1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.Set;
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.tools.javac.code.*;
  34 import com.sun.tools.javac.jvm.*;
  35 import com.sun.tools.javac.tree.*;
  36 import com.sun.tools.javac.util.*;
  37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  38 import com.sun.tools.javac.util.List;
  39 
  40 import com.sun.tools.javac.jvm.Target;
  41 import com.sun.tools.javac.code.Symbol.*;
  42 import com.sun.tools.javac.tree.JCTree.*;
  43 import com.sun.tools.javac.code.Type.*;
  44 
  45 import com.sun.source.tree.IdentifierTree;
  46 import com.sun.source.tree.MemberSelectTree;
  47 import com.sun.source.tree.TreeVisitor;
  48 import com.sun.source.util.SimpleTreeVisitor;
  49 
  50 import static com.sun.tools.javac.code.Flags.*;
  51 import static com.sun.tools.javac.code.Kinds.*;
  52 import static com.sun.tools.javac.code.TypeTags.*;
  53 
  54 /** This is the main context-dependent analysis phase in GJC. It
  55  *  encompasses name resolution, type checking and constant folding as
  56  *  subtasks. Some subtasks involve auxiliary classes.
  57  *  @see Check
  58  *  @see Resolve
  59  *  @see ConstFold
  60  *  @see Infer
  61  *
  62  *  <p><b>This is NOT part of any supported API.
  63  *  If you write code that depends on this, you do so at your own risk.
  64  *  This code and its internal interfaces are subject to change or
  65  *  deletion without notice.</b>
  66  */
  67 public class Attr extends JCTree.Visitor {
  68     protected static final Context.Key<Attr> attrKey =
  69         new Context.Key<Attr>();
  70 
  71     final Names names;
  72     final Log log;
  73     final Symtab syms;
  74     final Resolve rs;
  75     final Infer infer;
  76     final Check chk;
  77     final MemberEnter memberEnter;
  78     final TreeMaker make;
  79     final ConstFold cfolder;
  80     final Enter enter;
  81     final Target target;
  82     final Types types;
  83     final JCDiagnostic.Factory diags;
  84     final Annotate annotate;
  85 
  86     public static Attr instance(Context context) {
  87         Attr instance = context.get(attrKey);
  88         if (instance == null)
  89             instance = new Attr(context);
  90         return instance;
  91     }
  92 
  93     protected Attr(Context context) {
  94         context.put(attrKey, this);
  95 
  96         names = Names.instance(context);
  97         log = Log.instance(context);
  98         syms = Symtab.instance(context);
  99         rs = Resolve.instance(context);
 100         chk = Check.instance(context);
 101         memberEnter = MemberEnter.instance(context);
 102         make = TreeMaker.instance(context);
 103         enter = Enter.instance(context);
 104         infer = Infer.instance(context);
 105         cfolder = ConstFold.instance(context);
 106         target = Target.instance(context);
 107         types = Types.instance(context);
 108         diags = JCDiagnostic.Factory.instance(context);
 109         annotate = Annotate.instance(context);
 110 
 111         Options options = Options.instance(context);
 112 
 113         Source source = Source.instance(context);
 114         allowGenerics = source.allowGenerics();
 115         allowVarargs = source.allowVarargs();
 116         allowEnums = source.allowEnums();
 117         allowBoxing = source.allowBoxing();
 118         allowCovariantReturns = source.allowCovariantReturns();
 119         allowAnonOuterThis = source.allowAnonOuterThis();
 120         allowStringsInSwitch = source.allowStringsInSwitch();
 121         sourceName = source.name;
 122         relax = (options.get("-retrofit") != null ||
 123                  options.get("-relax") != null);
 124         useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
 125         allowInvokedynamic = options.get("invokedynamic") != null;
 126         enableSunApiLintControl = options.get("enableSunApiLintControl") != null;
 127     }
 128 
 129     /** Switch: relax some constraints for retrofit mode.
 130      */
 131     boolean relax;
 132 
 133     /** Switch: support generics?
 134      */
 135     boolean allowGenerics;
 136 
 137     /** Switch: allow variable-arity methods.
 138      */
 139     boolean allowVarargs;
 140 
 141     /** Switch: support enums?
 142      */
 143     boolean allowEnums;
 144 
 145     /** Switch: support boxing and unboxing?
 146      */
 147     boolean allowBoxing;
 148 
 149     /** Switch: support covariant result types?
 150      */
 151     boolean allowCovariantReturns;
 152 
 153     /** Switch: allow references to surrounding object from anonymous
 154      * objects during constructor call?
 155      */
 156     boolean allowAnonOuterThis;
 157 
 158     /** Switch: allow invokedynamic syntax
 159      */
 160     boolean allowInvokedynamic;
 161 
 162     /**
 163      * Switch: warn about use of variable before declaration?
 164      * RFE: 6425594
 165      */
 166     boolean useBeforeDeclarationWarning;
 167 
 168     /**
 169      * Switch: allow lint infrastructure to control proprietary
 170      * API warnings.
 171      */
 172     boolean enableSunApiLintControl;
 173 
 174     /**
 175      * Switch: allow strings in switch?
 176      */
 177     boolean allowStringsInSwitch;
 178 
 179     /**
 180      * Switch: name of source level; used for error reporting.
 181      */
 182     String sourceName;
 183 
 184     /** Check kind and type of given tree against protokind and prototype.
 185      *  If check succeeds, store type in tree and return it.
 186      *  If check fails, store errType in tree and return it.
 187      *  No checks are performed if the prototype is a method type.
 188      *  It is not necessary in this case since we know that kind and type
 189      *  are correct.
 190      *
 191      *  @param tree     The tree whose kind and type is checked
 192      *  @param owntype  The computed type of the tree
 193      *  @param ownkind  The computed kind of the tree
 194      *  @param pkind    The expected kind (or: protokind) of the tree
 195      *  @param pt       The expected type (or: prototype) of the tree
 196      */
 197     Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
 198         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
 199             if ((ownkind & ~pkind) == 0) {
 200                 owntype = chk.checkType(tree.pos(), owntype, pt);
 201             } else {
 202                 log.error(tree.pos(), "unexpected.type",
 203                           kindNames(pkind),
 204                           kindName(ownkind));
 205                 owntype = types.createErrorType(owntype);
 206             }
 207         }
 208         tree.type = owntype;
 209         return owntype;
 210     }
 211 
 212     /** Is given blank final variable assignable, i.e. in a scope where it
 213      *  may be assigned to even though it is final?
 214      *  @param v      The blank final variable.
 215      *  @param env    The current environment.
 216      */
 217     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 218         Symbol owner = env.info.scope.owner;
 219            // owner refers to the innermost variable, method or
 220            // initializer block declaration at this point.
 221         return
 222             v.owner == owner
 223             ||
 224             ((owner.name == names.init ||    // i.e. we are in a constructor
 225               owner.kind == VAR ||           // i.e. we are in a variable initializer
 226               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 227              &&
 228              v.owner == owner.owner
 229              &&
 230              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 231     }
 232 
 233     /** Check that variable can be assigned to.
 234      *  @param pos    The current source code position.
 235      *  @param v      The assigned varaible
 236      *  @param base   If the variable is referred to in a Select, the part
 237      *                to the left of the `.', null otherwise.
 238      *  @param env    The current environment.
 239      */
 240     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 241         if ((v.flags() & FINAL) != 0 &&
 242             ((v.flags() & HASINIT) != 0
 243              ||
 244              !((base == null ||
 245                (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
 246                isAssignableAsBlankFinal(v, env)))) {
 247             log.error(pos, "cant.assign.val.to.final.var", v);
 248         }
 249     }
 250 
 251     /** Does tree represent a static reference to an identifier?
 252      *  It is assumed that tree is either a SELECT or an IDENT.
 253      *  We have to weed out selects from non-type names here.
 254      *  @param tree    The candidate tree.
 255      */
 256     boolean isStaticReference(JCTree tree) {
 257         if (tree.getTag() == JCTree.SELECT) {
 258             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 259             if (lsym == null || lsym.kind != TYP) {
 260                 return false;
 261             }
 262         }
 263         return true;
 264     }
 265 
 266     /** Is this symbol a type?
 267      */
 268     static boolean isType(Symbol sym) {
 269         return sym != null && sym.kind == TYP;
 270     }
 271 
 272     /** The current `this' symbol.
 273      *  @param env    The current environment.
 274      */
 275     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 276         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 277     }
 278 
 279     /** Attribute a parsed identifier.
 280      * @param tree Parsed identifier name
 281      * @param topLevel The toplevel to use
 282      */
 283     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 284         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 285         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 286                                            syms.errSymbol.name,
 287                                            null, null, null, null);
 288         localEnv.enclClass.sym = syms.errSymbol;
 289         return tree.accept(identAttributer, localEnv);
 290     }
 291     // where
 292         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 293         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 294             @Override
 295             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 296                 Symbol site = visit(node.getExpression(), env);
 297                 if (site.kind == ERR)
 298                     return site;
 299                 Name name = (Name)node.getIdentifier();
 300                 if (site.kind == PCK) {
 301                     env.toplevel.packge = (PackageSymbol)site;
 302                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
 303                 } else {
 304                     env.enclClass.sym = (ClassSymbol)site;
 305                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 306                 }
 307             }
 308 
 309             @Override
 310             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 311                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
 312             }
 313         }
 314 
 315     public Type coerce(Type etype, Type ttype) {
 316         return cfolder.coerce(etype, ttype);
 317     }
 318 
 319     public Type attribType(JCTree node, TypeSymbol sym) {
 320         Env<AttrContext> env = enter.typeEnvs.get(sym);
 321         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 322         return attribTree(node, localEnv, Kinds.TYP, Type.noType);
 323     }
 324 
 325     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 326         breakTree = tree;
 327         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 328         try {
 329             attribExpr(expr, env);
 330         } catch (BreakAttr b) {
 331             return b.env;
 332         } finally {
 333             breakTree = null;
 334             log.useSource(prev);
 335         }
 336         return env;
 337     }
 338 
 339     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 340         breakTree = tree;
 341         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 342         try {
 343             attribStat(stmt, env);
 344         } catch (BreakAttr b) {
 345             return b.env;
 346         } finally {
 347             breakTree = null;
 348             log.useSource(prev);
 349         }
 350         return env;
 351     }
 352 
 353     private JCTree breakTree = null;
 354 
 355     private static class BreakAttr extends RuntimeException {
 356         static final long serialVersionUID = -6924771130405446405L;
 357         private Env<AttrContext> env;
 358         private BreakAttr(Env<AttrContext> env) {
 359             this.env = env;
 360         }
 361     }
 362 
 363 
 364 /* ************************************************************************
 365  * Visitor methods
 366  *************************************************************************/
 367 
 368     /** Visitor argument: the current environment.
 369      */
 370     Env<AttrContext> env;
 371 
 372     /** Visitor argument: the currently expected proto-kind.
 373      */
 374     int pkind;
 375 
 376     /** Visitor argument: the currently expected proto-type.
 377      */
 378     Type pt;
 379 
 380     /** Visitor result: the computed type.
 381      */
 382     Type result;
 383 
 384     /** Visitor method: attribute a tree, catching any completion failure
 385      *  exceptions. Return the tree's type.
 386      *
 387      *  @param tree    The tree to be visited.
 388      *  @param env     The environment visitor argument.
 389      *  @param pkind   The protokind visitor argument.
 390      *  @param pt      The prototype visitor argument.
 391      */
 392     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
 393         Env<AttrContext> prevEnv = this.env;
 394         int prevPkind = this.pkind;
 395         Type prevPt = this.pt;
 396         try {
 397             this.env = env;
 398             this.pkind = pkind;
 399             this.pt = pt;
 400             tree.accept(this);
 401             if (tree == breakTree)
 402                 throw new BreakAttr(env);
 403             return result;
 404         } catch (CompletionFailure ex) {
 405             tree.type = syms.errType;
 406             return chk.completionError(tree.pos(), ex);
 407         } finally {
 408             this.env = prevEnv;
 409             this.pkind = prevPkind;
 410             this.pt = prevPt;
 411         }
 412     }
 413 
 414     /** Derived visitor method: attribute an expression tree.
 415      */
 416     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 417         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
 418     }
 419 
 420     /** Derived visitor method: attribute an expression tree with
 421      *  no constraints on the computed type.
 422      */
 423     Type attribExpr(JCTree tree, Env<AttrContext> env) {
 424         return attribTree(tree, env, VAL, Type.noType);
 425     }
 426 
 427     /** Derived visitor method: attribute a type tree.
 428      */
 429     Type attribType(JCTree tree, Env<AttrContext> env) {
 430         Type result = attribType(tree, env, Type.noType);
 431         return result;
 432     }
 433 
 434     /** Derived visitor method: attribute a type tree.
 435      */
 436     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 437         Type result = attribTree(tree, env, TYP, pt);
 438         return result;
 439     }
 440 
 441     /** Derived visitor method: attribute a statement or definition tree.
 442      */
 443     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 444         return attribTree(tree, env, NIL, Type.noType);
 445     }
 446 
 447     /** Attribute a list of expressions, returning a list of types.
 448      */
 449     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 450         ListBuffer<Type> ts = new ListBuffer<Type>();
 451         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 452             ts.append(attribExpr(l.head, env, pt));
 453         return ts.toList();
 454     }
 455 
 456     /** Attribute a list of statements, returning nothing.
 457      */
 458     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 459         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 460             attribStat(l.head, env);
 461     }
 462 
 463     /** Attribute the arguments in a method call, returning a list of types.
 464      */
 465     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
 466         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 467         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 468             argtypes.append(chk.checkNonVoid(
 469                 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
 470         return argtypes.toList();
 471     }
 472 
 473     /** Attribute a type argument list, returning a list of types.
 474      *  Caller is responsible for calling checkRefTypes.
 475      */
 476     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 477         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 478         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 479             argtypes.append(attribType(l.head, env));
 480         return argtypes.toList();
 481     }
 482 
 483     /** Attribute a type argument list, returning a list of types.
 484      *  Check that all the types are references.
 485      */
 486     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 487         List<Type> types = attribAnyTypes(trees, env);
 488         return chk.checkRefTypes(trees, types);
 489     }
 490 
 491     /**
 492      * Attribute type variables (of generic classes or methods).
 493      * Compound types are attributed later in attribBounds.
 494      * @param typarams the type variables to enter
 495      * @param env      the current environment
 496      */
 497     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 498         for (JCTypeParameter tvar : typarams) {
 499             TypeVar a = (TypeVar)tvar.type;
 500             a.tsym.flags_field |= UNATTRIBUTED;
 501             a.bound = Type.noType;
 502             if (!tvar.bounds.isEmpty()) {
 503                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 504                 for (JCExpression bound : tvar.bounds.tail)
 505                     bounds = bounds.prepend(attribType(bound, env));
 506                 types.setBounds(a, bounds.reverse());
 507             } else {
 508                 // if no bounds are given, assume a single bound of
 509                 // java.lang.Object.
 510                 types.setBounds(a, List.of(syms.objectType));
 511             }
 512             a.tsym.flags_field &= ~UNATTRIBUTED;
 513         }
 514         for (JCTypeParameter tvar : typarams)
 515             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 516         attribStats(typarams, env);
 517     }
 518 
 519     void attribBounds(List<JCTypeParameter> typarams) {
 520         for (JCTypeParameter typaram : typarams) {
 521             Type bound = typaram.type.getUpperBound();
 522             if (bound != null && bound.tsym instanceof ClassSymbol) {
 523                 ClassSymbol c = (ClassSymbol)bound.tsym;
 524                 if ((c.flags_field & COMPOUND) != 0) {
 525                     assert (c.flags_field & UNATTRIBUTED) != 0 : c;
 526                     attribClass(typaram.pos(), c);
 527                 }
 528             }
 529         }
 530     }
 531 
 532     /**
 533      * Attribute the type references in a list of annotations.
 534      */
 535     void attribAnnotationTypes(List<JCAnnotation> annotations,
 536                                Env<AttrContext> env) {
 537         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 538             JCAnnotation a = al.head;
 539             attribType(a.annotationType, env);
 540         }
 541     }
 542 
 543     /** Attribute type reference in an `extends' or `implements' clause.
 544      *  Supertypes of anonymous inner classes are usually already attributed.
 545      *
 546      *  @param tree              The tree making up the type reference.
 547      *  @param env               The environment current at the reference.
 548      *  @param classExpected     true if only a class is expected here.
 549      *  @param interfaceExpected true if only an interface is expected here.
 550      */
 551     Type attribBase(JCTree tree,
 552                     Env<AttrContext> env,
 553                     boolean classExpected,
 554                     boolean interfaceExpected,
 555                     boolean checkExtensible) {
 556         Type t = tree.type != null ?
 557             tree.type :
 558             attribType(tree, env);
 559         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 560     }
 561     Type checkBase(Type t,
 562                    JCTree tree,
 563                    Env<AttrContext> env,
 564                    boolean classExpected,
 565                    boolean interfaceExpected,
 566                    boolean checkExtensible) {
 567         if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
 568             // check that type variable is already visible
 569             if (t.getUpperBound() == null) {
 570                 log.error(tree.pos(), "illegal.forward.ref");
 571                 return types.createErrorType(t);
 572             }
 573         } else {
 574             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
 575         }
 576         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 577             log.error(tree.pos(), "intf.expected.here");
 578             // return errType is necessary since otherwise there might
 579             // be undetected cycles which cause attribution to loop
 580             return types.createErrorType(t);
 581         } else if (checkExtensible &&
 582                    classExpected &&
 583                    (t.tsym.flags() & INTERFACE) != 0) {
 584             log.error(tree.pos(), "no.intf.expected.here");
 585             return types.createErrorType(t);
 586         }
 587         if (checkExtensible &&
 588             ((t.tsym.flags() & FINAL) != 0)) {
 589             log.error(tree.pos(),
 590                       "cant.inherit.from.final", t.tsym);
 591         }
 592         chk.checkNonCyclic(tree.pos(), t);
 593         return t;
 594     }
 595 
 596     public void visitClassDef(JCClassDecl tree) {
 597         // Local classes have not been entered yet, so we need to do it now:
 598         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
 599             enter.classEnter(tree, env);
 600 
 601         ClassSymbol c = tree.sym;
 602         if (c == null) {
 603             // exit in case something drastic went wrong during enter.
 604             result = null;
 605         } else {
 606             // make sure class has been completed:
 607             c.complete();
 608 
 609             // If this class appears as an anonymous class
 610             // in a superclass constructor call where
 611             // no explicit outer instance is given,
 612             // disable implicit outer instance from being passed.
 613             // (This would be an illegal access to "this before super").
 614             if (env.info.isSelfCall &&
 615                 env.tree.getTag() == JCTree.NEWCLASS &&
 616                 ((JCNewClass) env.tree).encl == null)
 617             {
 618                 c.flags_field |= NOOUTERTHIS;
 619             }
 620             attribClass(tree.pos(), c);
 621             result = tree.type = c.type;
 622         }
 623     }
 624 
 625     public void visitMethodDef(JCMethodDecl tree) {
 626         MethodSymbol m = tree.sym;
 627 
 628         Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
 629         Lint prevLint = chk.setLint(lint);
 630         try {
 631             chk.checkDeprecatedAnnotation(tree.pos(), m);
 632 
 633             attribBounds(tree.typarams);
 634 
 635             // If we override any other methods, check that we do so properly.
 636             // JLS ???
 637             chk.checkOverride(tree, m);
 638 
 639             // Create a new environment with local scope
 640             // for attributing the method.
 641             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 642 
 643             localEnv.info.lint = lint;
 644 
 645             // Enter all type parameters into the local method scope.
 646             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 647                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 648 
 649             ClassSymbol owner = env.enclClass.sym;
 650             if ((owner.flags() & ANNOTATION) != 0 &&
 651                 tree.params.nonEmpty())
 652                 log.error(tree.params.head.pos(),
 653                           "intf.annotation.members.cant.have.params");
 654 
 655             // Attribute all value parameters.
 656             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 657                 attribStat(l.head, localEnv);
 658             }
 659 
 660             chk.checkVarargMethodDecl(tree);
 661 
 662             // Check that type parameters are well-formed.
 663             chk.validate(tree.typarams, localEnv);
 664             if ((owner.flags() & ANNOTATION) != 0 &&
 665                 tree.typarams.nonEmpty())
 666                 log.error(tree.typarams.head.pos(),
 667                           "intf.annotation.members.cant.have.type.params");
 668 
 669             // Check that result type is well-formed.
 670             chk.validate(tree.restype, localEnv);
 671             if ((owner.flags() & ANNOTATION) != 0)
 672                 chk.validateAnnotationType(tree.restype);
 673 
 674             if ((owner.flags() & ANNOTATION) != 0)
 675                 chk.validateAnnotationMethod(tree.pos(), m);
 676 
 677             // Check that all exceptions mentioned in the throws clause extend
 678             // java.lang.Throwable.
 679             if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty())
 680                 log.error(tree.thrown.head.pos(),
 681                           "throws.not.allowed.in.intf.annotation");
 682             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
 683                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
 684 
 685             if (tree.body == null) {
 686                 // Empty bodies are only allowed for
 687                 // abstract, native, or interface methods, or for methods
 688                 // in a retrofit signature class.
 689                 if ((owner.flags() & INTERFACE) == 0 &&
 690                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
 691                     !relax)
 692                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
 693                 if (tree.defaultValue != null) {
 694                     if ((owner.flags() & ANNOTATION) == 0)
 695                         log.error(tree.pos(),
 696                                   "default.allowed.in.intf.annotation.member");
 697                 }
 698             } else if ((owner.flags() & INTERFACE) != 0) {
 699                 log.error(tree.body.pos(), "intf.meth.cant.have.body");
 700             } else if ((tree.mods.flags & ABSTRACT) != 0) {
 701                 log.error(tree.pos(), "abstract.meth.cant.have.body");
 702             } else if ((tree.mods.flags & NATIVE) != 0) {
 703                 log.error(tree.pos(), "native.meth.cant.have.body");
 704             } else {
 705                 // Add an implicit super() call unless an explicit call to
 706                 // super(...) or this(...) is given
 707                 // or we are compiling class java.lang.Object.
 708                 if (tree.name == names.init && owner.type != syms.objectType) {
 709                     JCBlock body = tree.body;
 710                     if (body.stats.isEmpty() ||
 711                         !TreeInfo.isSelfCall(body.stats.head)) {
 712                         body.stats = body.stats.
 713                             prepend(memberEnter.SuperCall(make.at(body.pos),
 714                                                           List.<Type>nil(),
 715                                                           List.<JCVariableDecl>nil(),
 716                                                           false));
 717                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
 718                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
 719                                TreeInfo.isSuperCall(body.stats.head)) {
 720                         // enum constructors are not allowed to call super
 721                         // directly, so make sure there aren't any super calls
 722                         // in enum constructors, except in the compiler
 723                         // generated one.
 724                         log.error(tree.body.stats.head.pos(),
 725                                   "call.to.super.not.allowed.in.enum.ctor",
 726                                   env.enclClass.sym);
 727                     }
 728                 }
 729 
 730                 // Attribute method body.
 731                 attribStat(tree.body, localEnv);
 732             }
 733             localEnv.info.scope.leave();
 734             result = tree.type = m.type;
 735             chk.validateAnnotations(tree.mods.annotations, m);
 736         }
 737         finally {
 738             chk.setLint(prevLint);
 739         }
 740     }
 741 
 742     public void visitVarDef(JCVariableDecl tree) {
 743         // Local variables have not been entered yet, so we need to do it now:
 744         if (env.info.scope.owner.kind == MTH) {
 745             if (tree.sym != null) {
 746                 // parameters have already been entered
 747                 env.info.scope.enter(tree.sym);
 748             } else {
 749                 memberEnter.memberEnter(tree, env);
 750                 annotate.flush();
 751             }
 752         }
 753 
 754         VarSymbol v = tree.sym;
 755         Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
 756         Lint prevLint = chk.setLint(lint);
 757 
 758         // Check that the variable's declared type is well-formed.
 759         chk.validate(tree.vartype, env);
 760 
 761         try {
 762             chk.checkDeprecatedAnnotation(tree.pos(), v);
 763 
 764             if (tree.init != null) {
 765                 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
 766                     // In this case, `v' is final.  Ensure that it's initializer is
 767                     // evaluated.
 768                     v.getConstValue(); // ensure initializer is evaluated
 769                 } else {
 770                     // Attribute initializer in a new environment
 771                     // with the declared variable as owner.
 772                     // Check that initializer conforms to variable's declared type.
 773                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
 774                     initEnv.info.lint = lint;
 775                     // In order to catch self-references, we set the variable's
 776                     // declaration position to maximal possible value, effectively
 777                     // marking the variable as undefined.
 778                     initEnv.info.enclVar = v;
 779                     attribExpr(tree.init, initEnv, v.type);
 780                 }
 781             }
 782             result = tree.type = v.type;
 783             chk.validateAnnotations(tree.mods.annotations, v);
 784         }
 785         finally {
 786             chk.setLint(prevLint);
 787         }
 788     }
 789 
 790     public void visitSkip(JCSkip tree) {
 791         result = null;
 792     }
 793 
 794     public void visitBlock(JCBlock tree) {
 795         if (env.info.scope.owner.kind == TYP) {
 796             // Block is a static or instance initializer;
 797             // let the owner of the environment be a freshly
 798             // created BLOCK-method.
 799             Env<AttrContext> localEnv =
 800                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
 801             localEnv.info.scope.owner =
 802                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
 803                                  env.info.scope.owner);
 804             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
 805             attribStats(tree.stats, localEnv);
 806         } else {
 807             // Create a new local environment with a local scope.
 808             Env<AttrContext> localEnv =
 809                 env.dup(tree, env.info.dup(env.info.scope.dup()));
 810             attribStats(tree.stats, localEnv);
 811             localEnv.info.scope.leave();
 812         }
 813         result = null;
 814     }
 815 
 816     public void visitDoLoop(JCDoWhileLoop tree) {
 817         attribStat(tree.body, env.dup(tree));
 818         attribExpr(tree.cond, env, syms.booleanType);
 819         result = null;
 820     }
 821 
 822     public void visitWhileLoop(JCWhileLoop tree) {
 823         attribExpr(tree.cond, env, syms.booleanType);
 824         attribStat(tree.body, env.dup(tree));
 825         result = null;
 826     }
 827 
 828     public void visitForLoop(JCForLoop tree) {
 829         Env<AttrContext> loopEnv =
 830             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
 831         attribStats(tree.init, loopEnv);
 832         if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
 833         loopEnv.tree = tree; // before, we were not in loop!
 834         attribStats(tree.step, loopEnv);
 835         attribStat(tree.body, loopEnv);
 836         loopEnv.info.scope.leave();
 837         result = null;
 838     }
 839 
 840     public void visitForeachLoop(JCEnhancedForLoop tree) {
 841         Env<AttrContext> loopEnv =
 842             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
 843         attribStat(tree.var, loopEnv);
 844         Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
 845         chk.checkNonVoid(tree.pos(), exprType);
 846         Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
 847         if (elemtype == null) {
 848             // or perhaps expr implements Iterable<T>?
 849             Type base = types.asSuper(exprType, syms.iterableType.tsym);
 850             if (base == null) {
 851                 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
 852                 elemtype = types.createErrorType(exprType);
 853             } else {
 854                 List<Type> iterableParams = base.allparams();
 855                 elemtype = iterableParams.isEmpty()
 856                     ? syms.objectType
 857                     : types.upperBound(iterableParams.head);
 858             }
 859         }
 860         chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
 861         loopEnv.tree = tree; // before, we were not in loop!
 862         attribStat(tree.body, loopEnv);
 863         loopEnv.info.scope.leave();
 864         result = null;
 865     }
 866 
 867     public void visitLabelled(JCLabeledStatement tree) {
 868         // Check that label is not used in an enclosing statement
 869         Env<AttrContext> env1 = env;
 870         while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
 871             if (env1.tree.getTag() == JCTree.LABELLED &&
 872                 ((JCLabeledStatement) env1.tree).label == tree.label) {
 873                 log.error(tree.pos(), "label.already.in.use",
 874                           tree.label);
 875                 break;
 876             }
 877             env1 = env1.next;
 878         }
 879 
 880         attribStat(tree.body, env.dup(tree));
 881         result = null;
 882     }
 883 
 884     public void visitSwitch(JCSwitch tree) {
 885         Type seltype = attribExpr(tree.selector, env);
 886 
 887         Env<AttrContext> switchEnv =
 888             env.dup(tree, env.info.dup(env.info.scope.dup()));
 889 
 890         boolean enumSwitch =
 891             allowEnums &&
 892             (seltype.tsym.flags() & Flags.ENUM) != 0;
 893         boolean stringSwitch = false;
 894         if (types.isSameType(seltype, syms.stringType)) {
 895             if (allowStringsInSwitch) {
 896                 stringSwitch = true;
 897             } else {
 898                 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
 899             }
 900         }
 901         if (!enumSwitch && !stringSwitch)
 902             seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
 903 
 904         // Attribute all cases and
 905         // check that there are no duplicate case labels or default clauses.
 906         Set<Object> labels = new HashSet<Object>(); // The set of case labels.
 907         boolean hasDefault = false;      // Is there a default label?
 908         for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
 909             JCCase c = l.head;
 910             Env<AttrContext> caseEnv =
 911                 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
 912             if (c.pat != null) {
 913                 if (enumSwitch) {
 914                     Symbol sym = enumConstant(c.pat, seltype);
 915                     if (sym == null) {
 916                         log.error(c.pat.pos(), "enum.const.req");
 917                     } else if (!labels.add(sym)) {
 918                         log.error(c.pos(), "duplicate.case.label");
 919                     }
 920                 } else {
 921                     Type pattype = attribExpr(c.pat, switchEnv, seltype);
 922                     if (pattype.tag != ERROR) {
 923                         if (pattype.constValue() == null) {
 924                             log.error(c.pat.pos(),
 925                                       (stringSwitch ? "string.const.req" : "const.expr.req"));
 926                         } else if (labels.contains(pattype.constValue())) {
 927                             log.error(c.pos(), "duplicate.case.label");
 928                         } else {
 929                             labels.add(pattype.constValue());
 930                         }
 931                     }
 932                 }
 933             } else if (hasDefault) {
 934                 log.error(c.pos(), "duplicate.default.label");
 935             } else {
 936                 hasDefault = true;
 937             }
 938             attribStats(c.stats, caseEnv);
 939             caseEnv.info.scope.leave();
 940             addVars(c.stats, switchEnv.info.scope);
 941         }
 942 
 943         switchEnv.info.scope.leave();
 944         result = null;
 945     }
 946     // where
 947         /** Add any variables defined in stats to the switch scope. */
 948         private static void addVars(List<JCStatement> stats, Scope switchScope) {
 949             for (;stats.nonEmpty(); stats = stats.tail) {
 950                 JCTree stat = stats.head;
 951                 if (stat.getTag() == JCTree.VARDEF)
 952                     switchScope.enter(((JCVariableDecl) stat).sym);
 953             }
 954         }
 955     // where
 956     /** Return the selected enumeration constant symbol, or null. */
 957     private Symbol enumConstant(JCTree tree, Type enumType) {
 958         if (tree.getTag() != JCTree.IDENT) {
 959             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
 960             return syms.errSymbol;
 961         }
 962         JCIdent ident = (JCIdent)tree;
 963         Name name = ident.name;
 964         for (Scope.Entry e = enumType.tsym.members().lookup(name);
 965              e.scope != null; e = e.next()) {
 966             if (e.sym.kind == VAR) {
 967                 Symbol s = ident.sym = e.sym;
 968                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
 969                 ident.type = s.type;
 970                 return ((s.flags_field & Flags.ENUM) == 0)
 971                     ? null : s;
 972             }
 973         }
 974         return null;
 975     }
 976 
 977     public void visitSynchronized(JCSynchronized tree) {
 978         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
 979         attribStat(tree.body, env);
 980         result = null;
 981     }
 982 
 983     public void visitTry(JCTry tree) {
 984         // Attribute body
 985         attribStat(tree.body, env.dup(tree, env.info.dup()));
 986 
 987         // Attribute catch clauses
 988         for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
 989             JCCatch c = l.head;
 990             Env<AttrContext> catchEnv =
 991                 env.dup(c, env.info.dup(env.info.scope.dup()));
 992             Type ctype = attribStat(c.param, catchEnv);
 993             if (TreeInfo.isMultiCatch(c)) {
 994                 //check that multi-catch parameter is marked as final
 995                 if ((c.param.sym.flags() & FINAL) == 0) {
 996                     log.error(c.param.pos(), "multicatch.param.must.be.final", c.param.sym);
 997                 }
 998                 c.param.sym.flags_field = c.param.sym.flags() | DISJOINT;
 999             }
1000             if (c.param.type.tsym.kind == Kinds.VAR) {
1001                 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1002             }
1003             chk.checkType(c.param.vartype.pos(),
1004                           chk.checkClassType(c.param.vartype.pos(), ctype),
1005                           syms.throwableType);
1006             attribStat(c.body, catchEnv);
1007             catchEnv.info.scope.leave();
1008         }
1009 
1010         // Attribute finalizer
1011         if (tree.finalizer != null) attribStat(tree.finalizer, env);
1012         result = null;
1013     }
1014 
1015     public void visitConditional(JCConditional tree) {
1016         attribExpr(tree.cond, env, syms.booleanType);
1017         attribExpr(tree.truepart, env);
1018         attribExpr(tree.falsepart, env);
1019         result = check(tree,
1020                        capture(condType(tree.pos(), tree.cond.type,
1021                                         tree.truepart.type, tree.falsepart.type)),
1022                        VAL, pkind, pt);
1023     }
1024     //where
1025         /** Compute the type of a conditional expression, after
1026          *  checking that it exists. See Spec 15.25.
1027          *
1028          *  @param pos      The source position to be used for
1029          *                  error diagnostics.
1030          *  @param condtype The type of the expression's condition.
1031          *  @param thentype The type of the expression's then-part.
1032          *  @param elsetype The type of the expression's else-part.
1033          */
1034         private Type condType(DiagnosticPosition pos,
1035                               Type condtype,
1036                               Type thentype,
1037                               Type elsetype) {
1038             Type ctype = condType1(pos, condtype, thentype, elsetype);
1039 
1040             // If condition and both arms are numeric constants,
1041             // evaluate at compile-time.
1042             return ((condtype.constValue() != null) &&
1043                     (thentype.constValue() != null) &&
1044                     (elsetype.constValue() != null))
1045                 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
1046                 : ctype;
1047         }
1048         /** Compute the type of a conditional expression, after
1049          *  checking that it exists.  Does not take into
1050          *  account the special case where condition and both arms
1051          *  are constants.
1052          *
1053          *  @param pos      The source position to be used for error
1054          *                  diagnostics.
1055          *  @param condtype The type of the expression's condition.
1056          *  @param thentype The type of the expression's then-part.
1057          *  @param elsetype The type of the expression's else-part.
1058          */
1059         private Type condType1(DiagnosticPosition pos, Type condtype,
1060                                Type thentype, Type elsetype) {
1061             // If same type, that is the result
1062             if (types.isSameType(thentype, elsetype))
1063                 return thentype.baseType();
1064 
1065             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
1066                 ? thentype : types.unboxedType(thentype);
1067             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
1068                 ? elsetype : types.unboxedType(elsetype);
1069 
1070             // Otherwise, if both arms can be converted to a numeric
1071             // type, return the least numeric type that fits both arms
1072             // (i.e. return larger of the two, or return int if one
1073             // arm is short, the other is char).
1074             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1075                 // If one arm has an integer subrange type (i.e., byte,
1076                 // short, or char), and the other is an integer constant
1077                 // that fits into the subrange, return the subrange type.
1078                 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
1079                     types.isAssignable(elseUnboxed, thenUnboxed))
1080                     return thenUnboxed.baseType();
1081                 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
1082                     types.isAssignable(thenUnboxed, elseUnboxed))
1083                     return elseUnboxed.baseType();
1084 
1085                 for (int i = BYTE; i < VOID; i++) {
1086                     Type candidate = syms.typeOfTag[i];
1087                     if (types.isSubtype(thenUnboxed, candidate) &&
1088                         types.isSubtype(elseUnboxed, candidate))
1089                         return candidate;
1090                 }
1091             }
1092 
1093             // Those were all the cases that could result in a primitive
1094             if (allowBoxing) {
1095                 if (thentype.isPrimitive())
1096                     thentype = types.boxedClass(thentype).type;
1097                 if (elsetype.isPrimitive())
1098                     elsetype = types.boxedClass(elsetype).type;
1099             }
1100 
1101             if (types.isSubtype(thentype, elsetype))
1102                 return elsetype.baseType();
1103             if (types.isSubtype(elsetype, thentype))
1104                 return thentype.baseType();
1105 
1106             if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
1107                 log.error(pos, "neither.conditional.subtype",
1108                           thentype, elsetype);
1109                 return thentype.baseType();
1110             }
1111 
1112             // both are known to be reference types.  The result is
1113             // lub(thentype,elsetype). This cannot fail, as it will
1114             // always be possible to infer "Object" if nothing better.
1115             return types.lub(thentype.baseType(), elsetype.baseType());
1116         }
1117 
1118     public void visitIf(JCIf tree) {
1119         attribExpr(tree.cond, env, syms.booleanType);
1120         attribStat(tree.thenpart, env);
1121         if (tree.elsepart != null)
1122             attribStat(tree.elsepart, env);
1123         chk.checkEmptyIf(tree);
1124         result = null;
1125     }
1126 
1127     public void visitExec(JCExpressionStatement tree) {
1128         attribExpr(tree.expr, env);
1129         result = null;
1130     }
1131 
1132     public void visitBreak(JCBreak tree) {
1133         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1134         result = null;
1135     }
1136 
1137     public void visitContinue(JCContinue tree) {
1138         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1139         result = null;
1140     }
1141     //where
1142         /** Return the target of a break or continue statement, if it exists,
1143          *  report an error if not.
1144          *  Note: The target of a labelled break or continue is the
1145          *  (non-labelled) statement tree referred to by the label,
1146          *  not the tree representing the labelled statement itself.
1147          *
1148          *  @param pos     The position to be used for error diagnostics
1149          *  @param tag     The tag of the jump statement. This is either
1150          *                 Tree.BREAK or Tree.CONTINUE.
1151          *  @param label   The label of the jump statement, or null if no
1152          *                 label is given.
1153          *  @param env     The environment current at the jump statement.
1154          */
1155         private JCTree findJumpTarget(DiagnosticPosition pos,
1156                                     int tag,
1157                                     Name label,
1158                                     Env<AttrContext> env) {
1159             // Search environments outwards from the point of jump.
1160             Env<AttrContext> env1 = env;
1161             LOOP:
1162             while (env1 != null) {
1163                 switch (env1.tree.getTag()) {
1164                 case JCTree.LABELLED:
1165                     JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1166                     if (label == labelled.label) {
1167                         // If jump is a continue, check that target is a loop.
1168                         if (tag == JCTree.CONTINUE) {
1169                             if (labelled.body.getTag() != JCTree.DOLOOP &&
1170                                 labelled.body.getTag() != JCTree.WHILELOOP &&
1171                                 labelled.body.getTag() != JCTree.FORLOOP &&
1172                                 labelled.body.getTag() != JCTree.FOREACHLOOP)
1173                                 log.error(pos, "not.loop.label", label);
1174                             // Found labelled statement target, now go inwards
1175                             // to next non-labelled tree.
1176                             return TreeInfo.referencedStatement(labelled);
1177                         } else {
1178                             return labelled;
1179                         }
1180                     }
1181                     break;
1182                 case JCTree.DOLOOP:
1183                 case JCTree.WHILELOOP:
1184                 case JCTree.FORLOOP:
1185                 case JCTree.FOREACHLOOP:
1186                     if (label == null) return env1.tree;
1187                     break;
1188                 case JCTree.SWITCH:
1189                     if (label == null && tag == JCTree.BREAK) return env1.tree;
1190                     break;
1191                 case JCTree.METHODDEF:
1192                 case JCTree.CLASSDEF:
1193                     break LOOP;
1194                 default:
1195                 }
1196                 env1 = env1.next;
1197             }
1198             if (label != null)
1199                 log.error(pos, "undef.label", label);
1200             else if (tag == JCTree.CONTINUE)
1201                 log.error(pos, "cont.outside.loop");
1202             else
1203                 log.error(pos, "break.outside.switch.loop");
1204             return null;
1205         }
1206 
1207     public void visitReturn(JCReturn tree) {
1208         // Check that there is an enclosing method which is
1209         // nested within than the enclosing class.
1210         if (env.enclMethod == null ||
1211             env.enclMethod.sym.owner != env.enclClass.sym) {
1212             log.error(tree.pos(), "ret.outside.meth");
1213 
1214         } else {
1215             // Attribute return expression, if it exists, and check that
1216             // it conforms to result type of enclosing method.
1217             Symbol m = env.enclMethod.sym;
1218             if (m.type.getReturnType().tag == VOID) {
1219                 if (tree.expr != null)
1220                     log.error(tree.expr.pos(),
1221                               "cant.ret.val.from.meth.decl.void");
1222             } else if (tree.expr == null) {
1223                 log.error(tree.pos(), "missing.ret.val");
1224             } else {
1225                 attribExpr(tree.expr, env, m.type.getReturnType());
1226             }
1227         }
1228         result = null;
1229     }
1230 
1231     public void visitThrow(JCThrow tree) {
1232         attribExpr(tree.expr, env, syms.throwableType);
1233         result = null;
1234     }
1235 
1236     public void visitAssert(JCAssert tree) {
1237         attribExpr(tree.cond, env, syms.booleanType);
1238         if (tree.detail != null) {
1239             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1240         }
1241         result = null;
1242     }
1243 
1244      /** Visitor method for method invocations.
1245      *  NOTE: The method part of an application will have in its type field
1246      *        the return type of the method, not the method's type itself!
1247      */
1248     public void visitApply(JCMethodInvocation tree) {
1249         // The local environment of a method application is
1250         // a new environment nested in the current one.
1251         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1252 
1253         // The types of the actual method arguments.
1254         List<Type> argtypes;
1255 
1256         // The types of the actual method type arguments.
1257         List<Type> typeargtypes = null;
1258         boolean typeargtypesNonRefOK = false;
1259 
1260         Name methName = TreeInfo.name(tree.meth);
1261 
1262         boolean isConstructorCall =
1263             methName == names._this || methName == names._super;
1264 
1265         if (isConstructorCall) {
1266             // We are seeing a ...this(...) or ...super(...) call.
1267             // Check that this is the first statement in a constructor.
1268             if (checkFirstConstructorStat(tree, env)) {
1269 
1270                 // Record the fact
1271                 // that this is a constructor call (using isSelfCall).
1272                 localEnv.info.isSelfCall = true;
1273 
1274                 // Attribute arguments, yielding list of argument types.
1275                 argtypes = attribArgs(tree.args, localEnv);
1276                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1277 
1278                 // Variable `site' points to the class in which the called
1279                 // constructor is defined.
1280                 Type site = env.enclClass.sym.type;
1281                 if (methName == names._super) {
1282                     if (site == syms.objectType) {
1283                         log.error(tree.meth.pos(), "no.superclass", site);
1284                         site = types.createErrorType(syms.objectType);
1285                     } else {
1286                         site = types.supertype(site);
1287                     }
1288                 }
1289 
1290                 if (site.tag == CLASS) {
1291                     Type encl = site.getEnclosingType();
1292                     while (encl != null && encl.tag == TYPEVAR)
1293                         encl = encl.getUpperBound();
1294                     if (encl.tag == CLASS) {
1295                         // we are calling a nested class
1296 
1297                         if (tree.meth.getTag() == JCTree.SELECT) {
1298                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1299 
1300                             // We are seeing a prefixed call, of the form
1301                             //     <expr>.super(...).
1302                             // Check that the prefix expression conforms
1303                             // to the outer instance type of the class.
1304                             chk.checkRefType(qualifier.pos(),
1305                                              attribExpr(qualifier, localEnv,
1306                                                         encl));
1307                         } else if (methName == names._super) {
1308                             // qualifier omitted; check for existence
1309                             // of an appropriate implicit qualifier.
1310                             rs.resolveImplicitThis(tree.meth.pos(),
1311                                                    localEnv, site);
1312                         }
1313                     } else if (tree.meth.getTag() == JCTree.SELECT) {
1314                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1315                                   site.tsym);
1316                     }
1317 
1318                     // if we're calling a java.lang.Enum constructor,
1319                     // prefix the implicit String and int parameters
1320                     if (site.tsym == syms.enumSym && allowEnums)
1321                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1322 
1323                     // Resolve the called constructor under the assumption
1324                     // that we are referring to a superclass instance of the
1325                     // current instance (JLS ???).
1326                     boolean selectSuperPrev = localEnv.info.selectSuper;
1327                     localEnv.info.selectSuper = true;
1328                     localEnv.info.varArgs = false;
1329                     Symbol sym = rs.resolveConstructor(
1330                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1331                     localEnv.info.selectSuper = selectSuperPrev;
1332 
1333                     // Set method symbol to resolved constructor...
1334                     TreeInfo.setSymbol(tree.meth, sym);
1335 
1336                     // ...and check that it is legal in the current context.
1337                     // (this will also set the tree's type)
1338                     Type mpt = newMethTemplate(argtypes, typeargtypes);
1339                     checkId(tree.meth, site, sym, localEnv, MTH,
1340                             mpt, tree.varargsElement != null);
1341                 }
1342                 // Otherwise, `site' is an error type and we do nothing
1343             }
1344             result = tree.type = syms.voidType;
1345         } else {
1346             // Otherwise, we are seeing a regular method call.
1347             // Attribute the arguments, yielding list of argument types, ...
1348             argtypes = attribArgs(tree.args, localEnv);
1349             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1350 
1351             // ... and attribute the method using as a prototype a methodtype
1352             // whose formal argument types is exactly the list of actual
1353             // arguments (this will also set the method symbol).
1354             Type mpt = newMethTemplate(argtypes, typeargtypes);
1355             localEnv.info.varArgs = false;
1356             Type mtype = attribExpr(tree.meth, localEnv, mpt);
1357             if (localEnv.info.varArgs)
1358                 assert mtype.isErroneous() || tree.varargsElement != null;
1359 
1360             // Compute the result type.
1361             Type restype = mtype.getReturnType();
1362             assert restype.tag != WILDCARD : mtype;
1363 
1364             // as a special case, array.clone() has a result that is
1365             // the same as static type of the array being cloned
1366             if (tree.meth.getTag() == JCTree.SELECT &&
1367                 allowCovariantReturns &&
1368                 methName == names.clone &&
1369                 types.isArray(((JCFieldAccess) tree.meth).selected.type))
1370                 restype = ((JCFieldAccess) tree.meth).selected.type;
1371 
1372             // as a special case, x.getClass() has type Class<? extends |X|>
1373             if (allowGenerics &&
1374                 methName == names.getClass && tree.args.isEmpty()) {
1375                 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
1376                     ? ((JCFieldAccess) tree.meth).selected.type
1377                     : env.enclClass.sym.type;
1378                 restype = new
1379                     ClassType(restype.getEnclosingType(),
1380                               List.<Type>of(new WildcardType(types.erasure(qualifier),
1381                                                                BoundKind.EXTENDS,
1382                                                                syms.boundClass)),
1383                               restype.tsym);
1384             }
1385 
1386             // as a special case, MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
1387             // has type <T>, and T can be a primitive type.
1388             if (tree.meth.getTag() == JCTree.SELECT && !typeargtypes.isEmpty()) {
1389               Type selt = ((JCFieldAccess) tree.meth).selected.type;
1390               if ((selt == syms.methodHandleType && methName == names.invoke) || selt == syms.invokeDynamicType) {
1391                   assert types.isSameType(restype, typeargtypes.head) : mtype;
1392                   typeargtypesNonRefOK = true;
1393               }
1394             }
1395 
1396             if (!typeargtypesNonRefOK) {
1397                 chk.checkRefTypes(tree.typeargs, typeargtypes);
1398             }
1399 
1400             // Check that value of resulting type is admissible in the
1401             // current context.  Also, capture the return type
1402             result = check(tree, capture(restype), VAL, pkind, pt);
1403         }
1404         chk.validate(tree.typeargs, localEnv);
1405     }
1406     //where
1407         /** Check that given application node appears as first statement
1408          *  in a constructor call.
1409          *  @param tree   The application node
1410          *  @param env    The environment current at the application.
1411          */
1412         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1413             JCMethodDecl enclMethod = env.enclMethod;
1414             if (enclMethod != null && enclMethod.name == names.init) {
1415                 JCBlock body = enclMethod.body;
1416                 if (body.stats.head.getTag() == JCTree.EXEC &&
1417                     ((JCExpressionStatement) body.stats.head).expr == tree)
1418                     return true;
1419             }
1420             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1421                       TreeInfo.name(tree.meth));
1422             return false;
1423         }
1424 
1425         /** Obtain a method type with given argument types.
1426          */
1427         Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
1428             MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
1429             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1430         }
1431 
1432     public void visitNewClass(JCNewClass tree) {
1433         Type owntype = types.createErrorType(tree.type);
1434 
1435         // The local environment of a class creation is
1436         // a new environment nested in the current one.
1437         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1438 
1439         // The anonymous inner class definition of the new expression,
1440         // if one is defined by it.
1441         JCClassDecl cdef = tree.def;
1442 
1443         // If enclosing class is given, attribute it, and
1444         // complete class name to be fully qualified
1445         JCExpression clazz = tree.clazz; // Class field following new
1446         JCExpression clazzid =          // Identifier in class field
1447             (clazz.getTag() == JCTree.TYPEAPPLY)
1448             ? ((JCTypeApply) clazz).clazz
1449             : clazz;
1450 
1451         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1452 
1453         if (tree.encl != null) {
1454             // We are seeing a qualified new, of the form
1455             //    <expr>.new C <...> (...) ...
1456             // In this case, we let clazz stand for the name of the
1457             // allocated class C prefixed with the type of the qualifier
1458             // expression, so that we can
1459             // resolve it with standard techniques later. I.e., if
1460             // <expr> has type T, then <expr>.new C <...> (...)
1461             // yields a clazz T.C.
1462             Type encltype = chk.checkRefType(tree.encl.pos(),
1463                                              attribExpr(tree.encl, env));
1464             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1465                                                  ((JCIdent) clazzid).name);
1466             if (clazz.getTag() == JCTree.TYPEAPPLY)
1467                 clazz = make.at(tree.pos).
1468                     TypeApply(clazzid1,
1469                               ((JCTypeApply) clazz).arguments);
1470             else
1471                 clazz = clazzid1;
1472         }
1473 
1474         // Attribute clazz expression and store
1475         // symbol + type back into the attributed tree.
1476         Type clazztype = attribType(clazz, env);
1477         Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype);
1478         if (!TreeInfo.isDiamond(tree)) {
1479             clazztype = chk.checkClassType(
1480                 tree.clazz.pos(), clazztype, true);
1481         }
1482         chk.validate(clazz, localEnv);
1483         if (tree.encl != null) {
1484             // We have to work in this case to store
1485             // symbol + type back into the attributed tree.
1486             tree.clazz.type = clazztype;
1487             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1488             clazzid.type = ((JCIdent) clazzid).sym.type;
1489             if (!clazztype.isErroneous()) {
1490                 if (cdef != null && clazztype.tsym.isInterface()) {
1491                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1492                 } else if (clazztype.tsym.isStatic()) {
1493                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1494                 }
1495             }
1496         } else if (!clazztype.tsym.isInterface() &&
1497                    clazztype.getEnclosingType().tag == CLASS) {
1498             // Check for the existence of an apropos outer instance
1499             rs.resolveImplicitThis(tree.pos(), env, clazztype);
1500         }
1501 
1502         // Attribute constructor arguments.
1503         List<Type> argtypes = attribArgs(tree.args, localEnv);
1504         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1505 
1506         if (TreeInfo.isDiamond(tree)) {
1507             clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes, true);
1508             clazz.type = clazztype;
1509         }
1510 
1511         // If we have made no mistakes in the class type...
1512         if (clazztype.tag == CLASS) {
1513             // Enums may not be instantiated except implicitly
1514             if (allowEnums &&
1515                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
1516                 (env.tree.getTag() != JCTree.VARDEF ||
1517                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
1518                  ((JCVariableDecl) env.tree).init != tree))
1519                 log.error(tree.pos(), "enum.cant.be.instantiated");
1520             // Check that class is not abstract
1521             if (cdef == null &&
1522                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
1523                 log.error(tree.pos(), "abstract.cant.be.instantiated",
1524                           clazztype.tsym);
1525             } else if (cdef != null && clazztype.tsym.isInterface()) {
1526                 // Check that no constructor arguments are given to
1527                 // anonymous classes implementing an interface
1528                 if (!argtypes.isEmpty())
1529                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
1530 
1531                 if (!typeargtypes.isEmpty())
1532                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
1533 
1534                 // Error recovery: pretend no arguments were supplied.
1535                 argtypes = List.nil();
1536                 typeargtypes = List.nil();
1537             }
1538 
1539             // Resolve the called constructor under the assumption
1540             // that we are referring to a superclass instance of the
1541             // current instance (JLS ???).
1542             else {
1543                 localEnv.info.selectSuper = cdef != null;
1544                 localEnv.info.varArgs = false;
1545                 tree.constructor = rs.resolveConstructor(
1546                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
1547                 tree.constructorType = checkMethod(clazztype,
1548                                                 tree.constructor,
1549                                                 localEnv,
1550                                                 tree.args,
1551                                                 argtypes,
1552                                                 typeargtypes,
1553                                                 localEnv.info.varArgs);
1554                 if (localEnv.info.varArgs)
1555                     assert tree.constructorType.isErroneous() || tree.varargsElement != null;
1556             }
1557 
1558             if (cdef != null) {
1559                 // We are seeing an anonymous class instance creation.
1560                 // In this case, the class instance creation
1561                 // expression
1562                 //
1563                 //    E.new <typeargs1>C<typargs2>(args) { ... }
1564                 //
1565                 // is represented internally as
1566                 //
1567                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
1568                 //
1569                 // This expression is then *transformed* as follows:
1570                 //
1571                 // (1) add a STATIC flag to the class definition
1572                 //     if the current environment is static
1573                 // (2) add an extends or implements clause
1574                 // (3) add a constructor.
1575                 //
1576                 // For instance, if C is a class, and ET is the type of E,
1577                 // the expression
1578                 //
1579                 //    E.new <typeargs1>C<typargs2>(args) { ... }
1580                 //
1581                 // is translated to (where X is a fresh name and typarams is the
1582                 // parameter list of the super constructor):
1583                 //
1584                 //   new <typeargs1>X(<*nullchk*>E, args) where
1585                 //     X extends C<typargs2> {
1586                 //       <typarams> X(ET e, args) {
1587                 //         e.<typeargs1>super(args)
1588                 //       }
1589                 //       ...
1590                 //     }
1591                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
1592 
1593                 if (clazztype.tsym.isInterface()) {
1594                     cdef.implementing = List.of(clazz);
1595                 } else {
1596                     cdef.extending = clazz;
1597                 }
1598 
1599                 attribStat(cdef, localEnv);
1600 
1601                 // If an outer instance is given,
1602                 // prefix it to the constructor arguments
1603                 // and delete it from the new expression
1604                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
1605                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
1606                     argtypes = argtypes.prepend(tree.encl.type);
1607                     tree.encl = null;
1608                 }
1609 
1610                 // Reassign clazztype and recompute constructor.
1611                 clazztype = cdef.sym.type;
1612                 Symbol sym = rs.resolveConstructor(
1613                     tree.pos(), localEnv, clazztype, argtypes,
1614                     typeargtypes, true, tree.varargsElement != null);
1615                 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
1616                 tree.constructor = sym;
1617                 if (tree.constructor.kind > ERRONEOUS) {
1618                     tree.constructorType =  syms.errType;
1619                 }
1620                 else {
1621                     tree.constructorType = checkMethod(clazztype,
1622                             tree.constructor,
1623                             localEnv,
1624                             tree.args,
1625                             argtypes,
1626                             typeargtypes,
1627                             localEnv.info.varArgs);
1628                 }
1629             }
1630 
1631             if (tree.constructor != null && tree.constructor.kind == MTH)
1632                 owntype = clazztype;
1633         }
1634         result = check(tree, owntype, VAL, pkind, pt);
1635         chk.validate(tree.typeargs, localEnv);
1636     }
1637 
1638     Type attribDiamond(Env<AttrContext> env,
1639                         JCNewClass tree,
1640                         Type clazztype,
1641                         Pair<Scope, Scope> mapping,
1642                         List<Type> argtypes,
1643                         List<Type> typeargtypes,
1644                         boolean reportErrors) {
1645         if (clazztype.isErroneous() || mapping == erroneousMapping) {
1646             //if the type of the instance creation expression is erroneous,
1647             //or something prevented us to form a valid mapping, return the
1648             //(possibly erroneous) type unchanged
1649             return clazztype;
1650         }
1651         else if (clazztype.isInterface()) {
1652             //if the type of the instance creation expression is an interface
1653             //skip the method resolution step (JLS 15.12.2.7). The type to be
1654             //inferred is of the kind <X1,X2, ... Xn>C<X1,X2, ... Xn>
1655             clazztype = new ForAll(clazztype.tsym.type.allparams(),
1656                     clazztype.tsym.type);
1657         } else {
1658             //if the type of the instance creation expression is a class type
1659             //apply method resolution inference (JLS 15.12.2.7). The return type
1660             //of the resolved constructor will be a partially instantiated type
1661             ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
1662             Symbol constructor;
1663             try {
1664                 constructor = rs.resolveDiamond(tree.pos(),
1665                         env,
1666                         clazztype.tsym.type,
1667                         argtypes,
1668                         typeargtypes, reportErrors);
1669             } finally {
1670                 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
1671             }
1672             if (constructor.kind == MTH) {
1673                 ClassType ct = new ClassType(clazztype.getEnclosingType(),
1674                         clazztype.tsym.type.getTypeArguments(),
1675                         clazztype.tsym);
1676                 clazztype = checkMethod(ct,
1677                         constructor,
1678                         env,
1679                         tree.args,
1680                         argtypes,
1681                         typeargtypes,
1682                         env.info.varArgs).getReturnType();
1683             } else {
1684                 clazztype = syms.errType;
1685             }
1686         }
1687         if (clazztype.tag == FORALL && !pt.isErroneous()) {
1688             //if the resolved constructor's return type has some uninferred
1689             //type-variables, infer them using the expected type and declared
1690             //bounds (JLS 15.12.2.8).
1691             try {
1692                 clazztype = infer.instantiateExpr((ForAll) clazztype,
1693                         pt.tag == NONE ? syms.objectType : pt,
1694                         Warner.noWarnings);
1695             } catch (Infer.InferenceException ex) {
1696                 //an error occurred while inferring uninstantiated type-variables
1697                 //we need to optionally report an error
1698                 if (reportErrors) {
1699                     log.error(tree.clazz.pos(),
1700                             "cant.apply.diamond.1",
1701                             diags.fragment("diamond", clazztype.tsym),
1702                             ex.diagnostic);
1703                 }
1704             }
1705         }
1706         if (reportErrors) {
1707             clazztype = chk.checkClassType(tree.clazz.pos(),
1708                     clazztype,
1709                     true);
1710             if (clazztype.tag == CLASS) {
1711                 List<Type> invalidDiamondArgs = chk.checkDiamond((ClassType)clazztype);
1712                 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
1713                     //one or more types inferred in the previous steps is either a
1714                     //captured type or an intersection type --- we need to report an error.
1715                     String subkey = invalidDiamondArgs.size() > 1 ?
1716                         "diamond.invalid.args" :
1717                         "diamond.invalid.arg";
1718                     //The error message is of the kind:
1719                     //
1720                     //cannot infer type arguments for {clazztype}<>;
1721                     //reason: {subkey}
1722                     //
1723                     //where subkey is a fragment of the kind:
1724                     //
1725                     //type argument(s) {invalidDiamondArgs} inferred for {clazztype}<> is not allowed in this context
1726                     log.error(tree.clazz.pos(),
1727                                 "cant.apply.diamond.1",
1728                                 diags.fragment("diamond", clazztype.tsym),
1729                                 diags.fragment(subkey,
1730                                                invalidDiamondArgs,
1731                                                diags.fragment("diamond", clazztype.tsym)));
1732                 }
1733             }
1734         }
1735         return clazztype;
1736     }
1737 
1738     /** Creates a synthetic scope containing fake generic constructors.
1739      *  Assuming that the original scope contains a constructor of the kind:
1740      *  Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
1741      *  the synthetic scope is added a generic constructor of the kind:
1742      *  <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
1743      *  inference. The inferred return type of the synthetic constructor IS
1744      *  the inferred type for the diamond operator.
1745      */
1746     private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype) {
1747         if (ctype.tag != CLASS) {
1748             return erroneousMapping;
1749         }
1750         Pair<Scope, Scope> mapping =
1751                 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
1752         List<Type> typevars = ctype.tsym.type.getTypeArguments();
1753         for (Scope.Entry e = mapping.fst.lookup(names.init);
1754                 e.scope != null;
1755                 e = e.next()) {
1756             MethodSymbol newConstr = (MethodSymbol) e.sym.clone(ctype.tsym);
1757             newConstr.name = names.init;
1758             List<Type> oldTypeargs = List.nil();
1759             if (newConstr.type.tag == FORALL) {
1760                 oldTypeargs = ((ForAll) newConstr.type).tvars;
1761             }
1762             newConstr.type = new MethodType(newConstr.type.getParameterTypes(),
1763                     new ClassType(ctype.getEnclosingType(), ctype.tsym.type.getTypeArguments(), ctype.tsym),
1764                     newConstr.type.getThrownTypes(),
1765                     syms.methodClass);
1766             newConstr.type = new ForAll(typevars.prependList(oldTypeargs), newConstr.type);
1767             mapping.snd.enter(newConstr);
1768         }
1769         return mapping;
1770     }
1771 
1772     private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
1773 
1774     /** Make an attributed null check tree.
1775      */
1776     public JCExpression makeNullCheck(JCExpression arg) {
1777         // optimization: X.this is never null; skip null check
1778         Name name = TreeInfo.name(arg);
1779         if (name == names._this || name == names._super) return arg;
1780 
1781         int optag = JCTree.NULLCHK;
1782         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
1783         tree.operator = syms.nullcheck;
1784         tree.type = arg.type;
1785         return tree;
1786     }
1787 
1788     public void visitNewArray(JCNewArray tree) {
1789         Type owntype = types.createErrorType(tree.type);
1790         Type elemtype;
1791         if (tree.elemtype != null) {
1792             elemtype = attribType(tree.elemtype, env);
1793             chk.validate(tree.elemtype, env);
1794             owntype = elemtype;
1795             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1796                 attribExpr(l.head, env, syms.intType);
1797                 owntype = new ArrayType(owntype, syms.arrayClass);
1798             }
1799         } else {
1800             // we are seeing an untyped aggregate { ... }
1801             // this is allowed only if the prototype is an array
1802             if (pt.tag == ARRAY) {
1803                 elemtype = types.elemtype(pt);
1804             } else {
1805                 if (pt.tag != ERROR) {
1806                     log.error(tree.pos(), "illegal.initializer.for.type",
1807                               pt);
1808                 }
1809                 elemtype = types.createErrorType(pt);
1810             }
1811         }
1812         if (tree.elems != null) {
1813             attribExprs(tree.elems, env, elemtype);
1814             owntype = new ArrayType(elemtype, syms.arrayClass);
1815         }
1816         if (!types.isReifiable(elemtype))
1817             log.error(tree.pos(), "generic.array.creation");
1818         result = check(tree, owntype, VAL, pkind, pt);
1819     }
1820 
1821     public void visitParens(JCParens tree) {
1822         Type owntype = attribTree(tree.expr, env, pkind, pt);
1823         result = check(tree, owntype, pkind, pkind, pt);
1824         Symbol sym = TreeInfo.symbol(tree);
1825         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
1826             log.error(tree.pos(), "illegal.start.of.type");
1827     }
1828 
1829     public void visitAssign(JCAssign tree) {
1830         Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
1831         Type capturedType = capture(owntype);
1832         attribExpr(tree.rhs, env, owntype);
1833         result = check(tree, capturedType, VAL, pkind, pt);
1834     }
1835 
1836     public void visitAssignop(JCAssignOp tree) {
1837         // Attribute arguments.
1838         Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
1839         Type operand = attribExpr(tree.rhs, env);
1840         // Find operator.
1841         Symbol operator = tree.operator = rs.resolveBinaryOperator(
1842             tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
1843             owntype, operand);
1844 
1845         if (operator.kind == MTH) {
1846             chk.checkOperator(tree.pos(),
1847                               (OperatorSymbol)operator,
1848                               tree.getTag() - JCTree.ASGOffset,
1849                               owntype,
1850                               operand);
1851             chk.checkDivZero(tree.rhs.pos(), operator, operand);
1852             chk.checkCastable(tree.rhs.pos(),
1853                               operator.type.getReturnType(),
1854                               owntype);
1855         }
1856         result = check(tree, owntype, VAL, pkind, pt);
1857     }
1858 
1859     public void visitUnary(JCUnary tree) {
1860         // Attribute arguments.
1861         Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
1862             ? attribTree(tree.arg, env, VAR, Type.noType)
1863             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
1864 
1865         // Find operator.
1866         Symbol operator = tree.operator =
1867             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
1868 
1869         Type owntype = types.createErrorType(tree.type);
1870         if (operator.kind == MTH) {
1871             owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
1872                 ? tree.arg.type
1873                 : operator.type.getReturnType();
1874             int opc = ((OperatorSymbol)operator).opcode;
1875 
1876             // If the argument is constant, fold it.
1877             if (argtype.constValue() != null) {
1878                 Type ctype = cfolder.fold1(opc, argtype);
1879                 if (ctype != null) {
1880                     owntype = cfolder.coerce(ctype, owntype);
1881 
1882                     // Remove constant types from arguments to
1883                     // conserve space. The parser will fold concatenations
1884                     // of string literals; the code here also
1885                     // gets rid of intermediate results when some of the
1886                     // operands are constant identifiers.
1887                     if (tree.arg.type.tsym == syms.stringType.tsym) {
1888                         tree.arg.type = syms.stringType;
1889                     }
1890                 }
1891             }
1892         }
1893         result = check(tree, owntype, VAL, pkind, pt);
1894     }
1895 
1896     public void visitBinary(JCBinary tree) {
1897         // Attribute arguments.
1898         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
1899         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
1900 
1901         // Find operator.
1902         Symbol operator = tree.operator =
1903             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
1904 
1905         Type owntype = types.createErrorType(tree.type);
1906         if (operator.kind == MTH) {
1907             owntype = operator.type.getReturnType();
1908             int opc = chk.checkOperator(tree.lhs.pos(),
1909                                         (OperatorSymbol)operator,
1910                                         tree.getTag(),
1911                                         left,
1912                                         right);
1913 
1914             // If both arguments are constants, fold them.
1915             if (left.constValue() != null && right.constValue() != null) {
1916                 Type ctype = cfolder.fold2(opc, left, right);
1917                 if (ctype != null) {
1918                     owntype = cfolder.coerce(ctype, owntype);
1919 
1920                     // Remove constant types from arguments to
1921                     // conserve space. The parser will fold concatenations
1922                     // of string literals; the code here also
1923                     // gets rid of intermediate results when some of the
1924                     // operands are constant identifiers.
1925                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
1926                         tree.lhs.type = syms.stringType;
1927                     }
1928                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
1929                         tree.rhs.type = syms.stringType;
1930                     }
1931                 }
1932             }
1933 
1934             // Check that argument types of a reference ==, != are
1935             // castable to each other, (JLS???).
1936             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
1937                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
1938                     log.error(tree.pos(), "incomparable.types", left, right);
1939                 }
1940             }
1941 
1942             chk.checkDivZero(tree.rhs.pos(), operator, right);
1943         }
1944         result = check(tree, owntype, VAL, pkind, pt);
1945     }
1946 
1947     public void visitTypeCast(JCTypeCast tree) {
1948         Type clazztype = attribType(tree.clazz, env);
1949         chk.validate(tree.clazz, env);
1950         Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
1951         Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
1952         if (exprtype.constValue() != null)
1953             owntype = cfolder.coerce(exprtype, owntype);
1954         result = check(tree, capture(owntype), VAL, pkind, pt);
1955     }
1956 
1957     public void visitTypeTest(JCInstanceOf tree) {
1958         Type exprtype = chk.checkNullOrRefType(
1959             tree.expr.pos(), attribExpr(tree.expr, env));
1960         Type clazztype = chk.checkReifiableReferenceType(
1961             tree.clazz.pos(), attribType(tree.clazz, env));
1962         chk.validate(tree.clazz, env);
1963         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
1964         result = check(tree, syms.booleanType, VAL, pkind, pt);
1965     }
1966 
1967     public void visitIndexed(JCArrayAccess tree) {
1968         Type owntype = types.createErrorType(tree.type);
1969         Type atype = attribExpr(tree.indexed, env);
1970         attribExpr(tree.index, env, syms.intType);
1971         if (types.isArray(atype))
1972             owntype = types.elemtype(atype);
1973         else if (atype.tag != ERROR)
1974             log.error(tree.pos(), "array.req.but.found", atype);
1975         if ((pkind & VAR) == 0) owntype = capture(owntype);
1976         result = check(tree, owntype, VAR, pkind, pt);
1977     }
1978 
1979     public void visitIdent(JCIdent tree) {
1980         Symbol sym;
1981         boolean varArgs = false;
1982 
1983         // Find symbol
1984         if (pt.tag == METHOD || pt.tag == FORALL) {
1985             // If we are looking for a method, the prototype `pt' will be a
1986             // method type with the type of the call's arguments as parameters.
1987             env.info.varArgs = false;
1988             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
1989             varArgs = env.info.varArgs;
1990         } else if (tree.sym != null && tree.sym.kind != VAR) {
1991             sym = tree.sym;
1992         } else {
1993             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
1994         }
1995         tree.sym = sym;
1996 
1997         // (1) Also find the environment current for the class where
1998         //     sym is defined (`symEnv').
1999         // Only for pre-tiger versions (1.4 and earlier):
2000         // (2) Also determine whether we access symbol out of an anonymous
2001         //     class in a this or super call.  This is illegal for instance
2002         //     members since such classes don't carry a this$n link.
2003         //     (`noOuterThisPath').
2004         Env<AttrContext> symEnv = env;
2005         boolean noOuterThisPath = false;
2006         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
2007             (sym.kind & (VAR | MTH | TYP)) != 0 &&
2008             sym.owner.kind == TYP &&
2009             tree.name != names._this && tree.name != names._super) {
2010 
2011             // Find environment in which identifier is defined.
2012             while (symEnv.outer != null &&
2013                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
2014                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
2015                     noOuterThisPath = !allowAnonOuterThis;
2016                 symEnv = symEnv.outer;
2017             }
2018         }
2019 
2020         // If symbol is a variable, ...
2021         if (sym.kind == VAR) {
2022             VarSymbol v = (VarSymbol)sym;
2023 
2024             // ..., evaluate its initializer, if it has one, and check for
2025             // illegal forward reference.
2026             checkInit(tree, env, v, false);
2027 
2028             // If symbol is a local variable accessed from an embedded
2029             // inner class check that it is final.
2030             if (v.owner.kind == MTH &&
2031                 v.owner != env.info.scope.owner &&
2032                 (v.flags_field & FINAL) == 0) {
2033                 log.error(tree.pos(),
2034                           "local.var.accessed.from.icls.needs.final",
2035                           v);
2036             }
2037 
2038             // If we are expecting a variable (as opposed to a value), check
2039             // that the variable is assignable in the current environment.
2040             if (pkind == VAR)
2041                 checkAssignable(tree.pos(), v, null, env);
2042         }
2043 
2044         // In a constructor body,
2045         // if symbol is a field or instance method, check that it is
2046         // not accessed before the supertype constructor is called.
2047         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
2048             (sym.kind & (VAR | MTH)) != 0 &&
2049             sym.owner.kind == TYP &&
2050             (sym.flags() & STATIC) == 0) {
2051             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
2052         }
2053         Env<AttrContext> env1 = env;
2054         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
2055             // If the found symbol is inaccessible, then it is
2056             // accessed through an enclosing instance.  Locate this
2057             // enclosing instance:
2058             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
2059                 env1 = env1.outer;
2060         }
2061         result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
2062     }
2063 
2064     public void visitSelect(JCFieldAccess tree) {
2065         // Determine the expected kind of the qualifier expression.
2066         int skind = 0;
2067         if (tree.name == names._this || tree.name == names._super ||
2068             tree.name == names._class)
2069         {
2070             skind = TYP;
2071         } else {
2072             if ((pkind & PCK) != 0) skind = skind | PCK;
2073             if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
2074             if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
2075         }
2076 
2077         // Attribute the qualifier expression, and determine its symbol (if any).
2078         Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
2079         if ((pkind & (PCK | TYP)) == 0)
2080             site = capture(site); // Capture field access
2081 
2082         // don't allow T.class T[].class, etc
2083         if (skind == TYP) {
2084             Type elt = site;
2085             while (elt.tag == ARRAY)
2086                 elt = ((ArrayType)elt).elemtype;
2087             if (elt.tag == TYPEVAR) {
2088                 log.error(tree.pos(), "type.var.cant.be.deref");
2089                 result = types.createErrorType(tree.type);
2090                 return;
2091             }
2092         }
2093 
2094         // If qualifier symbol is a type or `super', assert `selectSuper'
2095         // for the selection. This is relevant for determining whether
2096         // protected symbols are accessible.
2097         Symbol sitesym = TreeInfo.symbol(tree.selected);
2098         boolean selectSuperPrev = env.info.selectSuper;
2099         env.info.selectSuper =
2100             sitesym != null &&
2101             sitesym.name == names._super;
2102 
2103         // If selected expression is polymorphic, strip
2104         // type parameters and remember in env.info.tvars, so that
2105         // they can be added later (in Attr.checkId and Infer.instantiateMethod).
2106         if (tree.selected.type.tag == FORALL) {
2107             ForAll pstype = (ForAll)tree.selected.type;
2108             env.info.tvars = pstype.tvars;
2109             site = tree.selected.type = pstype.qtype;
2110         }
2111 
2112         // Determine the symbol represented by the selection.
2113         env.info.varArgs = false;
2114         Symbol sym = selectSym(tree, site, env, pt, pkind);
2115         if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
2116             site = capture(site);
2117             sym = selectSym(tree, site, env, pt, pkind);
2118         }
2119         boolean varArgs = env.info.varArgs;
2120         tree.sym = sym;
2121 
2122         if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
2123             while (site.tag == TYPEVAR) site = site.getUpperBound();
2124             site = capture(site);
2125         }
2126 
2127         // If that symbol is a variable, ...
2128         if (sym.kind == VAR) {
2129             VarSymbol v = (VarSymbol)sym;
2130 
2131             // ..., evaluate its initializer, if it has one, and check for
2132             // illegal forward reference.
2133             checkInit(tree, env, v, true);
2134 
2135             // If we are expecting a variable (as opposed to a value), check
2136             // that the variable is assignable in the current environment.
2137             if (pkind == VAR)
2138                 checkAssignable(tree.pos(), v, tree.selected, env);
2139         }
2140 
2141         // Disallow selecting a type from an expression
2142         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
2143             tree.type = check(tree.selected, pt,
2144                               sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
2145         }
2146 
2147         if (isType(sitesym)) {
2148             if (sym.name == names._this) {
2149                 // If `C' is the currently compiled class, check that
2150                 // C.this' does not appear in a call to a super(...)
2151                 if (env.info.isSelfCall &&
2152                     site.tsym == env.enclClass.sym) {
2153                     chk.earlyRefError(tree.pos(), sym);
2154                 }
2155             } else {
2156                 // Check if type-qualified fields or methods are static (JLS)
2157                 if ((sym.flags() & STATIC) == 0 &&
2158                     sym.name != names._super &&
2159                     (sym.kind == VAR || sym.kind == MTH)) {
2160                     rs.access(rs.new StaticError(sym),
2161                               tree.pos(), site, sym.name, true);
2162                 }
2163             }
2164         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
2165             // If the qualified item is not a type and the selected item is static, report
2166             // a warning. Make allowance for the class of an array type e.g. Object[].class)
2167             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
2168         }
2169 
2170         // If we are selecting an instance member via a `super', ...
2171         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
2172 
2173             // Check that super-qualified symbols are not abstract (JLS)
2174             rs.checkNonAbstract(tree.pos(), sym);
2175 
2176             if (site.isRaw()) {
2177                 // Determine argument types for site.
2178                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
2179                 if (site1 != null) site = site1;
2180             }
2181         }
2182 
2183         env.info.selectSuper = selectSuperPrev;
2184         result = checkId(tree, site, sym, env, pkind, pt, varArgs);
2185         env.info.tvars = List.nil();
2186     }
2187     //where
2188         /** Determine symbol referenced by a Select expression,
2189          *
2190          *  @param tree   The select tree.
2191          *  @param site   The type of the selected expression,
2192          *  @param env    The current environment.
2193          *  @param pt     The current prototype.
2194          *  @param pkind  The expected kind(s) of the Select expression.
2195          */
2196         private Symbol selectSym(JCFieldAccess tree,
2197                                  Type site,
2198                                  Env<AttrContext> env,
2199                                  Type pt,
2200                                  int pkind) {
2201             DiagnosticPosition pos = tree.pos();
2202             Name name = tree.name;
2203 
2204             switch (site.tag) {
2205             case PACKAGE:
2206                 return rs.access(
2207                     rs.findIdentInPackage(env, site.tsym, name, pkind),
2208                     pos, site, name, true);
2209             case ARRAY:
2210             case CLASS:
2211                 if (pt.tag == METHOD || pt.tag == FORALL) {
2212                     return rs.resolveQualifiedMethod(
2213                         pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
2214                 } else if (name == names._this || name == names._super) {
2215                     return rs.resolveSelf(pos, env, site.tsym, name);
2216                 } else if (name == names._class) {
2217                     // In this case, we have already made sure in
2218                     // visitSelect that qualifier expression is a type.
2219                     Type t = syms.classType;
2220                     List<Type> typeargs = allowGenerics
2221                         ? List.of(types.erasure(site))
2222                         : List.<Type>nil();
2223                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
2224                     return new VarSymbol(
2225                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
2226                 } else {
2227                     // We are seeing a plain identifier as selector.
2228                     Symbol sym = rs.findIdentInType(env, site, name, pkind);
2229                     if ((pkind & ERRONEOUS) == 0)
2230                         sym = rs.access(sym, pos, site, name, true);
2231                     return sym;
2232                 }
2233             case WILDCARD:
2234                 throw new AssertionError(tree);
2235             case TYPEVAR:
2236                 // Normally, site.getUpperBound() shouldn't be null.
2237                 // It should only happen during memberEnter/attribBase
2238                 // when determining the super type which *must* be
2239                 // done before attributing the type variables.  In
2240                 // other words, we are seeing this illegal program:
2241                 // class B<T> extends A<T.foo> {}
2242                 Symbol sym = (site.getUpperBound() != null)
2243                     ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
2244                     : null;
2245                 if (sym == null) {
2246                     log.error(pos, "type.var.cant.be.deref");
2247                     return syms.errSymbol;
2248                 } else {
2249                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
2250                         rs.new AccessError(env, site, sym) :
2251                                 sym;
2252                     rs.access(sym2, pos, site, name, true);
2253                     return sym;
2254                 }
2255             case ERROR:
2256                 // preserve identifier names through errors
2257                 return types.createErrorType(name, site.tsym, site).tsym;
2258             default:
2259                 // The qualifier expression is of a primitive type -- only
2260                 // .class is allowed for these.
2261                 if (name == names._class) {
2262                     // In this case, we have already made sure in Select that
2263                     // qualifier expression is a type.
2264                     Type t = syms.classType;
2265                     Type arg = types.boxedClass(site).type;
2266                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
2267                     return new VarSymbol(
2268                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
2269                 } else {
2270                     log.error(pos, "cant.deref", site);
2271                     return syms.errSymbol;
2272                 }
2273             }
2274         }
2275 
2276         /** Determine type of identifier or select expression and check that
2277          *  (1) the referenced symbol is not deprecated
2278          *  (2) the symbol's type is safe (@see checkSafe)
2279          *  (3) if symbol is a variable, check that its type and kind are
2280          *      compatible with the prototype and protokind.
2281          *  (4) if symbol is an instance field of a raw type,
2282          *      which is being assigned to, issue an unchecked warning if its
2283          *      type changes under erasure.
2284          *  (5) if symbol is an instance method of a raw type, issue an
2285          *      unchecked warning if its argument types change under erasure.
2286          *  If checks succeed:
2287          *    If symbol is a constant, return its constant type
2288          *    else if symbol is a method, return its result type
2289          *    otherwise return its type.
2290          *  Otherwise return errType.
2291          *
2292          *  @param tree       The syntax tree representing the identifier
2293          *  @param site       If this is a select, the type of the selected
2294          *                    expression, otherwise the type of the current class.
2295          *  @param sym        The symbol representing the identifier.
2296          *  @param env        The current environment.
2297          *  @param pkind      The set of expected kinds.
2298          *  @param pt         The expected type.
2299          */
2300         Type checkId(JCTree tree,
2301                      Type site,
2302                      Symbol sym,
2303                      Env<AttrContext> env,
2304                      int pkind,
2305                      Type pt,
2306                      boolean useVarargs) {
2307             if (pt.isErroneous()) return types.createErrorType(site);
2308             Type owntype; // The computed type of this identifier occurrence.
2309             switch (sym.kind) {
2310             case TYP:
2311                 // For types, the computed type equals the symbol's type,
2312                 // except for two situations:
2313                 owntype = sym.type;
2314                 if (owntype.tag == CLASS) {
2315                     Type ownOuter = owntype.getEnclosingType();
2316 
2317                     // (a) If the symbol's type is parameterized, erase it
2318                     // because no type parameters were given.
2319                     // We recover generic outer type later in visitTypeApply.
2320                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
2321                         owntype = types.erasure(owntype);
2322                     }
2323 
2324                     // (b) If the symbol's type is an inner class, then
2325                     // we have to interpret its outer type as a superclass
2326                     // of the site type. Example:
2327                     //
2328                     // class Tree<A> { class Visitor { ... } }
2329                     // class PointTree extends Tree<Point> { ... }
2330                     // ...PointTree.Visitor...
2331                     //
2332                     // Then the type of the last expression above is
2333                     // Tree<Point>.Visitor.
2334                     else if (ownOuter.tag == CLASS && site != ownOuter) {
2335                         Type normOuter = site;
2336                         if (normOuter.tag == CLASS)
2337                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
2338                         if (normOuter == null) // perhaps from an import
2339                             normOuter = types.erasure(ownOuter);
2340                         if (normOuter != ownOuter)
2341                             owntype = new ClassType(
2342                                 normOuter, List.<Type>nil(), owntype.tsym);
2343                     }
2344                 }
2345                 break;
2346             case VAR:
2347                 VarSymbol v = (VarSymbol)sym;
2348                 // Test (4): if symbol is an instance field of a raw type,
2349                 // which is being assigned to, issue an unchecked warning if
2350                 // its type changes under erasure.
2351                 if (allowGenerics &&
2352                     pkind == VAR &&
2353                     v.owner.kind == TYP &&
2354                     (v.flags() & STATIC) == 0 &&
2355                     (site.tag == CLASS || site.tag == TYPEVAR)) {
2356                     Type s = types.asOuterSuper(site, v.owner);
2357                     if (s != null &&
2358                         s.isRaw() &&
2359                         !types.isSameType(v.type, v.erasure(types))) {
2360                         chk.warnUnchecked(tree.pos(),
2361                                           "unchecked.assign.to.var",
2362                                           v, s);
2363                     }
2364                 }
2365                 // The computed type of a variable is the type of the
2366                 // variable symbol, taken as a member of the site type.
2367                 owntype = (sym.owner.kind == TYP &&
2368                            sym.name != names._this && sym.name != names._super)
2369                     ? types.memberType(site, sym)
2370                     : sym.type;
2371 
2372                 if (env.info.tvars.nonEmpty()) {
2373                     Type owntype1 = new ForAll(env.info.tvars, owntype);
2374                     for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
2375                         if (!owntype.contains(l.head)) {
2376                             log.error(tree.pos(), "undetermined.type", owntype1);
2377                             owntype1 = types.createErrorType(owntype1);
2378                         }
2379                     owntype = owntype1;
2380                 }
2381 
2382                 // If the variable is a constant, record constant value in
2383                 // computed type.
2384                 if (v.getConstValue() != null && isStaticReference(tree))
2385                     owntype = owntype.constType(v.getConstValue());
2386 
2387                 if (pkind == VAL) {
2388                     owntype = capture(owntype); // capture "names as expressions"
2389                 }
2390                 break;
2391             case MTH: {
2392                 JCMethodInvocation app = (JCMethodInvocation)env.tree;
2393                 owntype = checkMethod(site, sym, env, app.args,
2394                                       pt.getParameterTypes(), pt.getTypeArguments(),
2395                                       env.info.varArgs);
2396                 break;
2397             }
2398             case PCK: case ERR:
2399                 owntype = sym.type;
2400                 break;
2401             default:
2402                 throw new AssertionError("unexpected kind: " + sym.kind +
2403                                          " in tree " + tree);
2404             }
2405 
2406             // Test (1): emit a `deprecation' warning if symbol is deprecated.
2407             // (for constructors, the error was given when the constructor was
2408             // resolved)
2409             if (sym.name != names.init &&
2410                 (sym.flags() & DEPRECATED) != 0 &&
2411                 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
2412                 sym.outermostClass() != env.info.scope.owner.outermostClass())
2413                 chk.warnDeprecated(tree.pos(), sym);
2414 
2415             if ((sym.flags() & PROPRIETARY) != 0) {
2416                 if (enableSunApiLintControl)
2417                   chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
2418                 else
2419                   log.strictWarning(tree.pos(), "sun.proprietary", sym);
2420             }
2421 
2422             // Test (3): if symbol is a variable, check that its type and
2423             // kind are compatible with the prototype and protokind.
2424             return check(tree, owntype, sym.kind, pkind, pt);
2425         }
2426 
2427         /** Check that variable is initialized and evaluate the variable's
2428          *  initializer, if not yet done. Also check that variable is not
2429          *  referenced before it is defined.
2430          *  @param tree    The tree making up the variable reference.
2431          *  @param env     The current environment.
2432          *  @param v       The variable's symbol.
2433          */
2434         private void checkInit(JCTree tree,
2435                                Env<AttrContext> env,
2436                                VarSymbol v,
2437                                boolean onlyWarning) {
2438 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
2439 //                             tree.pos + " " + v.pos + " " +
2440 //                             Resolve.isStatic(env));//DEBUG
2441 
2442             // A forward reference is diagnosed if the declaration position
2443             // of the variable is greater than the current tree position
2444             // and the tree and variable definition occur in the same class
2445             // definition.  Note that writes don't count as references.
2446             // This check applies only to class and instance
2447             // variables.  Local variables follow different scope rules,
2448             // and are subject to definite assignment checking.
2449             if ((env.info.enclVar == v || v.pos > tree.pos) &&
2450                 v.owner.kind == TYP &&
2451                 canOwnInitializer(env.info.scope.owner) &&
2452                 v.owner == env.info.scope.owner.enclClass() &&
2453                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
2454                 (env.tree.getTag() != JCTree.ASSIGN ||
2455                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
2456                 String suffix = (env.info.enclVar == v) ?
2457                                 "self.ref" : "forward.ref";
2458                 if (!onlyWarning || isStaticEnumField(v)) {
2459                     log.error(tree.pos(), "illegal." + suffix);
2460                 } else if (useBeforeDeclarationWarning) {
2461                     log.warning(tree.pos(), suffix, v);
2462                 }
2463             }
2464 
2465             v.getConstValue(); // ensure initializer is evaluated
2466 
2467             checkEnumInitializer(tree, env, v);
2468         }
2469 
2470         /**
2471          * Check for illegal references to static members of enum.  In
2472          * an enum type, constructors and initializers may not
2473          * reference its static members unless they are constant.
2474          *
2475          * @param tree    The tree making up the variable reference.
2476          * @param env     The current environment.
2477          * @param v       The variable's symbol.
2478          * @see JLS 3rd Ed. (8.9 Enums)
2479          */
2480         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
2481             // JLS 3rd Ed.:
2482             //
2483             // "It is a compile-time error to reference a static field
2484             // of an enum type that is not a compile-time constant
2485             // (15.28) from constructors, instance initializer blocks,
2486             // or instance variable initializer expressions of that
2487             // type. It is a compile-time error for the constructors,
2488             // instance initializer blocks, or instance variable
2489             // initializer expressions of an enum constant e to refer
2490             // to itself or to an enum constant of the same type that
2491             // is declared to the right of e."
2492             if (isStaticEnumField(v)) {
2493                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
2494 
2495                 if (enclClass == null || enclClass.owner == null)
2496                     return;
2497 
2498                 // See if the enclosing class is the enum (or a
2499                 // subclass thereof) declaring v.  If not, this
2500                 // reference is OK.
2501                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
2502                     return;
2503 
2504                 // If the reference isn't from an initializer, then
2505                 // the reference is OK.
2506                 if (!Resolve.isInitializer(env))
2507                     return;
2508 
2509                 log.error(tree.pos(), "illegal.enum.static.ref");
2510             }
2511         }
2512 
2513         /** Is the given symbol a static, non-constant field of an Enum?
2514          *  Note: enum literals should not be regarded as such
2515          */
2516         private boolean isStaticEnumField(VarSymbol v) {
2517             return Flags.isEnum(v.owner) &&
2518                    Flags.isStatic(v) &&
2519                    !Flags.isConstant(v) &&
2520                    v.name != names._class;
2521         }
2522 
2523         /** Can the given symbol be the owner of code which forms part
2524          *  if class initialization? This is the case if the symbol is
2525          *  a type or field, or if the symbol is the synthetic method.
2526          *  owning a block.
2527          */
2528         private boolean canOwnInitializer(Symbol sym) {
2529             return
2530                 (sym.kind & (VAR | TYP)) != 0 ||
2531                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
2532         }
2533 
2534     Warner noteWarner = new Warner();
2535 
2536     /**
2537      * Check that method arguments conform to its instantation.
2538      **/
2539     public Type checkMethod(Type site,
2540                             Symbol sym,
2541                             Env<AttrContext> env,
2542                             final List<JCExpression> argtrees,
2543                             List<Type> argtypes,
2544                             List<Type> typeargtypes,
2545                             boolean useVarargs) {
2546         // Test (5): if symbol is an instance method of a raw type, issue
2547         // an unchecked warning if its argument types change under erasure.
2548         if (allowGenerics &&
2549             (sym.flags() & STATIC) == 0 &&
2550             (site.tag == CLASS || site.tag == TYPEVAR)) {
2551             Type s = types.asOuterSuper(site, sym.owner);
2552             if (s != null && s.isRaw() &&
2553                 !types.isSameTypes(sym.type.getParameterTypes(),
2554                                    sym.erasure(types).getParameterTypes())) {
2555                 chk.warnUnchecked(env.tree.pos(),
2556                                   "unchecked.call.mbr.of.raw.type",
2557                                   sym, s);
2558             }
2559         }
2560 
2561         // Compute the identifier's instantiated type.
2562         // For methods, we need to compute the instance type by
2563         // Resolve.instantiate from the symbol's type as well as
2564         // any type arguments and value arguments.
2565         noteWarner.warned = false;
2566         Type owntype = rs.instantiate(env,
2567                                       site,
2568                                       sym,
2569                                       argtypes,
2570                                       typeargtypes,
2571                                       true,
2572                                       useVarargs,
2573                                       noteWarner);
2574         boolean warned = noteWarner.warned;
2575 
2576         // If this fails, something went wrong; we should not have
2577         // found the identifier in the first place.
2578         if (owntype == null) {
2579             if (!pt.isErroneous())
2580                 log.error(env.tree.pos(),
2581                           "internal.error.cant.instantiate",
2582                           sym, site,
2583                           Type.toString(pt.getParameterTypes()));
2584             owntype = types.createErrorType(site);
2585         } else {
2586             // System.out.println("call   : " + env.tree);
2587             // System.out.println("method : " + owntype);
2588             // System.out.println("actuals: " + argtypes);
2589             List<Type> formals = owntype.getParameterTypes();
2590             Type last = useVarargs ? formals.last() : null;
2591             if (sym.name==names.init &&
2592                 sym.owner == syms.enumSym)
2593                 formals = formals.tail.tail;
2594             List<JCExpression> args = argtrees;
2595             while (formals.head != last) {
2596                 JCTree arg = args.head;
2597                 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
2598                 assertConvertible(arg, arg.type, formals.head, warn);
2599                 warned |= warn.warned;
2600                 args = args.tail;
2601                 formals = formals.tail;
2602             }
2603             if (useVarargs) {
2604                 Type varArg = types.elemtype(last);
2605                 while (args.tail != null) {
2606                     JCTree arg = args.head;
2607                     Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
2608                     assertConvertible(arg, arg.type, varArg, warn);
2609                     warned |= warn.warned;
2610                     args = args.tail;
2611                 }
2612             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
2613                 // non-varargs call to varargs method
2614                 Type varParam = owntype.getParameterTypes().last();
2615                 Type lastArg = argtypes.last();
2616                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
2617                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
2618                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
2619                                 types.elemtype(varParam),
2620                                 varParam);
2621             }
2622 
2623             if (warned && sym.type.tag == FORALL) {
2624                 chk.warnUnchecked(env.tree.pos(),
2625                                   "unchecked.meth.invocation.applied",
2626                                   kindName(sym),
2627                                   sym.name,
2628                                   rs.methodArguments(sym.type.getParameterTypes()),
2629                                   rs.methodArguments(argtypes),
2630                                   kindName(sym.location()),
2631                                   sym.location());
2632                 owntype = new MethodType(owntype.getParameterTypes(),
2633                                          types.erasure(owntype.getReturnType()),
2634                                          owntype.getThrownTypes(),
2635                                          syms.methodClass);
2636             }
2637             if (useVarargs) {
2638                 JCTree tree = env.tree;
2639                 Type argtype = owntype.getParameterTypes().last();
2640                 if (owntype.getReturnType().tag != FORALL || warned) {
2641                     chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym, env);
2642                 }
2643                 Type elemtype = types.elemtype(argtype);
2644                 switch (tree.getTag()) {
2645                 case JCTree.APPLY:
2646                     ((JCMethodInvocation) tree).varargsElement = elemtype;
2647                     break;
2648                 case JCTree.NEWCLASS:
2649                     ((JCNewClass) tree).varargsElement = elemtype;
2650                     break;
2651                 default:
2652                     throw new AssertionError(""+tree);
2653                 }
2654             }
2655         }
2656         return owntype;
2657     }
2658 
2659     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
2660         if (types.isConvertible(actual, formal, warn))
2661             return;
2662 
2663         if (formal.isCompound()
2664             && types.isSubtype(actual, types.supertype(formal))
2665             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
2666             return;
2667 
2668         if (false) {
2669             // TODO: make assertConvertible work
2670             chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
2671             throw new AssertionError("Tree: " + tree
2672                                      + " actual:" + actual
2673                                      + " formal: " + formal);
2674         }
2675     }
2676 
2677     public void visitLiteral(JCLiteral tree) {
2678         result = check(
2679             tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
2680     }
2681     //where
2682     /** Return the type of a literal with given type tag.
2683      */
2684     Type litType(int tag) {
2685         return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
2686     }
2687 
2688     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
2689         result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
2690     }
2691 
2692     public void visitTypeArray(JCArrayTypeTree tree) {
2693         Type etype = attribType(tree.elemtype, env);
2694         Type type = new ArrayType(etype, syms.arrayClass);
2695         result = check(tree, type, TYP, pkind, pt);
2696     }
2697 
2698     /** Visitor method for parameterized types.
2699      *  Bound checking is left until later, since types are attributed
2700      *  before supertype structure is completely known
2701      */
2702     public void visitTypeApply(JCTypeApply tree) {
2703         Type owntype = types.createErrorType(tree.type);
2704 
2705         // Attribute functor part of application and make sure it's a class.
2706         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
2707 
2708         // Attribute type parameters
2709         List<Type> actuals = attribTypes(tree.arguments, env);
2710 
2711         if (clazztype.tag == CLASS) {
2712             List<Type> formals = clazztype.tsym.type.getTypeArguments();
2713 
2714             if (actuals.length() == formals.length() || actuals.length() == 0) {
2715                 List<Type> a = actuals;
2716                 List<Type> f = formals;
2717                 while (a.nonEmpty()) {
2718                     a.head = a.head.withTypeVar(f.head);
2719                     a = a.tail;
2720                     f = f.tail;
2721                 }
2722                 // Compute the proper generic outer
2723                 Type clazzOuter = clazztype.getEnclosingType();
2724                 if (clazzOuter.tag == CLASS) {
2725                     Type site;
2726                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
2727                     if (clazz.getTag() == JCTree.IDENT) {
2728                         site = env.enclClass.sym.type;
2729                     } else if (clazz.getTag() == JCTree.SELECT) {
2730                         site = ((JCFieldAccess) clazz).selected.type;
2731                     } else throw new AssertionError(""+tree);
2732                     if (clazzOuter.tag == CLASS && site != clazzOuter) {
2733                         if (site.tag == CLASS)
2734                             site = types.asOuterSuper(site, clazzOuter.tsym);
2735                         if (site == null)
2736                             site = types.erasure(clazzOuter);
2737                         clazzOuter = site;
2738                     }
2739                 }
2740                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
2741             } else {
2742                 if (formals.length() != 0) {
2743                     log.error(tree.pos(), "wrong.number.type.args",
2744                               Integer.toString(formals.length()));
2745                 } else {
2746                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
2747                 }
2748                 owntype = types.createErrorType(tree.type);
2749             }
2750         }
2751         result = check(tree, owntype, TYP, pkind, pt);
2752     }
2753 
2754     public void visitTypeDisjoint(JCTypeDisjoint tree) {
2755         List<Type> componentTypes = attribTypes(tree.components, env);
2756         tree.type = result = check(tree, types.lub(componentTypes), TYP, pkind, pt);
2757     }
2758 
2759     public void visitTypeParameter(JCTypeParameter tree) {
2760         TypeVar a = (TypeVar)tree.type;
2761         Set<Type> boundSet = new HashSet<Type>();
2762         if (a.bound.isErroneous())
2763             return;
2764         List<Type> bs = types.getBounds(a);
2765         if (tree.bounds.nonEmpty()) {
2766             // accept class or interface or typevar as first bound.
2767             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
2768             boundSet.add(types.erasure(b));
2769             if (b.isErroneous()) {
2770                 a.bound = b;
2771             }
2772             else if (b.tag == TYPEVAR) {
2773                 // if first bound was a typevar, do not accept further bounds.
2774                 if (tree.bounds.tail.nonEmpty()) {
2775                     log.error(tree.bounds.tail.head.pos(),
2776                               "type.var.may.not.be.followed.by.other.bounds");
2777                     log.unrecoverableError = true;
2778                     tree.bounds = List.of(tree.bounds.head);
2779                     a.bound = bs.head;
2780                 }
2781             } else {
2782                 // if first bound was a class or interface, accept only interfaces
2783                 // as further bounds.
2784                 for (JCExpression bound : tree.bounds.tail) {
2785                     bs = bs.tail;
2786                     Type i = checkBase(bs.head, bound, env, false, true, false);
2787                     if (i.isErroneous())
2788                         a.bound = i;
2789                     else if (i.tag == CLASS)
2790                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
2791                 }
2792             }
2793         }
2794         bs = types.getBounds(a);
2795 
2796         // in case of multiple bounds ...
2797         if (bs.length() > 1) {
2798             // ... the variable's bound is a class type flagged COMPOUND
2799             // (see comment for TypeVar.bound).
2800             // In this case, generate a class tree that represents the
2801             // bound class, ...
2802             JCTree extending;
2803             List<JCExpression> implementing;
2804             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
2805                 extending = tree.bounds.head;
2806                 implementing = tree.bounds.tail;
2807             } else {
2808                 extending = null;
2809                 implementing = tree.bounds;
2810             }
2811             JCClassDecl cd = make.at(tree.pos).ClassDef(
2812                 make.Modifiers(PUBLIC | ABSTRACT),
2813                 tree.name, List.<JCTypeParameter>nil(),
2814                 extending, implementing, List.<JCTree>nil());
2815 
2816             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
2817             assert (c.flags() & COMPOUND) != 0;
2818             cd.sym = c;
2819             c.sourcefile = env.toplevel.sourcefile;
2820 
2821             // ... and attribute the bound class
2822             c.flags_field |= UNATTRIBUTED;
2823             Env<AttrContext> cenv = enter.classEnv(cd, env);
2824             enter.typeEnvs.put(c, cenv);
2825         }
2826     }
2827 
2828 
2829     public void visitWildcard(JCWildcard tree) {
2830         //- System.err.println("visitWildcard("+tree+");");//DEBUG
2831         Type type = (tree.kind.kind == BoundKind.UNBOUND)
2832             ? syms.objectType
2833             : attribType(tree.inner, env);
2834         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
2835                                               tree.kind.kind,
2836                                               syms.boundClass),
2837                        TYP, pkind, pt);
2838     }
2839 
2840     public void visitAnnotation(JCAnnotation tree) {
2841         log.error(tree.pos(), "annotation.not.valid.for.type", pt);
2842         result = tree.type = syms.errType;
2843     }
2844 
2845     public void visitAnnotatedType(JCAnnotatedType tree) {
2846         result = tree.type = attribType(tree.getUnderlyingType(), env);
2847     }
2848 
2849     public void visitErroneous(JCErroneous tree) {
2850         if (tree.errs != null)
2851             for (JCTree err : tree.errs)
2852                 attribTree(err, env, ERR, pt);
2853         result = tree.type = syms.errType;
2854     }
2855 
2856     /** Default visitor method for all other trees.
2857      */
2858     public void visitTree(JCTree tree) {
2859         throw new AssertionError();
2860     }
2861 
2862     /** Main method: attribute class definition associated with given class symbol.
2863      *  reporting completion failures at the given position.
2864      *  @param pos The source position at which completion errors are to be
2865      *             reported.
2866      *  @param c   The class symbol whose definition will be attributed.
2867      */
2868     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
2869         try {
2870             annotate.flush();
2871             attribClass(c);
2872         } catch (CompletionFailure ex) {
2873             chk.completionError(pos, ex);
2874         }
2875     }
2876 
2877     /** Attribute class definition associated with given class symbol.
2878      *  @param c   The class symbol whose definition will be attributed.
2879      */
2880     void attribClass(ClassSymbol c) throws CompletionFailure {
2881         if (c.type.tag == ERROR) return;
2882 
2883         // Check for cycles in the inheritance graph, which can arise from
2884         // ill-formed class files.
2885         chk.checkNonCyclic(null, c.type);
2886 
2887         Type st = types.supertype(c.type);
2888         if ((c.flags_field & Flags.COMPOUND) == 0) {
2889             // First, attribute superclass.
2890             if (st.tag == CLASS)
2891                 attribClass((ClassSymbol)st.tsym);
2892 
2893             // Next attribute owner, if it is a class.
2894             if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
2895                 attribClass((ClassSymbol)c.owner);
2896         }
2897 
2898         // The previous operations might have attributed the current class
2899         // if there was a cycle. So we test first whether the class is still
2900         // UNATTRIBUTED.
2901         if ((c.flags_field & UNATTRIBUTED) != 0) {
2902             c.flags_field &= ~UNATTRIBUTED;
2903 
2904             // Get environment current at the point of class definition.
2905             Env<AttrContext> env = enter.typeEnvs.get(c);
2906 
2907             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
2908             // because the annotations were not available at the time the env was created. Therefore,
2909             // we look up the environment chain for the first enclosing environment for which the
2910             // lint value is set. Typically, this is the parent env, but might be further if there
2911             // are any envs created as a result of TypeParameter nodes.
2912             Env<AttrContext> lintEnv = env;
2913             while (lintEnv.info.lint == null)
2914                 lintEnv = lintEnv.next;
2915 
2916             // Having found the enclosing lint value, we can initialize the lint value for this class
2917             env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
2918 
2919             Lint prevLint = chk.setLint(env.info.lint);
2920             JavaFileObject prev = log.useSource(c.sourcefile);
2921 
2922             try {
2923                 // java.lang.Enum may not be subclassed by a non-enum
2924                 if (st.tsym == syms.enumSym &&
2925                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
2926                     log.error(env.tree.pos(), "enum.no.subclassing");
2927 
2928                 // Enums may not be extended by source-level classes
2929                 if (st.tsym != null &&
2930                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
2931                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
2932                     !target.compilerBootstrap(c)) {
2933                     log.error(env.tree.pos(), "enum.types.not.extensible");
2934                 }
2935                 attribClassBody(env, c);
2936 
2937                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
2938             } finally {
2939                 log.useSource(prev);
2940                 chk.setLint(prevLint);
2941             }
2942 
2943         }
2944     }
2945 
2946     public void visitImport(JCImport tree) {
2947         // nothing to do
2948     }
2949 
2950     /** Finish the attribution of a class. */
2951     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
2952         JCClassDecl tree = (JCClassDecl)env.tree;
2953         assert c == tree.sym;
2954 
2955         // Validate annotations
2956         chk.validateAnnotations(tree.mods.annotations, c);
2957 
2958         // Validate type parameters, supertype and interfaces.
2959         attribBounds(tree.typarams);
2960         if (!c.isAnonymous()) {
2961             //already checked if anonymous
2962             chk.validate(tree.typarams, env);
2963             chk.validate(tree.extending, env);
2964             chk.validate(tree.implementing, env);
2965         }
2966 
2967         // If this is a non-abstract class, check that it has no abstract
2968         // methods or unimplemented methods of an implemented interface.
2969         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
2970             if (!relax)
2971                 chk.checkAllDefined(tree.pos(), c);
2972         }
2973 
2974         if ((c.flags() & ANNOTATION) != 0) {
2975             if (tree.implementing.nonEmpty())
2976                 log.error(tree.implementing.head.pos(),
2977                           "cant.extend.intf.annotation");
2978             if (tree.typarams.nonEmpty())
2979                 log.error(tree.typarams.head.pos(),
2980                           "intf.annotation.cant.have.type.params");
2981         } else {
2982             // Check that all extended classes and interfaces
2983             // are compatible (i.e. no two define methods with same arguments
2984             // yet different return types).  (JLS 8.4.6.3)
2985             chk.checkCompatibleSupertypes(tree.pos(), c.type);
2986         }
2987 
2988         // Check that class does not import the same parameterized interface
2989         // with two different argument lists.
2990         chk.checkClassBounds(tree.pos(), c.type);
2991 
2992         tree.type = c.type;
2993 
2994         boolean assertsEnabled = false;
2995         assert assertsEnabled = true;
2996         if (assertsEnabled) {
2997             for (List<JCTypeParameter> l = tree.typarams;
2998                  l.nonEmpty(); l = l.tail)
2999                 assert env.info.scope.lookup(l.head.name).scope != null;
3000         }
3001 
3002         // Check that a generic class doesn't extend Throwable
3003         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
3004             log.error(tree.extending.pos(), "generic.throwable");
3005 
3006         // Check that all methods which implement some
3007         // method conform to the method they implement.
3008         chk.checkImplementations(tree);
3009 
3010         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3011             // Attribute declaration
3012             attribStat(l.head, env);
3013             // Check that declarations in inner classes are not static (JLS 8.1.2)
3014             // Make an exception for static constants.
3015             if (c.owner.kind != PCK &&
3016                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
3017                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
3018                 Symbol sym = null;
3019                 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
3020                 if (sym == null ||
3021                     sym.kind != VAR ||
3022                     ((VarSymbol) sym).getConstValue() == null)
3023                     log.error(l.head.pos(), "icls.cant.have.static.decl");
3024             }
3025         }
3026 
3027         // Check for cycles among non-initial constructors.
3028         chk.checkCyclicConstructors(tree);
3029 
3030         // Check for cycles among annotation elements.
3031         chk.checkNonCyclicElements(tree);
3032 
3033         // Check for proper use of serialVersionUID
3034         if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
3035             isSerializable(c) &&
3036             (c.flags() & Flags.ENUM) == 0 &&
3037             (c.flags() & ABSTRACT) == 0) {
3038             checkSerialVersionUID(tree, c);
3039         }
3040 
3041         // Check type annotations applicability rules
3042         validateTypeAnnotations(tree);
3043     }
3044         // where
3045         /** check if a class is a subtype of Serializable, if that is available. */
3046         private boolean isSerializable(ClassSymbol c) {
3047             try {
3048                 syms.serializableType.complete();
3049             }
3050             catch (CompletionFailure e) {
3051                 return false;
3052             }
3053             return types.isSubtype(c.type, syms.serializableType);
3054         }
3055 
3056         /** Check that an appropriate serialVersionUID member is defined. */
3057         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
3058 
3059             // check for presence of serialVersionUID
3060             Scope.Entry e = c.members().lookup(names.serialVersionUID);
3061             while (e.scope != null && e.sym.kind != VAR) e = e.next();
3062             if (e.scope == null) {
3063                 log.warning(tree.pos(), "missing.SVUID", c);
3064                 return;
3065             }
3066 
3067             // check that it is static final
3068             VarSymbol svuid = (VarSymbol)e.sym;
3069             if ((svuid.flags() & (STATIC | FINAL)) !=
3070                 (STATIC | FINAL))
3071                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
3072 
3073             // check that it is long
3074             else if (svuid.type.tag != TypeTags.LONG)
3075                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
3076 
3077             // check constant
3078             else if (svuid.getConstValue() == null)
3079                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
3080         }
3081 
3082     private Type capture(Type type) {
3083         return types.capture(type);
3084     }
3085 
3086     private void validateTypeAnnotations(JCTree tree) {
3087         tree.accept(typeAnnotationsValidator);
3088     }
3089     //where
3090     private final JCTree.Visitor typeAnnotationsValidator =
3091         new TreeScanner() {
3092         public void visitAnnotation(JCAnnotation tree) {
3093             if (tree instanceof JCTypeAnnotation) {
3094                 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
3095             }
3096             super.visitAnnotation(tree);
3097         }
3098         public void visitTypeParameter(JCTypeParameter tree) {
3099             chk.validateTypeAnnotations(tree.annotations, true);
3100             // don't call super. skip type annotations
3101             scan(tree.bounds);
3102         }
3103         public void visitMethodDef(JCMethodDecl tree) {
3104             // need to check static methods
3105             if ((tree.sym.flags() & Flags.STATIC) != 0) {
3106                 for (JCTypeAnnotation a : tree.receiverAnnotations) {
3107                     if (chk.isTypeAnnotation(a, false))
3108                         log.error(a.pos(), "annotation.type.not.applicable");
3109                 }
3110             }
3111             super.visitMethodDef(tree);
3112         }
3113     };
3114 }