1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import com.sun.tools.javac.code.*;
  31 import com.sun.tools.javac.jvm.*;
  32 import com.sun.tools.javac.tree.*;
  33 import com.sun.tools.javac.util.*;
  34 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  35 import com.sun.tools.javac.util.List;
  36 
  37 import com.sun.tools.javac.code.Symbol.*;
  38 import com.sun.tools.javac.tree.JCTree.*;
  39 import com.sun.tools.javac.code.Type.*;
  40 
  41 import com.sun.tools.javac.jvm.Target;
  42 
  43 import static com.sun.tools.javac.code.Flags.*;
  44 import static com.sun.tools.javac.code.Kinds.*;
  45 import static com.sun.tools.javac.code.TypeTags.*;
  46 import static com.sun.tools.javac.jvm.ByteCodes.*;
  47 
  48 /** This pass translates away some syntactic sugar: inner classes,
  49  *  class literals, assertions, foreach loops, etc.
  50  *
  51  *  <p><b>This is NOT part of any supported API.
  52  *  If you write code that depends on this, you do so at your own risk.
  53  *  This code and its internal interfaces are subject to change or
  54  *  deletion without notice.</b>
  55  */
  56 public class Lower extends TreeTranslator {
  57     protected static final Context.Key<Lower> lowerKey =
  58         new Context.Key<Lower>();
  59 
  60     public static Lower instance(Context context) {
  61         Lower instance = context.get(lowerKey);
  62         if (instance == null)
  63             instance = new Lower(context);
  64         return instance;
  65     }
  66 
  67     private Names names;
  68     private Log log;
  69     private Symtab syms;
  70     private Resolve rs;
  71     private Check chk;
  72     private Attr attr;
  73     private TreeMaker make;
  74     private DiagnosticPosition make_pos;
  75     private ClassWriter writer;
  76     private ClassReader reader;
  77     private ConstFold cfolder;
  78     private Target target;
  79     private Source source;
  80     private boolean allowEnums;
  81     private final Name dollarAssertionsDisabled;
  82     private final Name classDollar;
  83     private Types types;
  84     private boolean debugLower;
  85 
  86     protected Lower(Context context) {
  87         context.put(lowerKey, this);
  88         names = Names.instance(context);
  89         log = Log.instance(context);
  90         syms = Symtab.instance(context);
  91         rs = Resolve.instance(context);
  92         chk = Check.instance(context);
  93         attr = Attr.instance(context);
  94         make = TreeMaker.instance(context);
  95         writer = ClassWriter.instance(context);
  96         reader = ClassReader.instance(context);
  97         cfolder = ConstFold.instance(context);
  98         target = Target.instance(context);
  99         source = Source.instance(context);
 100         allowEnums = source.allowEnums();
 101         dollarAssertionsDisabled = names.
 102             fromString(target.syntheticNameChar() + "assertionsDisabled");
 103         classDollar = names.
 104             fromString("class" + target.syntheticNameChar());
 105 
 106         types = Types.instance(context);
 107         Options options = Options.instance(context);
 108         debugLower = options.get("debuglower") != null;
 109     }
 110 
 111     /** The currently enclosing class.
 112      */
 113     ClassSymbol currentClass;
 114 
 115     /** A queue of all translated classes.
 116      */
 117     ListBuffer<JCTree> translated;
 118 
 119     /** Environment for symbol lookup, set by translateTopLevelClass.
 120      */
 121     Env<AttrContext> attrEnv;
 122 
 123     /** A hash table mapping syntax trees to their ending source positions.
 124      */
 125     Map<JCTree, Integer> endPositions;
 126 
 127 /**************************************************************************
 128  * Global mappings
 129  *************************************************************************/
 130 
 131     /** A hash table mapping local classes to their definitions.
 132      */
 133     Map<ClassSymbol, JCClassDecl> classdefs;
 134 
 135     /** A hash table mapping virtual accessed symbols in outer subclasses
 136      *  to the actually referred symbol in superclasses.
 137      */
 138     Map<Symbol,Symbol> actualSymbols;
 139 
 140     /** The current method definition.
 141      */
 142     JCMethodDecl currentMethodDef;
 143 
 144     /** The current method symbol.
 145      */
 146     MethodSymbol currentMethodSym;
 147 
 148     /** The currently enclosing outermost class definition.
 149      */
 150     JCClassDecl outermostClassDef;
 151 
 152     /** The currently enclosing outermost member definition.
 153      */
 154     JCTree outermostMemberDef;
 155 
 156     /** A navigator class for assembling a mapping from local class symbols
 157      *  to class definition trees.
 158      *  There is only one case; all other cases simply traverse down the tree.
 159      */
 160     class ClassMap extends TreeScanner {
 161 
 162         /** All encountered class defs are entered into classdefs table.
 163          */
 164         public void visitClassDef(JCClassDecl tree) {
 165             classdefs.put(tree.sym, tree);
 166             super.visitClassDef(tree);
 167         }
 168     }
 169     ClassMap classMap = new ClassMap();
 170 
 171     /** Map a class symbol to its definition.
 172      *  @param c    The class symbol of which we want to determine the definition.
 173      */
 174     JCClassDecl classDef(ClassSymbol c) {
 175         // First lookup the class in the classdefs table.
 176         JCClassDecl def = classdefs.get(c);
 177         if (def == null && outermostMemberDef != null) {
 178             // If this fails, traverse outermost member definition, entering all
 179             // local classes into classdefs, and try again.
 180             classMap.scan(outermostMemberDef);
 181             def = classdefs.get(c);
 182         }
 183         if (def == null) {
 184             // If this fails, traverse outermost class definition, entering all
 185             // local classes into classdefs, and try again.
 186             classMap.scan(outermostClassDef);
 187             def = classdefs.get(c);
 188         }
 189         return def;
 190     }
 191 
 192     /** A hash table mapping class symbols to lists of free variables.
 193      *  accessed by them. Only free variables of the method immediately containing
 194      *  a class are associated with that class.
 195      */
 196     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 197 
 198     /** A navigator class for collecting the free variables accessed
 199      *  from a local class.
 200      *  There is only one case; all other cases simply traverse down the tree.
 201      */
 202     class FreeVarCollector extends TreeScanner {
 203 
 204         /** The owner of the local class.
 205          */
 206         Symbol owner;
 207 
 208         /** The local class.
 209          */
 210         ClassSymbol clazz;
 211 
 212         /** The list of owner's variables accessed from within the local class,
 213          *  without any duplicates.
 214          */
 215         List<VarSymbol> fvs;
 216 
 217         FreeVarCollector(ClassSymbol clazz) {
 218             this.clazz = clazz;
 219             this.owner = clazz.owner;
 220             this.fvs = List.nil();
 221         }
 222 
 223         /** Add free variable to fvs list unless it is already there.
 224          */
 225         private void addFreeVar(VarSymbol v) {
 226             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
 227                 if (l.head == v) return;
 228             fvs = fvs.prepend(v);
 229         }
 230 
 231         /** Add all free variables of class c to fvs list
 232          *  unless they are already there.
 233          */
 234         private void addFreeVars(ClassSymbol c) {
 235             List<VarSymbol> fvs = freevarCache.get(c);
 236             if (fvs != null) {
 237                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 238                     addFreeVar(l.head);
 239                 }
 240             }
 241         }
 242 
 243         /** If tree refers to a variable in owner of local class, add it to
 244          *  free variables list.
 245          */
 246         public void visitIdent(JCIdent tree) {
 247             result = tree;
 248             visitSymbol(tree.sym);
 249         }
 250         // where
 251         private void visitSymbol(Symbol _sym) {
 252             Symbol sym = _sym;
 253             if (sym.kind == VAR || sym.kind == MTH) {
 254                 while (sym != null && sym.owner != owner)
 255                     sym = proxies.lookup(proxyName(sym.name)).sym;
 256                 if (sym != null && sym.owner == owner) {
 257                     VarSymbol v = (VarSymbol)sym;
 258                     if (v.getConstValue() == null) {
 259                         addFreeVar(v);
 260                     }
 261                 } else {
 262                     if (outerThisStack.head != null &&
 263                         outerThisStack.head != _sym)
 264                         visitSymbol(outerThisStack.head);
 265                 }
 266             }
 267         }
 268 
 269         /** If tree refers to a class instance creation expression
 270          *  add all free variables of the freshly created class.
 271          */
 272         public void visitNewClass(JCNewClass tree) {
 273             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 274             addFreeVars(c);
 275             if (tree.encl == null &&
 276                 c.hasOuterInstance() &&
 277                 outerThisStack.head != null)
 278                 visitSymbol(outerThisStack.head);
 279             super.visitNewClass(tree);
 280         }
 281 
 282         /** If tree refers to a qualified this or super expression
 283          *  for anything but the current class, add the outer this
 284          *  stack as a free variable.
 285          */
 286         public void visitSelect(JCFieldAccess tree) {
 287             if ((tree.name == names._this || tree.name == names._super) &&
 288                 tree.selected.type.tsym != clazz &&
 289                 outerThisStack.head != null)
 290                 visitSymbol(outerThisStack.head);
 291             super.visitSelect(tree);
 292         }
 293 
 294         /** If tree refers to a superclass constructor call,
 295          *  add all free variables of the superclass.
 296          */
 297         public void visitApply(JCMethodInvocation tree) {
 298             if (TreeInfo.name(tree.meth) == names._super) {
 299                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 300                 Symbol constructor = TreeInfo.symbol(tree.meth);
 301                 ClassSymbol c = (ClassSymbol)constructor.owner;
 302                 if (c.hasOuterInstance() &&
 303                     tree.meth.getTag() != JCTree.SELECT &&
 304                     outerThisStack.head != null)
 305                     visitSymbol(outerThisStack.head);
 306             }
 307             super.visitApply(tree);
 308         }
 309     }
 310 
 311     /** Return the variables accessed from within a local class, which
 312      *  are declared in the local class' owner.
 313      *  (in reverse order of first access).
 314      */
 315     List<VarSymbol> freevars(ClassSymbol c)  {
 316         if ((c.owner.kind & (VAR | MTH)) != 0) {
 317             List<VarSymbol> fvs = freevarCache.get(c);
 318             if (fvs == null) {
 319                 FreeVarCollector collector = new FreeVarCollector(c);
 320                 collector.scan(classDef(c));
 321                 fvs = collector.fvs;
 322                 freevarCache.put(c, fvs);
 323             }
 324             return fvs;
 325         } else {
 326             return List.nil();
 327         }
 328     }
 329 
 330     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
 331 
 332     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 333         EnumMapping map = enumSwitchMap.get(enumClass);
 334         if (map == null)
 335             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
 336         return map;
 337     }
 338 
 339     /** This map gives a translation table to be used for enum
 340      *  switches.
 341      *
 342      *  <p>For each enum that appears as the type of a switch
 343      *  expression, we maintain an EnumMapping to assist in the
 344      *  translation, as exemplified by the following example:
 345      *
 346      *  <p>we translate
 347      *  <pre>
 348      *          switch(colorExpression) {
 349      *          case red: stmt1;
 350      *          case green: stmt2;
 351      *          }
 352      *  </pre>
 353      *  into
 354      *  <pre>
 355      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 356      *          case 1: stmt1;
 357      *          case 2: stmt2
 358      *          }
 359      *  </pre>
 360      *  with the auxiliary table initialized as follows:
 361      *  <pre>
 362      *          class Outer$0 {
 363      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 364      *              static {
 365      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 366      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 367      *              }
 368      *          }
 369      *  </pre>
 370      *  class EnumMapping provides mapping data and support methods for this translation.
 371      */
 372     class EnumMapping {
 373         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 374             this.forEnum = forEnum;
 375             this.values = new LinkedHashMap<VarSymbol,Integer>();
 376             this.pos = pos;
 377             Name varName = names
 378                 .fromString(target.syntheticNameChar() +
 379                             "SwitchMap" +
 380                             target.syntheticNameChar() +
 381                             writer.xClassName(forEnum.type).toString()
 382                             .replace('/', '.')
 383                             .replace('.', target.syntheticNameChar()));
 384             ClassSymbol outerCacheClass = outerCacheClass();
 385             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 386                                         varName,
 387                                         new ArrayType(syms.intType, syms.arrayClass),
 388                                         outerCacheClass);
 389             enterSynthetic(pos, mapVar, outerCacheClass.members());
 390         }
 391 
 392         DiagnosticPosition pos = null;
 393 
 394         // the next value to use
 395         int next = 1; // 0 (unused map elements) go to the default label
 396 
 397         // the enum for which this is a map
 398         final TypeSymbol forEnum;
 399 
 400         // the field containing the map
 401         final VarSymbol mapVar;
 402 
 403         // the mapped values
 404         final Map<VarSymbol,Integer> values;
 405 
 406         JCLiteral forConstant(VarSymbol v) {
 407             Integer result = values.get(v);
 408             if (result == null)
 409                 values.put(v, result = next++);
 410             return make.Literal(result);
 411         }
 412 
 413         // generate the field initializer for the map
 414         void translate() {
 415             make.at(pos.getStartPosition());
 416             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 417 
 418             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 419             MethodSymbol valuesMethod = lookupMethod(pos,
 420                                                      names.values,
 421                                                      forEnum.type,
 422                                                      List.<Type>nil());
 423             JCExpression size = make // Color.values().length
 424                 .Select(make.App(make.QualIdent(valuesMethod)),
 425                         syms.lengthVar);
 426             JCExpression mapVarInit = make
 427                 .NewArray(make.Type(syms.intType), List.of(size), null)
 428                 .setType(new ArrayType(syms.intType, syms.arrayClass));
 429 
 430             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 431             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
 432             Symbol ordinalMethod = lookupMethod(pos,
 433                                                 names.ordinal,
 434                                                 forEnum.type,
 435                                                 List.<Type>nil());
 436             List<JCCatch> catcher = List.<JCCatch>nil()
 437                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 438                                                               syms.noSuchFieldErrorType,
 439                                                               syms.noSymbol),
 440                                                 null),
 441                                     make.Block(0, List.<JCStatement>nil())));
 442             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 443                 VarSymbol enumerator = e.getKey();
 444                 Integer mappedValue = e.getValue();
 445                 JCExpression assign = make
 446                     .Assign(make.Indexed(mapVar,
 447                                          make.App(make.Select(make.QualIdent(enumerator),
 448                                                               ordinalMethod))),
 449                             make.Literal(mappedValue))
 450                     .setType(syms.intType);
 451                 JCStatement exec = make.Exec(assign);
 452                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 453                 stmts.append(_try);
 454             }
 455 
 456             owner.defs = owner.defs
 457                 .prepend(make.Block(STATIC, stmts.toList()))
 458                 .prepend(make.VarDef(mapVar, mapVarInit));
 459         }
 460     }
 461 
 462 
 463 /**************************************************************************
 464  * Tree building blocks
 465  *************************************************************************/
 466 
 467     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 468      *  pos as make_pos, for use in diagnostics.
 469      **/
 470     TreeMaker make_at(DiagnosticPosition pos) {
 471         make_pos = pos;
 472         return make.at(pos);
 473     }
 474 
 475     /** Make an attributed tree representing a literal. This will be an
 476      *  Ident node in the case of boolean literals, a Literal node in all
 477      *  other cases.
 478      *  @param type       The literal's type.
 479      *  @param value      The literal's value.
 480      */
 481     JCExpression makeLit(Type type, Object value) {
 482         return make.Literal(type.tag, value).setType(type.constType(value));
 483     }
 484 
 485     /** Make an attributed tree representing null.
 486      */
 487     JCExpression makeNull() {
 488         return makeLit(syms.botType, null);
 489     }
 490 
 491     /** Make an attributed class instance creation expression.
 492      *  @param ctype    The class type.
 493      *  @param args     The constructor arguments.
 494      */
 495     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 496         JCNewClass tree = make.NewClass(null,
 497             null, make.QualIdent(ctype.tsym), args, null);
 498         tree.constructor = rs.resolveConstructor(
 499             make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
 500         tree.type = ctype;
 501         return tree;
 502     }
 503 
 504     /** Make an attributed unary expression.
 505      *  @param optag    The operators tree tag.
 506      *  @param arg      The operator's argument.
 507      */
 508     JCUnary makeUnary(int optag, JCExpression arg) {
 509         JCUnary tree = make.Unary(optag, arg);
 510         tree.operator = rs.resolveUnaryOperator(
 511             make_pos, optag, attrEnv, arg.type);
 512         tree.type = tree.operator.type.getReturnType();
 513         return tree;
 514     }
 515 
 516     /** Make an attributed binary expression.
 517      *  @param optag    The operators tree tag.
 518      *  @param lhs      The operator's left argument.
 519      *  @param rhs      The operator's right argument.
 520      */
 521     JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
 522         JCBinary tree = make.Binary(optag, lhs, rhs);
 523         tree.operator = rs.resolveBinaryOperator(
 524             make_pos, optag, attrEnv, lhs.type, rhs.type);
 525         tree.type = tree.operator.type.getReturnType();
 526         return tree;
 527     }
 528 
 529     /** Make an attributed assignop expression.
 530      *  @param optag    The operators tree tag.
 531      *  @param lhs      The operator's left argument.
 532      *  @param rhs      The operator's right argument.
 533      */
 534     JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
 535         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 536         tree.operator = rs.resolveBinaryOperator(
 537             make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
 538         tree.type = lhs.type;
 539         return tree;
 540     }
 541 
 542     /** Convert tree into string object, unless it has already a
 543      *  reference type..
 544      */
 545     JCExpression makeString(JCExpression tree) {
 546         if (tree.type.tag >= CLASS) {
 547             return tree;
 548         } else {
 549             Symbol valueOfSym = lookupMethod(tree.pos(),
 550                                              names.valueOf,
 551                                              syms.stringType,
 552                                              List.of(tree.type));
 553             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 554         }
 555     }
 556 
 557     /** Create an empty anonymous class definition and enter and complete
 558      *  its symbol. Return the class definition's symbol.
 559      *  and create
 560      *  @param flags    The class symbol's flags
 561      *  @param owner    The class symbol's owner
 562      */
 563     ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
 564         // Create class symbol.
 565         ClassSymbol c = reader.defineClass(names.empty, owner);
 566         c.flatname = chk.localClassName(c);
 567         c.sourcefile = owner.sourcefile;
 568         c.completer = null;
 569         c.members_field = new Scope(c);
 570         c.flags_field = flags;
 571         ClassType ctype = (ClassType) c.type;
 572         ctype.supertype_field = syms.objectType;
 573         ctype.interfaces_field = List.nil();
 574 
 575         JCClassDecl odef = classDef(owner);
 576 
 577         // Enter class symbol in owner scope and compiled table.
 578         enterSynthetic(odef.pos(), c, owner.members());
 579         chk.compiled.put(c.flatname, c);
 580 
 581         // Create class definition tree.
 582         JCClassDecl cdef = make.ClassDef(
 583             make.Modifiers(flags), names.empty,
 584             List.<JCTypeParameter>nil(),
 585             null, List.<JCExpression>nil(), List.<JCTree>nil());
 586         cdef.sym = c;
 587         cdef.type = c.type;
 588 
 589         // Append class definition tree to owner's definitions.
 590         odef.defs = odef.defs.prepend(cdef);
 591 
 592         return c;
 593     }
 594 
 595 /**************************************************************************
 596  * Symbol manipulation utilities
 597  *************************************************************************/
 598 
 599     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 600      *  @param pos           Position for error reporting.
 601      *  @param sym           The symbol.
 602      *  @param s             The scope.
 603      */
 604     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
 605         s.enter(sym);
 606     }
 607 
 608     /** Check whether synthetic symbols generated during lowering conflict
 609      *  with user-defined symbols.
 610      *
 611      *  @param translatedTrees lowered class trees
 612      */
 613     void checkConflicts(List<JCTree> translatedTrees) {
 614         for (JCTree t : translatedTrees) {
 615             t.accept(conflictsChecker);
 616         }
 617     }
 618 
 619     JCTree.Visitor conflictsChecker = new TreeScanner() {
 620 
 621         TypeSymbol currentClass;
 622 
 623         @Override
 624         public void visitMethodDef(JCMethodDecl that) {
 625             chk.checkConflicts(that.pos(), that.sym, currentClass);
 626             super.visitMethodDef(that);
 627         }
 628 
 629         @Override
 630         public void visitVarDef(JCVariableDecl that) {
 631             if (that.sym.owner.kind == TYP) {
 632                 chk.checkConflicts(that.pos(), that.sym, currentClass);
 633             }
 634             super.visitVarDef(that);
 635         }
 636 
 637         @Override
 638         public void visitClassDef(JCClassDecl that) {
 639             TypeSymbol prevCurrentClass = currentClass;
 640             currentClass = that.sym;
 641             try {
 642                 super.visitClassDef(that);
 643             }
 644             finally {
 645                 currentClass = prevCurrentClass;
 646             }
 647         }
 648     };
 649 
 650     /** Look up a synthetic name in a given scope.
 651      *  @param scope        The scope.
 652      *  @param name         The name.
 653      */
 654     private Symbol lookupSynthetic(Name name, Scope s) {
 655         Symbol sym = s.lookup(name).sym;
 656         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 657     }
 658 
 659     /** Look up a method in a given scope.
 660      */
 661     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 662         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
 663     }
 664 
 665     /** Look up a constructor.
 666      */
 667     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
 668         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
 669     }
 670 
 671     /** Look up a field.
 672      */
 673     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
 674         return rs.resolveInternalField(pos, attrEnv, qual, name);
 675     }
 676 
 677     /** Anon inner classes are used as access constructor tags.
 678      * accessConstructorTag will use an existing anon class if one is available,
 679      * and synthethise a class (with makeEmptyClass) if one is not available.
 680      * However, there is a small possibility that an existing class will not
 681      * be generated as expected if it is inside a conditional with a constant
 682      * expression. If that is found to be the case, create an empty class here.
 683      */
 684     private void checkAccessConstructorTags() {
 685         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
 686             ClassSymbol c = l.head;
 687             if (isTranslatedClassAvailable(c))
 688                 continue;
 689             // Create class definition tree.
 690             JCClassDecl cdef = make.ClassDef(
 691                 make.Modifiers(STATIC | SYNTHETIC), names.empty,
 692                 List.<JCTypeParameter>nil(),
 693                 null, List.<JCExpression>nil(), List.<JCTree>nil());
 694             cdef.sym = c;
 695             cdef.type = c.type;
 696             // add it to the list of classes to be generated
 697             translated.append(cdef);
 698         }
 699     }
 700     // where
 701     private boolean isTranslatedClassAvailable(ClassSymbol c) {
 702         for (JCTree tree: translated) {
 703             if (tree.getTag() == JCTree.CLASSDEF
 704                     && ((JCClassDecl) tree).sym == c) {
 705                 return true;
 706             }
 707         }
 708         return false;
 709     }
 710 
 711 /**************************************************************************
 712  * Access methods
 713  *************************************************************************/
 714 
 715     /** Access codes for dereferencing, assignment,
 716      *  and pre/post increment/decrement.
 717      *  Access codes for assignment operations are determined by method accessCode
 718      *  below.
 719      *
 720      *  All access codes for accesses to the current class are even.
 721      *  If a member of the superclass should be accessed instead (because
 722      *  access was via a qualified super), add one to the corresponding code
 723      *  for the current class, making the number odd.
 724      *  This numbering scheme is used by the backend to decide whether
 725      *  to issue an invokevirtual or invokespecial call.
 726      *
 727      *  @see Gen.visitSelect(Select tree)
 728      */
 729     private static final int
 730         DEREFcode = 0,
 731         ASSIGNcode = 2,
 732         PREINCcode = 4,
 733         PREDECcode = 6,
 734         POSTINCcode = 8,
 735         POSTDECcode = 10,
 736         FIRSTASGOPcode = 12;
 737 
 738     /** Number of access codes
 739      */
 740     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
 741 
 742     /** A mapping from symbols to their access numbers.
 743      */
 744     private Map<Symbol,Integer> accessNums;
 745 
 746     /** A mapping from symbols to an array of access symbols, indexed by
 747      *  access code.
 748      */
 749     private Map<Symbol,MethodSymbol[]> accessSyms;
 750 
 751     /** A mapping from (constructor) symbols to access constructor symbols.
 752      */
 753     private Map<Symbol,MethodSymbol> accessConstrs;
 754 
 755     /** A list of all class symbols used for access constructor tags.
 756      */
 757     private List<ClassSymbol> accessConstrTags;
 758 
 759     /** A queue for all accessed symbols.
 760      */
 761     private ListBuffer<Symbol> accessed;
 762 
 763     /** Map bytecode of binary operation to access code of corresponding
 764      *  assignment operation. This is always an even number.
 765      */
 766     private static int accessCode(int bytecode) {
 767         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
 768             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
 769         else if (bytecode == ByteCodes.string_add)
 770             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
 771         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
 772             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
 773         else
 774             return -1;
 775     }
 776 
 777     /** return access code for identifier,
 778      *  @param tree     The tree representing the identifier use.
 779      *  @param enclOp   The closest enclosing operation node of tree,
 780      *                  null if tree is not a subtree of an operation.
 781      */
 782     private static int accessCode(JCTree tree, JCTree enclOp) {
 783         if (enclOp == null)
 784             return DEREFcode;
 785         else if (enclOp.getTag() == JCTree.ASSIGN &&
 786                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 787             return ASSIGNcode;
 788         else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
 789                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
 790             return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
 791         else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
 792                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
 793             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
 794         else
 795             return DEREFcode;
 796     }
 797 
 798     /** Return binary operator that corresponds to given access code.
 799      */
 800     private OperatorSymbol binaryAccessOperator(int acode) {
 801         for (Scope.Entry e = syms.predefClass.members().elems;
 802              e != null;
 803              e = e.sibling) {
 804             if (e.sym instanceof OperatorSymbol) {
 805                 OperatorSymbol op = (OperatorSymbol)e.sym;
 806                 if (accessCode(op.opcode) == acode) return op;
 807             }
 808         }
 809         return null;
 810     }
 811 
 812     /** Return tree tag for assignment operation corresponding
 813      *  to given binary operator.
 814      */
 815     private static int treeTag(OperatorSymbol operator) {
 816         switch (operator.opcode) {
 817         case ByteCodes.ior: case ByteCodes.lor:
 818             return JCTree.BITOR_ASG;
 819         case ByteCodes.ixor: case ByteCodes.lxor:
 820             return JCTree.BITXOR_ASG;
 821         case ByteCodes.iand: case ByteCodes.land:
 822             return JCTree.BITAND_ASG;
 823         case ByteCodes.ishl: case ByteCodes.lshl:
 824         case ByteCodes.ishll: case ByteCodes.lshll:
 825             return JCTree.SL_ASG;
 826         case ByteCodes.ishr: case ByteCodes.lshr:
 827         case ByteCodes.ishrl: case ByteCodes.lshrl:
 828             return JCTree.SR_ASG;
 829         case ByteCodes.iushr: case ByteCodes.lushr:
 830         case ByteCodes.iushrl: case ByteCodes.lushrl:
 831             return JCTree.USR_ASG;
 832         case ByteCodes.iadd: case ByteCodes.ladd:
 833         case ByteCodes.fadd: case ByteCodes.dadd:
 834         case ByteCodes.string_add:
 835             return JCTree.PLUS_ASG;
 836         case ByteCodes.isub: case ByteCodes.lsub:
 837         case ByteCodes.fsub: case ByteCodes.dsub:
 838             return JCTree.MINUS_ASG;
 839         case ByteCodes.imul: case ByteCodes.lmul:
 840         case ByteCodes.fmul: case ByteCodes.dmul:
 841             return JCTree.MUL_ASG;
 842         case ByteCodes.idiv: case ByteCodes.ldiv:
 843         case ByteCodes.fdiv: case ByteCodes.ddiv:
 844             return JCTree.DIV_ASG;
 845         case ByteCodes.imod: case ByteCodes.lmod:
 846         case ByteCodes.fmod: case ByteCodes.dmod:
 847             return JCTree.MOD_ASG;
 848         default:
 849             throw new AssertionError();
 850         }
 851     }
 852 
 853     /** The name of the access method with number `anum' and access code `acode'.
 854      */
 855     Name accessName(int anum, int acode) {
 856         return names.fromString(
 857             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
 858     }
 859 
 860     /** Return access symbol for a private or protected symbol from an inner class.
 861      *  @param sym        The accessed private symbol.
 862      *  @param tree       The accessing tree.
 863      *  @param enclOp     The closest enclosing operation node of tree,
 864      *                    null if tree is not a subtree of an operation.
 865      *  @param protAccess Is access to a protected symbol in another
 866      *                    package?
 867      *  @param refSuper   Is access via a (qualified) C.super?
 868      */
 869     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
 870                               boolean protAccess, boolean refSuper) {
 871         ClassSymbol accOwner = refSuper && protAccess
 872             // For access via qualified super (T.super.x), place the
 873             // access symbol on T.
 874             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
 875             // Otherwise pretend that the owner of an accessed
 876             // protected symbol is the enclosing class of the current
 877             // class which is a subclass of the symbol's owner.
 878             : accessClass(sym, protAccess, tree);
 879 
 880         Symbol vsym = sym;
 881         if (sym.owner != accOwner) {
 882             vsym = sym.clone(accOwner);
 883             actualSymbols.put(vsym, sym);
 884         }
 885 
 886         Integer anum              // The access number of the access method.
 887             = accessNums.get(vsym);
 888         if (anum == null) {
 889             anum = accessed.length();
 890             accessNums.put(vsym, anum);
 891             accessSyms.put(vsym, new MethodSymbol[NCODES]);
 892             accessed.append(vsym);
 893             // System.out.println("accessing " + vsym + " in " + vsym.location());
 894         }
 895 
 896         int acode;                // The access code of the access method.
 897         List<Type> argtypes;      // The argument types of the access method.
 898         Type restype;             // The result type of the access method.
 899         List<Type> thrown;        // The thrown exceptions of the access method.
 900         switch (vsym.kind) {
 901         case VAR:
 902             acode = accessCode(tree, enclOp);
 903             if (acode >= FIRSTASGOPcode) {
 904                 OperatorSymbol operator = binaryAccessOperator(acode);
 905                 if (operator.opcode == string_add)
 906                     argtypes = List.of(syms.objectType);
 907                 else
 908                     argtypes = operator.type.getParameterTypes().tail;
 909             } else if (acode == ASSIGNcode)
 910                 argtypes = List.of(vsym.erasure(types));
 911             else
 912                 argtypes = List.nil();
 913             restype = vsym.erasure(types);
 914             thrown = List.nil();
 915             break;
 916         case MTH:
 917             acode = DEREFcode;
 918             argtypes = vsym.erasure(types).getParameterTypes();
 919             restype = vsym.erasure(types).getReturnType();
 920             thrown = vsym.type.getThrownTypes();
 921             break;
 922         default:
 923             throw new AssertionError();
 924         }
 925 
 926         // For references via qualified super, increment acode by one,
 927         // making it odd.
 928         if (protAccess && refSuper) acode++;
 929 
 930         // Instance access methods get instance as first parameter.
 931         // For protected symbols this needs to be the instance as a member
 932         // of the type containing the accessed symbol, not the class
 933         // containing the access method.
 934         if ((vsym.flags() & STATIC) == 0) {
 935             argtypes = argtypes.prepend(vsym.owner.erasure(types));
 936         }
 937         MethodSymbol[] accessors = accessSyms.get(vsym);
 938         MethodSymbol accessor = accessors[acode];
 939         if (accessor == null) {
 940             accessor = new MethodSymbol(
 941                 STATIC | SYNTHETIC,
 942                 accessName(anum.intValue(), acode),
 943                 new MethodType(argtypes, restype, thrown, syms.methodClass),
 944                 accOwner);
 945             enterSynthetic(tree.pos(), accessor, accOwner.members());
 946             accessors[acode] = accessor;
 947         }
 948         return accessor;
 949     }
 950 
 951     /** The qualifier to be used for accessing a symbol in an outer class.
 952      *  This is either C.sym or C.this.sym, depending on whether or not
 953      *  sym is static.
 954      *  @param sym   The accessed symbol.
 955      */
 956     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
 957         return (sym.flags() & STATIC) != 0
 958             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
 959             : makeOwnerThis(pos, sym, true);
 960     }
 961 
 962     /** Do we need an access method to reference private symbol?
 963      */
 964     boolean needsPrivateAccess(Symbol sym) {
 965         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
 966             return false;
 967         } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
 968             // private constructor in local class: relax protection
 969             sym.flags_field &= ~PRIVATE;
 970             return false;
 971         } else {
 972             return true;
 973         }
 974     }
 975 
 976     /** Do we need an access method to reference symbol in other package?
 977      */
 978     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
 979         if ((sym.flags() & PROTECTED) == 0 ||
 980             sym.owner.owner == currentClass.owner || // fast special case
 981             sym.packge() == currentClass.packge())
 982             return false;
 983         if (!currentClass.isSubClass(sym.owner, types))
 984             return true;
 985         if ((sym.flags() & STATIC) != 0 ||
 986             tree.getTag() != JCTree.SELECT ||
 987             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
 988             return false;
 989         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
 990     }
 991 
 992     /** The class in which an access method for given symbol goes.
 993      *  @param sym        The access symbol
 994      *  @param protAccess Is access to a protected symbol in another
 995      *                    package?
 996      */
 997     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
 998         if (protAccess) {
 999             Symbol qualifier = null;
1000             ClassSymbol c = currentClass;
1001             if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
1002                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
1003                 while (!qualifier.isSubClass(c, types)) {
1004                     c = c.owner.enclClass();
1005                 }
1006                 return c;
1007             } else {
1008                 while (!c.isSubClass(sym.owner, types)) {
1009                     c = c.owner.enclClass();
1010                 }
1011             }
1012             return c;
1013         } else {
1014             // the symbol is private
1015             return sym.owner.enclClass();
1016         }
1017     }
1018 
1019     /** Ensure that identifier is accessible, return tree accessing the identifier.
1020      *  @param sym      The accessed symbol.
1021      *  @param tree     The tree referring to the symbol.
1022      *  @param enclOp   The closest enclosing operation node of tree,
1023      *                  null if tree is not a subtree of an operation.
1024      *  @param refSuper Is access via a (qualified) C.super?
1025      */
1026     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
1027         // Access a free variable via its proxy, or its proxy's proxy
1028         while (sym.kind == VAR && sym.owner.kind == MTH &&
1029             sym.owner.enclClass() != currentClass) {
1030             // A constant is replaced by its constant value.
1031             Object cv = ((VarSymbol)sym).getConstValue();
1032             if (cv != null) {
1033                 make.at(tree.pos);
1034                 return makeLit(sym.type, cv);
1035             }
1036             // Otherwise replace the variable by its proxy.
1037             sym = proxies.lookup(proxyName(sym.name)).sym;
1038             assert sym != null && (sym.flags_field & FINAL) != 0;
1039             tree = make.at(tree.pos).Ident(sym);
1040         }
1041         JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
1042         switch (sym.kind) {
1043         case TYP:
1044             if (sym.owner.kind != PCK) {
1045                 // Convert type idents to
1046                 // <flat name> or <package name> . <flat name>
1047                 Name flatname = Convert.shortName(sym.flatName());
1048                 while (base != null &&
1049                        TreeInfo.symbol(base) != null &&
1050                        TreeInfo.symbol(base).kind != PCK) {
1051                     base = (base.getTag() == JCTree.SELECT)
1052                         ? ((JCFieldAccess) base).selected
1053                         : null;
1054                 }
1055                 if (tree.getTag() == JCTree.IDENT) {
1056                     ((JCIdent) tree).name = flatname;
1057                 } else if (base == null) {
1058                     tree = make.at(tree.pos).Ident(sym);
1059                     ((JCIdent) tree).name = flatname;
1060                 } else {
1061                     ((JCFieldAccess) tree).selected = base;
1062                     ((JCFieldAccess) tree).name = flatname;
1063                 }
1064             }
1065             break;
1066         case MTH: case VAR:
1067             if (sym.owner.kind == TYP) {
1068 
1069                 // Access methods are required for
1070                 //  - private members,
1071                 //  - protected members in a superclass of an
1072                 //    enclosing class contained in another package.
1073                 //  - all non-private members accessed via a qualified super.
1074                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1075                     || needsProtectedAccess(sym, tree);
1076                 boolean accReq = protAccess || needsPrivateAccess(sym);
1077 
1078                 // A base has to be supplied for
1079                 //  - simple identifiers accessing variables in outer classes.
1080                 boolean baseReq =
1081                     base == null &&
1082                     sym.owner != syms.predefClass &&
1083                     !sym.isMemberOf(currentClass, types);
1084 
1085                 if (accReq || baseReq) {
1086                     make.at(tree.pos);
1087 
1088                     // Constants are replaced by their constant value.
1089                     if (sym.kind == VAR) {
1090                         Object cv = ((VarSymbol)sym).getConstValue();
1091                         if (cv != null) return makeLit(sym.type, cv);
1092                     }
1093 
1094                     // Private variables and methods are replaced by calls
1095                     // to their access methods.
1096                     if (accReq) {
1097                         List<JCExpression> args = List.nil();
1098                         if ((sym.flags() & STATIC) == 0) {
1099                             // Instance access methods get instance
1100                             // as first parameter.
1101                             if (base == null)
1102                                 base = makeOwnerThis(tree.pos(), sym, true);
1103                             args = args.prepend(base);
1104                             base = null;   // so we don't duplicate code
1105                         }
1106                         Symbol access = accessSymbol(sym, tree,
1107                                                      enclOp, protAccess,
1108                                                      refSuper);
1109                         JCExpression receiver = make.Select(
1110                             base != null ? base : make.QualIdent(access.owner),
1111                             access);
1112                         return make.App(receiver, args);
1113 
1114                     // Other accesses to members of outer classes get a
1115                     // qualifier.
1116                     } else if (baseReq) {
1117                         return make.at(tree.pos).Select(
1118                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1119                     }
1120                 }
1121             }
1122         }
1123         return tree;
1124     }
1125 
1126     /** Ensure that identifier is accessible, return tree accessing the identifier.
1127      *  @param tree     The identifier tree.
1128      */
1129     JCExpression access(JCExpression tree) {
1130         Symbol sym = TreeInfo.symbol(tree);
1131         return sym == null ? tree : access(sym, tree, null, false);
1132     }
1133 
1134     /** Return access constructor for a private constructor,
1135      *  or the constructor itself, if no access constructor is needed.
1136      *  @param pos       The position to report diagnostics, if any.
1137      *  @param constr    The private constructor.
1138      */
1139     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1140         if (needsPrivateAccess(constr)) {
1141             ClassSymbol accOwner = constr.owner.enclClass();
1142             MethodSymbol aconstr = accessConstrs.get(constr);
1143             if (aconstr == null) {
1144                 List<Type> argtypes = constr.type.getParameterTypes();
1145                 if ((accOwner.flags_field & ENUM) != 0)
1146                     argtypes = argtypes
1147                         .prepend(syms.intType)
1148                         .prepend(syms.stringType);
1149                 aconstr = new MethodSymbol(
1150                     SYNTHETIC,
1151                     names.init,
1152                     new MethodType(
1153                         argtypes.append(
1154                             accessConstructorTag().erasure(types)),
1155                         constr.type.getReturnType(),
1156                         constr.type.getThrownTypes(),
1157                         syms.methodClass),
1158                     accOwner);
1159                 enterSynthetic(pos, aconstr, accOwner.members());
1160                 accessConstrs.put(constr, aconstr);
1161                 accessed.append(constr);
1162             }
1163             return aconstr;
1164         } else {
1165             return constr;
1166         }
1167     }
1168 
1169     /** Return an anonymous class nested in this toplevel class.
1170      */
1171     ClassSymbol accessConstructorTag() {
1172         ClassSymbol topClass = currentClass.outermostClass();
1173         Name flatname = names.fromString("" + topClass.getQualifiedName() +
1174                                          target.syntheticNameChar() +
1175                                          "1");
1176         ClassSymbol ctag = chk.compiled.get(flatname);
1177         if (ctag == null)
1178             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
1179         // keep a record of all tags, to verify that all are generated as required
1180         accessConstrTags = accessConstrTags.prepend(ctag);
1181         return ctag;
1182     }
1183 
1184     /** Add all required access methods for a private symbol to enclosing class.
1185      *  @param sym       The symbol.
1186      */
1187     void makeAccessible(Symbol sym) {
1188         JCClassDecl cdef = classDef(sym.owner.enclClass());
1189         assert cdef != null : "class def not found: " + sym + " in " + sym.owner;
1190         if (sym.name == names.init) {
1191             cdef.defs = cdef.defs.prepend(
1192                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1193         } else {
1194             MethodSymbol[] accessors = accessSyms.get(sym);
1195             for (int i = 0; i < NCODES; i++) {
1196                 if (accessors[i] != null)
1197                     cdef.defs = cdef.defs.prepend(
1198                         accessDef(cdef.pos, sym, accessors[i], i));
1199             }
1200         }
1201     }
1202 
1203     /** Construct definition of an access method.
1204      *  @param pos        The source code position of the definition.
1205      *  @param vsym       The private or protected symbol.
1206      *  @param accessor   The access method for the symbol.
1207      *  @param acode      The access code.
1208      */
1209     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1210 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1211         currentClass = vsym.owner.enclClass();
1212         make.at(pos);
1213         JCMethodDecl md = make.MethodDef(accessor, null);
1214 
1215         // Find actual symbol
1216         Symbol sym = actualSymbols.get(vsym);
1217         if (sym == null) sym = vsym;
1218 
1219         JCExpression ref;           // The tree referencing the private symbol.
1220         List<JCExpression> args;    // Any additional arguments to be passed along.
1221         if ((sym.flags() & STATIC) != 0) {
1222             ref = make.Ident(sym);
1223             args = make.Idents(md.params);
1224         } else {
1225             ref = make.Select(make.Ident(md.params.head), sym);
1226             args = make.Idents(md.params.tail);
1227         }
1228         JCStatement stat;          // The statement accessing the private symbol.
1229         if (sym.kind == VAR) {
1230             // Normalize out all odd access codes by taking floor modulo 2:
1231             int acode1 = acode - (acode & 1);
1232 
1233             JCExpression expr;      // The access method's return value.
1234             switch (acode1) {
1235             case DEREFcode:
1236                 expr = ref;
1237                 break;
1238             case ASSIGNcode:
1239                 expr = make.Assign(ref, args.head);
1240                 break;
1241             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
1242                 expr = makeUnary(
1243                     ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
1244                 break;
1245             default:
1246                 expr = make.Assignop(
1247                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
1248                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
1249             }
1250             stat = make.Return(expr.setType(sym.type));
1251         } else {
1252             stat = make.Call(make.App(ref, args));
1253         }
1254         md.body = make.Block(0, List.of(stat));
1255 
1256         // Make sure all parameters, result types and thrown exceptions
1257         // are accessible.
1258         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1259             l.head.vartype = access(l.head.vartype);
1260         md.restype = access(md.restype);
1261         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1262             l.head = access(l.head);
1263 
1264         return md;
1265     }
1266 
1267     /** Construct definition of an access constructor.
1268      *  @param pos        The source code position of the definition.
1269      *  @param constr     The private constructor.
1270      *  @param accessor   The access method for the constructor.
1271      */
1272     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1273         make.at(pos);
1274         JCMethodDecl md = make.MethodDef(accessor,
1275                                       accessor.externalType(types),
1276                                       null);
1277         JCIdent callee = make.Ident(names._this);
1278         callee.sym = constr;
1279         callee.type = constr.type;
1280         md.body =
1281             make.Block(0, List.<JCStatement>of(
1282                 make.Call(
1283                     make.App(
1284                         callee,
1285                         make.Idents(md.params.reverse().tail.reverse())))));
1286         return md;
1287     }
1288 
1289 /**************************************************************************
1290  * Free variables proxies and this$n
1291  *************************************************************************/
1292 
1293     /** A scope containing all free variable proxies for currently translated
1294      *  class, as well as its this$n symbol (if needed).
1295      *  Proxy scopes are nested in the same way classes are.
1296      *  Inside a constructor, proxies and any this$n symbol are duplicated
1297      *  in an additional innermost scope, where they represent the constructor
1298      *  parameters.
1299      */
1300     Scope proxies;
1301 
1302     /** A stack containing the this$n field of the currently translated
1303      *  classes (if needed) in innermost first order.
1304      *  Inside a constructor, proxies and any this$n symbol are duplicated
1305      *  in an additional innermost scope, where they represent the constructor
1306      *  parameters.
1307      */
1308     List<VarSymbol> outerThisStack;
1309 
1310     /** The name of a free variable proxy.
1311      */
1312     Name proxyName(Name name) {
1313         return names.fromString("val" + target.syntheticNameChar() + name);
1314     }
1315 
1316     /** Proxy definitions for all free variables in given list, in reverse order.
1317      *  @param pos        The source code position of the definition.
1318      *  @param freevars   The free variables.
1319      *  @param owner      The class in which the definitions go.
1320      */
1321     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
1322         long flags = FINAL | SYNTHETIC;
1323         if (owner.kind == TYP &&
1324             target.usePrivateSyntheticFields())
1325             flags |= PRIVATE;
1326         List<JCVariableDecl> defs = List.nil();
1327         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1328             VarSymbol v = l.head;
1329             VarSymbol proxy = new VarSymbol(
1330                 flags, proxyName(v.name), v.erasure(types), owner);
1331             proxies.enter(proxy);
1332             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1333             vd.vartype = access(vd.vartype);
1334             defs = defs.prepend(vd);
1335         }
1336         return defs;
1337     }
1338 
1339     /** The name of a this$n field
1340      *  @param type   The class referenced by the this$n field
1341      */
1342     Name outerThisName(Type type, Symbol owner) {
1343         Type t = type.getEnclosingType();
1344         int nestingLevel = 0;
1345         while (t.tag == CLASS) {
1346             t = t.getEnclosingType();
1347             nestingLevel++;
1348         }
1349         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1350         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
1351             result = names.fromString(result.toString() + target.syntheticNameChar());
1352         return result;
1353     }
1354 
1355     /** Definition for this$n field.
1356      *  @param pos        The source code position of the definition.
1357      *  @param owner      The class in which the definition goes.
1358      */
1359     JCVariableDecl outerThisDef(int pos, Symbol owner) {
1360         long flags = FINAL | SYNTHETIC;
1361         if (owner.kind == TYP &&
1362             target.usePrivateSyntheticFields())
1363             flags |= PRIVATE;
1364         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
1365         VarSymbol outerThis = new VarSymbol(
1366             flags, outerThisName(target, owner), target, owner);
1367         outerThisStack = outerThisStack.prepend(outerThis);
1368         JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
1369         vd.vartype = access(vd.vartype);
1370         return vd;
1371     }
1372 
1373     /** Return a list of trees that load the free variables in given list,
1374      *  in reverse order.
1375      *  @param pos          The source code position to be used for the trees.
1376      *  @param freevars     The list of free variables.
1377      */
1378     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1379         List<JCExpression> args = List.nil();
1380         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1381             args = args.prepend(loadFreevar(pos, l.head));
1382         return args;
1383     }
1384 //where
1385         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1386             return access(v, make.at(pos).Ident(v), null, false);
1387         }
1388 
1389     /** Construct a tree simulating the expression <C.this>.
1390      *  @param pos           The source code position to be used for the tree.
1391      *  @param c             The qualifier class.
1392      */
1393     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1394         if (currentClass == c) {
1395             // in this case, `this' works fine
1396             return make.at(pos).This(c.erasure(types));
1397         } else {
1398             // need to go via this$n
1399             return makeOuterThis(pos, c);
1400         }
1401     }
1402 
1403     /** Optionally replace a try statement with an automatic resource management
1404      *  (ARM) block.
1405      * @param tree  The try statement to inspect.
1406      * @return      An ARM block, or the original try block if there are no
1407      *              resources to manage.
1408      */
1409     JCTree makeTry(JCTry tree) {
1410         if (tree.resources.isEmpty()) {
1411             return tree;
1412         }
1413         make_at(tree.pos());
1414         JCBlock armBlock = makeArmBlock(tree.resources, tree.body, 0);
1415         if (tree.catchers.isEmpty() && tree.finalizer == null)
1416             result = translate(armBlock);
1417         else
1418             result = translate(make.Try(armBlock, tree.catchers, tree.finalizer));
1419         return result;
1420     }
1421 
1422     private JCBlock makeArmBlock(List<JCTree> resources, JCBlock block, int depth) {
1423         if (resources.isEmpty())
1424             return block;
1425 
1426         // Add resource declaration or expression to block statements
1427         ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
1428         JCTree resource = resources.head;
1429         JCExpression expr = null;
1430         if (resource instanceof JCVariableDecl) {
1431             JCVariableDecl var = (JCVariableDecl) resource;
1432             var.sym.flags_field |= FINAL;
1433             expr = make.Ident(var.sym);
1434             stats.add(var);
1435         } else {
1436             assert resource instanceof JCExpression;
1437             expr = (JCExpression)resource;
1438             stats.add(make.at(resource.pos()).Exec(expr));
1439         }
1440 
1441         // Add primaryException declaration
1442         VarSymbol primaryException =
1443             new VarSymbol(0, names.fromString("#primaryException" + depth),
1444                           syms.throwableType, currentMethodSym);
1445         JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
1446         stats.add(primaryExceptionTreeDecl);
1447 
1448         // Create catch clause that saves exception and then rethrows it
1449         VarSymbol param =
1450             new VarSymbol(FINAL, names.fromString("t"), syms.throwableType, currentMethodSym);
1451         JCVariableDecl paramTree = make.VarDef(param, null);
1452         JCStatement assign = make.Assignment(primaryException, make.Ident(param));
1453         JCStatement rethrowStat = make.Throw(make.Ident(param));
1454         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
1455         JCCatch catchClause = make.Catch(paramTree, catchBlock);
1456 
1457         int oldPos = make.pos;
1458         make.at(TreeInfo.endPos(block));
1459         JCBlock finallyClause = makeArmFinallyClause(primaryException, expr);
1460         make.at(oldPos);
1461         JCTry outerTry = make.Try(makeArmBlock(resources.tail, block, depth + 1),
1462                                   List.<JCCatch>of(catchClause),
1463                                   finallyClause);
1464         stats.add(outerTry);
1465         return make.Block(0L, stats.toList());
1466     }
1467    
1468     private JCBlock makeArmFinallyClause(Symbol primaryException, JCExpression resource) {
1469         // primaryException.addSuppressedException(catchException);
1470         VarSymbol catchException =
1471             new VarSymbol(0, make.paramName(2),
1472                           syms.throwableType,
1473                           currentMethodSym);
1474         JCStatement addSuppressionStatement =
1475                 make.Exec(makeCall(make.Ident(primaryException),
1476                                    names.fromString("addSuppressedException"),
1477                                    List.<JCExpression>of(make.Ident(catchException))));
1478 
1479         // try { resource.close(); } catch (e) { primaryException.addSuppressedException(e); }
1480         JCBlock tryBlock = make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
1481         JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
1482         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
1483         List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
1484         JCTry tryTree = make.Try(tryBlock, catchClauses, null);
1485 
1486                 // if (resource != null) resourceClose;
1487                 JCExpression nullCheck = makeBinary(JCTree.NE, make.Ident(primaryException), makeNull());
1488                 JCIf closeIfStatement = make.If(nullCheck, tryTree, makeResourceCloseInvocation(resource));
1489         return make.Block(0L, List.<JCStatement>of(closeIfStatement));
1490     }
1491 
1492     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
1493         // create resource.close() method invocation
1494         Type autoCloseableType = types.asSuper(resource.type, syms.autoCloseableType.tsym);
1495         Symbol closeMethod = autoCloseableType.tsym.members().lookup(names.close).sym;
1496         JCExpression closeInvocation = make.Select(resource, closeMethod);
1497         JCMethodInvocation resourceClose = make.Apply(List.<JCExpression>nil(),
1498                                                       closeInvocation,
1499                                                       List.<JCExpression>nil());
1500         resourceClose.type = closeMethod.type.getReturnType();
1501         return make.Exec(resourceClose);
1502         }
1503 
1504     /** Construct a tree that represents the outer instance
1505      *  <C.this>. Never pick the current `this'.
1506      *  @param pos           The source code position to be used for the tree.
1507      *  @param c             The qualifier class.
1508      */
1509     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1510         List<VarSymbol> ots = outerThisStack;
1511         if (ots.isEmpty()) {
1512             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1513             assert false;
1514             return makeNull();
1515         }
1516         VarSymbol ot = ots.head;
1517         JCExpression tree = access(make.at(pos).Ident(ot));
1518         TypeSymbol otc = ot.type.tsym;
1519         while (otc != c) {
1520             do {
1521                 ots = ots.tail;
1522                 if (ots.isEmpty()) {
1523                     log.error(pos,
1524                               "no.encl.instance.of.type.in.scope",
1525                               c);
1526                     assert false; // should have been caught in Attr
1527                     return tree;
1528                 }
1529                 ot = ots.head;
1530             } while (ot.owner != otc);
1531             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1532                 chk.earlyRefError(pos, c);
1533                 assert false; // should have been caught in Attr
1534                 return makeNull();
1535             }
1536             tree = access(make.at(pos).Select(tree, ot));
1537             otc = ot.type.tsym;
1538         }
1539         return tree;
1540     }
1541 
1542     /** Construct a tree that represents the closest outer instance
1543      *  <C.this> such that the given symbol is a member of C.
1544      *  @param pos           The source code position to be used for the tree.
1545      *  @param sym           The accessed symbol.
1546      *  @param preciseMatch  should we accept a type that is a subtype of
1547      *                       sym's owner, even if it doesn't contain sym
1548      *                       due to hiding, overriding, or non-inheritance
1549      *                       due to protection?
1550      */
1551     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1552         Symbol c = sym.owner;
1553         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1554                          : currentClass.isSubClass(sym.owner, types)) {
1555             // in this case, `this' works fine
1556             return make.at(pos).This(c.erasure(types));
1557         } else {
1558             // need to go via this$n
1559             return makeOwnerThisN(pos, sym, preciseMatch);
1560         }
1561     }
1562 
1563     /**
1564      * Similar to makeOwnerThis but will never pick "this".
1565      */
1566     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1567         Symbol c = sym.owner;
1568         List<VarSymbol> ots = outerThisStack;
1569         if (ots.isEmpty()) {
1570             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1571             assert false;
1572             return makeNull();
1573         }
1574         VarSymbol ot = ots.head;
1575         JCExpression tree = access(make.at(pos).Ident(ot));
1576         TypeSymbol otc = ot.type.tsym;
1577         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1578             do {
1579                 ots = ots.tail;
1580                 if (ots.isEmpty()) {
1581                     log.error(pos,
1582                         "no.encl.instance.of.type.in.scope",
1583                         c);
1584                     assert false;
1585                     return tree;
1586                 }
1587                 ot = ots.head;
1588             } while (ot.owner != otc);
1589             tree = access(make.at(pos).Select(tree, ot));
1590             otc = ot.type.tsym;
1591         }
1592         return tree;
1593     }
1594 
1595     /** Return tree simulating the assignment <this.name = name>, where
1596      *  name is the name of a free variable.
1597      */
1598     JCStatement initField(int pos, Name name) {
1599         Scope.Entry e = proxies.lookup(name);
1600         Symbol rhs = e.sym;
1601         assert rhs.owner.kind == MTH;
1602         Symbol lhs = e.next().sym;
1603         assert rhs.owner.owner == lhs.owner;
1604         make.at(pos);
1605         return
1606             make.Exec(
1607                 make.Assign(
1608                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1609                     make.Ident(rhs)).setType(lhs.erasure(types)));
1610     }
1611 
1612     /** Return tree simulating the assignment <this.this$n = this$n>.
1613      */
1614     JCStatement initOuterThis(int pos) {
1615         VarSymbol rhs = outerThisStack.head;
1616         assert rhs.owner.kind == MTH;
1617         VarSymbol lhs = outerThisStack.tail.head;
1618         assert rhs.owner.owner == lhs.owner;
1619         make.at(pos);
1620         return
1621             make.Exec(
1622                 make.Assign(
1623                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1624                     make.Ident(rhs)).setType(lhs.erasure(types)));
1625     }
1626 
1627 /**************************************************************************
1628  * Code for .class
1629  *************************************************************************/
1630 
1631     /** Return the symbol of a class to contain a cache of
1632      *  compiler-generated statics such as class$ and the
1633      *  $assertionsDisabled flag.  We create an anonymous nested class
1634      *  (unless one already exists) and return its symbol.  However,
1635      *  for backward compatibility in 1.4 and earlier we use the
1636      *  top-level class itself.
1637      */
1638     private ClassSymbol outerCacheClass() {
1639         ClassSymbol clazz = outermostClassDef.sym;
1640         if ((clazz.flags() & INTERFACE) == 0 &&
1641             !target.useInnerCacheClass()) return clazz;
1642         Scope s = clazz.members();
1643         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
1644             if (e.sym.kind == TYP &&
1645                 e.sym.name == names.empty &&
1646                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
1647         return makeEmptyClass(STATIC | SYNTHETIC, clazz);
1648     }
1649 
1650     /** Return symbol for "class$" method. If there is no method definition
1651      *  for class$, construct one as follows:
1652      *
1653      *    class class$(String x0) {
1654      *      try {
1655      *        return Class.forName(x0);
1656      *      } catch (ClassNotFoundException x1) {
1657      *        throw new NoClassDefFoundError(x1.getMessage());
1658      *      }
1659      *    }
1660      */
1661     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
1662         ClassSymbol outerCacheClass = outerCacheClass();
1663         MethodSymbol classDollarSym =
1664             (MethodSymbol)lookupSynthetic(classDollar,
1665                                           outerCacheClass.members());
1666         if (classDollarSym == null) {
1667             classDollarSym = new MethodSymbol(
1668                 STATIC | SYNTHETIC,
1669                 classDollar,
1670                 new MethodType(
1671                     List.of(syms.stringType),
1672                     types.erasure(syms.classType),
1673                     List.<Type>nil(),
1674                     syms.methodClass),
1675                 outerCacheClass);
1676             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
1677 
1678             JCMethodDecl md = make.MethodDef(classDollarSym, null);
1679             try {
1680                 md.body = classDollarSymBody(pos, md);
1681             } catch (CompletionFailure ex) {
1682                 md.body = make.Block(0, List.<JCStatement>nil());
1683                 chk.completionError(pos, ex);
1684             }
1685             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1686             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
1687         }
1688         return classDollarSym;
1689     }
1690 
1691     /** Generate code for class$(String name). */
1692     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
1693         MethodSymbol classDollarSym = md.sym;
1694         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
1695 
1696         JCBlock returnResult;
1697 
1698         // in 1.4.2 and above, we use
1699         // Class.forName(String name, boolean init, ClassLoader loader);
1700         // which requires we cache the current loader in cl$
1701         if (target.classLiteralsNoInit()) {
1702             // clsym = "private static ClassLoader cl$"
1703             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
1704                                             names.fromString("cl" + target.syntheticNameChar()),
1705                                             syms.classLoaderType,
1706                                             outerCacheClass);
1707             enterSynthetic(pos, clsym, outerCacheClass.members());
1708 
1709             // emit "private static ClassLoader cl$;"
1710             JCVariableDecl cldef = make.VarDef(clsym, null);
1711             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1712             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
1713 
1714             // newcache := "new cache$1[0]"
1715             JCNewArray newcache = make.
1716                 NewArray(make.Type(outerCacheClass.type),
1717                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
1718                          null);
1719             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
1720                                           syms.arrayClass);
1721 
1722             // forNameSym := java.lang.Class.forName(
1723             //     String s,boolean init,ClassLoader loader)
1724             Symbol forNameSym = lookupMethod(make_pos, names.forName,
1725                                              types.erasure(syms.classType),
1726                                              List.of(syms.stringType,
1727                                                      syms.booleanType,
1728                                                      syms.classLoaderType));
1729             // clvalue := "(cl$ == null) ?
1730             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
1731             JCExpression clvalue =
1732                 make.Conditional(
1733                     makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
1734                     make.Assign(
1735                         make.Ident(clsym),
1736                         makeCall(
1737                             makeCall(makeCall(newcache,
1738                                               names.getClass,
1739                                               List.<JCExpression>nil()),
1740                                      names.getComponentType,
1741                                      List.<JCExpression>nil()),
1742                             names.getClassLoader,
1743                             List.<JCExpression>nil())).setType(syms.classLoaderType),
1744                     make.Ident(clsym)).setType(syms.classLoaderType);
1745 
1746             // returnResult := "{ return Class.forName(param1, false, cl$); }"
1747             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
1748                                               makeLit(syms.booleanType, 0),
1749                                               clvalue);
1750             returnResult = make.
1751                 Block(0, List.<JCStatement>of(make.
1752                               Call(make. // return
1753                                    App(make.
1754                                        Ident(forNameSym), args))));
1755         } else {
1756             // forNameSym := java.lang.Class.forName(String s)
1757             Symbol forNameSym = lookupMethod(make_pos,
1758                                              names.forName,
1759                                              types.erasure(syms.classType),
1760                                              List.of(syms.stringType));
1761             // returnResult := "{ return Class.forName(param1); }"
1762             returnResult = make.
1763                 Block(0, List.of(make.
1764                           Call(make. // return
1765                               App(make.
1766                                   QualIdent(forNameSym),
1767                                   List.<JCExpression>of(make.
1768                                                         Ident(md.params.
1769                                                               head.sym))))));
1770         }
1771 
1772         // catchParam := ClassNotFoundException e1
1773         VarSymbol catchParam =
1774             new VarSymbol(0, make.paramName(1),
1775                           syms.classNotFoundExceptionType,
1776                           classDollarSym);
1777 
1778         JCStatement rethrow;
1779         if (target.hasInitCause()) {
1780             // rethrow = "throw new NoClassDefFoundError().initCause(e);
1781             JCTree throwExpr =
1782                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
1783                                       List.<JCExpression>nil()),
1784                          names.initCause,
1785                          List.<JCExpression>of(make.Ident(catchParam)));
1786             rethrow = make.Throw(throwExpr);
1787         } else {
1788             // getMessageSym := ClassNotFoundException.getMessage()
1789             Symbol getMessageSym = lookupMethod(make_pos,
1790                                                 names.getMessage,
1791                                                 syms.classNotFoundExceptionType,
1792                                                 List.<Type>nil());
1793             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
1794             rethrow = make.
1795                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
1796                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
1797                                                                      getMessageSym),
1798                                                          List.<JCExpression>nil()))));
1799         }
1800 
1801         // rethrowStmt := "( $rethrow )"
1802         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
1803 
1804         // catchBlock := "catch ($catchParam) $rethrowStmt"
1805         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
1806                                       rethrowStmt);
1807 
1808         // tryCatch := "try $returnResult $catchBlock"
1809         JCStatement tryCatch = make.Try(returnResult,
1810                                         List.of(catchBlock), null);
1811 
1812         return make.Block(0, List.of(tryCatch));
1813     }
1814     // where
1815         /** Create an attributed tree of the form left.name(). */
1816         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
1817             assert left.type != null;
1818             Symbol funcsym = lookupMethod(make_pos, name, left.type,
1819                                           TreeInfo.types(args));
1820             return make.App(make.Select(left, funcsym), args);
1821         }
1822 
1823     /** The Name Of The variable to cache T.class values.
1824      *  @param sig      The signature of type T.
1825      */
1826     private Name cacheName(String sig) {
1827         StringBuffer buf = new StringBuffer();
1828         if (sig.startsWith("[")) {
1829             buf = buf.append("array");
1830             while (sig.startsWith("[")) {
1831                 buf = buf.append(target.syntheticNameChar());
1832                 sig = sig.substring(1);
1833             }
1834             if (sig.startsWith("L")) {
1835                 sig = sig.substring(0, sig.length() - 1);
1836             }
1837         } else {
1838             buf = buf.append("class" + target.syntheticNameChar());
1839         }
1840         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
1841         return names.fromString(buf.toString());
1842     }
1843 
1844     /** The variable symbol that caches T.class values.
1845      *  If none exists yet, create a definition.
1846      *  @param sig      The signature of type T.
1847      *  @param pos      The position to report diagnostics, if any.
1848      */
1849     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
1850         ClassSymbol outerCacheClass = outerCacheClass();
1851         Name cname = cacheName(sig);
1852         VarSymbol cacheSym =
1853             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
1854         if (cacheSym == null) {
1855             cacheSym = new VarSymbol(
1856                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
1857             enterSynthetic(pos, cacheSym, outerCacheClass.members());
1858 
1859             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
1860             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1861             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
1862         }
1863         return cacheSym;
1864     }
1865 
1866     /** The tree simulating a T.class expression.
1867      *  @param clazz      The tree identifying type T.
1868      */
1869     private JCExpression classOf(JCTree clazz) {
1870         return classOfType(clazz.type, clazz.pos());
1871     }
1872 
1873     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
1874         switch (type.tag) {
1875         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
1876         case DOUBLE: case BOOLEAN: case VOID:
1877             // replace with <BoxedClass>.TYPE
1878             ClassSymbol c = types.boxedClass(type);
1879             Symbol typeSym =
1880                 rs.access(
1881                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
1882                     pos, c.type, names.TYPE, true);
1883             if (typeSym.kind == VAR)
1884                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
1885             return make.QualIdent(typeSym);
1886         case CLASS: case ARRAY:
1887             if (target.hasClassLiterals()) {
1888                 VarSymbol sym = new VarSymbol(
1889                         STATIC | PUBLIC | FINAL, names._class,
1890                         syms.classType, type.tsym);
1891                 return make_at(pos).Select(make.Type(type), sym);
1892             }
1893             // replace with <cache == null ? cache = class$(tsig) : cache>
1894             // where
1895             //  - <tsig>  is the type signature of T,
1896             //  - <cache> is the cache variable for tsig.
1897             String sig =
1898                 writer.xClassName(type).toString().replace('/', '.');
1899             Symbol cs = cacheSym(pos, sig);
1900             return make_at(pos).Conditional(
1901                 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
1902                 make.Assign(
1903                     make.Ident(cs),
1904                     make.App(
1905                         make.Ident(classDollarSym(pos)),
1906                         List.<JCExpression>of(make.Literal(CLASS, sig)
1907                                               .setType(syms.stringType))))
1908                 .setType(types.erasure(syms.classType)),
1909                 make.Ident(cs)).setType(types.erasure(syms.classType));
1910         default:
1911             throw new AssertionError();
1912         }
1913     }
1914 
1915 /**************************************************************************
1916  * Code for enabling/disabling assertions.
1917  *************************************************************************/
1918 
1919     // This code is not particularly robust if the user has
1920     // previously declared a member named '$assertionsDisabled'.
1921     // The same faulty idiom also appears in the translation of
1922     // class literals above.  We should report an error if a
1923     // previous declaration is not synthetic.
1924 
1925     private JCExpression assertFlagTest(DiagnosticPosition pos) {
1926         // Outermost class may be either true class or an interface.
1927         ClassSymbol outermostClass = outermostClassDef.sym;
1928 
1929         // note that this is a class, as an interface can't contain a statement.
1930         ClassSymbol container = currentClass;
1931 
1932         VarSymbol assertDisabledSym =
1933             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
1934                                        container.members());
1935         if (assertDisabledSym == null) {
1936             assertDisabledSym =
1937                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
1938                               dollarAssertionsDisabled,
1939                               syms.booleanType,
1940                               container);
1941             enterSynthetic(pos, assertDisabledSym, container.members());
1942             Symbol desiredAssertionStatusSym = lookupMethod(pos,
1943                                                             names.desiredAssertionStatus,
1944                                                             types.erasure(syms.classType),
1945                                                             List.<Type>nil());
1946             JCClassDecl containerDef = classDef(container);
1947             make_at(containerDef.pos());
1948             JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
1949                     classOfType(types.erasure(outermostClass.type),
1950                                 containerDef.pos()),
1951                     desiredAssertionStatusSym)));
1952             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
1953                                                    notStatus);
1954             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
1955         }
1956         make_at(pos);
1957         return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
1958     }
1959 
1960 
1961 /**************************************************************************
1962  * Building blocks for let expressions
1963  *************************************************************************/
1964 
1965     interface TreeBuilder {
1966         JCTree build(JCTree arg);
1967     }
1968 
1969     /** Construct an expression using the builder, with the given rval
1970      *  expression as an argument to the builder.  However, the rval
1971      *  expression must be computed only once, even if used multiple
1972      *  times in the result of the builder.  We do that by
1973      *  constructing a "let" expression that saves the rvalue into a
1974      *  temporary variable and then uses the temporary variable in
1975      *  place of the expression built by the builder.  The complete
1976      *  resulting expression is of the form
1977      *  <pre>
1978      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
1979      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
1980      *  </pre>
1981      *  where <code><b>TEMP</b></code> is a newly declared variable
1982      *  in the let expression.
1983      */
1984     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
1985         rval = TreeInfo.skipParens(rval);
1986         switch (rval.getTag()) {
1987         case JCTree.LITERAL:
1988             return builder.build(rval);
1989         case JCTree.IDENT:
1990             JCIdent id = (JCIdent) rval;
1991             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
1992                 return builder.build(rval);
1993         }
1994         VarSymbol var =
1995             new VarSymbol(FINAL|SYNTHETIC,
1996                           names.fromString(
1997                                           target.syntheticNameChar()
1998                                           + "" + rval.hashCode()),
1999                                       type,
2000                                       currentMethodSym);
2001         rval = convert(rval,type);
2002         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
2003         JCTree built = builder.build(make.Ident(var));
2004         JCTree res = make.LetExpr(def, built);
2005         res.type = built.type;
2006         return res;
2007     }
2008 
2009     // same as above, with the type of the temporary variable computed
2010     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
2011         return abstractRval(rval, rval.type, builder);
2012     }
2013 
2014     // same as above, but for an expression that may be used as either
2015     // an rvalue or an lvalue.  This requires special handling for
2016     // Select expressions, where we place the left-hand-side of the
2017     // select in a temporary, and for Indexed expressions, where we
2018     // place both the indexed expression and the index value in temps.
2019     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
2020         lval = TreeInfo.skipParens(lval);
2021         switch (lval.getTag()) {
2022         case JCTree.IDENT:
2023             return builder.build(lval);
2024         case JCTree.SELECT: {
2025             final JCFieldAccess s = (JCFieldAccess)lval;
2026             JCTree selected = TreeInfo.skipParens(s.selected);
2027             Symbol lid = TreeInfo.symbol(s.selected);
2028             if (lid != null && lid.kind == TYP) return builder.build(lval);
2029             return abstractRval(s.selected, new TreeBuilder() {
2030                     public JCTree build(final JCTree selected) {
2031                         return builder.build(make.Select((JCExpression)selected, s.sym));
2032                     }
2033                 });
2034         }
2035         case JCTree.INDEXED: {
2036             final JCArrayAccess i = (JCArrayAccess)lval;
2037             return abstractRval(i.indexed, new TreeBuilder() {
2038                     public JCTree build(final JCTree indexed) {
2039                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
2040                                 public JCTree build(final JCTree index) {
2041                                     JCTree newLval = make.Indexed((JCExpression)indexed,
2042                                                                 (JCExpression)index);
2043                                     newLval.setType(i.type);
2044                                     return builder.build(newLval);
2045                                 }
2046                             });
2047                     }
2048                 });
2049         }
2050         case JCTree.TYPECAST: {
2051             return abstractLval(((JCTypeCast)lval).expr, builder);
2052         }
2053         }
2054         throw new AssertionError(lval);
2055     }
2056 
2057     // evaluate and discard the first expression, then evaluate the second.
2058     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
2059         return abstractRval(expr1, new TreeBuilder() {
2060                 public JCTree build(final JCTree discarded) {
2061                     return expr2;
2062                 }
2063             });
2064     }
2065 
2066 /**************************************************************************
2067  * Translation methods
2068  *************************************************************************/
2069 
2070     /** Visitor argument: enclosing operator node.
2071      */
2072     private JCExpression enclOp;
2073 
2074     /** Visitor method: Translate a single node.
2075      *  Attach the source position from the old tree to its replacement tree.
2076      */
2077     public <T extends JCTree> T translate(T tree) {
2078         if (tree == null) {
2079             return null;
2080         } else {
2081             make_at(tree.pos());
2082             T result = super.translate(tree);
2083             if (endPositions != null && result != tree) {
2084                 Integer endPos = endPositions.remove(tree);
2085                 if (endPos != null) endPositions.put(result, endPos);
2086             }
2087             return result;
2088         }
2089     }
2090 
2091     /** Visitor method: Translate a single node, boxing or unboxing if needed.
2092      */
2093     public <T extends JCTree> T translate(T tree, Type type) {
2094         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
2095     }
2096 
2097     /** Visitor method: Translate tree.
2098      */
2099     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
2100         JCExpression prevEnclOp = this.enclOp;
2101         this.enclOp = enclOp;
2102         T res = translate(tree);
2103         this.enclOp = prevEnclOp;
2104         return res;
2105     }
2106 
2107     /** Visitor method: Translate list of trees.
2108      */
2109     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
2110         JCExpression prevEnclOp = this.enclOp;
2111         this.enclOp = enclOp;
2112         List<T> res = translate(trees);
2113         this.enclOp = prevEnclOp;
2114         return res;
2115     }
2116 
2117     /** Visitor method: Translate list of trees.
2118      */
2119     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
2120         if (trees == null) return null;
2121         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
2122             l.head = translate(l.head, type);
2123         return trees;
2124     }
2125 
2126     public void visitTopLevel(JCCompilationUnit tree) {
2127         if (tree.packageAnnotations.nonEmpty()) {
2128             Name name = names.package_info;
2129             long flags = Flags.ABSTRACT | Flags.INTERFACE;
2130             if (target.isPackageInfoSynthetic())
2131                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
2132                 flags = flags | Flags.SYNTHETIC;
2133             JCClassDecl packageAnnotationsClass
2134                 = make.ClassDef(make.Modifiers(flags,
2135                                                tree.packageAnnotations),
2136                                 name, List.<JCTypeParameter>nil(),
2137                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
2138             ClassSymbol c = tree.packge.package_info;
2139             c.flags_field |= flags;
2140             c.attributes_field = tree.packge.attributes_field;
2141             ClassType ctype = (ClassType) c.type;
2142             ctype.supertype_field = syms.objectType;
2143             ctype.interfaces_field = List.nil();
2144             packageAnnotationsClass.sym = c;
2145 
2146             translated.append(packageAnnotationsClass);
2147         }
2148     }
2149 
2150     public void visitClassDef(JCClassDecl tree) {
2151         ClassSymbol currentClassPrev = currentClass;
2152         MethodSymbol currentMethodSymPrev = currentMethodSym;
2153         currentClass = tree.sym;
2154         currentMethodSym = null;
2155         classdefs.put(currentClass, tree);
2156 
2157         proxies = proxies.dup(currentClass);
2158         List<VarSymbol> prevOuterThisStack = outerThisStack;
2159 
2160         // If this is an enum definition
2161         if ((tree.mods.flags & ENUM) != 0 &&
2162             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2163             visitEnumDef(tree);
2164 
2165         // If this is a nested class, define a this$n field for
2166         // it and add to proxies.
2167         JCVariableDecl otdef = null;
2168         if (currentClass.hasOuterInstance())
2169             otdef = outerThisDef(tree.pos, currentClass);
2170 
2171         // If this is a local class, define proxies for all its free variables.
2172         List<JCVariableDecl> fvdefs = freevarDefs(
2173             tree.pos, freevars(currentClass), currentClass);
2174 
2175         // Recursively translate superclass, interfaces.
2176         tree.extending = translate(tree.extending);
2177         tree.implementing = translate(tree.implementing);
2178 
2179         // Recursively translate members, taking into account that new members
2180         // might be created during the translation and prepended to the member
2181         // list `tree.defs'.
2182         List<JCTree> seen = List.nil();
2183         while (tree.defs != seen) {
2184             List<JCTree> unseen = tree.defs;
2185             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2186                 JCTree outermostMemberDefPrev = outermostMemberDef;
2187                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2188                 l.head = translate(l.head);
2189                 outermostMemberDef = outermostMemberDefPrev;
2190             }
2191             seen = unseen;
2192         }
2193 
2194         // Convert a protected modifier to public, mask static modifier.
2195         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2196         tree.mods.flags &= ClassFlags;
2197 
2198         // Convert name to flat representation, replacing '.' by '$'.
2199         tree.name = Convert.shortName(currentClass.flatName());
2200 
2201         // Add this$n and free variables proxy definitions to class.
2202         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2203             tree.defs = tree.defs.prepend(l.head);
2204             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2205         }
2206         if (currentClass.hasOuterInstance()) {
2207             tree.defs = tree.defs.prepend(otdef);
2208             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2209         }
2210 
2211         proxies = proxies.leave();
2212         outerThisStack = prevOuterThisStack;
2213 
2214         // Append translated tree to `translated' queue.
2215         translated.append(tree);
2216 
2217         currentClass = currentClassPrev;
2218         currentMethodSym = currentMethodSymPrev;
2219 
2220         // Return empty block {} as a placeholder for an inner class.
2221         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
2222     }
2223 
2224     /** Translate an enum class. */
2225     private void visitEnumDef(JCClassDecl tree) {
2226         make_at(tree.pos());
2227 
2228         // add the supertype, if needed
2229         if (tree.extending == null)
2230             tree.extending = make.Type(types.supertype(tree.type));
2231 
2232         // classOfType adds a cache field to tree.defs unless
2233         // target.hasClassLiterals().
2234         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2235             setType(types.erasure(syms.classType));
2236 
2237         // process each enumeration constant, adding implicit constructor parameters
2238         int nextOrdinal = 0;
2239         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
2240         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
2241         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
2242         for (List<JCTree> defs = tree.defs;
2243              defs.nonEmpty();
2244              defs=defs.tail) {
2245             if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2246                 JCVariableDecl var = (JCVariableDecl)defs.head;
2247                 visitEnumConstantDef(var, nextOrdinal++);
2248                 values.append(make.QualIdent(var.sym));
2249                 enumDefs.append(var);
2250             } else {
2251                 otherDefs.append(defs.head);
2252             }
2253         }
2254 
2255         // private static final T[] #VALUES = { a, b, c };
2256         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
2257         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
2258             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2259         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2260         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2261                                             valuesName,
2262                                             arrayType,
2263                                             tree.type.tsym);
2264         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2265                                           List.<JCExpression>nil(),
2266                                           values.toList());
2267         newArray.type = arrayType;
2268         enumDefs.append(make.VarDef(valuesVar, newArray));
2269         tree.sym.members().enter(valuesVar);
2270 
2271         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
2272                                         tree.type, List.<Type>nil());
2273         List<JCStatement> valuesBody;
2274         if (useClone()) {
2275             // return (T[]) $VALUES.clone();
2276             JCTypeCast valuesResult =
2277                 make.TypeCast(valuesSym.type.getReturnType(),
2278                               make.App(make.Select(make.Ident(valuesVar),
2279                                                    syms.arrayCloneMethod)));
2280             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
2281         } else {
2282             // template: T[] $result = new T[$values.length];
2283             Name resultName = names.fromString(target.syntheticNameChar() + "result");
2284             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
2285                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
2286             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2287                                                 resultName,
2288                                                 arrayType,
2289                                                 valuesSym);
2290             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2291                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2292                                   null);
2293             resultArray.type = arrayType;
2294             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2295 
2296             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2297             if (systemArraycopyMethod == null) {
2298                 systemArraycopyMethod =
2299                     new MethodSymbol(PUBLIC | STATIC,
2300                                      names.fromString("arraycopy"),
2301                                      new MethodType(List.<Type>of(syms.objectType,
2302                                                             syms.intType,
2303                                                             syms.objectType,
2304                                                             syms.intType,
2305                                                             syms.intType),
2306                                                     syms.voidType,
2307                                                     List.<Type>nil(),
2308                                                     syms.methodClass),
2309                                      syms.systemType.tsym);
2310             }
2311             JCStatement copy =
2312                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2313                                                systemArraycopyMethod),
2314                           List.of(make.Ident(valuesVar), make.Literal(0),
2315                                   make.Ident(resultVar), make.Literal(0),
2316                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2317 
2318             // template: return $result;
2319             JCStatement ret = make.Return(make.Ident(resultVar));
2320             valuesBody = List.<JCStatement>of(decl, copy, ret);
2321         }
2322 
2323         JCMethodDecl valuesDef =
2324              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
2325 
2326         enumDefs.append(valuesDef);
2327 
2328         if (debugLower)
2329             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2330 
2331         /** The template for the following code is:
2332          *
2333          *     public static E valueOf(String name) {
2334          *         return (E)Enum.valueOf(E.class, name);
2335          *     }
2336          *
2337          *  where E is tree.sym
2338          */
2339         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2340                          names.valueOf,
2341                          tree.sym.type,
2342                          List.of(syms.stringType));
2343         assert (valueOfSym.flags() & STATIC) != 0;
2344         VarSymbol nameArgSym = valueOfSym.params.head;
2345         JCIdent nameVal = make.Ident(nameArgSym);
2346         JCStatement enum_ValueOf =
2347             make.Return(make.TypeCast(tree.sym.type,
2348                                       makeCall(make.Ident(syms.enumSym),
2349                                                names.valueOf,
2350                                                List.of(e_class, nameVal))));
2351         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2352                                            make.Block(0, List.of(enum_ValueOf)));
2353         nameVal.sym = valueOf.params.head.sym;
2354         if (debugLower)
2355             System.err.println(tree.sym + ".valueOf = " + valueOf);
2356         enumDefs.append(valueOf);
2357 
2358         enumDefs.appendList(otherDefs.toList());
2359         tree.defs = enumDefs.toList();
2360 
2361         // Add the necessary members for the EnumCompatibleMode
2362         if (target.compilerBootstrap(tree.sym)) {
2363             addEnumCompatibleMembers(tree);
2364         }
2365     }
2366         // where
2367         private MethodSymbol systemArraycopyMethod;
2368         private boolean useClone() {
2369             try {
2370                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
2371                 return (e.sym != null);
2372             }
2373             catch (CompletionFailure e) {
2374                 return false;
2375             }
2376         }
2377 
2378     /** Translate an enumeration constant and its initializer. */
2379     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2380         JCNewClass varDef = (JCNewClass)var.init;
2381         varDef.args = varDef.args.
2382             prepend(makeLit(syms.intType, ordinal)).
2383             prepend(makeLit(syms.stringType, var.name.toString()));
2384     }
2385 
2386     public void visitMethodDef(JCMethodDecl tree) {
2387         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2388             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2389             // argument list for each constructor of an enum.
2390             JCVariableDecl nameParam = make_at(tree.pos()).
2391                 Param(names.fromString(target.syntheticNameChar() +
2392                                        "enum" + target.syntheticNameChar() + "name"),
2393                       syms.stringType, tree.sym);
2394             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2395 
2396             JCVariableDecl ordParam = make.
2397                 Param(names.fromString(target.syntheticNameChar() +
2398                                        "enum" + target.syntheticNameChar() +
2399                                        "ordinal"),
2400                       syms.intType, tree.sym);
2401             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2402 
2403             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2404 
2405             MethodSymbol m = tree.sym;
2406             Type olderasure = m.erasure(types);
2407             m.erasure_field = new MethodType(
2408                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2409                 olderasure.getReturnType(),
2410                 olderasure.getThrownTypes(),
2411                 syms.methodClass);
2412 
2413             if (target.compilerBootstrap(m.owner)) {
2414                 // Initialize synthetic name field
2415                 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
2416                                                     tree.sym.owner.members());
2417                 JCIdent nameIdent = make.Ident(nameParam.sym);
2418                 JCIdent id1 = make.Ident(nameVarSym);
2419                 JCAssign newAssign = make.Assign(id1, nameIdent);
2420                 newAssign.type = id1.type;
2421                 JCExpressionStatement nameAssign = make.Exec(newAssign);
2422                 nameAssign.type = id1.type;
2423                 tree.body.stats = tree.body.stats.prepend(nameAssign);
2424 
2425                 // Initialize synthetic ordinal field
2426                 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
2427                                                        tree.sym.owner.members());
2428                 JCIdent ordIdent = make.Ident(ordParam.sym);
2429                 id1 = make.Ident(ordinalVarSym);
2430                 newAssign = make.Assign(id1, ordIdent);
2431                 newAssign.type = id1.type;
2432                 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
2433                 ordinalAssign.type = id1.type;
2434                 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
2435             }
2436         }
2437 
2438         JCMethodDecl prevMethodDef = currentMethodDef;
2439         MethodSymbol prevMethodSym = currentMethodSym;
2440         try {
2441             currentMethodDef = tree;
2442             currentMethodSym = tree.sym;
2443             visitMethodDefInternal(tree);
2444         } finally {
2445             currentMethodDef = prevMethodDef;
2446             currentMethodSym = prevMethodSym;
2447         }
2448     }
2449     //where
2450     private void visitMethodDefInternal(JCMethodDecl tree) {
2451         if (tree.name == names.init &&
2452             (currentClass.isInner() ||
2453              (currentClass.owner.kind & (VAR | MTH)) != 0)) {
2454             // We are seeing a constructor of an inner class.
2455             MethodSymbol m = tree.sym;
2456 
2457             // Push a new proxy scope for constructor parameters.
2458             // and create definitions for any this$n and proxy parameters.
2459             proxies = proxies.dup(m);
2460             List<VarSymbol> prevOuterThisStack = outerThisStack;
2461             List<VarSymbol> fvs = freevars(currentClass);
2462             JCVariableDecl otdef = null;
2463             if (currentClass.hasOuterInstance())
2464                 otdef = outerThisDef(tree.pos, m);
2465             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
2466 
2467             // Recursively translate result type, parameters and thrown list.
2468             tree.restype = translate(tree.restype);
2469             tree.params = translateVarDefs(tree.params);
2470             tree.thrown = translate(tree.thrown);
2471 
2472             // when compiling stubs, don't process body
2473             if (tree.body == null) {
2474                 result = tree;
2475                 return;
2476             }
2477 
2478             // Add this$n (if needed) in front of and free variables behind
2479             // constructor parameter list.
2480             tree.params = tree.params.appendList(fvdefs);
2481             if (currentClass.hasOuterInstance())
2482                 tree.params = tree.params.prepend(otdef);
2483 
2484             // If this is an initial constructor, i.e., it does not start with
2485             // this(...), insert initializers for this$n and proxies
2486             // before (pre-1.4, after) the call to superclass constructor.
2487             JCStatement selfCall = translate(tree.body.stats.head);
2488 
2489             List<JCStatement> added = List.nil();
2490             if (fvs.nonEmpty()) {
2491                 List<Type> addedargtypes = List.nil();
2492                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2493                     if (TreeInfo.isInitialConstructor(tree))
2494                         added = added.prepend(
2495                             initField(tree.body.pos, proxyName(l.head.name)));
2496                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2497                 }
2498                 Type olderasure = m.erasure(types);
2499                 m.erasure_field = new MethodType(
2500                     olderasure.getParameterTypes().appendList(addedargtypes),
2501                     olderasure.getReturnType(),
2502                     olderasure.getThrownTypes(),
2503                     syms.methodClass);
2504             }
2505             if (currentClass.hasOuterInstance() &&
2506                 TreeInfo.isInitialConstructor(tree))
2507             {
2508                 added = added.prepend(initOuterThis(tree.body.pos));
2509             }
2510 
2511             // pop local variables from proxy stack
2512             proxies = proxies.leave();
2513 
2514             // recursively translate following local statements and
2515             // combine with this- or super-call
2516             List<JCStatement> stats = translate(tree.body.stats.tail);
2517             if (target.initializeFieldsBeforeSuper())
2518                 tree.body.stats = stats.prepend(selfCall).prependList(added);
2519             else
2520                 tree.body.stats = stats.prependList(added).prepend(selfCall);
2521 
2522             outerThisStack = prevOuterThisStack;
2523         } else {
2524             super.visitMethodDef(tree);
2525         }
2526         result = tree;
2527     }
2528 
2529     public void visitAnnotatedType(JCAnnotatedType tree) {
2530         tree.underlyingType = translate(tree.underlyingType);
2531         result = tree.underlyingType;
2532     }
2533 
2534     public void visitTypeCast(JCTypeCast tree) {
2535         tree.clazz = translate(tree.clazz);
2536         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2537             tree.expr = translate(tree.expr, tree.type);
2538         else
2539             tree.expr = translate(tree.expr);
2540         result = tree;
2541     }
2542 
2543     public void visitNewClass(JCNewClass tree) {
2544         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
2545 
2546         // Box arguments, if necessary
2547         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
2548         List<Type> argTypes = tree.constructor.type.getParameterTypes();
2549         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
2550         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
2551         tree.varargsElement = null;
2552 
2553         // If created class is local, add free variables after
2554         // explicit constructor arguments.
2555         if ((c.owner.kind & (VAR | MTH)) != 0) {
2556             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2557         }
2558 
2559         // If an access constructor is used, append null as a last argument.
2560         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
2561         if (constructor != tree.constructor) {
2562             tree.args = tree.args.append(makeNull());
2563             tree.constructor = constructor;
2564         }
2565 
2566         // If created class has an outer instance, and new is qualified, pass
2567         // qualifier as first argument. If new is not qualified, pass the
2568         // correct outer instance as first argument.
2569         if (c.hasOuterInstance()) {
2570             JCExpression thisArg;
2571             if (tree.encl != null) {
2572                 thisArg = attr.makeNullCheck(translate(tree.encl));
2573                 thisArg.type = tree.encl.type;
2574             } else if ((c.owner.kind & (MTH | VAR)) != 0) {
2575                 // local class
2576                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
2577             } else {
2578                 // nested class
2579                 thisArg = makeOwnerThis(tree.pos(), c, false);
2580             }
2581             tree.args = tree.args.prepend(thisArg);
2582         }
2583         tree.encl = null;
2584 
2585         // If we have an anonymous class, create its flat version, rather
2586         // than the class or interface following new.
2587         if (tree.def != null) {
2588             translate(tree.def);
2589             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
2590             tree.def = null;
2591         } else {
2592             tree.clazz = access(c, tree.clazz, enclOp, false);
2593         }
2594         result = tree;
2595     }
2596 
2597     // Simplify conditionals with known constant controlling expressions.
2598     // This allows us to avoid generating supporting declarations for
2599     // the dead code, which will not be eliminated during code generation.
2600     // Note that Flow.isFalse and Flow.isTrue only return true
2601     // for constant expressions in the sense of JLS 15.27, which
2602     // are guaranteed to have no side-effects.  More aggressive
2603     // constant propagation would require that we take care to
2604     // preserve possible side-effects in the condition expression.
2605 
2606     /** Visitor method for conditional expressions.
2607      */
2608     public void visitConditional(JCConditional tree) {
2609         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2610         if (cond.type.isTrue()) {
2611             result = convert(translate(tree.truepart, tree.type), tree.type);
2612         } else if (cond.type.isFalse()) {
2613             result = convert(translate(tree.falsepart, tree.type), tree.type);
2614         } else {
2615             // Condition is not a compile-time constant.
2616             tree.truepart = translate(tree.truepart, tree.type);
2617             tree.falsepart = translate(tree.falsepart, tree.type);
2618             result = tree;
2619         }
2620     }
2621 //where
2622         private JCTree convert(JCTree tree, Type pt) {
2623             if (tree.type == pt) return tree;
2624             JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
2625             result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
2626                                                            : pt;
2627             return result;
2628         }
2629 
2630     /** Visitor method for if statements.
2631      */
2632     public void visitIf(JCIf tree) {
2633         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2634         if (cond.type.isTrue()) {
2635             result = translate(tree.thenpart);
2636         } else if (cond.type.isFalse()) {
2637             if (tree.elsepart != null) {
2638                 result = translate(tree.elsepart);
2639             } else {
2640                 result = make.Skip();
2641             }
2642         } else {
2643             // Condition is not a compile-time constant.
2644             tree.thenpart = translate(tree.thenpart);
2645             tree.elsepart = translate(tree.elsepart);
2646             result = tree;
2647         }
2648     }
2649 
2650     /** Visitor method for assert statements. Translate them away.
2651      */
2652     public void visitAssert(JCAssert tree) {
2653         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
2654         tree.cond = translate(tree.cond, syms.booleanType);
2655         if (!tree.cond.type.isTrue()) {
2656             JCExpression cond = assertFlagTest(tree.pos());
2657             List<JCExpression> exnArgs = (tree.detail == null) ?
2658                 List.<JCExpression>nil() : List.of(translate(tree.detail));
2659             if (!tree.cond.type.isFalse()) {
2660                 cond = makeBinary
2661                     (JCTree.AND,
2662                      cond,
2663                      makeUnary(JCTree.NOT, tree.cond));
2664             }
2665             result =
2666                 make.If(cond,
2667                         make_at(detailPos).
2668                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
2669                         null);
2670         } else {
2671             result = make.Skip();
2672         }
2673     }
2674 
2675     public void visitApply(JCMethodInvocation tree) {
2676         Symbol meth = TreeInfo.symbol(tree.meth);
2677         List<Type> argtypes = meth.type.getParameterTypes();
2678         if (allowEnums &&
2679             meth.name==names.init &&
2680             meth.owner == syms.enumSym)
2681             argtypes = argtypes.tail.tail;
2682         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
2683         tree.varargsElement = null;
2684         Name methName = TreeInfo.name(tree.meth);
2685         if (meth.name==names.init) {
2686             // We are seeing a this(...) or super(...) constructor call.
2687             // If an access constructor is used, append null as a last argument.
2688             Symbol constructor = accessConstructor(tree.pos(), meth);
2689             if (constructor != meth) {
2690                 tree.args = tree.args.append(makeNull());
2691                 TreeInfo.setSymbol(tree.meth, constructor);
2692             }
2693 
2694             // If we are calling a constructor of a local class, add
2695             // free variables after explicit constructor arguments.
2696             ClassSymbol c = (ClassSymbol)constructor.owner;
2697             if ((c.owner.kind & (VAR | MTH)) != 0) {
2698                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2699             }
2700 
2701             // If we are calling a constructor of an enum class, pass
2702             // along the name and ordinal arguments
2703             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
2704                 List<JCVariableDecl> params = currentMethodDef.params;
2705                 if (currentMethodSym.owner.hasOuterInstance())
2706                     params = params.tail; // drop this$n
2707                 tree.args = tree.args
2708                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
2709                     .prepend(make.Ident(params.head.sym)); // name
2710             }
2711 
2712             // If we are calling a constructor of a class with an outer
2713             // instance, and the call
2714             // is qualified, pass qualifier as first argument in front of
2715             // the explicit constructor arguments. If the call
2716             // is not qualified, pass the correct outer instance as
2717             // first argument.
2718             if (c.hasOuterInstance()) {
2719                 JCExpression thisArg;
2720                 if (tree.meth.getTag() == JCTree.SELECT) {
2721                     thisArg = attr.
2722                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
2723                     tree.meth = make.Ident(constructor);
2724                     ((JCIdent) tree.meth).name = methName;
2725                 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
2726                     // local class or this() call
2727                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
2728                 } else {
2729                     // super() call of nested class
2730                     thisArg = makeOwnerThis(tree.meth.pos(), c, false);
2731                 }
2732                 tree.args = tree.args.prepend(thisArg);
2733             }
2734         } else {
2735             // We are seeing a normal method invocation; translate this as usual.
2736             tree.meth = translate(tree.meth);
2737 
2738             // If the translated method itself is an Apply tree, we are
2739             // seeing an access method invocation. In this case, append
2740             // the method arguments to the arguments of the access method.
2741             if (tree.meth.getTag() == JCTree.APPLY) {
2742                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
2743                 app.args = tree.args.prependList(app.args);
2744                 result = app;
2745                 return;
2746             }
2747         }
2748         result = tree;
2749     }
2750 
2751     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
2752         List<JCExpression> args = _args;
2753         if (parameters.isEmpty()) return args;
2754         boolean anyChanges = false;
2755         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
2756         while (parameters.tail.nonEmpty()) {
2757             JCExpression arg = translate(args.head, parameters.head);
2758             anyChanges |= (arg != args.head);
2759             result.append(arg);
2760             args = args.tail;
2761             parameters = parameters.tail;
2762         }
2763         Type parameter = parameters.head;
2764         if (varargsElement != null) {
2765             anyChanges = true;
2766             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
2767             while (args.nonEmpty()) {
2768                 JCExpression arg = translate(args.head, varargsElement);
2769                 elems.append(arg);
2770                 args = args.tail;
2771             }
2772             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
2773                                                List.<JCExpression>nil(),
2774                                                elems.toList());
2775             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
2776             result.append(boxedArgs);
2777         } else {
2778             if (args.length() != 1) throw new AssertionError(args);
2779             JCExpression arg = translate(args.head, parameter);
2780             anyChanges |= (arg != args.head);
2781             result.append(arg);
2782             if (!anyChanges) return _args;
2783         }
2784         return result.toList();
2785     }
2786 
2787     /** Expand a boxing or unboxing conversion if needed. */
2788     @SuppressWarnings("unchecked") // XXX unchecked
2789     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
2790         boolean havePrimitive = tree.type.isPrimitive();
2791         if (havePrimitive == type.isPrimitive())
2792             return tree;
2793         if (havePrimitive) {
2794             Type unboxedTarget = types.unboxedType(type);
2795             if (unboxedTarget.tag != NONE) {
2796                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
2797                     tree.type = unboxedTarget.constType(tree.type.constValue());
2798                 return (T)boxPrimitive((JCExpression)tree, type);
2799             } else {
2800                 tree = (T)boxPrimitive((JCExpression)tree);
2801             }
2802         } else {
2803             tree = (T)unbox((JCExpression)tree, type);
2804         }
2805         return tree;
2806     }
2807 
2808     /** Box up a single primitive expression. */
2809     JCExpression boxPrimitive(JCExpression tree) {
2810         return boxPrimitive(tree, types.boxedClass(tree.type).type);
2811     }
2812 
2813     /** Box up a single primitive expression. */
2814     JCExpression boxPrimitive(JCExpression tree, Type box) {
2815         make_at(tree.pos());
2816         if (target.boxWithConstructors()) {
2817             Symbol ctor = lookupConstructor(tree.pos(),
2818                                             box,
2819                                             List.<Type>nil()
2820                                             .prepend(tree.type));
2821             return make.Create(ctor, List.of(tree));
2822         } else {
2823             Symbol valueOfSym = lookupMethod(tree.pos(),
2824                                              names.valueOf,
2825                                              box,
2826                                              List.<Type>nil()
2827                                              .prepend(tree.type));
2828             return make.App(make.QualIdent(valueOfSym), List.of(tree));
2829         }
2830     }
2831 
2832     /** Unbox an object to a primitive value. */
2833     JCExpression unbox(JCExpression tree, Type primitive) {
2834         Type unboxedType = types.unboxedType(tree.type);
2835         // note: the "primitive" parameter is not used.  There muse be
2836         // a conversion from unboxedType to primitive.
2837         make_at(tree.pos());
2838         Symbol valueSym = lookupMethod(tree.pos(),
2839                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
2840                                        tree.type,
2841                                        List.<Type>nil());
2842         return make.App(make.Select(tree, valueSym));
2843     }
2844 
2845     /** Visitor method for parenthesized expressions.
2846      *  If the subexpression has changed, omit the parens.
2847      */
2848     public void visitParens(JCParens tree) {
2849         JCTree expr = translate(tree.expr);
2850         result = ((expr == tree.expr) ? tree : expr);
2851     }
2852 
2853     public void visitIndexed(JCArrayAccess tree) {
2854         tree.indexed = translate(tree.indexed);
2855         tree.index = translate(tree.index, syms.intType);
2856         result = tree;
2857     }
2858 
2859     public void visitAssign(JCAssign tree) {
2860         tree.lhs = translate(tree.lhs, tree);
2861         tree.rhs = translate(tree.rhs, tree.lhs.type);
2862 
2863         // If translated left hand side is an Apply, we are
2864         // seeing an access method invocation. In this case, append
2865         // right hand side as last argument of the access method.
2866         if (tree.lhs.getTag() == JCTree.APPLY) {
2867             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2868             app.args = List.of(tree.rhs).prependList(app.args);
2869             result = app;
2870         } else {
2871             result = tree;
2872         }
2873     }
2874 
2875     public void visitAssignop(final JCAssignOp tree) {
2876         if (!tree.lhs.type.isPrimitive() &&
2877             tree.operator.type.getReturnType().isPrimitive()) {
2878             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
2879             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
2880             // (but without recomputing x)
2881             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
2882                     public JCTree build(final JCTree lhs) {
2883                         int newTag = tree.getTag() - JCTree.ASGOffset;
2884                         // Erasure (TransTypes) can change the type of
2885                         // tree.lhs.  However, we can still get the
2886                         // unerased type of tree.lhs as it is stored
2887                         // in tree.type in Attr.
2888                         Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
2889                                                                       newTag,
2890                                                                       attrEnv,
2891                                                                       tree.type,
2892                                                                       tree.rhs.type);
2893                         JCExpression expr = (JCExpression)lhs;
2894                         if (expr.type != tree.type)
2895                             expr = make.TypeCast(tree.type, expr);
2896                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
2897                         opResult.operator = newOperator;
2898                         opResult.type = newOperator.type.getReturnType();
2899                         JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
2900                                                           opResult);
2901                         return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
2902                     }
2903                 });
2904             result = translate(newTree);
2905             return;
2906         }
2907         tree.lhs = translate(tree.lhs, tree);
2908         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
2909 
2910         // If translated left hand side is an Apply, we are
2911         // seeing an access method invocation. In this case, append
2912         // right hand side as last argument of the access method.
2913         if (tree.lhs.getTag() == JCTree.APPLY) {
2914             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2915             // if operation is a += on strings,
2916             // make sure to convert argument to string
2917             JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
2918               ? makeString(tree.rhs)
2919               : tree.rhs;
2920             app.args = List.of(rhs).prependList(app.args);
2921             result = app;
2922         } else {
2923             result = tree;
2924         }
2925     }
2926 
2927     /** Lower a tree of the form e++ or e-- where e is an object type */
2928     JCTree lowerBoxedPostop(final JCUnary tree) {
2929         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
2930         // or
2931         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
2932         // where OP is += or -=
2933         final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
2934         return abstractLval(tree.arg, new TreeBuilder() {
2935                 public JCTree build(final JCTree tmp1) {
2936                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
2937                             public JCTree build(final JCTree tmp2) {
2938                                 int opcode = (tree.getTag() == JCTree.POSTINC)
2939                                     ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
2940                                 JCTree lhs = cast
2941                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
2942                                     : tmp1;
2943                                 JCTree update = makeAssignop(opcode,
2944                                                              lhs,
2945                                                              make.Literal(1));
2946                                 return makeComma(update, tmp2);
2947                             }
2948                         });
2949                 }
2950             });
2951     }
2952 
2953     public void visitUnary(JCUnary tree) {
2954         boolean isUpdateOperator =
2955             JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
2956         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
2957             switch(tree.getTag()) {
2958             case JCTree.PREINC:            // ++ e
2959                     // translate to e += 1
2960             case JCTree.PREDEC:            // -- e
2961                     // translate to e -= 1
2962                 {
2963                     int opcode = (tree.getTag() == JCTree.PREINC)
2964                         ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
2965                     JCAssignOp newTree = makeAssignop(opcode,
2966                                                     tree.arg,
2967                                                     make.Literal(1));
2968                     result = translate(newTree, tree.type);
2969                     return;
2970                 }
2971             case JCTree.POSTINC:           // e ++
2972             case JCTree.POSTDEC:           // e --
2973                 {
2974                     result = translate(lowerBoxedPostop(tree), tree.type);
2975                     return;
2976                 }
2977             }
2978             throw new AssertionError(tree);
2979         }
2980 
2981         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
2982 
2983         if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
2984             tree.type = cfolder.fold1(bool_not, tree.arg.type);
2985         }
2986 
2987         // If translated left hand side is an Apply, we are
2988         // seeing an access method invocation. In this case, return
2989         // that access method invocation as result.
2990         if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
2991             result = tree.arg;
2992         } else {
2993             result = tree;
2994         }
2995     }
2996 
2997     public void visitBinary(JCBinary tree) {
2998         List<Type> formals = tree.operator.type.getParameterTypes();
2999         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
3000         switch (tree.getTag()) {
3001         case JCTree.OR:
3002             if (lhs.type.isTrue()) {
3003                 result = lhs;
3004                 return;
3005             }
3006             if (lhs.type.isFalse()) {
3007                 result = translate(tree.rhs, formals.tail.head);
3008                 return;
3009             }
3010             break;
3011         case JCTree.AND:
3012             if (lhs.type.isFalse()) {
3013                 result = lhs;
3014                 return;
3015             }
3016             if (lhs.type.isTrue()) {
3017                 result = translate(tree.rhs, formals.tail.head);
3018                 return;
3019             }
3020             break;
3021         }
3022         tree.rhs = translate(tree.rhs, formals.tail.head);
3023         result = tree;
3024     }
3025 
3026     public void visitIdent(JCIdent tree) {
3027         result = access(tree.sym, tree, enclOp, false);
3028     }
3029 
3030     /** Translate away the foreach loop.  */
3031     public void visitForeachLoop(JCEnhancedForLoop tree) {
3032         if (types.elemtype(tree.expr.type) == null)
3033             visitIterableForeachLoop(tree);
3034         else
3035             visitArrayForeachLoop(tree);
3036     }
3037         // where
3038         /**
3039          * A statement of the form
3040          *
3041          * <pre>
3042          *     for ( T v : arrayexpr ) stmt;
3043          * </pre>
3044          *
3045          * (where arrayexpr is of an array type) gets translated to
3046          *
3047          * <pre>
3048          *     for ( { arraytype #arr = arrayexpr;
3049          *             int #len = array.length;
3050          *             int #i = 0; };
3051          *           #i < #len; i$++ ) {
3052          *         T v = arr$[#i];
3053          *         stmt;
3054          *     }
3055          * </pre>
3056          *
3057          * where #arr, #len, and #i are freshly named synthetic local variables.
3058          */
3059         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
3060             make_at(tree.expr.pos());
3061             VarSymbol arraycache = new VarSymbol(0,
3062                                                  names.fromString("arr" + target.syntheticNameChar()),
3063                                                  tree.expr.type,
3064                                                  currentMethodSym);
3065             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
3066             VarSymbol lencache = new VarSymbol(0,
3067                                                names.fromString("len" + target.syntheticNameChar()),
3068                                                syms.intType,
3069                                                currentMethodSym);
3070             JCStatement lencachedef = make.
3071                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
3072             VarSymbol index = new VarSymbol(0,
3073                                             names.fromString("i" + target.syntheticNameChar()),
3074                                             syms.intType,
3075                                             currentMethodSym);
3076 
3077             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
3078             indexdef.init.type = indexdef.type = syms.intType.constType(0);
3079 
3080             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
3081             JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
3082 
3083             JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
3084 
3085             Type elemtype = types.elemtype(tree.expr.type);
3086             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
3087                                                     make.Ident(index)).setType(elemtype);
3088             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
3089                                                   tree.var.name,
3090                                                   tree.var.vartype,
3091                                                   loopvarinit).setType(tree.var.type);
3092             loopvardef.sym = tree.var.sym;
3093             JCBlock body = make.
3094                 Block(0, List.of(loopvardef, tree.body));
3095 
3096             result = translate(make.
3097                                ForLoop(loopinit,
3098                                        cond,
3099                                        List.of(step),
3100                                        body));
3101             patchTargets(body, tree, result);
3102         }
3103         /** Patch up break and continue targets. */
3104         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
3105             class Patcher extends TreeScanner {
3106                 public void visitBreak(JCBreak tree) {
3107                     if (tree.target == src)
3108                         tree.target = dest;
3109                 }
3110                 public void visitContinue(JCContinue tree) {
3111                     if (tree.target == src)
3112                         tree.target = dest;
3113                 }
3114                 public void visitClassDef(JCClassDecl tree) {}
3115             }
3116             new Patcher().scan(body);
3117         }
3118         /**
3119          * A statement of the form
3120          *
3121          * <pre>
3122          *     for ( T v : coll ) stmt ;
3123          * </pre>
3124          *
3125          * (where coll implements Iterable<? extends T>) gets translated to
3126          *
3127          * <pre>
3128          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
3129          *         T v = (T) #i.next();
3130          *         stmt;
3131          *     }
3132          * </pre>
3133          *
3134          * where #i is a freshly named synthetic local variable.
3135          */
3136         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3137             make_at(tree.expr.pos());
3138             Type iteratorTarget = syms.objectType;
3139             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
3140                                               syms.iterableType.tsym);
3141             if (iterableType.getTypeArguments().nonEmpty())
3142                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3143             Type eType = tree.expr.type;
3144             tree.expr.type = types.erasure(eType);
3145             if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
3146                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
3147             Symbol iterator = lookupMethod(tree.expr.pos(),
3148                                            names.iterator,
3149                                            types.erasure(syms.iterableType),
3150                                            List.<Type>nil());
3151             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
3152                                             types.erasure(iterator.type.getReturnType()),
3153                                             currentMethodSym);
3154             JCStatement init = make.
3155                 VarDef(itvar,
3156                        make.App(make.Select(tree.expr, iterator)));
3157             Symbol hasNext = lookupMethod(tree.expr.pos(),
3158                                           names.hasNext,
3159                                           itvar.type,
3160                                           List.<Type>nil());
3161             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3162             Symbol next = lookupMethod(tree.expr.pos(),
3163                                        names.next,
3164                                        itvar.type,
3165                                        List.<Type>nil());
3166             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3167             if (tree.var.type.isPrimitive())
3168                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
3169             else
3170                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3171             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3172                                                   tree.var.name,
3173                                                   tree.var.vartype,
3174                                                   vardefinit).setType(tree.var.type);
3175             indexDef.sym = tree.var.sym;
3176             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3177             body.endpos = TreeInfo.endPos(tree.body);
3178             result = translate(make.
3179                 ForLoop(List.of(init),
3180                         cond,
3181                         List.<JCExpressionStatement>nil(),
3182                         body));
3183             patchTargets(body, tree, result);
3184         }
3185 
3186     public void visitVarDef(JCVariableDecl tree) {
3187         MethodSymbol oldMethodSym = currentMethodSym;
3188         tree.mods = translate(tree.mods);
3189         tree.vartype = translate(tree.vartype);
3190         if (currentMethodSym == null) {
3191             // A class or instance field initializer.
3192             currentMethodSym =
3193                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3194                                  names.empty, null,
3195                                  currentClass);
3196         }
3197         if (tree.init != null) tree.init = translate(tree.init, tree.type);
3198         result = tree;
3199         currentMethodSym = oldMethodSym;
3200     }
3201 
3202     public void visitBlock(JCBlock tree) {
3203         MethodSymbol oldMethodSym = currentMethodSym;
3204         if (currentMethodSym == null) {
3205             // Block is a static or instance initializer.
3206             currentMethodSym =
3207                 new MethodSymbol(tree.flags | BLOCK,
3208                                  names.empty, null,
3209                                  currentClass);
3210         }
3211         super.visitBlock(tree);
3212         currentMethodSym = oldMethodSym;
3213     }
3214 
3215     public void visitDoLoop(JCDoWhileLoop tree) {
3216         tree.body = translate(tree.body);
3217         tree.cond = translate(tree.cond, syms.booleanType);
3218         result = tree;
3219     }
3220 
3221     public void visitWhileLoop(JCWhileLoop tree) {
3222         tree.cond = translate(tree.cond, syms.booleanType);
3223         tree.body = translate(tree.body);
3224         result = tree;
3225     }
3226 
3227     public void visitForLoop(JCForLoop tree) {
3228         tree.init = translate(tree.init);
3229         if (tree.cond != null)
3230             tree.cond = translate(tree.cond, syms.booleanType);
3231         tree.step = translate(tree.step);
3232         tree.body = translate(tree.body);
3233         result = tree;
3234     }
3235 
3236     public void visitReturn(JCReturn tree) {
3237         if (tree.expr != null)
3238             tree.expr = translate(tree.expr,
3239                                   types.erasure(currentMethodDef
3240                                                 .restype.type));
3241         result = tree;
3242     }
3243 
3244     public void visitSwitch(JCSwitch tree) {
3245         Type selsuper = types.supertype(tree.selector.type);
3246         boolean enumSwitch = selsuper != null &&
3247             (tree.selector.type.tsym.flags() & ENUM) != 0;
3248         boolean stringSwitch = selsuper != null &&
3249             types.isSameType(tree.selector.type, syms.stringType);
3250         Type target = enumSwitch ? tree.selector.type :
3251             (stringSwitch? syms.stringType : syms.intType);
3252         tree.selector = translate(tree.selector, target);
3253         tree.cases = translateCases(tree.cases);
3254         if (enumSwitch) {
3255             result = visitEnumSwitch(tree);
3256         } else if (stringSwitch) {
3257             result = visitStringSwitch(tree);
3258         } else {
3259             result = tree;
3260         }
3261     }
3262 
3263     public JCTree visitEnumSwitch(JCSwitch tree) {
3264         TypeSymbol enumSym = tree.selector.type.tsym;
3265         EnumMapping map = mapForEnum(tree.pos(), enumSym);
3266         make_at(tree.pos());
3267         Symbol ordinalMethod = lookupMethod(tree.pos(),
3268                                             names.ordinal,
3269                                             tree.selector.type,
3270                                             List.<Type>nil());
3271         JCArrayAccess selector = make.Indexed(map.mapVar,
3272                                         make.App(make.Select(tree.selector,
3273                                                              ordinalMethod)));
3274         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
3275         for (JCCase c : tree.cases) {
3276             if (c.pat != null) {
3277                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
3278                 JCLiteral pat = map.forConstant(label);
3279                 cases.append(make.Case(pat, c.stats));
3280             } else {
3281                 cases.append(c);
3282             }
3283         }
3284         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
3285         patchTargets(enumSwitch, tree, enumSwitch);
3286         return enumSwitch;
3287     }
3288 
3289     public JCTree visitStringSwitch(JCSwitch tree) {
3290         List<JCCase> caseList = tree.getCases();
3291         int alternatives = caseList.size();
3292 
3293         if (alternatives == 0) { // Strange but legal possibility
3294             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
3295         } else {
3296             /*
3297              * The general approach used is to translate a single
3298              * string switch statement into a series of two chained
3299              * switch statements: the first a synthesized statement
3300              * switching on the argument string's hash value and
3301              * computing a string's position in the list of original
3302              * case labels, if any, followed by a second switch on the
3303              * computed integer value.  The second switch has the same
3304              * code structure as the original string switch statement
3305              * except that the string case labels are replaced with
3306              * positional integer constants starting at 0.
3307              *
3308              * The first switch statement can be thought of as an
3309              * inlined map from strings to their position in the case
3310              * label list.  An alternate implementation would use an
3311              * actual Map for this purpose, as done for enum switches.
3312              *
3313              * With some additional effort, it would be possible to
3314              * use a single switch statement on the hash code of the
3315              * argument, but care would need to be taken to preserve
3316              * the proper control flow in the presence of hash
3317              * collisions and other complications, such as
3318              * fallthroughs.  Switch statements with one or two
3319              * alternatives could also be specially translated into
3320              * if-then statements to omit the computation of the hash
3321              * code.
3322              *
3323              * The generated code assumes that the hashing algorithm
3324              * of String is the same in the compilation environment as
3325              * in the environment the code will run in.  The string
3326              * hashing algorithm in the SE JDK has been unchanged
3327              * since at least JDK 1.2.  Since the algorithm has been
3328              * specified since that release as well, it is very
3329              * unlikely to be changed in the future.
3330              *
3331              * Different hashing algorithms, such as the length of the
3332              * strings or a perfect hashing algorithm over the
3333              * particular set of case labels, could potentially be
3334              * used instead of String.hashCode.
3335              */
3336 
3337             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
3338 
3339             // Map from String case labels to their original position in
3340             // the list of case labels.
3341             Map<String, Integer> caseLabelToPosition =
3342                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
3343 
3344             // Map of hash codes to the string case labels having that hashCode.
3345             Map<Integer, Set<String>> hashToString =
3346                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
3347 
3348             int casePosition = 0;
3349             for(JCCase oneCase : caseList) {
3350                 JCExpression expression = oneCase.getExpression();
3351 
3352                 if (expression != null) { // expression for a "default" case is null
3353                     String labelExpr = (String) expression.type.constValue();
3354                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
3355                     assert mapping == null;
3356                     int hashCode = labelExpr.hashCode();
3357 
3358                     Set<String> stringSet = hashToString.get(hashCode);
3359                     if (stringSet == null) {
3360                         stringSet = new LinkedHashSet<String>(1, 1.0f);
3361                         stringSet.add(labelExpr);
3362                         hashToString.put(hashCode, stringSet);
3363                     } else {
3364                         boolean added = stringSet.add(labelExpr);
3365                         assert added;
3366                     }
3367                 }
3368                 casePosition++;
3369             }
3370 
3371             // Synthesize a switch statement that has the effect of
3372             // mapping from a string to the integer position of that
3373             // string in the list of case labels.  This is done by
3374             // switching on the hashCode of the string followed by an
3375             // if-then-else chain comparing the input for equality
3376             // with all the case labels having that hash value.
3377 
3378             /*
3379              * s$ = top of stack;
3380              * tmp$ = -1;
3381              * switch($s.hashCode()) {
3382              *     case caseLabel.hashCode:
3383              *         if (s$.equals("caseLabel_1")
3384              *           tmp$ = caseLabelToPosition("caseLabel_1");
3385              *         else if (s$.equals("caseLabel_2"))
3386              *           tmp$ = caseLabelToPosition("caseLabel_2");
3387              *         ...
3388              *         break;
3389              * ...
3390              * }
3391              */
3392 
3393             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
3394                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
3395                                                syms.stringType,
3396                                                currentMethodSym);
3397             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
3398 
3399             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
3400                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
3401                                                  syms.intType,
3402                                                  currentMethodSym);
3403             JCVariableDecl dollar_tmp_def =
3404                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
3405             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
3406             stmtList.append(dollar_tmp_def);
3407             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
3408             // hashCode will trigger nullcheck on original switch expression
3409             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
3410                                                        names.hashCode,
3411                                                        List.<JCExpression>nil()).setType(syms.intType);
3412             JCSwitch switch1 = make.Switch(hashCodeCall,
3413                                         caseBuffer.toList());
3414             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
3415                 int hashCode = entry.getKey();
3416                 Set<String> stringsWithHashCode = entry.getValue();
3417                 assert stringsWithHashCode.size() >= 1;
3418 
3419                 JCStatement elsepart = null;
3420                 for(String caseLabel : stringsWithHashCode ) {
3421                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
3422                                                                    names.equals,
3423                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
3424                     elsepart = make.If(stringEqualsCall,
3425                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
3426                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
3427                                                  setType(dollar_tmp.type)),
3428                                        elsepart);
3429                 }
3430 
3431                 ListBuffer<JCStatement> lb = ListBuffer.lb();
3432                 JCBreak breakStmt = make.Break(null);
3433                 breakStmt.target = switch1;
3434                 lb.append(elsepart).append(breakStmt);
3435 
3436                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
3437             }
3438 
3439             switch1.cases = caseBuffer.toList();
3440             stmtList.append(switch1);
3441 
3442             // Make isomorphic switch tree replacing string labels
3443             // with corresponding integer ones from the label to
3444             // position map.
3445 
3446             ListBuffer<JCCase> lb = ListBuffer.lb();
3447             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
3448             for(JCCase oneCase : caseList ) {
3449                 // Rewire up old unlabeled break statements to the
3450                 // replacement switch being created.
3451                 patchTargets(oneCase, tree, switch2);
3452 
3453                 boolean isDefault = (oneCase.getExpression() == null);
3454                 JCExpression caseExpr;
3455                 if (isDefault)
3456                     caseExpr = null;
3457                 else {
3458                     caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
3459                                                                     getExpression().
3460                                                                     type.constValue()));
3461                 }
3462 
3463                 lb.append(make.Case(caseExpr,
3464                                     oneCase.getStatements()));
3465             }
3466 
3467             switch2.cases = lb.toList();
3468             stmtList.append(switch2);
3469 
3470             return make.Block(0L, stmtList.toList());
3471         }
3472     }
3473 
3474     public void visitNewArray(JCNewArray tree) {
3475         tree.elemtype = translate(tree.elemtype);
3476         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
3477             if (t.head != null) t.head = translate(t.head, syms.intType);
3478         tree.elems = translate(tree.elems, types.elemtype(tree.type));
3479         result = tree;
3480     }
3481 
3482     public void visitSelect(JCFieldAccess tree) {
3483         // need to special case-access of the form C.super.x
3484         // these will always need an access method.
3485         boolean qualifiedSuperAccess =
3486             tree.selected.getTag() == JCTree.SELECT &&
3487             TreeInfo.name(tree.selected) == names._super;
3488         tree.selected = translate(tree.selected);
3489         if (tree.name == names._class)
3490             result = classOf(tree.selected);
3491         else if (tree.name == names._this || tree.name == names._super)
3492             result = makeThis(tree.pos(), tree.selected.type.tsym);
3493         else
3494             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
3495     }
3496 
3497     public void visitLetExpr(LetExpr tree) {
3498         tree.defs = translateVarDefs(tree.defs);
3499         tree.expr = translate(tree.expr, tree.type);
3500         result = tree;
3501     }
3502 
3503     // There ought to be nothing to rewrite here;
3504     // we don't generate code.
3505     public void visitAnnotation(JCAnnotation tree) {
3506         result = tree;
3507     }
3508 
3509     @Override
3510     public void visitTry(JCTry tree) {
3511         super.visitTry(tree);
3512         result = makeTry(tree);
3513     }
3514 
3515 /**************************************************************************
3516  * main method
3517  *************************************************************************/
3518 
3519     /** Translate a toplevel class and return a list consisting of
3520      *  the translated class and translated versions of all inner classes.
3521      *  @param env   The attribution environment current at the class definition.
3522      *               We need this for resolving some additional symbols.
3523      *  @param cdef  The tree representing the class definition.
3524      */
3525     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
3526         ListBuffer<JCTree> translated = null;
3527         try {
3528             attrEnv = env;
3529             this.make = make;
3530             endPositions = env.toplevel.endPositions;
3531             currentClass = null;
3532             currentMethodDef = null;
3533             outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
3534             outermostMemberDef = null;
3535             this.translated = new ListBuffer<JCTree>();
3536             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
3537             actualSymbols = new HashMap<Symbol,Symbol>();
3538             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
3539             proxies = new Scope(syms.noSymbol);
3540             outerThisStack = List.nil();
3541             accessNums = new HashMap<Symbol,Integer>();
3542             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
3543             accessConstrs = new HashMap<Symbol,MethodSymbol>();
3544             accessConstrTags = List.nil();
3545             accessed = new ListBuffer<Symbol>();
3546             translate(cdef, (JCExpression)null);
3547             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
3548                 makeAccessible(l.head);
3549             for (EnumMapping map : enumSwitchMap.values())
3550                 map.translate();
3551             checkConflicts(this.translated.toList());
3552             checkAccessConstructorTags();
3553             translated = this.translated;
3554         } finally {
3555             // note that recursive invocations of this method fail hard
3556             attrEnv = null;
3557             this.make = null;
3558             endPositions = null;
3559             currentClass = null;
3560             currentMethodDef = null;
3561             outermostClassDef = null;
3562             outermostMemberDef = null;
3563             this.translated = null;
3564             classdefs = null;
3565             actualSymbols = null;
3566             freevarCache = null;
3567             proxies = null;
3568             outerThisStack = null;
3569             accessNums = null;
3570             accessSyms = null;
3571             accessConstrs = null;
3572             accessConstrTags = null;
3573             accessed = null;
3574             enumSwitchMap.clear();
3575         }
3576         return translated.toList();
3577     }
3578 
3579     //////////////////////////////////////////////////////////////
3580     // The following contributed by Borland for bootstrapping purposes
3581     //////////////////////////////////////////////////////////////
3582     private void addEnumCompatibleMembers(JCClassDecl cdef) {
3583         make_at(null);
3584 
3585         // Add the special enum fields
3586         VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
3587         VarSymbol nameFieldSym = addEnumNameField(cdef);
3588 
3589         // Add the accessor methods for name and ordinal
3590         MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
3591         MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
3592 
3593         // Add the toString method
3594         addEnumToString(cdef, nameFieldSym);
3595 
3596         // Add the compareTo method
3597         addEnumCompareTo(cdef, ordinalFieldSym);
3598     }
3599 
3600     private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
3601         VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3602                                           names.fromString("$ordinal"),
3603                                           syms.intType,
3604                                           cdef.sym);
3605         cdef.sym.members().enter(ordinal);
3606         cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
3607         return ordinal;
3608     }
3609 
3610     private VarSymbol addEnumNameField(JCClassDecl cdef) {
3611         VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3612                                           names.fromString("$name"),
3613                                           syms.stringType,
3614                                           cdef.sym);
3615         cdef.sym.members().enter(name);
3616         cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
3617         return name;
3618     }
3619 
3620     private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3621         // Add the accessor methods for ordinal
3622         Symbol ordinalSym = lookupMethod(cdef.pos(),
3623                                          names.ordinal,
3624                                          cdef.type,
3625                                          List.<Type>nil());
3626 
3627         assert(ordinalSym != null);
3628         assert(ordinalSym instanceof MethodSymbol);
3629 
3630         JCStatement ret = make.Return(make.Ident(ordinalSymbol));
3631         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
3632                                                     make.Block(0L, List.of(ret))));
3633 
3634         return (MethodSymbol)ordinalSym;
3635     }
3636 
3637     private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
3638         // Add the accessor methods for name
3639         Symbol nameSym = lookupMethod(cdef.pos(),
3640                                    names._name,
3641                                    cdef.type,
3642                                    List.<Type>nil());
3643 
3644         assert(nameSym != null);
3645         assert(nameSym instanceof MethodSymbol);
3646 
3647         JCStatement ret = make.Return(make.Ident(nameSymbol));
3648 
3649         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
3650                                                     make.Block(0L, List.of(ret))));
3651 
3652         return (MethodSymbol)nameSym;
3653     }
3654 
3655     private MethodSymbol addEnumToString(JCClassDecl cdef,
3656                                          VarSymbol nameSymbol) {
3657         Symbol toStringSym = lookupMethod(cdef.pos(),
3658                                           names.toString,
3659                                           cdef.type,
3660                                           List.<Type>nil());
3661 
3662         JCTree toStringDecl = null;
3663         if (toStringSym != null)
3664             toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
3665 
3666         if (toStringDecl != null)
3667             return (MethodSymbol)toStringSym;
3668 
3669         JCStatement ret = make.Return(make.Ident(nameSymbol));
3670 
3671         JCTree resTypeTree = make.Type(syms.stringType);
3672 
3673         MethodType toStringType = new MethodType(List.<Type>nil(),
3674                                                  syms.stringType,
3675                                                  List.<Type>nil(),
3676                                                  cdef.sym);
3677         toStringSym = new MethodSymbol(PUBLIC,
3678                                        names.toString,
3679                                        toStringType,
3680                                        cdef.type.tsym);
3681         toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
3682                                       make.Block(0L, List.of(ret)));
3683 
3684         cdef.defs = cdef.defs.prepend(toStringDecl);
3685         cdef.sym.members().enter(toStringSym);
3686 
3687         return (MethodSymbol)toStringSym;
3688     }
3689 
3690     private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3691         Symbol compareToSym = lookupMethod(cdef.pos(),
3692                                    names.compareTo,
3693                                    cdef.type,
3694                                    List.of(cdef.sym.type));
3695 
3696         assert(compareToSym != null);
3697         assert(compareToSym instanceof MethodSymbol);
3698 
3699         JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
3700 
3701         ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
3702 
3703         JCModifiers mod1 = make.Modifiers(0L);
3704         Name oName = names.fromString("o");
3705         JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
3706 
3707         JCIdent paramId1 = make.Ident(names.java_lang_Object);
3708         paramId1.type = cdef.type;
3709         paramId1.sym = par1.sym;
3710 
3711         ((MethodSymbol)compareToSym).params = List.of(par1.sym);
3712 
3713         JCIdent par1UsageId = make.Ident(par1.sym);
3714         JCIdent castTargetIdent = make.Ident(cdef.sym);
3715         JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
3716         cast.setType(castTargetIdent.type);
3717 
3718         Name otherName = names.fromString("other");
3719 
3720         VarSymbol otherVarSym = new VarSymbol(mod1.flags,
3721                                               otherName,
3722                                               cdef.type,
3723                                               compareToSym);
3724         JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
3725         blockStatements.append(otherVar);
3726 
3727         JCIdent id1 = make.Ident(ordinalSymbol);
3728 
3729         JCIdent fLocUsageId = make.Ident(otherVarSym);
3730         JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
3731         JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
3732         JCReturn ret = make.Return(bin);
3733         blockStatements.append(ret);
3734         JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
3735                                                    make.Block(0L,
3736                                                               blockStatements.toList()));
3737         compareToMethod.params = List.of(par1);
3738         cdef.defs = cdef.defs.append(compareToMethod);
3739 
3740         return (MethodSymbol)compareToSym;
3741     }
3742     //////////////////////////////////////////////////////////////
3743     // The above contributed by Borland for bootstrapping purposes
3744     //////////////////////////////////////////////////////////////
3745 }