1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import com.sun.tools.javac.code.*;
  31 import com.sun.tools.javac.jvm.*;
  32 import com.sun.tools.javac.tree.*;
  33 import com.sun.tools.javac.util.*;
  34 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  35 import com.sun.tools.javac.util.List;
  36 
  37 import com.sun.tools.javac.code.Symbol.*;
  38 import com.sun.tools.javac.tree.JCTree.*;
  39 import com.sun.tools.javac.code.Type.*;
  40 
  41 import com.sun.tools.javac.jvm.Target;
  42 
  43 import static com.sun.tools.javac.code.Flags.*;
  44 import static com.sun.tools.javac.code.Kinds.*;
  45 import static com.sun.tools.javac.code.TypeTags.*;
  46 import static com.sun.tools.javac.jvm.ByteCodes.*;
  47 
  48 /** This pass translates away some syntactic sugar: inner classes,
  49  *  class literals, assertions, foreach loops, etc.
  50  *
  51  *  <p><b>This is NOT part of any supported API.
  52  *  If you write code that depends on this, you do so at your own risk.
  53  *  This code and its internal interfaces are subject to change or
  54  *  deletion without notice.</b>
  55  */
  56 public class Lower extends TreeTranslator {
  57     protected static final Context.Key<Lower> lowerKey =
  58         new Context.Key<Lower>();
  59 
  60     public static Lower instance(Context context) {
  61         Lower instance = context.get(lowerKey);
  62         if (instance == null)
  63             instance = new Lower(context);
  64         return instance;
  65     }
  66 
  67     private Names names;
  68     private Log log;
  69     private Symtab syms;
  70     private Resolve rs;
  71     private Check chk;
  72     private Attr attr;
  73     private TreeMaker make;
  74     private DiagnosticPosition make_pos;
  75     private ClassWriter writer;
  76     private ClassReader reader;
  77     private ConstFold cfolder;
  78     private Target target;
  79     private Source source;
  80     private boolean allowEnums;
  81     private final Name dollarAssertionsDisabled;
  82     private final Name classDollar;
  83     private Types types;
  84     private boolean debugLower;
  85 
  86     protected Lower(Context context) {
  87         context.put(lowerKey, this);
  88         names = Names.instance(context);
  89         log = Log.instance(context);
  90         syms = Symtab.instance(context);
  91         rs = Resolve.instance(context);
  92         chk = Check.instance(context);
  93         attr = Attr.instance(context);
  94         make = TreeMaker.instance(context);
  95         writer = ClassWriter.instance(context);
  96         reader = ClassReader.instance(context);
  97         cfolder = ConstFold.instance(context);
  98         target = Target.instance(context);
  99         source = Source.instance(context);
 100         allowEnums = source.allowEnums();
 101         dollarAssertionsDisabled = names.
 102             fromString(target.syntheticNameChar() + "assertionsDisabled");
 103         classDollar = names.
 104             fromString("class" + target.syntheticNameChar());
 105 
 106         types = Types.instance(context);
 107         Options options = Options.instance(context);
 108         debugLower = options.get("debuglower") != null;
 109     }
 110 
 111     /** The currently enclosing class.
 112      */
 113     ClassSymbol currentClass;
 114 
 115     /** A queue of all translated classes.
 116      */
 117     ListBuffer<JCTree> translated;
 118 
 119     /** Environment for symbol lookup, set by translateTopLevelClass.
 120      */
 121     Env<AttrContext> attrEnv;
 122 
 123     /** A hash table mapping syntax trees to their ending source positions.
 124      */
 125     Map<JCTree, Integer> endPositions;
 126 
 127 /**************************************************************************
 128  * Global mappings
 129  *************************************************************************/
 130 
 131     /** A hash table mapping local classes to their definitions.
 132      */
 133     Map<ClassSymbol, JCClassDecl> classdefs;
 134 
 135     /** A hash table mapping virtual accessed symbols in outer subclasses
 136      *  to the actually referred symbol in superclasses.
 137      */
 138     Map<Symbol,Symbol> actualSymbols;
 139 
 140     /** The current method definition.
 141      */
 142     JCMethodDecl currentMethodDef;
 143 
 144     /** The current method symbol.
 145      */
 146     MethodSymbol currentMethodSym;
 147 
 148     /** The currently enclosing outermost class definition.
 149      */
 150     JCClassDecl outermostClassDef;
 151 
 152     /** The currently enclosing outermost member definition.
 153      */
 154     JCTree outermostMemberDef;
 155 
 156     /** A navigator class for assembling a mapping from local class symbols
 157      *  to class definition trees.
 158      *  There is only one case; all other cases simply traverse down the tree.
 159      */
 160     class ClassMap extends TreeScanner {
 161 
 162         /** All encountered class defs are entered into classdefs table.
 163          */
 164         public void visitClassDef(JCClassDecl tree) {
 165             classdefs.put(tree.sym, tree);
 166             super.visitClassDef(tree);
 167         }
 168     }
 169     ClassMap classMap = new ClassMap();
 170 
 171     /** Map a class symbol to its definition.
 172      *  @param c    The class symbol of which we want to determine the definition.
 173      */
 174     JCClassDecl classDef(ClassSymbol c) {
 175         // First lookup the class in the classdefs table.
 176         JCClassDecl def = classdefs.get(c);
 177         if (def == null && outermostMemberDef != null) {
 178             // If this fails, traverse outermost member definition, entering all
 179             // local classes into classdefs, and try again.
 180             classMap.scan(outermostMemberDef);
 181             def = classdefs.get(c);
 182         }
 183         if (def == null) {
 184             // If this fails, traverse outermost class definition, entering all
 185             // local classes into classdefs, and try again.
 186             classMap.scan(outermostClassDef);
 187             def = classdefs.get(c);
 188         }
 189         return def;
 190     }
 191 
 192     /** A hash table mapping class symbols to lists of free variables.
 193      *  accessed by them. Only free variables of the method immediately containing
 194      *  a class are associated with that class.
 195      */
 196     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 197 
 198     /** A navigator class for collecting the free variables accessed
 199      *  from a local class.
 200      *  There is only one case; all other cases simply traverse down the tree.
 201      */
 202     class FreeVarCollector extends TreeScanner {
 203 
 204         /** The owner of the local class.
 205          */
 206         Symbol owner;
 207 
 208         /** The local class.
 209          */
 210         ClassSymbol clazz;
 211 
 212         /** The list of owner's variables accessed from within the local class,
 213          *  without any duplicates.
 214          */
 215         List<VarSymbol> fvs;
 216 
 217         FreeVarCollector(ClassSymbol clazz) {
 218             this.clazz = clazz;
 219             this.owner = clazz.owner;
 220             this.fvs = List.nil();
 221         }
 222 
 223         /** Add free variable to fvs list unless it is already there.
 224          */
 225         private void addFreeVar(VarSymbol v) {
 226             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
 227                 if (l.head == v) return;
 228             fvs = fvs.prepend(v);
 229         }
 230 
 231         /** Add all free variables of class c to fvs list
 232          *  unless they are already there.
 233          */
 234         private void addFreeVars(ClassSymbol c) {
 235             List<VarSymbol> fvs = freevarCache.get(c);
 236             if (fvs != null) {
 237                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 238                     addFreeVar(l.head);
 239                 }
 240             }
 241         }
 242 
 243         /** If tree refers to a variable in owner of local class, add it to
 244          *  free variables list.
 245          */
 246         public void visitIdent(JCIdent tree) {
 247             result = tree;
 248             visitSymbol(tree.sym);
 249         }
 250         // where
 251         private void visitSymbol(Symbol _sym) {
 252             Symbol sym = _sym;
 253             if (sym.kind == VAR || sym.kind == MTH) {
 254                 while (sym != null && sym.owner != owner)
 255                     sym = proxies.lookup(proxyName(sym.name)).sym;
 256                 if (sym != null && sym.owner == owner) {
 257                     VarSymbol v = (VarSymbol)sym;
 258                     if (v.getConstValue() == null) {
 259                         addFreeVar(v);
 260                     }
 261                 } else {
 262                     if (outerThisStack.head != null &&
 263                         outerThisStack.head != _sym)
 264                         visitSymbol(outerThisStack.head);
 265                 }
 266             }
 267         }
 268 
 269         /** If tree refers to a class instance creation expression
 270          *  add all free variables of the freshly created class.
 271          */
 272         public void visitNewClass(JCNewClass tree) {
 273             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 274             addFreeVars(c);
 275             if (tree.encl == null &&
 276                 c.hasOuterInstance() &&
 277                 outerThisStack.head != null)
 278                 visitSymbol(outerThisStack.head);
 279             super.visitNewClass(tree);
 280         }
 281 
 282         /** If tree refers to a qualified this or super expression
 283          *  for anything but the current class, add the outer this
 284          *  stack as a free variable.
 285          */
 286         public void visitSelect(JCFieldAccess tree) {
 287             if ((tree.name == names._this || tree.name == names._super) &&
 288                 tree.selected.type.tsym != clazz &&
 289                 outerThisStack.head != null)
 290                 visitSymbol(outerThisStack.head);
 291             super.visitSelect(tree);
 292         }
 293 
 294         /** If tree refers to a superclass constructor call,
 295          *  add all free variables of the superclass.
 296          */
 297         public void visitApply(JCMethodInvocation tree) {
 298             if (TreeInfo.name(tree.meth) == names._super) {
 299                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 300                 Symbol constructor = TreeInfo.symbol(tree.meth);
 301                 ClassSymbol c = (ClassSymbol)constructor.owner;
 302                 if (c.hasOuterInstance() &&
 303                     tree.meth.getTag() != JCTree.SELECT &&
 304                     outerThisStack.head != null)
 305                     visitSymbol(outerThisStack.head);
 306             }
 307             super.visitApply(tree);
 308         }
 309     }
 310 
 311     /** Return the variables accessed from within a local class, which
 312      *  are declared in the local class' owner.
 313      *  (in reverse order of first access).
 314      */
 315     List<VarSymbol> freevars(ClassSymbol c)  {
 316         if ((c.owner.kind & (VAR | MTH)) != 0) {
 317             List<VarSymbol> fvs = freevarCache.get(c);
 318             if (fvs == null) {
 319                 FreeVarCollector collector = new FreeVarCollector(c);
 320                 collector.scan(classDef(c));
 321                 fvs = collector.fvs;
 322                 freevarCache.put(c, fvs);
 323             }
 324             return fvs;
 325         } else {
 326             return List.nil();
 327         }
 328     }
 329 
 330     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
 331 
 332     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 333         EnumMapping map = enumSwitchMap.get(enumClass);
 334         if (map == null)
 335             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
 336         return map;
 337     }
 338 
 339     /** This map gives a translation table to be used for enum
 340      *  switches.
 341      *
 342      *  <p>For each enum that appears as the type of a switch
 343      *  expression, we maintain an EnumMapping to assist in the
 344      *  translation, as exemplified by the following example:
 345      *
 346      *  <p>we translate
 347      *  <pre>
 348      *          switch(colorExpression) {
 349      *          case red: stmt1;
 350      *          case green: stmt2;
 351      *          }
 352      *  </pre>
 353      *  into
 354      *  <pre>
 355      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 356      *          case 1: stmt1;
 357      *          case 2: stmt2
 358      *          }
 359      *  </pre>
 360      *  with the auxiliary table initialized as follows:
 361      *  <pre>
 362      *          class Outer$0 {
 363      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 364      *              static {
 365      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 366      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 367      *              }
 368      *          }
 369      *  </pre>
 370      *  class EnumMapping provides mapping data and support methods for this translation.
 371      */
 372     class EnumMapping {
 373         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 374             this.forEnum = forEnum;
 375             this.values = new LinkedHashMap<VarSymbol,Integer>();
 376             this.pos = pos;
 377             Name varName = names
 378                 .fromString(target.syntheticNameChar() +
 379                             "SwitchMap" +
 380                             target.syntheticNameChar() +
 381                             writer.xClassName(forEnum.type).toString()
 382                             .replace('/', '.')
 383                             .replace('.', target.syntheticNameChar()));
 384             ClassSymbol outerCacheClass = outerCacheClass();
 385             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 386                                         varName,
 387                                         new ArrayType(syms.intType, syms.arrayClass),
 388                                         outerCacheClass);
 389             enterSynthetic(pos, mapVar, outerCacheClass.members());
 390         }
 391 
 392         DiagnosticPosition pos = null;
 393 
 394         // the next value to use
 395         int next = 1; // 0 (unused map elements) go to the default label
 396 
 397         // the enum for which this is a map
 398         final TypeSymbol forEnum;
 399 
 400         // the field containing the map
 401         final VarSymbol mapVar;
 402 
 403         // the mapped values
 404         final Map<VarSymbol,Integer> values;
 405 
 406         JCLiteral forConstant(VarSymbol v) {
 407             Integer result = values.get(v);
 408             if (result == null)
 409                 values.put(v, result = next++);
 410             return make.Literal(result);
 411         }
 412 
 413         // generate the field initializer for the map
 414         void translate() {
 415             make.at(pos.getStartPosition());
 416             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 417 
 418             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 419             MethodSymbol valuesMethod = lookupMethod(pos,
 420                                                      names.values,
 421                                                      forEnum.type,
 422                                                      List.<Type>nil());
 423             JCExpression size = make // Color.values().length
 424                 .Select(make.App(make.QualIdent(valuesMethod)),
 425                         syms.lengthVar);
 426             JCExpression mapVarInit = make
 427                 .NewArray(make.Type(syms.intType), List.of(size), null)
 428                 .setType(new ArrayType(syms.intType, syms.arrayClass));
 429 
 430             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 431             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
 432             Symbol ordinalMethod = lookupMethod(pos,
 433                                                 names.ordinal,
 434                                                 forEnum.type,
 435                                                 List.<Type>nil());
 436             List<JCCatch> catcher = List.<JCCatch>nil()
 437                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 438                                                               syms.noSuchFieldErrorType,
 439                                                               syms.noSymbol),
 440                                                 null),
 441                                     make.Block(0, List.<JCStatement>nil())));
 442             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 443                 VarSymbol enumerator = e.getKey();
 444                 Integer mappedValue = e.getValue();
 445                 JCExpression assign = make
 446                     .Assign(make.Indexed(mapVar,
 447                                          make.App(make.Select(make.QualIdent(enumerator),
 448                                                               ordinalMethod))),
 449                             make.Literal(mappedValue))
 450                     .setType(syms.intType);
 451                 JCStatement exec = make.Exec(assign);
 452                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 453                 stmts.append(_try);
 454             }
 455 
 456             owner.defs = owner.defs
 457                 .prepend(make.Block(STATIC, stmts.toList()))
 458                 .prepend(make.VarDef(mapVar, mapVarInit));
 459         }
 460     }
 461 
 462 
 463 /**************************************************************************
 464  * Tree building blocks
 465  *************************************************************************/
 466 
 467     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 468      *  pos as make_pos, for use in diagnostics.
 469      **/
 470     TreeMaker make_at(DiagnosticPosition pos) {
 471         make_pos = pos;
 472         return make.at(pos);
 473     }
 474 
 475     /** Make an attributed tree representing a literal. This will be an
 476      *  Ident node in the case of boolean literals, a Literal node in all
 477      *  other cases.
 478      *  @param type       The literal's type.
 479      *  @param value      The literal's value.
 480      */
 481     JCExpression makeLit(Type type, Object value) {
 482         return make.Literal(type.tag, value).setType(type.constType(value));
 483     }
 484 
 485     /** Make an attributed tree representing null.
 486      */
 487     JCExpression makeNull() {
 488         return makeLit(syms.botType, null);
 489     }
 490 
 491     /** Make an attributed class instance creation expression.
 492      *  @param ctype    The class type.
 493      *  @param args     The constructor arguments.
 494      */
 495     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 496         JCNewClass tree = make.NewClass(null,
 497             null, make.QualIdent(ctype.tsym), args, null);
 498         tree.constructor = rs.resolveConstructor(
 499             make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
 500         tree.type = ctype;
 501         return tree;
 502     }
 503 
 504     /** Make an attributed unary expression.
 505      *  @param optag    The operators tree tag.
 506      *  @param arg      The operator's argument.
 507      */
 508     JCUnary makeUnary(int optag, JCExpression arg) {
 509         JCUnary tree = make.Unary(optag, arg);
 510         tree.operator = rs.resolveUnaryOperator(
 511             make_pos, optag, attrEnv, arg.type);
 512         tree.type = tree.operator.type.getReturnType();
 513         return tree;
 514     }
 515 
 516     /** Make an attributed binary expression.
 517      *  @param optag    The operators tree tag.
 518      *  @param lhs      The operator's left argument.
 519      *  @param rhs      The operator's right argument.
 520      */
 521     JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
 522         JCBinary tree = make.Binary(optag, lhs, rhs);
 523         tree.operator = rs.resolveBinaryOperator(
 524             make_pos, optag, attrEnv, lhs.type, rhs.type);
 525         tree.type = tree.operator.type.getReturnType();
 526         return tree;
 527     }
 528 
 529     /** Make an attributed assignop expression.
 530      *  @param optag    The operators tree tag.
 531      *  @param lhs      The operator's left argument.
 532      *  @param rhs      The operator's right argument.
 533      */
 534     JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
 535         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 536         tree.operator = rs.resolveBinaryOperator(
 537             make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
 538         tree.type = lhs.type;
 539         return tree;
 540     }
 541 
 542     /** Convert tree into string object, unless it has already a
 543      *  reference type..
 544      */
 545     JCExpression makeString(JCExpression tree) {
 546         if (tree.type.tag >= CLASS) {
 547             return tree;
 548         } else {
 549             Symbol valueOfSym = lookupMethod(tree.pos(),
 550                                              names.valueOf,
 551                                              syms.stringType,
 552                                              List.of(tree.type));
 553             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 554         }
 555     }
 556 
 557     /** Create an empty anonymous class definition and enter and complete
 558      *  its symbol. Return the class definition's symbol.
 559      *  and create
 560      *  @param flags    The class symbol's flags
 561      *  @param owner    The class symbol's owner
 562      */
 563     ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
 564         // Create class symbol.
 565         ClassSymbol c = reader.defineClass(names.empty, owner);
 566         c.flatname = chk.localClassName(c);
 567         c.sourcefile = owner.sourcefile;
 568         c.completer = null;
 569         c.members_field = new Scope(c);
 570         c.flags_field = flags;
 571         ClassType ctype = (ClassType) c.type;
 572         ctype.supertype_field = syms.objectType;
 573         ctype.interfaces_field = List.nil();
 574 
 575         JCClassDecl odef = classDef(owner);
 576 
 577         // Enter class symbol in owner scope and compiled table.
 578         enterSynthetic(odef.pos(), c, owner.members());
 579         chk.compiled.put(c.flatname, c);
 580 
 581         // Create class definition tree.
 582         JCClassDecl cdef = make.ClassDef(
 583             make.Modifiers(flags), names.empty,
 584             List.<JCTypeParameter>nil(),
 585             null, List.<JCExpression>nil(), List.<JCTree>nil());
 586         cdef.sym = c;
 587         cdef.type = c.type;
 588 
 589         // Append class definition tree to owner's definitions.
 590         odef.defs = odef.defs.prepend(cdef);
 591 
 592         return c;
 593     }
 594 
 595 /**************************************************************************
 596  * Symbol manipulation utilities
 597  *************************************************************************/
 598 
 599     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 600      *  @param pos           Position for error reporting.
 601      *  @param sym           The symbol.
 602      *  @param s             The scope.
 603      */
 604     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
 605         s.enter(sym);
 606     }
 607 
 608     /** Check whether synthetic symbols generated during lowering conflict
 609      *  with user-defined symbols.
 610      *
 611      *  @param translatedTrees lowered class trees
 612      */
 613     void checkConflicts(List<JCTree> translatedTrees) {
 614         for (JCTree t : translatedTrees) {
 615             t.accept(conflictsChecker);
 616         }
 617     }
 618 
 619     JCTree.Visitor conflictsChecker = new TreeScanner() {
 620 
 621         TypeSymbol currentClass;
 622 
 623         @Override
 624         public void visitMethodDef(JCMethodDecl that) {
 625             chk.checkConflicts(that.pos(), that.sym, currentClass);
 626             super.visitMethodDef(that);
 627         }
 628 
 629         @Override
 630         public void visitVarDef(JCVariableDecl that) {
 631             if (that.sym.owner.kind == TYP) {
 632                 chk.checkConflicts(that.pos(), that.sym, currentClass);
 633             }
 634             super.visitVarDef(that);
 635         }
 636 
 637         @Override
 638         public void visitClassDef(JCClassDecl that) {
 639             TypeSymbol prevCurrentClass = currentClass;
 640             currentClass = that.sym;
 641             try {
 642                 super.visitClassDef(that);
 643             }
 644             finally {
 645                 currentClass = prevCurrentClass;
 646             }
 647         }
 648     };
 649 
 650     /** Look up a synthetic name in a given scope.
 651      *  @param scope        The scope.
 652      *  @param name         The name.
 653      */
 654     private Symbol lookupSynthetic(Name name, Scope s) {
 655         Symbol sym = s.lookup(name).sym;
 656         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 657     }
 658 
 659     /** Look up a method in a given scope.
 660      */
 661     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 662         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
 663     }
 664 
 665     /** Look up a constructor.
 666      */
 667     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
 668         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
 669     }
 670 
 671     /** Look up a field.
 672      */
 673     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
 674         return rs.resolveInternalField(pos, attrEnv, qual, name);
 675     }
 676 
 677     /** Anon inner classes are used as access constructor tags.
 678      * accessConstructorTag will use an existing anon class if one is available,
 679      * and synthethise a class (with makeEmptyClass) if one is not available.
 680      * However, there is a small possibility that an existing class will not
 681      * be generated as expected if it is inside a conditional with a constant
 682      * expression. If that is found to be the case, create an empty class here.
 683      */
 684     private void checkAccessConstructorTags() {
 685         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
 686             ClassSymbol c = l.head;
 687             if (isTranslatedClassAvailable(c))
 688                 continue;
 689             // Create class definition tree.
 690             JCClassDecl cdef = make.ClassDef(
 691                 make.Modifiers(STATIC | SYNTHETIC), names.empty,
 692                 List.<JCTypeParameter>nil(),
 693                 null, List.<JCExpression>nil(), List.<JCTree>nil());
 694             cdef.sym = c;
 695             cdef.type = c.type;
 696             // add it to the list of classes to be generated
 697             translated.append(cdef);
 698         }
 699     }
 700     // where
 701     private boolean isTranslatedClassAvailable(ClassSymbol c) {
 702         for (JCTree tree: translated) {
 703             if (tree.getTag() == JCTree.CLASSDEF
 704                     && ((JCClassDecl) tree).sym == c) {
 705                 return true;
 706             }
 707         }
 708         return false;
 709     }
 710 
 711 /**************************************************************************
 712  * Access methods
 713  *************************************************************************/
 714 
 715     /** Access codes for dereferencing, assignment,
 716      *  and pre/post increment/decrement.
 717      *  Access codes for assignment operations are determined by method accessCode
 718      *  below.
 719      *
 720      *  All access codes for accesses to the current class are even.
 721      *  If a member of the superclass should be accessed instead (because
 722      *  access was via a qualified super), add one to the corresponding code
 723      *  for the current class, making the number odd.
 724      *  This numbering scheme is used by the backend to decide whether
 725      *  to issue an invokevirtual or invokespecial call.
 726      *
 727      *  @see Gen.visitSelect(Select tree)
 728      */
 729     private static final int
 730         DEREFcode = 0,
 731         ASSIGNcode = 2,
 732         PREINCcode = 4,
 733         PREDECcode = 6,
 734         POSTINCcode = 8,
 735         POSTDECcode = 10,
 736         FIRSTASGOPcode = 12;
 737 
 738     /** Number of access codes
 739      */
 740     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
 741 
 742     /** A mapping from symbols to their access numbers.
 743      */
 744     private Map<Symbol,Integer> accessNums;
 745 
 746     /** A mapping from symbols to an array of access symbols, indexed by
 747      *  access code.
 748      */
 749     private Map<Symbol,MethodSymbol[]> accessSyms;
 750 
 751     /** A mapping from (constructor) symbols to access constructor symbols.
 752      */
 753     private Map<Symbol,MethodSymbol> accessConstrs;
 754 
 755     /** A list of all class symbols used for access constructor tags.
 756      */
 757     private List<ClassSymbol> accessConstrTags;
 758 
 759     /** A queue for all accessed symbols.
 760      */
 761     private ListBuffer<Symbol> accessed;
 762 
 763     /** Map bytecode of binary operation to access code of corresponding
 764      *  assignment operation. This is always an even number.
 765      */
 766     private static int accessCode(int bytecode) {
 767         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
 768             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
 769         else if (bytecode == ByteCodes.string_add)
 770             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
 771         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
 772             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
 773         else
 774             return -1;
 775     }
 776 
 777     /** return access code for identifier,
 778      *  @param tree     The tree representing the identifier use.
 779      *  @param enclOp   The closest enclosing operation node of tree,
 780      *                  null if tree is not a subtree of an operation.
 781      */
 782     private static int accessCode(JCTree tree, JCTree enclOp) {
 783         if (enclOp == null)
 784             return DEREFcode;
 785         else if (enclOp.getTag() == JCTree.ASSIGN &&
 786                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 787             return ASSIGNcode;
 788         else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
 789                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
 790             return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
 791         else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
 792                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
 793             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
 794         else
 795             return DEREFcode;
 796     }
 797 
 798     /** Return binary operator that corresponds to given access code.
 799      */
 800     private OperatorSymbol binaryAccessOperator(int acode) {
 801         for (Scope.Entry e = syms.predefClass.members().elems;
 802              e != null;
 803              e = e.sibling) {
 804             if (e.sym instanceof OperatorSymbol) {
 805                 OperatorSymbol op = (OperatorSymbol)e.sym;
 806                 if (accessCode(op.opcode) == acode) return op;
 807             }
 808         }
 809         return null;
 810     }
 811 
 812     /** Return tree tag for assignment operation corresponding
 813      *  to given binary operator.
 814      */
 815     private static int treeTag(OperatorSymbol operator) {
 816         switch (operator.opcode) {
 817         case ByteCodes.ior: case ByteCodes.lor:
 818             return JCTree.BITOR_ASG;
 819         case ByteCodes.ixor: case ByteCodes.lxor:
 820             return JCTree.BITXOR_ASG;
 821         case ByteCodes.iand: case ByteCodes.land:
 822             return JCTree.BITAND_ASG;
 823         case ByteCodes.ishl: case ByteCodes.lshl:
 824         case ByteCodes.ishll: case ByteCodes.lshll:
 825             return JCTree.SL_ASG;
 826         case ByteCodes.ishr: case ByteCodes.lshr:
 827         case ByteCodes.ishrl: case ByteCodes.lshrl:
 828             return JCTree.SR_ASG;
 829         case ByteCodes.iushr: case ByteCodes.lushr:
 830         case ByteCodes.iushrl: case ByteCodes.lushrl:
 831             return JCTree.USR_ASG;
 832         case ByteCodes.iadd: case ByteCodes.ladd:
 833         case ByteCodes.fadd: case ByteCodes.dadd:
 834         case ByteCodes.string_add:
 835             return JCTree.PLUS_ASG;
 836         case ByteCodes.isub: case ByteCodes.lsub:
 837         case ByteCodes.fsub: case ByteCodes.dsub:
 838             return JCTree.MINUS_ASG;
 839         case ByteCodes.imul: case ByteCodes.lmul:
 840         case ByteCodes.fmul: case ByteCodes.dmul:
 841             return JCTree.MUL_ASG;
 842         case ByteCodes.idiv: case ByteCodes.ldiv:
 843         case ByteCodes.fdiv: case ByteCodes.ddiv:
 844             return JCTree.DIV_ASG;
 845         case ByteCodes.imod: case ByteCodes.lmod:
 846         case ByteCodes.fmod: case ByteCodes.dmod:
 847             return JCTree.MOD_ASG;
 848         default:
 849             throw new AssertionError();
 850         }
 851     }
 852 
 853     /** The name of the access method with number `anum' and access code `acode'.
 854      */
 855     Name accessName(int anum, int acode) {
 856         return names.fromString(
 857             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
 858     }
 859 
 860     /** Return access symbol for a private or protected symbol from an inner class.
 861      *  @param sym        The accessed private symbol.
 862      *  @param tree       The accessing tree.
 863      *  @param enclOp     The closest enclosing operation node of tree,
 864      *                    null if tree is not a subtree of an operation.
 865      *  @param protAccess Is access to a protected symbol in another
 866      *                    package?
 867      *  @param refSuper   Is access via a (qualified) C.super?
 868      */
 869     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
 870                               boolean protAccess, boolean refSuper) {
 871         ClassSymbol accOwner = refSuper && protAccess
 872             // For access via qualified super (T.super.x), place the
 873             // access symbol on T.
 874             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
 875             // Otherwise pretend that the owner of an accessed
 876             // protected symbol is the enclosing class of the current
 877             // class which is a subclass of the symbol's owner.
 878             : accessClass(sym, protAccess, tree);
 879 
 880         Symbol vsym = sym;
 881         if (sym.owner != accOwner) {
 882             vsym = sym.clone(accOwner);
 883             actualSymbols.put(vsym, sym);
 884         }
 885 
 886         Integer anum              // The access number of the access method.
 887             = accessNums.get(vsym);
 888         if (anum == null) {
 889             anum = accessed.length();
 890             accessNums.put(vsym, anum);
 891             accessSyms.put(vsym, new MethodSymbol[NCODES]);
 892             accessed.append(vsym);
 893             // System.out.println("accessing " + vsym + " in " + vsym.location());
 894         }
 895 
 896         int acode;                // The access code of the access method.
 897         List<Type> argtypes;      // The argument types of the access method.
 898         Type restype;             // The result type of the access method.
 899         List<Type> thrown;        // The thrown exceptions of the access method.
 900         switch (vsym.kind) {
 901         case VAR:
 902             acode = accessCode(tree, enclOp);
 903             if (acode >= FIRSTASGOPcode) {
 904                 OperatorSymbol operator = binaryAccessOperator(acode);
 905                 if (operator.opcode == string_add)
 906                     argtypes = List.of(syms.objectType);
 907                 else
 908                     argtypes = operator.type.getParameterTypes().tail;
 909             } else if (acode == ASSIGNcode)
 910                 argtypes = List.of(vsym.erasure(types));
 911             else
 912                 argtypes = List.nil();
 913             restype = vsym.erasure(types);
 914             thrown = List.nil();
 915             break;
 916         case MTH:
 917             acode = DEREFcode;
 918             argtypes = vsym.erasure(types).getParameterTypes();
 919             restype = vsym.erasure(types).getReturnType();
 920             thrown = vsym.type.getThrownTypes();
 921             break;
 922         default:
 923             throw new AssertionError();
 924         }
 925 
 926         // For references via qualified super, increment acode by one,
 927         // making it odd.
 928         if (protAccess && refSuper) acode++;
 929 
 930         // Instance access methods get instance as first parameter.
 931         // For protected symbols this needs to be the instance as a member
 932         // of the type containing the accessed symbol, not the class
 933         // containing the access method.
 934         if ((vsym.flags() & STATIC) == 0) {
 935             argtypes = argtypes.prepend(vsym.owner.erasure(types));
 936         }
 937         MethodSymbol[] accessors = accessSyms.get(vsym);
 938         MethodSymbol accessor = accessors[acode];
 939         if (accessor == null) {
 940             accessor = new MethodSymbol(
 941                 STATIC | SYNTHETIC,
 942                 accessName(anum.intValue(), acode),
 943                 new MethodType(argtypes, restype, thrown, syms.methodClass),
 944                 accOwner);
 945             enterSynthetic(tree.pos(), accessor, accOwner.members());
 946             accessors[acode] = accessor;
 947         }
 948         return accessor;
 949     }
 950 
 951     /** The qualifier to be used for accessing a symbol in an outer class.
 952      *  This is either C.sym or C.this.sym, depending on whether or not
 953      *  sym is static.
 954      *  @param sym   The accessed symbol.
 955      */
 956     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
 957         return (sym.flags() & STATIC) != 0
 958             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
 959             : makeOwnerThis(pos, sym, true);
 960     }
 961 
 962     /** Do we need an access method to reference private symbol?
 963      */
 964     boolean needsPrivateAccess(Symbol sym) {
 965         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
 966             return false;
 967         } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
 968             // private constructor in local class: relax protection
 969             sym.flags_field &= ~PRIVATE;
 970             return false;
 971         } else {
 972             return true;
 973         }
 974     }
 975 
 976     /** Do we need an access method to reference symbol in other package?
 977      */
 978     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
 979         if ((sym.flags() & PROTECTED) == 0 ||
 980             sym.owner.owner == currentClass.owner || // fast special case
 981             sym.packge() == currentClass.packge())
 982             return false;
 983         if (!currentClass.isSubClass(sym.owner, types))
 984             return true;
 985         if ((sym.flags() & STATIC) != 0 ||
 986             tree.getTag() != JCTree.SELECT ||
 987             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
 988             return false;
 989         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
 990     }
 991 
 992     /** The class in which an access method for given symbol goes.
 993      *  @param sym        The access symbol
 994      *  @param protAccess Is access to a protected symbol in another
 995      *                    package?
 996      */
 997     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
 998         if (protAccess) {
 999             Symbol qualifier = null;
1000             ClassSymbol c = currentClass;
1001             if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
1002                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
1003                 while (!qualifier.isSubClass(c, types)) {
1004                     c = c.owner.enclClass();
1005                 }
1006                 return c;
1007             } else {
1008                 while (!c.isSubClass(sym.owner, types)) {
1009                     c = c.owner.enclClass();
1010                 }
1011             }
1012             return c;
1013         } else {
1014             // the symbol is private
1015             return sym.owner.enclClass();
1016         }
1017     }
1018 
1019     /** Ensure that identifier is accessible, return tree accessing the identifier.
1020      *  @param sym      The accessed symbol.
1021      *  @param tree     The tree referring to the symbol.
1022      *  @param enclOp   The closest enclosing operation node of tree,
1023      *                  null if tree is not a subtree of an operation.
1024      *  @param refSuper Is access via a (qualified) C.super?
1025      */
1026     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
1027         // Access a free variable via its proxy, or its proxy's proxy
1028         while (sym.kind == VAR && sym.owner.kind == MTH &&
1029             sym.owner.enclClass() != currentClass) {
1030             // A constant is replaced by its constant value.
1031             Object cv = ((VarSymbol)sym).getConstValue();
1032             if (cv != null) {
1033                 make.at(tree.pos);
1034                 return makeLit(sym.type, cv);
1035             }
1036             // Otherwise replace the variable by its proxy.
1037             sym = proxies.lookup(proxyName(sym.name)).sym;
1038             assert sym != null && (sym.flags_field & FINAL) != 0;
1039             tree = make.at(tree.pos).Ident(sym);
1040         }
1041         JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
1042         switch (sym.kind) {
1043         case TYP:
1044             if (sym.owner.kind != PCK) {
1045                 // Convert type idents to
1046                 // <flat name> or <package name> . <flat name>
1047                 Name flatname = Convert.shortName(sym.flatName());
1048                 while (base != null &&
1049                        TreeInfo.symbol(base) != null &&
1050                        TreeInfo.symbol(base).kind != PCK) {
1051                     base = (base.getTag() == JCTree.SELECT)
1052                         ? ((JCFieldAccess) base).selected
1053                         : null;
1054                 }
1055                 if (tree.getTag() == JCTree.IDENT) {
1056                     ((JCIdent) tree).name = flatname;
1057                 } else if (base == null) {
1058                     tree = make.at(tree.pos).Ident(sym);
1059                     ((JCIdent) tree).name = flatname;
1060                 } else {
1061                     ((JCFieldAccess) tree).selected = base;
1062                     ((JCFieldAccess) tree).name = flatname;
1063                 }
1064             }
1065             break;
1066         case MTH: case VAR:
1067             if (sym.owner.kind == TYP) {
1068 
1069                 // Access methods are required for
1070                 //  - private members,
1071                 //  - protected members in a superclass of an
1072                 //    enclosing class contained in another package.
1073                 //  - all non-private members accessed via a qualified super.
1074                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1075                     || needsProtectedAccess(sym, tree);
1076                 boolean accReq = protAccess || needsPrivateAccess(sym);
1077 
1078                 // A base has to be supplied for
1079                 //  - simple identifiers accessing variables in outer classes.
1080                 boolean baseReq =
1081                     base == null &&
1082                     sym.owner != syms.predefClass &&
1083                     !sym.isMemberOf(currentClass, types);
1084 
1085                 if (accReq || baseReq) {
1086                     make.at(tree.pos);
1087 
1088                     // Constants are replaced by their constant value.
1089                     if (sym.kind == VAR) {
1090                         Object cv = ((VarSymbol)sym).getConstValue();
1091                         if (cv != null) return makeLit(sym.type, cv);
1092                     }
1093 
1094                     // Private variables and methods are replaced by calls
1095                     // to their access methods.
1096                     if (accReq) {
1097                         List<JCExpression> args = List.nil();
1098                         if ((sym.flags() & STATIC) == 0) {
1099                             // Instance access methods get instance
1100                             // as first parameter.
1101                             if (base == null)
1102                                 base = makeOwnerThis(tree.pos(), sym, true);
1103                             args = args.prepend(base);
1104                             base = null;   // so we don't duplicate code
1105                         }
1106                         Symbol access = accessSymbol(sym, tree,
1107                                                      enclOp, protAccess,
1108                                                      refSuper);
1109                         JCExpression receiver = make.Select(
1110                             base != null ? base : make.QualIdent(access.owner),
1111                             access);
1112                         return make.App(receiver, args);
1113 
1114                     // Other accesses to members of outer classes get a
1115                     // qualifier.
1116                     } else if (baseReq) {
1117                         return make.at(tree.pos).Select(
1118                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1119                     }
1120                 }
1121             }
1122         }
1123         return tree;
1124     }
1125 
1126     /** Ensure that identifier is accessible, return tree accessing the identifier.
1127      *  @param tree     The identifier tree.
1128      */
1129     JCExpression access(JCExpression tree) {
1130         Symbol sym = TreeInfo.symbol(tree);
1131         return sym == null ? tree : access(sym, tree, null, false);
1132     }
1133 
1134     /** Return access constructor for a private constructor,
1135      *  or the constructor itself, if no access constructor is needed.
1136      *  @param pos       The position to report diagnostics, if any.
1137      *  @param constr    The private constructor.
1138      */
1139     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1140         if (needsPrivateAccess(constr)) {
1141             ClassSymbol accOwner = constr.owner.enclClass();
1142             MethodSymbol aconstr = accessConstrs.get(constr);
1143             if (aconstr == null) {
1144                 List<Type> argtypes = constr.type.getParameterTypes();
1145                 if ((accOwner.flags_field & ENUM) != 0)
1146                     argtypes = argtypes
1147                         .prepend(syms.intType)
1148                         .prepend(syms.stringType);
1149                 aconstr = new MethodSymbol(
1150                     SYNTHETIC,
1151                     names.init,
1152                     new MethodType(
1153                         argtypes.append(
1154                             accessConstructorTag().erasure(types)),
1155                         constr.type.getReturnType(),
1156                         constr.type.getThrownTypes(),
1157                         syms.methodClass),
1158                     accOwner);
1159                 enterSynthetic(pos, aconstr, accOwner.members());
1160                 accessConstrs.put(constr, aconstr);
1161                 accessed.append(constr);
1162             }
1163             return aconstr;
1164         } else {
1165             return constr;
1166         }
1167     }
1168 
1169     /** Return an anonymous class nested in this toplevel class.
1170      */
1171     ClassSymbol accessConstructorTag() {
1172         ClassSymbol topClass = currentClass.outermostClass();
1173         Name flatname = names.fromString("" + topClass.getQualifiedName() +
1174                                          target.syntheticNameChar() +
1175                                          "1");
1176         ClassSymbol ctag = chk.compiled.get(flatname);
1177         if (ctag == null)
1178             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
1179         // keep a record of all tags, to verify that all are generated as required
1180         accessConstrTags = accessConstrTags.prepend(ctag);
1181         return ctag;
1182     }
1183 
1184     /** Add all required access methods for a private symbol to enclosing class.
1185      *  @param sym       The symbol.
1186      */
1187     void makeAccessible(Symbol sym) {
1188         JCClassDecl cdef = classDef(sym.owner.enclClass());
1189         assert cdef != null : "class def not found: " + sym + " in " + sym.owner;
1190         if (sym.name == names.init) {
1191             cdef.defs = cdef.defs.prepend(
1192                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1193         } else {
1194             MethodSymbol[] accessors = accessSyms.get(sym);
1195             for (int i = 0; i < NCODES; i++) {
1196                 if (accessors[i] != null)
1197                     cdef.defs = cdef.defs.prepend(
1198                         accessDef(cdef.pos, sym, accessors[i], i));
1199             }
1200         }
1201     }
1202 
1203     /** Construct definition of an access method.
1204      *  @param pos        The source code position of the definition.
1205      *  @param vsym       The private or protected symbol.
1206      *  @param accessor   The access method for the symbol.
1207      *  @param acode      The access code.
1208      */
1209     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1210 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1211         currentClass = vsym.owner.enclClass();
1212         make.at(pos);
1213         JCMethodDecl md = make.MethodDef(accessor, null);
1214 
1215         // Find actual symbol
1216         Symbol sym = actualSymbols.get(vsym);
1217         if (sym == null) sym = vsym;
1218 
1219         JCExpression ref;           // The tree referencing the private symbol.
1220         List<JCExpression> args;    // Any additional arguments to be passed along.
1221         if ((sym.flags() & STATIC) != 0) {
1222             ref = make.Ident(sym);
1223             args = make.Idents(md.params);
1224         } else {
1225             ref = make.Select(make.Ident(md.params.head), sym);
1226             args = make.Idents(md.params.tail);
1227         }
1228         JCStatement stat;          // The statement accessing the private symbol.
1229         if (sym.kind == VAR) {
1230             // Normalize out all odd access codes by taking floor modulo 2:
1231             int acode1 = acode - (acode & 1);
1232 
1233             JCExpression expr;      // The access method's return value.
1234             switch (acode1) {
1235             case DEREFcode:
1236                 expr = ref;
1237                 break;
1238             case ASSIGNcode:
1239                 expr = make.Assign(ref, args.head);
1240                 break;
1241             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
1242                 expr = makeUnary(
1243                     ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
1244                 break;
1245             default:
1246                 expr = make.Assignop(
1247                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
1248                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
1249             }
1250             stat = make.Return(expr.setType(sym.type));
1251         } else {
1252             stat = make.Call(make.App(ref, args));
1253         }
1254         md.body = make.Block(0, List.of(stat));
1255 
1256         // Make sure all parameters, result types and thrown exceptions
1257         // are accessible.
1258         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1259             l.head.vartype = access(l.head.vartype);
1260         md.restype = access(md.restype);
1261         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1262             l.head = access(l.head);
1263 
1264         return md;
1265     }
1266 
1267     /** Construct definition of an access constructor.
1268      *  @param pos        The source code position of the definition.
1269      *  @param constr     The private constructor.
1270      *  @param accessor   The access method for the constructor.
1271      */
1272     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1273         make.at(pos);
1274         JCMethodDecl md = make.MethodDef(accessor,
1275                                       accessor.externalType(types),
1276                                       null);
1277         JCIdent callee = make.Ident(names._this);
1278         callee.sym = constr;
1279         callee.type = constr.type;
1280         md.body =
1281             make.Block(0, List.<JCStatement>of(
1282                 make.Call(
1283                     make.App(
1284                         callee,
1285                         make.Idents(md.params.reverse().tail.reverse())))));
1286         return md;
1287     }
1288 
1289 /**************************************************************************
1290  * Free variables proxies and this$n
1291  *************************************************************************/
1292 
1293     /** A scope containing all free variable proxies for currently translated
1294      *  class, as well as its this$n symbol (if needed).
1295      *  Proxy scopes are nested in the same way classes are.
1296      *  Inside a constructor, proxies and any this$n symbol are duplicated
1297      *  in an additional innermost scope, where they represent the constructor
1298      *  parameters.
1299      */
1300     Scope proxies;
1301 
1302     /** A stack containing the this$n field of the currently translated
1303      *  classes (if needed) in innermost first order.
1304      *  Inside a constructor, proxies and any this$n symbol are duplicated
1305      *  in an additional innermost scope, where they represent the constructor
1306      *  parameters.
1307      */
1308     List<VarSymbol> outerThisStack;
1309 
1310     /** The name of a free variable proxy.
1311      */
1312     Name proxyName(Name name) {
1313         return names.fromString("val" + target.syntheticNameChar() + name);
1314     }
1315 
1316     /** Proxy definitions for all free variables in given list, in reverse order.
1317      *  @param pos        The source code position of the definition.
1318      *  @param freevars   The free variables.
1319      *  @param owner      The class in which the definitions go.
1320      */
1321     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
1322         long flags = FINAL | SYNTHETIC;
1323         if (owner.kind == TYP &&
1324             target.usePrivateSyntheticFields())
1325             flags |= PRIVATE;
1326         List<JCVariableDecl> defs = List.nil();
1327         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1328             VarSymbol v = l.head;
1329             VarSymbol proxy = new VarSymbol(
1330                 flags, proxyName(v.name), v.erasure(types), owner);
1331             proxies.enter(proxy);
1332             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1333             vd.vartype = access(vd.vartype);
1334             defs = defs.prepend(vd);
1335         }
1336         return defs;
1337     }
1338 
1339     /** The name of a this$n field
1340      *  @param type   The class referenced by the this$n field
1341      */
1342     Name outerThisName(Type type, Symbol owner) {
1343         Type t = type.getEnclosingType();
1344         int nestingLevel = 0;
1345         while (t.tag == CLASS) {
1346             t = t.getEnclosingType();
1347             nestingLevel++;
1348         }
1349         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1350         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
1351             result = names.fromString(result.toString() + target.syntheticNameChar());
1352         return result;
1353     }
1354 
1355     /** Definition for this$n field.
1356      *  @param pos        The source code position of the definition.
1357      *  @param owner      The class in which the definition goes.
1358      */
1359     JCVariableDecl outerThisDef(int pos, Symbol owner) {
1360         long flags = FINAL | SYNTHETIC;
1361         if (owner.kind == TYP &&
1362             target.usePrivateSyntheticFields())
1363             flags |= PRIVATE;
1364         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
1365         VarSymbol outerThis = new VarSymbol(
1366             flags, outerThisName(target, owner), target, owner);
1367         outerThisStack = outerThisStack.prepend(outerThis);
1368         JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
1369         vd.vartype = access(vd.vartype);
1370         return vd;
1371     }
1372 
1373     /** Return a list of trees that load the free variables in given list,
1374      *  in reverse order.
1375      *  @param pos          The source code position to be used for the trees.
1376      *  @param freevars     The list of free variables.
1377      */
1378     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1379         List<JCExpression> args = List.nil();
1380         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1381             args = args.prepend(loadFreevar(pos, l.head));
1382         return args;
1383     }
1384 //where
1385         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1386             return access(v, make.at(pos).Ident(v), null, false);
1387         }
1388 
1389     /** Construct a tree simulating the expression <C.this>.
1390      *  @param pos           The source code position to be used for the tree.
1391      *  @param c             The qualifier class.
1392      */
1393     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1394         if (currentClass == c) {
1395             // in this case, `this' works fine
1396             return make.at(pos).This(c.erasure(types));
1397         } else {
1398             // need to go via this$n
1399             return makeOuterThis(pos, c);
1400         }
1401     }
1402 
1403     /** Construct a tree that represents the outer instance
1404      *  <C.this>. Never pick the current `this'.
1405      *  @param pos           The source code position to be used for the tree.
1406      *  @param c             The qualifier class.
1407      */
1408     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1409         List<VarSymbol> ots = outerThisStack;
1410         if (ots.isEmpty()) {
1411             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1412             assert false;
1413             return makeNull();
1414         }
1415         VarSymbol ot = ots.head;
1416         JCExpression tree = access(make.at(pos).Ident(ot));
1417         TypeSymbol otc = ot.type.tsym;
1418         while (otc != c) {
1419             do {
1420                 ots = ots.tail;
1421                 if (ots.isEmpty()) {
1422                     log.error(pos,
1423                               "no.encl.instance.of.type.in.scope",
1424                               c);
1425                     assert false; // should have been caught in Attr
1426                     return tree;
1427                 }
1428                 ot = ots.head;
1429             } while (ot.owner != otc);
1430             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1431                 chk.earlyRefError(pos, c);
1432                 assert false; // should have been caught in Attr
1433                 return makeNull();
1434             }
1435             tree = access(make.at(pos).Select(tree, ot));
1436             otc = ot.type.tsym;
1437         }
1438         return tree;
1439     }
1440 
1441     /** Construct a tree that represents the closest outer instance
1442      *  <C.this> such that the given symbol is a member of C.
1443      *  @param pos           The source code position to be used for the tree.
1444      *  @param sym           The accessed symbol.
1445      *  @param preciseMatch  should we accept a type that is a subtype of
1446      *                       sym's owner, even if it doesn't contain sym
1447      *                       due to hiding, overriding, or non-inheritance
1448      *                       due to protection?
1449      */
1450     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1451         Symbol c = sym.owner;
1452         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1453                          : currentClass.isSubClass(sym.owner, types)) {
1454             // in this case, `this' works fine
1455             return make.at(pos).This(c.erasure(types));
1456         } else {
1457             // need to go via this$n
1458             return makeOwnerThisN(pos, sym, preciseMatch);
1459         }
1460     }
1461 
1462     /**
1463      * Similar to makeOwnerThis but will never pick "this".
1464      */
1465     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1466         Symbol c = sym.owner;
1467         List<VarSymbol> ots = outerThisStack;
1468         if (ots.isEmpty()) {
1469             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1470             assert false;
1471             return makeNull();
1472         }
1473         VarSymbol ot = ots.head;
1474         JCExpression tree = access(make.at(pos).Ident(ot));
1475         TypeSymbol otc = ot.type.tsym;
1476         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1477             do {
1478                 ots = ots.tail;
1479                 if (ots.isEmpty()) {
1480                     log.error(pos,
1481                         "no.encl.instance.of.type.in.scope",
1482                         c);
1483                     assert false;
1484                     return tree;
1485                 }
1486                 ot = ots.head;
1487             } while (ot.owner != otc);
1488             tree = access(make.at(pos).Select(tree, ot));
1489             otc = ot.type.tsym;
1490         }
1491         return tree;
1492     }
1493 
1494     /** Return tree simulating the assignment <this.name = name>, where
1495      *  name is the name of a free variable.
1496      */
1497     JCStatement initField(int pos, Name name) {
1498         Scope.Entry e = proxies.lookup(name);
1499         Symbol rhs = e.sym;
1500         assert rhs.owner.kind == MTH;
1501         Symbol lhs = e.next().sym;
1502         assert rhs.owner.owner == lhs.owner;
1503         make.at(pos);
1504         return
1505             make.Exec(
1506                 make.Assign(
1507                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1508                     make.Ident(rhs)).setType(lhs.erasure(types)));
1509     }
1510 
1511     /** Return tree simulating the assignment <this.this$n = this$n>.
1512      */
1513     JCStatement initOuterThis(int pos) {
1514         VarSymbol rhs = outerThisStack.head;
1515         assert rhs.owner.kind == MTH;
1516         VarSymbol lhs = outerThisStack.tail.head;
1517         assert rhs.owner.owner == lhs.owner;
1518         make.at(pos);
1519         return
1520             make.Exec(
1521                 make.Assign(
1522                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1523                     make.Ident(rhs)).setType(lhs.erasure(types)));
1524     }
1525 
1526 /**************************************************************************
1527  * Code for .class
1528  *************************************************************************/
1529 
1530     /** Return the symbol of a class to contain a cache of
1531      *  compiler-generated statics such as class$ and the
1532      *  $assertionsDisabled flag.  We create an anonymous nested class
1533      *  (unless one already exists) and return its symbol.  However,
1534      *  for backward compatibility in 1.4 and earlier we use the
1535      *  top-level class itself.
1536      */
1537     private ClassSymbol outerCacheClass() {
1538         ClassSymbol clazz = outermostClassDef.sym;
1539         if ((clazz.flags() & INTERFACE) == 0 &&
1540             !target.useInnerCacheClass()) return clazz;
1541         Scope s = clazz.members();
1542         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
1543             if (e.sym.kind == TYP &&
1544                 e.sym.name == names.empty &&
1545                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
1546         return makeEmptyClass(STATIC | SYNTHETIC, clazz);
1547     }
1548 
1549     /** Return symbol for "class$" method. If there is no method definition
1550      *  for class$, construct one as follows:
1551      *
1552      *    class class$(String x0) {
1553      *      try {
1554      *        return Class.forName(x0);
1555      *      } catch (ClassNotFoundException x1) {
1556      *        throw new NoClassDefFoundError(x1.getMessage());
1557      *      }
1558      *    }
1559      */
1560     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
1561         ClassSymbol outerCacheClass = outerCacheClass();
1562         MethodSymbol classDollarSym =
1563             (MethodSymbol)lookupSynthetic(classDollar,
1564                                           outerCacheClass.members());
1565         if (classDollarSym == null) {
1566             classDollarSym = new MethodSymbol(
1567                 STATIC | SYNTHETIC,
1568                 classDollar,
1569                 new MethodType(
1570                     List.of(syms.stringType),
1571                     types.erasure(syms.classType),
1572                     List.<Type>nil(),
1573                     syms.methodClass),
1574                 outerCacheClass);
1575             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
1576 
1577             JCMethodDecl md = make.MethodDef(classDollarSym, null);
1578             try {
1579                 md.body = classDollarSymBody(pos, md);
1580             } catch (CompletionFailure ex) {
1581                 md.body = make.Block(0, List.<JCStatement>nil());
1582                 chk.completionError(pos, ex);
1583             }
1584             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1585             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
1586         }
1587         return classDollarSym;
1588     }
1589 
1590     /** Generate code for class$(String name). */
1591     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
1592         MethodSymbol classDollarSym = md.sym;
1593         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
1594 
1595         JCBlock returnResult;
1596 
1597         // in 1.4.2 and above, we use
1598         // Class.forName(String name, boolean init, ClassLoader loader);
1599         // which requires we cache the current loader in cl$
1600         if (target.classLiteralsNoInit()) {
1601             // clsym = "private static ClassLoader cl$"
1602             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
1603                                             names.fromString("cl" + target.syntheticNameChar()),
1604                                             syms.classLoaderType,
1605                                             outerCacheClass);
1606             enterSynthetic(pos, clsym, outerCacheClass.members());
1607 
1608             // emit "private static ClassLoader cl$;"
1609             JCVariableDecl cldef = make.VarDef(clsym, null);
1610             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1611             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
1612 
1613             // newcache := "new cache$1[0]"
1614             JCNewArray newcache = make.
1615                 NewArray(make.Type(outerCacheClass.type),
1616                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
1617                          null);
1618             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
1619                                           syms.arrayClass);
1620 
1621             // forNameSym := java.lang.Class.forName(
1622             //     String s,boolean init,ClassLoader loader)
1623             Symbol forNameSym = lookupMethod(make_pos, names.forName,
1624                                              types.erasure(syms.classType),
1625                                              List.of(syms.stringType,
1626                                                      syms.booleanType,
1627                                                      syms.classLoaderType));
1628             // clvalue := "(cl$ == null) ?
1629             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
1630             JCExpression clvalue =
1631                 make.Conditional(
1632                     makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
1633                     make.Assign(
1634                         make.Ident(clsym),
1635                         makeCall(
1636                             makeCall(makeCall(newcache,
1637                                               names.getClass,
1638                                               List.<JCExpression>nil()),
1639                                      names.getComponentType,
1640                                      List.<JCExpression>nil()),
1641                             names.getClassLoader,
1642                             List.<JCExpression>nil())).setType(syms.classLoaderType),
1643                     make.Ident(clsym)).setType(syms.classLoaderType);
1644 
1645             // returnResult := "{ return Class.forName(param1, false, cl$); }"
1646             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
1647                                               makeLit(syms.booleanType, 0),
1648                                               clvalue);
1649             returnResult = make.
1650                 Block(0, List.<JCStatement>of(make.
1651                               Call(make. // return
1652                                    App(make.
1653                                        Ident(forNameSym), args))));
1654         } else {
1655             // forNameSym := java.lang.Class.forName(String s)
1656             Symbol forNameSym = lookupMethod(make_pos,
1657                                              names.forName,
1658                                              types.erasure(syms.classType),
1659                                              List.of(syms.stringType));
1660             // returnResult := "{ return Class.forName(param1); }"
1661             returnResult = make.
1662                 Block(0, List.of(make.
1663                           Call(make. // return
1664                               App(make.
1665                                   QualIdent(forNameSym),
1666                                   List.<JCExpression>of(make.
1667                                                         Ident(md.params.
1668                                                               head.sym))))));
1669         }
1670 
1671         // catchParam := ClassNotFoundException e1
1672         VarSymbol catchParam =
1673             new VarSymbol(0, make.paramName(1),
1674                           syms.classNotFoundExceptionType,
1675                           classDollarSym);
1676 
1677         JCStatement rethrow;
1678         if (target.hasInitCause()) {
1679             // rethrow = "throw new NoClassDefFoundError().initCause(e);
1680             JCTree throwExpr =
1681                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
1682                                       List.<JCExpression>nil()),
1683                          names.initCause,
1684                          List.<JCExpression>of(make.Ident(catchParam)));
1685             rethrow = make.Throw(throwExpr);
1686         } else {
1687             // getMessageSym := ClassNotFoundException.getMessage()
1688             Symbol getMessageSym = lookupMethod(make_pos,
1689                                                 names.getMessage,
1690                                                 syms.classNotFoundExceptionType,
1691                                                 List.<Type>nil());
1692             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
1693             rethrow = make.
1694                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
1695                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
1696                                                                      getMessageSym),
1697                                                          List.<JCExpression>nil()))));
1698         }
1699 
1700         // rethrowStmt := "( $rethrow )"
1701         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
1702 
1703         // catchBlock := "catch ($catchParam) $rethrowStmt"
1704         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
1705                                       rethrowStmt);
1706 
1707         // tryCatch := "try $returnResult $catchBlock"
1708         JCStatement tryCatch = make.Try(returnResult,
1709                                         List.of(catchBlock), null);
1710 
1711         return make.Block(0, List.of(tryCatch));
1712     }
1713     // where
1714         /** Create an attributed tree of the form left.name(). */
1715         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
1716             assert left.type != null;
1717             Symbol funcsym = lookupMethod(make_pos, name, left.type,
1718                                           TreeInfo.types(args));
1719             return make.App(make.Select(left, funcsym), args);
1720         }
1721 
1722     /** The Name Of The variable to cache T.class values.
1723      *  @param sig      The signature of type T.
1724      */
1725     private Name cacheName(String sig) {
1726         StringBuffer buf = new StringBuffer();
1727         if (sig.startsWith("[")) {
1728             buf = buf.append("array");
1729             while (sig.startsWith("[")) {
1730                 buf = buf.append(target.syntheticNameChar());
1731                 sig = sig.substring(1);
1732             }
1733             if (sig.startsWith("L")) {
1734                 sig = sig.substring(0, sig.length() - 1);
1735             }
1736         } else {
1737             buf = buf.append("class" + target.syntheticNameChar());
1738         }
1739         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
1740         return names.fromString(buf.toString());
1741     }
1742 
1743     /** The variable symbol that caches T.class values.
1744      *  If none exists yet, create a definition.
1745      *  @param sig      The signature of type T.
1746      *  @param pos      The position to report diagnostics, if any.
1747      */
1748     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
1749         ClassSymbol outerCacheClass = outerCacheClass();
1750         Name cname = cacheName(sig);
1751         VarSymbol cacheSym =
1752             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
1753         if (cacheSym == null) {
1754             cacheSym = new VarSymbol(
1755                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
1756             enterSynthetic(pos, cacheSym, outerCacheClass.members());
1757 
1758             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
1759             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1760             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
1761         }
1762         return cacheSym;
1763     }
1764 
1765     /** The tree simulating a T.class expression.
1766      *  @param clazz      The tree identifying type T.
1767      */
1768     private JCExpression classOf(JCTree clazz) {
1769         return classOfType(clazz.type, clazz.pos());
1770     }
1771 
1772     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
1773         switch (type.tag) {
1774         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
1775         case DOUBLE: case BOOLEAN: case VOID:
1776             // replace with <BoxedClass>.TYPE
1777             ClassSymbol c = types.boxedClass(type);
1778             Symbol typeSym =
1779                 rs.access(
1780                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
1781                     pos, c.type, names.TYPE, true);
1782             if (typeSym.kind == VAR)
1783                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
1784             return make.QualIdent(typeSym);
1785         case CLASS: case ARRAY:
1786             if (target.hasClassLiterals()) {
1787                 VarSymbol sym = new VarSymbol(
1788                         STATIC | PUBLIC | FINAL, names._class,
1789                         syms.classType, type.tsym);
1790                 return make_at(pos).Select(make.Type(type), sym);
1791             }
1792             // replace with <cache == null ? cache = class$(tsig) : cache>
1793             // where
1794             //  - <tsig>  is the type signature of T,
1795             //  - <cache> is the cache variable for tsig.
1796             String sig =
1797                 writer.xClassName(type).toString().replace('/', '.');
1798             Symbol cs = cacheSym(pos, sig);
1799             return make_at(pos).Conditional(
1800                 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
1801                 make.Assign(
1802                     make.Ident(cs),
1803                     make.App(
1804                         make.Ident(classDollarSym(pos)),
1805                         List.<JCExpression>of(make.Literal(CLASS, sig)
1806                                               .setType(syms.stringType))))
1807                 .setType(types.erasure(syms.classType)),
1808                 make.Ident(cs)).setType(types.erasure(syms.classType));
1809         default:
1810             throw new AssertionError();
1811         }
1812     }
1813 
1814 /**************************************************************************
1815  * Code for enabling/disabling assertions.
1816  *************************************************************************/
1817 
1818     // This code is not particularly robust if the user has
1819     // previously declared a member named '$assertionsDisabled'.
1820     // The same faulty idiom also appears in the translation of
1821     // class literals above.  We should report an error if a
1822     // previous declaration is not synthetic.
1823 
1824     private JCExpression assertFlagTest(DiagnosticPosition pos) {
1825         // Outermost class may be either true class or an interface.
1826         ClassSymbol outermostClass = outermostClassDef.sym;
1827 
1828         // note that this is a class, as an interface can't contain a statement.
1829         ClassSymbol container = currentClass;
1830 
1831         VarSymbol assertDisabledSym =
1832             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
1833                                        container.members());
1834         if (assertDisabledSym == null) {
1835             assertDisabledSym =
1836                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
1837                               dollarAssertionsDisabled,
1838                               syms.booleanType,
1839                               container);
1840             enterSynthetic(pos, assertDisabledSym, container.members());
1841             Symbol desiredAssertionStatusSym = lookupMethod(pos,
1842                                                             names.desiredAssertionStatus,
1843                                                             types.erasure(syms.classType),
1844                                                             List.<Type>nil());
1845             JCClassDecl containerDef = classDef(container);
1846             make_at(containerDef.pos());
1847             JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
1848                     classOfType(types.erasure(outermostClass.type),
1849                                 containerDef.pos()),
1850                     desiredAssertionStatusSym)));
1851             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
1852                                                    notStatus);
1853             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
1854         }
1855         make_at(pos);
1856         return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
1857     }
1858 
1859 
1860 /**************************************************************************
1861  * Building blocks for let expressions
1862  *************************************************************************/
1863 
1864     interface TreeBuilder {
1865         JCTree build(JCTree arg);
1866     }
1867 
1868     /** Construct an expression using the builder, with the given rval
1869      *  expression as an argument to the builder.  However, the rval
1870      *  expression must be computed only once, even if used multiple
1871      *  times in the result of the builder.  We do that by
1872      *  constructing a "let" expression that saves the rvalue into a
1873      *  temporary variable and then uses the temporary variable in
1874      *  place of the expression built by the builder.  The complete
1875      *  resulting expression is of the form
1876      *  <pre>
1877      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
1878      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
1879      *  </pre>
1880      *  where <code><b>TEMP</b></code> is a newly declared variable
1881      *  in the let expression.
1882      */
1883     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
1884         rval = TreeInfo.skipParens(rval);
1885         switch (rval.getTag()) {
1886         case JCTree.LITERAL:
1887             return builder.build(rval);
1888         case JCTree.IDENT:
1889             JCIdent id = (JCIdent) rval;
1890             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
1891                 return builder.build(rval);
1892         }
1893         VarSymbol var =
1894             new VarSymbol(FINAL|SYNTHETIC,
1895                           names.fromString(
1896                                           target.syntheticNameChar()
1897                                           + "" + rval.hashCode()),
1898                                       type,
1899                                       currentMethodSym);
1900         rval = convert(rval,type);
1901         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
1902         JCTree built = builder.build(make.Ident(var));
1903         JCTree res = make.LetExpr(def, built);
1904         res.type = built.type;
1905         return res;
1906     }
1907 
1908     // same as above, with the type of the temporary variable computed
1909     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
1910         return abstractRval(rval, rval.type, builder);
1911     }
1912 
1913     // same as above, but for an expression that may be used as either
1914     // an rvalue or an lvalue.  This requires special handling for
1915     // Select expressions, where we place the left-hand-side of the
1916     // select in a temporary, and for Indexed expressions, where we
1917     // place both the indexed expression and the index value in temps.
1918     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
1919         lval = TreeInfo.skipParens(lval);
1920         switch (lval.getTag()) {
1921         case JCTree.IDENT:
1922             return builder.build(lval);
1923         case JCTree.SELECT: {
1924             final JCFieldAccess s = (JCFieldAccess)lval;
1925             JCTree selected = TreeInfo.skipParens(s.selected);
1926             Symbol lid = TreeInfo.symbol(s.selected);
1927             if (lid != null && lid.kind == TYP) return builder.build(lval);
1928             return abstractRval(s.selected, new TreeBuilder() {
1929                     public JCTree build(final JCTree selected) {
1930                         return builder.build(make.Select((JCExpression)selected, s.sym));
1931                     }
1932                 });
1933         }
1934         case JCTree.INDEXED: {
1935             final JCArrayAccess i = (JCArrayAccess)lval;
1936             return abstractRval(i.indexed, new TreeBuilder() {
1937                     public JCTree build(final JCTree indexed) {
1938                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
1939                                 public JCTree build(final JCTree index) {
1940                                     JCTree newLval = make.Indexed((JCExpression)indexed,
1941                                                                 (JCExpression)index);
1942                                     newLval.setType(i.type);
1943                                     return builder.build(newLval);
1944                                 }
1945                             });
1946                     }
1947                 });
1948         }
1949         case JCTree.TYPECAST: {
1950             return abstractLval(((JCTypeCast)lval).expr, builder);
1951         }
1952         }
1953         throw new AssertionError(lval);
1954     }
1955 
1956     // evaluate and discard the first expression, then evaluate the second.
1957     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
1958         return abstractRval(expr1, new TreeBuilder() {
1959                 public JCTree build(final JCTree discarded) {
1960                     return expr2;
1961                 }
1962             });
1963     }
1964 
1965 /**************************************************************************
1966  * Translation methods
1967  *************************************************************************/
1968 
1969     /** Visitor argument: enclosing operator node.
1970      */
1971     private JCExpression enclOp;
1972 
1973     /** Visitor method: Translate a single node.
1974      *  Attach the source position from the old tree to its replacement tree.
1975      */
1976     public <T extends JCTree> T translate(T tree) {
1977         if (tree == null) {
1978             return null;
1979         } else {
1980             make_at(tree.pos());
1981             T result = super.translate(tree);
1982             if (endPositions != null && result != tree) {
1983                 Integer endPos = endPositions.remove(tree);
1984                 if (endPos != null) endPositions.put(result, endPos);
1985             }
1986             return result;
1987         }
1988     }
1989 
1990     /** Visitor method: Translate a single node, boxing or unboxing if needed.
1991      */
1992     public <T extends JCTree> T translate(T tree, Type type) {
1993         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
1994     }
1995 
1996     /** Visitor method: Translate tree.
1997      */
1998     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
1999         JCExpression prevEnclOp = this.enclOp;
2000         this.enclOp = enclOp;
2001         T res = translate(tree);
2002         this.enclOp = prevEnclOp;
2003         return res;
2004     }
2005 
2006     /** Visitor method: Translate list of trees.
2007      */
2008     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
2009         JCExpression prevEnclOp = this.enclOp;
2010         this.enclOp = enclOp;
2011         List<T> res = translate(trees);
2012         this.enclOp = prevEnclOp;
2013         return res;
2014     }
2015 
2016     /** Visitor method: Translate list of trees.
2017      */
2018     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
2019         if (trees == null) return null;
2020         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
2021             l.head = translate(l.head, type);
2022         return trees;
2023     }
2024 
2025     public void visitTopLevel(JCCompilationUnit tree) {
2026         if (tree.packageAnnotations.nonEmpty()) {
2027             Name name = names.package_info;
2028             long flags = Flags.ABSTRACT | Flags.INTERFACE;
2029             if (target.isPackageInfoSynthetic())
2030                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
2031                 flags = flags | Flags.SYNTHETIC;
2032             JCClassDecl packageAnnotationsClass
2033                 = make.ClassDef(make.Modifiers(flags,
2034                                                tree.packageAnnotations),
2035                                 name, List.<JCTypeParameter>nil(),
2036                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
2037             ClassSymbol c = tree.packge.package_info;
2038             c.flags_field |= flags;
2039             c.attributes_field = tree.packge.attributes_field;
2040             ClassType ctype = (ClassType) c.type;
2041             ctype.supertype_field = syms.objectType;
2042             ctype.interfaces_field = List.nil();
2043             packageAnnotationsClass.sym = c;
2044 
2045             translated.append(packageAnnotationsClass);
2046         }
2047     }
2048 
2049     public void visitClassDef(JCClassDecl tree) {
2050         ClassSymbol currentClassPrev = currentClass;
2051         MethodSymbol currentMethodSymPrev = currentMethodSym;
2052         currentClass = tree.sym;
2053         currentMethodSym = null;
2054         classdefs.put(currentClass, tree);
2055 
2056         proxies = proxies.dup(currentClass);
2057         List<VarSymbol> prevOuterThisStack = outerThisStack;
2058 
2059         // If this is an enum definition
2060         if ((tree.mods.flags & ENUM) != 0 &&
2061             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2062             visitEnumDef(tree);
2063 
2064         // If this is a nested class, define a this$n field for
2065         // it and add to proxies.
2066         JCVariableDecl otdef = null;
2067         if (currentClass.hasOuterInstance())
2068             otdef = outerThisDef(tree.pos, currentClass);
2069 
2070         // If this is a local class, define proxies for all its free variables.
2071         List<JCVariableDecl> fvdefs = freevarDefs(
2072             tree.pos, freevars(currentClass), currentClass);
2073 
2074         // Recursively translate superclass, interfaces.
2075         tree.extending = translate(tree.extending);
2076         tree.implementing = translate(tree.implementing);
2077 
2078         // Recursively translate members, taking into account that new members
2079         // might be created during the translation and prepended to the member
2080         // list `tree.defs'.
2081         List<JCTree> seen = List.nil();
2082         while (tree.defs != seen) {
2083             List<JCTree> unseen = tree.defs;
2084             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2085                 JCTree outermostMemberDefPrev = outermostMemberDef;
2086                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2087                 l.head = translate(l.head);
2088                 outermostMemberDef = outermostMemberDefPrev;
2089             }
2090             seen = unseen;
2091         }
2092 
2093         // Convert a protected modifier to public, mask static modifier.
2094         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2095         tree.mods.flags &= ClassFlags;
2096 
2097         // Convert name to flat representation, replacing '.' by '$'.
2098         tree.name = Convert.shortName(currentClass.flatName());
2099 
2100         // Add this$n and free variables proxy definitions to class.
2101         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2102             tree.defs = tree.defs.prepend(l.head);
2103             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2104         }
2105         if (currentClass.hasOuterInstance()) {
2106             tree.defs = tree.defs.prepend(otdef);
2107             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2108         }
2109 
2110         proxies = proxies.leave();
2111         outerThisStack = prevOuterThisStack;
2112 
2113         // Append translated tree to `translated' queue.
2114         translated.append(tree);
2115 
2116         currentClass = currentClassPrev;
2117         currentMethodSym = currentMethodSymPrev;
2118 
2119         // Return empty block {} as a placeholder for an inner class.
2120         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
2121     }
2122 
2123     /** Translate an enum class. */
2124     private void visitEnumDef(JCClassDecl tree) {
2125         make_at(tree.pos());
2126 
2127         // add the supertype, if needed
2128         if (tree.extending == null)
2129             tree.extending = make.Type(types.supertype(tree.type));
2130 
2131         // classOfType adds a cache field to tree.defs unless
2132         // target.hasClassLiterals().
2133         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2134             setType(types.erasure(syms.classType));
2135 
2136         // process each enumeration constant, adding implicit constructor parameters
2137         int nextOrdinal = 0;
2138         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
2139         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
2140         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
2141         for (List<JCTree> defs = tree.defs;
2142              defs.nonEmpty();
2143              defs=defs.tail) {
2144             if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2145                 JCVariableDecl var = (JCVariableDecl)defs.head;
2146                 visitEnumConstantDef(var, nextOrdinal++);
2147                 values.append(make.QualIdent(var.sym));
2148                 enumDefs.append(var);
2149             } else {
2150                 otherDefs.append(defs.head);
2151             }
2152         }
2153 
2154         // private static final T[] #VALUES = { a, b, c };
2155         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
2156         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
2157             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2158         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2159         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2160                                             valuesName,
2161                                             arrayType,
2162                                             tree.type.tsym);
2163         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2164                                           List.<JCExpression>nil(),
2165                                           values.toList());
2166         newArray.type = arrayType;
2167         enumDefs.append(make.VarDef(valuesVar, newArray));
2168         tree.sym.members().enter(valuesVar);
2169 
2170         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
2171                                         tree.type, List.<Type>nil());
2172         List<JCStatement> valuesBody;
2173         if (useClone()) {
2174             // return (T[]) $VALUES.clone();
2175             JCTypeCast valuesResult =
2176                 make.TypeCast(valuesSym.type.getReturnType(),
2177                               make.App(make.Select(make.Ident(valuesVar),
2178                                                    syms.arrayCloneMethod)));
2179             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
2180         } else {
2181             // template: T[] $result = new T[$values.length];
2182             Name resultName = names.fromString(target.syntheticNameChar() + "result");
2183             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
2184                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
2185             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2186                                                 resultName,
2187                                                 arrayType,
2188                                                 valuesSym);
2189             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2190                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2191                                   null);
2192             resultArray.type = arrayType;
2193             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2194 
2195             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2196             if (systemArraycopyMethod == null) {
2197                 systemArraycopyMethod =
2198                     new MethodSymbol(PUBLIC | STATIC,
2199                                      names.fromString("arraycopy"),
2200                                      new MethodType(List.<Type>of(syms.objectType,
2201                                                             syms.intType,
2202                                                             syms.objectType,
2203                                                             syms.intType,
2204                                                             syms.intType),
2205                                                     syms.voidType,
2206                                                     List.<Type>nil(),
2207                                                     syms.methodClass),
2208                                      syms.systemType.tsym);
2209             }
2210             JCStatement copy =
2211                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2212                                                systemArraycopyMethod),
2213                           List.of(make.Ident(valuesVar), make.Literal(0),
2214                                   make.Ident(resultVar), make.Literal(0),
2215                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2216 
2217             // template: return $result;
2218             JCStatement ret = make.Return(make.Ident(resultVar));
2219             valuesBody = List.<JCStatement>of(decl, copy, ret);
2220         }
2221 
2222         JCMethodDecl valuesDef =
2223              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
2224 
2225         enumDefs.append(valuesDef);
2226 
2227         if (debugLower)
2228             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2229 
2230         /** The template for the following code is:
2231          *
2232          *     public static E valueOf(String name) {
2233          *         return (E)Enum.valueOf(E.class, name);
2234          *     }
2235          *
2236          *  where E is tree.sym
2237          */
2238         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2239                          names.valueOf,
2240                          tree.sym.type,
2241                          List.of(syms.stringType));
2242         assert (valueOfSym.flags() & STATIC) != 0;
2243         VarSymbol nameArgSym = valueOfSym.params.head;
2244         JCIdent nameVal = make.Ident(nameArgSym);
2245         JCStatement enum_ValueOf =
2246             make.Return(make.TypeCast(tree.sym.type,
2247                                       makeCall(make.Ident(syms.enumSym),
2248                                                names.valueOf,
2249                                                List.of(e_class, nameVal))));
2250         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2251                                            make.Block(0, List.of(enum_ValueOf)));
2252         nameVal.sym = valueOf.params.head.sym;
2253         if (debugLower)
2254             System.err.println(tree.sym + ".valueOf = " + valueOf);
2255         enumDefs.append(valueOf);
2256 
2257         enumDefs.appendList(otherDefs.toList());
2258         tree.defs = enumDefs.toList();
2259 
2260         // Add the necessary members for the EnumCompatibleMode
2261         if (target.compilerBootstrap(tree.sym)) {
2262             addEnumCompatibleMembers(tree);
2263         }
2264     }
2265         // where
2266         private MethodSymbol systemArraycopyMethod;
2267         private boolean useClone() {
2268             try {
2269                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
2270                 return (e.sym != null);
2271             }
2272             catch (CompletionFailure e) {
2273                 return false;
2274             }
2275         }
2276 
2277     /** Translate an enumeration constant and its initializer. */
2278     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2279         JCNewClass varDef = (JCNewClass)var.init;
2280         varDef.args = varDef.args.
2281             prepend(makeLit(syms.intType, ordinal)).
2282             prepend(makeLit(syms.stringType, var.name.toString()));
2283     }
2284 
2285     public void visitMethodDef(JCMethodDecl tree) {
2286         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2287             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2288             // argument list for each constructor of an enum.
2289             JCVariableDecl nameParam = make_at(tree.pos()).
2290                 Param(names.fromString(target.syntheticNameChar() +
2291                                        "enum" + target.syntheticNameChar() + "name"),
2292                       syms.stringType, tree.sym);
2293             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2294 
2295             JCVariableDecl ordParam = make.
2296                 Param(names.fromString(target.syntheticNameChar() +
2297                                        "enum" + target.syntheticNameChar() +
2298                                        "ordinal"),
2299                       syms.intType, tree.sym);
2300             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2301 
2302             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2303 
2304             MethodSymbol m = tree.sym;
2305             Type olderasure = m.erasure(types);
2306             m.erasure_field = new MethodType(
2307                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2308                 olderasure.getReturnType(),
2309                 olderasure.getThrownTypes(),
2310                 syms.methodClass);
2311 
2312             if (target.compilerBootstrap(m.owner)) {
2313                 // Initialize synthetic name field
2314                 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
2315                                                     tree.sym.owner.members());
2316                 JCIdent nameIdent = make.Ident(nameParam.sym);
2317                 JCIdent id1 = make.Ident(nameVarSym);
2318                 JCAssign newAssign = make.Assign(id1, nameIdent);
2319                 newAssign.type = id1.type;
2320                 JCExpressionStatement nameAssign = make.Exec(newAssign);
2321                 nameAssign.type = id1.type;
2322                 tree.body.stats = tree.body.stats.prepend(nameAssign);
2323 
2324                 // Initialize synthetic ordinal field
2325                 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
2326                                                        tree.sym.owner.members());
2327                 JCIdent ordIdent = make.Ident(ordParam.sym);
2328                 id1 = make.Ident(ordinalVarSym);
2329                 newAssign = make.Assign(id1, ordIdent);
2330                 newAssign.type = id1.type;
2331                 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
2332                 ordinalAssign.type = id1.type;
2333                 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
2334             }
2335         }
2336 
2337         JCMethodDecl prevMethodDef = currentMethodDef;
2338         MethodSymbol prevMethodSym = currentMethodSym;
2339         try {
2340             currentMethodDef = tree;
2341             currentMethodSym = tree.sym;
2342             visitMethodDefInternal(tree);
2343         } finally {
2344             currentMethodDef = prevMethodDef;
2345             currentMethodSym = prevMethodSym;
2346         }
2347     }
2348     //where
2349     private void visitMethodDefInternal(JCMethodDecl tree) {
2350         if (tree.name == names.init &&
2351             (currentClass.isInner() ||
2352              (currentClass.owner.kind & (VAR | MTH)) != 0)) {
2353             // We are seeing a constructor of an inner class.
2354             MethodSymbol m = tree.sym;
2355 
2356             // Push a new proxy scope for constructor parameters.
2357             // and create definitions for any this$n and proxy parameters.
2358             proxies = proxies.dup(m);
2359             List<VarSymbol> prevOuterThisStack = outerThisStack;
2360             List<VarSymbol> fvs = freevars(currentClass);
2361             JCVariableDecl otdef = null;
2362             if (currentClass.hasOuterInstance())
2363                 otdef = outerThisDef(tree.pos, m);
2364             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
2365 
2366             // Recursively translate result type, parameters and thrown list.
2367             tree.restype = translate(tree.restype);
2368             tree.params = translateVarDefs(tree.params);
2369             tree.thrown = translate(tree.thrown);
2370 
2371             // when compiling stubs, don't process body
2372             if (tree.body == null) {
2373                 result = tree;
2374                 return;
2375             }
2376 
2377             // Add this$n (if needed) in front of and free variables behind
2378             // constructor parameter list.
2379             tree.params = tree.params.appendList(fvdefs);
2380             if (currentClass.hasOuterInstance())
2381                 tree.params = tree.params.prepend(otdef);
2382 
2383             // If this is an initial constructor, i.e., it does not start with
2384             // this(...), insert initializers for this$n and proxies
2385             // before (pre-1.4, after) the call to superclass constructor.
2386             JCStatement selfCall = translate(tree.body.stats.head);
2387 
2388             List<JCStatement> added = List.nil();
2389             if (fvs.nonEmpty()) {
2390                 List<Type> addedargtypes = List.nil();
2391                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2392                     if (TreeInfo.isInitialConstructor(tree))
2393                         added = added.prepend(
2394                             initField(tree.body.pos, proxyName(l.head.name)));
2395                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2396                 }
2397                 Type olderasure = m.erasure(types);
2398                 m.erasure_field = new MethodType(
2399                     olderasure.getParameterTypes().appendList(addedargtypes),
2400                     olderasure.getReturnType(),
2401                     olderasure.getThrownTypes(),
2402                     syms.methodClass);
2403             }
2404             if (currentClass.hasOuterInstance() &&
2405                 TreeInfo.isInitialConstructor(tree))
2406             {
2407                 added = added.prepend(initOuterThis(tree.body.pos));
2408             }
2409 
2410             // pop local variables from proxy stack
2411             proxies = proxies.leave();
2412 
2413             // recursively translate following local statements and
2414             // combine with this- or super-call
2415             List<JCStatement> stats = translate(tree.body.stats.tail);
2416             if (target.initializeFieldsBeforeSuper())
2417                 tree.body.stats = stats.prepend(selfCall).prependList(added);
2418             else
2419                 tree.body.stats = stats.prependList(added).prepend(selfCall);
2420 
2421             outerThisStack = prevOuterThisStack;
2422         } else {
2423             super.visitMethodDef(tree);
2424         }
2425         result = tree;
2426     }
2427 
2428     public void visitAnnotatedType(JCAnnotatedType tree) {
2429         tree.underlyingType = translate(tree.underlyingType);
2430         result = tree.underlyingType;
2431     }
2432 
2433     public void visitTypeCast(JCTypeCast tree) {
2434         tree.clazz = translate(tree.clazz);
2435         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2436             tree.expr = translate(tree.expr, tree.type);
2437         else
2438             tree.expr = translate(tree.expr);
2439         result = tree;
2440     }
2441 
2442     public void visitNewClass(JCNewClass tree) {
2443         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
2444 
2445         // Box arguments, if necessary
2446         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
2447         List<Type> argTypes = tree.constructor.type.getParameterTypes();
2448         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
2449         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
2450         tree.varargsElement = null;
2451 
2452         // If created class is local, add free variables after
2453         // explicit constructor arguments.
2454         if ((c.owner.kind & (VAR | MTH)) != 0) {
2455             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2456         }
2457 
2458         // If an access constructor is used, append null as a last argument.
2459         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
2460         if (constructor != tree.constructor) {
2461             tree.args = tree.args.append(makeNull());
2462             tree.constructor = constructor;
2463         }
2464 
2465         // If created class has an outer instance, and new is qualified, pass
2466         // qualifier as first argument. If new is not qualified, pass the
2467         // correct outer instance as first argument.
2468         if (c.hasOuterInstance()) {
2469             JCExpression thisArg;
2470             if (tree.encl != null) {
2471                 thisArg = attr.makeNullCheck(translate(tree.encl));
2472                 thisArg.type = tree.encl.type;
2473             } else if ((c.owner.kind & (MTH | VAR)) != 0) {
2474                 // local class
2475                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
2476             } else {
2477                 // nested class
2478                 thisArg = makeOwnerThis(tree.pos(), c, false);
2479             }
2480             tree.args = tree.args.prepend(thisArg);
2481         }
2482         tree.encl = null;
2483 
2484         // If we have an anonymous class, create its flat version, rather
2485         // than the class or interface following new.
2486         if (tree.def != null) {
2487             translate(tree.def);
2488             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
2489             tree.def = null;
2490         } else {
2491             tree.clazz = access(c, tree.clazz, enclOp, false);
2492         }
2493         result = tree;
2494     }
2495 
2496     // Simplify conditionals with known constant controlling expressions.
2497     // This allows us to avoid generating supporting declarations for
2498     // the dead code, which will not be eliminated during code generation.
2499     // Note that Flow.isFalse and Flow.isTrue only return true
2500     // for constant expressions in the sense of JLS 15.27, which
2501     // are guaranteed to have no side-effects.  More aggressive
2502     // constant propagation would require that we take care to
2503     // preserve possible side-effects in the condition expression.
2504 
2505     /** Visitor method for conditional expressions.
2506      */
2507     public void visitConditional(JCConditional tree) {
2508         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2509         if (cond.type.isTrue()) {
2510             result = convert(translate(tree.truepart, tree.type), tree.type);
2511         } else if (cond.type.isFalse()) {
2512             result = convert(translate(tree.falsepart, tree.type), tree.type);
2513         } else {
2514             // Condition is not a compile-time constant.
2515             tree.truepart = translate(tree.truepart, tree.type);
2516             tree.falsepart = translate(tree.falsepart, tree.type);
2517             result = tree;
2518         }
2519     }
2520 //where
2521         private JCTree convert(JCTree tree, Type pt) {
2522             if (tree.type == pt) return tree;
2523             JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
2524             result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
2525                                                            : pt;
2526             return result;
2527         }
2528 
2529     /** Visitor method for if statements.
2530      */
2531     public void visitIf(JCIf tree) {
2532         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2533         if (cond.type.isTrue()) {
2534             result = translate(tree.thenpart);
2535         } else if (cond.type.isFalse()) {
2536             if (tree.elsepart != null) {
2537                 result = translate(tree.elsepart);
2538             } else {
2539                 result = make.Skip();
2540             }
2541         } else {
2542             // Condition is not a compile-time constant.
2543             tree.thenpart = translate(tree.thenpart);
2544             tree.elsepart = translate(tree.elsepart);
2545             result = tree;
2546         }
2547     }
2548 
2549     /** Visitor method for assert statements. Translate them away.
2550      */
2551     public void visitAssert(JCAssert tree) {
2552         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
2553         tree.cond = translate(tree.cond, syms.booleanType);
2554         if (!tree.cond.type.isTrue()) {
2555             JCExpression cond = assertFlagTest(tree.pos());
2556             List<JCExpression> exnArgs = (tree.detail == null) ?
2557                 List.<JCExpression>nil() : List.of(translate(tree.detail));
2558             if (!tree.cond.type.isFalse()) {
2559                 cond = makeBinary
2560                     (JCTree.AND,
2561                      cond,
2562                      makeUnary(JCTree.NOT, tree.cond));
2563             }
2564             result =
2565                 make.If(cond,
2566                         make_at(detailPos).
2567                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
2568                         null);
2569         } else {
2570             result = make.Skip();
2571         }
2572     }
2573 
2574     public void visitApply(JCMethodInvocation tree) {
2575         Symbol meth = TreeInfo.symbol(tree.meth);
2576         List<Type> argtypes = meth.type.getParameterTypes();
2577         if (allowEnums &&
2578             meth.name==names.init &&
2579             meth.owner == syms.enumSym)
2580             argtypes = argtypes.tail.tail;
2581         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
2582         tree.varargsElement = null;
2583         Name methName = TreeInfo.name(tree.meth);
2584         if (meth.name==names.init) {
2585             // We are seeing a this(...) or super(...) constructor call.
2586             // If an access constructor is used, append null as a last argument.
2587             Symbol constructor = accessConstructor(tree.pos(), meth);
2588             if (constructor != meth) {
2589                 tree.args = tree.args.append(makeNull());
2590                 TreeInfo.setSymbol(tree.meth, constructor);
2591             }
2592 
2593             // If we are calling a constructor of a local class, add
2594             // free variables after explicit constructor arguments.
2595             ClassSymbol c = (ClassSymbol)constructor.owner;
2596             if ((c.owner.kind & (VAR | MTH)) != 0) {
2597                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2598             }
2599 
2600             // If we are calling a constructor of an enum class, pass
2601             // along the name and ordinal arguments
2602             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
2603                 List<JCVariableDecl> params = currentMethodDef.params;
2604                 if (currentMethodSym.owner.hasOuterInstance())
2605                     params = params.tail; // drop this$n
2606                 tree.args = tree.args
2607                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
2608                     .prepend(make.Ident(params.head.sym)); // name
2609             }
2610 
2611             // If we are calling a constructor of a class with an outer
2612             // instance, and the call
2613             // is qualified, pass qualifier as first argument in front of
2614             // the explicit constructor arguments. If the call
2615             // is not qualified, pass the correct outer instance as
2616             // first argument.
2617             if (c.hasOuterInstance()) {
2618                 JCExpression thisArg;
2619                 if (tree.meth.getTag() == JCTree.SELECT) {
2620                     thisArg = attr.
2621                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
2622                     tree.meth = make.Ident(constructor);
2623                     ((JCIdent) tree.meth).name = methName;
2624                 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
2625                     // local class or this() call
2626                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
2627                 } else {
2628                     // super() call of nested class
2629                     thisArg = makeOwnerThis(tree.meth.pos(), c, false);
2630                 }
2631                 tree.args = tree.args.prepend(thisArg);
2632             }
2633         } else {
2634             // We are seeing a normal method invocation; translate this as usual.
2635             tree.meth = translate(tree.meth);
2636 
2637             // If the translated method itself is an Apply tree, we are
2638             // seeing an access method invocation. In this case, append
2639             // the method arguments to the arguments of the access method.
2640             if (tree.meth.getTag() == JCTree.APPLY) {
2641                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
2642                 app.args = tree.args.prependList(app.args);
2643                 result = app;
2644                 return;
2645             }
2646         }
2647         result = tree;
2648     }
2649 
2650     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
2651         List<JCExpression> args = _args;
2652         if (parameters.isEmpty()) return args;
2653         boolean anyChanges = false;
2654         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
2655         while (parameters.tail.nonEmpty()) {
2656             JCExpression arg = translate(args.head, parameters.head);
2657             anyChanges |= (arg != args.head);
2658             result.append(arg);
2659             args = args.tail;
2660             parameters = parameters.tail;
2661         }
2662         Type parameter = parameters.head;
2663         if (varargsElement != null) {
2664             anyChanges = true;
2665             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
2666             while (args.nonEmpty()) {
2667                 JCExpression arg = translate(args.head, varargsElement);
2668                 elems.append(arg);
2669                 args = args.tail;
2670             }
2671             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
2672                                                List.<JCExpression>nil(),
2673                                                elems.toList());
2674             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
2675             result.append(boxedArgs);
2676         } else {
2677             if (args.length() != 1) throw new AssertionError(args);
2678             JCExpression arg = translate(args.head, parameter);
2679             anyChanges |= (arg != args.head);
2680             result.append(arg);
2681             if (!anyChanges) return _args;
2682         }
2683         return result.toList();
2684     }
2685 
2686     /** Expand a boxing or unboxing conversion if needed. */
2687     @SuppressWarnings("unchecked") // XXX unchecked
2688     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
2689         boolean havePrimitive = tree.type.isPrimitive();
2690         if (havePrimitive == type.isPrimitive())
2691             return tree;
2692         if (havePrimitive) {
2693             Type unboxedTarget = types.unboxedType(type);
2694             if (unboxedTarget.tag != NONE) {
2695                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
2696                     tree.type = unboxedTarget.constType(tree.type.constValue());
2697                 return (T)boxPrimitive((JCExpression)tree, type);
2698             } else {
2699                 tree = (T)boxPrimitive((JCExpression)tree);
2700             }
2701         } else {
2702             tree = (T)unbox((JCExpression)tree, type);
2703         }
2704         return tree;
2705     }
2706 
2707     /** Box up a single primitive expression. */
2708     JCExpression boxPrimitive(JCExpression tree) {
2709         return boxPrimitive(tree, types.boxedClass(tree.type).type);
2710     }
2711 
2712     /** Box up a single primitive expression. */
2713     JCExpression boxPrimitive(JCExpression tree, Type box) {
2714         make_at(tree.pos());
2715         if (target.boxWithConstructors()) {
2716             Symbol ctor = lookupConstructor(tree.pos(),
2717                                             box,
2718                                             List.<Type>nil()
2719                                             .prepend(tree.type));
2720             return make.Create(ctor, List.of(tree));
2721         } else {
2722             Symbol valueOfSym = lookupMethod(tree.pos(),
2723                                              names.valueOf,
2724                                              box,
2725                                              List.<Type>nil()
2726                                              .prepend(tree.type));
2727             return make.App(make.QualIdent(valueOfSym), List.of(tree));
2728         }
2729     }
2730 
2731     /** Unbox an object to a primitive value. */
2732     JCExpression unbox(JCExpression tree, Type primitive) {
2733         Type unboxedType = types.unboxedType(tree.type);
2734         // note: the "primitive" parameter is not used.  There muse be
2735         // a conversion from unboxedType to primitive.
2736         make_at(tree.pos());
2737         Symbol valueSym = lookupMethod(tree.pos(),
2738                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
2739                                        tree.type,
2740                                        List.<Type>nil());
2741         return make.App(make.Select(tree, valueSym));
2742     }
2743 
2744     /** Visitor method for parenthesized expressions.
2745      *  If the subexpression has changed, omit the parens.
2746      */
2747     public void visitParens(JCParens tree) {
2748         JCTree expr = translate(tree.expr);
2749         result = ((expr == tree.expr) ? tree : expr);
2750     }
2751 
2752     public void visitIndexed(JCArrayAccess tree) {
2753         tree.indexed = translate(tree.indexed);
2754         tree.index = translate(tree.index, syms.intType);
2755         result = tree;
2756     }
2757 
2758     public void visitAssign(JCAssign tree) {
2759         tree.lhs = translate(tree.lhs, tree);
2760         tree.rhs = translate(tree.rhs, tree.lhs.type);
2761 
2762         // If translated left hand side is an Apply, we are
2763         // seeing an access method invocation. In this case, append
2764         // right hand side as last argument of the access method.
2765         if (tree.lhs.getTag() == JCTree.APPLY) {
2766             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2767             app.args = List.of(tree.rhs).prependList(app.args);
2768             result = app;
2769         } else {
2770             result = tree;
2771         }
2772     }
2773 
2774     public void visitAssignop(final JCAssignOp tree) {
2775         if (!tree.lhs.type.isPrimitive() &&
2776             tree.operator.type.getReturnType().isPrimitive()) {
2777             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
2778             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
2779             // (but without recomputing x)
2780             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
2781                     public JCTree build(final JCTree lhs) {
2782                         int newTag = tree.getTag() - JCTree.ASGOffset;
2783                         // Erasure (TransTypes) can change the type of
2784                         // tree.lhs.  However, we can still get the
2785                         // unerased type of tree.lhs as it is stored
2786                         // in tree.type in Attr.
2787                         Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
2788                                                                       newTag,
2789                                                                       attrEnv,
2790                                                                       tree.type,
2791                                                                       tree.rhs.type);
2792                         JCExpression expr = (JCExpression)lhs;
2793                         if (expr.type != tree.type)
2794                             expr = make.TypeCast(tree.type, expr);
2795                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
2796                         opResult.operator = newOperator;
2797                         opResult.type = newOperator.type.getReturnType();
2798                         JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
2799                                                           opResult);
2800                         return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
2801                     }
2802                 });
2803             result = translate(newTree);
2804             return;
2805         }
2806         tree.lhs = translate(tree.lhs, tree);
2807         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
2808 
2809         // If translated left hand side is an Apply, we are
2810         // seeing an access method invocation. In this case, append
2811         // right hand side as last argument of the access method.
2812         if (tree.lhs.getTag() == JCTree.APPLY) {
2813             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2814             // if operation is a += on strings,
2815             // make sure to convert argument to string
2816             JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
2817               ? makeString(tree.rhs)
2818               : tree.rhs;
2819             app.args = List.of(rhs).prependList(app.args);
2820             result = app;
2821         } else {
2822             result = tree;
2823         }
2824     }
2825 
2826     /** Lower a tree of the form e++ or e-- where e is an object type */
2827     JCTree lowerBoxedPostop(final JCUnary tree) {
2828         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
2829         // or
2830         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
2831         // where OP is += or -=
2832         final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
2833         return abstractLval(tree.arg, new TreeBuilder() {
2834                 public JCTree build(final JCTree tmp1) {
2835                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
2836                             public JCTree build(final JCTree tmp2) {
2837                                 int opcode = (tree.getTag() == JCTree.POSTINC)
2838                                     ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
2839                                 JCTree lhs = cast
2840                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
2841                                     : tmp1;
2842                                 JCTree update = makeAssignop(opcode,
2843                                                              lhs,
2844                                                              make.Literal(1));
2845                                 return makeComma(update, tmp2);
2846                             }
2847                         });
2848                 }
2849             });
2850     }
2851 
2852     public void visitUnary(JCUnary tree) {
2853         boolean isUpdateOperator =
2854             JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
2855         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
2856             switch(tree.getTag()) {
2857             case JCTree.PREINC:            // ++ e
2858                     // translate to e += 1
2859             case JCTree.PREDEC:            // -- e
2860                     // translate to e -= 1
2861                 {
2862                     int opcode = (tree.getTag() == JCTree.PREINC)
2863                         ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
2864                     JCAssignOp newTree = makeAssignop(opcode,
2865                                                     tree.arg,
2866                                                     make.Literal(1));
2867                     result = translate(newTree, tree.type);
2868                     return;
2869                 }
2870             case JCTree.POSTINC:           // e ++
2871             case JCTree.POSTDEC:           // e --
2872                 {
2873                     result = translate(lowerBoxedPostop(tree), tree.type);
2874                     return;
2875                 }
2876             }
2877             throw new AssertionError(tree);
2878         }
2879 
2880         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
2881 
2882         if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
2883             tree.type = cfolder.fold1(bool_not, tree.arg.type);
2884         }
2885 
2886         // If translated left hand side is an Apply, we are
2887         // seeing an access method invocation. In this case, return
2888         // that access method invocation as result.
2889         if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
2890             result = tree.arg;
2891         } else {
2892             result = tree;
2893         }
2894     }
2895 
2896     public void visitBinary(JCBinary tree) {
2897         List<Type> formals = tree.operator.type.getParameterTypes();
2898         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
2899         switch (tree.getTag()) {
2900         case JCTree.OR:
2901             if (lhs.type.isTrue()) {
2902                 result = lhs;
2903                 return;
2904             }
2905             if (lhs.type.isFalse()) {
2906                 result = translate(tree.rhs, formals.tail.head);
2907                 return;
2908             }
2909             break;
2910         case JCTree.AND:
2911             if (lhs.type.isFalse()) {
2912                 result = lhs;
2913                 return;
2914             }
2915             if (lhs.type.isTrue()) {
2916                 result = translate(tree.rhs, formals.tail.head);
2917                 return;
2918             }
2919             break;
2920         }
2921         tree.rhs = translate(tree.rhs, formals.tail.head);
2922         result = tree;
2923     }
2924 
2925     public void visitIdent(JCIdent tree) {
2926         result = access(tree.sym, tree, enclOp, false);
2927     }
2928 
2929     /** Translate away the foreach loop.  */
2930     public void visitForeachLoop(JCEnhancedForLoop tree) {
2931         if (types.elemtype(tree.expr.type) == null)
2932             visitIterableForeachLoop(tree);
2933         else
2934             visitArrayForeachLoop(tree);
2935     }
2936         // where
2937         /**
2938          * A statement of the form
2939          *
2940          * <pre>
2941          *     for ( T v : arrayexpr ) stmt;
2942          * </pre>
2943          *
2944          * (where arrayexpr is of an array type) gets translated to
2945          *
2946          * <pre>
2947          *     for ( { arraytype #arr = arrayexpr;
2948          *             int #len = array.length;
2949          *             int #i = 0; };
2950          *           #i < #len; i$++ ) {
2951          *         T v = arr$[#i];
2952          *         stmt;
2953          *     }
2954          * </pre>
2955          *
2956          * where #arr, #len, and #i are freshly named synthetic local variables.
2957          */
2958         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
2959             make_at(tree.expr.pos());
2960             VarSymbol arraycache = new VarSymbol(0,
2961                                                  names.fromString("arr" + target.syntheticNameChar()),
2962                                                  tree.expr.type,
2963                                                  currentMethodSym);
2964             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
2965             VarSymbol lencache = new VarSymbol(0,
2966                                                names.fromString("len" + target.syntheticNameChar()),
2967                                                syms.intType,
2968                                                currentMethodSym);
2969             JCStatement lencachedef = make.
2970                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
2971             VarSymbol index = new VarSymbol(0,
2972                                             names.fromString("i" + target.syntheticNameChar()),
2973                                             syms.intType,
2974                                             currentMethodSym);
2975 
2976             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
2977             indexdef.init.type = indexdef.type = syms.intType.constType(0);
2978 
2979             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
2980             JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
2981 
2982             JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
2983 
2984             Type elemtype = types.elemtype(tree.expr.type);
2985             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
2986                                                     make.Ident(index)).setType(elemtype);
2987             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
2988                                                   tree.var.name,
2989                                                   tree.var.vartype,
2990                                                   loopvarinit).setType(tree.var.type);
2991             loopvardef.sym = tree.var.sym;
2992             JCBlock body = make.
2993                 Block(0, List.of(loopvardef, tree.body));
2994 
2995             result = translate(make.
2996                                ForLoop(loopinit,
2997                                        cond,
2998                                        List.of(step),
2999                                        body));
3000             patchTargets(body, tree, result);
3001         }
3002         /** Patch up break and continue targets. */
3003         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
3004             class Patcher extends TreeScanner {
3005                 public void visitBreak(JCBreak tree) {
3006                     if (tree.target == src)
3007                         tree.target = dest;
3008                 }
3009                 public void visitContinue(JCContinue tree) {
3010                     if (tree.target == src)
3011                         tree.target = dest;
3012                 }
3013                 public void visitClassDef(JCClassDecl tree) {}
3014             }
3015             new Patcher().scan(body);
3016         }
3017         /**
3018          * A statement of the form
3019          *
3020          * <pre>
3021          *     for ( T v : coll ) stmt ;
3022          * </pre>
3023          *
3024          * (where coll implements Iterable<? extends T>) gets translated to
3025          *
3026          * <pre>
3027          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
3028          *         T v = (T) #i.next();
3029          *         stmt;
3030          *     }
3031          * </pre>
3032          *
3033          * where #i is a freshly named synthetic local variable.
3034          */
3035         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3036             make_at(tree.expr.pos());
3037             Type iteratorTarget = syms.objectType;
3038             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
3039                                               syms.iterableType.tsym);
3040             if (iterableType.getTypeArguments().nonEmpty())
3041                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3042             Type eType = tree.expr.type;
3043             tree.expr.type = types.erasure(eType);
3044             if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
3045                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
3046             Symbol iterator = lookupMethod(tree.expr.pos(),
3047                                            names.iterator,
3048                                            types.erasure(syms.iterableType),
3049                                            List.<Type>nil());
3050             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
3051                                             types.erasure(iterator.type.getReturnType()),
3052                                             currentMethodSym);
3053             JCStatement init = make.
3054                 VarDef(itvar,
3055                        make.App(make.Select(tree.expr, iterator)));
3056             Symbol hasNext = lookupMethod(tree.expr.pos(),
3057                                           names.hasNext,
3058                                           itvar.type,
3059                                           List.<Type>nil());
3060             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3061             Symbol next = lookupMethod(tree.expr.pos(),
3062                                        names.next,
3063                                        itvar.type,
3064                                        List.<Type>nil());
3065             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3066             if (tree.var.type.isPrimitive())
3067                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
3068             else
3069                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3070             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3071                                                   tree.var.name,
3072                                                   tree.var.vartype,
3073                                                   vardefinit).setType(tree.var.type);
3074             indexDef.sym = tree.var.sym;
3075             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3076             body.endpos = TreeInfo.endPos(tree.body);
3077             result = translate(make.
3078                 ForLoop(List.of(init),
3079                         cond,
3080                         List.<JCExpressionStatement>nil(),
3081                         body));
3082             patchTargets(body, tree, result);
3083         }
3084 
3085     public void visitVarDef(JCVariableDecl tree) {
3086         MethodSymbol oldMethodSym = currentMethodSym;
3087         tree.mods = translate(tree.mods);
3088         tree.vartype = translate(tree.vartype);
3089         if (currentMethodSym == null) {
3090             // A class or instance field initializer.
3091             currentMethodSym =
3092                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3093                                  names.empty, null,
3094                                  currentClass);
3095         }
3096         if (tree.init != null) tree.init = translate(tree.init, tree.type);
3097         result = tree;
3098         currentMethodSym = oldMethodSym;
3099     }
3100 
3101     public void visitBlock(JCBlock tree) {
3102         MethodSymbol oldMethodSym = currentMethodSym;
3103         if (currentMethodSym == null) {
3104             // Block is a static or instance initializer.
3105             currentMethodSym =
3106                 new MethodSymbol(tree.flags | BLOCK,
3107                                  names.empty, null,
3108                                  currentClass);
3109         }
3110         super.visitBlock(tree);
3111         currentMethodSym = oldMethodSym;
3112     }
3113 
3114     public void visitDoLoop(JCDoWhileLoop tree) {
3115         tree.body = translate(tree.body);
3116         tree.cond = translate(tree.cond, syms.booleanType);
3117         result = tree;
3118     }
3119 
3120     public void visitWhileLoop(JCWhileLoop tree) {
3121         tree.cond = translate(tree.cond, syms.booleanType);
3122         tree.body = translate(tree.body);
3123         result = tree;
3124     }
3125 
3126     public void visitForLoop(JCForLoop tree) {
3127         tree.init = translate(tree.init);
3128         if (tree.cond != null)
3129             tree.cond = translate(tree.cond, syms.booleanType);
3130         tree.step = translate(tree.step);
3131         tree.body = translate(tree.body);
3132         result = tree;
3133     }
3134 
3135     public void visitReturn(JCReturn tree) {
3136         if (tree.expr != null)
3137             tree.expr = translate(tree.expr,
3138                                   types.erasure(currentMethodDef
3139                                                 .restype.type));
3140         result = tree;
3141     }
3142 
3143     public void visitSwitch(JCSwitch tree) {
3144         Type selsuper = types.supertype(tree.selector.type);
3145         boolean enumSwitch = selsuper != null &&
3146             (tree.selector.type.tsym.flags() & ENUM) != 0;
3147         boolean stringSwitch = selsuper != null &&
3148             types.isSameType(tree.selector.type, syms.stringType);
3149         Type target = enumSwitch ? tree.selector.type :
3150             (stringSwitch? syms.stringType : syms.intType);
3151         tree.selector = translate(tree.selector, target);
3152         tree.cases = translateCases(tree.cases);
3153         if (enumSwitch) {
3154             result = visitEnumSwitch(tree);
3155         } else if (stringSwitch) {
3156             result = visitStringSwitch(tree);
3157         } else {
3158             result = tree;
3159         }
3160     }
3161 
3162     public JCTree visitEnumSwitch(JCSwitch tree) {
3163         TypeSymbol enumSym = tree.selector.type.tsym;
3164         EnumMapping map = mapForEnum(tree.pos(), enumSym);
3165         make_at(tree.pos());
3166         Symbol ordinalMethod = lookupMethod(tree.pos(),
3167                                             names.ordinal,
3168                                             tree.selector.type,
3169                                             List.<Type>nil());
3170         JCArrayAccess selector = make.Indexed(map.mapVar,
3171                                         make.App(make.Select(tree.selector,
3172                                                              ordinalMethod)));
3173         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
3174         for (JCCase c : tree.cases) {
3175             if (c.pat != null) {
3176                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
3177                 JCLiteral pat = map.forConstant(label);
3178                 cases.append(make.Case(pat, c.stats));
3179             } else {
3180                 cases.append(c);
3181             }
3182         }
3183         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
3184         patchTargets(enumSwitch, tree, enumSwitch);
3185         return enumSwitch;
3186     }
3187 
3188     public JCTree visitStringSwitch(JCSwitch tree) {
3189         List<JCCase> caseList = tree.getCases();
3190         int alternatives = caseList.size();
3191 
3192         if (alternatives == 0) { // Strange but legal possibility
3193             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
3194         } else {
3195             /*
3196              * The general approach used is to translate a single
3197              * string switch statement into a series of two chained
3198              * switch statements: the first a synthesized statement
3199              * switching on the argument string's hash value and
3200              * computing a string's position in the list of original
3201              * case labels, if any, followed by a second switch on the
3202              * computed integer value.  The second switch has the same
3203              * code structure as the original string switch statement
3204              * except that the string case labels are replaced with
3205              * positional integer constants starting at 0.
3206              *
3207              * The first switch statement can be thought of as an
3208              * inlined map from strings to their position in the case
3209              * label list.  An alternate implementation would use an
3210              * actual Map for this purpose, as done for enum switches.
3211              *
3212              * With some additional effort, it would be possible to
3213              * use a single switch statement on the hash code of the
3214              * argument, but care would need to be taken to preserve
3215              * the proper control flow in the presence of hash
3216              * collisions and other complications, such as
3217              * fallthroughs.  Switch statements with one or two
3218              * alternatives could also be specially translated into
3219              * if-then statements to omit the computation of the hash
3220              * code.
3221              *
3222              * The generated code assumes that the hashing algorithm
3223              * of String is the same in the compilation environment as
3224              * in the environment the code will run in.  The string
3225              * hashing algorithm in the SE JDK has been unchanged
3226              * since at least JDK 1.2.  Since the algorithm has been
3227              * specified since that release as well, it is very
3228              * unlikely to be changed in the future.
3229              *
3230              * Different hashing algorithms, such as the length of the
3231              * strings or a perfect hashing algorithm over the
3232              * particular set of case labels, could potentially be
3233              * used instead of String.hashCode.
3234              */
3235 
3236             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
3237 
3238             // Map from String case labels to their original position in
3239             // the list of case labels.
3240             Map<String, Integer> caseLabelToPosition =
3241                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
3242 
3243             // Map of hash codes to the string case labels having that hashCode.
3244             Map<Integer, Set<String>> hashToString =
3245                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
3246 
3247             int casePosition = 0;
3248             for(JCCase oneCase : caseList) {
3249                 JCExpression expression = oneCase.getExpression();
3250 
3251                 if (expression != null) { // expression for a "default" case is null
3252                     String labelExpr = (String) expression.type.constValue();
3253                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
3254                     assert mapping == null;
3255                     int hashCode = labelExpr.hashCode();
3256 
3257                     Set<String> stringSet = hashToString.get(hashCode);
3258                     if (stringSet == null) {
3259                         stringSet = new LinkedHashSet<String>(1, 1.0f);
3260                         stringSet.add(labelExpr);
3261                         hashToString.put(hashCode, stringSet);
3262                     } else {
3263                         boolean added = stringSet.add(labelExpr);
3264                         assert added;
3265                     }
3266                 }
3267                 casePosition++;
3268             }
3269 
3270             // Synthesize a switch statement that has the effect of
3271             // mapping from a string to the integer position of that
3272             // string in the list of case labels.  This is done by
3273             // switching on the hashCode of the string followed by an
3274             // if-then-else chain comparing the input for equality
3275             // with all the case labels having that hash value.
3276 
3277             /*
3278              * s$ = top of stack;
3279              * tmp$ = -1;
3280              * switch($s.hashCode()) {
3281              *     case caseLabel.hashCode:
3282              *         if (s$.equals("caseLabel_1")
3283              *           tmp$ = caseLabelToPosition("caseLabel_1");
3284              *         else if (s$.equals("caseLabel_2"))
3285              *           tmp$ = caseLabelToPosition("caseLabel_2");
3286              *         ...
3287              *         break;
3288              * ...
3289              * }
3290              */
3291 
3292             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
3293                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
3294                                                syms.stringType,
3295                                                currentMethodSym);
3296             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
3297 
3298             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
3299                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
3300                                                  syms.intType,
3301                                                  currentMethodSym);
3302             JCVariableDecl dollar_tmp_def =
3303                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
3304             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
3305             stmtList.append(dollar_tmp_def);
3306             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
3307             // hashCode will trigger nullcheck on original switch expression
3308             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
3309                                                        names.hashCode,
3310                                                        List.<JCExpression>nil()).setType(syms.intType);
3311             JCSwitch switch1 = make.Switch(hashCodeCall,
3312                                         caseBuffer.toList());
3313             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
3314                 int hashCode = entry.getKey();
3315                 Set<String> stringsWithHashCode = entry.getValue();
3316                 assert stringsWithHashCode.size() >= 1;
3317 
3318                 JCStatement elsepart = null;
3319                 for(String caseLabel : stringsWithHashCode ) {
3320                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
3321                                                                    names.equals,
3322                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
3323                     elsepart = make.If(stringEqualsCall,
3324                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
3325                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
3326                                                  setType(dollar_tmp.type)),
3327                                        elsepart);
3328                 }
3329 
3330                 ListBuffer<JCStatement> lb = ListBuffer.lb();
3331                 JCBreak breakStmt = make.Break(null);
3332                 breakStmt.target = switch1;
3333                 lb.append(elsepart).append(breakStmt);
3334 
3335                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
3336             }
3337 
3338             switch1.cases = caseBuffer.toList();
3339             stmtList.append(switch1);
3340 
3341             // Make isomorphic switch tree replacing string labels
3342             // with corresponding integer ones from the label to
3343             // position map.
3344 
3345             ListBuffer<JCCase> lb = ListBuffer.lb();
3346             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
3347             for(JCCase oneCase : caseList ) {
3348                 // Rewire up old unlabeled break statements to the
3349                 // replacement switch being created.
3350                 patchTargets(oneCase, tree, switch2);
3351 
3352                 boolean isDefault = (oneCase.getExpression() == null);
3353                 JCExpression caseExpr;
3354                 if (isDefault)
3355                     caseExpr = null;
3356                 else {
3357                     caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
3358                                                                     getExpression().
3359                                                                     type.constValue()));
3360                 }
3361 
3362                 lb.append(make.Case(caseExpr,
3363                                     oneCase.getStatements()));
3364             }
3365 
3366             switch2.cases = lb.toList();
3367             stmtList.append(switch2);
3368 
3369             return make.Block(0L, stmtList.toList());
3370         }
3371     }
3372 
3373     public void visitNewArray(JCNewArray tree) {
3374         tree.elemtype = translate(tree.elemtype);
3375         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
3376             if (t.head != null) t.head = translate(t.head, syms.intType);
3377         tree.elems = translate(tree.elems, types.elemtype(tree.type));
3378         result = tree;
3379     }
3380 
3381     public void visitSelect(JCFieldAccess tree) {
3382         // need to special case-access of the form C.super.x
3383         // these will always need an access method.
3384         boolean qualifiedSuperAccess =
3385             tree.selected.getTag() == JCTree.SELECT &&
3386             TreeInfo.name(tree.selected) == names._super;
3387         tree.selected = translate(tree.selected);
3388         if (tree.name == names._class)
3389             result = classOf(tree.selected);
3390         else if (tree.name == names._this || tree.name == names._super)
3391             result = makeThis(tree.pos(), tree.selected.type.tsym);
3392         else
3393             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
3394     }
3395 
3396     public void visitLetExpr(LetExpr tree) {
3397         tree.defs = translateVarDefs(tree.defs);
3398         tree.expr = translate(tree.expr, tree.type);
3399         result = tree;
3400     }
3401 
3402     // There ought to be nothing to rewrite here;
3403     // we don't generate code.
3404     public void visitAnnotation(JCAnnotation tree) {
3405         result = tree;
3406     }
3407 
3408 /**************************************************************************
3409  * main method
3410  *************************************************************************/
3411 
3412     /** Translate a toplevel class and return a list consisting of
3413      *  the translated class and translated versions of all inner classes.
3414      *  @param env   The attribution environment current at the class definition.
3415      *               We need this for resolving some additional symbols.
3416      *  @param cdef  The tree representing the class definition.
3417      */
3418     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
3419         ListBuffer<JCTree> translated = null;
3420         try {
3421             attrEnv = env;
3422             this.make = make;
3423             endPositions = env.toplevel.endPositions;
3424             currentClass = null;
3425             currentMethodDef = null;
3426             outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
3427             outermostMemberDef = null;
3428             this.translated = new ListBuffer<JCTree>();
3429             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
3430             actualSymbols = new HashMap<Symbol,Symbol>();
3431             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
3432             proxies = new Scope(syms.noSymbol);
3433             outerThisStack = List.nil();
3434             accessNums = new HashMap<Symbol,Integer>();
3435             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
3436             accessConstrs = new HashMap<Symbol,MethodSymbol>();
3437             accessConstrTags = List.nil();
3438             accessed = new ListBuffer<Symbol>();
3439             translate(cdef, (JCExpression)null);
3440             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
3441                 makeAccessible(l.head);
3442             for (EnumMapping map : enumSwitchMap.values())
3443                 map.translate();
3444             checkConflicts(this.translated.toList());
3445             checkAccessConstructorTags();
3446             translated = this.translated;
3447         } finally {
3448             // note that recursive invocations of this method fail hard
3449             attrEnv = null;
3450             this.make = null;
3451             endPositions = null;
3452             currentClass = null;
3453             currentMethodDef = null;
3454             outermostClassDef = null;
3455             outermostMemberDef = null;
3456             this.translated = null;
3457             classdefs = null;
3458             actualSymbols = null;
3459             freevarCache = null;
3460             proxies = null;
3461             outerThisStack = null;
3462             accessNums = null;
3463             accessSyms = null;
3464             accessConstrs = null;
3465             accessConstrTags = null;
3466             accessed = null;
3467             enumSwitchMap.clear();
3468         }
3469         return translated.toList();
3470     }
3471 
3472     //////////////////////////////////////////////////////////////
3473     // The following contributed by Borland for bootstrapping purposes
3474     //////////////////////////////////////////////////////////////
3475     private void addEnumCompatibleMembers(JCClassDecl cdef) {
3476         make_at(null);
3477 
3478         // Add the special enum fields
3479         VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
3480         VarSymbol nameFieldSym = addEnumNameField(cdef);
3481 
3482         // Add the accessor methods for name and ordinal
3483         MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
3484         MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
3485 
3486         // Add the toString method
3487         addEnumToString(cdef, nameFieldSym);
3488 
3489         // Add the compareTo method
3490         addEnumCompareTo(cdef, ordinalFieldSym);
3491     }
3492 
3493     private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
3494         VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3495                                           names.fromString("$ordinal"),
3496                                           syms.intType,
3497                                           cdef.sym);
3498         cdef.sym.members().enter(ordinal);
3499         cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
3500         return ordinal;
3501     }
3502 
3503     private VarSymbol addEnumNameField(JCClassDecl cdef) {
3504         VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3505                                           names.fromString("$name"),
3506                                           syms.stringType,
3507                                           cdef.sym);
3508         cdef.sym.members().enter(name);
3509         cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
3510         return name;
3511     }
3512 
3513     private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3514         // Add the accessor methods for ordinal
3515         Symbol ordinalSym = lookupMethod(cdef.pos(),
3516                                          names.ordinal,
3517                                          cdef.type,
3518                                          List.<Type>nil());
3519 
3520         assert(ordinalSym != null);
3521         assert(ordinalSym instanceof MethodSymbol);
3522 
3523         JCStatement ret = make.Return(make.Ident(ordinalSymbol));
3524         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
3525                                                     make.Block(0L, List.of(ret))));
3526 
3527         return (MethodSymbol)ordinalSym;
3528     }
3529 
3530     private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
3531         // Add the accessor methods for name
3532         Symbol nameSym = lookupMethod(cdef.pos(),
3533                                    names._name,
3534                                    cdef.type,
3535                                    List.<Type>nil());
3536 
3537         assert(nameSym != null);
3538         assert(nameSym instanceof MethodSymbol);
3539 
3540         JCStatement ret = make.Return(make.Ident(nameSymbol));
3541 
3542         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
3543                                                     make.Block(0L, List.of(ret))));
3544 
3545         return (MethodSymbol)nameSym;
3546     }
3547 
3548     private MethodSymbol addEnumToString(JCClassDecl cdef,
3549                                          VarSymbol nameSymbol) {
3550         Symbol toStringSym = lookupMethod(cdef.pos(),
3551                                           names.toString,
3552                                           cdef.type,
3553                                           List.<Type>nil());
3554 
3555         JCTree toStringDecl = null;
3556         if (toStringSym != null)
3557             toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
3558 
3559         if (toStringDecl != null)
3560             return (MethodSymbol)toStringSym;
3561 
3562         JCStatement ret = make.Return(make.Ident(nameSymbol));
3563 
3564         JCTree resTypeTree = make.Type(syms.stringType);
3565 
3566         MethodType toStringType = new MethodType(List.<Type>nil(),
3567                                                  syms.stringType,
3568                                                  List.<Type>nil(),
3569                                                  cdef.sym);
3570         toStringSym = new MethodSymbol(PUBLIC,
3571                                        names.toString,
3572                                        toStringType,
3573                                        cdef.type.tsym);
3574         toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
3575                                       make.Block(0L, List.of(ret)));
3576 
3577         cdef.defs = cdef.defs.prepend(toStringDecl);
3578         cdef.sym.members().enter(toStringSym);
3579 
3580         return (MethodSymbol)toStringSym;
3581     }
3582 
3583     private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3584         Symbol compareToSym = lookupMethod(cdef.pos(),
3585                                    names.compareTo,
3586                                    cdef.type,
3587                                    List.of(cdef.sym.type));
3588 
3589         assert(compareToSym != null);
3590         assert(compareToSym instanceof MethodSymbol);
3591 
3592         JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
3593 
3594         ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
3595 
3596         JCModifiers mod1 = make.Modifiers(0L);
3597         Name oName = names.fromString("o");
3598         JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
3599 
3600         JCIdent paramId1 = make.Ident(names.java_lang_Object);
3601         paramId1.type = cdef.type;
3602         paramId1.sym = par1.sym;
3603 
3604         ((MethodSymbol)compareToSym).params = List.of(par1.sym);
3605 
3606         JCIdent par1UsageId = make.Ident(par1.sym);
3607         JCIdent castTargetIdent = make.Ident(cdef.sym);
3608         JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
3609         cast.setType(castTargetIdent.type);
3610 
3611         Name otherName = names.fromString("other");
3612 
3613         VarSymbol otherVarSym = new VarSymbol(mod1.flags,
3614                                               otherName,
3615                                               cdef.type,
3616                                               compareToSym);
3617         JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
3618         blockStatements.append(otherVar);
3619 
3620         JCIdent id1 = make.Ident(ordinalSymbol);
3621 
3622         JCIdent fLocUsageId = make.Ident(otherVarSym);
3623         JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
3624         JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
3625         JCReturn ret = make.Return(bin);
3626         blockStatements.append(ret);
3627         JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
3628                                                    make.Block(0L,
3629                                                               blockStatements.toList()));
3630         compareToMethod.params = List.of(par1);
3631         cdef.defs = cdef.defs.append(compareToMethod);
3632 
3633         return (MethodSymbol)compareToSym;
3634     }
3635     //////////////////////////////////////////////////////////////
3636     // The above contributed by Borland for bootstrapping purposes
3637     //////////////////////////////////////////////////////////////
3638 }