) {
2877                 result = lhs;
2878                 return;
2879             }
2880             if (lhs.type.isTrue()) {
2881                 result = translate(tree.rhs, formals.tail.head);
2882                 return;
2883             }
2884             break;
2885         }
2886         tree.rhs = translate(tree.rhs, formals.tail.head);
2887         result = tree;
2888     }
2889 
2890     public void visitIdent(JCIdent tree) {
2891         result = access(tree.sym, tree, enclOp, false);
2892     }
2893 
2894     /** Translate away the foreach loop.  */
2895     public void visitForeachLoop(JCEnhancedForLoop tree) {
2896         if (types.elemtype(tree.expr.type) == null)
2897             visitIterableForeachLoop(tree);
2898         else
2899             visitArrayForeachLoop(tree);
2900     }
2901         // where
2902         /**
2903          * A statement of the form
2904          *
2905          * <pre>
2906          *     for ( T v : arrayexpr ) stmt;
2907          * </pre>
2908          *
2909          * (where arrayexpr is of an array type) gets translated to
2910          *
2911          * <pre>
2912          *     for ( { arraytype #arr = arrayexpr;
2913          *             int #len = array.length;
2914          *             int #i = 0; };
2915          *           #i < #len; i$++ ) {
2916          *         T v = arr$[#i];
2917          *         stmt;
2918          *     }
2919          * </pre>
2920          *
2921          * where #arr, #len, and #i are freshly named synthetic local variables.
2922          */
2923         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
2924             make_at(tree.expr.pos());
2925             VarSymbol arraycache = new VarSymbol(0,
2926                                                  names.fromString("arr" + target.syntheticNameChar()),
2927                                                  tree.expr.type,
2928                                                  currentMethodSym);
2929             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
2930             VarSymbol lencache = new VarSymbol(0,
2931                                                names.fromString("len" + target.syntheticNameChar()),
2932                                                syms.intType,
2933                                                currentMethodSym);
2934             JCStatement lencachedef = make.
2935                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
2936             VarSymbol index = new VarSymbol(0,
2937                                             names.fromString("i" + target.syntheticNameChar()),
2938                                             syms.intType,
2939                                             currentMethodSym);
2940 
2941             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
2942             indexdef.init.type = indexdef.type = syms.intType.constType(0);
2943 
2944             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
2945             JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
2946 
2947             JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
2948 
2949             Type elemtype = types.elemtype(tree.expr.type);
2950             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
2951                                                     make.Ident(index)).setType(elemtype);
2952             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
2953                                                   tree.var.name,
2954                                                   tree.var.vartype,
2955                                                   loopvarinit).setType(tree.var.type);
2956             loopvardef.sym = tree.var.sym;
2957             JCBlock body = make.
2958                 Block(0, List.of(loopvardef, tree.body));
2959 
2960             result = translate(make.
2961                                ForLoop(loopinit,
2962                                        cond,
2963                                        List.of(step),
2964                                        body));
2965             patchTargets(body, tree, result);
2966         }
2967         /** Patch up break and continue targets. */
2968         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
2969             class Patcher extends TreeScanner {
2970                 public void visitBreak(JCBreak tree) {
2971                     if (tree.target == src)
2972                         tree.target = dest;
2973                 }
2974                 public void visitContinue(JCContinue tree) {
2975                     if (tree.target == src)
2976                         tree.target = dest;
2977                 }
2978                 public void visitClassDef(JCClassDecl tree) {}
2979             }
2980             new Patcher().scan(body);
2981         }
2982         /**
2983          * A statement of the form
2984          *
2985          * <pre>
2986          *     for ( T v : coll ) stmt ;
2987          * </pre>
2988          *
2989          * (where coll implements Iterable<? extends T>) gets translated to
2990          *
2991          * <pre>
2992          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
2993          *         T v = (T) #i.next();
2994          *         stmt;
2995          *     }
2996          * </pre>
2997          *
2998          * where #i is a freshly named synthetic local variable.
2999          */
3000         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3001             make_at(tree.expr.pos());
3002             Type iteratorTarget = syms.objectType;
3003             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
3004                                               syms.iterableType.tsym);
3005             if (iterableType.getTypeArguments().nonEmpty())
3006                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3007             Type eType = tree.expr.type;
3008             tree.expr.type = types.erasure(eType);
3009             if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
3010                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
3011             Symbol iterator = lookupMethod(tree.expr.pos(),
3012                                            names.iterator,
3013                                            types.erasure(syms.iterableType),
3014                                            List.<Type>nil());
3015             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
3016                                             types.erasure(iterator.type.getReturnType()),
3017                                             currentMethodSym);
3018             JCStatement init = make.
3019                 VarDef(itvar,
3020                        make.App(make.Select(tree.expr, iterator)));
3021             Symbol hasNext = lookupMethod(tree.expr.pos(),
3022                                           names.hasNext,
3023                                           itvar.type,
3024                                           List.<Type>nil());
3025             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3026             Symbol next = lookupMethod(tree.expr.pos(),
3027                                        names.next,
3028                                        itvar.type,
3029                                        List.<Type>nil());
3030             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3031             if (tree.var.type.isPrimitive())
3032                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
3033             else
3034                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3035             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3036                                                   tree.var.name,
3037                                                   tree.var.vartype,
3038                                                   vardefinit).setType(tree.var.type);
3039             indexDef.sym = tree.var.sym;
3040             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3041             body.endpos = TreeInfo.endPos(tree.body);
3042             result = translate(make.
3043                 ForLoop(List.of(init),
3044                         cond,
3045                         List.<JCExpressionStatement>nil(),
3046                         body));
3047             patchTargets(body, tree, result);
3048         }
3049 
3050     public void visitVarDef(JCVariableDecl tree) {
3051         MethodSymbol oldMethodSym = currentMethodSym;
3052         tree.mods = translate(tree.mods);
3053         tree.vartype = translate(tree.vartype);
3054         if (currentMethodSym == null) {
3055             // A class or instance field initializer.
3056             currentMethodSym =
3057                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3058                                  names.empty, null,
3059                                  currentClass);
3060         }
3061         if (tree.init != null) tree.init = translate(tree.init, tree.type);
3062         result = tree;
3063         currentMethodSym = oldMethodSym;
3064     }
3065 
3066     public void visitBlock(JCBlock tree) {
3067         MethodSymbol oldMethodSym = currentMethodSym;
3068         if (currentMethodSym == null) {
3069             // Block is a static or instance initializer.
3070             currentMethodSym =
3071                 new MethodSymbol(tree.flags | BLOCK,
3072                                  names.empty, null,
3073                                  currentClass);
3074         }
3075         super.visitBlock(tree);
3076         currentMethodSym = oldMethodSym;
3077     }
3078 
3079     public void visitDoLoop(JCDoWhileLoop tree) {
3080         tree.body = translate(tree.body);
3081         tree.cond = translate(tree.cond, syms.booleanType);
3082         result = tree;
3083     }
3084 
3085     public void visitWhileLoop(JCWhileLoop tree) {
3086         tree.cond = translate(tree.cond, syms.booleanType);
3087         tree.body = translate(tree.body);
3088         result = tree;
3089     }
3090 
3091     public void visitForLoop(JCForLoop tree) {
3092         tree.init = translate(tree.init);
3093         if (tree.cond != null)
3094             tree.cond = translate(tree.cond, syms.booleanType);
3095         tree.step = translate(tree.step);
3096         tree.body = translate(tree.body);
3097         result = tree;
3098     }
3099 
3100     public void visitReturn(JCReturn tree) {
3101         if (tree.expr != null)
3102             tree.expr = translate(tree.expr,
3103                                   types.erasure(currentMethodDef
3104                                                 .restype.type));
3105         result = tree;
3106     }
3107 
3108     public void visitSwitch(JCSwitch tree) {
3109         Type selsuper = types.supertype(tree.selector.type);
3110         boolean enumSwitch = selsuper != null &&
3111             (tree.selector.type.tsym.flags() & ENUM) != 0;
3112         boolean stringSwitch = selsuper != null &&
3113             types.isSameType(tree.selector.type, syms.stringType);
3114         Type target = enumSwitch ? tree.selector.type :
3115             (stringSwitch? syms.stringType : syms.intType);
3116         tree.selector = translate(tree.selector, target);
3117         tree.cases = translateCases(tree.cases);
3118         if (enumSwitch) {
3119             result = visitEnumSwitch(tree);
3120             patchTargets(result, tree, result);
3121         } else if (stringSwitch) {
3122             result = visitStringSwitch(tree);
3123         } else {
3124             result = tree;
3125         }
3126     }
3127 
3128     public JCTree visitEnumSwitch(JCSwitch tree) {
3129         TypeSymbol enumSym = tree.selector.type.tsym;
3130         EnumMapping map = mapForEnum(tree.pos(), enumSym);
3131         make_at(tree.pos());
3132         Symbol ordinalMethod = lookupMethod(tree.pos(),
3133                                             names.ordinal,
3134                                             tree.selector.type,
3135                                             List.<Type>nil());
3136         JCArrayAccess selector = make.Indexed(map.mapVar,
3137                                         make.App(make.Select(tree.selector,
3138                                                              ordinalMethod)));
3139         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
3140         for (JCCase c : tree.cases) {
3141             if (c.pat != null) {
3142                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
3143                 JCLiteral pat = map.forConstant(label);
3144                 cases.append(make.Case(pat, c.stats));
3145             } else {
3146                 cases.append(c);
3147             }
3148         }
3149         return make.Switch(selector, cases.toList());
3150     }
3151 
3152     public JCTree visitStringSwitch(JCSwitch tree) {
3153         List<JCCase> caseList = tree.getCases();
3154         int alternatives = caseList.size();
3155 
3156         if (alternatives == 0) { // Strange but legal possibility
3157             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
3158         } else {
3159             /*
3160              * The general approach used is to translate a single
3161              * string switch statement into a series of two chained
3162              * switch statements: the first a synthesized statement
3163              * switching on the argument string's hash value and
3164              * computing a string's position in the list of original
3165              * case labels, if any, followed by a second switch on the
3166              * computed integer value.  The second switch has the same
3167              * code structure as the original string switch statement
3168              * except that the string case labels are replaced with
3169              * positional integer constants starting at 0.
3170              *
3171              * The first switch statement can be thought of as an
3172              * inlined map from strings to their position in the case
3173              * label list.  An alternate implementation would use an
3174              * actual Map for this purpose, as done for enum switches.
3175              *
3176              * With some additional effort, it would be possible to
3177              * use a single switch statement on the hash code of the
3178              * argument, but care would need to be taken to preserve
3179              * the proper control flow in the presence of hash
3180              * collisions and other complications, such as
3181              * fallthroughs.  Switch statements with one or two
3182              * alternatives could also be specially translated into
3183              * if-then statements to omit the computation of the hash
3184              * code.
3185              *
3186              * The generated code assumes that the hashing algorithm
3187              * of String is the same in the compilation environment as
3188              * in the environment the code will run in.  The string
3189              * hashing algorithm in the SE JDK has been unchanged
3190              * since at least JDK 1.2.
3191              */
3192 
3193             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
3194 
3195             // Map from String case labels to their original position in
3196             // the list of case labels.
3197             Map<String, Integer> caseLabelToPosition =
3198                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
3199 
3200             // Map of hash codes to the string case labels having that hashCode.
3201             Map<Integer, Set<String>> hashToString =
3202                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
3203 
3204             int casePosition = 0;
3205             for(JCCase oneCase : caseList) {
3206                 JCExpression expression = oneCase.getExpression();
3207 
3208                 if (expression != null) { // expression for a "default" case is null
3209                     String labelExpr = (String) expression.type.constValue();
3210                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
3211                     assert mapping == null;
3212                     int hashCode = labelExpr.hashCode();
3213 
3214                     Set<String> stringSet = hashToString.get(hashCode);
3215                     if (stringSet == null) {
3216                         stringSet = new LinkedHashSet<String>(1, 1.0f);
3217                         stringSet.add(labelExpr);
3218                         hashToString.put(hashCode, stringSet);
3219                     } else {
3220                         boolean added = stringSet.add(labelExpr);
3221                         assert added;
3222                     }
3223                 }
3224                 casePosition++;
3225             }
3226 
3227             // Synthesize a switch statement that has the effect of
3228             // mapping from a string to the integer position of that
3229             // string in the list of case labels.  This is done by
3230             // switching on the hashCode of the string followed by an
3231             // if-then-else chain comparing the input for equality
3232             // with all the case labels having that hash value.
3233 
3234             /*
3235              * s$ = top of stack;
3236              * tmp$ = -1;
3237              * switch($s.hashCode()) {
3238              *     case caseLabel.hashCode:
3239              *         if (s$.equals("caseLabel_1")
3240              *           tmp$ = caseLabelToPosition("caseLabel_1");
3241              *         else if (s$.equals("caseLabel_2"))
3242              *           tmp$ = caseLabelToPosition("caseLabel_2");
3243              *         ...
3244              *         break;
3245              * ...
3246              * }
3247              */
3248 
3249             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
3250                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
3251                                                syms.stringType,
3252                                                currentMethodSym);
3253             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
3254 
3255             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
3256                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
3257                                                  syms.intType,
3258                                                  currentMethodSym);
3259             JCVariableDecl dollar_tmp_def =
3260                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
3261             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
3262             stmtList.append(dollar_tmp_def);
3263             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
3264             // hashCode will trigger nullcheck on original switch expression
3265             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
3266                                                        names.hashCode,
3267                                                        List.<JCExpression>nil()).setType(syms.intType);
3268             JCSwitch switch1 = make.Switch(hashCodeCall,
3269                                         caseBuffer.toList());
3270             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
3271                 int hashCode = entry.getKey();
3272                 Set<String> stringsWithHashCode = entry.getValue();
3273                 assert stringsWithHashCode.size() >= 1;
3274 
3275                 JCStatement elsepart = null;
3276                 for(String caseLabel : stringsWithHashCode ) {
3277                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
3278                                                                    names.equals,
3279                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
3280                     elsepart = make.If(stringEqualsCall,
3281                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
3282                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
3283                                                  setType(dollar_tmp.type)),
3284                                        elsepart);
3285                 }
3286 
3287                 ListBuffer<JCStatement> lb = ListBuffer.lb();
3288                 JCBreak breakStmt = make.Break(null);
3289                 breakStmt.target = switch1;
3290                 lb.append(elsepart).append(breakStmt);
3291 
3292                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
3293             }
3294 
3295             switch1.cases = caseBuffer.toList();
3296             stmtList.append(switch1);
3297 
3298             // Make isomorphic switch tree replacing string labels
3299             // with corresponding integer ones from the label to
3300             // position map.
3301 
3302             ListBuffer<JCCase> lb = ListBuffer.lb();
3303             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
3304             for(JCCase oneCase : caseList ) {
3305                 // Rewire up old unlabeled break statements to the
3306                 // replacement switch being created.
3307                 patchTargets(oneCase, tree, switch2);
3308 
3309                 boolean isDefault = (oneCase.getExpression() == null);
3310                 JCExpression caseExpr;
3311                 if (isDefault)
3312                     caseExpr = null;
3313                 else {
3314                     caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
3315                                                                     getExpression().
3316                                                                     type.constValue()));
3317                 }
3318 
3319                 lb.append(make.Case(caseExpr,
3320                                     oneCase.getStatements()));
3321             }
3322 
3323             switch2.cases = lb.toList();
3324             stmtList.append(switch2);
3325 
3326             return make.Block(0L, stmtList.toList());
3327         }
3328     }
3329 
3330     public void visitNewArray(JCNewArray tree) {
3331         tree.elemtype = translate(tree.elemtype);
3332         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
3333             if (t.head != null) t.head = translate(t.head, syms.intType);
3334         tree.elems = translate(tree.elems, types.elemtype(tree.type));
3335         result = tree;
3336     }
3337 
3338     public void visitSelect(JCFieldAccess tree) {
3339         // need to special case-access of the form C.super.x
3340         // these will always need an access method.
3341         boolean qualifiedSuperAccess =
3342             tree.selected.getTag() == JCTree.SELECT &&
3343             TreeInfo.name(tree.selected) == names._super;
3344         tree.selected = translate(tree.selected);
3345         if (tree.name == names._class)
3346             result = classOf(tree.selected);
3347         else if (tree.name == names._this || tree.name == names._super)
3348             result = makeThis(tree.pos(), tree.selected.type.tsym);
3349         else
3350             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
3351     }
3352 
3353     public void visitLetExpr(LetExpr tree) {
3354         tree.defs = translateVarDefs(tree.defs);
3355         tree.expr = translate(tree.expr, tree.type);
3356         result = tree;
3357     }
3358 
3359     // There ought to be nothing to rewrite here;
3360     // we don't generate code.
3361     public void visitAnnotation(JCAnnotation tree) {
3362         result = tree;
3363     }
3364 
3365 /**************************************************************************
3366  * main method
3367  *************************************************************************/
3368 
3369     /** Translate a toplevel class and return a list consisting of
3370      *  the translated class and translated versions of all inner classes.
3371      *  @param env   The attribution environment current at the class definition.
3372      *               We need this for resolving some additional symbols.
3373      *  @param cdef  The tree representing the class definition.
3374      */
3375     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
3376         ListBuffer<JCTree> translated = null;
3377         try {
3378             attrEnv = env;
3379             this.make = make;
3380             endPositions = env.toplevel.endPositions;
3381             currentClass = null;
3382             currentMethodDef = null;
3383             outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
3384             outermostMemberDef = null;
3385             this.translated = new ListBuffer<JCTree>();
3386             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
3387             actualSymbols = new HashMap<Symbol,Symbol>();
3388             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
3389             proxies = new Scope(syms.noSymbol);
3390             outerThisStack = List.nil();
3391             accessNums = new HashMap<Symbol,Integer>();
3392             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
3393             accessConstrs = new HashMap<Symbol,MethodSymbol>();
3394             accessed = new ListBuffer<Symbol>();
3395             translate(cdef, (JCExpression)null);
3396             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
3397                 makeAccessible(l.head);
3398             for (EnumMapping map : enumSwitchMap.values())
3399                 map.translate();
3400             checkConflicts(this.translated.toList());
3401             translated = this.translated;
3402         } finally {
3403             // note that recursive invocations of this method fail hard
3404             attrEnv = null;
3405             this.make = null;
3406             endPositions = null;
3407             currentClass = null;
3408             currentMethodDef = null;
3409             outermostClassDef = null;
3410             outermostMemberDef = null;
3411             this.translated = null;
3412             classdefs = null;
3413             actualSymbols = null;
3414             freevarCache = null;
3415             proxies = null;
3416             outerThisStack = null;
3417             accessNums = null;
3418             accessSyms = null;
3419             accessConstrs = null;
3420             accessed = null;
3421             enumSwitchMap.clear();
3422         }
3423         return translated.toList();
3424     }
3425 
3426     //////////////////////////////////////////////////////////////
3427     // The following contributed by Borland for bootstrapping purposes
3428     //////////////////////////////////////////////////////////////
3429     private void addEnumCompatibleMembers(JCClassDecl cdef) {
3430         make_at(null);
3431 
3432         // Add the special enum fields
3433         VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
3434         VarSymbol nameFieldSym = addEnumNameField(cdef);
3435 
3436         // Add the accessor methods for name and ordinal
3437         MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
3438         MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
3439 
3440         // Add the toString method
3441         addEnumToString(cdef, nameFieldSym);
3442 
3443         // Add the compareTo method
3444         addEnumCompareTo(cdef, ordinalFieldSym);
3445     }
3446 
3447     private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
3448         VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3449                                           names.fromString("$ordinal"),
3450                                           syms.intType,
3451                                           cdef.sym);
3452         cdef.sym.members().enter(ordinal);
3453         cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
3454         return ordinal;
3455     }
3456 
3457     private VarSymbol addEnumNameField(JCClassDecl cdef) {
3458         VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3459                                           names.fromString("$name"),
3460                                           syms.stringType,
3461                                           cdef.sym);
3462         cdef.sym.members().enter(name);
3463         cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
3464         return name;
3465     }
3466 
3467     private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3468         // Add the accessor methods for ordinal
3469         Symbol ordinalSym = lookupMethod(cdef.pos(),
3470                                          names.ordinal,
3471                                          cdef.type,
3472                                          List.<Type>nil());
3473 
3474         assert(ordinalSym != null);
3475         assert(ordinalSym instanceof MethodSymbol);
3476 
3477         JCStatement ret = make.Return(make.Ident(ordinalSymbol));
3478         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
3479                                                     make.Block(0L, List.of(ret))));
3480 
3481         return (MethodSymbol)ordinalSym;
3482     }
3483 
3484     private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
3485         // Add the accessor methods for name
3486         Symbol nameSym = lookupMethod(cdef.pos(),
3487                                    names._name,
3488                                    cdef.type,
3489                                    List.<Type>nil());
3490 
3491         assert(nameSym != null);
3492         assert(nameSym instanceof MethodSymbol);
3493 
3494         JCStatement ret = make.Return(make.Ident(nameSymbol));
3495 
3496         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
3497                                                     make.Block(0L, List.of(ret))));
3498 
3499         return (MethodSymbol)nameSym;
3500     }
3501 
3502     private MethodSymbol addEnumToString(JCClassDecl cdef,
3503                                          VarSymbol nameSymbol) {
3504         Symbol toStringSym = lookupMethod(cdef.pos(),
3505                                           names.toString,
3506                                           cdef.type,
3507                                           List.<Type>nil());
3508 
3509         JCTree toStringDecl = null;
3510         if (toStringSym != null)
3511             toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
3512 
3513         if (toStringDecl != null)
3514             return (MethodSymbol)toStringSym;
3515 
3516         JCStatement ret = make.Return(make.Ident(nameSymbol));
3517 
3518         JCTree resTypeTree = make.Type(syms.stringType);
3519 
3520         MethodType toStringType = new MethodType(List.<Type>nil(),
3521                                                  syms.stringType,
3522                                                  List.<Type>nil(),
3523                                                  cdef.sym);
3524         toStringSym = new MethodSymbol(PUBLIC,
3525                                        names.toString,
3526                                        toStringType,
3527                                        cdef.type.tsym);
3528         toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
3529                                       make.Block(0L, List.of(ret)));
3530 
3531         cdef.defs = cdef.defs.prepend(toStringDecl);
3532         cdef.sym.members().enter(toStringSym);
3533 
3534         return (MethodSymbol)toStringSym;
3535     }
3536 
3537     private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3538         Symbol compareToSym = lookupMethod(cdef.pos(),
3539                                    names.compareTo,
3540                                    cdef.type,
3541                                    List.of(cdef.sym.type));
3542 
3543         assert(compareToSym != null);
3544         assert(compareToSym instanceof MethodSymbol);
3545 
3546         JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
3547 
3548         ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
3549 
3550         JCModifiers mod1 = make.Modifiers(0L);
3551         Name oName = names.fromString("o");
3552         JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
3553 
3554         JCIdent paramId1 = make.Ident(names.java_lang_Object);
3555         paramId1.type = cdef.type;
3556         paramId1.sym = par1.sym;
3557 
3558         ((MethodSymbol)compareToSym).params = List.of(par1.sym);
3559 
3560         JCIdent par1UsageId = make.Ident(par1.sym);
3561         JCIdent castTargetIdent = make.Ident(cdef.sym);
3562         JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
3563         cast.setType(castTargetIdent.type);
3564 
3565         Name otherName = names.fromString("other");
3566 
3567         VarSymbol otherVarSym = new VarSymbol(mod1.flags,
3568                                               otherName,
3569                                               cdef.type,
3570                                               compareToSym);
3571         JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
3572         blockStatements.append(otherVar);
3573 
3574         JCIdent id1 = make.Ident(ordinalSymbol);
3575 
3576         JCIdent fLocUsageId = make.Ident(otherVarSym);
3577         JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
3578         JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
3579         JCReturn ret = make.Return(bin);
3580         blockStatements.append(ret);
3581         JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
3582                                                    make.Block(0L,
3583                                                               blockStatements.toList()));
3584         compareToMethod.params = List.of(par1);
3585         cdef.defs = cdef.defs.append(compareToMethod);
3586 
3587         return (MethodSymbol)compareToSym;
3588     }
3589     //////////////////////////////////////////////////////////////
3590     // The above contributed by Borland for bootstrapping purposes
3591     //////////////////////////////////////////////////////////////
3592 }