1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import com.sun.tools.javac.code.*;
  31 import com.sun.tools.javac.jvm.*;
  32 import com.sun.tools.javac.tree.*;
  33 import com.sun.tools.javac.util.*;
  34 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  35 import com.sun.tools.javac.util.List;
  36 
  37 import com.sun.tools.javac.code.Symbol.*;
  38 import com.sun.tools.javac.tree.JCTree.*;
  39 import com.sun.tools.javac.code.Type.*;
  40 
  41 import com.sun.tools.javac.jvm.Target;
  42 
  43 import static com.sun.tools.javac.code.Flags.*;
  44 import static com.sun.tools.javac.code.Kinds.*;
  45 import static com.sun.tools.javac.code.TypeTags.*;
  46 import static com.sun.tools.javac.jvm.ByteCodes.*;
  47 
  48 /** This pass translates away some syntactic sugar: inner classes,
  49  *  class literals, assertions, foreach loops, etc.
  50  *
  51  *  <p><b>This is NOT part of any supported API.
  52  *  If you write code that depends on this, you do so at your own risk.
  53  *  This code and its internal interfaces are subject to change or
  54  *  deletion without notice.</b>
  55  */
  56 public class Lower extends TreeTranslator {
  57     protected static final Context.Key<Lower> lowerKey =
  58         new Context.Key<Lower>();
  59 
  60     public static Lower instance(Context context) {
  61         Lower instance = context.get(lowerKey);
  62         if (instance == null)
  63             instance = new Lower(context);
  64         return instance;
  65     }
  66 
  67     private Names names;
  68     private Log log;
  69     private Symtab syms;
  70     private Resolve rs;
  71     private Check chk;
  72     private Attr attr;
  73     private TreeMaker make;
  74     private DiagnosticPosition make_pos;
  75     private ClassWriter writer;
  76     private ClassReader reader;
  77     private ConstFold cfolder;
  78     private Target target;
  79     private Source source;
  80     private boolean allowEnums;
  81     private final Name dollarAssertionsDisabled;
  82     private final Name classDollar;
  83     private Types types;
  84     private boolean debugLower;
  85 
  86     protected Lower(Context context) {
  87         context.put(lowerKey, this);
  88         names = Names.instance(context);
  89         log = Log.instance(context);
  90         syms = Symtab.instance(context);
  91         rs = Resolve.instance(context);
  92         chk = Check.instance(context);
  93         attr = Attr.instance(context);
  94         make = TreeMaker.instance(context);
  95         writer = ClassWriter.instance(context);
  96         reader = ClassReader.instance(context);
  97         cfolder = ConstFold.instance(context);
  98         target = Target.instance(context);
  99         source = Source.instance(context);
 100         allowEnums = source.allowEnums();
 101         dollarAssertionsDisabled = names.
 102             fromString(target.syntheticNameChar() + "assertionsDisabled");
 103         classDollar = names.
 104             fromString("class" + target.syntheticNameChar());
 105 
 106         types = Types.instance(context);
 107         Options options = Options.instance(context);
 108         debugLower = options.get("debuglower") != null;
 109     }
 110 
 111     /** The currently enclosing class.
 112      */
 113     ClassSymbol currentClass;
 114 
 115     /** A queue of all translated classes.
 116      */
 117     ListBuffer<JCTree> translated;
 118 
 119     /** Environment for symbol lookup, set by translateTopLevelClass.
 120      */
 121     Env<AttrContext> attrEnv;
 122 
 123     /** A hash table mapping syntax trees to their ending source positions.
 124      */
 125     Map<JCTree, Integer> endPositions;
 126 
 127 /**************************************************************************
 128  * Global mappings
 129  *************************************************************************/
 130 
 131     /** A hash table mapping local classes to their definitions.
 132      */
 133     Map<ClassSymbol, JCClassDecl> classdefs;
 134 
 135     /** A hash table mapping virtual accessed symbols in outer subclasses
 136      *  to the actually referred symbol in superclasses.
 137      */
 138     Map<Symbol,Symbol> actualSymbols;
 139 
 140     /** The current method definition.
 141      */
 142     JCMethodDecl currentMethodDef;
 143 
 144     /** The current method symbol.
 145      */
 146     MethodSymbol currentMethodSym;
 147 
 148     /** The currently enclosing outermost class definition.
 149      */
 150     JCClassDecl outermostClassDef;
 151 
 152     /** The currently enclosing outermost member definition.
 153      */
 154     JCTree outermostMemberDef;
 155 
 156     /** A navigator class for assembling a mapping from local class symbols
 157      *  to class definition trees.
 158      *  There is only one case; all other cases simply traverse down the tree.
 159      */
 160     class ClassMap extends TreeScanner {
 161 
 162         /** All encountered class defs are entered into classdefs table.
 163          */
 164         public void visitClassDef(JCClassDecl tree) {
 165             classdefs.put(tree.sym, tree);
 166             super.visitClassDef(tree);
 167         }
 168     }
 169     ClassMap classMap = new ClassMap();
 170 
 171     /** Map a class symbol to its definition.
 172      *  @param c    The class symbol of which we want to determine the definition.
 173      */
 174     JCClassDecl classDef(ClassSymbol c) {
 175         // First lookup the class in the classdefs table.
 176         JCClassDecl def = classdefs.get(c);
 177         if (def == null && outermostMemberDef != null) {
 178             // If this fails, traverse outermost member definition, entering all
 179             // local classes into classdefs, and try again.
 180             classMap.scan(outermostMemberDef);
 181             def = classdefs.get(c);
 182         }
 183         if (def == null) {
 184             // If this fails, traverse outermost class definition, entering all
 185             // local classes into classdefs, and try again.
 186             classMap.scan(outermostClassDef);
 187             def = classdefs.get(c);
 188         }
 189         return def;
 190     }
 191 
 192     /** A hash table mapping class symbols to lists of free variables.
 193      *  accessed by them. Only free variables of the method immediately containing
 194      *  a class are associated with that class.
 195      */
 196     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 197 
 198     /** A navigator class for collecting the free variables accessed
 199      *  from a local class.
 200      *  There is only one case; all other cases simply traverse down the tree.
 201      */
 202     class FreeVarCollector extends TreeScanner {
 203 
 204         /** The owner of the local class.
 205          */
 206         Symbol owner;
 207 
 208         /** The local class.
 209          */
 210         ClassSymbol clazz;
 211 
 212         /** The list of owner's variables accessed from within the local class,
 213          *  without any duplicates.
 214          */
 215         List<VarSymbol> fvs;
 216 
 217         FreeVarCollector(ClassSymbol clazz) {
 218             this.clazz = clazz;
 219             this.owner = clazz.owner;
 220             this.fvs = List.nil();
 221         }
 222 
 223         /** Add free variable to fvs list unless it is already there.
 224          */
 225         private void addFreeVar(VarSymbol v) {
 226             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
 227                 if (l.head == v) return;
 228             fvs = fvs.prepend(v);
 229         }
 230 
 231         /** Add all free variables of class c to fvs list
 232          *  unless they are already there.
 233          */
 234         private void addFreeVars(ClassSymbol c) {
 235             List<VarSymbol> fvs = freevarCache.get(c);
 236             if (fvs != null) {
 237                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 238                     addFreeVar(l.head);
 239                 }
 240             }
 241         }
 242 
 243         /** If tree refers to a variable in owner of local class, add it to
 244          *  free variables list.
 245          */
 246         public void visitIdent(JCIdent tree) {
 247             result = tree;
 248             visitSymbol(tree.sym);
 249         }
 250         // where
 251         private void visitSymbol(Symbol _sym) {
 252             Symbol sym = _sym;
 253             if (sym.kind == VAR || sym.kind == MTH) {
 254                 while (sym != null && sym.owner != owner)
 255                     sym = proxies.lookup(proxyName(sym.name)).sym;
 256                 if (sym != null && sym.owner == owner) {
 257                     VarSymbol v = (VarSymbol)sym;
 258                     if (v.getConstValue() == null) {
 259                         addFreeVar(v);
 260                     }
 261                 } else {
 262                     if (outerThisStack.head != null &&
 263                         outerThisStack.head != _sym)
 264                         visitSymbol(outerThisStack.head);
 265                 }
 266             }
 267         }
 268 
 269         /** If tree refers to a class instance creation expression
 270          *  add all free variables of the freshly created class.
 271          */
 272         public void visitNewClass(JCNewClass tree) {
 273             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 274             addFreeVars(c);
 275             if (tree.encl == null &&
 276                 c.hasOuterInstance() &&
 277                 outerThisStack.head != null)
 278                 visitSymbol(outerThisStack.head);
 279             super.visitNewClass(tree);
 280         }
 281 
 282         /** If tree refers to a qualified this or super expression
 283          *  for anything but the current class, add the outer this
 284          *  stack as a free variable.
 285          */
 286         public void visitSelect(JCFieldAccess tree) {
 287             if ((tree.name == names._this || tree.name == names._super) &&
 288                 tree.selected.type.tsym != clazz &&
 289                 outerThisStack.head != null)
 290                 visitSymbol(outerThisStack.head);
 291             super.visitSelect(tree);
 292         }
 293 
 294         /** If tree refers to a superclass constructor call,
 295          *  add all free variables of the superclass.
 296          */
 297         public void visitApply(JCMethodInvocation tree) {
 298             if (TreeInfo.name(tree.meth) == names._super) {
 299                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 300                 Symbol constructor = TreeInfo.symbol(tree.meth);
 301                 ClassSymbol c = (ClassSymbol)constructor.owner;
 302                 if (c.hasOuterInstance() &&
 303                     tree.meth.getTag() != JCTree.SELECT &&
 304                     outerThisStack.head != null)
 305                     visitSymbol(outerThisStack.head);
 306             }
 307             super.visitApply(tree);
 308         }
 309     }
 310 
 311     /** Return the variables accessed from within a local class, which
 312      *  are declared in the local class' owner.
 313      *  (in reverse order of first access).
 314      */
 315     List<VarSymbol> freevars(ClassSymbol c)  {
 316         if ((c.owner.kind & (VAR | MTH)) != 0) {
 317             List<VarSymbol> fvs = freevarCache.get(c);
 318             if (fvs == null) {
 319                 FreeVarCollector collector = new FreeVarCollector(c);
 320                 collector.scan(classDef(c));
 321                 fvs = collector.fvs;
 322                 freevarCache.put(c, fvs);
 323             }
 324             return fvs;
 325         } else {
 326             return List.nil();
 327         }
 328     }
 329 
 330     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
 331 
 332     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 333         EnumMapping map = enumSwitchMap.get(enumClass);
 334         if (map == null)
 335             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
 336         return map;
 337     }
 338 
 339     /** This map gives a translation table to be used for enum
 340      *  switches.
 341      *
 342      *  <p>For each enum that appears as the type of a switch
 343      *  expression, we maintain an EnumMapping to assist in the
 344      *  translation, as exemplified by the following example:
 345      *
 346      *  <p>we translate
 347      *  <pre>
 348      *          switch(colorExpression) {
 349      *          case red: stmt1;
 350      *          case green: stmt2;
 351      *          }
 352      *  </pre>
 353      *  into
 354      *  <pre>
 355      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 356      *          case 1: stmt1;
 357      *          case 2: stmt2
 358      *          }
 359      *  </pre>
 360      *  with the auxiliary table initialized as follows:
 361      *  <pre>
 362      *          class Outer$0 {
 363      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 364      *              static {
 365      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 366      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 367      *              }
 368      *          }
 369      *  </pre>
 370      *  class EnumMapping provides mapping data and support methods for this translation.
 371      */
 372     class EnumMapping {
 373         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 374             this.forEnum = forEnum;
 375             this.values = new LinkedHashMap<VarSymbol,Integer>();
 376             this.pos = pos;
 377             Name varName = names
 378                 .fromString(target.syntheticNameChar() +
 379                             "SwitchMap" +
 380                             target.syntheticNameChar() +
 381                             writer.xClassName(forEnum.type).toString()
 382                             .replace('/', '.')
 383                             .replace('.', target.syntheticNameChar()));
 384             ClassSymbol outerCacheClass = outerCacheClass();
 385             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 386                                         varName,
 387                                         new ArrayType(syms.intType, syms.arrayClass),
 388                                         outerCacheClass);
 389             enterSynthetic(pos, mapVar, outerCacheClass.members());
 390         }
 391 
 392         DiagnosticPosition pos = null;
 393 
 394         // the next value to use
 395         int next = 1; // 0 (unused map elements) go to the default label
 396 
 397         // the enum for which this is a map
 398         final TypeSymbol forEnum;
 399 
 400         // the field containing the map
 401         final VarSymbol mapVar;
 402 
 403         // the mapped values
 404         final Map<VarSymbol,Integer> values;
 405 
 406         JCLiteral forConstant(VarSymbol v) {
 407             Integer result = values.get(v);
 408             if (result == null)
 409                 values.put(v, result = next++);
 410             return make.Literal(result);
 411         }
 412 
 413         // generate the field initializer for the map
 414         void translate() {
 415             make.at(pos.getStartPosition());
 416             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 417 
 418             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 419             MethodSymbol valuesMethod = lookupMethod(pos,
 420                                                      names.values,
 421                                                      forEnum.type,
 422                                                      List.<Type>nil());
 423             JCExpression size = make // Color.values().length
 424                 .Select(make.App(make.QualIdent(valuesMethod)),
 425                         syms.lengthVar);
 426             JCExpression mapVarInit = make
 427                 .NewArray(make.Type(syms.intType), List.of(size), null)
 428                 .setType(new ArrayType(syms.intType, syms.arrayClass));
 429 
 430             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 431             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
 432             Symbol ordinalMethod = lookupMethod(pos,
 433                                                 names.ordinal,
 434                                                 forEnum.type,
 435                                                 List.<Type>nil());
 436             List<JCCatch> catcher = List.<JCCatch>nil()
 437                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 438                                                               syms.noSuchFieldErrorType,
 439                                                               syms.noSymbol),
 440                                                 null),
 441                                     make.Block(0, List.<JCStatement>nil())));
 442             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 443                 VarSymbol enumerator = e.getKey();
 444                 Integer mappedValue = e.getValue();
 445                 JCExpression assign = make
 446                     .Assign(make.Indexed(mapVar,
 447                                          make.App(make.Select(make.QualIdent(enumerator),
 448                                                               ordinalMethod))),
 449                             make.Literal(mappedValue))
 450                     .setType(syms.intType);
 451                 JCStatement exec = make.Exec(assign);
 452                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 453                 stmts.append(_try);
 454             }
 455 
 456             owner.defs = owner.defs
 457                 .prepend(make.Block(STATIC, stmts.toList()))
 458                 .prepend(make.VarDef(mapVar, mapVarInit));
 459         }
 460     }
 461 
 462 
 463 /**************************************************************************
 464  * Tree building blocks
 465  *************************************************************************/
 466 
 467     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 468      *  pos as make_pos, for use in diagnostics.
 469      **/
 470     TreeMaker make_at(DiagnosticPosition pos) {
 471         make_pos = pos;
 472         return make.at(pos);
 473     }
 474 
 475     /** Make an attributed tree representing a literal. This will be an
 476      *  Ident node in the case of boolean literals, a Literal node in all
 477      *  other cases.
 478      *  @param type       The literal's type.
 479      *  @param value      The literal's value.
 480      */
 481     JCExpression makeLit(Type type, Object value) {
 482         return make.Literal(type.tag, value).setType(type.constType(value));
 483     }
 484 
 485     /** Make an attributed tree representing null.
 486      */
 487     JCExpression makeNull() {
 488         return makeLit(syms.botType, null);
 489     }
 490 
 491     /** Make an attributed class instance creation expression.
 492      *  @param ctype    The class type.
 493      *  @param args     The constructor arguments.
 494      */
 495     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 496         JCNewClass tree = make.NewClass(null,
 497             null, make.QualIdent(ctype.tsym), args, null);
 498         tree.constructor = rs.resolveConstructor(
 499             make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
 500         tree.type = ctype;
 501         return tree;
 502     }
 503 
 504     /** Make an attributed unary expression.
 505      *  @param optag    The operators tree tag.
 506      *  @param arg      The operator's argument.
 507      */
 508     JCUnary makeUnary(int optag, JCExpression arg) {
 509         JCUnary tree = make.Unary(optag, arg);
 510         tree.operator = rs.resolveUnaryOperator(
 511             make_pos, optag, attrEnv, arg.type);
 512         tree.type = tree.operator.type.getReturnType();
 513         return tree;
 514     }
 515 
 516     /** Make an attributed binary expression.
 517      *  @param optag    The operators tree tag.
 518      *  @param lhs      The operator's left argument.
 519      *  @param rhs      The operator's right argument.
 520      */
 521     JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
 522         JCBinary tree = make.Binary(optag, lhs, rhs);
 523         tree.operator = rs.resolveBinaryOperator(
 524             make_pos, optag, attrEnv, lhs.type, rhs.type);
 525         tree.type = tree.operator.type.getReturnType();
 526         return tree;
 527     }
 528 
 529     /** Make an attributed assignop expression.
 530      *  @param optag    The operators tree tag.
 531      *  @param lhs      The operator's left argument.
 532      *  @param rhs      The operator's right argument.
 533      */
 534     JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
 535         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 536         tree.operator = rs.resolveBinaryOperator(
 537             make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
 538         tree.type = lhs.type;
 539         return tree;
 540     }
 541 
 542     /** Convert tree into string object, unless it has already a
 543      *  reference type..
 544      */
 545     JCExpression makeString(JCExpression tree) {
 546         if (tree.type.tag >= CLASS) {
 547             return tree;
 548         } else {
 549             Symbol valueOfSym = lookupMethod(tree.pos(),
 550                                              names.valueOf,
 551                                              syms.stringType,
 552                                              List.of(tree.type));
 553             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 554         }
 555     }
 556 
 557     /** Create an empty anonymous class definition and enter and complete
 558      *  its symbol. Return the class definition's symbol.
 559      *  and create
 560      *  @param flags    The class symbol's flags
 561      *  @param owner    The class symbol's owner
 562      */
 563     ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
 564         // Create class symbol.
 565         ClassSymbol c = reader.defineClass(names.empty, owner);
 566         c.flatname = chk.localClassName(c);
 567         c.sourcefile = owner.sourcefile;
 568         c.completer = null;
 569         c.members_field = new Scope(c);
 570         c.flags_field = flags;
 571         ClassType ctype = (ClassType) c.type;
 572         ctype.supertype_field = syms.objectType;
 573         ctype.interfaces_field = List.nil();
 574 
 575         JCClassDecl odef = classDef(owner);
 576 
 577         // Enter class symbol in owner scope and compiled table.
 578         enterSynthetic(odef.pos(), c, owner.members());
 579         chk.compiled.put(c.flatname, c);
 580 
 581         // Create class definition tree.
 582         JCClassDecl cdef = make.ClassDef(
 583             make.Modifiers(flags), names.empty,
 584             List.<JCTypeParameter>nil(),
 585             null, List.<JCExpression>nil(), List.<JCTree>nil());
 586         cdef.sym = c;
 587         cdef.type = c.type;
 588 
 589         // Append class definition tree to owner's definitions.
 590         odef.defs = odef.defs.prepend(cdef);
 591 
 592         return c;
 593     }
 594 
 595 /**************************************************************************
 596  * Symbol manipulation utilities
 597  *************************************************************************/
 598 
 599     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 600      *  @param pos           Position for error reporting.
 601      *  @param sym           The symbol.
 602      *  @param s             The scope.
 603      */
 604     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
 605         s.enter(sym);
 606     }
 607 
 608     /** Create a fresh synthetic name within a given scope - the unique name is
 609      *  obtained by appending '$' chars at the end of the name until no match
 610      *  is found.
 611      *
 612      * @param name base name
 613      * @param s scope in which the name has to be unique
 614      * @return fresh synthetic name
 615      */
 616     private Name makeSyntheticName(Name name, Scope s) {
 617         do {
 618             name = name.append(
 619                     target.syntheticNameChar(),
 620                     names.empty);
 621         }
 622         while (lookupSynthetic(name, s) != null);
 623         return name;
 624     }
 625 
 626     /** Check whether synthetic symbols generated during lowering conflict
 627      *  with user-defined symbols.
 628      *
 629      *  @param translatedTrees lowered class trees
 630      */
 631     void checkConflicts(List<JCTree> translatedTrees) {
 632         for (JCTree t : translatedTrees) {
 633             t.accept(conflictsChecker);
 634         }
 635     }
 636 
 637     JCTree.Visitor conflictsChecker = new TreeScanner() {
 638 
 639         TypeSymbol currentClass;
 640 
 641         @Override
 642         public void visitMethodDef(JCMethodDecl that) {
 643             chk.checkConflicts(that.pos(), that.sym, currentClass);
 644             super.visitMethodDef(that);
 645         }
 646 
 647         @Override
 648         public void visitVarDef(JCVariableDecl that) {
 649             if (that.sym.owner.kind == TYP) {
 650                 chk.checkConflicts(that.pos(), that.sym, currentClass);
 651             }
 652             super.visitVarDef(that);
 653         }
 654 
 655         @Override
 656         public void visitClassDef(JCClassDecl that) {
 657             TypeSymbol prevCurrentClass = currentClass;
 658             currentClass = that.sym;
 659             try {
 660                 super.visitClassDef(that);
 661             }
 662             finally {
 663                 currentClass = prevCurrentClass;
 664             }
 665         }
 666     };
 667 
 668     /** Look up a synthetic name in a given scope.
 669      *  @param scope        The scope.
 670      *  @param name         The name.
 671      */
 672     private Symbol lookupSynthetic(Name name, Scope s) {
 673         Symbol sym = s.lookup(name).sym;
 674         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 675     }
 676 
 677     /** Look up a method in a given scope.
 678      */
 679     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 680         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
 681     }
 682 
 683     /** Look up a constructor.
 684      */
 685     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
 686         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
 687     }
 688 
 689     /** Look up a field.
 690      */
 691     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
 692         return rs.resolveInternalField(pos, attrEnv, qual, name);
 693     }
 694 
 695     /** Anon inner classes are used as access constructor tags.
 696      * accessConstructorTag will use an existing anon class if one is available,
 697      * and synthethise a class (with makeEmptyClass) if one is not available.
 698      * However, there is a small possibility that an existing class will not
 699      * be generated as expected if it is inside a conditional with a constant
 700      * expression. If that is found to be the case, create an empty class here.
 701      */
 702     private void checkAccessConstructorTags() {
 703         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
 704             ClassSymbol c = l.head;
 705             if (isTranslatedClassAvailable(c))
 706                 continue;
 707             // Create class definition tree.
 708             JCClassDecl cdef = make.ClassDef(
 709                 make.Modifiers(STATIC | SYNTHETIC), names.empty,
 710                 List.<JCTypeParameter>nil(),
 711                 null, List.<JCExpression>nil(), List.<JCTree>nil());
 712             cdef.sym = c;
 713             cdef.type = c.type;
 714             // add it to the list of classes to be generated
 715             translated.append(cdef);
 716         }
 717     }
 718     // where
 719     private boolean isTranslatedClassAvailable(ClassSymbol c) {
 720         for (JCTree tree: translated) {
 721             if (tree.getTag() == JCTree.CLASSDEF
 722                     && ((JCClassDecl) tree).sym == c) {
 723                 return true;
 724             }
 725         }
 726         return false;
 727     }
 728 
 729 /**************************************************************************
 730  * Access methods
 731  *************************************************************************/
 732 
 733     /** Access codes for dereferencing, assignment,
 734      *  and pre/post increment/decrement.
 735      *  Access codes for assignment operations are determined by method accessCode
 736      *  below.
 737      *
 738      *  All access codes for accesses to the current class are even.
 739      *  If a member of the superclass should be accessed instead (because
 740      *  access was via a qualified super), add one to the corresponding code
 741      *  for the current class, making the number odd.
 742      *  This numbering scheme is used by the backend to decide whether
 743      *  to issue an invokevirtual or invokespecial call.
 744      *
 745      *  @see Gen.visitSelect(Select tree)
 746      */
 747     private static final int
 748         DEREFcode = 0,
 749         ASSIGNcode = 2,
 750         PREINCcode = 4,
 751         PREDECcode = 6,
 752         POSTINCcode = 8,
 753         POSTDECcode = 10,
 754         FIRSTASGOPcode = 12;
 755 
 756     /** Number of access codes
 757      */
 758     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
 759 
 760     /** A mapping from symbols to their access numbers.
 761      */
 762     private Map<Symbol,Integer> accessNums;
 763 
 764     /** A mapping from symbols to an array of access symbols, indexed by
 765      *  access code.
 766      */
 767     private Map<Symbol,MethodSymbol[]> accessSyms;
 768 
 769     /** A mapping from (constructor) symbols to access constructor symbols.
 770      */
 771     private Map<Symbol,MethodSymbol> accessConstrs;
 772 
 773     /** A list of all class symbols used for access constructor tags.
 774      */
 775     private List<ClassSymbol> accessConstrTags;
 776 
 777     /** A queue for all accessed symbols.
 778      */
 779     private ListBuffer<Symbol> accessed;
 780 
 781     /** Map bytecode of binary operation to access code of corresponding
 782      *  assignment operation. This is always an even number.
 783      */
 784     private static int accessCode(int bytecode) {
 785         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
 786             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
 787         else if (bytecode == ByteCodes.string_add)
 788             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
 789         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
 790             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
 791         else
 792             return -1;
 793     }
 794 
 795     /** return access code for identifier,
 796      *  @param tree     The tree representing the identifier use.
 797      *  @param enclOp   The closest enclosing operation node of tree,
 798      *                  null if tree is not a subtree of an operation.
 799      */
 800     private static int accessCode(JCTree tree, JCTree enclOp) {
 801         if (enclOp == null)
 802             return DEREFcode;
 803         else if (enclOp.getTag() == JCTree.ASSIGN &&
 804                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 805             return ASSIGNcode;
 806         else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
 807                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
 808             return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
 809         else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
 810                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
 811             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
 812         else
 813             return DEREFcode;
 814     }
 815 
 816     /** Return binary operator that corresponds to given access code.
 817      */
 818     private OperatorSymbol binaryAccessOperator(int acode) {
 819         for (Scope.Entry e = syms.predefClass.members().elems;
 820              e != null;
 821              e = e.sibling) {
 822             if (e.sym instanceof OperatorSymbol) {
 823                 OperatorSymbol op = (OperatorSymbol)e.sym;
 824                 if (accessCode(op.opcode) == acode) return op;
 825             }
 826         }
 827         return null;
 828     }
 829 
 830     /** Return tree tag for assignment operation corresponding
 831      *  to given binary operator.
 832      */
 833     private static int treeTag(OperatorSymbol operator) {
 834         switch (operator.opcode) {
 835         case ByteCodes.ior: case ByteCodes.lor:
 836             return JCTree.BITOR_ASG;
 837         case ByteCodes.ixor: case ByteCodes.lxor:
 838             return JCTree.BITXOR_ASG;
 839         case ByteCodes.iand: case ByteCodes.land:
 840             return JCTree.BITAND_ASG;
 841         case ByteCodes.ishl: case ByteCodes.lshl:
 842         case ByteCodes.ishll: case ByteCodes.lshll:
 843             return JCTree.SL_ASG;
 844         case ByteCodes.ishr: case ByteCodes.lshr:
 845         case ByteCodes.ishrl: case ByteCodes.lshrl:
 846             return JCTree.SR_ASG;
 847         case ByteCodes.iushr: case ByteCodes.lushr:
 848         case ByteCodes.iushrl: case ByteCodes.lushrl:
 849             return JCTree.USR_ASG;
 850         case ByteCodes.iadd: case ByteCodes.ladd:
 851         case ByteCodes.fadd: case ByteCodes.dadd:
 852         case ByteCodes.string_add:
 853             return JCTree.PLUS_ASG;
 854         case ByteCodes.isub: case ByteCodes.lsub:
 855         case ByteCodes.fsub: case ByteCodes.dsub:
 856             return JCTree.MINUS_ASG;
 857         case ByteCodes.imul: case ByteCodes.lmul:
 858         case ByteCodes.fmul: case ByteCodes.dmul:
 859             return JCTree.MUL_ASG;
 860         case ByteCodes.idiv: case ByteCodes.ldiv:
 861         case ByteCodes.fdiv: case ByteCodes.ddiv:
 862             return JCTree.DIV_ASG;
 863         case ByteCodes.imod: case ByteCodes.lmod:
 864         case ByteCodes.fmod: case ByteCodes.dmod:
 865             return JCTree.MOD_ASG;
 866         default:
 867             throw new AssertionError();
 868         }
 869     }
 870 
 871     /** The name of the access method with number `anum' and access code `acode'.
 872      */
 873     Name accessName(int anum, int acode) {
 874         return names.fromString(
 875             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
 876     }
 877 
 878     /** Return access symbol for a private or protected symbol from an inner class.
 879      *  @param sym        The accessed private symbol.
 880      *  @param tree       The accessing tree.
 881      *  @param enclOp     The closest enclosing operation node of tree,
 882      *                    null if tree is not a subtree of an operation.
 883      *  @param protAccess Is access to a protected symbol in another
 884      *                    package?
 885      *  @param refSuper   Is access via a (qualified) C.super?
 886      */
 887     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
 888                               boolean protAccess, boolean refSuper) {
 889         ClassSymbol accOwner = refSuper && protAccess
 890             // For access via qualified super (T.super.x), place the
 891             // access symbol on T.
 892             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
 893             // Otherwise pretend that the owner of an accessed
 894             // protected symbol is the enclosing class of the current
 895             // class which is a subclass of the symbol's owner.
 896             : accessClass(sym, protAccess, tree);
 897 
 898         Symbol vsym = sym;
 899         if (sym.owner != accOwner) {
 900             vsym = sym.clone(accOwner);
 901             actualSymbols.put(vsym, sym);
 902         }
 903 
 904         Integer anum              // The access number of the access method.
 905             = accessNums.get(vsym);
 906         if (anum == null) {
 907             anum = accessed.length();
 908             accessNums.put(vsym, anum);
 909             accessSyms.put(vsym, new MethodSymbol[NCODES]);
 910             accessed.append(vsym);
 911             // System.out.println("accessing " + vsym + " in " + vsym.location());
 912         }
 913 
 914         int acode;                // The access code of the access method.
 915         List<Type> argtypes;      // The argument types of the access method.
 916         Type restype;             // The result type of the access method.
 917         List<Type> thrown;        // The thrown exceptions of the access method.
 918         switch (vsym.kind) {
 919         case VAR:
 920             acode = accessCode(tree, enclOp);
 921             if (acode >= FIRSTASGOPcode) {
 922                 OperatorSymbol operator = binaryAccessOperator(acode);
 923                 if (operator.opcode == string_add)
 924                     argtypes = List.of(syms.objectType);
 925                 else
 926                     argtypes = operator.type.getParameterTypes().tail;
 927             } else if (acode == ASSIGNcode)
 928                 argtypes = List.of(vsym.erasure(types));
 929             else
 930                 argtypes = List.nil();
 931             restype = vsym.erasure(types);
 932             thrown = List.nil();
 933             break;
 934         case MTH:
 935             acode = DEREFcode;
 936             argtypes = vsym.erasure(types).getParameterTypes();
 937             restype = vsym.erasure(types).getReturnType();
 938             thrown = vsym.type.getThrownTypes();
 939             break;
 940         default:
 941             throw new AssertionError();
 942         }
 943 
 944         // For references via qualified super, increment acode by one,
 945         // making it odd.
 946         if (protAccess && refSuper) acode++;
 947 
 948         // Instance access methods get instance as first parameter.
 949         // For protected symbols this needs to be the instance as a member
 950         // of the type containing the accessed symbol, not the class
 951         // containing the access method.
 952         if ((vsym.flags() & STATIC) == 0) {
 953             argtypes = argtypes.prepend(vsym.owner.erasure(types));
 954         }
 955         MethodSymbol[] accessors = accessSyms.get(vsym);
 956         MethodSymbol accessor = accessors[acode];
 957         if (accessor == null) {
 958             accessor = new MethodSymbol(
 959                 STATIC | SYNTHETIC,
 960                 accessName(anum.intValue(), acode),
 961                 new MethodType(argtypes, restype, thrown, syms.methodClass),
 962                 accOwner);
 963             enterSynthetic(tree.pos(), accessor, accOwner.members());
 964             accessors[acode] = accessor;
 965         }
 966         return accessor;
 967     }
 968 
 969     /** The qualifier to be used for accessing a symbol in an outer class.
 970      *  This is either C.sym or C.this.sym, depending on whether or not
 971      *  sym is static.
 972      *  @param sym   The accessed symbol.
 973      */
 974     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
 975         return (sym.flags() & STATIC) != 0
 976             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
 977             : makeOwnerThis(pos, sym, true);
 978     }
 979 
 980     /** Do we need an access method to reference private symbol?
 981      */
 982     boolean needsPrivateAccess(Symbol sym) {
 983         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
 984             return false;
 985         } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
 986             // private constructor in local class: relax protection
 987             sym.flags_field &= ~PRIVATE;
 988             return false;
 989         } else {
 990             return true;
 991         }
 992     }
 993 
 994     /** Do we need an access method to reference symbol in other package?
 995      */
 996     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
 997         if ((sym.flags() & PROTECTED) == 0 ||
 998             sym.owner.owner == currentClass.owner || // fast special case
 999             sym.packge() == currentClass.packge())
1000             return false;
1001         if (!currentClass.isSubClass(sym.owner, types))
1002             return true;
1003         if ((sym.flags() & STATIC) != 0 ||
1004             tree.getTag() != JCTree.SELECT ||
1005             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
1006             return false;
1007         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
1008     }
1009 
1010     /** The class in which an access method for given symbol goes.
1011      *  @param sym        The access symbol
1012      *  @param protAccess Is access to a protected symbol in another
1013      *                    package?
1014      */
1015     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
1016         if (protAccess) {
1017             Symbol qualifier = null;
1018             ClassSymbol c = currentClass;
1019             if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
1020                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
1021                 while (!qualifier.isSubClass(c, types)) {
1022                     c = c.owner.enclClass();
1023                 }
1024                 return c;
1025             } else {
1026                 while (!c.isSubClass(sym.owner, types)) {
1027                     c = c.owner.enclClass();
1028                 }
1029             }
1030             return c;
1031         } else {
1032             // the symbol is private
1033             return sym.owner.enclClass();
1034         }
1035     }
1036 
1037     /** Ensure that identifier is accessible, return tree accessing the identifier.
1038      *  @param sym      The accessed symbol.
1039      *  @param tree     The tree referring to the symbol.
1040      *  @param enclOp   The closest enclosing operation node of tree,
1041      *                  null if tree is not a subtree of an operation.
1042      *  @param refSuper Is access via a (qualified) C.super?
1043      */
1044     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
1045         // Access a free variable via its proxy, or its proxy's proxy
1046         while (sym.kind == VAR && sym.owner.kind == MTH &&
1047             sym.owner.enclClass() != currentClass) {
1048             // A constant is replaced by its constant value.
1049             Object cv = ((VarSymbol)sym).getConstValue();
1050             if (cv != null) {
1051                 make.at(tree.pos);
1052                 return makeLit(sym.type, cv);
1053             }
1054             // Otherwise replace the variable by its proxy.
1055             sym = proxies.lookup(proxyName(sym.name)).sym;
1056             assert sym != null && (sym.flags_field & FINAL) != 0;
1057             tree = make.at(tree.pos).Ident(sym);
1058         }
1059         JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
1060         switch (sym.kind) {
1061         case TYP:
1062             if (sym.owner.kind != PCK) {
1063                 // Convert type idents to
1064                 // <flat name> or <package name> . <flat name>
1065                 Name flatname = Convert.shortName(sym.flatName());
1066                 while (base != null &&
1067                        TreeInfo.symbol(base) != null &&
1068                        TreeInfo.symbol(base).kind != PCK) {
1069                     base = (base.getTag() == JCTree.SELECT)
1070                         ? ((JCFieldAccess) base).selected
1071                         : null;
1072                 }
1073                 if (tree.getTag() == JCTree.IDENT) {
1074                     ((JCIdent) tree).name = flatname;
1075                 } else if (base == null) {
1076                     tree = make.at(tree.pos).Ident(sym);
1077                     ((JCIdent) tree).name = flatname;
1078                 } else {
1079                     ((JCFieldAccess) tree).selected = base;
1080                     ((JCFieldAccess) tree).name = flatname;
1081                 }
1082             }
1083             break;
1084         case MTH: case VAR:
1085             if (sym.owner.kind == TYP) {
1086 
1087                 // Access methods are required for
1088                 //  - private members,
1089                 //  - protected members in a superclass of an
1090                 //    enclosing class contained in another package.
1091                 //  - all non-private members accessed via a qualified super.
1092                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1093                     || needsProtectedAccess(sym, tree);
1094                 boolean accReq = protAccess || needsPrivateAccess(sym);
1095 
1096                 // A base has to be supplied for
1097                 //  - simple identifiers accessing variables in outer classes.
1098                 boolean baseReq =
1099                     base == null &&
1100                     sym.owner != syms.predefClass &&
1101                     !sym.isMemberOf(currentClass, types);
1102 
1103                 if (accReq || baseReq) {
1104                     make.at(tree.pos);
1105 
1106                     // Constants are replaced by their constant value.
1107                     if (sym.kind == VAR) {
1108                         Object cv = ((VarSymbol)sym).getConstValue();
1109                         if (cv != null) return makeLit(sym.type, cv);
1110                     }
1111 
1112                     // Private variables and methods are replaced by calls
1113                     // to their access methods.
1114                     if (accReq) {
1115                         List<JCExpression> args = List.nil();
1116                         if ((sym.flags() & STATIC) == 0) {
1117                             // Instance access methods get instance
1118                             // as first parameter.
1119                             if (base == null)
1120                                 base = makeOwnerThis(tree.pos(), sym, true);
1121                             args = args.prepend(base);
1122                             base = null;   // so we don't duplicate code
1123                         }
1124                         Symbol access = accessSymbol(sym, tree,
1125                                                      enclOp, protAccess,
1126                                                      refSuper);
1127                         JCExpression receiver = make.Select(
1128                             base != null ? base : make.QualIdent(access.owner),
1129                             access);
1130                         return make.App(receiver, args);
1131 
1132                     // Other accesses to members of outer classes get a
1133                     // qualifier.
1134                     } else if (baseReq) {
1135                         return make.at(tree.pos).Select(
1136                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1137                     }
1138                 }
1139             }
1140         }
1141         return tree;
1142     }
1143 
1144     /** Ensure that identifier is accessible, return tree accessing the identifier.
1145      *  @param tree     The identifier tree.
1146      */
1147     JCExpression access(JCExpression tree) {
1148         Symbol sym = TreeInfo.symbol(tree);
1149         return sym == null ? tree : access(sym, tree, null, false);
1150     }
1151 
1152     /** Return access constructor for a private constructor,
1153      *  or the constructor itself, if no access constructor is needed.
1154      *  @param pos       The position to report diagnostics, if any.
1155      *  @param constr    The private constructor.
1156      */
1157     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1158         if (needsPrivateAccess(constr)) {
1159             ClassSymbol accOwner = constr.owner.enclClass();
1160             MethodSymbol aconstr = accessConstrs.get(constr);
1161             if (aconstr == null) {
1162                 List<Type> argtypes = constr.type.getParameterTypes();
1163                 if ((accOwner.flags_field & ENUM) != 0)
1164                     argtypes = argtypes
1165                         .prepend(syms.intType)
1166                         .prepend(syms.stringType);
1167                 aconstr = new MethodSymbol(
1168                     SYNTHETIC,
1169                     names.init,
1170                     new MethodType(
1171                         argtypes.append(
1172                             accessConstructorTag().erasure(types)),
1173                         constr.type.getReturnType(),
1174                         constr.type.getThrownTypes(),
1175                         syms.methodClass),
1176                     accOwner);
1177                 enterSynthetic(pos, aconstr, accOwner.members());
1178                 accessConstrs.put(constr, aconstr);
1179                 accessed.append(constr);
1180             }
1181             return aconstr;
1182         } else {
1183             return constr;
1184         }
1185     }
1186 
1187     /** Return an anonymous class nested in this toplevel class.
1188      */
1189     ClassSymbol accessConstructorTag() {
1190         ClassSymbol topClass = currentClass.outermostClass();
1191         Name flatname = names.fromString("" + topClass.getQualifiedName() +
1192                                          target.syntheticNameChar() +
1193                                          "1");
1194         ClassSymbol ctag = chk.compiled.get(flatname);
1195         if (ctag == null)
1196             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
1197         // keep a record of all tags, to verify that all are generated as required
1198         accessConstrTags = accessConstrTags.prepend(ctag);
1199         return ctag;
1200     }
1201 
1202     /** Add all required access methods for a private symbol to enclosing class.
1203      *  @param sym       The symbol.
1204      */
1205     void makeAccessible(Symbol sym) {
1206         JCClassDecl cdef = classDef(sym.owner.enclClass());
1207         assert cdef != null : "class def not found: " + sym + " in " + sym.owner;
1208         if (sym.name == names.init) {
1209             cdef.defs = cdef.defs.prepend(
1210                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1211         } else {
1212             MethodSymbol[] accessors = accessSyms.get(sym);
1213             for (int i = 0; i < NCODES; i++) {
1214                 if (accessors[i] != null)
1215                     cdef.defs = cdef.defs.prepend(
1216                         accessDef(cdef.pos, sym, accessors[i], i));
1217             }
1218         }
1219     }
1220 
1221     /** Construct definition of an access method.
1222      *  @param pos        The source code position of the definition.
1223      *  @param vsym       The private or protected symbol.
1224      *  @param accessor   The access method for the symbol.
1225      *  @param acode      The access code.
1226      */
1227     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1228 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1229         currentClass = vsym.owner.enclClass();
1230         make.at(pos);
1231         JCMethodDecl md = make.MethodDef(accessor, null);
1232 
1233         // Find actual symbol
1234         Symbol sym = actualSymbols.get(vsym);
1235         if (sym == null) sym = vsym;
1236 
1237         JCExpression ref;           // The tree referencing the private symbol.
1238         List<JCExpression> args;    // Any additional arguments to be passed along.
1239         if ((sym.flags() & STATIC) != 0) {
1240             ref = make.Ident(sym);
1241             args = make.Idents(md.params);
1242         } else {
1243             ref = make.Select(make.Ident(md.params.head), sym);
1244             args = make.Idents(md.params.tail);
1245         }
1246         JCStatement stat;          // The statement accessing the private symbol.
1247         if (sym.kind == VAR) {
1248             // Normalize out all odd access codes by taking floor modulo 2:
1249             int acode1 = acode - (acode & 1);
1250 
1251             JCExpression expr;      // The access method's return value.
1252             switch (acode1) {
1253             case DEREFcode:
1254                 expr = ref;
1255                 break;
1256             case ASSIGNcode:
1257                 expr = make.Assign(ref, args.head);
1258                 break;
1259             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
1260                 expr = makeUnary(
1261                     ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
1262                 break;
1263             default:
1264                 expr = make.Assignop(
1265                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
1266                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
1267             }
1268             stat = make.Return(expr.setType(sym.type));
1269         } else {
1270             stat = make.Call(make.App(ref, args));
1271         }
1272         md.body = make.Block(0, List.of(stat));
1273 
1274         // Make sure all parameters, result types and thrown exceptions
1275         // are accessible.
1276         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1277             l.head.vartype = access(l.head.vartype);
1278         md.restype = access(md.restype);
1279         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1280             l.head = access(l.head);
1281 
1282         return md;
1283     }
1284 
1285     /** Construct definition of an access constructor.
1286      *  @param pos        The source code position of the definition.
1287      *  @param constr     The private constructor.
1288      *  @param accessor   The access method for the constructor.
1289      */
1290     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1291         make.at(pos);
1292         JCMethodDecl md = make.MethodDef(accessor,
1293                                       accessor.externalType(types),
1294                                       null);
1295         JCIdent callee = make.Ident(names._this);
1296         callee.sym = constr;
1297         callee.type = constr.type;
1298         md.body =
1299             make.Block(0, List.<JCStatement>of(
1300                 make.Call(
1301                     make.App(
1302                         callee,
1303                         make.Idents(md.params.reverse().tail.reverse())))));
1304         return md;
1305     }
1306 
1307 /**************************************************************************
1308  * Free variables proxies and this$n
1309  *************************************************************************/
1310 
1311     /** A scope containing all free variable proxies for currently translated
1312      *  class, as well as its this$n symbol (if needed).
1313      *  Proxy scopes are nested in the same way classes are.
1314      *  Inside a constructor, proxies and any this$n symbol are duplicated
1315      *  in an additional innermost scope, where they represent the constructor
1316      *  parameters.
1317      */
1318     Scope proxies;
1319 
1320     /** A scope containing all unnamed resource variables/saved exception variables
1321      *  for translated ARM blocks
1322      */
1323     Scope armVars;
1324 
1325     /** A stack containing the this$n field of the currently translated
1326      *  classes (if needed) in innermost first order.
1327      *  Inside a constructor, proxies and any this$n symbol are duplicated
1328      *  in an additional innermost scope, where they represent the constructor
1329      *  parameters.
1330      */
1331     List<VarSymbol> outerThisStack;
1332 
1333     /** The name of a free variable proxy.
1334      */
1335     Name proxyName(Name name) {
1336         return names.fromString("val" + target.syntheticNameChar() + name);
1337     }
1338 
1339     /** Proxy definitions for all free variables in given list, in reverse order.
1340      *  @param pos        The source code position of the definition.
1341      *  @param freevars   The free variables.
1342      *  @param owner      The class in which the definitions go.
1343      */
1344     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
1345         long flags = FINAL | SYNTHETIC;
1346         if (owner.kind == TYP &&
1347             target.usePrivateSyntheticFields())
1348             flags |= PRIVATE;
1349         List<JCVariableDecl> defs = List.nil();
1350         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1351             VarSymbol v = l.head;
1352             VarSymbol proxy = new VarSymbol(
1353                 flags, proxyName(v.name), v.erasure(types), owner);
1354             proxies.enter(proxy);
1355             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1356             vd.vartype = access(vd.vartype);
1357             defs = defs.prepend(vd);
1358         }
1359         return defs;
1360     }
1361 
1362     /** The name of a this$n field
1363      *  @param type   The class referenced by the this$n field
1364      */
1365     Name outerThisName(Type type, Symbol owner) {
1366         Type t = type.getEnclosingType();
1367         int nestingLevel = 0;
1368         while (t.tag == CLASS) {
1369             t = t.getEnclosingType();
1370             nestingLevel++;
1371         }
1372         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1373         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
1374             result = names.fromString(result.toString() + target.syntheticNameChar());
1375         return result;
1376     }
1377 
1378     /** Definition for this$n field.
1379      *  @param pos        The source code position of the definition.
1380      *  @param owner      The class in which the definition goes.
1381      */
1382     JCVariableDecl outerThisDef(int pos, Symbol owner) {
1383         long flags = FINAL | SYNTHETIC;
1384         if (owner.kind == TYP &&
1385             target.usePrivateSyntheticFields())
1386             flags |= PRIVATE;
1387         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
1388         VarSymbol outerThis = new VarSymbol(
1389             flags, outerThisName(target, owner), target, owner);
1390         outerThisStack = outerThisStack.prepend(outerThis);
1391         JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
1392         vd.vartype = access(vd.vartype);
1393         return vd;
1394     }
1395 
1396     /** Return a list of trees that load the free variables in given list,
1397      *  in reverse order.
1398      *  @param pos          The source code position to be used for the trees.
1399      *  @param freevars     The list of free variables.
1400      */
1401     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1402         List<JCExpression> args = List.nil();
1403         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1404             args = args.prepend(loadFreevar(pos, l.head));
1405         return args;
1406     }
1407 //where
1408         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1409             return access(v, make.at(pos).Ident(v), null, false);
1410         }
1411 
1412     /** Construct a tree simulating the expression <C.this>.
1413      *  @param pos           The source code position to be used for the tree.
1414      *  @param c             The qualifier class.
1415      */
1416     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1417         if (currentClass == c) {
1418             // in this case, `this' works fine
1419             return make.at(pos).This(c.erasure(types));
1420         } else {
1421             // need to go via this$n
1422             return makeOuterThis(pos, c);
1423         }
1424     }
1425 
1426     /** Optionally replace a try statement with an automatic resource management
1427      *  (ARM) block.
1428      * @param tree  The try statement to inspect.
1429      * @return      An ARM block, or the original try block if there are no
1430      *              resources to manage.
1431      */
1432     JCTree makeArmTry(JCTry tree) {
1433         make_at(tree.pos());
1434         armVars = armVars.dup();
1435         JCBlock armBlock = makeArmBlock(tree.resources, tree.body, 0);        
1436         if (tree.catchers.isEmpty() && tree.finalizer == null)
1437             result = translate(armBlock);
1438         else
1439             result = translate(make.Try(armBlock, tree.catchers, tree.finalizer));
1440         armVars = armVars.leave();
1441         return result;
1442     }
1443 
1444     private JCBlock makeArmBlock(List<JCTree> resources, JCBlock block, int depth) {
1445         if (resources.isEmpty())
1446             return block;
1447 
1448         // Add resource declaration or expression to block statements
1449         ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
1450         JCTree resource = resources.head;
1451         JCExpression expr = null;
1452         if (resource instanceof JCVariableDecl) {
1453             JCVariableDecl var = (JCVariableDecl) resource;
1454             expr = make.Ident(var.sym).setType(resource.type);
1455             stats.add(var);
1456         } else {
1457             assert resource instanceof JCExpression;
1458             VarSymbol syntheticArmVar =
1459             new VarSymbol(SYNTHETIC | FINAL,
1460                           makeSyntheticName(names.fromString("armVar" +
1461                                            depth), armVars),
1462                           (resource.type.tag == TypeTags.BOT) ?
1463                           syms.autoCloseableType : resource.type,
1464                           currentMethodSym);
1465             armVars.enter(syntheticArmVar);
1466             JCVariableDecl syntheticArmVarDecl =
1467                 make.VarDef(syntheticArmVar, (JCExpression)resource);
1468             expr = (JCExpression)make.Ident(syntheticArmVar);
1469             stats.add(syntheticArmVarDecl);
1470         }
1471 
1472         // Add primaryException declaration
1473         VarSymbol primaryException =
1474             new VarSymbol(SYNTHETIC,
1475                           makeSyntheticName(names.fromString("primaryException" +
1476                           depth), armVars),
1477                           syms.throwableType,
1478                           currentMethodSym);
1479         armVars.enter(primaryException);
1480         JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
1481         stats.add(primaryExceptionTreeDecl);
1482 
1483         // Create catch clause that saves exception and then rethrows it
1484         VarSymbol param =
1485             new VarSymbol(FINAL|SYNTHETIC,
1486                           names.fromString("t" +                                           
1487                                            target.syntheticNameChar()),
1488                           syms.throwableType,
1489                           currentMethodSym);
1490         JCVariableDecl paramTree = make.VarDef(param, null);
1491         JCStatement assign = make.Assignment(primaryException, make.Ident(param));
1492         JCStatement rethrowStat = make.Throw(make.Ident(param));
1493         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
1494         JCCatch catchClause = make.Catch(paramTree, catchBlock);
1495 
1496         int oldPos = make.pos;
1497         make.at(TreeInfo.endPos(block));
1498         JCBlock finallyClause = makeArmFinallyClause(primaryException, expr);
1499         make.at(oldPos);
1500         JCTry outerTry = make.Try(makeArmBlock(resources.tail, block, depth + 1),
1501                                   List.<JCCatch>of(catchClause),
1502                                   finallyClause);
1503         stats.add(outerTry);
1504         return make.Block(0L, stats.toList());
1505     }
1506    
1507     private JCBlock makeArmFinallyClause(Symbol primaryException, JCExpression resource) {
1508         // primaryException.addSuppressedException(catchException);
1509         VarSymbol catchException =
1510             new VarSymbol(0, make.paramName(2),
1511                           syms.throwableType,
1512                           currentMethodSym);
1513         JCStatement addSuppressionStatement =
1514             make.Exec(makeCall(make.Ident(primaryException),
1515                                names.fromString("addSuppressedException"),
1516                                List.<JCExpression>of(make.Ident(catchException))));
1517 
1518         // try { resource.close(); } catch (e) { primaryException.addSuppressedException(e); }
1519         JCBlock tryBlock =
1520             make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
1521         JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
1522         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
1523         List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
1524         JCTry tryTree = make.Try(tryBlock, catchClauses, null);
1525 
1526         // if (resource != null) resourceClose;
1527         JCExpression nullCheck = makeBinary(JCTree.NE,
1528                                             make.Ident(primaryException),
1529                                             makeNull());
1530         JCIf closeIfStatement = make.If(nullCheck,
1531                                         tryTree,
1532                                         makeResourceCloseInvocation(resource));
1533         return make.Block(0L, List.<JCStatement>of(closeIfStatement));
1534     }
1535 
1536     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
1537         // create resource.close() method invocation
1538         JCExpression resourceClose = makeCall(resource, names.close, List.<JCExpression>nil());
1539         return make.Exec(resourceClose);
1540     }
1541 
1542     /** Construct a tree that represents the outer instance
1543      *  <C.this>. Never pick the current `this'.
1544      *  @param pos           The source code position to be used for the tree.
1545      *  @param c             The qualifier class.
1546      */
1547     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1548         List<VarSymbol> ots = outerThisStack;
1549         if (ots.isEmpty()) {
1550             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1551             assert false;
1552             return makeNull();
1553         }
1554         VarSymbol ot = ots.head;
1555         JCExpression tree = access(make.at(pos).Ident(ot));
1556         TypeSymbol otc = ot.type.tsym;
1557         while (otc != c) {
1558             do {
1559                 ots = ots.tail;
1560                 if (ots.isEmpty()) {
1561                     log.error(pos,
1562                               "no.encl.instance.of.type.in.scope",
1563                               c);
1564                     assert false; // should have been caught in Attr
1565                     return tree;
1566                 }
1567                 ot = ots.head;
1568             } while (ot.owner != otc);
1569             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1570                 chk.earlyRefError(pos, c);
1571                 assert false; // should have been caught in Attr
1572                 return makeNull();
1573             }
1574             tree = access(make.at(pos).Select(tree, ot));
1575             otc = ot.type.tsym;
1576         }
1577         return tree;
1578     }
1579 
1580     /** Construct a tree that represents the closest outer instance
1581      *  <C.this> such that the given symbol is a member of C.
1582      *  @param pos           The source code position to be used for the tree.
1583      *  @param sym           The accessed symbol.
1584      *  @param preciseMatch  should we accept a type that is a subtype of
1585      *                       sym's owner, even if it doesn't contain sym
1586      *                       due to hiding, overriding, or non-inheritance
1587      *                       due to protection?
1588      */
1589     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1590         Symbol c = sym.owner;
1591         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1592                          : currentClass.isSubClass(sym.owner, types)) {
1593             // in this case, `this' works fine
1594             return make.at(pos).This(c.erasure(types));
1595         } else {
1596             // need to go via this$n
1597             return makeOwnerThisN(pos, sym, preciseMatch);
1598         }
1599     }
1600 
1601     /**
1602      * Similar to makeOwnerThis but will never pick "this".
1603      */
1604     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1605         Symbol c = sym.owner;
1606         List<VarSymbol> ots = outerThisStack;
1607         if (ots.isEmpty()) {
1608             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1609             assert false;
1610             return makeNull();
1611         }
1612         VarSymbol ot = ots.head;
1613         JCExpression tree = access(make.at(pos).Ident(ot));
1614         TypeSymbol otc = ot.type.tsym;
1615         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1616             do {
1617                 ots = ots.tail;
1618                 if (ots.isEmpty()) {
1619                     log.error(pos,
1620                         "no.encl.instance.of.type.in.scope",
1621                         c);
1622                     assert false;
1623                     return tree;
1624                 }
1625                 ot = ots.head;
1626             } while (ot.owner != otc);
1627             tree = access(make.at(pos).Select(tree, ot));
1628             otc = ot.type.tsym;
1629         }
1630         return tree;
1631     }
1632 
1633     /** Return tree simulating the assignment <this.name = name>, where
1634      *  name is the name of a free variable.
1635      */
1636     JCStatement initField(int pos, Name name) {
1637         Scope.Entry e = proxies.lookup(name);
1638         Symbol rhs = e.sym;
1639         assert rhs.owner.kind == MTH;
1640         Symbol lhs = e.next().sym;
1641         assert rhs.owner.owner == lhs.owner;
1642         make.at(pos);
1643         return
1644             make.Exec(
1645                 make.Assign(
1646                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1647                     make.Ident(rhs)).setType(lhs.erasure(types)));
1648     }
1649 
1650     /** Return tree simulating the assignment <this.this$n = this$n>.
1651      */
1652     JCStatement initOuterThis(int pos) {
1653         VarSymbol rhs = outerThisStack.head;
1654         assert rhs.owner.kind == MTH;
1655         VarSymbol lhs = outerThisStack.tail.head;
1656         assert rhs.owner.owner == lhs.owner;
1657         make.at(pos);
1658         return
1659             make.Exec(
1660                 make.Assign(
1661                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1662                     make.Ident(rhs)).setType(lhs.erasure(types)));
1663     }
1664 
1665 /**************************************************************************
1666  * Code for .class
1667  *************************************************************************/
1668 
1669     /** Return the symbol of a class to contain a cache of
1670      *  compiler-generated statics such as class$ and the
1671      *  $assertionsDisabled flag.  We create an anonymous nested class
1672      *  (unless one already exists) and return its symbol.  However,
1673      *  for backward compatibility in 1.4 and earlier we use the
1674      *  top-level class itself.
1675      */
1676     private ClassSymbol outerCacheClass() {
1677         ClassSymbol clazz = outermostClassDef.sym;
1678         if ((clazz.flags() & INTERFACE) == 0 &&
1679             !target.useInnerCacheClass()) return clazz;
1680         Scope s = clazz.members();
1681         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
1682             if (e.sym.kind == TYP &&
1683                 e.sym.name == names.empty &&
1684                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
1685         return makeEmptyClass(STATIC | SYNTHETIC, clazz);
1686     }
1687 
1688     /** Return symbol for "class$" method. If there is no method definition
1689      *  for class$, construct one as follows:
1690      *
1691      *    class class$(String x0) {
1692      *      try {
1693      *        return Class.forName(x0);
1694      *      } catch (ClassNotFoundException x1) {
1695      *        throw new NoClassDefFoundError(x1.getMessage());
1696      *      }
1697      *    }
1698      */
1699     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
1700         ClassSymbol outerCacheClass = outerCacheClass();
1701         MethodSymbol classDollarSym =
1702             (MethodSymbol)lookupSynthetic(classDollar,
1703                                           outerCacheClass.members());
1704         if (classDollarSym == null) {
1705             classDollarSym = new MethodSymbol(
1706                 STATIC | SYNTHETIC,
1707                 classDollar,
1708                 new MethodType(
1709                     List.of(syms.stringType),
1710                     types.erasure(syms.classType),
1711                     List.<Type>nil(),
1712                     syms.methodClass),
1713                 outerCacheClass);
1714             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
1715 
1716             JCMethodDecl md = make.MethodDef(classDollarSym, null);
1717             try {
1718                 md.body = classDollarSymBody(pos, md);
1719             } catch (CompletionFailure ex) {
1720                 md.body = make.Block(0, List.<JCStatement>nil());
1721                 chk.completionError(pos, ex);
1722             }
1723             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1724             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
1725         }
1726         return classDollarSym;
1727     }
1728 
1729     /** Generate code for class$(String name). */
1730     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
1731         MethodSymbol classDollarSym = md.sym;
1732         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
1733 
1734         JCBlock returnResult;
1735 
1736         // in 1.4.2 and above, we use
1737         // Class.forName(String name, boolean init, ClassLoader loader);
1738         // which requires we cache the current loader in cl$
1739         if (target.classLiteralsNoInit()) {
1740             // clsym = "private static ClassLoader cl$"
1741             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
1742                                             names.fromString("cl" + target.syntheticNameChar()),
1743                                             syms.classLoaderType,
1744                                             outerCacheClass);
1745             enterSynthetic(pos, clsym, outerCacheClass.members());
1746 
1747             // emit "private static ClassLoader cl$;"
1748             JCVariableDecl cldef = make.VarDef(clsym, null);
1749             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1750             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
1751 
1752             // newcache := "new cache$1[0]"
1753             JCNewArray newcache = make.
1754                 NewArray(make.Type(outerCacheClass.type),
1755                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
1756                          null);
1757             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
1758                                           syms.arrayClass);
1759 
1760             // forNameSym := java.lang.Class.forName(
1761             //     String s,boolean init,ClassLoader loader)
1762             Symbol forNameSym = lookupMethod(make_pos, names.forName,
1763                                              types.erasure(syms.classType),
1764                                              List.of(syms.stringType,
1765                                                      syms.booleanType,
1766                                                      syms.classLoaderType));
1767             // clvalue := "(cl$ == null) ?
1768             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
1769             JCExpression clvalue =
1770                 make.Conditional(
1771                     makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
1772                     make.Assign(
1773                         make.Ident(clsym),
1774                         makeCall(
1775                             makeCall(makeCall(newcache,
1776                                               names.getClass,
1777                                               List.<JCExpression>nil()),
1778                                      names.getComponentType,
1779                                      List.<JCExpression>nil()),
1780                             names.getClassLoader,
1781                             List.<JCExpression>nil())).setType(syms.classLoaderType),
1782                     make.Ident(clsym)).setType(syms.classLoaderType);
1783 
1784             // returnResult := "{ return Class.forName(param1, false, cl$); }"
1785             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
1786                                               makeLit(syms.booleanType, 0),
1787                                               clvalue);
1788             returnResult = make.
1789                 Block(0, List.<JCStatement>of(make.
1790                               Call(make. // return
1791                                    App(make.
1792                                        Ident(forNameSym), args))));
1793         } else {
1794             // forNameSym := java.lang.Class.forName(String s)
1795             Symbol forNameSym = lookupMethod(make_pos,
1796                                              names.forName,
1797                                              types.erasure(syms.classType),
1798                                              List.of(syms.stringType));
1799             // returnResult := "{ return Class.forName(param1); }"
1800             returnResult = make.
1801                 Block(0, List.of(make.
1802                           Call(make. // return
1803                               App(make.
1804                                   QualIdent(forNameSym),
1805                                   List.<JCExpression>of(make.
1806                                                         Ident(md.params.
1807                                                               head.sym))))));
1808         }
1809 
1810         // catchParam := ClassNotFoundException e1
1811         VarSymbol catchParam =
1812             new VarSymbol(0, make.paramName(1),
1813                           syms.classNotFoundExceptionType,
1814                           classDollarSym);
1815 
1816         JCStatement rethrow;
1817         if (target.hasInitCause()) {
1818             // rethrow = "throw new NoClassDefFoundError().initCause(e);
1819             JCTree throwExpr =
1820                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
1821                                       List.<JCExpression>nil()),
1822                          names.initCause,
1823                          List.<JCExpression>of(make.Ident(catchParam)));
1824             rethrow = make.Throw(throwExpr);
1825         } else {
1826             // getMessageSym := ClassNotFoundException.getMessage()
1827             Symbol getMessageSym = lookupMethod(make_pos,
1828                                                 names.getMessage,
1829                                                 syms.classNotFoundExceptionType,
1830                                                 List.<Type>nil());
1831             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
1832             rethrow = make.
1833                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
1834                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
1835                                                                      getMessageSym),
1836                                                          List.<JCExpression>nil()))));
1837         }
1838 
1839         // rethrowStmt := "( $rethrow )"
1840         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
1841 
1842         // catchBlock := "catch ($catchParam) $rethrowStmt"
1843         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
1844                                       rethrowStmt);
1845 
1846         // tryCatch := "try $returnResult $catchBlock"
1847         JCStatement tryCatch = make.Try(returnResult,
1848                                         List.of(catchBlock), null);
1849 
1850         return make.Block(0, List.of(tryCatch));
1851     }
1852     // where
1853         /** Create an attributed tree of the form left.name(). */
1854         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
1855             assert left.type != null;
1856             Symbol funcsym = lookupMethod(make_pos, name, left.type,
1857                                           TreeInfo.types(args));
1858             return make.App(make.Select(left, funcsym), args);
1859         }
1860 
1861     /** The Name Of The variable to cache T.class values.
1862      *  @param sig      The signature of type T.
1863      */
1864     private Name cacheName(String sig) {
1865         StringBuffer buf = new StringBuffer();
1866         if (sig.startsWith("[")) {
1867             buf = buf.append("array");
1868             while (sig.startsWith("[")) {
1869                 buf = buf.append(target.syntheticNameChar());
1870                 sig = sig.substring(1);
1871             }
1872             if (sig.startsWith("L")) {
1873                 sig = sig.substring(0, sig.length() - 1);
1874             }
1875         } else {
1876             buf = buf.append("class" + target.syntheticNameChar());
1877         }
1878         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
1879         return names.fromString(buf.toString());
1880     }
1881 
1882     /** The variable symbol that caches T.class values.
1883      *  If none exists yet, create a definition.
1884      *  @param sig      The signature of type T.
1885      *  @param pos      The position to report diagnostics, if any.
1886      */
1887     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
1888         ClassSymbol outerCacheClass = outerCacheClass();
1889         Name cname = cacheName(sig);
1890         VarSymbol cacheSym =
1891             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
1892         if (cacheSym == null) {
1893             cacheSym = new VarSymbol(
1894                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
1895             enterSynthetic(pos, cacheSym, outerCacheClass.members());
1896 
1897             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
1898             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1899             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
1900         }
1901         return cacheSym;
1902     }
1903 
1904     /** The tree simulating a T.class expression.
1905      *  @param clazz      The tree identifying type T.
1906      */
1907     private JCExpression classOf(JCTree clazz) {
1908         return classOfType(clazz.type, clazz.pos());
1909     }
1910 
1911     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
1912         switch (type.tag) {
1913         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
1914         case DOUBLE: case BOOLEAN: case VOID:
1915             // replace with <BoxedClass>.TYPE
1916             ClassSymbol c = types.boxedClass(type);
1917             Symbol typeSym =
1918                 rs.access(
1919                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
1920                     pos, c.type, names.TYPE, true);
1921             if (typeSym.kind == VAR)
1922                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
1923             return make.QualIdent(typeSym);
1924         case CLASS: case ARRAY:
1925             if (target.hasClassLiterals()) {
1926                 VarSymbol sym = new VarSymbol(
1927                         STATIC | PUBLIC | FINAL, names._class,
1928                         syms.classType, type.tsym);
1929                 return make_at(pos).Select(make.Type(type), sym);
1930             }
1931             // replace with <cache == null ? cache = class$(tsig) : cache>
1932             // where
1933             //  - <tsig>  is the type signature of T,
1934             //  - <cache> is the cache variable for tsig.
1935             String sig =
1936                 writer.xClassName(type).toString().replace('/', '.');
1937             Symbol cs = cacheSym(pos, sig);
1938             return make_at(pos).Conditional(
1939                 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
1940                 make.Assign(
1941                     make.Ident(cs),
1942                     make.App(
1943                         make.Ident(classDollarSym(pos)),
1944                         List.<JCExpression>of(make.Literal(CLASS, sig)
1945                                               .setType(syms.stringType))))
1946                 .setType(types.erasure(syms.classType)),
1947                 make.Ident(cs)).setType(types.erasure(syms.classType));
1948         default:
1949             throw new AssertionError();
1950         }
1951     }
1952 
1953 /**************************************************************************
1954  * Code for enabling/disabling assertions.
1955  *************************************************************************/
1956 
1957     // This code is not particularly robust if the user has
1958     // previously declared a member named '$assertionsDisabled'.
1959     // The same faulty idiom also appears in the translation of
1960     // class literals above.  We should report an error if a
1961     // previous declaration is not synthetic.
1962 
1963     private JCExpression assertFlagTest(DiagnosticPosition pos) {
1964         // Outermost class may be either true class or an interface.
1965         ClassSymbol outermostClass = outermostClassDef.sym;
1966 
1967         // note that this is a class, as an interface can't contain a statement.
1968         ClassSymbol container = currentClass;
1969 
1970         VarSymbol assertDisabledSym =
1971             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
1972                                        container.members());
1973         if (assertDisabledSym == null) {
1974             assertDisabledSym =
1975                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
1976                               dollarAssertionsDisabled,
1977                               syms.booleanType,
1978                               container);
1979             enterSynthetic(pos, assertDisabledSym, container.members());
1980             Symbol desiredAssertionStatusSym = lookupMethod(pos,
1981                                                             names.desiredAssertionStatus,
1982                                                             types.erasure(syms.classType),
1983                                                             List.<Type>nil());
1984             JCClassDecl containerDef = classDef(container);
1985             make_at(containerDef.pos());
1986             JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
1987                     classOfType(types.erasure(outermostClass.type),
1988                                 containerDef.pos()),
1989                     desiredAssertionStatusSym)));
1990             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
1991                                                    notStatus);
1992             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
1993         }
1994         make_at(pos);
1995         return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
1996     }
1997 
1998 
1999 /**************************************************************************
2000  * Building blocks for let expressions
2001  *************************************************************************/
2002 
2003     interface TreeBuilder {
2004         JCTree build(JCTree arg);
2005     }
2006 
2007     /** Construct an expression using the builder, with the given rval
2008      *  expression as an argument to the builder.  However, the rval
2009      *  expression must be computed only once, even if used multiple
2010      *  times in the result of the builder.  We do that by
2011      *  constructing a "let" expression that saves the rvalue into a
2012      *  temporary variable and then uses the temporary variable in
2013      *  place of the expression built by the builder.  The complete
2014      *  resulting expression is of the form
2015      *  <pre>
2016      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
2017      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
2018      *  </pre>
2019      *  where <code><b>TEMP</b></code> is a newly declared variable
2020      *  in the let expression.
2021      */
2022     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
2023         rval = TreeInfo.skipParens(rval);
2024         switch (rval.getTag()) {
2025         case JCTree.LITERAL:
2026             return builder.build(rval);
2027         case JCTree.IDENT:
2028             JCIdent id = (JCIdent) rval;
2029             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
2030                 return builder.build(rval);
2031         }
2032         VarSymbol var =
2033             new VarSymbol(FINAL|SYNTHETIC,
2034                           names.fromString(
2035                                           target.syntheticNameChar()
2036                                           + "" + rval.hashCode()),
2037                                       type,
2038                                       currentMethodSym);
2039         rval = convert(rval,type);
2040         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
2041         JCTree built = builder.build(make.Ident(var));
2042         JCTree res = make.LetExpr(def, built);
2043         res.type = built.type;
2044         return res;
2045     }
2046 
2047     // same as above, with the type of the temporary variable computed
2048     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
2049         return abstractRval(rval, rval.type, builder);
2050     }
2051 
2052     // same as above, but for an expression that may be used as either
2053     // an rvalue or an lvalue.  This requires special handling for
2054     // Select expressions, where we place the left-hand-side of the
2055     // select in a temporary, and for Indexed expressions, where we
2056     // place both the indexed expression and the index value in temps.
2057     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
2058         lval = TreeInfo.skipParens(lval);
2059         switch (lval.getTag()) {
2060         case JCTree.IDENT:
2061             return builder.build(lval);
2062         case JCTree.SELECT: {
2063             final JCFieldAccess s = (JCFieldAccess)lval;
2064             JCTree selected = TreeInfo.skipParens(s.selected);
2065             Symbol lid = TreeInfo.symbol(s.selected);
2066             if (lid != null && lid.kind == TYP) return builder.build(lval);
2067             return abstractRval(s.selected, new TreeBuilder() {
2068                     public JCTree build(final JCTree selected) {
2069                         return builder.build(make.Select((JCExpression)selected, s.sym));
2070                     }
2071                 });
2072         }
2073         case JCTree.INDEXED: {
2074             final JCArrayAccess i = (JCArrayAccess)lval;
2075             return abstractRval(i.indexed, new TreeBuilder() {
2076                     public JCTree build(final JCTree indexed) {
2077                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
2078                                 public JCTree build(final JCTree index) {
2079                                     JCTree newLval = make.Indexed((JCExpression)indexed,
2080                                                                 (JCExpression)index);
2081                                     newLval.setType(i.type);
2082                                     return builder.build(newLval);
2083                                 }
2084                             });
2085                     }
2086                 });
2087         }
2088         case JCTree.TYPECAST: {
2089             return abstractLval(((JCTypeCast)lval).expr, builder);
2090         }
2091         }
2092         throw new AssertionError(lval);
2093     }
2094 
2095     // evaluate and discard the first expression, then evaluate the second.
2096     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
2097         return abstractRval(expr1, new TreeBuilder() {
2098                 public JCTree build(final JCTree discarded) {
2099                     return expr2;
2100                 }
2101             });
2102     }
2103 
2104 /**************************************************************************
2105  * Translation methods
2106  *************************************************************************/
2107 
2108     /** Visitor argument: enclosing operator node.
2109      */
2110     private JCExpression enclOp;
2111 
2112     /** Visitor method: Translate a single node.
2113      *  Attach the source position from the old tree to its replacement tree.
2114      */
2115     public <T extends JCTree> T translate(T tree) {
2116         if (tree == null) {
2117             return null;
2118         } else {
2119             make_at(tree.pos());
2120             T result = super.translate(tree);
2121             if (endPositions != null && result != tree) {
2122                 Integer endPos = endPositions.remove(tree);
2123                 if (endPos != null) endPositions.put(result, endPos);
2124             }
2125             return result;
2126         }
2127     }
2128 
2129     /** Visitor method: Translate a single node, boxing or unboxing if needed.
2130      */
2131     public <T extends JCTree> T translate(T tree, Type type) {
2132         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
2133     }
2134 
2135     /** Visitor method: Translate tree.
2136      */
2137     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
2138         JCExpression prevEnclOp = this.enclOp;
2139         this.enclOp = enclOp;
2140         T res = translate(tree);
2141         this.enclOp = prevEnclOp;
2142         return res;
2143     }
2144 
2145     /** Visitor method: Translate list of trees.
2146      */
2147     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
2148         JCExpression prevEnclOp = this.enclOp;
2149         this.enclOp = enclOp;
2150         List<T> res = translate(trees);
2151         this.enclOp = prevEnclOp;
2152         return res;
2153     }
2154 
2155     /** Visitor method: Translate list of trees.
2156      */
2157     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
2158         if (trees == null) return null;
2159         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
2160             l.head = translate(l.head, type);
2161         return trees;
2162     }
2163 
2164     public void visitTopLevel(JCCompilationUnit tree) {
2165         if (tree.packageAnnotations.nonEmpty()) {
2166             Name name = names.package_info;
2167             long flags = Flags.ABSTRACT | Flags.INTERFACE;
2168             if (target.isPackageInfoSynthetic())
2169                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
2170                 flags = flags | Flags.SYNTHETIC;
2171             JCClassDecl packageAnnotationsClass
2172                 = make.ClassDef(make.Modifiers(flags,
2173                                                tree.packageAnnotations),
2174                                 name, List.<JCTypeParameter>nil(),
2175                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
2176             ClassSymbol c = tree.packge.package_info;
2177             c.flags_field |= flags;
2178             c.attributes_field = tree.packge.attributes_field;
2179             ClassType ctype = (ClassType) c.type;
2180             ctype.supertype_field = syms.objectType;
2181             ctype.interfaces_field = List.nil();
2182             packageAnnotationsClass.sym = c;
2183 
2184             translated.append(packageAnnotationsClass);
2185         }
2186     }
2187 
2188     public void visitClassDef(JCClassDecl tree) {
2189         ClassSymbol currentClassPrev = currentClass;
2190         MethodSymbol currentMethodSymPrev = currentMethodSym;
2191         currentClass = tree.sym;
2192         currentMethodSym = null;
2193         classdefs.put(currentClass, tree);
2194 
2195         proxies = proxies.dup(currentClass);
2196         List<VarSymbol> prevOuterThisStack = outerThisStack;
2197 
2198         // If this is an enum definition
2199         if ((tree.mods.flags & ENUM) != 0 &&
2200             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2201             visitEnumDef(tree);
2202 
2203         // If this is a nested class, define a this$n field for
2204         // it and add to proxies.
2205         JCVariableDecl otdef = null;
2206         if (currentClass.hasOuterInstance())
2207             otdef = outerThisDef(tree.pos, currentClass);
2208 
2209         // If this is a local class, define proxies for all its free variables.
2210         List<JCVariableDecl> fvdefs = freevarDefs(
2211             tree.pos, freevars(currentClass), currentClass);
2212 
2213         // Recursively translate superclass, interfaces.
2214         tree.extending = translate(tree.extending);
2215         tree.implementing = translate(tree.implementing);
2216 
2217         // Recursively translate members, taking into account that new members
2218         // might be created during the translation and prepended to the member
2219         // list `tree.defs'.
2220         List<JCTree> seen = List.nil();
2221         while (tree.defs != seen) {
2222             List<JCTree> unseen = tree.defs;
2223             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2224                 JCTree outermostMemberDefPrev = outermostMemberDef;
2225                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2226                 l.head = translate(l.head);
2227                 outermostMemberDef = outermostMemberDefPrev;
2228             }
2229             seen = unseen;
2230         }
2231 
2232         // Convert a protected modifier to public, mask static modifier.
2233         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2234         tree.mods.flags &= ClassFlags;
2235 
2236         // Convert name to flat representation, replacing '.' by '$'.
2237         tree.name = Convert.shortName(currentClass.flatName());
2238 
2239         // Add this$n and free variables proxy definitions to class.
2240         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2241             tree.defs = tree.defs.prepend(l.head);
2242             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2243         }
2244         if (currentClass.hasOuterInstance()) {
2245             tree.defs = tree.defs.prepend(otdef);
2246             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2247         }
2248 
2249         proxies = proxies.leave();
2250         outerThisStack = prevOuterThisStack;
2251 
2252         // Append translated tree to `translated' queue.
2253         translated.append(tree);
2254 
2255         currentClass = currentClassPrev;
2256         currentMethodSym = currentMethodSymPrev;
2257 
2258         // Return empty block {} as a placeholder for an inner class.
2259         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
2260     }
2261 
2262     /** Translate an enum class. */
2263     private void visitEnumDef(JCClassDecl tree) {
2264         make_at(tree.pos());
2265 
2266         // add the supertype, if needed
2267         if (tree.extending == null)
2268             tree.extending = make.Type(types.supertype(tree.type));
2269 
2270         // classOfType adds a cache field to tree.defs unless
2271         // target.hasClassLiterals().
2272         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2273             setType(types.erasure(syms.classType));
2274 
2275         // process each enumeration constant, adding implicit constructor parameters
2276         int nextOrdinal = 0;
2277         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
2278         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
2279         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
2280         for (List<JCTree> defs = tree.defs;
2281              defs.nonEmpty();
2282              defs=defs.tail) {
2283             if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2284                 JCVariableDecl var = (JCVariableDecl)defs.head;
2285                 visitEnumConstantDef(var, nextOrdinal++);
2286                 values.append(make.QualIdent(var.sym));
2287                 enumDefs.append(var);
2288             } else {
2289                 otherDefs.append(defs.head);
2290             }
2291         }
2292 
2293         // private static final T[] #VALUES = { a, b, c };
2294         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
2295         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
2296             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2297         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2298         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2299                                             valuesName,
2300                                             arrayType,
2301                                             tree.type.tsym);
2302         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2303                                           List.<JCExpression>nil(),
2304                                           values.toList());
2305         newArray.type = arrayType;
2306         enumDefs.append(make.VarDef(valuesVar, newArray));
2307         tree.sym.members().enter(valuesVar);
2308 
2309         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
2310                                         tree.type, List.<Type>nil());
2311         List<JCStatement> valuesBody;
2312         if (useClone()) {
2313             // return (T[]) $VALUES.clone();
2314             JCTypeCast valuesResult =
2315                 make.TypeCast(valuesSym.type.getReturnType(),
2316                               make.App(make.Select(make.Ident(valuesVar),
2317                                                    syms.arrayCloneMethod)));
2318             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
2319         } else {
2320             // template: T[] $result = new T[$values.length];
2321             Name resultName = names.fromString(target.syntheticNameChar() + "result");
2322             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
2323                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
2324             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2325                                                 resultName,
2326                                                 arrayType,
2327                                                 valuesSym);
2328             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2329                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2330                                   null);
2331             resultArray.type = arrayType;
2332             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2333 
2334             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2335             if (systemArraycopyMethod == null) {
2336                 systemArraycopyMethod =
2337                     new MethodSymbol(PUBLIC | STATIC,
2338                                      names.fromString("arraycopy"),
2339                                      new MethodType(List.<Type>of(syms.objectType,
2340                                                             syms.intType,
2341                                                             syms.objectType,
2342                                                             syms.intType,
2343                                                             syms.intType),
2344                                                     syms.voidType,
2345                                                     List.<Type>nil(),
2346                                                     syms.methodClass),
2347                                      syms.systemType.tsym);
2348             }
2349             JCStatement copy =
2350                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2351                                                systemArraycopyMethod),
2352                           List.of(make.Ident(valuesVar), make.Literal(0),
2353                                   make.Ident(resultVar), make.Literal(0),
2354                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2355 
2356             // template: return $result;
2357             JCStatement ret = make.Return(make.Ident(resultVar));
2358             valuesBody = List.<JCStatement>of(decl, copy, ret);
2359         }
2360 
2361         JCMethodDecl valuesDef =
2362              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
2363 
2364         enumDefs.append(valuesDef);
2365 
2366         if (debugLower)
2367             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2368 
2369         /** The template for the following code is:
2370          *
2371          *     public static E valueOf(String name) {
2372          *         return (E)Enum.valueOf(E.class, name);
2373          *     }
2374          *
2375          *  where E is tree.sym
2376          */
2377         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2378                          names.valueOf,
2379                          tree.sym.type,
2380                          List.of(syms.stringType));
2381         assert (valueOfSym.flags() & STATIC) != 0;
2382         VarSymbol nameArgSym = valueOfSym.params.head;
2383         JCIdent nameVal = make.Ident(nameArgSym);
2384         JCStatement enum_ValueOf =
2385             make.Return(make.TypeCast(tree.sym.type,
2386                                       makeCall(make.Ident(syms.enumSym),
2387                                                names.valueOf,
2388                                                List.of(e_class, nameVal))));
2389         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2390                                            make.Block(0, List.of(enum_ValueOf)));
2391         nameVal.sym = valueOf.params.head.sym;
2392         if (debugLower)
2393             System.err.println(tree.sym + ".valueOf = " + valueOf);
2394         enumDefs.append(valueOf);
2395 
2396         enumDefs.appendList(otherDefs.toList());
2397         tree.defs = enumDefs.toList();
2398 
2399         // Add the necessary members for the EnumCompatibleMode
2400         if (target.compilerBootstrap(tree.sym)) {
2401             addEnumCompatibleMembers(tree);
2402         }
2403     }
2404         // where
2405         private MethodSymbol systemArraycopyMethod;
2406         private boolean useClone() {
2407             try {
2408                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
2409                 return (e.sym != null);
2410             }
2411             catch (CompletionFailure e) {
2412                 return false;
2413             }
2414         }
2415 
2416     /** Translate an enumeration constant and its initializer. */
2417     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2418         JCNewClass varDef = (JCNewClass)var.init;
2419         varDef.args = varDef.args.
2420             prepend(makeLit(syms.intType, ordinal)).
2421             prepend(makeLit(syms.stringType, var.name.toString()));
2422     }
2423 
2424     public void visitMethodDef(JCMethodDecl tree) {
2425         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2426             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2427             // argument list for each constructor of an enum.
2428             JCVariableDecl nameParam = make_at(tree.pos()).
2429                 Param(names.fromString(target.syntheticNameChar() +
2430                                        "enum" + target.syntheticNameChar() + "name"),
2431                       syms.stringType, tree.sym);
2432             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2433 
2434             JCVariableDecl ordParam = make.
2435                 Param(names.fromString(target.syntheticNameChar() +
2436                                        "enum" + target.syntheticNameChar() +
2437                                        "ordinal"),
2438                       syms.intType, tree.sym);
2439             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2440 
2441             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2442 
2443             MethodSymbol m = tree.sym;
2444             Type olderasure = m.erasure(types);
2445             m.erasure_field = new MethodType(
2446                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2447                 olderasure.getReturnType(),
2448                 olderasure.getThrownTypes(),
2449                 syms.methodClass);
2450 
2451             if (target.compilerBootstrap(m.owner)) {
2452                 // Initialize synthetic name field
2453                 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
2454                                                     tree.sym.owner.members());
2455                 JCIdent nameIdent = make.Ident(nameParam.sym);
2456                 JCIdent id1 = make.Ident(nameVarSym);
2457                 JCAssign newAssign = make.Assign(id1, nameIdent);
2458                 newAssign.type = id1.type;
2459                 JCExpressionStatement nameAssign = make.Exec(newAssign);
2460                 nameAssign.type = id1.type;
2461                 tree.body.stats = tree.body.stats.prepend(nameAssign);
2462 
2463                 // Initialize synthetic ordinal field
2464                 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
2465                                                        tree.sym.owner.members());
2466                 JCIdent ordIdent = make.Ident(ordParam.sym);
2467                 id1 = make.Ident(ordinalVarSym);
2468                 newAssign = make.Assign(id1, ordIdent);
2469                 newAssign.type = id1.type;
2470                 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
2471                 ordinalAssign.type = id1.type;
2472                 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
2473             }
2474         }
2475 
2476         JCMethodDecl prevMethodDef = currentMethodDef;
2477         MethodSymbol prevMethodSym = currentMethodSym;
2478         try {
2479             currentMethodDef = tree;
2480             currentMethodSym = tree.sym;
2481             visitMethodDefInternal(tree);
2482         } finally {
2483             currentMethodDef = prevMethodDef;
2484             currentMethodSym = prevMethodSym;
2485         }
2486     }
2487     //where
2488     private void visitMethodDefInternal(JCMethodDecl tree) {
2489         if (tree.name == names.init &&
2490             (currentClass.isInner() ||
2491              (currentClass.owner.kind & (VAR | MTH)) != 0)) {
2492             // We are seeing a constructor of an inner class.
2493             MethodSymbol m = tree.sym;
2494 
2495             // Push a new proxy scope for constructor parameters.
2496             // and create definitions for any this$n and proxy parameters.
2497             proxies = proxies.dup(m);
2498             List<VarSymbol> prevOuterThisStack = outerThisStack;
2499             List<VarSymbol> fvs = freevars(currentClass);
2500             JCVariableDecl otdef = null;
2501             if (currentClass.hasOuterInstance())
2502                 otdef = outerThisDef(tree.pos, m);
2503             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
2504 
2505             // Recursively translate result type, parameters and thrown list.
2506             tree.restype = translate(tree.restype);
2507             tree.params = translateVarDefs(tree.params);
2508             tree.thrown = translate(tree.thrown);
2509 
2510             // when compiling stubs, don't process body
2511             if (tree.body == null) {
2512                 result = tree;
2513                 return;
2514             }
2515 
2516             // Add this$n (if needed) in front of and free variables behind
2517             // constructor parameter list.
2518             tree.params = tree.params.appendList(fvdefs);
2519             if (currentClass.hasOuterInstance())
2520                 tree.params = tree.params.prepend(otdef);
2521 
2522             // If this is an initial constructor, i.e., it does not start with
2523             // this(...), insert initializers for this$n and proxies
2524             // before (pre-1.4, after) the call to superclass constructor.
2525             JCStatement selfCall = translate(tree.body.stats.head);
2526 
2527             List<JCStatement> added = List.nil();
2528             if (fvs.nonEmpty()) {
2529                 List<Type> addedargtypes = List.nil();
2530                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2531                     if (TreeInfo.isInitialConstructor(tree))
2532                         added = added.prepend(
2533                             initField(tree.body.pos, proxyName(l.head.name)));
2534                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2535                 }
2536                 Type olderasure = m.erasure(types);
2537                 m.erasure_field = new MethodType(
2538                     olderasure.getParameterTypes().appendList(addedargtypes),
2539                     olderasure.getReturnType(),
2540                     olderasure.getThrownTypes(),
2541                     syms.methodClass);
2542             }
2543             if (currentClass.hasOuterInstance() &&
2544                 TreeInfo.isInitialConstructor(tree))
2545             {
2546                 added = added.prepend(initOuterThis(tree.body.pos));
2547             }
2548 
2549             // pop local variables from proxy stack
2550             proxies = proxies.leave();
2551 
2552             // recursively translate following local statements and
2553             // combine with this- or super-call
2554             List<JCStatement> stats = translate(tree.body.stats.tail);
2555             if (target.initializeFieldsBeforeSuper())
2556                 tree.body.stats = stats.prepend(selfCall).prependList(added);
2557             else
2558                 tree.body.stats = stats.prependList(added).prepend(selfCall);
2559 
2560             outerThisStack = prevOuterThisStack;
2561         } else {
2562             super.visitMethodDef(tree);
2563         }
2564         result = tree;
2565     }
2566 
2567     public void visitAnnotatedType(JCAnnotatedType tree) {
2568         tree.underlyingType = translate(tree.underlyingType);
2569         result = tree.underlyingType;
2570     }
2571 
2572     public void visitTypeCast(JCTypeCast tree) {
2573         tree.clazz = translate(tree.clazz);
2574         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2575             tree.expr = translate(tree.expr, tree.type);
2576         else
2577             tree.expr = translate(tree.expr);
2578         result = tree;
2579     }
2580 
2581     public void visitNewClass(JCNewClass tree) {
2582         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
2583 
2584         // Box arguments, if necessary
2585         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
2586         List<Type> argTypes = tree.constructor.type.getParameterTypes();
2587         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
2588         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
2589         tree.varargsElement = null;
2590 
2591         // If created class is local, add free variables after
2592         // explicit constructor arguments.
2593         if ((c.owner.kind & (VAR | MTH)) != 0) {
2594             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2595         }
2596 
2597         // If an access constructor is used, append null as a last argument.
2598         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
2599         if (constructor != tree.constructor) {
2600             tree.args = tree.args.append(makeNull());
2601             tree.constructor = constructor;
2602         }
2603 
2604         // If created class has an outer instance, and new is qualified, pass
2605         // qualifier as first argument. If new is not qualified, pass the
2606         // correct outer instance as first argument.
2607         if (c.hasOuterInstance()) {
2608             JCExpression thisArg;
2609             if (tree.encl != null) {
2610                 thisArg = attr.makeNullCheck(translate(tree.encl));
2611                 thisArg.type = tree.encl.type;
2612             } else if ((c.owner.kind & (MTH | VAR)) != 0) {
2613                 // local class
2614                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
2615             } else {
2616                 // nested class
2617                 thisArg = makeOwnerThis(tree.pos(), c, false);
2618             }
2619             tree.args = tree.args.prepend(thisArg);
2620         }
2621         tree.encl = null;
2622 
2623         // If we have an anonymous class, create its flat version, rather
2624         // than the class or interface following new.
2625         if (tree.def != null) {
2626             translate(tree.def);
2627             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
2628             tree.def = null;
2629         } else {
2630             tree.clazz = access(c, tree.clazz, enclOp, false);
2631         }
2632         result = tree;
2633     }
2634 
2635     // Simplify conditionals with known constant controlling expressions.
2636     // This allows us to avoid generating supporting declarations for
2637     // the dead code, which will not be eliminated during code generation.
2638     // Note that Flow.isFalse and Flow.isTrue only return true
2639     // for constant expressions in the sense of JLS 15.27, which
2640     // are guaranteed to have no side-effects.  More aggressive
2641     // constant propagation would require that we take care to
2642     // preserve possible side-effects in the condition expression.
2643 
2644     /** Visitor method for conditional expressions.
2645      */
2646     public void visitConditional(JCConditional tree) {
2647         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2648         if (cond.type.isTrue()) {
2649             result = convert(translate(tree.truepart, tree.type), tree.type);
2650         } else if (cond.type.isFalse()) {
2651             result = convert(translate(tree.falsepart, tree.type), tree.type);
2652         } else {
2653             // Condition is not a compile-time constant.
2654             tree.truepart = translate(tree.truepart, tree.type);
2655             tree.falsepart = translate(tree.falsepart, tree.type);
2656             result = tree;
2657         }
2658     }
2659 //where
2660         private JCTree convert(JCTree tree, Type pt) {
2661             if (tree.type == pt) return tree;
2662             JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
2663             result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
2664                                                            : pt;
2665             return result;
2666         }
2667 
2668     /** Visitor method for if statements.
2669      */
2670     public void visitIf(JCIf tree) {
2671         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2672         if (cond.type.isTrue()) {
2673             result = translate(tree.thenpart);
2674         } else if (cond.type.isFalse()) {
2675             if (tree.elsepart != null) {
2676                 result = translate(tree.elsepart);
2677             } else {
2678                 result = make.Skip();
2679             }
2680         } else {
2681             // Condition is not a compile-time constant.
2682             tree.thenpart = translate(tree.thenpart);
2683             tree.elsepart = translate(tree.elsepart);
2684             result = tree;
2685         }
2686     }
2687 
2688     /** Visitor method for assert statements. Translate them away.
2689      */
2690     public void visitAssert(JCAssert tree) {
2691         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
2692         tree.cond = translate(tree.cond, syms.booleanType);
2693         if (!tree.cond.type.isTrue()) {
2694             JCExpression cond = assertFlagTest(tree.pos());
2695             List<JCExpression> exnArgs = (tree.detail == null) ?
2696                 List.<JCExpression>nil() : List.of(translate(tree.detail));
2697             if (!tree.cond.type.isFalse()) {
2698                 cond = makeBinary
2699                     (JCTree.AND,
2700                      cond,
2701                      makeUnary(JCTree.NOT, tree.cond));
2702             }
2703             result =
2704                 make.If(cond,
2705                         make_at(detailPos).
2706                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
2707                         null);
2708         } else {
2709             result = make.Skip();
2710         }
2711     }
2712 
2713     public void visitApply(JCMethodInvocation tree) {
2714         Symbol meth = TreeInfo.symbol(tree.meth);
2715         List<Type> argtypes = meth.type.getParameterTypes();
2716         if (allowEnums &&
2717             meth.name==names.init &&
2718             meth.owner == syms.enumSym)
2719             argtypes = argtypes.tail.tail;
2720         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
2721         tree.varargsElement = null;
2722         Name methName = TreeInfo.name(tree.meth);
2723         if (meth.name==names.init) {
2724             // We are seeing a this(...) or super(...) constructor call.
2725             // If an access constructor is used, append null as a last argument.
2726             Symbol constructor = accessConstructor(tree.pos(), meth);
2727             if (constructor != meth) {
2728                 tree.args = tree.args.append(makeNull());
2729                 TreeInfo.setSymbol(tree.meth, constructor);
2730             }
2731 
2732             // If we are calling a constructor of a local class, add
2733             // free variables after explicit constructor arguments.
2734             ClassSymbol c = (ClassSymbol)constructor.owner;
2735             if ((c.owner.kind & (VAR | MTH)) != 0) {
2736                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2737             }
2738 
2739             // If we are calling a constructor of an enum class, pass
2740             // along the name and ordinal arguments
2741             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
2742                 List<JCVariableDecl> params = currentMethodDef.params;
2743                 if (currentMethodSym.owner.hasOuterInstance())
2744                     params = params.tail; // drop this$n
2745                 tree.args = tree.args
2746                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
2747                     .prepend(make.Ident(params.head.sym)); // name
2748             }
2749 
2750             // If we are calling a constructor of a class with an outer
2751             // instance, and the call
2752             // is qualified, pass qualifier as first argument in front of
2753             // the explicit constructor arguments. If the call
2754             // is not qualified, pass the correct outer instance as
2755             // first argument.
2756             if (c.hasOuterInstance()) {
2757                 JCExpression thisArg;
2758                 if (tree.meth.getTag() == JCTree.SELECT) {
2759                     thisArg = attr.
2760                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
2761                     tree.meth = make.Ident(constructor);
2762                     ((JCIdent) tree.meth).name = methName;
2763                 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
2764                     // local class or this() call
2765                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
2766                 } else {
2767                     // super() call of nested class
2768                     thisArg = makeOwnerThis(tree.meth.pos(), c, false);
2769                 }
2770                 tree.args = tree.args.prepend(thisArg);
2771             }
2772         } else {
2773             // We are seeing a normal method invocation; translate this as usual.
2774             tree.meth = translate(tree.meth);
2775 
2776             // If the translated method itself is an Apply tree, we are
2777             // seeing an access method invocation. In this case, append
2778             // the method arguments to the arguments of the access method.
2779             if (tree.meth.getTag() == JCTree.APPLY) {
2780                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
2781                 app.args = tree.args.prependList(app.args);
2782                 result = app;
2783                 return;
2784             }
2785         }
2786         result = tree;
2787     }
2788 
2789     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
2790         List<JCExpression> args = _args;
2791         if (parameters.isEmpty()) return args;
2792         boolean anyChanges = false;
2793         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
2794         while (parameters.tail.nonEmpty()) {
2795             JCExpression arg = translate(args.head, parameters.head);
2796             anyChanges |= (arg != args.head);
2797             result.append(arg);
2798             args = args.tail;
2799             parameters = parameters.tail;
2800         }
2801         Type parameter = parameters.head;
2802         if (varargsElement != null) {
2803             anyChanges = true;
2804             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
2805             while (args.nonEmpty()) {
2806                 JCExpression arg = translate(args.head, varargsElement);
2807                 elems.append(arg);
2808                 args = args.tail;
2809             }
2810             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
2811                                                List.<JCExpression>nil(),
2812                                                elems.toList());
2813             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
2814             result.append(boxedArgs);
2815         } else {
2816             if (args.length() != 1) throw new AssertionError(args);
2817             JCExpression arg = translate(args.head, parameter);
2818             anyChanges |= (arg != args.head);
2819             result.append(arg);
2820             if (!anyChanges) return _args;
2821         }
2822         return result.toList();
2823     }
2824 
2825     /** Expand a boxing or unboxing conversion if needed. */
2826     @SuppressWarnings("unchecked") // XXX unchecked
2827     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
2828         boolean havePrimitive = tree.type.isPrimitive();
2829         if (havePrimitive == type.isPrimitive())
2830             return tree;
2831         if (havePrimitive) {
2832             Type unboxedTarget = types.unboxedType(type);
2833             if (unboxedTarget.tag != NONE) {
2834                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
2835                     tree.type = unboxedTarget.constType(tree.type.constValue());
2836                 return (T)boxPrimitive((JCExpression)tree, type);
2837             } else {
2838                 tree = (T)boxPrimitive((JCExpression)tree);
2839             }
2840         } else {
2841             tree = (T)unbox((JCExpression)tree, type);
2842         }
2843         return tree;
2844     }
2845 
2846     /** Box up a single primitive expression. */
2847     JCExpression boxPrimitive(JCExpression tree) {
2848         return boxPrimitive(tree, types.boxedClass(tree.type).type);
2849     }
2850 
2851     /** Box up a single primitive expression. */
2852     JCExpression boxPrimitive(JCExpression tree, Type box) {
2853         make_at(tree.pos());
2854         if (target.boxWithConstructors()) {
2855             Symbol ctor = lookupConstructor(tree.pos(),
2856                                             box,
2857                                             List.<Type>nil()
2858                                             .prepend(tree.type));
2859             return make.Create(ctor, List.of(tree));
2860         } else {
2861             Symbol valueOfSym = lookupMethod(tree.pos(),
2862                                              names.valueOf,
2863                                              box,
2864                                              List.<Type>nil()
2865                                              .prepend(tree.type));
2866             return make.App(make.QualIdent(valueOfSym), List.of(tree));
2867         }
2868     }
2869 
2870     /** Unbox an object to a primitive value. */
2871     JCExpression unbox(JCExpression tree, Type primitive) {
2872         Type unboxedType = types.unboxedType(tree.type);
2873         // note: the "primitive" parameter is not used.  There muse be
2874         // a conversion from unboxedType to primitive.
2875         make_at(tree.pos());
2876         Symbol valueSym = lookupMethod(tree.pos(),
2877                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
2878                                        tree.type,
2879                                        List.<Type>nil());
2880         return make.App(make.Select(tree, valueSym));
2881     }
2882 
2883     /** Visitor method for parenthesized expressions.
2884      *  If the subexpression has changed, omit the parens.
2885      */
2886     public void visitParens(JCParens tree) {
2887         JCTree expr = translate(tree.expr);
2888         result = ((expr == tree.expr) ? tree : expr);
2889     }
2890 
2891     public void visitIndexed(JCArrayAccess tree) {
2892         tree.indexed = translate(tree.indexed);
2893         tree.index = translate(tree.index, syms.intType);
2894         result = tree;
2895     }
2896 
2897     public void visitAssign(JCAssign tree) {
2898         tree.lhs = translate(tree.lhs, tree);
2899         tree.rhs = translate(tree.rhs, tree.lhs.type);
2900 
2901         // If translated left hand side is an Apply, we are
2902         // seeing an access method invocation. In this case, append
2903         // right hand side as last argument of the access method.
2904         if (tree.lhs.getTag() == JCTree.APPLY) {
2905             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2906             app.args = List.of(tree.rhs).prependList(app.args);
2907             result = app;
2908         } else {
2909             result = tree;
2910         }
2911     }
2912 
2913     public void visitAssignop(final JCAssignOp tree) {
2914         if (!tree.lhs.type.isPrimitive() &&
2915             tree.operator.type.getReturnType().isPrimitive()) {
2916             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
2917             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
2918             // (but without recomputing x)
2919             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
2920                     public JCTree build(final JCTree lhs) {
2921                         int newTag = tree.getTag() - JCTree.ASGOffset;
2922                         // Erasure (TransTypes) can change the type of
2923                         // tree.lhs.  However, we can still get the
2924                         // unerased type of tree.lhs as it is stored
2925                         // in tree.type in Attr.
2926                         Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
2927                                                                       newTag,
2928                                                                       attrEnv,
2929                                                                       tree.type,
2930                                                                       tree.rhs.type);
2931                         JCExpression expr = (JCExpression)lhs;
2932                         if (expr.type != tree.type)
2933                             expr = make.TypeCast(tree.type, expr);
2934                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
2935                         opResult.operator = newOperator;
2936                         opResult.type = newOperator.type.getReturnType();
2937                         JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
2938                                                           opResult);
2939                         return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
2940                     }
2941                 });
2942             result = translate(newTree);
2943             return;
2944         }
2945         tree.lhs = translate(tree.lhs, tree);
2946         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
2947 
2948         // If translated left hand side is an Apply, we are
2949         // seeing an access method invocation. In this case, append
2950         // right hand side as last argument of the access method.
2951         if (tree.lhs.getTag() == JCTree.APPLY) {
2952             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2953             // if operation is a += on strings,
2954             // make sure to convert argument to string
2955             JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
2956               ? makeString(tree.rhs)
2957               : tree.rhs;
2958             app.args = List.of(rhs).prependList(app.args);
2959             result = app;
2960         } else {
2961             result = tree;
2962         }
2963     }
2964 
2965     /** Lower a tree of the form e++ or e-- where e is an object type */
2966     JCTree lowerBoxedPostop(final JCUnary tree) {
2967         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
2968         // or
2969         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
2970         // where OP is += or -=
2971         final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
2972         return abstractLval(tree.arg, new TreeBuilder() {
2973                 public JCTree build(final JCTree tmp1) {
2974                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
2975                             public JCTree build(final JCTree tmp2) {
2976                                 int opcode = (tree.getTag() == JCTree.POSTINC)
2977                                     ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
2978                                 JCTree lhs = cast
2979                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
2980                                     : tmp1;
2981                                 JCTree update = makeAssignop(opcode,
2982                                                              lhs,
2983                                                              make.Literal(1));
2984                                 return makeComma(update, tmp2);
2985                             }
2986                         });
2987                 }
2988             });
2989     }
2990 
2991     public void visitUnary(JCUnary tree) {
2992         boolean isUpdateOperator =
2993             JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
2994         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
2995             switch(tree.getTag()) {
2996             case JCTree.PREINC:            // ++ e
2997                     // translate to e += 1
2998             case JCTree.PREDEC:            // -- e
2999                     // translate to e -= 1
3000                 {
3001                     int opcode = (tree.getTag() == JCTree.PREINC)
3002                         ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
3003                     JCAssignOp newTree = makeAssignop(opcode,
3004                                                     tree.arg,
3005                                                     make.Literal(1));
3006                     result = translate(newTree, tree.type);
3007                     return;
3008                 }
3009             case JCTree.POSTINC:           // e ++
3010             case JCTree.POSTDEC:           // e --
3011                 {
3012                     result = translate(lowerBoxedPostop(tree), tree.type);
3013                     return;
3014                 }
3015             }
3016             throw new AssertionError(tree);
3017         }
3018 
3019         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
3020 
3021         if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
3022             tree.type = cfolder.fold1(bool_not, tree.arg.type);
3023         }
3024 
3025         // If translated left hand side is an Apply, we are
3026         // seeing an access method invocation. In this case, return
3027         // that access method invocation as result.
3028         if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
3029             result = tree.arg;
3030         } else {
3031             result = tree;
3032         }
3033     }
3034 
3035     public void visitBinary(JCBinary tree) {
3036         List<Type> formals = tree.operator.type.getParameterTypes();
3037         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
3038         switch (tree.getTag()) {
3039         case JCTree.OR:
3040             if (lhs.type.isTrue()) {
3041                 result = lhs;
3042                 return;
3043             }
3044             if (lhs.type.isFalse()) {
3045                 result = translate(tree.rhs, formals.tail.head);
3046                 return;
3047             }
3048             break;
3049         case JCTree.AND:
3050             if (lhs.type.isFalse()) {
3051                 result = lhs;
3052                 return;
3053             }
3054             if (lhs.type.isTrue()) {
3055                 result = translate(tree.rhs, formals.tail.head);
3056                 return;
3057             }
3058             break;
3059         }
3060         tree.rhs = translate(tree.rhs, formals.tail.head);
3061         result = tree;
3062     }
3063 
3064     public void visitIdent(JCIdent tree) {
3065         result = access(tree.sym, tree, enclOp, false);
3066     }
3067 
3068     /** Translate away the foreach loop.  */
3069     public void visitForeachLoop(JCEnhancedForLoop tree) {
3070         if (types.elemtype(tree.expr.type) == null)
3071             visitIterableForeachLoop(tree);
3072         else
3073             visitArrayForeachLoop(tree);
3074     }
3075         // where
3076         /**
3077          * A statement of the form
3078          *
3079          * <pre>
3080          *     for ( T v : arrayexpr ) stmt;
3081          * </pre>
3082          *
3083          * (where arrayexpr is of an array type) gets translated to
3084          *
3085          * <pre>
3086          *     for ( { arraytype #arr = arrayexpr;
3087          *             int #len = array.length;
3088          *             int #i = 0; };
3089          *           #i < #len; i$++ ) {
3090          *         T v = arr$[#i];
3091          *         stmt;
3092          *     }
3093          * </pre>
3094          *
3095          * where #arr, #len, and #i are freshly named synthetic local variables.
3096          */
3097         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
3098             make_at(tree.expr.pos());
3099             VarSymbol arraycache = new VarSymbol(0,
3100                                                  names.fromString("arr" + target.syntheticNameChar()),
3101                                                  tree.expr.type,
3102                                                  currentMethodSym);
3103             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
3104             VarSymbol lencache = new VarSymbol(0,
3105                                                names.fromString("len" + target.syntheticNameChar()),
3106                                                syms.intType,
3107                                                currentMethodSym);
3108             JCStatement lencachedef = make.
3109                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
3110             VarSymbol index = new VarSymbol(0,
3111                                             names.fromString("i" + target.syntheticNameChar()),
3112                                             syms.intType,
3113                                             currentMethodSym);
3114 
3115             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
3116             indexdef.init.type = indexdef.type = syms.intType.constType(0);
3117 
3118             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
3119             JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
3120 
3121             JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
3122 
3123             Type elemtype = types.elemtype(tree.expr.type);
3124             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
3125                                                     make.Ident(index)).setType(elemtype);
3126             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
3127                                                   tree.var.name,
3128                                                   tree.var.vartype,
3129                                                   loopvarinit).setType(tree.var.type);
3130             loopvardef.sym = tree.var.sym;
3131             JCBlock body = make.
3132                 Block(0, List.of(loopvardef, tree.body));
3133 
3134             result = translate(make.
3135                                ForLoop(loopinit,
3136                                        cond,
3137                                        List.of(step),
3138                                        body));
3139             patchTargets(body, tree, result);
3140         }
3141         /** Patch up break and continue targets. */
3142         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
3143             class Patcher extends TreeScanner {
3144                 public void visitBreak(JCBreak tree) {
3145                     if (tree.target == src)
3146                         tree.target = dest;
3147                 }
3148                 public void visitContinue(JCContinue tree) {
3149                     if (tree.target == src)
3150                         tree.target = dest;
3151                 }
3152                 public void visitClassDef(JCClassDecl tree) {}
3153             }
3154             new Patcher().scan(body);
3155         }
3156         /**
3157          * A statement of the form
3158          *
3159          * <pre>
3160          *     for ( T v : coll ) stmt ;
3161          * </pre>
3162          *
3163          * (where coll implements Iterable<? extends T>) gets translated to
3164          *
3165          * <pre>
3166          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
3167          *         T v = (T) #i.next();
3168          *         stmt;
3169          *     }
3170          * </pre>
3171          *
3172          * where #i is a freshly named synthetic local variable.
3173          */
3174         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3175             make_at(tree.expr.pos());
3176             Type iteratorTarget = syms.objectType;
3177             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
3178                                               syms.iterableType.tsym);
3179             if (iterableType.getTypeArguments().nonEmpty())
3180                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3181             Type eType = tree.expr.type;
3182             tree.expr.type = types.erasure(eType);
3183             if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
3184                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
3185             Symbol iterator = lookupMethod(tree.expr.pos(),
3186                                            names.iterator,
3187                                            types.erasure(syms.iterableType),
3188                                            List.<Type>nil());
3189             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
3190                                             types.erasure(iterator.type.getReturnType()),
3191                                             currentMethodSym);
3192             JCStatement init = make.
3193                 VarDef(itvar,
3194                        make.App(make.Select(tree.expr, iterator)));
3195             Symbol hasNext = lookupMethod(tree.expr.pos(),
3196                                           names.hasNext,
3197                                           itvar.type,
3198                                           List.<Type>nil());
3199             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3200             Symbol next = lookupMethod(tree.expr.pos(),
3201                                        names.next,
3202                                        itvar.type,
3203                                        List.<Type>nil());
3204             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3205             if (tree.var.type.isPrimitive())
3206                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
3207             else
3208                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3209             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3210                                                   tree.var.name,
3211                                                   tree.var.vartype,
3212                                                   vardefinit).setType(tree.var.type);
3213             indexDef.sym = tree.var.sym;
3214             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3215             body.endpos = TreeInfo.endPos(tree.body);
3216             result = translate(make.
3217                 ForLoop(List.of(init),
3218                         cond,
3219                         List.<JCExpressionStatement>nil(),
3220                         body));
3221             patchTargets(body, tree, result);
3222         }
3223 
3224     public void visitVarDef(JCVariableDecl tree) {
3225         MethodSymbol oldMethodSym = currentMethodSym;
3226         tree.mods = translate(tree.mods);
3227         tree.vartype = translate(tree.vartype);
3228         if (currentMethodSym == null) {
3229             // A class or instance field initializer.
3230             currentMethodSym =
3231                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3232                                  names.empty, null,
3233                                  currentClass);
3234         }
3235         if (tree.init != null) tree.init = translate(tree.init, tree.type);
3236         result = tree;
3237         currentMethodSym = oldMethodSym;
3238     }
3239 
3240     public void visitBlock(JCBlock tree) {
3241         MethodSymbol oldMethodSym = currentMethodSym;
3242         if (currentMethodSym == null) {
3243             // Block is a static or instance initializer.
3244             currentMethodSym =
3245                 new MethodSymbol(tree.flags | BLOCK,
3246                                  names.empty, null,
3247                                  currentClass);
3248         }
3249         super.visitBlock(tree);
3250         currentMethodSym = oldMethodSym;
3251     }
3252 
3253     public void visitDoLoop(JCDoWhileLoop tree) {
3254         tree.body = translate(tree.body);
3255         tree.cond = translate(tree.cond, syms.booleanType);
3256         result = tree;
3257     }
3258 
3259     public void visitWhileLoop(JCWhileLoop tree) {
3260         tree.cond = translate(tree.cond, syms.booleanType);
3261         tree.body = translate(tree.body);
3262         result = tree;
3263     }
3264 
3265     public void visitForLoop(JCForLoop tree) {
3266         tree.init = translate(tree.init);
3267         if (tree.cond != null)
3268             tree.cond = translate(tree.cond, syms.booleanType);
3269         tree.step = translate(tree.step);
3270         tree.body = translate(tree.body);
3271         result = tree;
3272     }
3273 
3274     public void visitReturn(JCReturn tree) {
3275         if (tree.expr != null)
3276             tree.expr = translate(tree.expr,
3277                                   types.erasure(currentMethodDef
3278                                                 .restype.type));
3279         result = tree;
3280     }
3281 
3282     public void visitSwitch(JCSwitch tree) {
3283         Type selsuper = types.supertype(tree.selector.type);
3284         boolean enumSwitch = selsuper != null &&
3285             (tree.selector.type.tsym.flags() & ENUM) != 0;
3286         boolean stringSwitch = selsuper != null &&
3287             types.isSameType(tree.selector.type, syms.stringType);
3288         Type target = enumSwitch ? tree.selector.type :
3289             (stringSwitch? syms.stringType : syms.intType);
3290         tree.selector = translate(tree.selector, target);
3291         tree.cases = translateCases(tree.cases);
3292         if (enumSwitch) {
3293             result = visitEnumSwitch(tree);
3294         } else if (stringSwitch) {
3295             result = visitStringSwitch(tree);
3296         } else {
3297             result = tree;
3298         }
3299     }
3300 
3301     public JCTree visitEnumSwitch(JCSwitch tree) {
3302         TypeSymbol enumSym = tree.selector.type.tsym;
3303         EnumMapping map = mapForEnum(tree.pos(), enumSym);
3304         make_at(tree.pos());
3305         Symbol ordinalMethod = lookupMethod(tree.pos(),
3306                                             names.ordinal,
3307                                             tree.selector.type,
3308                                             List.<Type>nil());
3309         JCArrayAccess selector = make.Indexed(map.mapVar,
3310                                         make.App(make.Select(tree.selector,
3311                                                              ordinalMethod)));
3312         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
3313         for (JCCase c : tree.cases) {
3314             if (c.pat != null) {
3315                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
3316                 JCLiteral pat = map.forConstant(label);
3317                 cases.append(make.Case(pat, c.stats));
3318             } else {
3319                 cases.append(c);
3320             }
3321         }
3322         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
3323         patchTargets(enumSwitch, tree, enumSwitch);
3324         return enumSwitch;
3325     }
3326 
3327     public JCTree visitStringSwitch(JCSwitch tree) {
3328         List<JCCase> caseList = tree.getCases();
3329         int alternatives = caseList.size();
3330 
3331         if (alternatives == 0) { // Strange but legal possibility
3332             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
3333         } else {
3334             /*
3335              * The general approach used is to translate a single
3336              * string switch statement into a series of two chained
3337              * switch statements: the first a synthesized statement
3338              * switching on the argument string's hash value and
3339              * computing a string's position in the list of original
3340              * case labels, if any, followed by a second switch on the
3341              * computed integer value.  The second switch has the same
3342              * code structure as the original string switch statement
3343              * except that the string case labels are replaced with
3344              * positional integer constants starting at 0.
3345              *
3346              * The first switch statement can be thought of as an
3347              * inlined map from strings to their position in the case
3348              * label list.  An alternate implementation would use an
3349              * actual Map for this purpose, as done for enum switches.
3350              *
3351              * With some additional effort, it would be possible to
3352              * use a single switch statement on the hash code of the
3353              * argument, but care would need to be taken to preserve
3354              * the proper control flow in the presence of hash
3355              * collisions and other complications, such as
3356              * fallthroughs.  Switch statements with one or two
3357              * alternatives could also be specially translated into
3358              * if-then statements to omit the computation of the hash
3359              * code.
3360              *
3361              * The generated code assumes that the hashing algorithm
3362              * of String is the same in the compilation environment as
3363              * in the environment the code will run in.  The string
3364              * hashing algorithm in the SE JDK has been unchanged
3365              * since at least JDK 1.2.  Since the algorithm has been
3366              * specified since that release as well, it is very
3367              * unlikely to be changed in the future.
3368              *
3369              * Different hashing algorithms, such as the length of the
3370              * strings or a perfect hashing algorithm over the
3371              * particular set of case labels, could potentially be
3372              * used instead of String.hashCode.
3373              */
3374 
3375             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
3376 
3377             // Map from String case labels to their original position in
3378             // the list of case labels.
3379             Map<String, Integer> caseLabelToPosition =
3380                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
3381 
3382             // Map of hash codes to the string case labels having that hashCode.
3383             Map<Integer, Set<String>> hashToString =
3384                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
3385 
3386             int casePosition = 0;
3387             for(JCCase oneCase : caseList) {
3388                 JCExpression expression = oneCase.getExpression();
3389 
3390                 if (expression != null) { // expression for a "default" case is null
3391                     String labelExpr = (String) expression.type.constValue();
3392                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
3393                     assert mapping == null;
3394                     int hashCode = labelExpr.hashCode();
3395 
3396                     Set<String> stringSet = hashToString.get(hashCode);
3397                     if (stringSet == null) {
3398                         stringSet = new LinkedHashSet<String>(1, 1.0f);
3399                         stringSet.add(labelExpr);
3400                         hashToString.put(hashCode, stringSet);
3401                     } else {
3402                         boolean added = stringSet.add(labelExpr);
3403                         assert added;
3404                     }
3405                 }
3406                 casePosition++;
3407             }
3408 
3409             // Synthesize a switch statement that has the effect of
3410             // mapping from a string to the integer position of that
3411             // string in the list of case labels.  This is done by
3412             // switching on the hashCode of the string followed by an
3413             // if-then-else chain comparing the input for equality
3414             // with all the case labels having that hash value.
3415 
3416             /*
3417              * s$ = top of stack;
3418              * tmp$ = -1;
3419              * switch($s.hashCode()) {
3420              *     case caseLabel.hashCode:
3421              *         if (s$.equals("caseLabel_1")
3422              *           tmp$ = caseLabelToPosition("caseLabel_1");
3423              *         else if (s$.equals("caseLabel_2"))
3424              *           tmp$ = caseLabelToPosition("caseLabel_2");
3425              *         ...
3426              *         break;
3427              * ...
3428              * }
3429              */
3430 
3431             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
3432                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
3433                                                syms.stringType,
3434                                                currentMethodSym);
3435             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
3436 
3437             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
3438                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
3439                                                  syms.intType,
3440                                                  currentMethodSym);
3441             JCVariableDecl dollar_tmp_def =
3442                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
3443             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
3444             stmtList.append(dollar_tmp_def);
3445             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
3446             // hashCode will trigger nullcheck on original switch expression
3447             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
3448                                                        names.hashCode,
3449                                                        List.<JCExpression>nil()).setType(syms.intType);
3450             JCSwitch switch1 = make.Switch(hashCodeCall,
3451                                         caseBuffer.toList());
3452             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
3453                 int hashCode = entry.getKey();
3454                 Set<String> stringsWithHashCode = entry.getValue();
3455                 assert stringsWithHashCode.size() >= 1;
3456 
3457                 JCStatement elsepart = null;
3458                 for(String caseLabel : stringsWithHashCode ) {
3459                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
3460                                                                    names.equals,
3461                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
3462                     elsepart = make.If(stringEqualsCall,
3463                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
3464                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
3465                                                  setType(dollar_tmp.type)),
3466                                        elsepart);
3467                 }
3468 
3469                 ListBuffer<JCStatement> lb = ListBuffer.lb();
3470                 JCBreak breakStmt = make.Break(null);
3471                 breakStmt.target = switch1;
3472                 lb.append(elsepart).append(breakStmt);
3473 
3474                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
3475             }
3476 
3477             switch1.cases = caseBuffer.toList();
3478             stmtList.append(switch1);
3479 
3480             // Make isomorphic switch tree replacing string labels
3481             // with corresponding integer ones from the label to
3482             // position map.
3483 
3484             ListBuffer<JCCase> lb = ListBuffer.lb();
3485             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
3486             for(JCCase oneCase : caseList ) {
3487                 // Rewire up old unlabeled break statements to the
3488                 // replacement switch being created.
3489                 patchTargets(oneCase, tree, switch2);
3490 
3491                 boolean isDefault = (oneCase.getExpression() == null);
3492                 JCExpression caseExpr;
3493                 if (isDefault)
3494                     caseExpr = null;
3495                 else {
3496                     caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
3497                                                                     getExpression().
3498                                                                     type.constValue()));
3499                 }
3500 
3501                 lb.append(make.Case(caseExpr,
3502                                     oneCase.getStatements()));
3503             }
3504 
3505             switch2.cases = lb.toList();
3506             stmtList.append(switch2);
3507 
3508             return make.Block(0L, stmtList.toList());
3509         }
3510     }
3511 
3512     public void visitNewArray(JCNewArray tree) {
3513         tree.elemtype = translate(tree.elemtype);
3514         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
3515             if (t.head != null) t.head = translate(t.head, syms.intType);
3516         tree.elems = translate(tree.elems, types.elemtype(tree.type));
3517         result = tree;
3518     }
3519 
3520     public void visitSelect(JCFieldAccess tree) {
3521         // need to special case-access of the form C.super.x
3522         // these will always need an access method.
3523         boolean qualifiedSuperAccess =
3524             tree.selected.getTag() == JCTree.SELECT &&
3525             TreeInfo.name(tree.selected) == names._super;
3526         tree.selected = translate(tree.selected);
3527         if (tree.name == names._class)
3528             result = classOf(tree.selected);
3529         else if (tree.name == names._this || tree.name == names._super)
3530             result = makeThis(tree.pos(), tree.selected.type.tsym);
3531         else
3532             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
3533     }
3534 
3535     public void visitLetExpr(LetExpr tree) {
3536         tree.defs = translateVarDefs(tree.defs);
3537         tree.expr = translate(tree.expr, tree.type);
3538         result = tree;
3539     }
3540 
3541     // There ought to be nothing to rewrite here;
3542     // we don't generate code.
3543     public void visitAnnotation(JCAnnotation tree) {
3544         result = tree;
3545     }
3546 
3547     @Override
3548     public void visitTry(JCTry tree) {
3549         if (tree.resources.isEmpty()) {
3550             super.visitTry(tree);
3551         } else {
3552             result = makeArmTry(tree);
3553         }
3554     }
3555 
3556 /**************************************************************************
3557  * main method
3558  *************************************************************************/
3559 
3560     /** Translate a toplevel class and return a list consisting of
3561      *  the translated class and translated versions of all inner classes.
3562      *  @param env   The attribution environment current at the class definition.
3563      *               We need this for resolving some additional symbols.
3564      *  @param cdef  The tree representing the class definition.
3565      */
3566     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
3567         ListBuffer<JCTree> translated = null;
3568         try {
3569             attrEnv = env;
3570             this.make = make;
3571             endPositions = env.toplevel.endPositions;
3572             currentClass = null;
3573             currentMethodDef = null;
3574             outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
3575             outermostMemberDef = null;
3576             this.translated = new ListBuffer<JCTree>();
3577             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
3578             actualSymbols = new HashMap<Symbol,Symbol>();
3579             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
3580             proxies = new Scope(syms.noSymbol);
3581             armVars = new Scope(syms.noSymbol);
3582             outerThisStack = List.nil();
3583             accessNums = new HashMap<Symbol,Integer>();
3584             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
3585             accessConstrs = new HashMap<Symbol,MethodSymbol>();
3586             accessConstrTags = List.nil();
3587             accessed = new ListBuffer<Symbol>();
3588             translate(cdef, (JCExpression)null);
3589             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
3590                 makeAccessible(l.head);
3591             for (EnumMapping map : enumSwitchMap.values())
3592                 map.translate();
3593             checkConflicts(this.translated.toList());
3594             checkAccessConstructorTags();
3595             translated = this.translated;
3596         } finally {
3597             // note that recursive invocations of this method fail hard
3598             attrEnv = null;
3599             this.make = null;
3600             endPositions = null;
3601             currentClass = null;
3602             currentMethodDef = null;
3603             outermostClassDef = null;
3604             outermostMemberDef = null;
3605             this.translated = null;
3606             classdefs = null;
3607             actualSymbols = null;
3608             freevarCache = null;
3609             proxies = null;
3610             outerThisStack = null;
3611             accessNums = null;
3612             accessSyms = null;
3613             accessConstrs = null;
3614             accessConstrTags = null;
3615             accessed = null;
3616             enumSwitchMap.clear();
3617         }
3618         return translated.toList();
3619     }
3620 
3621     //////////////////////////////////////////////////////////////
3622     // The following contributed by Borland for bootstrapping purposes
3623     //////////////////////////////////////////////////////////////
3624     private void addEnumCompatibleMembers(JCClassDecl cdef) {
3625         make_at(null);
3626 
3627         // Add the special enum fields
3628         VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
3629         VarSymbol nameFieldSym = addEnumNameField(cdef);
3630 
3631         // Add the accessor methods for name and ordinal
3632         MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
3633         MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
3634 
3635         // Add the toString method
3636         addEnumToString(cdef, nameFieldSym);
3637 
3638         // Add the compareTo method
3639         addEnumCompareTo(cdef, ordinalFieldSym);
3640     }
3641 
3642     private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
3643         VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3644                                           names.fromString("$ordinal"),
3645                                           syms.intType,
3646                                           cdef.sym);
3647         cdef.sym.members().enter(ordinal);
3648         cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
3649         return ordinal;
3650     }
3651 
3652     private VarSymbol addEnumNameField(JCClassDecl cdef) {
3653         VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3654                                           names.fromString("$name"),
3655                                           syms.stringType,
3656                                           cdef.sym);
3657         cdef.sym.members().enter(name);
3658         cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
3659         return name;
3660     }
3661 
3662     private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3663         // Add the accessor methods for ordinal
3664         Symbol ordinalSym = lookupMethod(cdef.pos(),
3665                                          names.ordinal,
3666                                          cdef.type,
3667                                          List.<Type>nil());
3668 
3669         assert(ordinalSym != null);
3670         assert(ordinalSym instanceof MethodSymbol);
3671 
3672         JCStatement ret = make.Return(make.Ident(ordinalSymbol));
3673         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
3674                                                     make.Block(0L, List.of(ret))));
3675 
3676         return (MethodSymbol)ordinalSym;
3677     }
3678 
3679     private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
3680         // Add the accessor methods for name
3681         Symbol nameSym = lookupMethod(cdef.pos(),
3682                                    names._name,
3683                                    cdef.type,
3684                                    List.<Type>nil());
3685 
3686         assert(nameSym != null);
3687         assert(nameSym instanceof MethodSymbol);
3688 
3689         JCStatement ret = make.Return(make.Ident(nameSymbol));
3690 
3691         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
3692                                                     make.Block(0L, List.of(ret))));
3693 
3694         return (MethodSymbol)nameSym;
3695     }
3696 
3697     private MethodSymbol addEnumToString(JCClassDecl cdef,
3698                                          VarSymbol nameSymbol) {
3699         Symbol toStringSym = lookupMethod(cdef.pos(),
3700                                           names.toString,
3701                                           cdef.type,
3702                                           List.<Type>nil());
3703 
3704         JCTree toStringDecl = null;
3705         if (toStringSym != null)
3706             toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
3707 
3708         if (toStringDecl != null)
3709             return (MethodSymbol)toStringSym;
3710 
3711         JCStatement ret = make.Return(make.Ident(nameSymbol));
3712 
3713         JCTree resTypeTree = make.Type(syms.stringType);
3714 
3715         MethodType toStringType = new MethodType(List.<Type>nil(),
3716                                                  syms.stringType,
3717                                                  List.<Type>nil(),
3718                                                  cdef.sym);
3719         toStringSym = new MethodSymbol(PUBLIC,
3720                                        names.toString,
3721                                        toStringType,
3722                                        cdef.type.tsym);
3723         toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
3724                                       make.Block(0L, List.of(ret)));
3725 
3726         cdef.defs = cdef.defs.prepend(toStringDecl);
3727         cdef.sym.members().enter(toStringSym);
3728 
3729         return (MethodSymbol)toStringSym;
3730     }
3731 
3732     private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3733         Symbol compareToSym = lookupMethod(cdef.pos(),
3734                                    names.compareTo,
3735                                    cdef.type,
3736                                    List.of(cdef.sym.type));
3737 
3738         assert(compareToSym != null);
3739         assert(compareToSym instanceof MethodSymbol);
3740 
3741         JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
3742 
3743         ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
3744 
3745         JCModifiers mod1 = make.Modifiers(0L);
3746         Name oName = names.fromString("o");
3747         JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
3748 
3749         JCIdent paramId1 = make.Ident(names.java_lang_Object);
3750         paramId1.type = cdef.type;
3751         paramId1.sym = par1.sym;
3752 
3753         ((MethodSymbol)compareToSym).params = List.of(par1.sym);
3754 
3755         JCIdent par1UsageId = make.Ident(par1.sym);
3756         JCIdent castTargetIdent = make.Ident(cdef.sym);
3757         JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
3758         cast.setType(castTargetIdent.type);
3759 
3760         Name otherName = names.fromString("other");
3761 
3762         VarSymbol otherVarSym = new VarSymbol(mod1.flags,
3763                                               otherName,
3764                                               cdef.type,
3765                                               compareToSym);
3766         JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
3767         blockStatements.append(otherVar);
3768 
3769         JCIdent id1 = make.Ident(ordinalSymbol);
3770 
3771         JCIdent fLocUsageId = make.Ident(otherVarSym);
3772         JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
3773         JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
3774         JCReturn ret = make.Return(bin);
3775         blockStatements.append(ret);
3776         JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
3777                                                    make.Block(0L,
3778                                                               blockStatements.toList()));
3779         compareToMethod.params = List.of(par1);
3780         cdef.defs = cdef.defs.append(compareToMethod);
3781 
3782         return (MethodSymbol)compareToSym;
3783     }
3784     //////////////////////////////////////////////////////////////
3785     // The above contributed by Borland for bootstrapping purposes
3786     //////////////////////////////////////////////////////////////
3787 }