1 /*
   2  * Copyright 2003-2005 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @bug 4860891 4826732 4780454 4939441 4826652
  27  * @summary Tests for IEEE 754[R] recommended functions and similar methods
  28  * @author Joseph D. Darcy
  29  * @compile -source 1.5 IeeeRecommendedTests.java
  30  * @run main IeeeRecommendedTests
  31  */
  32 
  33 import sun.misc.FpUtils;
  34 import sun.misc.DoubleConsts;
  35 import sun.misc.FloatConsts;
  36 
  37 public class IeeeRecommendedTests {
  38     private IeeeRecommendedTests(){}
  39 
  40     static final float  NaNf = Float.NaN;
  41     static final double NaNd = Double.NaN;
  42     static final float  infinityF = Float.POSITIVE_INFINITY;
  43     static final double infinityD = Double.POSITIVE_INFINITY;
  44 
  45     static final float  Float_MAX_VALUEmm       = 0x1.fffffcP+127f;
  46     static final float  Float_MAX_SUBNORMAL     = 0x0.fffffeP-126f;
  47     static final float  Float_MAX_SUBNORMALmm   = 0x0.fffffcP-126f;
  48 
  49     static final double Double_MAX_VALUEmm      = 0x1.ffffffffffffeP+1023;
  50     static final double Double_MAX_SUBNORMAL    = 0x0.fffffffffffffP-1022;
  51     static final double Double_MAX_SUBNORMALmm  = 0x0.ffffffffffffeP-1022;
  52 
  53     // Initialize shared random number generator
  54     static java.util.Random rand = new java.util.Random();
  55 
  56     /**
  57      * Returns a floating-point power of two in the normal range.
  58      */
  59     static double powerOfTwoD(int n) {
  60         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.MAX_EXPONENT) <<
  61                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
  62                                        & DoubleConsts.EXP_BIT_MASK);
  63     }
  64 
  65     /**
  66      * Returns a floating-point power of two in the normal range.
  67      */
  68     static float powerOfTwoF(int n) {
  69         return Float.intBitsToFloat(((n + FloatConsts.MAX_EXPONENT) <<
  70                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
  71                                     & FloatConsts.EXP_BIT_MASK);
  72     }
  73 
  74     /* ******************** getExponent tests ****************************** */
  75 
  76     /*
  77      * The tests for getExponent should test the special values (NaN, +/-
  78      * infinity, etc.), test the endpoints of each binade (set of
  79      * floating-point values with the same exponent), and for good
  80      * measure, test some random values within each binade.  Testing
  81      * the endpoints of each binade includes testing both positive and
  82      * negative numbers.  Subnormal values with different normalized
  83      * exponents should be tested too.  Both Math and StrictMath
  84      * methods should return the same results.
  85      */
  86 
  87     /*
  88      * Test Math.getExponent and StrictMath.getExponent with +d and -d.
  89      */
  90     static int testGetExponentCase(float f, int expected) {
  91         float minus_f = -f;
  92         int failures=0;
  93 
  94         failures+=Tests.test("Math.getExponent(float)", f,
  95                              Math.getExponent(f), expected);
  96         failures+=Tests.test("Math.getExponent(float)", minus_f,
  97                              Math.getExponent(minus_f), expected);
  98 
  99         failures+=Tests.test("StrictMath.getExponent(float)", f,
 100                              StrictMath.getExponent(f), expected);
 101         failures+=Tests.test("StrictMath.getExponent(float)", minus_f,
 102                              StrictMath.getExponent(minus_f), expected);
 103         return failures;
 104     }
 105 
 106     /*
 107      * Test Math.getExponent and StrictMath.getExponent with +d and -d.
 108      */
 109     static int testGetExponentCase(double d, int expected) {
 110         double minus_d = -d;
 111         int failures=0;
 112 
 113         failures+=Tests.test("Math.getExponent(double)", d,
 114                              Math.getExponent(d), expected);
 115         failures+=Tests.test("Math.getExponent(double)", minus_d,
 116                              Math.getExponent(minus_d), expected);
 117 
 118         failures+=Tests.test("StrictMath.getExponent(double)", d,
 119                              StrictMath.getExponent(d), expected);
 120         failures+=Tests.test("StrictMath.getExponent(double)", minus_d,
 121                              StrictMath.getExponent(minus_d), expected);
 122         return failures;
 123     }
 124 
 125     public static int testFloatGetExponent() {
 126         int failures = 0;
 127         float [] specialValues = {NaNf,
 128                                    Float.POSITIVE_INFINITY,
 129                                    +0.0f,
 130                                   +1.0f,
 131                                   +2.0f,
 132                                   +16.0f,
 133                                   +Float.MIN_VALUE,
 134                                   +Float_MAX_SUBNORMAL,
 135                                   +FloatConsts.MIN_NORMAL,
 136                                   +Float.MAX_VALUE
 137         };
 138 
 139         int [] specialResults = {Float.MAX_EXPONENT + 1, // NaN results
 140                                  Float.MAX_EXPONENT + 1, // Infinite results
 141                                  Float.MIN_EXPONENT - 1, // Zero results
 142                                  0,
 143                                  1,
 144                                  4,
 145                                  FloatConsts.MIN_EXPONENT - 1,
 146                                  -FloatConsts.MAX_EXPONENT,
 147                                  FloatConsts.MIN_EXPONENT,
 148                                  FloatConsts.MAX_EXPONENT
 149         };
 150 
 151         // Special value tests
 152         for(int i = 0; i < specialValues.length; i++) {
 153             failures += testGetExponentCase(specialValues[i], specialResults[i]);
 154         }
 155 
 156 
 157         // Normal exponent tests
 158         for(int i = FloatConsts.MIN_EXPONENT; i <= FloatConsts.MAX_EXPONENT; i++) {
 159             int result;
 160 
 161             // Create power of two
 162             float po2 = powerOfTwoF(i);
 163 
 164             failures += testGetExponentCase(po2, i);
 165 
 166             // Generate some random bit patterns for the significand
 167             for(int j = 0; j < 10; j++) {
 168                 int randSignif = rand.nextInt();
 169                 float randFloat;
 170 
 171                 randFloat = Float.intBitsToFloat( // Exponent
 172                                                  (Float.floatToIntBits(po2)&
 173                                                   (~FloatConsts.SIGNIF_BIT_MASK)) |
 174                                                  // Significand
 175                                                  (randSignif &
 176                                                   FloatConsts.SIGNIF_BIT_MASK) );
 177 
 178                 failures += testGetExponentCase(randFloat, i);
 179             }
 180 
 181             if (i > FloatConsts.MIN_EXPONENT) {
 182                 float po2minus = FpUtils.nextAfter(po2,
 183                                                  Float.NEGATIVE_INFINITY);
 184                 failures += testGetExponentCase(po2minus, i-1);
 185             }
 186         }
 187 
 188         // Subnormal exponent tests
 189 
 190         /*
 191          * Start with MIN_VALUE, left shift, test high value, low
 192          * values, and random in between.
 193          *
 194          * Use nextAfter to calculate, high value of previous binade,
 195          * loop count i will indicate how many random bits, if any are
 196          * needed.
 197          */
 198 
 199         float top=Float.MIN_VALUE;
 200         for( int i = 1;
 201             i < FloatConsts.SIGNIFICAND_WIDTH;
 202             i++, top *= 2.0f) {
 203 
 204             failures += testGetExponentCase(top,
 205                                             FloatConsts.MIN_EXPONENT - 1);
 206 
 207             // Test largest value in next smaller binade
 208             if (i >= 3) {// (i == 1) would test 0.0;
 209                          // (i == 2) would just retest MIN_VALUE
 210                 testGetExponentCase(FpUtils.nextAfter(top, 0.0f),
 211                                     FloatConsts.MIN_EXPONENT - 1);
 212 
 213                 if( i >= 10) {
 214                     // create a bit mask with (i-1) 1's in the low order
 215                     // bits
 216                     int mask = ~((~0)<<(i-1));
 217                     float randFloat = Float.intBitsToFloat( // Exponent
 218                                                  Float.floatToIntBits(top) |
 219                                                  // Significand
 220                                                  (rand.nextInt() & mask ) ) ;
 221 
 222                     failures += testGetExponentCase(randFloat,
 223                                                     FloatConsts.MIN_EXPONENT - 1);
 224                 }
 225             }
 226         }
 227 
 228         return failures;
 229     }
 230 
 231 
 232     public static int testDoubleGetExponent() {
 233         int failures = 0;
 234         double [] specialValues = {NaNd,
 235                                    infinityD,
 236                                    +0.0,
 237                                    +1.0,
 238                                    +2.0,
 239                                    +16.0,
 240                                    +Double.MIN_VALUE,
 241                                    +Double_MAX_SUBNORMAL,
 242                                    +DoubleConsts.MIN_NORMAL,
 243                                    +Double.MAX_VALUE
 244         };
 245 
 246         int [] specialResults = {Double.MAX_EXPONENT + 1, // NaN results
 247                                  Double.MAX_EXPONENT + 1, // Infinite results
 248                                  Double.MIN_EXPONENT - 1, // Zero results
 249                                  0,
 250                                  1,
 251                                  4,
 252                                  DoubleConsts.MIN_EXPONENT - 1,
 253                                  -DoubleConsts.MAX_EXPONENT,
 254                                  DoubleConsts.MIN_EXPONENT,
 255                                  DoubleConsts.MAX_EXPONENT
 256         };
 257 
 258         // Special value tests
 259         for(int i = 0; i < specialValues.length; i++) {
 260             failures += testGetExponentCase(specialValues[i], specialResults[i]);
 261         }
 262 
 263 
 264         // Normal exponent tests
 265         for(int i = DoubleConsts.MIN_EXPONENT; i <= DoubleConsts.MAX_EXPONENT; i++) {
 266             int result;
 267 
 268             // Create power of two
 269             double po2 = powerOfTwoD(i);
 270 
 271             failures += testGetExponentCase(po2, i);
 272 
 273             // Generate some random bit patterns for the significand
 274             for(int j = 0; j < 10; j++) {
 275                 long randSignif = rand.nextLong();
 276                 double randFloat;
 277 
 278                 randFloat = Double.longBitsToDouble( // Exponent
 279                                                  (Double.doubleToLongBits(po2)&
 280                                                   (~DoubleConsts.SIGNIF_BIT_MASK)) |
 281                                                  // Significand
 282                                                  (randSignif &
 283                                                   DoubleConsts.SIGNIF_BIT_MASK) );
 284 
 285                 failures += testGetExponentCase(randFloat, i);
 286             }
 287 
 288             if (i > DoubleConsts.MIN_EXPONENT) {
 289                 double po2minus = FpUtils.nextAfter(po2,
 290                                                     Double.NEGATIVE_INFINITY);
 291                 failures += testGetExponentCase(po2minus, i-1);
 292             }
 293         }
 294 
 295         // Subnormal exponent tests
 296 
 297         /*
 298          * Start with MIN_VALUE, left shift, test high value, low
 299          * values, and random in between.
 300          *
 301          * Use nextAfter to calculate, high value of previous binade;
 302          * loop count i will indicate how many random bits, if any are
 303          * needed.
 304          */
 305 
 306         double top=Double.MIN_VALUE;
 307         for( int i = 1;
 308             i < DoubleConsts.SIGNIFICAND_WIDTH;
 309             i++, top *= 2.0f) {
 310 
 311             failures += testGetExponentCase(top,
 312                                             DoubleConsts.MIN_EXPONENT - 1);
 313 
 314             // Test largest value in next smaller binade
 315             if (i >= 3) {// (i == 1) would test 0.0;
 316                          // (i == 2) would just retest MIN_VALUE
 317                 testGetExponentCase(FpUtils.nextAfter(top, 0.0),
 318                                     DoubleConsts.MIN_EXPONENT - 1);
 319 
 320                 if( i >= 10) {
 321                     // create a bit mask with (i-1) 1's in the low order
 322                     // bits
 323                     long mask = ~((~0L)<<(i-1));
 324                     double randFloat = Double.longBitsToDouble( // Exponent
 325                                                  Double.doubleToLongBits(top) |
 326                                                  // Significand
 327                                                  (rand.nextLong() & mask ) ) ;
 328 
 329                     failures += testGetExponentCase(randFloat,
 330                                                     DoubleConsts.MIN_EXPONENT - 1);
 331                 }
 332             }
 333         }
 334 
 335         return failures;
 336     }
 337 
 338 
 339     /* ******************** nextAfter tests ****************************** */
 340 
 341     static int testNextAfterCase(float start, double direction, float expected) {
 342         int failures=0;
 343         float minus_start = -start;
 344         double minus_direction = -direction;
 345         float minus_expected = -expected;
 346 
 347         failures+=Tests.test("Math.nextAfter(float,double)", start, direction,
 348                              Math.nextAfter(start, direction), expected);
 349         failures+=Tests.test("Math.nextAfter(float,double)", minus_start, minus_direction,
 350                              Math.nextAfter(minus_start, minus_direction), minus_expected);
 351 
 352         failures+=Tests.test("StrictMath.nextAfter(float,double)", start, direction,
 353                              StrictMath.nextAfter(start, direction), expected);
 354         failures+=Tests.test("StrictMath.nextAfter(float,double)", minus_start, minus_direction,
 355                              StrictMath.nextAfter(minus_start, minus_direction), minus_expected);
 356         return failures;
 357     }
 358 
 359     static int testNextAfterCase(double start, double direction, double expected) {
 360         int failures=0;
 361 
 362         double minus_start = -start;
 363         double minus_direction = -direction;
 364         double minus_expected = -expected;
 365 
 366         failures+=Tests.test("Math.nextAfter(double,double)", start, direction,
 367                              Math.nextAfter(start, direction), expected);
 368         failures+=Tests.test("Math.nextAfter(double,double)", minus_start, minus_direction,
 369                              Math.nextAfter(minus_start, minus_direction), minus_expected);
 370 
 371         failures+=Tests.test("StrictMath.nextAfter(double,double)", start, direction,
 372                              StrictMath.nextAfter(start, direction), expected);
 373         failures+=Tests.test("StrictMath.nextAfter(double,double)", minus_start, minus_direction,
 374                              StrictMath.nextAfter(minus_start, minus_direction), minus_expected);
 375         return failures;
 376     }
 377 
 378     public static int testFloatNextAfter() {
 379         int failures=0;
 380 
 381         /*
 382          * Each row of the testCases matrix represents one test case
 383          * for nexAfter; given the input of the first two columns, the
 384          * result in the last column is expected.
 385          */
 386         float [][] testCases  = {
 387             {NaNf,              NaNf,                   NaNf},
 388             {NaNf,              0.0f,                   NaNf},
 389             {0.0f,              NaNf,                   NaNf},
 390             {NaNf,              infinityF,              NaNf},
 391             {infinityF,         NaNf,                   NaNf},
 392 
 393             {infinityF,         infinityF,              infinityF},
 394             {infinityF,         -infinityF,             Float.MAX_VALUE},
 395             {infinityF,         0.0f,                   Float.MAX_VALUE},
 396 
 397             {Float.MAX_VALUE,   infinityF,              infinityF},
 398             {Float.MAX_VALUE,   -infinityF,             Float_MAX_VALUEmm},
 399             {Float.MAX_VALUE,   Float.MAX_VALUE,        Float.MAX_VALUE},
 400             {Float.MAX_VALUE,   0.0f,                   Float_MAX_VALUEmm},
 401 
 402             {Float_MAX_VALUEmm, Float.MAX_VALUE,        Float.MAX_VALUE},
 403             {Float_MAX_VALUEmm, infinityF,              Float.MAX_VALUE},
 404             {Float_MAX_VALUEmm, Float_MAX_VALUEmm,      Float_MAX_VALUEmm},
 405 
 406             {FloatConsts.MIN_NORMAL,    infinityF,              FloatConsts.MIN_NORMAL+
 407                                                                 Float.MIN_VALUE},
 408             {FloatConsts.MIN_NORMAL,    -infinityF,             Float_MAX_SUBNORMAL},
 409             {FloatConsts.MIN_NORMAL,    1.0f,                   FloatConsts.MIN_NORMAL+
 410                                                                 Float.MIN_VALUE},
 411             {FloatConsts.MIN_NORMAL,    -1.0f,                  Float_MAX_SUBNORMAL},
 412             {FloatConsts.MIN_NORMAL,    FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL},
 413 
 414             {Float_MAX_SUBNORMAL,       FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL},
 415             {Float_MAX_SUBNORMAL,       Float_MAX_SUBNORMAL,    Float_MAX_SUBNORMAL},
 416             {Float_MAX_SUBNORMAL,       0.0f,                   Float_MAX_SUBNORMALmm},
 417 
 418             {Float_MAX_SUBNORMALmm,     Float_MAX_SUBNORMAL,    Float_MAX_SUBNORMAL},
 419             {Float_MAX_SUBNORMALmm,     0.0f,                   Float_MAX_SUBNORMALmm-Float.MIN_VALUE},
 420             {Float_MAX_SUBNORMALmm,     Float_MAX_SUBNORMALmm,  Float_MAX_SUBNORMALmm},
 421 
 422             {Float.MIN_VALUE,   0.0f,                   0.0f},
 423             {-Float.MIN_VALUE,  0.0f,                   -0.0f},
 424             {Float.MIN_VALUE,   Float.MIN_VALUE,        Float.MIN_VALUE},
 425             {Float.MIN_VALUE,   1.0f,                   2*Float.MIN_VALUE},
 426 
 427             // Make sure zero behavior is tested
 428             {0.0f,              0.0f,                   0.0f},
 429             {0.0f,              -0.0f,                  -0.0f},
 430             {-0.0f,             0.0f,                   0.0f},
 431             {-0.0f,             -0.0f,                  -0.0f},
 432             {0.0f,              infinityF,              Float.MIN_VALUE},
 433             {0.0f,              -infinityF,             -Float.MIN_VALUE},
 434             {-0.0f,             infinityF,              Float.MIN_VALUE},
 435             {-0.0f,             -infinityF,             -Float.MIN_VALUE},
 436             {0.0f,              Float.MIN_VALUE,        Float.MIN_VALUE},
 437             {0.0f,              -Float.MIN_VALUE,       -Float.MIN_VALUE},
 438             {-0.0f,             Float.MIN_VALUE,        Float.MIN_VALUE},
 439             {-0.0f,             -Float.MIN_VALUE,       -Float.MIN_VALUE}
 440         };
 441 
 442         for(int i = 0; i < testCases.length; i++) {
 443             failures += testNextAfterCase(testCases[i][0], testCases[i][1],
 444                                           testCases[i][2]);
 445         }
 446 
 447         return failures;
 448     }
 449 
 450     public static int testDoubleNextAfter() {
 451         int failures =0;
 452 
 453         /*
 454          * Each row of the testCases matrix represents one test case
 455          * for nexAfter; given the input of the first two columns, the
 456          * result in the last column is expected.
 457          */
 458         double [][] testCases  = {
 459             {NaNd,              NaNd,                   NaNd},
 460             {NaNd,              0.0d,                   NaNd},
 461             {0.0d,              NaNd,                   NaNd},
 462             {NaNd,              infinityD,              NaNd},
 463             {infinityD,         NaNd,                   NaNd},
 464 
 465             {infinityD,         infinityD,              infinityD},
 466             {infinityD,         -infinityD,             Double.MAX_VALUE},
 467             {infinityD,         0.0d,                   Double.MAX_VALUE},
 468 
 469             {Double.MAX_VALUE,  infinityD,              infinityD},
 470             {Double.MAX_VALUE,  -infinityD,             Double_MAX_VALUEmm},
 471             {Double.MAX_VALUE,  Double.MAX_VALUE,       Double.MAX_VALUE},
 472             {Double.MAX_VALUE,  0.0d,                   Double_MAX_VALUEmm},
 473 
 474             {Double_MAX_VALUEmm,        Double.MAX_VALUE,       Double.MAX_VALUE},
 475             {Double_MAX_VALUEmm,        infinityD,              Double.MAX_VALUE},
 476             {Double_MAX_VALUEmm,        Double_MAX_VALUEmm,     Double_MAX_VALUEmm},
 477 
 478             {DoubleConsts.MIN_NORMAL,   infinityD,              DoubleConsts.MIN_NORMAL+
 479                                                                 Double.MIN_VALUE},
 480             {DoubleConsts.MIN_NORMAL,   -infinityD,             Double_MAX_SUBNORMAL},
 481             {DoubleConsts.MIN_NORMAL,   1.0f,                   DoubleConsts.MIN_NORMAL+
 482                                                                 Double.MIN_VALUE},
 483             {DoubleConsts.MIN_NORMAL,   -1.0f,                  Double_MAX_SUBNORMAL},
 484             {DoubleConsts.MIN_NORMAL,   DoubleConsts.MIN_NORMAL,DoubleConsts.MIN_NORMAL},
 485 
 486             {Double_MAX_SUBNORMAL,      DoubleConsts.MIN_NORMAL,DoubleConsts.MIN_NORMAL},
 487             {Double_MAX_SUBNORMAL,      Double_MAX_SUBNORMAL,   Double_MAX_SUBNORMAL},
 488             {Double_MAX_SUBNORMAL,      0.0d,                   Double_MAX_SUBNORMALmm},
 489 
 490             {Double_MAX_SUBNORMALmm,    Double_MAX_SUBNORMAL,   Double_MAX_SUBNORMAL},
 491             {Double_MAX_SUBNORMALmm,    0.0d,                   Double_MAX_SUBNORMALmm-Double.MIN_VALUE},
 492             {Double_MAX_SUBNORMALmm,    Double_MAX_SUBNORMALmm, Double_MAX_SUBNORMALmm},
 493 
 494             {Double.MIN_VALUE,  0.0d,                   0.0d},
 495             {-Double.MIN_VALUE, 0.0d,                   -0.0d},
 496             {Double.MIN_VALUE,  Double.MIN_VALUE,       Double.MIN_VALUE},
 497             {Double.MIN_VALUE,  1.0f,                   2*Double.MIN_VALUE},
 498 
 499             // Make sure zero behavior is tested
 500             {0.0d,              0.0d,                   0.0d},
 501             {0.0d,              -0.0d,                  -0.0d},
 502             {-0.0d,             0.0d,                   0.0d},
 503             {-0.0d,             -0.0d,                  -0.0d},
 504             {0.0d,              infinityD,              Double.MIN_VALUE},
 505             {0.0d,              -infinityD,             -Double.MIN_VALUE},
 506             {-0.0d,             infinityD,              Double.MIN_VALUE},
 507             {-0.0d,             -infinityD,             -Double.MIN_VALUE},
 508             {0.0d,              Double.MIN_VALUE,       Double.MIN_VALUE},
 509             {0.0d,              -Double.MIN_VALUE,      -Double.MIN_VALUE},
 510             {-0.0d,             Double.MIN_VALUE,       Double.MIN_VALUE},
 511             {-0.0d,             -Double.MIN_VALUE,      -Double.MIN_VALUE}
 512         };
 513 
 514         for(int i = 0; i < testCases.length; i++) {
 515             failures += testNextAfterCase(testCases[i][0], testCases[i][1],
 516                                           testCases[i][2]);
 517         }
 518         return failures;
 519     }
 520 
 521     /* ******************** nextUp tests ********************************* */
 522 
 523     public static int testFloatNextUp() {
 524         int failures=0;
 525 
 526         /*
 527          * Each row of testCases represents one test case for nextUp;
 528          * the first column is the input and the second column is the
 529          * expected result.
 530          */
 531         float testCases [][] = {
 532             {NaNf,                      NaNf},
 533             {-infinityF,                -Float.MAX_VALUE},
 534             {-Float.MAX_VALUE,          -Float_MAX_VALUEmm},
 535             {-FloatConsts.MIN_NORMAL,   -Float_MAX_SUBNORMAL},
 536             {-Float_MAX_SUBNORMAL,      -Float_MAX_SUBNORMALmm},
 537             {-Float.MIN_VALUE,          -0.0f},
 538             {-0.0f,                     Float.MIN_VALUE},
 539             {+0.0f,                     Float.MIN_VALUE},
 540             {Float.MIN_VALUE,           Float.MIN_VALUE*2},
 541             {Float_MAX_SUBNORMALmm,     Float_MAX_SUBNORMAL},
 542             {Float_MAX_SUBNORMAL,       FloatConsts.MIN_NORMAL},
 543             {FloatConsts.MIN_NORMAL,    FloatConsts.MIN_NORMAL+Float.MIN_VALUE},
 544             {Float_MAX_VALUEmm,         Float.MAX_VALUE},
 545             {Float.MAX_VALUE,           infinityF},
 546             {infinityF,                 infinityF}
 547         };
 548 
 549         for(int i = 0; i < testCases.length; i++) {
 550             failures+=Tests.test("Math.nextUp(float)",
 551                                  testCases[i][0], Math.nextUp(testCases[i][0]), testCases[i][1]);
 552 
 553             failures+=Tests.test("StrictMath.nextUp(float)",
 554                                  testCases[i][0], StrictMath.nextUp(testCases[i][0]), testCases[i][1]);
 555         }
 556 
 557         return failures;
 558     }
 559 
 560 
 561     public static int testDoubleNextUp() {
 562         int failures=0;
 563 
 564         /*
 565          * Each row of testCases represents one test case for nextUp;
 566          * the first column is the input and the second column is the
 567          * expected result.
 568          */
 569         double testCases [][] = {
 570             {NaNd,                      NaNd},
 571             {-infinityD,                -Double.MAX_VALUE},
 572             {-Double.MAX_VALUE,         -Double_MAX_VALUEmm},
 573             {-DoubleConsts.MIN_NORMAL,  -Double_MAX_SUBNORMAL},
 574             {-Double_MAX_SUBNORMAL,     -Double_MAX_SUBNORMALmm},
 575             {-Double.MIN_VALUE,         -0.0d},
 576             {-0.0d,                     Double.MIN_VALUE},
 577             {+0.0d,                     Double.MIN_VALUE},
 578             {Double.MIN_VALUE,          Double.MIN_VALUE*2},
 579             {Double_MAX_SUBNORMALmm,    Double_MAX_SUBNORMAL},
 580             {Double_MAX_SUBNORMAL,      DoubleConsts.MIN_NORMAL},
 581             {DoubleConsts.MIN_NORMAL,   DoubleConsts.MIN_NORMAL+Double.MIN_VALUE},
 582             {Double_MAX_VALUEmm,        Double.MAX_VALUE},
 583             {Double.MAX_VALUE,          infinityD},
 584             {infinityD,                 infinityD}
 585         };
 586 
 587         for(int i = 0; i < testCases.length; i++) {
 588             failures+=Tests.test("Math.nextUp(double)",
 589                                  testCases[i][0], Math.nextUp(testCases[i][0]), testCases[i][1]);
 590 
 591             failures+=Tests.test("StrictMath.nextUp(double)",
 592                                  testCases[i][0], StrictMath.nextUp(testCases[i][0]), testCases[i][1]);
 593         }
 594 
 595         return failures;
 596     }
 597 
 598     /* ******************** nextDown tests ********************************* */
 599 
 600     public static int testFloatNextDown() {
 601         int failures=0;
 602 
 603         /*
 604          * Each row of testCases represents one test case for nextDown;
 605          * the first column is the input and the second column is the
 606          * expected result.
 607          */
 608         float testCases [][] = {
 609             {NaNf,                      NaNf},
 610             {-infinityF,                -infinityF},
 611             {-Float.MAX_VALUE,          -infinityF},
 612             {-Float_MAX_VALUEmm,        -Float.MAX_VALUE},
 613             {-Float_MAX_SUBNORMAL,      -FloatConsts.MIN_NORMAL},
 614             {-Float_MAX_SUBNORMALmm,    -Float_MAX_SUBNORMAL},
 615             {-0.0f,                     -Float.MIN_VALUE},
 616             {+0.0f,                     -Float.MIN_VALUE},
 617             {Float.MIN_VALUE,           0.0f},
 618             {Float.MIN_VALUE*2,         Float.MIN_VALUE},
 619             {Float_MAX_SUBNORMAL,       Float_MAX_SUBNORMALmm},
 620             {FloatConsts.MIN_NORMAL,    Float_MAX_SUBNORMAL},
 621             {FloatConsts.MIN_NORMAL+
 622              Float.MIN_VALUE,           FloatConsts.MIN_NORMAL},
 623             {Float.MAX_VALUE,           Float_MAX_VALUEmm},
 624             {infinityF,                 Float.MAX_VALUE},
 625         };
 626 
 627         for(int i = 0; i < testCases.length; i++) {
 628             failures+=Tests.test("FpUtils.nextDown(float)",
 629                                  testCases[i][0], FpUtils.nextDown(testCases[i][0]), testCases[i][1]);
 630         }
 631 
 632         return failures;
 633     }
 634 
 635 
 636     public static int testDoubleNextDown() {
 637         int failures=0;
 638 
 639         /*
 640          * Each row of testCases represents one test case for nextDown;
 641          * the first column is the input and the second column is the
 642          * expected result.
 643          */
 644         double testCases [][] = {
 645             {NaNd,                      NaNd},
 646             {-infinityD,                -infinityD},
 647             {-Double.MAX_VALUE,         -infinityD},
 648             {-Double_MAX_VALUEmm,       -Double.MAX_VALUE},
 649             {-Double_MAX_SUBNORMAL,     -DoubleConsts.MIN_NORMAL},
 650             {-Double_MAX_SUBNORMALmm,   -Double_MAX_SUBNORMAL},
 651             {-0.0d,                     -Double.MIN_VALUE},
 652             {+0.0d,                     -Double.MIN_VALUE},
 653             {Double.MIN_VALUE,          0.0d},
 654             {Double.MIN_VALUE*2,        Double.MIN_VALUE},
 655             {Double_MAX_SUBNORMAL,      Double_MAX_SUBNORMALmm},
 656             {DoubleConsts.MIN_NORMAL,   Double_MAX_SUBNORMAL},
 657             {DoubleConsts.MIN_NORMAL+
 658              Double.MIN_VALUE,          DoubleConsts.MIN_NORMAL},
 659             {Double.MAX_VALUE,          Double_MAX_VALUEmm},
 660             {infinityD,                 Double.MAX_VALUE},
 661         };
 662 
 663         for(int i = 0; i < testCases.length; i++) {
 664             failures+=Tests.test("FpUtils.nextDown(double)",
 665                                  testCases[i][0], FpUtils.nextDown(testCases[i][0]), testCases[i][1]);
 666         }
 667 
 668         return failures;
 669     }
 670 
 671 
 672     /* ********************** boolean tests ****************************** */
 673 
 674     /*
 675      * Combined tests for boolean functions, isFinite, isInfinite,
 676      * isNaN, isUnordered.
 677      */
 678 
 679     public static int testFloatBooleanMethods() {
 680         int failures = 0;
 681 
 682         float testCases [] = {
 683             NaNf,
 684             -infinityF,
 685             infinityF,
 686             -Float.MAX_VALUE,
 687             -3.0f,
 688             -1.0f,
 689             -FloatConsts.MIN_NORMAL,
 690             -Float_MAX_SUBNORMALmm,
 691             -Float_MAX_SUBNORMAL,
 692             -Float.MIN_VALUE,
 693             -0.0f,
 694             +0.0f,
 695             Float.MIN_VALUE,
 696             Float_MAX_SUBNORMALmm,
 697             Float_MAX_SUBNORMAL,
 698             FloatConsts.MIN_NORMAL,
 699             1.0f,
 700             3.0f,
 701             Float_MAX_VALUEmm,
 702             Float.MAX_VALUE
 703         };
 704 
 705         for(int i = 0; i < testCases.length; i++) {
 706             // isNaN
 707             failures+=Tests.test("FpUtils.isNaN(float)", testCases[i],
 708                                  FpUtils.isNaN(testCases[i]), (i ==0));
 709 
 710             // isFinite
 711             failures+=Tests.test("FpUtils.isFinite(float)", testCases[i],
 712                                  FpUtils.isFinite(testCases[i]), (i >= 3));
 713 
 714             // isInfinite
 715             failures+=Tests.test("FpUtils.isInfinite(float)", testCases[i],
 716                                  FpUtils.isInfinite(testCases[i]), (i==1 || i==2));
 717 
 718             // isUnorderd
 719             for(int j = 0; j < testCases.length; j++) {
 720                 failures+=Tests.test("FpUtils.isUnordered(float, float)", testCases[i],testCases[j],
 721                                      FpUtils.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
 722             }
 723         }
 724 
 725         return failures;
 726     }
 727 
 728     public static int testDoubleBooleanMethods() {
 729         int failures = 0;
 730         boolean result = false;
 731 
 732         double testCases [] = {
 733             NaNd,
 734             -infinityD,
 735             infinityD,
 736             -Double.MAX_VALUE,
 737             -3.0d,
 738             -1.0d,
 739             -DoubleConsts.MIN_NORMAL,
 740             -Double_MAX_SUBNORMALmm,
 741             -Double_MAX_SUBNORMAL,
 742             -Double.MIN_VALUE,
 743             -0.0d,
 744             +0.0d,
 745             Double.MIN_VALUE,
 746             Double_MAX_SUBNORMALmm,
 747             Double_MAX_SUBNORMAL,
 748             DoubleConsts.MIN_NORMAL,
 749             1.0d,
 750             3.0d,
 751             Double_MAX_VALUEmm,
 752             Double.MAX_VALUE
 753         };
 754 
 755         for(int i = 0; i < testCases.length; i++) {
 756             // isNaN
 757             failures+=Tests.test("FpUtils.isNaN(double)", testCases[i],
 758                                  FpUtils.isNaN(testCases[i]), (i ==0));
 759 
 760             // isFinite
 761             failures+=Tests.test("FpUtils.isFinite(double)", testCases[i],
 762                                  FpUtils.isFinite(testCases[i]), (i >= 3));
 763 
 764             // isInfinite
 765             failures+=Tests.test("FpUtils.isInfinite(double)", testCases[i],
 766                                  FpUtils.isInfinite(testCases[i]), (i==1 || i==2));
 767 
 768             // isUnorderd
 769             for(int j = 0; j < testCases.length; j++) {
 770                 failures+=Tests.test("FpUtils.isUnordered(double, double)", testCases[i],testCases[j],
 771                                      FpUtils.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
 772             }
 773         }
 774 
 775         return failures;
 776     }
 777 
 778     /* ******************** copySign tests******************************** */
 779 
 780    public static int testFloatCopySign() {
 781         int failures = 0;
 782 
 783         // testCases[0] are logically positive numbers;
 784         // testCases[1] are negative numbers.
 785         float testCases [][] = {
 786             {+0.0f,
 787              Float.MIN_VALUE,
 788              Float_MAX_SUBNORMALmm,
 789              Float_MAX_SUBNORMAL,
 790              FloatConsts.MIN_NORMAL,
 791              1.0f,
 792              3.0f,
 793              Float_MAX_VALUEmm,
 794              Float.MAX_VALUE,
 795              infinityF,
 796             },
 797             {-infinityF,
 798              -Float.MAX_VALUE,
 799              -3.0f,
 800              -1.0f,
 801              -FloatConsts.MIN_NORMAL,
 802              -Float_MAX_SUBNORMALmm,
 803              -Float_MAX_SUBNORMAL,
 804              -Float.MIN_VALUE,
 805              -0.0f}
 806         };
 807 
 808         float NaNs[] = {Float.intBitsToFloat(0x7fc00000),       // "positive" NaN
 809                         Float.intBitsToFloat(0xFfc00000)};      // "negative" NaN
 810 
 811         // Tests shared between raw and non-raw versions
 812         for(int i = 0; i < 2; i++) {
 813             for(int j = 0; j < 2; j++) {
 814                 for(int m = 0; m < testCases[i].length; m++) {
 815                     for(int n = 0; n < testCases[j].length; n++) {
 816                         // copySign(magnitude, sign)
 817                         failures+=Tests.test("Math.copySign(float,float)",
 818                                              testCases[i][m],testCases[j][n],
 819                                              Math.copySign(testCases[i][m], testCases[j][n]),
 820                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 821 
 822                         failures+=Tests.test("StrictMath.copySign(float,float)",
 823                                              testCases[i][m],testCases[j][n],
 824                                              StrictMath.copySign(testCases[i][m], testCases[j][n]),
 825                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 826                     }
 827                 }
 828             }
 829         }
 830 
 831         // For rawCopySign, NaN may effectively have either sign bit
 832         // while for copySign NaNs are treated as if they always have
 833         // a zero sign bit (i.e. as positive numbers)
 834         for(int i = 0; i < 2; i++) {
 835             for(int j = 0; j < NaNs.length; j++) {
 836                 for(int m = 0; m < testCases[i].length; m++) {
 837                     // copySign(magnitude, sign)
 838 
 839                     failures += (Math.abs(Math.copySign(testCases[i][m], NaNs[j])) ==
 840                                  Math.abs(testCases[i][m])) ? 0:1;
 841 
 842 
 843                     failures+=Tests.test("StrictMath.copySign(float,float)",
 844                                          testCases[i][m], NaNs[j],
 845                                          StrictMath.copySign(testCases[i][m], NaNs[j]),
 846                                          Math.abs(testCases[i][m]) );
 847                 }
 848             }
 849         }
 850 
 851         return failures;
 852     }
 853 
 854     public static int testDoubleCopySign() {
 855         int failures = 0;
 856 
 857         // testCases[0] are logically positive numbers;
 858         // testCases[1] are negative numbers.
 859         double testCases [][] = {
 860             {+0.0d,
 861              Double.MIN_VALUE,
 862              Double_MAX_SUBNORMALmm,
 863              Double_MAX_SUBNORMAL,
 864              DoubleConsts.MIN_NORMAL,
 865              1.0d,
 866              3.0d,
 867              Double_MAX_VALUEmm,
 868              Double.MAX_VALUE,
 869              infinityD,
 870             },
 871             {-infinityD,
 872              -Double.MAX_VALUE,
 873              -3.0d,
 874              -1.0d,
 875              -DoubleConsts.MIN_NORMAL,
 876              -Double_MAX_SUBNORMALmm,
 877              -Double_MAX_SUBNORMAL,
 878              -Double.MIN_VALUE,
 879              -0.0d}
 880         };
 881 
 882         double NaNs[] = {Double.longBitsToDouble(0x7ff8000000000000L),  // "positive" NaN
 883                          Double.longBitsToDouble(0xfff8000000000000L),  // "negative" NaN
 884                          Double.longBitsToDouble(0x7FF0000000000001L),
 885                          Double.longBitsToDouble(0xFFF0000000000001L),
 886                          Double.longBitsToDouble(0x7FF8555555555555L),
 887                          Double.longBitsToDouble(0xFFF8555555555555L),
 888                          Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),
 889                          Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),
 890                          Double.longBitsToDouble(0x7FFDeadBeef00000L),
 891                          Double.longBitsToDouble(0xFFFDeadBeef00000L),
 892                          Double.longBitsToDouble(0x7FFCafeBabe00000L),
 893                          Double.longBitsToDouble(0xFFFCafeBabe00000L)};
 894 
 895         // Tests shared between Math and StrictMath versions
 896         for(int i = 0; i < 2; i++) {
 897             for(int j = 0; j < 2; j++) {
 898                 for(int m = 0; m < testCases[i].length; m++) {
 899                     for(int n = 0; n < testCases[j].length; n++) {
 900                         // copySign(magnitude, sign)
 901                         failures+=Tests.test("MathcopySign(double,double)",
 902                                              testCases[i][m],testCases[j][n],
 903                                              Math.copySign(testCases[i][m], testCases[j][n]),
 904                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 905 
 906                         failures+=Tests.test("StrictMath.copySign(double,double)",
 907                                              testCases[i][m],testCases[j][n],
 908                                              StrictMath.copySign(testCases[i][m], testCases[j][n]),
 909                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 910                     }
 911                 }
 912             }
 913         }
 914 
 915         // For Math.copySign, NaN may effectively have either sign bit
 916         // while for StrictMath.copySign NaNs are treated as if they
 917         // always have a zero sign bit (i.e. as positive numbers)
 918         for(int i = 0; i < 2; i++) {
 919             for(int j = 0; j < NaNs.length; j++) {
 920                 for(int m = 0; m < testCases[i].length; m++) {
 921                     // copySign(magnitude, sign)
 922 
 923                     failures += (Math.abs(Math.copySign(testCases[i][m], NaNs[j])) ==
 924                                  Math.abs(testCases[i][m])) ? 0:1;
 925 
 926 
 927                     failures+=Tests.test("StrictMath.copySign(double,double)",
 928                                          testCases[i][m], NaNs[j],
 929                                          StrictMath.copySign(testCases[i][m], NaNs[j]),
 930                                          Math.abs(testCases[i][m]) );
 931                 }
 932             }
 933         }
 934 
 935 
 936         return failures;
 937     }
 938 
 939     /* ************************ scalb tests ******************************* */
 940 
 941     static int testScalbCase(float value, int scale_factor, float expected) {
 942         int failures=0;
 943 
 944         failures+=Tests.test("Math.scalb(float,int)",
 945                              value, scale_factor,
 946                              Math.scalb(value, scale_factor), expected);
 947 
 948         failures+=Tests.test("Math.scalb(float,int)",
 949                              -value, scale_factor,
 950                              Math.scalb(-value, scale_factor), -expected);
 951 
 952         failures+=Tests.test("StrictMath.scalb(float,int)",
 953                              value, scale_factor,
 954                              StrictMath.scalb(value, scale_factor), expected);
 955 
 956         failures+=Tests.test("StrictMath.scalb(float,int)",
 957                              -value, scale_factor,
 958                              StrictMath.scalb(-value, scale_factor), -expected);
 959         return failures;
 960     }
 961 
 962     public static int testFloatScalb() {
 963         int failures=0;
 964         int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT +
 965                         FloatConsts.SIGNIFICAND_WIDTH + 1;
 966 
 967 
 968         // Arguments x, where scalb(x,n) is x for any n.
 969         float [] identityTestCases = {NaNf,
 970                                       -0.0f,
 971                                       +0.0f,
 972                                       infinityF,
 973                                       -infinityF
 974         };
 975 
 976         float [] subnormalTestCases = {
 977             Float.MIN_VALUE,
 978             3.0f*Float.MIN_VALUE,
 979             Float_MAX_SUBNORMALmm,
 980             Float_MAX_SUBNORMAL
 981         };
 982 
 983         float [] someTestCases = {
 984             Float.MIN_VALUE,
 985             3.0f*Float.MIN_VALUE,
 986             Float_MAX_SUBNORMALmm,
 987             Float_MAX_SUBNORMAL,
 988             FloatConsts.MIN_NORMAL,
 989             1.0f,
 990             2.0f,
 991             3.0f,
 992             (float)Math.PI,
 993             Float_MAX_VALUEmm,
 994             Float.MAX_VALUE
 995         };
 996 
 997         int [] oneMultiplyScalingFactors = {
 998             FloatConsts.MIN_EXPONENT,
 999             FloatConsts.MIN_EXPONENT+1,
1000             -3,
1001             -2,
1002             -1,
1003             0,
1004             1,
1005             2,
1006             3,
1007             FloatConsts.MAX_EXPONENT-1,
1008             FloatConsts.MAX_EXPONENT
1009         };
1010 
1011         int [] manyScalingFactors = {
1012             Integer.MIN_VALUE,
1013             Integer.MIN_VALUE+1,
1014             -MAX_SCALE -1,
1015             -MAX_SCALE,
1016             -MAX_SCALE+1,
1017 
1018             2*FloatConsts.MIN_EXPONENT-1,       // -253
1019             2*FloatConsts.MIN_EXPONENT,         // -252
1020             2*FloatConsts.MIN_EXPONENT+1,       // -251
1021 
1022             FpUtils.ilogb(Float.MIN_VALUE)-1,   // -150
1023             FpUtils.ilogb(Float.MIN_VALUE),     // -149
1024             -FloatConsts.MAX_EXPONENT,          // -127
1025             FloatConsts.MIN_EXPONENT,           // -126
1026 
1027             -2,
1028             -1,
1029             0,
1030             1,
1031             2,
1032 
1033             FloatConsts.MAX_EXPONENT-1,         // 126
1034             FloatConsts.MAX_EXPONENT,           // 127
1035             FloatConsts.MAX_EXPONENT+1,         // 128
1036 
1037             2*FloatConsts.MAX_EXPONENT-1,       // 253
1038             2*FloatConsts.MAX_EXPONENT,         // 254
1039             2*FloatConsts.MAX_EXPONENT+1,       // 255
1040 
1041             MAX_SCALE-1,
1042             MAX_SCALE,
1043             MAX_SCALE+1,
1044             Integer.MAX_VALUE-1,
1045             Integer.MAX_VALUE
1046         };
1047 
1048         // Test cases where scaling is always a no-op
1049         for(int i=0; i < identityTestCases.length; i++) {
1050             for(int j=0; j < manyScalingFactors.length; j++) {
1051                 failures += testScalbCase(identityTestCases[i],
1052                                           manyScalingFactors[j],
1053                                           identityTestCases[i]);
1054             }
1055         }
1056 
1057         // Test cases where result is 0.0 or infinity due to magnitude
1058         // of the scaling factor
1059         for(int i=0; i < someTestCases.length; i++) {
1060             for(int j=0; j < manyScalingFactors.length; j++) {
1061                 int scaleFactor = manyScalingFactors[j];
1062                 if (Math.abs(scaleFactor) >= MAX_SCALE) {
1063                     float value = someTestCases[i];
1064                     failures+=testScalbCase(value,
1065                                             scaleFactor,
1066                                             FpUtils.copySign( (scaleFactor>0?infinityF:0.0f), value) );
1067                 }
1068             }
1069         }
1070 
1071         // Test cases that could be done with one floating-point
1072         // multiply.
1073         for(int i=0; i < someTestCases.length; i++) {
1074             for(int j=0; j < oneMultiplyScalingFactors.length; j++) {
1075                 int scaleFactor = oneMultiplyScalingFactors[j];
1076                     float value = someTestCases[i];
1077 
1078                     failures+=testScalbCase(value,
1079                                             scaleFactor,
1080                                             value*powerOfTwoF(scaleFactor));
1081             }
1082         }
1083 
1084         // Create 2^MAX_EXPONENT
1085         float twoToTheMaxExp = 1.0f; // 2^0
1086         for(int i = 0; i < FloatConsts.MAX_EXPONENT; i++)
1087             twoToTheMaxExp *=2.0f;
1088 
1089         // Scale-up subnormal values until they all overflow
1090         for(int i=0; i < subnormalTestCases.length; i++) {
1091             float scale = 1.0f; // 2^j
1092             float value = subnormalTestCases[i];
1093 
1094             for(int j=FloatConsts.MAX_EXPONENT*2; j < MAX_SCALE; j++) { // MAX_SCALE -1 should cause overflow
1095                 int scaleFactor = j;
1096 
1097                 failures+=testScalbCase(value,
1098                                         scaleFactor,
1099                                         (FpUtils.ilogb(value) +j > FloatConsts.MAX_EXPONENT ) ?
1100                                         FpUtils.copySign(infinityF, value) : // overflow
1101                                         // calculate right answer
1102                                         twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );
1103                 scale*=2.0f;
1104             }
1105         }
1106 
1107         // Scale down a large number until it underflows.  By scaling
1108         // down MAX_NORMALmm, the first subnormal result will be exact
1109         // but the next one will round -- all those results can be
1110         // checked by halving a separate value in the loop.  Actually,
1111         // we can keep halving and checking until the product is zero
1112         // since:
1113         //
1114         // 1. If the scalb of MAX_VALUEmm is subnormal and *not* exact
1115         // it will round *up*
1116         //
1117         // 2. When rounding first occurs in the expected product, it
1118         // too rounds up, to 2^-MAX_EXPONENT.
1119         //
1120         // Halving expected after rounding happends to give the same
1121         // result as the scalb operation.
1122         float expected = Float_MAX_VALUEmm *0.5f;
1123         for(int i = -1; i > -MAX_SCALE; i--) {
1124             failures+=testScalbCase(Float_MAX_VALUEmm, i, expected);
1125 
1126             expected *= 0.5f;
1127         }
1128 
1129         // Tricky rounding tests:
1130         // Scale down a large number into subnormal range such that if
1131         // scalb is being implemented with multiple floating-point
1132         // multiplies, the value would round twice if the multiplies
1133         // were done in the wrong order.
1134 
1135         float value = 0x8.0000bP-5f;
1136         expected = 0x1.00001p-129f;
1137 
1138         for(int i = 0; i < 129; i++) {
1139             failures+=testScalbCase(value,
1140                                     -127-i,
1141                                     expected);
1142             value *=2.0f;
1143         }
1144 
1145         return failures;
1146     }
1147 
1148     static int testScalbCase(double value, int scale_factor, double expected) {
1149         int failures=0;
1150 
1151         failures+=Tests.test("Math.scalb(double,int)",
1152                              value, scale_factor,
1153                              Math.scalb(value, scale_factor), expected);
1154 
1155         failures+=Tests.test("Math.scalb(double,int)",
1156                              -value, scale_factor,
1157                              Math.scalb(-value, scale_factor), -expected);
1158 
1159         failures+=Tests.test("StrictMath.scalb(double,int)",
1160                              value, scale_factor,
1161                              StrictMath.scalb(value, scale_factor), expected);
1162 
1163         failures+=Tests.test("StrictMath.scalb(double,int)",
1164                              -value, scale_factor,
1165                              StrictMath.scalb(-value, scale_factor), -expected);
1166 
1167         return failures;
1168     }
1169 
1170     public static int testDoubleScalb() {
1171         int failures=0;
1172         int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT +
1173                         DoubleConsts.SIGNIFICAND_WIDTH + 1;
1174 
1175 
1176         // Arguments x, where scalb(x,n) is x for any n.
1177         double [] identityTestCases = {NaNd,
1178                                       -0.0,
1179                                       +0.0,
1180                                       infinityD,
1181         };
1182 
1183         double [] subnormalTestCases = {
1184             Double.MIN_VALUE,
1185             3.0d*Double.MIN_VALUE,
1186             Double_MAX_SUBNORMALmm,
1187             Double_MAX_SUBNORMAL
1188         };
1189 
1190         double [] someTestCases = {
1191             Double.MIN_VALUE,
1192             3.0d*Double.MIN_VALUE,
1193             Double_MAX_SUBNORMALmm,
1194             Double_MAX_SUBNORMAL,
1195             DoubleConsts.MIN_NORMAL,
1196             1.0d,
1197             2.0d,
1198             3.0d,
1199             Math.PI,
1200             Double_MAX_VALUEmm,
1201             Double.MAX_VALUE
1202         };
1203 
1204         int [] oneMultiplyScalingFactors = {
1205             DoubleConsts.MIN_EXPONENT,
1206             DoubleConsts.MIN_EXPONENT+1,
1207             -3,
1208             -2,
1209             -1,
1210             0,
1211             1,
1212             2,
1213             3,
1214             DoubleConsts.MAX_EXPONENT-1,
1215             DoubleConsts.MAX_EXPONENT
1216         };
1217 
1218         int [] manyScalingFactors = {
1219             Integer.MIN_VALUE,
1220             Integer.MIN_VALUE+1,
1221             -MAX_SCALE -1,
1222             -MAX_SCALE,
1223             -MAX_SCALE+1,
1224 
1225             2*DoubleConsts.MIN_EXPONENT-1,      // -2045
1226             2*DoubleConsts.MIN_EXPONENT,        // -2044
1227             2*DoubleConsts.MIN_EXPONENT+1,      // -2043
1228 
1229             FpUtils.ilogb(Double.MIN_VALUE)-1,  // -1076
1230             FpUtils.ilogb(Double.MIN_VALUE),    // -1075
1231             -DoubleConsts.MAX_EXPONENT,         // -1023
1232             DoubleConsts.MIN_EXPONENT,          // -1022
1233 
1234             -2,
1235             -1,
1236             0,
1237             1,
1238             2,
1239 
1240             DoubleConsts.MAX_EXPONENT-1,        // 1022
1241             DoubleConsts.MAX_EXPONENT,          // 1023
1242             DoubleConsts.MAX_EXPONENT+1,        // 1024
1243 
1244             2*DoubleConsts.MAX_EXPONENT-1,      // 2045
1245             2*DoubleConsts.MAX_EXPONENT,        // 2046
1246             2*DoubleConsts.MAX_EXPONENT+1,      // 2047
1247 
1248             MAX_SCALE-1,
1249             MAX_SCALE,
1250             MAX_SCALE+1,
1251             Integer.MAX_VALUE-1,
1252             Integer.MAX_VALUE
1253         };
1254 
1255         // Test cases where scaling is always a no-op
1256         for(int i=0; i < identityTestCases.length; i++) {
1257             for(int j=0; j < manyScalingFactors.length; j++) {
1258                 failures += testScalbCase(identityTestCases[i],
1259                                           manyScalingFactors[j],
1260                                           identityTestCases[i]);
1261             }
1262         }
1263 
1264         // Test cases where result is 0.0 or infinity due to magnitude
1265         // of the scaling factor
1266         for(int i=0; i < someTestCases.length; i++) {
1267             for(int j=0; j < manyScalingFactors.length; j++) {
1268                 int scaleFactor = manyScalingFactors[j];
1269                 if (Math.abs(scaleFactor) >= MAX_SCALE) {
1270                     double value = someTestCases[i];
1271                     failures+=testScalbCase(value,
1272                                             scaleFactor,
1273                                             FpUtils.copySign( (scaleFactor>0?infinityD:0.0), value) );
1274                 }
1275             }
1276         }
1277 
1278         // Test cases that could be done with one floating-point
1279         // multiply.
1280         for(int i=0; i < someTestCases.length; i++) {
1281             for(int j=0; j < oneMultiplyScalingFactors.length; j++) {
1282                 int scaleFactor = oneMultiplyScalingFactors[j];
1283                     double value = someTestCases[i];
1284 
1285                     failures+=testScalbCase(value,
1286                                             scaleFactor,
1287                                             value*powerOfTwoD(scaleFactor));
1288             }
1289         }
1290 
1291         // Create 2^MAX_EXPONENT
1292         double twoToTheMaxExp = 1.0; // 2^0
1293         for(int i = 0; i < DoubleConsts.MAX_EXPONENT; i++)
1294             twoToTheMaxExp *=2.0;
1295 
1296         // Scale-up subnormal values until they all overflow
1297         for(int i=0; i < subnormalTestCases.length; i++) {
1298             double scale = 1.0; // 2^j
1299             double value = subnormalTestCases[i];
1300 
1301             for(int j=DoubleConsts.MAX_EXPONENT*2; j < MAX_SCALE; j++) { // MAX_SCALE -1 should cause overflow
1302                 int scaleFactor = j;
1303 
1304                 failures+=testScalbCase(value,
1305                                         scaleFactor,
1306                                         (FpUtils.ilogb(value) +j > DoubleConsts.MAX_EXPONENT ) ?
1307                                         FpUtils.copySign(infinityD, value) : // overflow
1308                                         // calculate right answer
1309                                         twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );
1310                 scale*=2.0;
1311             }
1312         }
1313 
1314         // Scale down a large number until it underflows.  By scaling
1315         // down MAX_NORMALmm, the first subnormal result will be exact
1316         // but the next one will round -- all those results can be
1317         // checked by halving a separate value in the loop.  Actually,
1318         // we can keep halving and checking until the product is zero
1319         // since:
1320         //
1321         // 1. If the scalb of MAX_VALUEmm is subnormal and *not* exact
1322         // it will round *up*
1323         //
1324         // 2. When rounding first occurs in the expected product, it
1325         // too rounds up, to 2^-MAX_EXPONENT.
1326         //
1327         // Halving expected after rounding happends to give the same
1328         // result as the scalb operation.
1329         double expected = Double_MAX_VALUEmm *0.5f;
1330         for(int i = -1; i > -MAX_SCALE; i--) {
1331             failures+=testScalbCase(Double_MAX_VALUEmm, i, expected);
1332 
1333             expected *= 0.5;
1334         }
1335 
1336         // Tricky rounding tests:
1337         // Scale down a large number into subnormal range such that if
1338         // scalb is being implemented with multiple floating-point
1339         // multiplies, the value would round twice if the multiplies
1340         // were done in the wrong order.
1341 
1342         double value = 0x1.000000000000bP-1;
1343         expected     = 0x0.2000000000001P-1022;
1344         for(int i = 0; i < DoubleConsts.MAX_EXPONENT+2; i++) {
1345             failures+=testScalbCase(value,
1346                                     -1024-i,
1347                                     expected);
1348             value *=2.0;
1349         }
1350 
1351         return failures;
1352     }
1353 
1354     /* ************************* ulp tests ******************************* */
1355 
1356 
1357     /*
1358      * Test Math.ulp and StrictMath.ulp with +d and -d.
1359      */
1360     static int testUlpCase(float f, float expected) {
1361         float minus_f = -f;
1362         int failures=0;
1363 
1364         failures+=Tests.test("Math.ulp(float)", f,
1365                              Math.ulp(f), expected);
1366         failures+=Tests.test("Math.ulp(float)", minus_f,
1367                              Math.ulp(minus_f), expected);
1368         failures+=Tests.test("StrictMath.ulp(float)", f,
1369                              StrictMath.ulp(f), expected);
1370         failures+=Tests.test("StrictMath.ulp(float)", minus_f,
1371                              StrictMath.ulp(minus_f), expected);
1372         return failures;
1373     }
1374 
1375     static int testUlpCase(double d, double expected) {
1376         double minus_d = -d;
1377         int failures=0;
1378 
1379         failures+=Tests.test("Math.ulp(double)", d,
1380                              Math.ulp(d), expected);
1381         failures+=Tests.test("Math.ulp(double)", minus_d,
1382                              Math.ulp(minus_d), expected);
1383         failures+=Tests.test("StrictMath.ulp(double)", d,
1384                              StrictMath.ulp(d), expected);
1385         failures+=Tests.test("StrictMath.ulp(double)", minus_d,
1386                              StrictMath.ulp(minus_d), expected);
1387         return failures;
1388     }
1389 
1390     public static int testFloatUlp() {
1391         int failures = 0;
1392         float [] specialValues = {NaNf,
1393                                   Float.POSITIVE_INFINITY,
1394                                   +0.0f,
1395                                   +1.0f,
1396                                   +2.0f,
1397                                   +16.0f,
1398                                   +Float.MIN_VALUE,
1399                                   +Float_MAX_SUBNORMAL,
1400                                   +FloatConsts.MIN_NORMAL,
1401                                   +Float.MAX_VALUE
1402         };
1403 
1404         float [] specialResults = {NaNf,
1405                                    Float.POSITIVE_INFINITY,
1406                                    Float.MIN_VALUE,
1407                                    powerOfTwoF(-23),
1408                                    powerOfTwoF(-22),
1409                                    powerOfTwoF(-19),
1410                                    Float.MIN_VALUE,
1411                                    Float.MIN_VALUE,
1412                                    Float.MIN_VALUE,
1413                                    powerOfTwoF(104)
1414         };
1415 
1416         // Special value tests
1417         for(int i = 0; i < specialValues.length; i++) {
1418             failures += testUlpCase(specialValues[i], specialResults[i]);
1419         }
1420 
1421 
1422         // Normal exponent tests
1423         for(int i = FloatConsts.MIN_EXPONENT; i <= FloatConsts.MAX_EXPONENT; i++) {
1424             float expected;
1425 
1426             // Create power of two
1427             float po2 = powerOfTwoF(i);
1428             expected = FpUtils.scalb(1.0f, i - (FloatConsts.SIGNIFICAND_WIDTH-1));
1429 
1430             failures += testUlpCase(po2, expected);
1431 
1432             // Generate some random bit patterns for the significand
1433             for(int j = 0; j < 10; j++) {
1434                 int randSignif = rand.nextInt();
1435                 float randFloat;
1436 
1437                 randFloat = Float.intBitsToFloat( // Exponent
1438                                                  (Float.floatToIntBits(po2)&
1439                                                   (~FloatConsts.SIGNIF_BIT_MASK)) |
1440                                                  // Significand
1441                                                  (randSignif &
1442                                                   FloatConsts.SIGNIF_BIT_MASK) );
1443 
1444                 failures += testUlpCase(randFloat, expected);
1445             }
1446 
1447             if (i > FloatConsts.MIN_EXPONENT) {
1448                 float po2minus = FpUtils.nextAfter(po2,
1449                                                    Float.NEGATIVE_INFINITY);
1450                 failures += testUlpCase(po2minus, expected/2.0f);
1451             }
1452         }
1453 
1454         // Subnormal tests
1455 
1456         /*
1457          * Start with MIN_VALUE, left shift, test high value, low
1458          * values, and random in between.
1459          *
1460          * Use nextAfter to calculate, high value of previous binade,
1461          * loop count i will indicate how many random bits, if any are
1462          * needed.
1463          */
1464 
1465         float top=Float.MIN_VALUE;
1466         for( int i = 1;
1467             i < FloatConsts.SIGNIFICAND_WIDTH;
1468             i++, top *= 2.0f) {
1469 
1470             failures += testUlpCase(top, Float.MIN_VALUE);
1471 
1472             // Test largest value in next smaller binade
1473             if (i >= 3) {// (i == 1) would test 0.0;
1474                          // (i == 2) would just retest MIN_VALUE
1475                 testUlpCase(FpUtils.nextAfter(top, 0.0f),
1476                             Float.MIN_VALUE);
1477 
1478                 if( i >= 10) {
1479                     // create a bit mask with (i-1) 1's in the low order
1480                     // bits
1481                     int mask = ~((~0)<<(i-1));
1482                     float randFloat = Float.intBitsToFloat( // Exponent
1483                                                  Float.floatToIntBits(top) |
1484                                                  // Significand
1485                                                  (rand.nextInt() & mask ) ) ;
1486 
1487                     failures += testUlpCase(randFloat, Float.MIN_VALUE);
1488                 }
1489             }
1490         }
1491 
1492         return failures;
1493     }
1494 
1495     public static int testDoubleUlp() {
1496         int failures = 0;
1497         double [] specialValues = {NaNd,
1498                                   Double.POSITIVE_INFINITY,
1499                                   +0.0d,
1500                                   +1.0d,
1501                                   +2.0d,
1502                                   +16.0d,
1503                                   +Double.MIN_VALUE,
1504                                   +Double_MAX_SUBNORMAL,
1505                                   +DoubleConsts.MIN_NORMAL,
1506                                   +Double.MAX_VALUE
1507         };
1508 
1509         double [] specialResults = {NaNf,
1510                                    Double.POSITIVE_INFINITY,
1511                                    Double.MIN_VALUE,
1512                                    powerOfTwoD(-52),
1513                                    powerOfTwoD(-51),
1514                                    powerOfTwoD(-48),
1515                                    Double.MIN_VALUE,
1516                                    Double.MIN_VALUE,
1517                                    Double.MIN_VALUE,
1518                                    powerOfTwoD(971)
1519         };
1520 
1521         // Special value tests
1522         for(int i = 0; i < specialValues.length; i++) {
1523             failures += testUlpCase(specialValues[i], specialResults[i]);
1524         }
1525 
1526 
1527         // Normal exponent tests
1528         for(int i = DoubleConsts.MIN_EXPONENT; i <= DoubleConsts.MAX_EXPONENT; i++) {
1529             double expected;
1530 
1531             // Create power of two
1532             double po2 = powerOfTwoD(i);
1533             expected = FpUtils.scalb(1.0, i - (DoubleConsts.SIGNIFICAND_WIDTH-1));
1534 
1535             failures += testUlpCase(po2, expected);
1536 
1537             // Generate some random bit patterns for the significand
1538             for(int j = 0; j < 10; j++) {
1539                 long randSignif = rand.nextLong();
1540                 double randDouble;
1541 
1542                 randDouble = Double.longBitsToDouble( // Exponent
1543                                                  (Double.doubleToLongBits(po2)&
1544                                                   (~DoubleConsts.SIGNIF_BIT_MASK)) |
1545                                                  // Significand
1546                                                  (randSignif &
1547                                                   DoubleConsts.SIGNIF_BIT_MASK) );
1548 
1549                 failures += testUlpCase(randDouble, expected);
1550             }
1551 
1552             if (i > DoubleConsts.MIN_EXPONENT) {
1553                 double po2minus = FpUtils.nextAfter(po2,
1554                                                     Double.NEGATIVE_INFINITY);
1555                 failures += testUlpCase(po2minus, expected/2.0f);
1556             }
1557         }
1558 
1559         // Subnormal tests
1560 
1561         /*
1562          * Start with MIN_VALUE, left shift, test high value, low
1563          * values, and random in between.
1564          *
1565          * Use nextAfter to calculate, high value of previous binade,
1566          * loop count i will indicate how many random bits, if any are
1567          * needed.
1568          */
1569 
1570         double top=Double.MIN_VALUE;
1571         for( int i = 1;
1572             i < DoubleConsts.SIGNIFICAND_WIDTH;
1573             i++, top *= 2.0f) {
1574 
1575             failures += testUlpCase(top, Double.MIN_VALUE);
1576 
1577             // Test largest value in next smaller binade
1578             if (i >= 3) {// (i == 1) would test 0.0;
1579                          // (i == 2) would just retest MIN_VALUE
1580                 testUlpCase(FpUtils.nextAfter(top, 0.0f),
1581                             Double.MIN_VALUE);
1582 
1583                 if( i >= 10) {
1584                     // create a bit mask with (i-1) 1's in the low order
1585                     // bits
1586                     int mask = ~((~0)<<(i-1));
1587                     double randDouble = Double.longBitsToDouble( // Exponent
1588                                                  Double.doubleToLongBits(top) |
1589                                                  // Significand
1590                                                  (rand.nextLong() & mask ) ) ;
1591 
1592                     failures += testUlpCase(randDouble, Double.MIN_VALUE);
1593                 }
1594             }
1595         }
1596 
1597         return failures;
1598     }
1599 
1600     public static int testFloatSignum() {
1601         int failures = 0;
1602         float testCases [][] = {
1603             {NaNf,                      NaNf},
1604             {-infinityF,                -1.0f},
1605             {-Float.MAX_VALUE,          -1.0f},
1606             {-FloatConsts.MIN_NORMAL,   -1.0f},
1607             {-1.0f,                     -1.0f},
1608             {-2.0f,                     -1.0f},
1609             {-Float_MAX_SUBNORMAL,      -1.0f},
1610             {-Float.MIN_VALUE,          -1.0f},
1611             {-0.0f,                     -0.0f},
1612             {+0.0f,                     +0.0f},
1613             {Float.MIN_VALUE,            1.0f},
1614             {Float_MAX_SUBNORMALmm,      1.0f},
1615             {Float_MAX_SUBNORMAL,        1.0f},
1616             {FloatConsts.MIN_NORMAL,     1.0f},
1617             {1.0f,                       1.0f},
1618             {2.0f,                       1.0f},
1619             {Float_MAX_VALUEmm,          1.0f},
1620             {Float.MAX_VALUE,            1.0f},
1621             {infinityF,                  1.0f}
1622         };
1623 
1624         for(int i = 0; i < testCases.length; i++) {
1625             failures+=Tests.test("Math.signum(float)",
1626                                  testCases[i][0], Math.signum(testCases[i][0]), testCases[i][1]);
1627             failures+=Tests.test("StrictMath.signum(float)",
1628                                  testCases[i][0], StrictMath.signum(testCases[i][0]), testCases[i][1]);
1629         }
1630 
1631         return failures;
1632     }
1633 
1634     public static int testDoubleSignum() {
1635         int failures = 0;
1636         double testCases [][] = {
1637             {NaNd,                      NaNd},
1638             {-infinityD,                -1.0},
1639             {-Double.MAX_VALUE,         -1.0},
1640             {-DoubleConsts.MIN_NORMAL,  -1.0},
1641             {-1.0,                      -1.0},
1642             {-2.0,                      -1.0},
1643             {-Double_MAX_SUBNORMAL,     -1.0},
1644             {-Double.MIN_VALUE,         -1.0d},
1645             {-0.0d,                     -0.0d},
1646             {+0.0d,                     +0.0d},
1647             {Double.MIN_VALUE,           1.0},
1648             {Double_MAX_SUBNORMALmm,     1.0},
1649             {Double_MAX_SUBNORMAL,       1.0},
1650             {DoubleConsts.MIN_NORMAL,    1.0},
1651             {1.0,                        1.0},
1652             {2.0,                        1.0},
1653             {Double_MAX_VALUEmm,         1.0},
1654             {Double.MAX_VALUE,           1.0},
1655             {infinityD,                  1.0}
1656         };
1657 
1658         for(int i = 0; i < testCases.length; i++) {
1659             failures+=Tests.test("Math.signum(double)",
1660                                  testCases[i][0], Math.signum(testCases[i][0]), testCases[i][1]);
1661             failures+=Tests.test("StrictMath.signum(double)",
1662                                  testCases[i][0], StrictMath.signum(testCases[i][0]), testCases[i][1]);
1663         }
1664 
1665         return failures;
1666     }
1667 
1668 
1669     public static void main(String argv[]) {
1670         int failures = 0;
1671 
1672         failures += testFloatGetExponent();
1673         failures += testDoubleGetExponent();
1674 
1675         failures += testFloatNextAfter();
1676         failures += testDoubleNextAfter();
1677 
1678         failures += testFloatNextUp();
1679         failures += testDoubleNextUp();
1680 
1681         failures += testFloatNextDown();
1682         failures += testDoubleNextDown();
1683 
1684         failures += testFloatBooleanMethods();
1685         failures += testDoubleBooleanMethods();
1686 
1687         failures += testFloatCopySign();
1688         failures += testDoubleCopySign();
1689 
1690         failures += testFloatScalb();
1691         failures += testDoubleScalb();
1692 
1693         failures += testFloatUlp();
1694         failures += testDoubleUlp();
1695 
1696         failures += testFloatSignum();
1697         failures += testDoubleSignum();
1698 
1699         if (failures > 0) {
1700             System.err.println("Testing the recommended functions incurred "
1701                                + failures + " failures.");
1702             throw new RuntimeException();
1703         }
1704     }
1705 }