1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.Set;
  30 
  31 import com.sun.tools.javac.code.*;
  32 import com.sun.tools.javac.jvm.*;
  33 import com.sun.tools.javac.tree.*;
  34 import com.sun.tools.javac.util.*;
  35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  36 import com.sun.tools.javac.util.List;
  37 
  38 import com.sun.tools.javac.tree.JCTree.*;
  39 import com.sun.tools.javac.code.Lint;
  40 import com.sun.tools.javac.code.Lint.LintCategory;
  41 import com.sun.tools.javac.code.Type.*;
  42 import com.sun.tools.javac.code.Symbol.*;
  43 
  44 import static com.sun.tools.javac.code.Flags.*;
  45 import static com.sun.tools.javac.code.Kinds.*;
  46 import static com.sun.tools.javac.code.TypeTags.*;
  47 
  48 /** Type checking helper class for the attribution phase.
  49  *
  50  *  <p><b>This is NOT part of any supported API.
  51  *  If you write code that depends on this, you do so at your own risk.
  52  *  This code and its internal interfaces are subject to change or
  53  *  deletion without notice.</b>
  54  */
  55 public class Check {
  56     protected static final Context.Key<Check> checkKey =
  57         new Context.Key<Check>();
  58 
  59     private final Names names;
  60     private final Log log;
  61     private final Symtab syms;
  62     private final Infer infer;
  63     private final Types types;
  64     private final JCDiagnostic.Factory diags;
  65     private final boolean skipAnnotations;
  66     private boolean warnOnSyntheticConflicts;
  67     private boolean suppressAbortOnBadClassFile;
  68     private final TreeInfo treeinfo;
  69 
  70     // The set of lint options currently in effect. It is initialized
  71     // from the context, and then is set/reset as needed by Attr as it
  72     // visits all the various parts of the trees during attribution.
  73     private Lint lint;
  74 
  75     public static Check instance(Context context) {
  76         Check instance = context.get(checkKey);
  77         if (instance == null)
  78             instance = new Check(context);
  79         return instance;
  80     }
  81 
  82     protected Check(Context context) {
  83         context.put(checkKey, this);
  84 
  85         names = Names.instance(context);
  86         log = Log.instance(context);
  87         syms = Symtab.instance(context);
  88         infer = Infer.instance(context);
  89         this.types = Types.instance(context);
  90         diags = JCDiagnostic.Factory.instance(context);
  91         Options options = Options.instance(context);
  92         lint = Lint.instance(context);
  93         treeinfo = TreeInfo.instance(context);
  94 
  95         Source source = Source.instance(context);
  96         allowGenerics = source.allowGenerics();
  97         allowAnnotations = source.allowAnnotations();
  98         allowCovariantReturns = source.allowCovariantReturns();
  99         complexInference = options.get("-complexinference") != null;
 100         skipAnnotations = options.get("skipAnnotations") != null;
 101         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
 102         suppressAbortOnBadClassFile = options.get("suppressAbortOnBadClassFile") != null;
 103 
 104         Target target = Target.instance(context);
 105         syntheticNameChar = target.syntheticNameChar();
 106 
 107         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 108         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 109         boolean verboseVarargs = lint.isEnabled(LintCategory.VARARGS);
 110         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
 111         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
 112 
 113         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
 114                 enforceMandatoryWarnings, "deprecated");
 115         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
 116                 enforceMandatoryWarnings, "unchecked");
 117         unsafeVarargsHandler = new MandatoryWarningHandler(log, verboseVarargs,
 118                 enforceMandatoryWarnings, "varargs");
 119         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
 120                 enforceMandatoryWarnings, "sunapi");
 121     }
 122 
 123     /** Switch: generics enabled?
 124      */
 125     boolean allowGenerics;
 126 
 127     /** Switch: annotations enabled?
 128      */
 129     boolean allowAnnotations;
 130 
 131     /** Switch: covariant returns enabled?
 132      */
 133     boolean allowCovariantReturns;
 134 
 135     /** Switch: -complexinference option set?
 136      */
 137     boolean complexInference;
 138 
 139     /** Character for synthetic names
 140      */
 141     char syntheticNameChar;
 142 
 143     /** A table mapping flat names of all compiled classes in this run to their
 144      *  symbols; maintained from outside.
 145      */
 146     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
 147 
 148     /** A handler for messages about deprecated usage.
 149      */
 150     private MandatoryWarningHandler deprecationHandler;
 151 
 152     /** A handler for messages about unchecked or unsafe usage.
 153      */
 154     private MandatoryWarningHandler uncheckedHandler;
 155 
 156     /** A handler for messages about unchecked or unsafe vararg method decl.
 157      */
 158     private MandatoryWarningHandler unsafeVarargsHandler;
 159 
 160     /** A handler for messages about using proprietary API.
 161      */
 162     private MandatoryWarningHandler sunApiHandler;
 163 
 164 /* *************************************************************************
 165  * Errors and Warnings
 166  **************************************************************************/
 167 
 168     Lint setLint(Lint newLint) {
 169         Lint prev = lint;
 170         lint = newLint;
 171         return prev;
 172     }
 173 
 174     /** Warn about deprecated symbol.
 175      *  @param pos        Position to be used for error reporting.
 176      *  @param sym        The deprecated symbol.
 177      */
 178     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 179         if (!lint.isSuppressed(LintCategory.DEPRECATION))
 180             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
 181     }
 182 
 183     /** Warn about unchecked operation.
 184      *  @param pos        Position to be used for error reporting.
 185      *  @param msg        A string describing the problem.
 186      */
 187     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
 188         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 189             uncheckedHandler.report(pos, msg, args);
 190     }
 191 
 192     /** Warn about unsafe vararg method decl.
 193      *  @param pos        Position to be used for error reporting.
 194      *  @param sym        The deprecated symbol.
 195      */
 196     void warnUnsafeVararg(DiagnosticPosition pos, Type elemType) {
 197         if (!lint.isSuppressed(LintCategory.VARARGS))
 198             unsafeVarargsHandler.report(pos, "varargs.non.reifiable.type", elemType);
 199     }
 200 
 201     /** Warn about using proprietary API.
 202      *  @param pos        Position to be used for error reporting.
 203      *  @param msg        A string describing the problem.
 204      */
 205     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
 206         if (!lint.isSuppressed(LintCategory.SUNAPI))
 207             sunApiHandler.report(pos, msg, args);
 208     }
 209 
 210     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
 211         if (lint.isEnabled(LintCategory.STATIC))
 212             log.warning(pos, msg, args);
 213     }
 214 
 215     /**
 216      * Report any deferred diagnostics.
 217      */
 218     public void reportDeferredDiagnostics() {
 219         deprecationHandler.reportDeferredDiagnostic();
 220         uncheckedHandler.reportDeferredDiagnostic();
 221         unsafeVarargsHandler.reportDeferredDiagnostic();
 222         sunApiHandler.reportDeferredDiagnostic();
 223     }
 224 
 225 
 226     /** Report a failure to complete a class.
 227      *  @param pos        Position to be used for error reporting.
 228      *  @param ex         The failure to report.
 229      */
 230     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 231         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
 232         if (ex instanceof ClassReader.BadClassFile
 233                 && !suppressAbortOnBadClassFile) throw new Abort();
 234         else return syms.errType;
 235     }
 236 
 237     /** Report a type error.
 238      *  @param pos        Position to be used for error reporting.
 239      *  @param problem    A string describing the error.
 240      *  @param found      The type that was found.
 241      *  @param req        The type that was required.
 242      */
 243     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
 244         log.error(pos, "prob.found.req",
 245                   problem, found, req);
 246         return types.createErrorType(found);
 247     }
 248 
 249     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
 250         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
 251         return types.createErrorType(found);
 252     }
 253 
 254     /** Report an error that wrong type tag was found.
 255      *  @param pos        Position to be used for error reporting.
 256      *  @param required   An internationalized string describing the type tag
 257      *                    required.
 258      *  @param found      The type that was found.
 259      */
 260     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
 261         // this error used to be raised by the parser,
 262         // but has been delayed to this point:
 263         if (found instanceof Type && ((Type)found).tag == VOID) {
 264             log.error(pos, "illegal.start.of.type");
 265             return syms.errType;
 266         }
 267         log.error(pos, "type.found.req", found, required);
 268         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
 269     }
 270 
 271     /** Report an error that symbol cannot be referenced before super
 272      *  has been called.
 273      *  @param pos        Position to be used for error reporting.
 274      *  @param sym        The referenced symbol.
 275      */
 276     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
 277         log.error(pos, "cant.ref.before.ctor.called", sym);
 278     }
 279 
 280     /** Report duplicate declaration error.
 281      */
 282     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 283         if (!sym.type.isErroneous()) {
 284             log.error(pos, "already.defined", sym, sym.location());
 285         }
 286     }
 287 
 288     /** Report array/varargs duplicate declaration
 289      */
 290     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 291         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 292             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
 293         }
 294     }
 295 
 296 /* ************************************************************************
 297  * duplicate declaration checking
 298  *************************************************************************/
 299 
 300     /** Check that variable does not hide variable with same name in
 301      *  immediately enclosing local scope.
 302      *  @param pos           Position for error reporting.
 303      *  @param v             The symbol.
 304      *  @param s             The scope.
 305      */
 306     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 307         if (s.next != null) {
 308             for (Scope.Entry e = s.next.lookup(v.name);
 309                  e.scope != null && e.sym.owner == v.owner;
 310                  e = e.next()) {
 311                 if (e.sym.kind == VAR &&
 312                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 313                     v.name != names.error) {
 314                     duplicateError(pos, e.sym);
 315                     return;
 316                 }
 317             }
 318         }
 319     }
 320 
 321     /** Check that a class or interface does not hide a class or
 322      *  interface with same name in immediately enclosing local scope.
 323      *  @param pos           Position for error reporting.
 324      *  @param c             The symbol.
 325      *  @param s             The scope.
 326      */
 327     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 328         if (s.next != null) {
 329             for (Scope.Entry e = s.next.lookup(c.name);
 330                  e.scope != null && e.sym.owner == c.owner;
 331                  e = e.next()) {
 332                 if (e.sym.kind == TYP &&
 333                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 334                     c.name != names.error) {
 335                     duplicateError(pos, e.sym);
 336                     return;
 337                 }
 338             }
 339         }
 340     }
 341 
 342     /** Check that class does not have the same name as one of
 343      *  its enclosing classes, or as a class defined in its enclosing scope.
 344      *  return true if class is unique in its enclosing scope.
 345      *  @param pos           Position for error reporting.
 346      *  @param name          The class name.
 347      *  @param s             The enclosing scope.
 348      */
 349     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 350         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
 351             if (e.sym.kind == TYP && e.sym.name != names.error) {
 352                 duplicateError(pos, e.sym);
 353                 return false;
 354             }
 355         }
 356         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 357             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
 358                 duplicateError(pos, sym);
 359                 return true;
 360             }
 361         }
 362         return true;
 363     }
 364 
 365 /* *************************************************************************
 366  * Class name generation
 367  **************************************************************************/
 368 
 369     /** Return name of local class.
 370      *  This is of the form    <enclClass> $ n <classname>
 371      *  where
 372      *    enclClass is the flat name of the enclosing class,
 373      *    classname is the simple name of the local class
 374      */
 375     Name localClassName(ClassSymbol c) {
 376         for (int i=1; ; i++) {
 377             Name flatname = names.
 378                 fromString("" + c.owner.enclClass().flatname +
 379                            syntheticNameChar + i +
 380                            c.name);
 381             if (compiled.get(flatname) == null) return flatname;
 382         }
 383     }
 384 
 385 /* *************************************************************************
 386  * Type Checking
 387  **************************************************************************/
 388 
 389     /** Check that a given type is assignable to a given proto-type.
 390      *  If it is, return the type, otherwise return errType.
 391      *  @param pos        Position to be used for error reporting.
 392      *  @param found      The type that was found.
 393      *  @param req        The type that was required.
 394      */
 395     Type checkType(DiagnosticPosition pos, Type found, Type req) {
 396         if (req.tag == ERROR)
 397             return req;
 398         if (found.tag == FORALL)
 399             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
 400         if (req.tag == NONE)
 401             return found;
 402         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
 403             return found;
 404         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
 405             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
 406         if (found.isSuperBound()) {
 407             log.error(pos, "assignment.from.super-bound", found);
 408             return types.createErrorType(found);
 409         }
 410         if (req.isExtendsBound()) {
 411             log.error(pos, "assignment.to.extends-bound", req);
 412             return types.createErrorType(found);
 413         }
 414         return typeError(pos, diags.fragment("incompatible.types"), found, req);
 415     }
 416 
 417     /** Instantiate polymorphic type to some prototype, unless
 418      *  prototype is `anyPoly' in which case polymorphic type
 419      *  is returned unchanged.
 420      */
 421     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
 422         if (pt == Infer.anyPoly && complexInference) {
 423             return t;
 424         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
 425             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
 426             return instantiatePoly(pos, t, newpt, warn);
 427         } else if (pt.tag == ERROR) {
 428             return pt;
 429         } else {
 430             try {
 431                 return infer.instantiateExpr(t, pt, warn);
 432             } catch (Infer.NoInstanceException ex) {
 433                 if (ex.isAmbiguous) {
 434                     JCDiagnostic d = ex.getDiagnostic();
 435                     log.error(pos,
 436                               "undetermined.type" + (d!=null ? ".1" : ""),
 437                               t, d);
 438                     return types.createErrorType(pt);
 439                 } else {
 440                     JCDiagnostic d = ex.getDiagnostic();
 441                     return typeError(pos,
 442                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
 443                                      t, pt);
 444                 }
 445             } catch (Infer.InvalidInstanceException ex) {
 446                 JCDiagnostic d = ex.getDiagnostic();
 447                 log.error(pos, "invalid.inferred.types", t.tvars, d);
 448                 return types.createErrorType(pt);
 449             }
 450         }
 451     }
 452 
 453     /** Check that a given type can be cast to a given target type.
 454      *  Return the result of the cast.
 455      *  @param pos        Position to be used for error reporting.
 456      *  @param found      The type that is being cast.
 457      *  @param req        The target type of the cast.
 458      */
 459     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 460         if (found.tag == FORALL) {
 461             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
 462             return req;
 463         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
 464             return req;
 465         } else {
 466             return typeError(pos,
 467                              diags.fragment("inconvertible.types"),
 468                              found, req);
 469         }
 470     }
 471 //where
 472         /** Is type a type variable, or a (possibly multi-dimensional) array of
 473          *  type variables?
 474          */
 475         boolean isTypeVar(Type t) {
 476             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
 477         }
 478 
 479     /** Check that a type is within some bounds.
 480      *
 481      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
 482      *  type argument.
 483      *  @param pos           Position to be used for error reporting.
 484      *  @param a             The type that should be bounded by bs.
 485      *  @param bs            The bound.
 486      */
 487     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
 488          if (a.isUnbound()) {
 489              return;
 490          } else if (a.tag != WILDCARD) {
 491              a = types.upperBound(a);
 492              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
 493                  if (!types.isSubtype(a, l.head)) {
 494                      log.error(pos, "not.within.bounds", a);
 495                      return;
 496                  }
 497              }
 498          } else if (a.isExtendsBound()) {
 499              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
 500                  log.error(pos, "not.within.bounds", a);
 501          } else if (a.isSuperBound()) {
 502              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
 503                  log.error(pos, "not.within.bounds", a);
 504          }
 505      }
 506 
 507     /** Check that a type is within some bounds.
 508      *
 509      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
 510      *  type argument.
 511      *  @param pos           Position to be used for error reporting.
 512      *  @param a             The type that should be bounded by bs.
 513      *  @param bs            The bound.
 514      */
 515     private void checkCapture(JCTypeApply tree) {
 516         List<JCExpression> args = tree.getTypeArguments();
 517         for (Type arg : types.capture(tree.type).getTypeArguments()) {
 518             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
 519                 log.error(args.head.pos, "not.within.bounds", args.head.type);
 520                 break;
 521             }
 522             args = args.tail;
 523         }
 524      }
 525 
 526     /** Check that type is different from 'void'.
 527      *  @param pos           Position to be used for error reporting.
 528      *  @param t             The type to be checked.
 529      */
 530     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 531         if (t.tag == VOID) {
 532             log.error(pos, "void.not.allowed.here");
 533             return types.createErrorType(t);
 534         } else {
 535             return t;
 536         }
 537     }
 538 
 539     /** Check that type is a class or interface type.
 540      *  @param pos           Position to be used for error reporting.
 541      *  @param t             The type to be checked.
 542      */
 543     Type checkClassType(DiagnosticPosition pos, Type t) {
 544         if (t.tag != CLASS && t.tag != ERROR)
 545             return typeTagError(pos,
 546                                 diags.fragment("type.req.class"),
 547                                 (t.tag == TYPEVAR)
 548                                 ? diags.fragment("type.parameter", t)
 549                                 : t);
 550         else
 551             return t;
 552     }
 553 
 554     /** Check that type is a class or interface type.
 555      *  @param pos           Position to be used for error reporting.
 556      *  @param t             The type to be checked.
 557      *  @param noBounds    True if type bounds are illegal here.
 558      */
 559     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 560         t = checkClassType(pos, t);
 561         if (noBounds && t.isParameterized()) {
 562             List<Type> args = t.getTypeArguments();
 563             while (args.nonEmpty()) {
 564                 if (args.head.tag == WILDCARD)
 565                     return typeTagError(pos,
 566                                         Log.getLocalizedString("type.req.exact"),
 567                                         args.head);
 568                 args = args.tail;
 569             }
 570         }
 571         return t;
 572     }
 573 
 574     /** Check that type is a reifiable class, interface or array type.
 575      *  @param pos           Position to be used for error reporting.
 576      *  @param t             The type to be checked.
 577      */
 578     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
 579         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
 580             return typeTagError(pos,
 581                                 diags.fragment("type.req.class.array"),
 582                                 t);
 583         } else if (!types.isReifiable(t)) {
 584             log.error(pos, "illegal.generic.type.for.instof");
 585             return types.createErrorType(t);
 586         } else {
 587             return t;
 588         }
 589     }
 590 
 591     /** Check that type is a reference type, i.e. a class, interface or array type
 592      *  or a type variable.
 593      *  @param pos           Position to be used for error reporting.
 594      *  @param t             The type to be checked.
 595      */
 596     Type checkRefType(DiagnosticPosition pos, Type t) {
 597         switch (t.tag) {
 598         case CLASS:
 599         case ARRAY:
 600         case TYPEVAR:
 601         case WILDCARD:
 602         case ERROR:
 603             return t;
 604         default:
 605             return typeTagError(pos,
 606                                 diags.fragment("type.req.ref"),
 607                                 t);
 608         }
 609     }
 610 
 611     /** Check that each type is a reference type, i.e. a class, interface or array type
 612      *  or a type variable.
 613      *  @param trees         Original trees, used for error reporting.
 614      *  @param types         The types to be checked.
 615      */
 616     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 617         List<JCExpression> tl = trees;
 618         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 619             l.head = checkRefType(tl.head.pos(), l.head);
 620             tl = tl.tail;
 621         }
 622         return types;
 623     }
 624 
 625     /** Check that type is a null or reference type.
 626      *  @param pos           Position to be used for error reporting.
 627      *  @param t             The type to be checked.
 628      */
 629     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 630         switch (t.tag) {
 631         case CLASS:
 632         case ARRAY:
 633         case TYPEVAR:
 634         case WILDCARD:
 635         case BOT:
 636         case ERROR:
 637             return t;
 638         default:
 639             return typeTagError(pos,
 640                                 diags.fragment("type.req.ref"),
 641                                 t);
 642         }
 643     }
 644 
 645     /** Check that flag set does not contain elements of two conflicting sets. s
 646      *  Return true if it doesn't.
 647      *  @param pos           Position to be used for error reporting.
 648      *  @param flags         The set of flags to be checked.
 649      *  @param set1          Conflicting flags set #1.
 650      *  @param set2          Conflicting flags set #2.
 651      */
 652     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 653         if ((flags & set1) != 0 && (flags & set2) != 0) {
 654             log.error(pos,
 655                       "illegal.combination.of.modifiers",
 656                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
 657                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
 658             return false;
 659         } else
 660             return true;
 661     }
 662 
 663     /** Check that the type inferred using the diamond operator does not contain
 664      *  non-denotable types such as captured types or intersection types.
 665      *  @param t the type inferred using the diamond operator
 666      */
 667     List<Type> checkDiamond(ClassType t) {
 668         DiamondTypeChecker dtc = new DiamondTypeChecker();
 669         ListBuffer<Type> buf = ListBuffer.lb();
 670         for (Type arg : t.getTypeArguments()) {
 671             if (!dtc.visit(arg, null)) {
 672                 buf.append(arg);
 673             }
 674         }
 675         return buf.toList();
 676     }
 677 
 678     static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
 679         public Boolean visitType(Type t, Void s) {
 680             return true;
 681         }
 682         @Override
 683         public Boolean visitClassType(ClassType t, Void s) {
 684             if (t.isCompound()) {
 685                 return false;
 686             }
 687             for (Type targ : t.getTypeArguments()) {
 688                 if (!visit(targ, s)) {
 689                     return false;
 690                 }
 691             }
 692             return true;
 693         }
 694         @Override
 695         public Boolean visitCapturedType(CapturedType t, Void s) {
 696             return false;
 697         }
 698     }
 699 
 700     void checkVarargMethodDecl(JCMethodDecl tree) {
 701         MethodSymbol m = tree.sym;
 702         //check the element type of the vararg
 703         if (m.isVarArgs()) {
 704             Type varargElemType = types.elemtype(tree.params.last().type);
 705             if (!types.isReifiable(varargElemType)) {
 706                 warnUnsafeVararg(tree.params.head.pos(), varargElemType);
 707             }
 708         }
 709     }
 710 
 711     /**
 712      * Check that vararg method call is sound
 713      * @param pos Position to be used for error reporting.
 714      * @param argtypes Actual arguments supplied to vararg method.
 715      */
 716     void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym, Env<AttrContext> env) {
 717         Env<AttrContext> calleeLintEnv = env;
 718         while (calleeLintEnv.info.lint == null)
 719             calleeLintEnv = calleeLintEnv.next;
 720         Lint calleeLint = calleeLintEnv.info.lint.augment(msym.attributes_field, msym.flags());
 721         Type argtype = argtypes.last();
 722         if (!types.isReifiable(argtype) && !calleeLint.isSuppressed(Lint.LintCategory.VARARGS)) {
 723             warnUnchecked(pos,
 724                               "unchecked.generic.array.creation",
 725                               argtype);
 726         }
 727     }
 728 
 729     /** Check that given modifiers are legal for given symbol and
 730      *  return modifiers together with any implicit modififiers for that symbol.
 731      *  Warning: we can't use flags() here since this method
 732      *  is called during class enter, when flags() would cause a premature
 733      *  completion.
 734      *  @param pos           Position to be used for error reporting.
 735      *  @param flags         The set of modifiers given in a definition.
 736      *  @param sym           The defined symbol.
 737      */
 738     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
 739         long mask;
 740         long implicit = 0;
 741         switch (sym.kind) {
 742         case VAR:
 743             if (sym.owner.kind != TYP)
 744                 mask = LocalVarFlags;
 745             else if ((sym.owner.flags_field & INTERFACE) != 0)
 746                 mask = implicit = InterfaceVarFlags;
 747             else
 748                 mask = VarFlags;
 749             break;
 750         case MTH:
 751             if (sym.name == names.init) {
 752                 if ((sym.owner.flags_field & ENUM) != 0) {
 753                     // enum constructors cannot be declared public or
 754                     // protected and must be implicitly or explicitly
 755                     // private
 756                     implicit = PRIVATE;
 757                     mask = PRIVATE;
 758                 } else
 759                     mask = ConstructorFlags;
 760             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
 761                 mask = implicit = InterfaceMethodFlags;
 762             else {
 763                 mask = MethodFlags;
 764             }
 765             // Imply STRICTFP if owner has STRICTFP set.
 766             if (((flags|implicit) & Flags.ABSTRACT) == 0)
 767               implicit |= sym.owner.flags_field & STRICTFP;
 768             break;
 769         case TYP:
 770             if (sym.isLocal()) {
 771                 mask = LocalClassFlags;
 772                 if (sym.name.isEmpty()) { // Anonymous class
 773                     // Anonymous classes in static methods are themselves static;
 774                     // that's why we admit STATIC here.
 775                     mask |= STATIC;
 776                     // JLS: Anonymous classes are final.
 777                     implicit |= FINAL;
 778                 }
 779                 if ((sym.owner.flags_field & STATIC) == 0 &&
 780                     (flags & ENUM) != 0)
 781                     log.error(pos, "enums.must.be.static");
 782             } else if (sym.owner.kind == TYP) {
 783                 mask = MemberClassFlags;
 784                 if (sym.owner.owner.kind == PCK ||
 785                     (sym.owner.flags_field & STATIC) != 0)
 786                     mask |= STATIC;
 787                 else if ((flags & ENUM) != 0)
 788                     log.error(pos, "enums.must.be.static");
 789                 // Nested interfaces and enums are always STATIC (Spec ???)
 790                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
 791             } else {
 792                 mask = ClassFlags;
 793             }
 794             // Interfaces are always ABSTRACT
 795             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
 796 
 797             if ((flags & ENUM) != 0) {
 798                 // enums can't be declared abstract or final
 799                 mask &= ~(ABSTRACT | FINAL);
 800                 implicit |= implicitEnumFinalFlag(tree);
 801             }
 802             // Imply STRICTFP if owner has STRICTFP set.
 803             implicit |= sym.owner.flags_field & STRICTFP;
 804             break;
 805         default:
 806             throw new AssertionError();
 807         }
 808         long illegal = flags & StandardFlags & ~mask;
 809         if (illegal != 0) {
 810             if ((illegal & INTERFACE) != 0) {
 811                 log.error(pos, "intf.not.allowed.here");
 812                 mask |= INTERFACE;
 813             }
 814             else {
 815                 log.error(pos,
 816                           "mod.not.allowed.here", asFlagSet(illegal));
 817             }
 818         }
 819         else if ((sym.kind == TYP ||
 820                   // ISSUE: Disallowing abstract&private is no longer appropriate
 821                   // in the presence of inner classes. Should it be deleted here?
 822                   checkDisjoint(pos, flags,
 823                                 ABSTRACT,
 824                                 PRIVATE | STATIC))
 825                  &&
 826                  checkDisjoint(pos, flags,
 827                                ABSTRACT | INTERFACE,
 828                                FINAL | NATIVE | SYNCHRONIZED)
 829                  &&
 830                  checkDisjoint(pos, flags,
 831                                PUBLIC,
 832                                PRIVATE | PROTECTED)
 833                  &&
 834                  checkDisjoint(pos, flags,
 835                                PRIVATE,
 836                                PUBLIC | PROTECTED)
 837                  &&
 838                  checkDisjoint(pos, flags,
 839                                FINAL,
 840                                VOLATILE)
 841                  &&
 842                  (sym.kind == TYP ||
 843                   checkDisjoint(pos, flags,
 844                                 ABSTRACT | NATIVE,
 845                                 STRICTFP))) {
 846             // skip
 847         }
 848         return flags & (mask | ~StandardFlags) | implicit;
 849     }
 850 
 851 
 852     /** Determine if this enum should be implicitly final.
 853      *
 854      *  If the enum has no specialized enum contants, it is final.
 855      *
 856      *  If the enum does have specialized enum contants, it is
 857      *  <i>not</i> final.
 858      */
 859     private long implicitEnumFinalFlag(JCTree tree) {
 860         if (tree.getTag() != JCTree.CLASSDEF) return 0;
 861         class SpecialTreeVisitor extends JCTree.Visitor {
 862             boolean specialized;
 863             SpecialTreeVisitor() {
 864                 this.specialized = false;
 865             };
 866 
 867             @Override
 868             public void visitTree(JCTree tree) { /* no-op */ }
 869 
 870             @Override
 871             public void visitVarDef(JCVariableDecl tree) {
 872                 if ((tree.mods.flags & ENUM) != 0) {
 873                     if (tree.init instanceof JCNewClass &&
 874                         ((JCNewClass) tree.init).def != null) {
 875                         specialized = true;
 876                     }
 877                 }
 878             }
 879         }
 880 
 881         SpecialTreeVisitor sts = new SpecialTreeVisitor();
 882         JCClassDecl cdef = (JCClassDecl) tree;
 883         for (JCTree defs: cdef.defs) {
 884             defs.accept(sts);
 885             if (sts.specialized) return 0;
 886         }
 887         return FINAL;
 888     }
 889 
 890 /* *************************************************************************
 891  * Type Validation
 892  **************************************************************************/
 893 
 894     /** Validate a type expression. That is,
 895      *  check that all type arguments of a parametric type are within
 896      *  their bounds. This must be done in a second phase after type attributon
 897      *  since a class might have a subclass as type parameter bound. E.g:
 898      *
 899      *  class B<A extends C> { ... }
 900      *  class C extends B<C> { ... }
 901      *
 902      *  and we can't make sure that the bound is already attributed because
 903      *  of possible cycles.
 904      */
 905     private Validator validator = new Validator();
 906 
 907     /** Visitor method: Validate a type expression, if it is not null, catching
 908      *  and reporting any completion failures.
 909      */
 910     void validate(JCTree tree, Env<AttrContext> env) {
 911         try {
 912             if (tree != null) {
 913                 validator.env = env;
 914                 tree.accept(validator);
 915                 checkRaw(tree, env);
 916             }
 917         } catch (CompletionFailure ex) {
 918             completionError(tree.pos(), ex);
 919         }
 920     }
 921     //where
 922     void checkRaw(JCTree tree, Env<AttrContext> env) {
 923         if (lint.isEnabled(Lint.LintCategory.RAW) &&
 924             tree.type.tag == CLASS &&
 925             !TreeInfo.isDiamond(tree) &&
 926             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
 927             tree.type.isRaw()) {
 928             log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
 929         }
 930     }
 931 
 932     /** Visitor method: Validate a list of type expressions.
 933      */
 934     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
 935         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 936             validate(l.head, env);
 937     }
 938 
 939     /** A visitor class for type validation.
 940      */
 941     class Validator extends JCTree.Visitor {
 942 
 943         @Override
 944         public void visitTypeArray(JCArrayTypeTree tree) {
 945             validate(tree.elemtype, env);
 946         }
 947 
 948         @Override
 949         public void visitTypeApply(JCTypeApply tree) {
 950             if (tree.type.tag == CLASS) {
 951                 List<Type> formals = tree.type.tsym.type.allparams();
 952                 List<Type> actuals = tree.type.allparams();
 953                 List<JCExpression> args = tree.arguments;
 954                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
 955                 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
 956 
 957                 // For matching pairs of actual argument types `a' and
 958                 // formal type parameters with declared bound `b' ...
 959                 while (args.nonEmpty() && forms.nonEmpty()) {
 960                     validate(args.head, env);
 961 
 962                     // exact type arguments needs to know their
 963                     // bounds (for upper and lower bound
 964                     // calculations).  So we create new TypeVars with
 965                     // bounds substed with actuals.
 966                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
 967                                                       formals,
 968                                                       actuals));
 969 
 970                     args = args.tail;
 971                     forms = forms.tail;
 972                 }
 973 
 974                 args = tree.arguments;
 975                 List<Type> tvars_cap = types.substBounds(formals,
 976                                           formals,
 977                                           types.capture(tree.type).allparams());
 978                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
 979                     // Let the actual arguments know their bound
 980                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
 981                     args = args.tail;
 982                     tvars_cap = tvars_cap.tail;
 983                 }
 984 
 985                 args = tree.arguments;
 986                 List<Type> tvars = tvars_buf.toList();
 987 
 988                 while (args.nonEmpty() && tvars.nonEmpty()) {
 989                     Type actual = types.subst(args.head.type,
 990                         tree.type.tsym.type.getTypeArguments(),
 991                         tvars_buf.toList());
 992                     checkExtends(args.head.pos(),
 993                                  actual,
 994                                  (TypeVar)tvars.head);
 995                     args = args.tail;
 996                     tvars = tvars.tail;
 997                 }
 998 
 999                 checkCapture(tree);
1000 
1001                 // Check that this type is either fully parameterized, or
1002                 // not parameterized at all.
1003                 if (tree.type.getEnclosingType().isRaw())
1004                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1005                 if (tree.clazz.getTag() == JCTree.SELECT)
1006                     visitSelectInternal((JCFieldAccess)tree.clazz);
1007             }
1008         }
1009 
1010         @Override
1011         public void visitTypeParameter(JCTypeParameter tree) {
1012             validate(tree.bounds, env);
1013             checkClassBounds(tree.pos(), tree.type);
1014         }
1015 
1016         @Override
1017         public void visitWildcard(JCWildcard tree) {
1018             if (tree.inner != null)
1019                 validate(tree.inner, env);
1020         }
1021 
1022         @Override
1023         public void visitSelect(JCFieldAccess tree) {
1024             if (tree.type.tag == CLASS) {
1025                 visitSelectInternal(tree);
1026 
1027                 // Check that this type is either fully parameterized, or
1028                 // not parameterized at all.
1029                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1030                     log.error(tree.pos(), "improperly.formed.type.param.missing");
1031             }
1032         }
1033         public void visitSelectInternal(JCFieldAccess tree) {
1034             if (tree.type.tsym.isStatic() &&
1035                 tree.selected.type.isParameterized()) {
1036                 // The enclosing type is not a class, so we are
1037                 // looking at a static member type.  However, the
1038                 // qualifying expression is parameterized.
1039                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
1040             } else {
1041                 // otherwise validate the rest of the expression
1042                 tree.selected.accept(this);
1043             }
1044         }
1045 
1046         @Override
1047         public void visitAnnotatedType(JCAnnotatedType tree) {
1048             tree.underlyingType.accept(this);
1049         }
1050 
1051         /** Default visitor method: do nothing.
1052          */
1053         @Override
1054         public void visitTree(JCTree tree) {
1055         }
1056 
1057         Env<AttrContext> env;
1058     }
1059 
1060 /* *************************************************************************
1061  * Exception checking
1062  **************************************************************************/
1063 
1064     /* The following methods treat classes as sets that contain
1065      * the class itself and all their subclasses
1066      */
1067 
1068     /** Is given type a subtype of some of the types in given list?
1069      */
1070     boolean subset(Type t, List<Type> ts) {
1071         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1072             if (types.isSubtype(t, l.head)) return true;
1073         return false;
1074     }
1075 
1076     /** Is given type a subtype or supertype of
1077      *  some of the types in given list?
1078      */
1079     boolean intersects(Type t, List<Type> ts) {
1080         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1081             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1082         return false;
1083     }
1084 
1085     /** Add type set to given type list, unless it is a subclass of some class
1086      *  in the list.
1087      */
1088     List<Type> incl(Type t, List<Type> ts) {
1089         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1090     }
1091 
1092     /** Remove type set from type set list.
1093      */
1094     List<Type> excl(Type t, List<Type> ts) {
1095         if (ts.isEmpty()) {
1096             return ts;
1097         } else {
1098             List<Type> ts1 = excl(t, ts.tail);
1099             if (types.isSubtype(ts.head, t)) return ts1;
1100             else if (ts1 == ts.tail) return ts;
1101             else return ts1.prepend(ts.head);
1102         }
1103     }
1104 
1105     /** Form the union of two type set lists.
1106      */
1107     List<Type> union(List<Type> ts1, List<Type> ts2) {
1108         List<Type> ts = ts1;
1109         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1110             ts = incl(l.head, ts);
1111         return ts;
1112     }
1113 
1114     /** Form the difference of two type lists.
1115      */
1116     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1117         List<Type> ts = ts1;
1118         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1119             ts = excl(l.head, ts);
1120         return ts;
1121     }
1122 
1123     /** Form the intersection of two type lists.
1124      */
1125     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1126         List<Type> ts = List.nil();
1127         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1128             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1129         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1130             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1131         return ts;
1132     }
1133 
1134     /** Is exc an exception symbol that need not be declared?
1135      */
1136     boolean isUnchecked(ClassSymbol exc) {
1137         return
1138             exc.kind == ERR ||
1139             exc.isSubClass(syms.errorType.tsym, types) ||
1140             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1141     }
1142 
1143     /** Is exc an exception type that need not be declared?
1144      */
1145     boolean isUnchecked(Type exc) {
1146         return
1147             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
1148             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
1149             exc.tag == BOT;
1150     }
1151 
1152     /** Same, but handling completion failures.
1153      */
1154     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1155         try {
1156             return isUnchecked(exc);
1157         } catch (CompletionFailure ex) {
1158             completionError(pos, ex);
1159             return true;
1160         }
1161     }
1162 
1163     /** Is exc handled by given exception list?
1164      */
1165     boolean isHandled(Type exc, List<Type> handled) {
1166         return isUnchecked(exc) || subset(exc, handled);
1167     }
1168 
1169     /** Return all exceptions in thrown list that are not in handled list.
1170      *  @param thrown     The list of thrown exceptions.
1171      *  @param handled    The list of handled exceptions.
1172      */
1173     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1174         List<Type> unhandled = List.nil();
1175         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1176             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1177         return unhandled;
1178     }
1179 
1180 /* *************************************************************************
1181  * Overriding/Implementation checking
1182  **************************************************************************/
1183 
1184     /** The level of access protection given by a flag set,
1185      *  where PRIVATE is highest and PUBLIC is lowest.
1186      */
1187     static int protection(long flags) {
1188         switch ((short)(flags & AccessFlags)) {
1189         case PRIVATE: return 3;
1190         case PROTECTED: return 1;
1191         default:
1192         case PUBLIC: return 0;
1193         case 0: return 2;
1194         }
1195     }
1196 
1197     /** A customized "cannot override" error message.
1198      *  @param m      The overriding method.
1199      *  @param other  The overridden method.
1200      *  @return       An internationalized string.
1201      */
1202     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1203         String key;
1204         if ((other.owner.flags() & INTERFACE) == 0)
1205             key = "cant.override";
1206         else if ((m.owner.flags() & INTERFACE) == 0)
1207             key = "cant.implement";
1208         else
1209             key = "clashes.with";
1210         return diags.fragment(key, m, m.location(), other, other.location());
1211     }
1212 
1213     /** A customized "override" warning message.
1214      *  @param m      The overriding method.
1215      *  @param other  The overridden method.
1216      *  @return       An internationalized string.
1217      */
1218     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1219         String key;
1220         if ((other.owner.flags() & INTERFACE) == 0)
1221             key = "unchecked.override";
1222         else if ((m.owner.flags() & INTERFACE) == 0)
1223             key = "unchecked.implement";
1224         else
1225             key = "unchecked.clash.with";
1226         return diags.fragment(key, m, m.location(), other, other.location());
1227     }
1228 
1229     /** A customized "override" warning message.
1230      *  @param m      The overriding method.
1231      *  @param other  The overridden method.
1232      *  @return       An internationalized string.
1233      */
1234     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1235         String key;
1236         if ((other.owner.flags() & INTERFACE) == 0)
1237             key = "varargs.override";
1238         else  if ((m.owner.flags() & INTERFACE) == 0)
1239             key = "varargs.implement";
1240         else
1241             key = "varargs.clash.with";
1242         return diags.fragment(key, m, m.location(), other, other.location());
1243     }
1244 
1245     /** Check that this method conforms with overridden method 'other'.
1246      *  where `origin' is the class where checking started.
1247      *  Complications:
1248      *  (1) Do not check overriding of synthetic methods
1249      *      (reason: they might be final).
1250      *      todo: check whether this is still necessary.
1251      *  (2) Admit the case where an interface proxy throws fewer exceptions
1252      *      than the method it implements. Augment the proxy methods with the
1253      *      undeclared exceptions in this case.
1254      *  (3) When generics are enabled, admit the case where an interface proxy
1255      *      has a result type
1256      *      extended by the result type of the method it implements.
1257      *      Change the proxies result type to the smaller type in this case.
1258      *
1259      *  @param tree         The tree from which positions
1260      *                      are extracted for errors.
1261      *  @param m            The overriding method.
1262      *  @param other        The overridden method.
1263      *  @param origin       The class of which the overriding method
1264      *                      is a member.
1265      */
1266     void checkOverride(JCTree tree,
1267                        MethodSymbol m,
1268                        MethodSymbol other,
1269                        ClassSymbol origin) {
1270         // Don't check overriding of synthetic methods or by bridge methods.
1271         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1272             return;
1273         }
1274 
1275         // Error if static method overrides instance method (JLS 8.4.6.2).
1276         if ((m.flags() & STATIC) != 0 &&
1277                    (other.flags() & STATIC) == 0) {
1278             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1279                       cannotOverride(m, other));
1280             return;
1281         }
1282 
1283         // Error if instance method overrides static or final
1284         // method (JLS 8.4.6.1).
1285         if ((other.flags() & FINAL) != 0 ||
1286                  (m.flags() & STATIC) == 0 &&
1287                  (other.flags() & STATIC) != 0) {
1288             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1289                       cannotOverride(m, other),
1290                       asFlagSet(other.flags() & (FINAL | STATIC)));
1291             return;
1292         }
1293 
1294         if ((m.owner.flags() & ANNOTATION) != 0) {
1295             // handled in validateAnnotationMethod
1296             return;
1297         }
1298 
1299         // Error if overriding method has weaker access (JLS 8.4.6.3).
1300         if ((origin.flags() & INTERFACE) == 0 &&
1301                  protection(m.flags()) > protection(other.flags())) {
1302             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1303                       cannotOverride(m, other),
1304                       other.flags() == 0 ?
1305                           Flag.PACKAGE :
1306                           asFlagSet(other.flags() & AccessFlags));
1307             return;
1308         }
1309 
1310         Type mt = types.memberType(origin.type, m);
1311         Type ot = types.memberType(origin.type, other);
1312         // Error if overriding result type is different
1313         // (or, in the case of generics mode, not a subtype) of
1314         // overridden result type. We have to rename any type parameters
1315         // before comparing types.
1316         List<Type> mtvars = mt.getTypeArguments();
1317         List<Type> otvars = ot.getTypeArguments();
1318         Type mtres = mt.getReturnType();
1319         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1320 
1321         overrideWarner.warned = false;
1322         boolean resultTypesOK =
1323             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1324         if (!resultTypesOK) {
1325             if (!allowCovariantReturns &&
1326                 m.owner != origin &&
1327                 m.owner.isSubClass(other.owner, types)) {
1328                 // allow limited interoperability with covariant returns
1329             } else {
1330                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1331                           "override.incompatible.ret",
1332                           cannotOverride(m, other),
1333                           mtres, otres);
1334                 return;
1335             }
1336         } else if (overrideWarner.warned) {
1337             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1338                     "override.unchecked.ret",
1339                     uncheckedOverrides(m, other),
1340                     mtres, otres);
1341         }
1342 
1343         // Error if overriding method throws an exception not reported
1344         // by overridden method.
1345         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1346         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1347         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1348         if (unhandledErased.nonEmpty()) {
1349             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1350                       "override.meth.doesnt.throw",
1351                       cannotOverride(m, other),
1352                       unhandledUnerased.head);
1353             return;
1354         }
1355         else if (unhandledUnerased.nonEmpty()) {
1356             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1357                           "override.unchecked.thrown",
1358                          cannotOverride(m, other),
1359                          unhandledUnerased.head);
1360             return;
1361         }
1362 
1363         // Optional warning if varargs don't agree
1364         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1365             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
1366             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1367                         ((m.flags() & Flags.VARARGS) != 0)
1368                         ? "override.varargs.missing"
1369                         : "override.varargs.extra",
1370                         varargsOverrides(m, other));
1371         }
1372 
1373         // Warn if instance method overrides bridge method (compiler spec ??)
1374         if ((other.flags() & BRIDGE) != 0) {
1375             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1376                         uncheckedOverrides(m, other));
1377         }
1378 
1379         // Warn if a deprecated method overridden by a non-deprecated one.
1380         if ((other.flags() & DEPRECATED) != 0
1381             && (m.flags() & DEPRECATED) == 0
1382             && m.outermostClass() != other.outermostClass()
1383             && !isDeprecatedOverrideIgnorable(other, origin)) {
1384             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
1385         }
1386     }
1387     // where
1388         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1389             // If the method, m, is defined in an interface, then ignore the issue if the method
1390             // is only inherited via a supertype and also implemented in the supertype,
1391             // because in that case, we will rediscover the issue when examining the method
1392             // in the supertype.
1393             // If the method, m, is not defined in an interface, then the only time we need to
1394             // address the issue is when the method is the supertype implemementation: any other
1395             // case, we will have dealt with when examining the supertype classes
1396             ClassSymbol mc = m.enclClass();
1397             Type st = types.supertype(origin.type);
1398             if (st.tag != CLASS)
1399                 return true;
1400             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1401 
1402             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1403                 List<Type> intfs = types.interfaces(origin.type);
1404                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1405             }
1406             else
1407                 return (stimpl != m);
1408         }
1409 
1410 
1411     // used to check if there were any unchecked conversions
1412     Warner overrideWarner = new Warner();
1413 
1414     /** Check that a class does not inherit two concrete methods
1415      *  with the same signature.
1416      *  @param pos          Position to be used for error reporting.
1417      *  @param site         The class type to be checked.
1418      */
1419     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1420         Type sup = types.supertype(site);
1421         if (sup.tag != CLASS) return;
1422 
1423         for (Type t1 = sup;
1424              t1.tsym.type.isParameterized();
1425              t1 = types.supertype(t1)) {
1426             for (Scope.Entry e1 = t1.tsym.members().elems;
1427                  e1 != null;
1428                  e1 = e1.sibling) {
1429                 Symbol s1 = e1.sym;
1430                 if (s1.kind != MTH ||
1431                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1432                     !s1.isInheritedIn(site.tsym, types) ||
1433                     ((MethodSymbol)s1).implementation(site.tsym,
1434                                                       types,
1435                                                       true) != s1)
1436                     continue;
1437                 Type st1 = types.memberType(t1, s1);
1438                 int s1ArgsLength = st1.getParameterTypes().length();
1439                 if (st1 == s1.type) continue;
1440 
1441                 for (Type t2 = sup;
1442                      t2.tag == CLASS;
1443                      t2 = types.supertype(t2)) {
1444                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
1445                          e2.scope != null;
1446                          e2 = e2.next()) {
1447                         Symbol s2 = e2.sym;
1448                         if (s2 == s1 ||
1449                             s2.kind != MTH ||
1450                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1451                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1452                             !s2.isInheritedIn(site.tsym, types) ||
1453                             ((MethodSymbol)s2).implementation(site.tsym,
1454                                                               types,
1455                                                               true) != s2)
1456                             continue;
1457                         Type st2 = types.memberType(t2, s2);
1458                         if (types.overrideEquivalent(st1, st2))
1459                             log.error(pos, "concrete.inheritance.conflict",
1460                                       s1, t1, s2, t2, sup);
1461                     }
1462                 }
1463             }
1464         }
1465     }
1466 
1467     /** Check that classes (or interfaces) do not each define an abstract
1468      *  method with same name and arguments but incompatible return types.
1469      *  @param pos          Position to be used for error reporting.
1470      *  @param t1           The first argument type.
1471      *  @param t2           The second argument type.
1472      */
1473     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1474                                             Type t1,
1475                                             Type t2) {
1476         return checkCompatibleAbstracts(pos, t1, t2,
1477                                         types.makeCompoundType(t1, t2));
1478     }
1479 
1480     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1481                                             Type t1,
1482                                             Type t2,
1483                                             Type site) {
1484         Symbol sym = firstIncompatibility(t1, t2, site);
1485         if (sym != null) {
1486             log.error(pos, "types.incompatible.diff.ret",
1487                       t1, t2, sym.name +
1488                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
1489             return false;
1490         }
1491         return true;
1492     }
1493 
1494     /** Return the first method which is defined with same args
1495      *  but different return types in two given interfaces, or null if none
1496      *  exists.
1497      *  @param t1     The first type.
1498      *  @param t2     The second type.
1499      *  @param site   The most derived type.
1500      *  @returns symbol from t2 that conflicts with one in t1.
1501      */
1502     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
1503         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
1504         closure(t1, interfaces1);
1505         Map<TypeSymbol,Type> interfaces2;
1506         if (t1 == t2)
1507             interfaces2 = interfaces1;
1508         else
1509             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
1510 
1511         for (Type t3 : interfaces1.values()) {
1512             for (Type t4 : interfaces2.values()) {
1513                 Symbol s = firstDirectIncompatibility(t3, t4, site);
1514                 if (s != null) return s;
1515             }
1516         }
1517         return null;
1518     }
1519 
1520     /** Compute all the supertypes of t, indexed by type symbol. */
1521     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1522         if (t.tag != CLASS) return;
1523         if (typeMap.put(t.tsym, t) == null) {
1524             closure(types.supertype(t), typeMap);
1525             for (Type i : types.interfaces(t))
1526                 closure(i, typeMap);
1527         }
1528     }
1529 
1530     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1531     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1532         if (t.tag != CLASS) return;
1533         if (typesSkip.get(t.tsym) != null) return;
1534         if (typeMap.put(t.tsym, t) == null) {
1535             closure(types.supertype(t), typesSkip, typeMap);
1536             for (Type i : types.interfaces(t))
1537                 closure(i, typesSkip, typeMap);
1538         }
1539     }
1540 
1541     /** Return the first method in t2 that conflicts with a method from t1. */
1542     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
1543         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
1544             Symbol s1 = e1.sym;
1545             Type st1 = null;
1546             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
1547             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1548             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1549             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
1550                 Symbol s2 = e2.sym;
1551                 if (s1 == s2) continue;
1552                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
1553                 if (st1 == null) st1 = types.memberType(t1, s1);
1554                 Type st2 = types.memberType(t2, s2);
1555                 if (types.overrideEquivalent(st1, st2)) {
1556                     List<Type> tvars1 = st1.getTypeArguments();
1557                     List<Type> tvars2 = st2.getTypeArguments();
1558                     Type rt1 = st1.getReturnType();
1559                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1560                     boolean compat =
1561                         types.isSameType(rt1, rt2) ||
1562                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
1563                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
1564                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
1565                          checkCommonOverriderIn(s1,s2,site);
1566                     if (!compat) return s2;
1567                 }
1568             }
1569         }
1570         return null;
1571     }
1572     //WHERE
1573     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1574         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
1575         Type st1 = types.memberType(site, s1);
1576         Type st2 = types.memberType(site, s2);
1577         closure(site, supertypes);
1578         for (Type t : supertypes.values()) {
1579             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
1580                 Symbol s3 = e.sym;
1581                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1582                 Type st3 = types.memberType(site,s3);
1583                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
1584                     if (s3.owner == site.tsym) {
1585                         return true;
1586                     }
1587                     List<Type> tvars1 = st1.getTypeArguments();
1588                     List<Type> tvars2 = st2.getTypeArguments();
1589                     List<Type> tvars3 = st3.getTypeArguments();
1590                     Type rt1 = st1.getReturnType();
1591                     Type rt2 = st2.getReturnType();
1592                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
1593                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
1594                     boolean compat =
1595                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
1596                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
1597                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
1598                     if (compat)
1599                         return true;
1600                 }
1601             }
1602         }
1603         return false;
1604     }
1605 
1606     /** Check that a given method conforms with any method it overrides.
1607      *  @param tree         The tree from which positions are extracted
1608      *                      for errors.
1609      *  @param m            The overriding method.
1610      */
1611     void checkOverride(JCTree tree, MethodSymbol m) {
1612         ClassSymbol origin = (ClassSymbol)m.owner;
1613         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1614             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1615                 log.error(tree.pos(), "enum.no.finalize");
1616                 return;
1617             }
1618         for (Type t = types.supertype(origin.type); t.tag == CLASS;
1619              t = types.supertype(t)) {
1620             TypeSymbol c = t.tsym;
1621             Scope.Entry e = c.members().lookup(m.name);
1622             while (e.scope != null) {
1623                 if (m.overrides(e.sym, origin, types, false))
1624                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
1625                 else if (e.sym.kind == MTH &&
1626                         e.sym.isInheritedIn(origin, types) &&
1627                         (e.sym.flags() & SYNTHETIC) == 0 &&
1628                         !m.isConstructor()) {
1629                     Type er1 = m.erasure(types);
1630                     Type er2 = e.sym.erasure(types);
1631                     if (types.isSameTypes(er1.getParameterTypes(),
1632                             er2.getParameterTypes())) {
1633                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1634                                     "name.clash.same.erasure.no.override",
1635                                     m, m.location(),
1636                                     e.sym, e.sym.location());
1637                     }
1638                 }
1639                 e = e.next();
1640             }
1641         }
1642     }
1643 
1644     /** Check that all abstract members of given class have definitions.
1645      *  @param pos          Position to be used for error reporting.
1646      *  @param c            The class.
1647      */
1648     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
1649         try {
1650             MethodSymbol undef = firstUndef(c, c);
1651             if (undef != null) {
1652                 if ((c.flags() & ENUM) != 0 &&
1653                     types.supertype(c.type).tsym == syms.enumSym &&
1654                     (c.flags() & FINAL) == 0) {
1655                     // add the ABSTRACT flag to an enum
1656                     c.flags_field |= ABSTRACT;
1657                 } else {
1658                     MethodSymbol undef1 =
1659                         new MethodSymbol(undef.flags(), undef.name,
1660                                          types.memberType(c.type, undef), undef.owner);
1661                     log.error(pos, "does.not.override.abstract",
1662                               c, undef1, undef1.location());
1663                 }
1664             }
1665         } catch (CompletionFailure ex) {
1666             completionError(pos, ex);
1667         }
1668     }
1669 //where
1670         /** Return first abstract member of class `c' that is not defined
1671          *  in `impl', null if there is none.
1672          */
1673         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
1674             MethodSymbol undef = null;
1675             // Do not bother to search in classes that are not abstract,
1676             // since they cannot have abstract members.
1677             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
1678                 Scope s = c.members();
1679                 for (Scope.Entry e = s.elems;
1680                      undef == null && e != null;
1681                      e = e.sibling) {
1682                     if (e.sym.kind == MTH &&
1683                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
1684                         MethodSymbol absmeth = (MethodSymbol)e.sym;
1685                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
1686                         if (implmeth == null || implmeth == absmeth)
1687                             undef = absmeth;
1688                     }
1689                 }
1690                 if (undef == null) {
1691                     Type st = types.supertype(c.type);
1692                     if (st.tag == CLASS)
1693                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
1694                 }
1695                 for (List<Type> l = types.interfaces(c.type);
1696                      undef == null && l.nonEmpty();
1697                      l = l.tail) {
1698                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
1699                 }
1700             }
1701             return undef;
1702         }
1703 
1704     /** Check for cyclic references. Issue an error if the
1705      *  symbol of the type referred to has a LOCKED flag set.
1706      *
1707      *  @param pos      Position to be used for error reporting.
1708      *  @param t        The type referred to.
1709      */
1710     void checkNonCyclic(DiagnosticPosition pos, Type t) {
1711         checkNonCyclicInternal(pos, t);
1712     }
1713 
1714 
1715     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
1716         checkNonCyclic1(pos, t, List.<TypeVar>nil());
1717     }
1718 
1719     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
1720         final TypeVar tv;
1721         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
1722             return;
1723         if (seen.contains(t)) {
1724             tv = (TypeVar)t;
1725             tv.bound = types.createErrorType(t);
1726             log.error(pos, "cyclic.inheritance", t);
1727         } else if (t.tag == TYPEVAR) {
1728             tv = (TypeVar)t;
1729             seen = seen.prepend(tv);
1730             for (Type b : types.getBounds(tv))
1731                 checkNonCyclic1(pos, b, seen);
1732         }
1733     }
1734 
1735     /** Check for cyclic references. Issue an error if the
1736      *  symbol of the type referred to has a LOCKED flag set.
1737      *
1738      *  @param pos      Position to be used for error reporting.
1739      *  @param t        The type referred to.
1740      *  @returns        True if the check completed on all attributed classes
1741      */
1742     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
1743         boolean complete = true; // was the check complete?
1744         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
1745         Symbol c = t.tsym;
1746         if ((c.flags_field & ACYCLIC) != 0) return true;
1747 
1748         if ((c.flags_field & LOCKED) != 0) {
1749             noteCyclic(pos, (ClassSymbol)c);
1750         } else if (!c.type.isErroneous()) {
1751             try {
1752                 c.flags_field |= LOCKED;
1753                 if (c.type.tag == CLASS) {
1754                     ClassType clazz = (ClassType)c.type;
1755                     if (clazz.interfaces_field != null)
1756                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
1757                             complete &= checkNonCyclicInternal(pos, l.head);
1758                     if (clazz.supertype_field != null) {
1759                         Type st = clazz.supertype_field;
1760                         if (st != null && st.tag == CLASS)
1761                             complete &= checkNonCyclicInternal(pos, st);
1762                     }
1763                     if (c.owner.kind == TYP)
1764                         complete &= checkNonCyclicInternal(pos, c.owner.type);
1765                 }
1766             } finally {
1767                 c.flags_field &= ~LOCKED;
1768             }
1769         }
1770         if (complete)
1771             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
1772         if (complete) c.flags_field |= ACYCLIC;
1773         return complete;
1774     }
1775 
1776     /** Note that we found an inheritance cycle. */
1777     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
1778         log.error(pos, "cyclic.inheritance", c);
1779         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
1780             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
1781         Type st = types.supertype(c.type);
1782         if (st.tag == CLASS)
1783             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
1784         c.type = types.createErrorType(c, c.type);
1785         c.flags_field |= ACYCLIC;
1786     }
1787 
1788     /** Check that all methods which implement some
1789      *  method conform to the method they implement.
1790      *  @param tree         The class definition whose members are checked.
1791      */
1792     void checkImplementations(JCClassDecl tree) {
1793         checkImplementations(tree, tree.sym);
1794     }
1795 //where
1796         /** Check that all methods which implement some
1797          *  method in `ic' conform to the method they implement.
1798          */
1799         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
1800             ClassSymbol origin = tree.sym;
1801             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
1802                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
1803                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
1804                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
1805                         if (e.sym.kind == MTH &&
1806                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
1807                             MethodSymbol absmeth = (MethodSymbol)e.sym;
1808                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
1809                             if (implmeth != null && implmeth != absmeth &&
1810                                 (implmeth.owner.flags() & INTERFACE) ==
1811                                 (origin.flags() & INTERFACE)) {
1812                                 // don't check if implmeth is in a class, yet
1813                                 // origin is an interface. This case arises only
1814                                 // if implmeth is declared in Object. The reason is
1815                                 // that interfaces really don't inherit from
1816                                 // Object it's just that the compiler represents
1817                                 // things that way.
1818                                 checkOverride(tree, implmeth, absmeth, origin);
1819                             }
1820                         }
1821                     }
1822                 }
1823             }
1824         }
1825 
1826     /** Check that all abstract methods implemented by a class are
1827      *  mutually compatible.
1828      *  @param pos          Position to be used for error reporting.
1829      *  @param c            The class whose interfaces are checked.
1830      */
1831     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
1832         List<Type> supertypes = types.interfaces(c);
1833         Type supertype = types.supertype(c);
1834         if (supertype.tag == CLASS &&
1835             (supertype.tsym.flags() & ABSTRACT) != 0)
1836             supertypes = supertypes.prepend(supertype);
1837         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
1838             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
1839                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
1840                 return;
1841             for (List<Type> m = supertypes; m != l; m = m.tail)
1842                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
1843                     return;
1844         }
1845         checkCompatibleConcretes(pos, c);
1846     }
1847 
1848     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
1849         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
1850             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
1851                 // VM allows methods and variables with differing types
1852                 if (sym.kind == e.sym.kind &&
1853                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
1854                     sym != e.sym &&
1855                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
1856                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
1857                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
1858                     return;
1859                 }
1860             }
1861         }
1862     }
1863 
1864     /** Report a conflict between a user symbol and a synthetic symbol.
1865      */
1866     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
1867         if (!sym.type.isErroneous()) {
1868             if (warnOnSyntheticConflicts) {
1869                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
1870             }
1871             else {
1872                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
1873             }
1874         }
1875     }
1876 
1877     /** Check that class c does not implement directly or indirectly
1878      *  the same parameterized interface with two different argument lists.
1879      *  @param pos          Position to be used for error reporting.
1880      *  @param type         The type whose interfaces are checked.
1881      */
1882     void checkClassBounds(DiagnosticPosition pos, Type type) {
1883         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
1884     }
1885 //where
1886         /** Enter all interfaces of type `type' into the hash table `seensofar'
1887          *  with their class symbol as key and their type as value. Make
1888          *  sure no class is entered with two different types.
1889          */
1890         void checkClassBounds(DiagnosticPosition pos,
1891                               Map<TypeSymbol,Type> seensofar,
1892                               Type type) {
1893             if (type.isErroneous()) return;
1894             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
1895                 Type it = l.head;
1896                 Type oldit = seensofar.put(it.tsym, it);
1897                 if (oldit != null) {
1898                     List<Type> oldparams = oldit.allparams();
1899                     List<Type> newparams = it.allparams();
1900                     if (!types.containsTypeEquivalent(oldparams, newparams))
1901                         log.error(pos, "cant.inherit.diff.arg",
1902                                   it.tsym, Type.toString(oldparams),
1903                                   Type.toString(newparams));
1904                 }
1905                 checkClassBounds(pos, seensofar, it);
1906             }
1907             Type st = types.supertype(type);
1908             if (st != null) checkClassBounds(pos, seensofar, st);
1909         }
1910 
1911     /** Enter interface into into set.
1912      *  If it existed already, issue a "repeated interface" error.
1913      */
1914     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
1915         if (its.contains(it))
1916             log.error(pos, "repeated.interface");
1917         else {
1918             its.add(it);
1919         }
1920     }
1921 
1922 /* *************************************************************************
1923  * Check annotations
1924  **************************************************************************/
1925 
1926     /** Annotation types are restricted to primitives, String, an
1927      *  enum, an annotation, Class, Class<?>, Class<? extends
1928      *  Anything>, arrays of the preceding.
1929      */
1930     void validateAnnotationType(JCTree restype) {
1931         // restype may be null if an error occurred, so don't bother validating it
1932         if (restype != null) {
1933             validateAnnotationType(restype.pos(), restype.type);
1934         }
1935     }
1936 
1937     void validateAnnotationType(DiagnosticPosition pos, Type type) {
1938         if (type.isPrimitive()) return;
1939         if (types.isSameType(type, syms.stringType)) return;
1940         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
1941         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
1942         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
1943         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
1944             validateAnnotationType(pos, types.elemtype(type));
1945             return;
1946         }
1947         log.error(pos, "invalid.annotation.member.type");
1948     }
1949 
1950     /**
1951      * "It is also a compile-time error if any method declared in an
1952      * annotation type has a signature that is override-equivalent to
1953      * that of any public or protected method declared in class Object
1954      * or in the interface annotation.Annotation."
1955      *
1956      * @jls3 9.6 Annotation Types
1957      */
1958     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
1959         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
1960             Scope s = sup.tsym.members();
1961             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
1962                 if (e.sym.kind == MTH &&
1963                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
1964                     types.overrideEquivalent(m.type, e.sym.type))
1965                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
1966             }
1967         }
1968     }
1969 
1970     /** Check the annotations of a symbol.
1971      */
1972     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
1973         if (skipAnnotations) return;
1974         for (JCAnnotation a : annotations)
1975             validateAnnotation(a, s);
1976     }
1977 
1978     /** Check the type annotations
1979      */
1980     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
1981         if (skipAnnotations) return;
1982         for (JCTypeAnnotation a : annotations)
1983             validateTypeAnnotation(a, isTypeParameter);
1984     }
1985 
1986     /** Check an annotation of a symbol.
1987      */
1988     public void validateAnnotation(JCAnnotation a, Symbol s) {
1989         validateAnnotation(a);
1990 
1991         if (!annotationApplicable(a, s))
1992             log.error(a.pos(), "annotation.type.not.applicable");
1993 
1994         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
1995             if (!isOverrider(s))
1996                 log.error(a.pos(), "method.does.not.override.superclass");
1997         }
1998     }
1999 
2000     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
2001         if (a.type == null)
2002             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
2003         validateAnnotation(a);
2004 
2005         if (!isTypeAnnotation(a, isTypeParameter))
2006             log.error(a.pos(), "annotation.type.not.applicable");
2007     }
2008 
2009     /** Is s a method symbol that overrides a method in a superclass? */
2010     boolean isOverrider(Symbol s) {
2011         if (s.kind != MTH || s.isStatic())
2012             return false;
2013         MethodSymbol m = (MethodSymbol)s;
2014         TypeSymbol owner = (TypeSymbol)m.owner;
2015         for (Type sup : types.closure(owner.type)) {
2016             if (sup == owner.type)
2017                 continue; // skip "this"
2018             Scope scope = sup.tsym.members();
2019             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
2020                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
2021                     return true;
2022             }
2023         }
2024         return false;
2025     }
2026 
2027     /** Is the annotation applicable to type annotations */
2028     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
2029         Attribute.Compound atTarget =
2030             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
2031         if (atTarget == null) return true;
2032         Attribute atValue = atTarget.member(names.value);
2033         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
2034         Attribute.Array arr = (Attribute.Array) atValue;
2035         for (Attribute app : arr.values) {
2036             if (!(app instanceof Attribute.Enum)) return true; // recovery
2037             Attribute.Enum e = (Attribute.Enum) app;
2038             if (!isTypeParameter && e.value.name == names.TYPE_USE)
2039                 return true;
2040             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
2041                 return true;
2042         }
2043         return false;
2044     }
2045 
2046     /** Is the annotation applicable to the symbol? */
2047     boolean annotationApplicable(JCAnnotation a, Symbol s) {
2048         Attribute.Compound atTarget =
2049             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
2050         if (atTarget == null) return true;
2051         Attribute atValue = atTarget.member(names.value);
2052         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
2053         Attribute.Array arr = (Attribute.Array) atValue;
2054         for (Attribute app : arr.values) {
2055             if (!(app instanceof Attribute.Enum)) return true; // recovery
2056             Attribute.Enum e = (Attribute.Enum) app;
2057             if (e.value.name == names.TYPE)
2058                 { if (s.kind == TYP) return true; }
2059             else if (e.value.name == names.FIELD)
2060                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
2061             else if (e.value.name == names.METHOD)
2062                 { if (s.kind == MTH && !s.isConstructor()) return true; }
2063             else if (e.value.name == names.PARAMETER)
2064                 { if (s.kind == VAR &&
2065                       s.owner.kind == MTH &&
2066                       (s.flags() & PARAMETER) != 0)
2067                     return true;
2068                 }
2069             else if (e.value.name == names.CONSTRUCTOR)
2070                 { if (s.kind == MTH && s.isConstructor()) return true; }
2071             else if (e.value.name == names.LOCAL_VARIABLE)
2072                 { if (s.kind == VAR && s.owner.kind == MTH &&
2073                       (s.flags() & PARAMETER) == 0)
2074                     return true;
2075                 }
2076             else if (e.value.name == names.ANNOTATION_TYPE)
2077                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
2078                     return true;
2079                 }
2080             else if (e.value.name == names.PACKAGE)
2081                 { if (s.kind == PCK) return true; }
2082             else if (e.value.name == names.TYPE_USE)
2083                 { if (s.kind == TYP ||
2084                       s.kind == VAR ||
2085                       (s.kind == MTH && !s.isConstructor() &&
2086                        s.type.getReturnType().tag != VOID))
2087                     return true;
2088                 }
2089             else
2090                 return true; // recovery
2091         }
2092         return false;
2093     }
2094 
2095     /** Check an annotation value.
2096      */
2097     public void validateAnnotation(JCAnnotation a) {
2098         if (a.type.isErroneous()) return;
2099 
2100         // collect an inventory of the members
2101         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
2102         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
2103              e != null;
2104              e = e.sibling)
2105             if (e.sym.kind == MTH)
2106                 members.add((MethodSymbol) e.sym);
2107 
2108         // count them off as they're annotated
2109         for (JCTree arg : a.args) {
2110             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
2111             JCAssign assign = (JCAssign) arg;
2112             Symbol m = TreeInfo.symbol(assign.lhs);
2113             if (m == null || m.type.isErroneous()) continue;
2114             if (!members.remove(m))
2115                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
2116                           m.name, a.type);
2117             if (assign.rhs.getTag() == ANNOTATION)
2118                 validateAnnotation((JCAnnotation)assign.rhs);
2119         }
2120 
2121         // all the remaining ones better have default values
2122         for (MethodSymbol m : members)
2123             if (m.defaultValue == null && !m.type.isErroneous())
2124                 log.error(a.pos(), "annotation.missing.default.value",
2125                           a.type, m.name);
2126 
2127         // special case: java.lang.annotation.Target must not have
2128         // repeated values in its value member
2129         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
2130             a.args.tail == null)
2131             return;
2132 
2133         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
2134         JCAssign assign = (JCAssign) a.args.head;
2135         Symbol m = TreeInfo.symbol(assign.lhs);
2136         if (m.name != names.value) return;
2137         JCTree rhs = assign.rhs;
2138         if (rhs.getTag() != JCTree.NEWARRAY) return;
2139         JCNewArray na = (JCNewArray) rhs;
2140         Set<Symbol> targets = new HashSet<Symbol>();
2141         for (JCTree elem : na.elems) {
2142             if (!targets.add(TreeInfo.symbol(elem))) {
2143                 log.error(elem.pos(), "repeated.annotation.target");
2144             }
2145         }
2146     }
2147 
2148     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
2149         if (allowAnnotations &&
2150             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
2151             (s.flags() & DEPRECATED) != 0 &&
2152             !syms.deprecatedType.isErroneous() &&
2153             s.attribute(syms.deprecatedType.tsym) == null) {
2154             log.warning(pos, "missing.deprecated.annotation");
2155         }
2156     }
2157 
2158 /* *************************************************************************
2159  * Check for recursive annotation elements.
2160  **************************************************************************/
2161 
2162     /** Check for cycles in the graph of annotation elements.
2163      */
2164     void checkNonCyclicElements(JCClassDecl tree) {
2165         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
2166         assert (tree.sym.flags_field & LOCKED) == 0;
2167         try {
2168             tree.sym.flags_field |= LOCKED;
2169             for (JCTree def : tree.defs) {
2170                 if (def.getTag() != JCTree.METHODDEF) continue;
2171                 JCMethodDecl meth = (JCMethodDecl)def;
2172                 checkAnnotationResType(meth.pos(), meth.restype.type);
2173             }
2174         } finally {
2175             tree.sym.flags_field &= ~LOCKED;
2176             tree.sym.flags_field |= ACYCLIC_ANN;
2177         }
2178     }
2179 
2180     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
2181         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
2182             return;
2183         if ((tsym.flags_field & LOCKED) != 0) {
2184             log.error(pos, "cyclic.annotation.element");
2185             return;
2186         }
2187         try {
2188             tsym.flags_field |= LOCKED;
2189             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
2190                 Symbol s = e.sym;
2191                 if (s.kind != Kinds.MTH)
2192                     continue;
2193                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
2194             }
2195         } finally {
2196             tsym.flags_field &= ~LOCKED;
2197             tsym.flags_field |= ACYCLIC_ANN;
2198         }
2199     }
2200 
2201     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
2202         switch (type.tag) {
2203         case TypeTags.CLASS:
2204             if ((type.tsym.flags() & ANNOTATION) != 0)
2205                 checkNonCyclicElementsInternal(pos, type.tsym);
2206             break;
2207         case TypeTags.ARRAY:
2208             checkAnnotationResType(pos, types.elemtype(type));
2209             break;
2210         default:
2211             break; // int etc
2212         }
2213     }
2214 
2215 /* *************************************************************************
2216  * Check for cycles in the constructor call graph.
2217  **************************************************************************/
2218 
2219     /** Check for cycles in the graph of constructors calling other
2220      *  constructors.
2221      */
2222     void checkCyclicConstructors(JCClassDecl tree) {
2223         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
2224 
2225         // enter each constructor this-call into the map
2226         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
2227             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
2228             if (app == null) continue;
2229             JCMethodDecl meth = (JCMethodDecl) l.head;
2230             if (TreeInfo.name(app.meth) == names._this) {
2231                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
2232             } else {
2233                 meth.sym.flags_field |= ACYCLIC;
2234             }
2235         }
2236 
2237         // Check for cycles in the map
2238         Symbol[] ctors = new Symbol[0];
2239         ctors = callMap.keySet().toArray(ctors);
2240         for (Symbol caller : ctors) {
2241             checkCyclicConstructor(tree, caller, callMap);
2242         }
2243     }
2244 
2245     /** Look in the map to see if the given constructor is part of a
2246      *  call cycle.
2247      */
2248     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
2249                                         Map<Symbol,Symbol> callMap) {
2250         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
2251             if ((ctor.flags_field & LOCKED) != 0) {
2252                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
2253                           "recursive.ctor.invocation");
2254             } else {
2255                 ctor.flags_field |= LOCKED;
2256                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
2257                 ctor.flags_field &= ~LOCKED;
2258             }
2259             ctor.flags_field |= ACYCLIC;
2260         }
2261     }
2262 
2263 /* *************************************************************************
2264  * Miscellaneous
2265  **************************************************************************/
2266 
2267     /**
2268      * Return the opcode of the operator but emit an error if it is an
2269      * error.
2270      * @param pos        position for error reporting.
2271      * @param operator   an operator
2272      * @param tag        a tree tag
2273      * @param left       type of left hand side
2274      * @param right      type of right hand side
2275      */
2276     int checkOperator(DiagnosticPosition pos,
2277                        OperatorSymbol operator,
2278                        int tag,
2279                        Type left,
2280                        Type right) {
2281         if (operator.opcode == ByteCodes.error) {
2282             log.error(pos,
2283                       "operator.cant.be.applied",
2284                       treeinfo.operatorName(tag),
2285                       List.of(left, right));
2286         }
2287         return operator.opcode;
2288     }
2289 
2290 
2291     /**
2292      *  Check for division by integer constant zero
2293      *  @param pos           Position for error reporting.
2294      *  @param operator      The operator for the expression
2295      *  @param operand       The right hand operand for the expression
2296      */
2297     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
2298         if (operand.constValue() != null
2299             && lint.isEnabled(Lint.LintCategory.DIVZERO)
2300             && operand.tag <= LONG
2301             && ((Number) (operand.constValue())).longValue() == 0) {
2302             int opc = ((OperatorSymbol)operator).opcode;
2303             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
2304                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
2305                 log.warning(pos, "div.zero");
2306             }
2307         }
2308     }
2309 
2310     /**
2311      * Check for empty statements after if
2312      */
2313     void checkEmptyIf(JCIf tree) {
2314         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
2315             log.warning(tree.thenpart.pos(), "empty.if");
2316     }
2317 
2318     /** Check that symbol is unique in given scope.
2319      *  @param pos           Position for error reporting.
2320      *  @param sym           The symbol.
2321      *  @param s             The scope.
2322      */
2323     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
2324         if (sym.type.isErroneous())
2325             return true;
2326         if (sym.owner.name == names.any) return false;
2327         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
2328             if (sym != e.sym &&
2329                 sym.kind == e.sym.kind &&
2330                 sym.name != names.error &&
2331                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
2332                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
2333                     varargsDuplicateError(pos, sym, e.sym);
2334                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
2335                     duplicateErasureError(pos, sym, e.sym);
2336                 else
2337                     duplicateError(pos, e.sym);
2338                 return false;
2339             }
2340         }
2341         return true;
2342     }
2343     //where
2344     /** Report duplicate declaration error.
2345      */
2346     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
2347         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
2348             log.error(pos, "name.clash.same.erasure", sym1, sym2);
2349         }
2350     }
2351 
2352     /** Check that single-type import is not already imported or top-level defined,
2353      *  but make an exception for two single-type imports which denote the same type.
2354      *  @param pos           Position for error reporting.
2355      *  @param sym           The symbol.
2356      *  @param s             The scope
2357      */
2358     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
2359         return checkUniqueImport(pos, sym, s, false);
2360     }
2361 
2362     /** Check that static single-type import is not already imported or top-level defined,
2363      *  but make an exception for two single-type imports which denote the same type.
2364      *  @param pos           Position for error reporting.
2365      *  @param sym           The symbol.
2366      *  @param s             The scope
2367      *  @param staticImport  Whether or not this was a static import
2368      */
2369     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
2370         return checkUniqueImport(pos, sym, s, true);
2371     }
2372 
2373     /** Check that single-type import is not already imported or top-level defined,
2374      *  but make an exception for two single-type imports which denote the same type.
2375      *  @param pos           Position for error reporting.
2376      *  @param sym           The symbol.
2377      *  @param s             The scope.
2378      *  @param staticImport  Whether or not this was a static import
2379      */
2380     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
2381         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
2382             // is encountered class entered via a class declaration?
2383             boolean isClassDecl = e.scope == s;
2384             if ((isClassDecl || sym != e.sym) &&
2385                 sym.kind == e.sym.kind &&
2386                 sym.name != names.error) {
2387                 if (!e.sym.type.isErroneous()) {
2388                     String what = e.sym.toString();
2389                     if (!isClassDecl) {
2390                         if (staticImport)
2391                             log.error(pos, "already.defined.static.single.import", what);
2392                         else
2393                             log.error(pos, "already.defined.single.import", what);
2394                     }
2395                     else if (sym != e.sym)
2396                         log.error(pos, "already.defined.this.unit", what);
2397                 }
2398                 return false;
2399             }
2400         }
2401         return true;
2402     }
2403 
2404     /** Check that a qualified name is in canonical form (for import decls).
2405      */
2406     public void checkCanonical(JCTree tree) {
2407         if (!isCanonical(tree))
2408             log.error(tree.pos(), "import.requires.canonical",
2409                       TreeInfo.symbol(tree));
2410     }
2411         // where
2412         private boolean isCanonical(JCTree tree) {
2413             while (tree.getTag() == JCTree.SELECT) {
2414                 JCFieldAccess s = (JCFieldAccess) tree;
2415                 if (s.sym.owner != TreeInfo.symbol(s.selected))
2416                     return false;
2417                 tree = s.selected;
2418             }
2419             return true;
2420         }
2421 
2422     private class ConversionWarner extends Warner {
2423         final String key;
2424         final Type found;
2425         final Type expected;
2426         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
2427             super(pos);
2428             this.key = key;
2429             this.found = found;
2430             this.expected = expected;
2431         }
2432 
2433         @Override
2434         public void warnUnchecked() {
2435             boolean warned = this.warned;
2436             super.warnUnchecked();
2437             if (warned) return; // suppress redundant diagnostics
2438             Object problem = diags.fragment(key);
2439             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
2440         }
2441     }
2442 
2443     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
2444         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
2445     }
2446 
2447     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
2448         return new ConversionWarner(pos, "unchecked.assign", found, expected);
2449     }
2450 }