1 /*
   2  * Copyright 1999-2006 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Sun designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Sun in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  22  * CA 95054 USA or visit www.sun.com if you need additional information or
  23  * have any questions.
  24  */
  25 
  26 package java.lang;
  27 import java.util.Random;
  28 import sun.misc.FpUtils;
  29 
  30 /**
  31  * The class {@code StrictMath} contains methods for performing basic
  32  * numeric operations such as the elementary exponential, logarithm,
  33  * square root, and trigonometric functions.
  34  *
  35  * <p>To help ensure portability of Java programs, the definitions of
  36  * some of the numeric functions in this package require that they
  37  * produce the same results as certain published algorithms. These
  38  * algorithms are available from the well-known network library
  39  * {@code netlib} as the package "Freely Distributable Math
  40  * Library," <a
  41  * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
  42  * algorithms, which are written in the C programming language, are
  43  * then to be understood as executed with all floating-point
  44  * operations following the rules of Java floating-point arithmetic.
  45  *
  46  * <p>The Java math library is defined with respect to
  47  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
  48  * more than one definition for a function (such as
  49  * {@code acos}), use the "IEEE 754 core function" version
  50  * (residing in a file whose name begins with the letter
  51  * {@code e}).  The methods which require {@code fdlibm}
  52  * semantics are {@code sin}, {@code cos}, {@code tan},
  53  * {@code asin}, {@code acos}, {@code atan},
  54  * {@code exp}, {@code log}, {@code log10},
  55  * {@code cbrt}, {@code atan2}, {@code pow},
  56  * {@code sinh}, {@code cosh}, {@code tanh},
  57  * {@code hypot}, {@code expm1}, and {@code log1p}.
  58  *
  59  * @author  unascribed
  60  * @author  Joseph D. Darcy
  61  * @since   1.3
  62  */
  63 
  64 public final class StrictMath {
  65 
  66     /**
  67      * Don't let anyone instantiate this class.
  68      */
  69     private StrictMath() {}
  70 
  71     /**
  72      * The {@code double} value that is closer than any other to
  73      * <i>e</i>, the base of the natural logarithms.
  74      */
  75     public static final double E = 2.7182818284590452354;
  76 
  77     /**
  78      * The {@code double} value that is closer than any other to
  79      * <i>pi</i>, the ratio of the circumference of a circle to its
  80      * diameter.
  81      */
  82     public static final double PI = 3.14159265358979323846;
  83 
  84     /**
  85      * Returns the trigonometric sine of an angle. Special cases:
  86      * <ul><li>If the argument is NaN or an infinity, then the
  87      * result is NaN.
  88      * <li>If the argument is zero, then the result is a zero with the
  89      * same sign as the argument.</ul>
  90      *
  91      * @param   a   an angle, in radians.
  92      * @return  the sine of the argument.
  93      */
  94     public static native double sin(double a);
  95 
  96     /**
  97      * Returns the trigonometric cosine of an angle. Special cases:
  98      * <ul><li>If the argument is NaN or an infinity, then the
  99      * result is NaN.</ul>
 100      *
 101      * @param   a   an angle, in radians.
 102      * @return  the cosine of the argument.
 103      */
 104     public static native double cos(double a);
 105 
 106     /**
 107      * Returns the trigonometric tangent of an angle. Special cases:
 108      * <ul><li>If the argument is NaN or an infinity, then the result
 109      * is NaN.
 110      * <li>If the argument is zero, then the result is a zero with the
 111      * same sign as the argument.</ul>
 112      *
 113      * @param   a   an angle, in radians.
 114      * @return  the tangent of the argument.
 115      */
 116     public static native double tan(double a);
 117 
 118     /**
 119      * Returns the arc sine of a value; the returned angle is in the
 120      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 121      * <ul><li>If the argument is NaN or its absolute value is greater
 122      * than 1, then the result is NaN.
 123      * <li>If the argument is zero, then the result is a zero with the
 124      * same sign as the argument.</ul>
 125      *
 126      * @param   a   the value whose arc sine is to be returned.
 127      * @return  the arc sine of the argument.
 128      */
 129     public static native double asin(double a);
 130 
 131     /**
 132      * Returns the arc cosine of a value; the returned angle is in the
 133      * range 0.0 through <i>pi</i>.  Special case:
 134      * <ul><li>If the argument is NaN or its absolute value is greater
 135      * than 1, then the result is NaN.</ul>
 136      *
 137      * @param   a   the value whose arc cosine is to be returned.
 138      * @return  the arc cosine of the argument.
 139      */
 140     public static native double acos(double a);
 141 
 142     /**
 143      * Returns the arc tangent of a value; the returned angle is in the
 144      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 145      * <ul><li>If the argument is NaN, then the result is NaN.
 146      * <li>If the argument is zero, then the result is a zero with the
 147      * same sign as the argument.</ul>
 148      *
 149      * @param   a   the value whose arc tangent is to be returned.
 150      * @return  the arc tangent of the argument.
 151      */
 152     public static native double atan(double a);
 153 
 154     /**
 155      * Converts an angle measured in degrees to an approximately
 156      * equivalent angle measured in radians.  The conversion from
 157      * degrees to radians is generally inexact.
 158      *
 159      * @param   angdeg   an angle, in degrees
 160      * @return  the measurement of the angle {@code angdeg}
 161      *          in radians.
 162      */
 163     public static strictfp double toRadians(double angdeg) {
 164         return angdeg / 180.0 * PI;
 165     }
 166 
 167     /**
 168      * Converts an angle measured in radians to an approximately
 169      * equivalent angle measured in degrees.  The conversion from
 170      * radians to degrees is generally inexact; users should
 171      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 172      * equal {@code 0.0}.
 173      *
 174      * @param   angrad   an angle, in radians
 175      * @return  the measurement of the angle {@code angrad}
 176      *          in degrees.
 177      */
 178     public static strictfp double toDegrees(double angrad) {
 179         return angrad * 180.0 / PI;
 180     }
 181 
 182     /**
 183      * Returns Euler's number <i>e</i> raised to the power of a
 184      * {@code double} value. Special cases:
 185      * <ul><li>If the argument is NaN, the result is NaN.
 186      * <li>If the argument is positive infinity, then the result is
 187      * positive infinity.
 188      * <li>If the argument is negative infinity, then the result is
 189      * positive zero.</ul>
 190      *
 191      * @param   a   the exponent to raise <i>e</i> to.
 192      * @return  the value <i>e</i><sup>{@code a}</sup>,
 193      *          where <i>e</i> is the base of the natural logarithms.
 194      */
 195     public static native double exp(double a);
 196 
 197     /**
 198      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 199      * value. Special cases:
 200      * <ul><li>If the argument is NaN or less than zero, then the result
 201      * is NaN.
 202      * <li>If the argument is positive infinity, then the result is
 203      * positive infinity.
 204      * <li>If the argument is positive zero or negative zero, then the
 205      * result is negative infinity.</ul>
 206      *
 207      * @param   a   a value
 208      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 209      *          {@code a}.
 210      */
 211     public static native double log(double a);
 212 
 213 
 214     /**
 215      * Returns the base 10 logarithm of a {@code double} value.
 216      * Special cases:
 217      *
 218      * <ul><li>If the argument is NaN or less than zero, then the result
 219      * is NaN.
 220      * <li>If the argument is positive infinity, then the result is
 221      * positive infinity.
 222      * <li>If the argument is positive zero or negative zero, then the
 223      * result is negative infinity.
 224      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 225      * integer <i>n</i>, then the result is <i>n</i>.
 226      * </ul>
 227      *
 228      * @param   a   a value
 229      * @return  the base 10 logarithm of  {@code a}.
 230      * @since 1.5
 231      */
 232     public static native double log10(double a);
 233 
 234     /**
 235      * Returns the correctly rounded positive square root of a
 236      * {@code double} value.
 237      * Special cases:
 238      * <ul><li>If the argument is NaN or less than zero, then the result
 239      * is NaN.
 240      * <li>If the argument is positive infinity, then the result is positive
 241      * infinity.
 242      * <li>If the argument is positive zero or negative zero, then the
 243      * result is the same as the argument.</ul>
 244      * Otherwise, the result is the {@code double} value closest to
 245      * the true mathematical square root of the argument value.
 246      *
 247      * @param   a   a value.
 248      * @return  the positive square root of {@code a}.
 249      */
 250     public static native double sqrt(double a);
 251 
 252     /**
 253      * Returns the cube root of a {@code double} value.  For
 254      * positive finite {@code x}, {@code cbrt(-x) ==
 255      * -cbrt(x)}; that is, the cube root of a negative value is
 256      * the negative of the cube root of that value's magnitude.
 257      * Special cases:
 258      *
 259      * <ul>
 260      *
 261      * <li>If the argument is NaN, then the result is NaN.
 262      *
 263      * <li>If the argument is infinite, then the result is an infinity
 264      * with the same sign as the argument.
 265      *
 266      * <li>If the argument is zero, then the result is a zero with the
 267      * same sign as the argument.
 268      *
 269      * </ul>
 270      *
 271      * @param   a   a value.
 272      * @return  the cube root of {@code a}.
 273      * @since 1.5
 274      */
 275     public static native double cbrt(double a);
 276 
 277     /**
 278      * Computes the remainder operation on two arguments as prescribed
 279      * by the IEEE 754 standard.
 280      * The remainder value is mathematically equal to
 281      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 282      * where <i>n</i> is the mathematical integer closest to the exact
 283      * mathematical value of the quotient {@code f1/f2}, and if two
 284      * mathematical integers are equally close to {@code f1/f2},
 285      * then <i>n</i> is the integer that is even. If the remainder is
 286      * zero, its sign is the same as the sign of the first argument.
 287      * Special cases:
 288      * <ul><li>If either argument is NaN, or the first argument is infinite,
 289      * or the second argument is positive zero or negative zero, then the
 290      * result is NaN.
 291      * <li>If the first argument is finite and the second argument is
 292      * infinite, then the result is the same as the first argument.</ul>
 293      *
 294      * @param   f1   the dividend.
 295      * @param   f2   the divisor.
 296      * @return  the remainder when {@code f1} is divided by
 297      *          {@code f2}.
 298      */
 299     public static native double IEEEremainder(double f1, double f2);
 300 
 301     /**
 302      * Returns the smallest (closest to negative infinity)
 303      * {@code double} value that is greater than or equal to the
 304      * argument and is equal to a mathematical integer. Special cases:
 305      * <ul><li>If the argument value is already equal to a
 306      * mathematical integer, then the result is the same as the
 307      * argument.  <li>If the argument is NaN or an infinity or
 308      * positive zero or negative zero, then the result is the same as
 309      * the argument.  <li>If the argument value is less than zero but
 310      * greater than -1.0, then the result is negative zero.</ul> Note
 311      * that the value of {@code StrictMath.ceil(x)} is exactly the
 312      * value of {@code -StrictMath.floor(-x)}.
 313      *
 314      * @param   a   a value.
 315      * @return  the smallest (closest to negative infinity)
 316      *          floating-point value that is greater than or equal to
 317      *          the argument and is equal to a mathematical integer.
 318      */
 319     public static native double ceil(double a);
 320 
 321     /**
 322      * Returns the largest (closest to positive infinity)
 323      * {@code double} value that is less than or equal to the
 324      * argument and is equal to a mathematical integer. Special cases:
 325      * <ul><li>If the argument value is already equal to a
 326      * mathematical integer, then the result is the same as the
 327      * argument.  <li>If the argument is NaN or an infinity or
 328      * positive zero or negative zero, then the result is the same as
 329      * the argument.</ul>
 330      *
 331      * @param   a   a value.
 332      * @return  the largest (closest to positive infinity)
 333      *          floating-point value that less than or equal to the argument
 334      *          and is equal to a mathematical integer.
 335      */
 336     public static native double floor(double a);
 337 
 338     /**
 339      * Returns the {@code double} value that is closest in value
 340      * to the argument and is equal to a mathematical integer. If two
 341      * {@code double} values that are mathematical integers are
 342      * equally close to the value of the argument, the result is the
 343      * integer value that is even. Special cases:
 344      * <ul><li>If the argument value is already equal to a mathematical
 345      * integer, then the result is the same as the argument.
 346      * <li>If the argument is NaN or an infinity or positive zero or negative
 347      * zero, then the result is the same as the argument.</ul>
 348      *
 349      * @param   a   a value.
 350      * @return  the closest floating-point value to {@code a} that is
 351      *          equal to a mathematical integer.
 352      * @author Joseph D. Darcy
 353      */
 354     public static double rint(double a) {
 355         /*
 356          * If the absolute value of a is not less than 2^52, it
 357          * is either a finite integer (the double format does not have
 358          * enough significand bits for a number that large to have any
 359          * fractional portion), an infinity, or a NaN.  In any of
 360          * these cases, rint of the argument is the argument.
 361          *
 362          * Otherwise, the sum (twoToThe52 + a ) will properly round
 363          * away any fractional portion of a since ulp(twoToThe52) ==
 364          * 1.0; subtracting out twoToThe52 from this sum will then be
 365          * exact and leave the rounded integer portion of a.
 366          *
 367          * This method does *not* need to be declared strictfp to get
 368          * fully reproducible results.  Whether or not a method is
 369          * declared strictfp can only make a difference in the
 370          * returned result if some operation would overflow or
 371          * underflow with strictfp semantics.  The operation
 372          * (twoToThe52 + a ) cannot overflow since large values of a
 373          * are screened out; the add cannot underflow since twoToThe52
 374          * is too large.  The subtraction ((twoToThe52 + a ) -
 375          * twoToThe52) will be exact as discussed above and thus
 376          * cannot overflow or meaningfully underflow.  Finally, the
 377          * last multiply in the return statement is by plus or minus
 378          * 1.0, which is exact too.
 379          */
 380         double twoToThe52 = (double)(1L << 52); // 2^52
 381         double sign = FpUtils.rawCopySign(1.0, a); // preserve sign info
 382         a = Math.abs(a);
 383 
 384         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
 385             a = ((twoToThe52 + a ) - twoToThe52);
 386         }
 387 
 388         return sign * a; // restore original sign
 389     }
 390 
 391     /**
 392      * Returns the angle <i>theta</i> from the conversion of rectangular
 393      * coordinates ({@code x},&nbsp;{@code y}) to polar
 394      * coordinates (r,&nbsp;<i>theta</i>).
 395      * This method computes the phase <i>theta</i> by computing an arc tangent
 396      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 397      * cases:
 398      * <ul><li>If either argument is NaN, then the result is NaN.
 399      * <li>If the first argument is positive zero and the second argument
 400      * is positive, or the first argument is positive and finite and the
 401      * second argument is positive infinity, then the result is positive
 402      * zero.
 403      * <li>If the first argument is negative zero and the second argument
 404      * is positive, or the first argument is negative and finite and the
 405      * second argument is positive infinity, then the result is negative zero.
 406      * <li>If the first argument is positive zero and the second argument
 407      * is negative, or the first argument is positive and finite and the
 408      * second argument is negative infinity, then the result is the
 409      * {@code double} value closest to <i>pi</i>.
 410      * <li>If the first argument is negative zero and the second argument
 411      * is negative, or the first argument is negative and finite and the
 412      * second argument is negative infinity, then the result is the
 413      * {@code double} value closest to -<i>pi</i>.
 414      * <li>If the first argument is positive and the second argument is
 415      * positive zero or negative zero, or the first argument is positive
 416      * infinity and the second argument is finite, then the result is the
 417      * {@code double} value closest to <i>pi</i>/2.
 418      * <li>If the first argument is negative and the second argument is
 419      * positive zero or negative zero, or the first argument is negative
 420      * infinity and the second argument is finite, then the result is the
 421      * {@code double} value closest to -<i>pi</i>/2.
 422      * <li>If both arguments are positive infinity, then the result is the
 423      * {@code double} value closest to <i>pi</i>/4.
 424      * <li>If the first argument is positive infinity and the second argument
 425      * is negative infinity, then the result is the {@code double}
 426      * value closest to 3*<i>pi</i>/4.
 427      * <li>If the first argument is negative infinity and the second argument
 428      * is positive infinity, then the result is the {@code double} value
 429      * closest to -<i>pi</i>/4.
 430      * <li>If both arguments are negative infinity, then the result is the
 431      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 432      *
 433      * @param   y   the ordinate coordinate
 434      * @param   x   the abscissa coordinate
 435      * @return  the <i>theta</i> component of the point
 436      *          (<i>r</i>,&nbsp;<i>theta</i>)
 437      *          in polar coordinates that corresponds to the point
 438      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 439      */
 440     public static native double atan2(double y, double x);
 441 
 442 
 443     /**
 444      * Returns the value of the first argument raised to the power of the
 445      * second argument. Special cases:
 446      *
 447      * <ul><li>If the second argument is positive or negative zero, then the
 448      * result is 1.0.
 449      * <li>If the second argument is 1.0, then the result is the same as the
 450      * first argument.
 451      * <li>If the second argument is NaN, then the result is NaN.
 452      * <li>If the first argument is NaN and the second argument is nonzero,
 453      * then the result is NaN.
 454      *
 455      * <li>If
 456      * <ul>
 457      * <li>the absolute value of the first argument is greater than 1
 458      * and the second argument is positive infinity, or
 459      * <li>the absolute value of the first argument is less than 1 and
 460      * the second argument is negative infinity,
 461      * </ul>
 462      * then the result is positive infinity.
 463      *
 464      * <li>If
 465      * <ul>
 466      * <li>the absolute value of the first argument is greater than 1 and
 467      * the second argument is negative infinity, or
 468      * <li>the absolute value of the
 469      * first argument is less than 1 and the second argument is positive
 470      * infinity,
 471      * </ul>
 472      * then the result is positive zero.
 473      *
 474      * <li>If the absolute value of the first argument equals 1 and the
 475      * second argument is infinite, then the result is NaN.
 476      *
 477      * <li>If
 478      * <ul>
 479      * <li>the first argument is positive zero and the second argument
 480      * is greater than zero, or
 481      * <li>the first argument is positive infinity and the second
 482      * argument is less than zero,
 483      * </ul>
 484      * then the result is positive zero.
 485      *
 486      * <li>If
 487      * <ul>
 488      * <li>the first argument is positive zero and the second argument
 489      * is less than zero, or
 490      * <li>the first argument is positive infinity and the second
 491      * argument is greater than zero,
 492      * </ul>
 493      * then the result is positive infinity.
 494      *
 495      * <li>If
 496      * <ul>
 497      * <li>the first argument is negative zero and the second argument
 498      * is greater than zero but not a finite odd integer, or
 499      * <li>the first argument is negative infinity and the second
 500      * argument is less than zero but not a finite odd integer,
 501      * </ul>
 502      * then the result is positive zero.
 503      *
 504      * <li>If
 505      * <ul>
 506      * <li>the first argument is negative zero and the second argument
 507      * is a positive finite odd integer, or
 508      * <li>the first argument is negative infinity and the second
 509      * argument is a negative finite odd integer,
 510      * </ul>
 511      * then the result is negative zero.
 512      *
 513      * <li>If
 514      * <ul>
 515      * <li>the first argument is negative zero and the second argument
 516      * is less than zero but not a finite odd integer, or
 517      * <li>the first argument is negative infinity and the second
 518      * argument is greater than zero but not a finite odd integer,
 519      * </ul>
 520      * then the result is positive infinity.
 521      *
 522      * <li>If
 523      * <ul>
 524      * <li>the first argument is negative zero and the second argument
 525      * is a negative finite odd integer, or
 526      * <li>the first argument is negative infinity and the second
 527      * argument is a positive finite odd integer,
 528      * </ul>
 529      * then the result is negative infinity.
 530      *
 531      * <li>If the first argument is finite and less than zero
 532      * <ul>
 533      * <li> if the second argument is a finite even integer, the
 534      * result is equal to the result of raising the absolute value of
 535      * the first argument to the power of the second argument
 536      *
 537      * <li>if the second argument is a finite odd integer, the result
 538      * is equal to the negative of the result of raising the absolute
 539      * value of the first argument to the power of the second
 540      * argument
 541      *
 542      * <li>if the second argument is finite and not an integer, then
 543      * the result is NaN.
 544      * </ul>
 545      *
 546      * <li>If both arguments are integers, then the result is exactly equal
 547      * to the mathematical result of raising the first argument to the power
 548      * of the second argument if that result can in fact be represented
 549      * exactly as a {@code double} value.</ul>
 550      *
 551      * <p>(In the foregoing descriptions, a floating-point value is
 552      * considered to be an integer if and only if it is finite and a
 553      * fixed point of the method {@link #ceil ceil} or,
 554      * equivalently, a fixed point of the method {@link #floor
 555      * floor}. A value is a fixed point of a one-argument
 556      * method if and only if the result of applying the method to the
 557      * value is equal to the value.)
 558      *
 559      * @param   a   base.
 560      * @param   b   the exponent.
 561      * @return  the value {@code a}<sup>{@code b}</sup>.
 562      */
 563     public static native double pow(double a, double b);
 564 
 565     /**
 566      * Returns the closest {@code int} to the argument. The
 567      * result is rounded to an integer by adding 1/2, taking the
 568      * floor of the result, and casting the result to type {@code int}.
 569      * In other words, the result is equal to the value of the expression:
 570      * <p>{@code (int)Math.floor(a + 0.5f)}
 571      *
 572      * <p>Special cases:
 573      * <ul><li>If the argument is NaN, the result is 0.
 574      * <li>If the argument is negative infinity or any value less than or
 575      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 576      * equal to the value of {@code Integer.MIN_VALUE}.
 577      * <li>If the argument is positive infinity or any value greater than or
 578      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 579      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 580      *
 581      * @param   a   a floating-point value to be rounded to an integer.
 582      * @return  the value of the argument rounded to the nearest
 583      *          {@code int} value.
 584      * @see     java.lang.Integer#MAX_VALUE
 585      * @see     java.lang.Integer#MIN_VALUE
 586      */
 587     public static int round(float a) {
 588         return (int)floor(a + 0.5f);
 589     }
 590 
 591     /**
 592      * Returns the closest {@code long} to the argument. The result
 593      * is rounded to an integer by adding 1/2, taking the floor of the
 594      * result, and casting the result to type {@code long}. In other
 595      * words, the result is equal to the value of the expression:
 596      * <p>{@code (long)Math.floor(a + 0.5d)}
 597      *
 598      * <p>Special cases:
 599      * <ul><li>If the argument is NaN, the result is 0.
 600      * <li>If the argument is negative infinity or any value less than or
 601      * equal to the value of {@code Long.MIN_VALUE}, the result is
 602      * equal to the value of {@code Long.MIN_VALUE}.
 603      * <li>If the argument is positive infinity or any value greater than or
 604      * equal to the value of {@code Long.MAX_VALUE}, the result is
 605      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 606      *
 607      * @param   a  a floating-point value to be rounded to a
 608      *          {@code long}.
 609      * @return  the value of the argument rounded to the nearest
 610      *          {@code long} value.
 611      * @see     java.lang.Long#MAX_VALUE
 612      * @see     java.lang.Long#MIN_VALUE
 613      */
 614     public static long round(double a) {
 615         return (long)floor(a + 0.5d);
 616     }
 617 
 618     private static Random randomNumberGenerator;
 619 
 620     private static synchronized void initRNG() {
 621         if (randomNumberGenerator == null)
 622             randomNumberGenerator = new Random();
 623     }
 624 
 625     /**
 626      * Returns a {@code double} value with a positive sign, greater
 627      * than or equal to {@code 0.0} and less than {@code 1.0}.
 628      * Returned values are chosen pseudorandomly with (approximately)
 629      * uniform distribution from that range.
 630      *
 631      * <p>When this method is first called, it creates a single new
 632      * pseudorandom-number generator, exactly as if by the expression
 633      * <blockquote>{@code new java.util.Random}</blockquote> This
 634      * new pseudorandom-number generator is used thereafter for all
 635      * calls to this method and is used nowhere else.
 636      *
 637      * <p>This method is properly synchronized to allow correct use by
 638      * more than one thread. However, if many threads need to generate
 639      * pseudorandom numbers at a great rate, it may reduce contention
 640      * for each thread to have its own pseudorandom number generator.
 641      *
 642      * @return  a pseudorandom {@code double} greater than or equal
 643      * to {@code 0.0} and less than {@code 1.0}.
 644      * @see     java.util.Random#nextDouble()
 645      */
 646     public static double random() {
 647         if (randomNumberGenerator == null) initRNG();
 648         return randomNumberGenerator.nextDouble();
 649     }
 650 
 651     /**
 652      * Returns the absolute value of an {@code int} value..
 653      * If the argument is not negative, the argument is returned.
 654      * If the argument is negative, the negation of the argument is returned.
 655      *
 656      * <p>Note that if the argument is equal to the value of
 657      * {@link Integer#MIN_VALUE}, the most negative representable
 658      * {@code int} value, the result is that same value, which is
 659      * negative.
 660      *
 661      * @param   a   the  argument whose absolute value is to be determined.
 662      * @return  the absolute value of the argument.
 663      */
 664     public static int abs(int a) {
 665         return (a < 0) ? -a : a;
 666     }
 667 
 668     /**
 669      * Returns the absolute value of a {@code long} value.
 670      * If the argument is not negative, the argument is returned.
 671      * If the argument is negative, the negation of the argument is returned.
 672      *
 673      * <p>Note that if the argument is equal to the value of
 674      * {@link Long#MIN_VALUE}, the most negative representable
 675      * {@code long} value, the result is that same value, which
 676      * is negative.
 677      *
 678      * @param   a   the  argument whose absolute value is to be determined.
 679      * @return  the absolute value of the argument.
 680      */
 681     public static long abs(long a) {
 682         return (a < 0) ? -a : a;
 683     }
 684 
 685     /**
 686      * Returns the absolute value of a {@code float} value.
 687      * If the argument is not negative, the argument is returned.
 688      * If the argument is negative, the negation of the argument is returned.
 689      * Special cases:
 690      * <ul><li>If the argument is positive zero or negative zero, the
 691      * result is positive zero.
 692      * <li>If the argument is infinite, the result is positive infinity.
 693      * <li>If the argument is NaN, the result is NaN.</ul>
 694      * In other words, the result is the same as the value of the expression:
 695      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
 696      *
 697      * @param   a   the argument whose absolute value is to be determined
 698      * @return  the absolute value of the argument.
 699      */
 700     public static float abs(float a) {
 701         return (a <= 0.0F) ? 0.0F - a : a;
 702     }
 703 
 704     /**
 705      * Returns the absolute value of a {@code double} value.
 706      * If the argument is not negative, the argument is returned.
 707      * If the argument is negative, the negation of the argument is returned.
 708      * Special cases:
 709      * <ul><li>If the argument is positive zero or negative zero, the result
 710      * is positive zero.
 711      * <li>If the argument is infinite, the result is positive infinity.
 712      * <li>If the argument is NaN, the result is NaN.</ul>
 713      * In other words, the result is the same as the value of the expression:
 714      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
 715      *
 716      * @param   a   the argument whose absolute value is to be determined
 717      * @return  the absolute value of the argument.
 718      */
 719     public static double abs(double a) {
 720         return (a <= 0.0D) ? 0.0D - a : a;
 721     }
 722 
 723     /**
 724      * Returns the greater of two {@code int} values. That is, the
 725      * result is the argument closer to the value of
 726      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
 727      * the result is that same value.
 728      *
 729      * @param   a   an argument.
 730      * @param   b   another argument.
 731      * @return  the larger of {@code a} and {@code b}.
 732      */
 733     public static int max(int a, int b) {
 734         return (a >= b) ? a : b;
 735     }
 736 
 737     /**
 738      * Returns the greater of two {@code long} values. That is, the
 739      * result is the argument closer to the value of
 740      * {@link Long#MAX_VALUE}. If the arguments have the same value,
 741      * the result is that same value.
 742      *
 743      * @param   a   an argument.
 744      * @param   b   another argument.
 745      * @return  the larger of {@code a} and {@code b}.
 746         */
 747     public static long max(long a, long b) {
 748         return (a >= b) ? a : b;
 749     }
 750 
 751     private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
 752     private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
 753 
 754     /**
 755      * Returns the greater of two {@code float} values.  That is,
 756      * the result is the argument closer to positive infinity. If the
 757      * arguments have the same value, the result is that same
 758      * value. If either value is NaN, then the result is NaN.  Unlike
 759      * the numerical comparison operators, this method considers
 760      * negative zero to be strictly smaller than positive zero. If one
 761      * argument is positive zero and the other negative zero, the
 762      * result is positive zero.
 763      *
 764      * @param   a   an argument.
 765      * @param   b   another argument.
 766      * @return  the larger of {@code a} and {@code b}.
 767      */
 768     public static float max(float a, float b) {
 769         if (a != a) return a;   // a is NaN
 770         if ((a == 0.0f) && (b == 0.0f)
 771             && (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
 772             return b;
 773         }
 774         return (a >= b) ? a : b;
 775     }
 776 
 777     /**
 778      * Returns the greater of two {@code double} values.  That
 779      * is, the result is the argument closer to positive infinity. If
 780      * the arguments have the same value, the result is that same
 781      * value. If either value is NaN, then the result is NaN.  Unlike
 782      * the numerical comparison operators, this method considers
 783      * negative zero to be strictly smaller than positive zero. If one
 784      * argument is positive zero and the other negative zero, the
 785      * result is positive zero.
 786      *
 787      * @param   a   an argument.
 788      * @param   b   another argument.
 789      * @return  the larger of {@code a} and {@code b}.
 790      */
 791     public static double max(double a, double b) {
 792         if (a != a) return a;   // a is NaN
 793         if ((a == 0.0d) && (b == 0.0d)
 794             && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
 795             return b;
 796         }
 797         return (a >= b) ? a : b;
 798     }
 799 
 800     /**
 801      * Returns the smaller of two {@code int} values. That is,
 802      * the result the argument closer to the value of
 803      * {@link Integer#MIN_VALUE}.  If the arguments have the same
 804      * value, the result is that same value.
 805      *
 806      * @param   a   an argument.
 807      * @param   b   another argument.
 808      * @return  the smaller of {@code a} and {@code b}.
 809      */
 810     public static int min(int a, int b) {
 811         return (a <= b) ? a : b;
 812     }
 813 
 814     /**
 815      * Returns the smaller of two {@code long} values. That is,
 816      * the result is the argument closer to the value of
 817      * {@link Long#MIN_VALUE}. If the arguments have the same
 818      * value, the result is that same value.
 819      *
 820      * @param   a   an argument.
 821      * @param   b   another argument.
 822      * @return  the smaller of {@code a} and {@code b}.
 823      */
 824     public static long min(long a, long b) {
 825         return (a <= b) ? a : b;
 826     }
 827 
 828     /**
 829      * Returns the smaller of two {@code float} values.  That is,
 830      * the result is the value closer to negative infinity. If the
 831      * arguments have the same value, the result is that same
 832      * value. If either value is NaN, then the result is NaN.  Unlike
 833      * the numerical comparison operators, this method considers
 834      * negative zero to be strictly smaller than positive zero.  If
 835      * one argument is positive zero and the other is negative zero,
 836      * the result is negative zero.
 837      *
 838      * @param   a   an argument.
 839      * @param   b   another argument.
 840      * @return  the smaller of {@code a} and {@code b.}
 841      */
 842     public static float min(float a, float b) {
 843         if (a != a) return a;   // a is NaN
 844         if ((a == 0.0f) && (b == 0.0f)
 845             && (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
 846             return b;
 847         }
 848         return (a <= b) ? a : b;
 849     }
 850 
 851     /**
 852      * Returns the smaller of two {@code double} values.  That
 853      * is, the result is the value closer to negative infinity. If the
 854      * arguments have the same value, the result is that same
 855      * value. If either value is NaN, then the result is NaN.  Unlike
 856      * the numerical comparison operators, this method considers
 857      * negative zero to be strictly smaller than positive zero. If one
 858      * argument is positive zero and the other is negative zero, the
 859      * result is negative zero.
 860      *
 861      * @param   a   an argument.
 862      * @param   b   another argument.
 863      * @return  the smaller of {@code a} and {@code b}.
 864      */
 865     public static double min(double a, double b) {
 866         if (a != a) return a;   // a is NaN
 867         if ((a == 0.0d) && (b == 0.0d)
 868             && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
 869             return b;
 870         }
 871         return (a <= b) ? a : b;
 872     }
 873 
 874     /**
 875      * Returns the size of an ulp of the argument.  An ulp of a
 876      * {@code double} value is the positive distance between this
 877      * floating-point value and the {@code double} value next
 878      * larger in magnitude.  Note that for non-NaN <i>x</i>,
 879      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 880      *
 881      * <p>Special Cases:
 882      * <ul>
 883      * <li> If the argument is NaN, then the result is NaN.
 884      * <li> If the argument is positive or negative infinity, then the
 885      * result is positive infinity.
 886      * <li> If the argument is positive or negative zero, then the result is
 887      * {@code Double.MIN_VALUE}.
 888      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
 889      * the result is equal to 2<sup>971</sup>.
 890      * </ul>
 891      *
 892      * @param d the floating-point value whose ulp is to be returned
 893      * @return the size of an ulp of the argument
 894      * @author Joseph D. Darcy
 895      * @since 1.5
 896      */
 897     public static double ulp(double d) {
 898         return sun.misc.FpUtils.ulp(d);
 899     }
 900 
 901     /**
 902      * Returns the size of an ulp of the argument.  An ulp of a
 903      * {@code float} value is the positive distance between this
 904      * floating-point value and the {@code float} value next
 905      * larger in magnitude.  Note that for non-NaN <i>x</i>,
 906      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 907      *
 908      * <p>Special Cases:
 909      * <ul>
 910      * <li> If the argument is NaN, then the result is NaN.
 911      * <li> If the argument is positive or negative infinity, then the
 912      * result is positive infinity.
 913      * <li> If the argument is positive or negative zero, then the result is
 914      * {@code Float.MIN_VALUE}.
 915      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
 916      * the result is equal to 2<sup>104</sup>.
 917      * </ul>
 918      *
 919      * @param f the floating-point value whose ulp is to be returned
 920      * @return the size of an ulp of the argument
 921      * @author Joseph D. Darcy
 922      * @since 1.5
 923      */
 924     public static float ulp(float f) {
 925         return sun.misc.FpUtils.ulp(f);
 926     }
 927 
 928     /**
 929      * Returns the signum function of the argument; zero if the argument
 930      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
 931      * argument is less than zero.
 932      *
 933      * <p>Special Cases:
 934      * <ul>
 935      * <li> If the argument is NaN, then the result is NaN.
 936      * <li> If the argument is positive zero or negative zero, then the
 937      *      result is the same as the argument.
 938      * </ul>
 939      *
 940      * @param d the floating-point value whose signum is to be returned
 941      * @return the signum function of the argument
 942      * @author Joseph D. Darcy
 943      * @since 1.5
 944      */
 945     public static double signum(double d) {
 946         return sun.misc.FpUtils.signum(d);
 947     }
 948 
 949     /**
 950      * Returns the signum function of the argument; zero if the argument
 951      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
 952      * argument is less than zero.
 953      *
 954      * <p>Special Cases:
 955      * <ul>
 956      * <li> If the argument is NaN, then the result is NaN.
 957      * <li> If the argument is positive zero or negative zero, then the
 958      *      result is the same as the argument.
 959      * </ul>
 960      *
 961      * @param f the floating-point value whose signum is to be returned
 962      * @return the signum function of the argument
 963      * @author Joseph D. Darcy
 964      * @since 1.5
 965      */
 966     public static float signum(float f) {
 967         return sun.misc.FpUtils.signum(f);
 968     }
 969 
 970     /**
 971      * Returns the hyperbolic sine of a {@code double} value.
 972      * The hyperbolic sine of <i>x</i> is defined to be
 973      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
 974      * where <i>e</i> is {@linkplain Math#E Euler's number}.
 975      *
 976      * <p>Special cases:
 977      * <ul>
 978      *
 979      * <li>If the argument is NaN, then the result is NaN.
 980      *
 981      * <li>If the argument is infinite, then the result is an infinity
 982      * with the same sign as the argument.
 983      *
 984      * <li>If the argument is zero, then the result is a zero with the
 985      * same sign as the argument.
 986      *
 987      * </ul>
 988      *
 989      * @param   x The number whose hyperbolic sine is to be returned.
 990      * @return  The hyperbolic sine of {@code x}.
 991      * @since 1.5
 992      */
 993     public static native double sinh(double x);
 994 
 995     /**
 996      * Returns the hyperbolic cosine of a {@code double} value.
 997      * The hyperbolic cosine of <i>x</i> is defined to be
 998      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
 999      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1000      *
1001      * <p>Special cases:
1002      * <ul>
1003      *
1004      * <li>If the argument is NaN, then the result is NaN.
1005      *
1006      * <li>If the argument is infinite, then the result is positive
1007      * infinity.
1008      *
1009      * <li>If the argument is zero, then the result is {@code 1.0}.
1010      *
1011      * </ul>
1012      *
1013      * @param   x The number whose hyperbolic cosine is to be returned.
1014      * @return  The hyperbolic cosine of {@code x}.
1015      * @since 1.5
1016      */
1017     public static native double cosh(double x);
1018 
1019     /**
1020      * Returns the hyperbolic tangent of a {@code double} value.
1021      * The hyperbolic tangent of <i>x</i> is defined to be
1022      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1023      * in other words, {@linkplain Math#sinh
1024      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1025      * that the absolute value of the exact tanh is always less than
1026      * 1.
1027      *
1028      * <p>Special cases:
1029      * <ul>
1030      *
1031      * <li>If the argument is NaN, then the result is NaN.
1032      *
1033      * <li>If the argument is zero, then the result is a zero with the
1034      * same sign as the argument.
1035      *
1036      * <li>If the argument is positive infinity, then the result is
1037      * {@code +1.0}.
1038      *
1039      * <li>If the argument is negative infinity, then the result is
1040      * {@code -1.0}.
1041      *
1042      * </ul>
1043      *
1044      * @param   x The number whose hyperbolic tangent is to be returned.
1045      * @return  The hyperbolic tangent of {@code x}.
1046      * @since 1.5
1047      */
1048     public static native double tanh(double x);
1049 
1050     /**
1051      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1052      * without intermediate overflow or underflow.
1053      *
1054      * <p>Special cases:
1055      * <ul>
1056      *
1057      * <li> If either argument is infinite, then the result
1058      * is positive infinity.
1059      *
1060      * <li> If either argument is NaN and neither argument is infinite,
1061      * then the result is NaN.
1062      *
1063      * </ul>
1064      *
1065      * @param x a value
1066      * @param y a value
1067      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1068      * without intermediate overflow or underflow
1069      * @since 1.5
1070      */
1071     public static native double hypot(double x, double y);
1072 
1073     /**
1074      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1075      * <i>x</i> near 0, the exact sum of
1076      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1077      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1078      *
1079      * <p>Special cases:
1080      * <ul>
1081      * <li>If the argument is NaN, the result is NaN.
1082      *
1083      * <li>If the argument is positive infinity, then the result is
1084      * positive infinity.
1085      *
1086      * <li>If the argument is negative infinity, then the result is
1087      * -1.0.
1088      *
1089      * <li>If the argument is zero, then the result is a zero with the
1090      * same sign as the argument.
1091      *
1092      * </ul>
1093      *
1094      * @param   x   the exponent to raise <i>e</i> to in the computation of
1095      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1096      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1097      * @since 1.5
1098      */
1099     public static native double expm1(double x);
1100 
1101     /**
1102      * Returns the natural logarithm of the sum of the argument and 1.
1103      * Note that for small values {@code x}, the result of
1104      * {@code log1p(x)} is much closer to the true result of ln(1
1105      * + {@code x}) than the floating-point evaluation of
1106      * {@code log(1.0+x)}.
1107      *
1108      * <p>Special cases:
1109      * <ul>
1110      *
1111      * <li>If the argument is NaN or less than -1, then the result is
1112      * NaN.
1113      *
1114      * <li>If the argument is positive infinity, then the result is
1115      * positive infinity.
1116      *
1117      * <li>If the argument is negative one, then the result is
1118      * negative infinity.
1119      *
1120      * <li>If the argument is zero, then the result is a zero with the
1121      * same sign as the argument.
1122      *
1123      * </ul>
1124      *
1125      * @param   x   a value
1126      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1127      * log of {@code x}&nbsp;+&nbsp;1
1128      * @since 1.5
1129      */
1130     public static native double log1p(double x);
1131 
1132     /**
1133      * Returns the first floating-point argument with the sign of the
1134      * second floating-point argument.  For this method, a NaN
1135      * {@code sign} argument is always treated as if it were
1136      * positive.
1137      *
1138      * @param magnitude  the parameter providing the magnitude of the result
1139      * @param sign   the parameter providing the sign of the result
1140      * @return a value with the magnitude of {@code magnitude}
1141      * and the sign of {@code sign}.
1142      * @since 1.6
1143      */
1144     public static double copySign(double magnitude, double sign) {
1145         return sun.misc.FpUtils.copySign(magnitude, sign);
1146     }
1147 
1148     /**
1149      * Returns the first floating-point argument with the sign of the
1150      * second floating-point argument.  For this method, a NaN
1151      * {@code sign} argument is always treated as if it were
1152      * positive.
1153      *
1154      * @param magnitude  the parameter providing the magnitude of the result
1155      * @param sign   the parameter providing the sign of the result
1156      * @return a value with the magnitude of {@code magnitude}
1157      * and the sign of {@code sign}.
1158      * @since 1.6
1159      */
1160     public static float copySign(float magnitude, float sign) {
1161         return sun.misc.FpUtils.copySign(magnitude, sign);
1162     }
1163     /**
1164      * Returns the unbiased exponent used in the representation of a
1165      * {@code float}.  Special cases:
1166      *
1167      * <ul>
1168      * <li>If the argument is NaN or infinite, then the result is
1169      * {@link Float#MAX_EXPONENT} + 1.
1170      * <li>If the argument is zero or subnormal, then the result is
1171      * {@link Float#MIN_EXPONENT} -1.
1172      * </ul>
1173      * @param f a {@code float} value
1174      * @since 1.6
1175      */
1176     public static int getExponent(float f) {
1177         return sun.misc.FpUtils.getExponent(f);
1178     }
1179 
1180     /**
1181      * Returns the unbiased exponent used in the representation of a
1182      * {@code double}.  Special cases:
1183      *
1184      * <ul>
1185      * <li>If the argument is NaN or infinite, then the result is
1186      * {@link Double#MAX_EXPONENT} + 1.
1187      * <li>If the argument is zero or subnormal, then the result is
1188      * {@link Double#MIN_EXPONENT} -1.
1189      * </ul>
1190      * @param d a {@code double} value
1191      * @since 1.6
1192      */
1193     public static int getExponent(double d) {
1194         return sun.misc.FpUtils.getExponent(d);
1195     }
1196 
1197     /**
1198      * Returns the floating-point number adjacent to the first
1199      * argument in the direction of the second argument.  If both
1200      * arguments compare as equal the second argument is returned.
1201      *
1202      * <p>Special cases:
1203      * <ul>
1204      * <li> If either argument is a NaN, then NaN is returned.
1205      *
1206      * <li> If both arguments are signed zeros, {@code direction}
1207      * is returned unchanged (as implied by the requirement of
1208      * returning the second argument if the arguments compare as
1209      * equal).
1210      *
1211      * <li> If {@code start} is
1212      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1213      * has a value such that the result should have a smaller
1214      * magnitude, then a zero with the same sign as {@code start}
1215      * is returned.
1216      *
1217      * <li> If {@code start} is infinite and
1218      * {@code direction} has a value such that the result should
1219      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1220      * same sign as {@code start} is returned.
1221      *
1222      * <li> If {@code start} is equal to &plusmn;
1223      * {@link Double#MAX_VALUE} and {@code direction} has a
1224      * value such that the result should have a larger magnitude, an
1225      * infinity with same sign as {@code start} is returned.
1226      * </ul>
1227      *
1228      * @param start  starting floating-point value
1229      * @param direction value indicating which of
1230      * {@code start}'s neighbors or {@code start} should
1231      * be returned
1232      * @return The floating-point number adjacent to {@code start} in the
1233      * direction of {@code direction}.
1234      * @since 1.6
1235      */
1236     public static double nextAfter(double start, double direction) {
1237         return sun.misc.FpUtils.nextAfter(start, direction);
1238     }
1239 
1240     /**
1241      * Returns the floating-point number adjacent to the first
1242      * argument in the direction of the second argument.  If both
1243      * arguments compare as equal a value equivalent to the second argument
1244      * is returned.
1245      *
1246      * <p>Special cases:
1247      * <ul>
1248      * <li> If either argument is a NaN, then NaN is returned.
1249      *
1250      * <li> If both arguments are signed zeros, a value equivalent
1251      * to {@code direction} is returned.
1252      *
1253      * <li> If {@code start} is
1254      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1255      * has a value such that the result should have a smaller
1256      * magnitude, then a zero with the same sign as {@code start}
1257      * is returned.
1258      *
1259      * <li> If {@code start} is infinite and
1260      * {@code direction} has a value such that the result should
1261      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1262      * same sign as {@code start} is returned.
1263      *
1264      * <li> If {@code start} is equal to &plusmn;
1265      * {@link Float#MAX_VALUE} and {@code direction} has a
1266      * value such that the result should have a larger magnitude, an
1267      * infinity with same sign as {@code start} is returned.
1268      * </ul>
1269      *
1270      * @param start  starting floating-point value
1271      * @param direction value indicating which of
1272      * {@code start}'s neighbors or {@code start} should
1273      * be returned
1274      * @return The floating-point number adjacent to {@code start} in the
1275      * direction of {@code direction}.
1276      * @since 1.6
1277      */
1278     public static float nextAfter(float start, double direction) {
1279         return sun.misc.FpUtils.nextAfter(start, direction);
1280     }
1281 
1282     /**
1283      * Returns the floating-point value adjacent to {@code d} in
1284      * the direction of positive infinity.  This method is
1285      * semantically equivalent to {@code nextAfter(d,
1286      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1287      * implementation may run faster than its equivalent
1288      * {@code nextAfter} call.
1289      *
1290      * <p>Special Cases:
1291      * <ul>
1292      * <li> If the argument is NaN, the result is NaN.
1293      *
1294      * <li> If the argument is positive infinity, the result is
1295      * positive infinity.
1296      *
1297      * <li> If the argument is zero, the result is
1298      * {@link Double#MIN_VALUE}
1299      *
1300      * </ul>
1301      *
1302      * @param d starting floating-point value
1303      * @return The adjacent floating-point value closer to positive
1304      * infinity.
1305      * @since 1.6
1306      */
1307     public static double nextUp(double d) {
1308         return sun.misc.FpUtils.nextUp(d);
1309     }
1310 
1311     /**
1312      * Returns the floating-point value adjacent to {@code f} in
1313      * the direction of positive infinity.  This method is
1314      * semantically equivalent to {@code nextAfter(f,
1315      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1316      * implementation may run faster than its equivalent
1317      * {@code nextAfter} call.
1318      *
1319      * <p>Special Cases:
1320      * <ul>
1321      * <li> If the argument is NaN, the result is NaN.
1322      *
1323      * <li> If the argument is positive infinity, the result is
1324      * positive infinity.
1325      *
1326      * <li> If the argument is zero, the result is
1327      * {@link Float#MIN_VALUE}
1328      *
1329      * </ul>
1330      *
1331      * @param f starting floating-point value
1332      * @return The adjacent floating-point value closer to positive
1333      * infinity.
1334      * @since 1.6
1335      */
1336     public static float nextUp(float f) {
1337         return sun.misc.FpUtils.nextUp(f);
1338     }
1339 
1340 
1341     /**
1342      * Return {@code d} &times;
1343      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1344      * by a single correctly rounded floating-point multiply to a
1345      * member of the double value set.  See the Java
1346      * Language Specification for a discussion of floating-point
1347      * value sets.  If the exponent of the result is between {@link
1348      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1349      * answer is calculated exactly.  If the exponent of the result
1350      * would be larger than {@code Double.MAX_EXPONENT}, an
1351      * infinity is returned.  Note that if the result is subnormal,
1352      * precision may be lost; that is, when {@code scalb(x, n)}
1353      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1354      * <i>x</i>.  When the result is non-NaN, the result has the same
1355      * sign as {@code d}.
1356      *
1357      * <p>Special cases:
1358      * <ul>
1359      * <li> If the first argument is NaN, NaN is returned.
1360      * <li> If the first argument is infinite, then an infinity of the
1361      * same sign is returned.
1362      * <li> If the first argument is zero, then a zero of the same
1363      * sign is returned.
1364      * </ul>
1365      *
1366      * @param d number to be scaled by a power of two.
1367      * @param scaleFactor power of 2 used to scale {@code d}
1368      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1369      * @since 1.6
1370      */
1371     public static double scalb(double d, int scaleFactor) {
1372         return sun.misc.FpUtils.scalb(d, scaleFactor);
1373     }
1374 
1375     /**
1376      * Return {@code f} &times;
1377      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1378      * by a single correctly rounded floating-point multiply to a
1379      * member of the float value set.  See the Java
1380      * Language Specification for a discussion of floating-point
1381      * value sets.  If the exponent of the result is between {@link
1382      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1383      * answer is calculated exactly.  If the exponent of the result
1384      * would be larger than {@code Float.MAX_EXPONENT}, an
1385      * infinity is returned.  Note that if the result is subnormal,
1386      * precision may be lost; that is, when {@code scalb(x, n)}
1387      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1388      * <i>x</i>.  When the result is non-NaN, the result has the same
1389      * sign as {@code f}.
1390      *
1391      * <p>Special cases:
1392      * <ul>
1393      * <li> If the first argument is NaN, NaN is returned.
1394      * <li> If the first argument is infinite, then an infinity of the
1395      * same sign is returned.
1396      * <li> If the first argument is zero, then a zero of the same
1397      * sign is returned.
1398      * </ul>
1399      *
1400      * @param f number to be scaled by a power of two.
1401      * @param scaleFactor power of 2 used to scale {@code f}
1402      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1403      * @since 1.6
1404      */
1405     public static float scalb(float f, int scaleFactor) {
1406         return sun.misc.FpUtils.scalb(f, scaleFactor);
1407     }
1408 }