1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.Set;
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.tools.javac.code.*;
  34 import com.sun.tools.javac.jvm.*;
  35 import com.sun.tools.javac.tree.*;
  36 import com.sun.tools.javac.util.*;
  37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  38 import com.sun.tools.javac.util.List;
  39 
  40 import com.sun.tools.javac.jvm.Target;
  41 import com.sun.tools.javac.code.Symbol.*;
  42 import com.sun.tools.javac.tree.JCTree.*;
  43 import com.sun.tools.javac.code.Type.*;
  44 
  45 import com.sun.source.tree.IdentifierTree;
  46 import com.sun.source.tree.MemberSelectTree;
  47 import com.sun.source.tree.TreeVisitor;
  48 import com.sun.source.util.SimpleTreeVisitor;
  49 
  50 import static com.sun.tools.javac.code.Flags.*;
  51 import static com.sun.tools.javac.code.Kinds.*;
  52 import static com.sun.tools.javac.code.TypeTags.*;
  53 
  54 /** This is the main context-dependent analysis phase in GJC. It
  55  *  encompasses name resolution, type checking and constant folding as
  56  *  subtasks. Some subtasks involve auxiliary classes.
  57  *  @see Check
  58  *  @see Resolve
  59  *  @see ConstFold
  60  *  @see Infer
  61  *
  62  *  <p><b>This is NOT part of any supported API.
  63  *  If you write code that depends on this, you do so at your own risk.
  64  *  This code and its internal interfaces are subject to change or
  65  *  deletion without notice.</b>
  66  */
  67 public class Attr extends JCTree.Visitor {
  68     protected static final Context.Key<Attr> attrKey =
  69         new Context.Key<Attr>();
  70 
  71     final Names names;
  72     final Log log;
  73     final Symtab syms;
  74     final Resolve rs;
  75     final Infer infer;
  76     final Check chk;
  77     final MemberEnter memberEnter;
  78     final TreeMaker make;
  79     final ConstFold cfolder;
  80     final Enter enter;
  81     final Target target;
  82     final Types types;
  83     final JCDiagnostic.Factory diags;
  84     final Annotate annotate;
  85 
  86     public static Attr instance(Context context) {
  87         Attr instance = context.get(attrKey);
  88         if (instance == null)
  89             instance = new Attr(context);
  90         return instance;
  91     }
  92 
  93     protected Attr(Context context) {
  94         context.put(attrKey, this);
  95 
  96         names = Names.instance(context);
  97         log = Log.instance(context);
  98         syms = Symtab.instance(context);
  99         rs = Resolve.instance(context);
 100         chk = Check.instance(context);
 101         memberEnter = MemberEnter.instance(context);
 102         make = TreeMaker.instance(context);
 103         enter = Enter.instance(context);
 104         infer = Infer.instance(context);
 105         cfolder = ConstFold.instance(context);
 106         target = Target.instance(context);
 107         types = Types.instance(context);
 108         diags = JCDiagnostic.Factory.instance(context);
 109         annotate = Annotate.instance(context);
 110 
 111         Options options = Options.instance(context);
 112 
 113         Source source = Source.instance(context);
 114         allowGenerics = source.allowGenerics();
 115         allowVarargs = source.allowVarargs();
 116         allowEnums = source.allowEnums();
 117         allowBoxing = source.allowBoxing();
 118         allowCovariantReturns = source.allowCovariantReturns();
 119         allowAnonOuterThis = source.allowAnonOuterThis();
 120         allowStringsInSwitch = source.allowStringsInSwitch();
 121         sourceName = source.name;
 122         relax = (options.get("-retrofit") != null ||
 123                  options.get("-relax") != null);
 124         useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
 125         enableSunApiLintControl = options.get("enableSunApiLintControl") != null;
 126     }
 127 
 128     /** Switch: relax some constraints for retrofit mode.
 129      */
 130     boolean relax;
 131 
 132     /** Switch: support generics?
 133      */
 134     boolean allowGenerics;
 135 
 136     /** Switch: allow variable-arity methods.
 137      */
 138     boolean allowVarargs;
 139 
 140     /** Switch: support enums?
 141      */
 142     boolean allowEnums;
 143 
 144     /** Switch: support boxing and unboxing?
 145      */
 146     boolean allowBoxing;
 147 
 148     /** Switch: support covariant result types?
 149      */
 150     boolean allowCovariantReturns;
 151 
 152     /** Switch: allow references to surrounding object from anonymous
 153      * objects during constructor call?
 154      */
 155     boolean allowAnonOuterThis;
 156 
 157     /**
 158      * Switch: warn about use of variable before declaration?
 159      * RFE: 6425594
 160      */
 161     boolean useBeforeDeclarationWarning;
 162 
 163     /**
 164      * Switch: allow lint infrastructure to control proprietary
 165      * API warnings.
 166      */
 167     boolean enableSunApiLintControl;
 168 
 169     /**
 170      * Switch: allow strings in switch?
 171      */
 172     boolean allowStringsInSwitch;
 173 
 174     /**
 175      * Switch: name of source level; used for error reporting.
 176      */
 177     String sourceName;
 178 
 179     /** Check kind and type of given tree against protokind and prototype.
 180      *  If check succeeds, store type in tree and return it.
 181      *  If check fails, store errType in tree and return it.
 182      *  No checks are performed if the prototype is a method type.
 183      *  It is not necessary in this case since we know that kind and type
 184      *  are correct.
 185      *
 186      *  @param tree     The tree whose kind and type is checked
 187      *  @param owntype  The computed type of the tree
 188      *  @param ownkind  The computed kind of the tree
 189      *  @param pkind    The expected kind (or: protokind) of the tree
 190      *  @param pt       The expected type (or: prototype) of the tree
 191      */
 192     Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
 193         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
 194             if ((ownkind & ~pkind) == 0) {
 195                 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
 196             } else {
 197                 log.error(tree.pos(), "unexpected.type",
 198                           kindNames(pkind),
 199                           kindName(ownkind));
 200                 owntype = types.createErrorType(owntype);
 201             }
 202         }
 203         tree.type = owntype;
 204         return owntype;
 205     }
 206 
 207     /** Is given blank final variable assignable, i.e. in a scope where it
 208      *  may be assigned to even though it is final?
 209      *  @param v      The blank final variable.
 210      *  @param env    The current environment.
 211      */
 212     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 213         Symbol owner = env.info.scope.owner;
 214            // owner refers to the innermost variable, method or
 215            // initializer block declaration at this point.
 216         return
 217             v.owner == owner
 218             ||
 219             ((owner.name == names.init ||    // i.e. we are in a constructor
 220               owner.kind == VAR ||           // i.e. we are in a variable initializer
 221               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 222              &&
 223              v.owner == owner.owner
 224              &&
 225              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 226     }
 227 
 228     /** Check that variable can be assigned to.
 229      *  @param pos    The current source code position.
 230      *  @param v      The assigned varaible
 231      *  @param base   If the variable is referred to in a Select, the part
 232      *                to the left of the `.', null otherwise.
 233      *  @param env    The current environment.
 234      */
 235     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 236         if ((v.flags() & FINAL) != 0 &&
 237             ((v.flags() & HASINIT) != 0
 238              ||
 239              !((base == null ||
 240                (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
 241                isAssignableAsBlankFinal(v, env)))) {
 242             if (v.isResourceVariable()) { //ARM resource
 243                 log.error(pos, "arm.resource.may.not.be.assigned", v);
 244             } else {
 245                 log.error(pos, "cant.assign.val.to.final.var", v);
 246             }
 247         }
 248     }
 249 
 250     /** Does tree represent a static reference to an identifier?
 251      *  It is assumed that tree is either a SELECT or an IDENT.
 252      *  We have to weed out selects from non-type names here.
 253      *  @param tree    The candidate tree.
 254      */
 255     boolean isStaticReference(JCTree tree) {
 256         if (tree.getTag() == JCTree.SELECT) {
 257             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 258             if (lsym == null || lsym.kind != TYP) {
 259                 return false;
 260             }
 261         }
 262         return true;
 263     }
 264 
 265     /** Is this symbol a type?
 266      */
 267     static boolean isType(Symbol sym) {
 268         return sym != null && sym.kind == TYP;
 269     }
 270 
 271     /** The current `this' symbol.
 272      *  @param env    The current environment.
 273      */
 274     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 275         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 276     }
 277 
 278     /** Attribute a parsed identifier.
 279      * @param tree Parsed identifier name
 280      * @param topLevel The toplevel to use
 281      */
 282     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 283         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 284         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 285                                            syms.errSymbol.name,
 286                                            null, null, null, null);
 287         localEnv.enclClass.sym = syms.errSymbol;
 288         return tree.accept(identAttributer, localEnv);
 289     }
 290     // where
 291         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 292         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 293             @Override
 294             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 295                 Symbol site = visit(node.getExpression(), env);
 296                 if (site.kind == ERR)
 297                     return site;
 298                 Name name = (Name)node.getIdentifier();
 299                 if (site.kind == PCK) {
 300                     env.toplevel.packge = (PackageSymbol)site;
 301                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
 302                 } else {
 303                     env.enclClass.sym = (ClassSymbol)site;
 304                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 305                 }
 306             }
 307 
 308             @Override
 309             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 310                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
 311             }
 312         }
 313 
 314     public Type coerce(Type etype, Type ttype) {
 315         return cfolder.coerce(etype, ttype);
 316     }
 317 
 318     public Type attribType(JCTree node, TypeSymbol sym) {
 319         Env<AttrContext> env = enter.typeEnvs.get(sym);
 320         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 321         return attribTree(node, localEnv, Kinds.TYP, Type.noType);
 322     }
 323 
 324     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 325         breakTree = tree;
 326         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 327         try {
 328             attribExpr(expr, env);
 329         } catch (BreakAttr b) {
 330             return b.env;
 331         } finally {
 332             breakTree = null;
 333             log.useSource(prev);
 334         }
 335         return env;
 336     }
 337 
 338     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 339         breakTree = tree;
 340         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 341         try {
 342             attribStat(stmt, env);
 343         } catch (BreakAttr b) {
 344             return b.env;
 345         } finally {
 346             breakTree = null;
 347             log.useSource(prev);
 348         }
 349         return env;
 350     }
 351 
 352     private JCTree breakTree = null;
 353 
 354     private static class BreakAttr extends RuntimeException {
 355         static final long serialVersionUID = -6924771130405446405L;
 356         private Env<AttrContext> env;
 357         private BreakAttr(Env<AttrContext> env) {
 358             this.env = env;
 359         }
 360     }
 361 
 362 
 363 /* ************************************************************************
 364  * Visitor methods
 365  *************************************************************************/
 366 
 367     /** Visitor argument: the current environment.
 368      */
 369     Env<AttrContext> env;
 370 
 371     /** Visitor argument: the currently expected proto-kind.
 372      */
 373     int pkind;
 374 
 375     /** Visitor argument: the currently expected proto-type.
 376      */
 377     Type pt;
 378 
 379     /** Visitor argument: the error key to be generated when a type error occurs
 380      */
 381     String errKey;
 382 
 383     /** Visitor result: the computed type.
 384      */
 385     Type result;
 386 
 387     /** Visitor method: attribute a tree, catching any completion failure
 388      *  exceptions. Return the tree's type.
 389      *
 390      *  @param tree    The tree to be visited.
 391      *  @param env     The environment visitor argument.
 392      *  @param pkind   The protokind visitor argument.
 393      *  @param pt      The prototype visitor argument.
 394      */
 395     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
 396         return attribTree(tree, env, pkind, pt, "incompatible.types");
 397     }
 398 
 399     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
 400         Env<AttrContext> prevEnv = this.env;
 401         int prevPkind = this.pkind;
 402         Type prevPt = this.pt;
 403         String prevErrKey = this.errKey;
 404         try {
 405             this.env = env;
 406             this.pkind = pkind;
 407             this.pt = pt;
 408             this.errKey = errKey;
 409             tree.accept(this);
 410             if (tree == breakTree)
 411                 throw new BreakAttr(env);
 412             return result;
 413         } catch (CompletionFailure ex) {
 414             tree.type = syms.errType;
 415             return chk.completionError(tree.pos(), ex);
 416         } finally {
 417             this.env = prevEnv;
 418             this.pkind = prevPkind;
 419             this.pt = prevPt;
 420             this.errKey = prevErrKey;
 421         }
 422     }
 423 
 424     /** Derived visitor method: attribute an expression tree.
 425      */
 426     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 427         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
 428     }
 429 
 430     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
 431         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
 432     }
 433 
 434     /** Derived visitor method: attribute an expression tree with
 435      *  no constraints on the computed type.
 436      */
 437     Type attribExpr(JCTree tree, Env<AttrContext> env) {
 438         return attribTree(tree, env, VAL, Type.noType);
 439     }
 440 
 441     /** Derived visitor method: attribute a type tree.
 442      */
 443     Type attribType(JCTree tree, Env<AttrContext> env) {
 444         Type result = attribType(tree, env, Type.noType);
 445         return result;
 446     }
 447 
 448     /** Derived visitor method: attribute a type tree.
 449      */
 450     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 451         Type result = attribTree(tree, env, TYP, pt);
 452         return result;
 453     }
 454 
 455     /** Derived visitor method: attribute a statement or definition tree.
 456      */
 457     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 458         return attribTree(tree, env, NIL, Type.noType);
 459     }
 460 
 461     /** Attribute a list of expressions, returning a list of types.
 462      */
 463     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 464         ListBuffer<Type> ts = new ListBuffer<Type>();
 465         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 466             ts.append(attribExpr(l.head, env, pt));
 467         return ts.toList();
 468     }
 469 
 470     /** Attribute a list of statements, returning nothing.
 471      */
 472     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 473         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 474             attribStat(l.head, env);
 475     }
 476 
 477     /** Attribute the arguments in a method call, returning a list of types.
 478      */
 479     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
 480         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 481         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 482             argtypes.append(chk.checkNonVoid(
 483                 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
 484         return argtypes.toList();
 485     }
 486 
 487     /** Attribute a type argument list, returning a list of types.
 488      *  Caller is responsible for calling checkRefTypes.
 489      */
 490     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 491         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 492         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 493             argtypes.append(attribType(l.head, env));
 494         return argtypes.toList();
 495     }
 496 
 497     /** Attribute a type argument list, returning a list of types.
 498      *  Check that all the types are references.
 499      */
 500     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 501         List<Type> types = attribAnyTypes(trees, env);
 502         return chk.checkRefTypes(trees, types);
 503     }
 504 
 505     /**
 506      * Attribute type variables (of generic classes or methods).
 507      * Compound types are attributed later in attribBounds.
 508      * @param typarams the type variables to enter
 509      * @param env      the current environment
 510      */
 511     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 512         for (JCTypeParameter tvar : typarams) {
 513             TypeVar a = (TypeVar)tvar.type;
 514             a.tsym.flags_field |= UNATTRIBUTED;
 515             a.bound = Type.noType;
 516             if (!tvar.bounds.isEmpty()) {
 517                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 518                 for (JCExpression bound : tvar.bounds.tail)
 519                     bounds = bounds.prepend(attribType(bound, env));
 520                 types.setBounds(a, bounds.reverse());
 521             } else {
 522                 // if no bounds are given, assume a single bound of
 523                 // java.lang.Object.
 524                 types.setBounds(a, List.of(syms.objectType));
 525             }
 526             a.tsym.flags_field &= ~UNATTRIBUTED;
 527         }
 528         for (JCTypeParameter tvar : typarams)
 529             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 530         attribStats(typarams, env);
 531     }
 532 
 533     void attribBounds(List<JCTypeParameter> typarams) {
 534         for (JCTypeParameter typaram : typarams) {
 535             Type bound = typaram.type.getUpperBound();
 536             if (bound != null && bound.tsym instanceof ClassSymbol) {
 537                 ClassSymbol c = (ClassSymbol)bound.tsym;
 538                 if ((c.flags_field & COMPOUND) != 0) {
 539                     assert (c.flags_field & UNATTRIBUTED) != 0 : c;
 540                     attribClass(typaram.pos(), c);
 541                 }
 542             }
 543         }
 544     }
 545 
 546     /**
 547      * Attribute the type references in a list of annotations.
 548      */
 549     void attribAnnotationTypes(List<JCAnnotation> annotations,
 550                                Env<AttrContext> env) {
 551         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 552             JCAnnotation a = al.head;
 553             attribType(a.annotationType, env);
 554         }
 555     }
 556 
 557     /** Attribute type reference in an `extends' or `implements' clause.
 558      *  Supertypes of anonymous inner classes are usually already attributed.
 559      *
 560      *  @param tree              The tree making up the type reference.
 561      *  @param env               The environment current at the reference.
 562      *  @param classExpected     true if only a class is expected here.
 563      *  @param interfaceExpected true if only an interface is expected here.
 564      */
 565     Type attribBase(JCTree tree,
 566                     Env<AttrContext> env,
 567                     boolean classExpected,
 568                     boolean interfaceExpected,
 569                     boolean checkExtensible) {
 570         Type t = tree.type != null ?
 571             tree.type :
 572             attribType(tree, env);
 573         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 574     }
 575     Type checkBase(Type t,
 576                    JCTree tree,
 577                    Env<AttrContext> env,
 578                    boolean classExpected,
 579                    boolean interfaceExpected,
 580                    boolean checkExtensible) {
 581         if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
 582             // check that type variable is already visible
 583             if (t.getUpperBound() == null) {
 584                 log.error(tree.pos(), "illegal.forward.ref");
 585                 return types.createErrorType(t);
 586             }
 587         } else {
 588             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
 589         }
 590         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 591             log.error(tree.pos(), "intf.expected.here");
 592             // return errType is necessary since otherwise there might
 593             // be undetected cycles which cause attribution to loop
 594             return types.createErrorType(t);
 595         } else if (checkExtensible &&
 596                    classExpected &&
 597                    (t.tsym.flags() & INTERFACE) != 0) {
 598             log.error(tree.pos(), "no.intf.expected.here");
 599             return types.createErrorType(t);
 600         }
 601         if (checkExtensible &&
 602             ((t.tsym.flags() & FINAL) != 0)) {
 603             log.error(tree.pos(),
 604                       "cant.inherit.from.final", t.tsym);
 605         }
 606         chk.checkNonCyclic(tree.pos(), t);
 607         return t;
 608     }
 609 
 610     public void visitClassDef(JCClassDecl tree) {
 611         // Local classes have not been entered yet, so we need to do it now:
 612         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
 613             enter.classEnter(tree, env);
 614 
 615         ClassSymbol c = tree.sym;
 616         if (c == null) {
 617             // exit in case something drastic went wrong during enter.
 618             result = null;
 619         } else {
 620             // make sure class has been completed:
 621             c.complete();
 622 
 623             // If this class appears as an anonymous class
 624             // in a superclass constructor call where
 625             // no explicit outer instance is given,
 626             // disable implicit outer instance from being passed.
 627             // (This would be an illegal access to "this before super").
 628             if (env.info.isSelfCall &&
 629                 env.tree.getTag() == JCTree.NEWCLASS &&
 630                 ((JCNewClass) env.tree).encl == null)
 631             {
 632                 c.flags_field |= NOOUTERTHIS;
 633             }
 634             attribClass(tree.pos(), c);
 635             result = tree.type = c.type;
 636         }
 637     }
 638 
 639     public void visitMethodDef(JCMethodDecl tree) {
 640         MethodSymbol m = tree.sym;
 641 
 642         Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
 643         Lint prevLint = chk.setLint(lint);
 644         try {
 645             chk.checkDeprecatedAnnotation(tree.pos(), m);
 646 
 647             attribBounds(tree.typarams);
 648 
 649             // If we override any other methods, check that we do so properly.
 650             // JLS ???
 651             chk.checkOverride(tree, m);
 652 
 653             // Create a new environment with local scope
 654             // for attributing the method.
 655             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 656 
 657             localEnv.info.lint = lint;
 658 
 659             // Enter all type parameters into the local method scope.
 660             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 661                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 662 
 663             ClassSymbol owner = env.enclClass.sym;
 664             if ((owner.flags() & ANNOTATION) != 0 &&
 665                 tree.params.nonEmpty())
 666                 log.error(tree.params.head.pos(),
 667                           "intf.annotation.members.cant.have.params");
 668 
 669             // Attribute all value parameters.
 670             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 671                 attribStat(l.head, localEnv);
 672             }
 673 
 674             chk.checkVarargMethodDecl(tree);
 675 
 676             // Check that type parameters are well-formed.
 677             chk.validate(tree.typarams, localEnv);
 678             if ((owner.flags() & ANNOTATION) != 0 &&
 679                 tree.typarams.nonEmpty())
 680                 log.error(tree.typarams.head.pos(),
 681                           "intf.annotation.members.cant.have.type.params");
 682 
 683             // Check that result type is well-formed.
 684             chk.validate(tree.restype, localEnv);
 685             if ((owner.flags() & ANNOTATION) != 0)
 686                 chk.validateAnnotationType(tree.restype);
 687 
 688             if ((owner.flags() & ANNOTATION) != 0)
 689                 chk.validateAnnotationMethod(tree.pos(), m);
 690 
 691             // Check that all exceptions mentioned in the throws clause extend
 692             // java.lang.Throwable.
 693             if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty())
 694                 log.error(tree.thrown.head.pos(),
 695                           "throws.not.allowed.in.intf.annotation");
 696             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
 697                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
 698 
 699             if (tree.body == null) {
 700                 // Empty bodies are only allowed for
 701                 // abstract, native, or interface methods, or for methods
 702                 // in a retrofit signature class.
 703                 if ((owner.flags() & INTERFACE) == 0 &&
 704                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
 705                     !relax)
 706                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
 707                 if (tree.defaultValue != null) {
 708                     if ((owner.flags() & ANNOTATION) == 0)
 709                         log.error(tree.pos(),
 710                                   "default.allowed.in.intf.annotation.member");
 711                 }
 712             } else if ((owner.flags() & INTERFACE) != 0) {
 713                 log.error(tree.body.pos(), "intf.meth.cant.have.body");
 714             } else if ((tree.mods.flags & ABSTRACT) != 0) {
 715                 log.error(tree.pos(), "abstract.meth.cant.have.body");
 716             } else if ((tree.mods.flags & NATIVE) != 0) {
 717                 log.error(tree.pos(), "native.meth.cant.have.body");
 718             } else {
 719                 // Add an implicit super() call unless an explicit call to
 720                 // super(...) or this(...) is given
 721                 // or we are compiling class java.lang.Object.
 722                 if (tree.name == names.init && owner.type != syms.objectType) {
 723                     JCBlock body = tree.body;
 724                     if (body.stats.isEmpty() ||
 725                         !TreeInfo.isSelfCall(body.stats.head)) {
 726                         body.stats = body.stats.
 727                             prepend(memberEnter.SuperCall(make.at(body.pos),
 728                                                           List.<Type>nil(),
 729                                                           List.<JCVariableDecl>nil(),
 730                                                           false));
 731                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
 732                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
 733                                TreeInfo.isSuperCall(body.stats.head)) {
 734                         // enum constructors are not allowed to call super
 735                         // directly, so make sure there aren't any super calls
 736                         // in enum constructors, except in the compiler
 737                         // generated one.
 738                         log.error(tree.body.stats.head.pos(),
 739                                   "call.to.super.not.allowed.in.enum.ctor",
 740                                   env.enclClass.sym);
 741                     }
 742                 }
 743 
 744                 // Attribute method body.
 745                 attribStat(tree.body, localEnv);
 746             }
 747             localEnv.info.scope.leave();
 748             result = tree.type = m.type;
 749             chk.validateAnnotations(tree.mods.annotations, m);
 750         }
 751         finally {
 752             chk.setLint(prevLint);
 753         }
 754     }
 755 
 756     public void visitVarDef(JCVariableDecl tree) {
 757         // Local variables have not been entered yet, so we need to do it now:
 758         if (env.info.scope.owner.kind == MTH) {
 759             if (tree.sym != null) {
 760                 // parameters have already been entered
 761                 env.info.scope.enter(tree.sym);
 762             } else {
 763                 memberEnter.memberEnter(tree, env);
 764                 annotate.flush();
 765             }
 766         }
 767 
 768         VarSymbol v = tree.sym;
 769         Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
 770         Lint prevLint = chk.setLint(lint);
 771 
 772         // Check that the variable's declared type is well-formed.
 773         chk.validate(tree.vartype, env);
 774 
 775         try {
 776             chk.checkDeprecatedAnnotation(tree.pos(), v);
 777 
 778             if (tree.init != null) {
 779                 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
 780                     // In this case, `v' is final.  Ensure that it's initializer is
 781                     // evaluated.
 782                     v.getConstValue(); // ensure initializer is evaluated
 783                 } else {
 784                     // Attribute initializer in a new environment
 785                     // with the declared variable as owner.
 786                     // Check that initializer conforms to variable's declared type.
 787                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
 788                     initEnv.info.lint = lint;
 789                     // In order to catch self-references, we set the variable's
 790                     // declaration position to maximal possible value, effectively
 791                     // marking the variable as undefined.
 792                     initEnv.info.enclVar = v;
 793                     attribExpr(tree.init, initEnv, v.type);
 794                 }
 795             }
 796             result = tree.type = v.type;
 797             chk.validateAnnotations(tree.mods.annotations, v);
 798         }
 799         finally {
 800             chk.setLint(prevLint);
 801         }
 802     }
 803 
 804     public void visitSkip(JCSkip tree) {
 805         result = null;
 806     }
 807 
 808     public void visitBlock(JCBlock tree) {
 809         if (env.info.scope.owner.kind == TYP) {
 810             // Block is a static or instance initializer;
 811             // let the owner of the environment be a freshly
 812             // created BLOCK-method.
 813             Env<AttrContext> localEnv =
 814                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
 815             localEnv.info.scope.owner =
 816                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
 817                                  env.info.scope.owner);
 818             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
 819             attribStats(tree.stats, localEnv);
 820         } else {
 821             // Create a new local environment with a local scope.
 822             Env<AttrContext> localEnv =
 823                 env.dup(tree, env.info.dup(env.info.scope.dup()));
 824             attribStats(tree.stats, localEnv);
 825             localEnv.info.scope.leave();
 826         }
 827         result = null;
 828     }
 829 
 830     public void visitDoLoop(JCDoWhileLoop tree) {
 831         attribStat(tree.body, env.dup(tree));
 832         attribExpr(tree.cond, env, syms.booleanType);
 833         result = null;
 834     }
 835 
 836     public void visitWhileLoop(JCWhileLoop tree) {
 837         attribExpr(tree.cond, env, syms.booleanType);
 838         attribStat(tree.body, env.dup(tree));
 839         result = null;
 840     }
 841 
 842     public void visitForLoop(JCForLoop tree) {
 843         Env<AttrContext> loopEnv =
 844             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
 845         attribStats(tree.init, loopEnv);
 846         if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
 847         loopEnv.tree = tree; // before, we were not in loop!
 848         attribStats(tree.step, loopEnv);
 849         attribStat(tree.body, loopEnv);
 850         loopEnv.info.scope.leave();
 851         result = null;
 852     }
 853 
 854     public void visitForeachLoop(JCEnhancedForLoop tree) {
 855         Env<AttrContext> loopEnv =
 856             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
 857         attribStat(tree.var, loopEnv);
 858         Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
 859         chk.checkNonVoid(tree.pos(), exprType);
 860         Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
 861         if (elemtype == null) {
 862             // or perhaps expr implements Iterable<T>?
 863             Type base = types.asSuper(exprType, syms.iterableType.tsym);
 864             if (base == null) {
 865                 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
 866                 elemtype = types.createErrorType(exprType);
 867             } else {
 868                 List<Type> iterableParams = base.allparams();
 869                 elemtype = iterableParams.isEmpty()
 870                     ? syms.objectType
 871                     : types.upperBound(iterableParams.head);
 872             }
 873         }
 874         chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
 875         loopEnv.tree = tree; // before, we were not in loop!
 876         attribStat(tree.body, loopEnv);
 877         loopEnv.info.scope.leave();
 878         result = null;
 879     }
 880 
 881     public void visitLabelled(JCLabeledStatement tree) {
 882         // Check that label is not used in an enclosing statement
 883         Env<AttrContext> env1 = env;
 884         while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
 885             if (env1.tree.getTag() == JCTree.LABELLED &&
 886                 ((JCLabeledStatement) env1.tree).label == tree.label) {
 887                 log.error(tree.pos(), "label.already.in.use",
 888                           tree.label);
 889                 break;
 890             }
 891             env1 = env1.next;
 892         }
 893 
 894         attribStat(tree.body, env.dup(tree));
 895         result = null;
 896     }
 897 
 898     public void visitSwitch(JCSwitch tree) {
 899         Type seltype = attribExpr(tree.selector, env);
 900 
 901         Env<AttrContext> switchEnv =
 902             env.dup(tree, env.info.dup(env.info.scope.dup()));
 903 
 904         boolean enumSwitch =
 905             allowEnums &&
 906             (seltype.tsym.flags() & Flags.ENUM) != 0;
 907         boolean stringSwitch = false;
 908         if (types.isSameType(seltype, syms.stringType)) {
 909             if (allowStringsInSwitch) {
 910                 stringSwitch = true;
 911             } else {
 912                 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
 913             }
 914         }
 915         if (!enumSwitch && !stringSwitch)
 916             seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
 917 
 918         // Attribute all cases and
 919         // check that there are no duplicate case labels or default clauses.
 920         Set<Object> labels = new HashSet<Object>(); // The set of case labels.
 921         boolean hasDefault = false;      // Is there a default label?
 922         for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
 923             JCCase c = l.head;
 924             Env<AttrContext> caseEnv =
 925                 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
 926             if (c.pat != null) {
 927                 if (enumSwitch) {
 928                     Symbol sym = enumConstant(c.pat, seltype);
 929                     if (sym == null) {
 930                         log.error(c.pat.pos(), "enum.const.req");
 931                     } else if (!labels.add(sym)) {
 932                         log.error(c.pos(), "duplicate.case.label");
 933                     }
 934                 } else {
 935                     Type pattype = attribExpr(c.pat, switchEnv, seltype);
 936                     if (pattype.tag != ERROR) {
 937                         if (pattype.constValue() == null) {
 938                             log.error(c.pat.pos(),
 939                                       (stringSwitch ? "string.const.req" : "const.expr.req"));
 940                         } else if (labels.contains(pattype.constValue())) {
 941                             log.error(c.pos(), "duplicate.case.label");
 942                         } else {
 943                             labels.add(pattype.constValue());
 944                         }
 945                     }
 946                 }
 947             } else if (hasDefault) {
 948                 log.error(c.pos(), "duplicate.default.label");
 949             } else {
 950                 hasDefault = true;
 951             }
 952             attribStats(c.stats, caseEnv);
 953             caseEnv.info.scope.leave();
 954             addVars(c.stats, switchEnv.info.scope);
 955         }
 956 
 957         switchEnv.info.scope.leave();
 958         result = null;
 959     }
 960     // where
 961         /** Add any variables defined in stats to the switch scope. */
 962         private static void addVars(List<JCStatement> stats, Scope switchScope) {
 963             for (;stats.nonEmpty(); stats = stats.tail) {
 964                 JCTree stat = stats.head;
 965                 if (stat.getTag() == JCTree.VARDEF)
 966                     switchScope.enter(((JCVariableDecl) stat).sym);
 967             }
 968         }
 969     // where
 970     /** Return the selected enumeration constant symbol, or null. */
 971     private Symbol enumConstant(JCTree tree, Type enumType) {
 972         if (tree.getTag() != JCTree.IDENT) {
 973             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
 974             return syms.errSymbol;
 975         }
 976         JCIdent ident = (JCIdent)tree;
 977         Name name = ident.name;
 978         for (Scope.Entry e = enumType.tsym.members().lookup(name);
 979              e.scope != null; e = e.next()) {
 980             if (e.sym.kind == VAR) {
 981                 Symbol s = ident.sym = e.sym;
 982                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
 983                 ident.type = s.type;
 984                 return ((s.flags_field & Flags.ENUM) == 0)
 985                     ? null : s;
 986             }
 987         }
 988         return null;
 989     }
 990 
 991     public void visitSynchronized(JCSynchronized tree) {
 992         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
 993         attribStat(tree.body, env);
 994         result = null;
 995     }
 996 
 997     public void visitTry(JCTry tree) {
 998         // Create a new local environment with a local
 999         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1000         // Create a nested environment for attributing the try block
1001         Env<AttrContext> tryEnv = env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup()));
1002         // Attribute resource declarations        
1003         for (JCTree resource : tree.resources) {
1004             if (resource.getTag() == JCTree.VARDEF) {
1005                 attribStat(resource, tryEnv);
1006                 chk.checkType(resource, resource.type, syms.autoCloseableType, "arm.not.applicable.to.type");
1007                 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
1008                 var.setData(ElementKind.RESOURCE_VARIABLE);                
1009             } else {
1010                 attribExpr(resource, tryEnv, syms.autoCloseableType, "arm.not.applicable.to.type");
1011             }
1012         }
1013         // Attribute body
1014         attribStat(tree.body, tryEnv);
1015         tryEnv.info.scope.leave();
1016 
1017         // Attribute catch clauses
1018         for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1019             JCCatch c = l.head;
1020             Env<AttrContext> catchEnv =
1021                 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1022             Type ctype = attribStat(c.param, catchEnv);
1023             if (TreeInfo.isMultiCatch(c)) {
1024                 //check that multi-catch parameter is marked as final
1025                 if ((c.param.sym.flags() & FINAL) == 0) {
1026                     log.error(c.param.pos(), "multicatch.param.must.be.final", c.param.sym);
1027                 }
1028                 c.param.sym.flags_field = c.param.sym.flags() | DISJOINT;
1029             }
1030             if (c.param.type.tsym.kind == Kinds.VAR) {
1031                 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1032             }
1033             chk.checkType(c.param.vartype.pos(),
1034                           chk.checkClassType(c.param.vartype.pos(), ctype),
1035                           syms.throwableType);
1036             attribStat(c.body, catchEnv);
1037             catchEnv.info.scope.leave();
1038         }
1039 
1040         // Attribute finalizer
1041         if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1042 
1043         localEnv.info.scope.leave();
1044         result = null;
1045     }
1046 
1047     public void visitConditional(JCConditional tree) {
1048         attribExpr(tree.cond, env, syms.booleanType);
1049         attribExpr(tree.truepart, env);
1050         attribExpr(tree.falsepart, env);
1051         result = check(tree,
1052                        capture(condType(tree.pos(), tree.cond.type,
1053                                         tree.truepart.type, tree.falsepart.type)),
1054                        VAL, pkind, pt);
1055     }
1056     //where
1057         /** Compute the type of a conditional expression, after
1058          *  checking that it exists. See Spec 15.25.
1059          *
1060          *  @param pos      The source position to be used for
1061          *                  error diagnostics.
1062          *  @param condtype The type of the expression's condition.
1063          *  @param thentype The type of the expression's then-part.
1064          *  @param elsetype The type of the expression's else-part.
1065          */
1066         private Type condType(DiagnosticPosition pos,
1067                               Type condtype,
1068                               Type thentype,
1069                               Type elsetype) {
1070             Type ctype = condType1(pos, condtype, thentype, elsetype);
1071 
1072             // If condition and both arms are numeric constants,
1073             // evaluate at compile-time.
1074             return ((condtype.constValue() != null) &&
1075                     (thentype.constValue() != null) &&
1076                     (elsetype.constValue() != null))
1077                 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
1078                 : ctype;
1079         }
1080         /** Compute the type of a conditional expression, after
1081          *  checking that it exists.  Does not take into
1082          *  account the special case where condition and both arms
1083          *  are constants.
1084          *
1085          *  @param pos      The source position to be used for error
1086          *                  diagnostics.
1087          *  @param condtype The type of the expression's condition.
1088          *  @param thentype The type of the expression's then-part.
1089          *  @param elsetype The type of the expression's else-part.
1090          */
1091         private Type condType1(DiagnosticPosition pos, Type condtype,
1092                                Type thentype, Type elsetype) {
1093             // If same type, that is the result
1094             if (types.isSameType(thentype, elsetype))
1095                 return thentype.baseType();
1096 
1097             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
1098                 ? thentype : types.unboxedType(thentype);
1099             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
1100                 ? elsetype : types.unboxedType(elsetype);
1101 
1102             // Otherwise, if both arms can be converted to a numeric
1103             // type, return the least numeric type that fits both arms
1104             // (i.e. return larger of the two, or return int if one
1105             // arm is short, the other is char).
1106             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1107                 // If one arm has an integer subrange type (i.e., byte,
1108                 // short, or char), and the other is an integer constant
1109                 // that fits into the subrange, return the subrange type.
1110                 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
1111                     types.isAssignable(elseUnboxed, thenUnboxed))
1112                     return thenUnboxed.baseType();
1113                 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
1114                     types.isAssignable(thenUnboxed, elseUnboxed))
1115                     return elseUnboxed.baseType();
1116 
1117                 for (int i = BYTE; i < VOID; i++) {
1118                     Type candidate = syms.typeOfTag[i];
1119                     if (types.isSubtype(thenUnboxed, candidate) &&
1120                         types.isSubtype(elseUnboxed, candidate))
1121                         return candidate;
1122                 }
1123             }
1124 
1125             // Those were all the cases that could result in a primitive
1126             if (allowBoxing) {
1127                 if (thentype.isPrimitive())
1128                     thentype = types.boxedClass(thentype).type;
1129                 if (elsetype.isPrimitive())
1130                     elsetype = types.boxedClass(elsetype).type;
1131             }
1132 
1133             if (types.isSubtype(thentype, elsetype))
1134                 return elsetype.baseType();
1135             if (types.isSubtype(elsetype, thentype))
1136                 return thentype.baseType();
1137 
1138             if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
1139                 log.error(pos, "neither.conditional.subtype",
1140                           thentype, elsetype);
1141                 return thentype.baseType();
1142             }
1143 
1144             // both are known to be reference types.  The result is
1145             // lub(thentype,elsetype). This cannot fail, as it will
1146             // always be possible to infer "Object" if nothing better.
1147             return types.lub(thentype.baseType(), elsetype.baseType());
1148         }
1149 
1150     public void visitIf(JCIf tree) {
1151         attribExpr(tree.cond, env, syms.booleanType);
1152         attribStat(tree.thenpart, env);
1153         if (tree.elsepart != null)
1154             attribStat(tree.elsepart, env);
1155         chk.checkEmptyIf(tree);
1156         result = null;
1157     }
1158 
1159     public void visitExec(JCExpressionStatement tree) {
1160         attribExpr(tree.expr, env);
1161         result = null;
1162     }
1163 
1164     public void visitBreak(JCBreak tree) {
1165         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1166         result = null;
1167     }
1168 
1169     public void visitContinue(JCContinue tree) {
1170         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1171         result = null;
1172     }
1173     //where
1174         /** Return the target of a break or continue statement, if it exists,
1175          *  report an error if not.
1176          *  Note: The target of a labelled break or continue is the
1177          *  (non-labelled) statement tree referred to by the label,
1178          *  not the tree representing the labelled statement itself.
1179          *
1180          *  @param pos     The position to be used for error diagnostics
1181          *  @param tag     The tag of the jump statement. This is either
1182          *                 Tree.BREAK or Tree.CONTINUE.
1183          *  @param label   The label of the jump statement, or null if no
1184          *                 label is given.
1185          *  @param env     The environment current at the jump statement.
1186          */
1187         private JCTree findJumpTarget(DiagnosticPosition pos,
1188                                     int tag,
1189                                     Name label,
1190                                     Env<AttrContext> env) {
1191             // Search environments outwards from the point of jump.
1192             Env<AttrContext> env1 = env;
1193             LOOP:
1194             while (env1 != null) {
1195                 switch (env1.tree.getTag()) {
1196                 case JCTree.LABELLED:
1197                     JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1198                     if (label == labelled.label) {
1199                         // If jump is a continue, check that target is a loop.
1200                         if (tag == JCTree.CONTINUE) {
1201                             if (labelled.body.getTag() != JCTree.DOLOOP &&
1202                                 labelled.body.getTag() != JCTree.WHILELOOP &&
1203                                 labelled.body.getTag() != JCTree.FORLOOP &&
1204                                 labelled.body.getTag() != JCTree.FOREACHLOOP)
1205                                 log.error(pos, "not.loop.label", label);
1206                             // Found labelled statement target, now go inwards
1207                             // to next non-labelled tree.
1208                             return TreeInfo.referencedStatement(labelled);
1209                         } else {
1210                             return labelled;
1211                         }
1212                     }
1213                     break;
1214                 case JCTree.DOLOOP:
1215                 case JCTree.WHILELOOP:
1216                 case JCTree.FORLOOP:
1217                 case JCTree.FOREACHLOOP:
1218                     if (label == null) return env1.tree;
1219                     break;
1220                 case JCTree.SWITCH:
1221                     if (label == null && tag == JCTree.BREAK) return env1.tree;
1222                     break;
1223                 case JCTree.METHODDEF:
1224                 case JCTree.CLASSDEF:
1225                     break LOOP;
1226                 default:
1227                 }
1228                 env1 = env1.next;
1229             }
1230             if (label != null)
1231                 log.error(pos, "undef.label", label);
1232             else if (tag == JCTree.CONTINUE)
1233                 log.error(pos, "cont.outside.loop");
1234             else
1235                 log.error(pos, "break.outside.switch.loop");
1236             return null;
1237         }
1238 
1239     public void visitReturn(JCReturn tree) {
1240         // Check that there is an enclosing method which is
1241         // nested within than the enclosing class.
1242         if (env.enclMethod == null ||
1243             env.enclMethod.sym.owner != env.enclClass.sym) {
1244             log.error(tree.pos(), "ret.outside.meth");
1245 
1246         } else {
1247             // Attribute return expression, if it exists, and check that
1248             // it conforms to result type of enclosing method.
1249             Symbol m = env.enclMethod.sym;
1250             if (m.type.getReturnType().tag == VOID) {
1251                 if (tree.expr != null)
1252                     log.error(tree.expr.pos(),
1253                               "cant.ret.val.from.meth.decl.void");
1254             } else if (tree.expr == null) {
1255                 log.error(tree.pos(), "missing.ret.val");
1256             } else {
1257                 attribExpr(tree.expr, env, m.type.getReturnType());
1258             }
1259         }
1260         result = null;
1261     }
1262 
1263     public void visitThrow(JCThrow tree) {
1264         attribExpr(tree.expr, env, syms.throwableType);
1265         result = null;
1266     }
1267 
1268     public void visitAssert(JCAssert tree) {
1269         attribExpr(tree.cond, env, syms.booleanType);
1270         if (tree.detail != null) {
1271             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1272         }
1273         result = null;
1274     }
1275 
1276      /** Visitor method for method invocations.
1277      *  NOTE: The method part of an application will have in its type field
1278      *        the return type of the method, not the method's type itself!
1279      */
1280     public void visitApply(JCMethodInvocation tree) {
1281         // The local environment of a method application is
1282         // a new environment nested in the current one.
1283         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1284 
1285         // The types of the actual method arguments.
1286         List<Type> argtypes;
1287 
1288         // The types of the actual method type arguments.
1289         List<Type> typeargtypes = null;
1290         boolean typeargtypesNonRefOK = false;
1291 
1292         Name methName = TreeInfo.name(tree.meth);
1293 
1294         boolean isConstructorCall =
1295             methName == names._this || methName == names._super;
1296 
1297         if (isConstructorCall) {
1298             // We are seeing a ...this(...) or ...super(...) call.
1299             // Check that this is the first statement in a constructor.
1300             if (checkFirstConstructorStat(tree, env)) {
1301 
1302                 // Record the fact
1303                 // that this is a constructor call (using isSelfCall).
1304                 localEnv.info.isSelfCall = true;
1305 
1306                 // Attribute arguments, yielding list of argument types.
1307                 argtypes = attribArgs(tree.args, localEnv);
1308                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1309 
1310                 // Variable `site' points to the class in which the called
1311                 // constructor is defined.
1312                 Type site = env.enclClass.sym.type;
1313                 if (methName == names._super) {
1314                     if (site == syms.objectType) {
1315                         log.error(tree.meth.pos(), "no.superclass", site);
1316                         site = types.createErrorType(syms.objectType);
1317                     } else {
1318                         site = types.supertype(site);
1319                     }
1320                 }
1321 
1322                 if (site.tag == CLASS) {
1323                     Type encl = site.getEnclosingType();
1324                     while (encl != null && encl.tag == TYPEVAR)
1325                         encl = encl.getUpperBound();
1326                     if (encl.tag == CLASS) {
1327                         // we are calling a nested class
1328 
1329                         if (tree.meth.getTag() == JCTree.SELECT) {
1330                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1331 
1332                             // We are seeing a prefixed call, of the form
1333                             //     <expr>.super(...).
1334                             // Check that the prefix expression conforms
1335                             // to the outer instance type of the class.
1336                             chk.checkRefType(qualifier.pos(),
1337                                              attribExpr(qualifier, localEnv,
1338                                                         encl));
1339                         } else if (methName == names._super) {
1340                             // qualifier omitted; check for existence
1341                             // of an appropriate implicit qualifier.
1342                             rs.resolveImplicitThis(tree.meth.pos(),
1343                                                    localEnv, site);
1344                         }
1345                     } else if (tree.meth.getTag() == JCTree.SELECT) {
1346                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1347                                   site.tsym);
1348                     }
1349 
1350                     // if we're calling a java.lang.Enum constructor,
1351                     // prefix the implicit String and int parameters
1352                     if (site.tsym == syms.enumSym && allowEnums)
1353                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1354 
1355                     // Resolve the called constructor under the assumption
1356                     // that we are referring to a superclass instance of the
1357                     // current instance (JLS ???).
1358                     boolean selectSuperPrev = localEnv.info.selectSuper;
1359                     localEnv.info.selectSuper = true;
1360                     localEnv.info.varArgs = false;
1361                     Symbol sym = rs.resolveConstructor(
1362                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1363                     localEnv.info.selectSuper = selectSuperPrev;
1364 
1365                     // Set method symbol to resolved constructor...
1366                     TreeInfo.setSymbol(tree.meth, sym);
1367 
1368                     // ...and check that it is legal in the current context.
1369                     // (this will also set the tree's type)
1370                     Type mpt = newMethTemplate(argtypes, typeargtypes);
1371                     checkId(tree.meth, site, sym, localEnv, MTH,
1372                             mpt, tree.varargsElement != null);
1373                 }
1374                 // Otherwise, `site' is an error type and we do nothing
1375             }
1376             result = tree.type = syms.voidType;
1377         } else {
1378             // Otherwise, we are seeing a regular method call.
1379             // Attribute the arguments, yielding list of argument types, ...
1380             argtypes = attribArgs(tree.args, localEnv);
1381             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1382 
1383             // ... and attribute the method using as a prototype a methodtype
1384             // whose formal argument types is exactly the list of actual
1385             // arguments (this will also set the method symbol).
1386             Type mpt = newMethTemplate(argtypes, typeargtypes);
1387             localEnv.info.varArgs = false;
1388             Type mtype = attribExpr(tree.meth, localEnv, mpt);
1389             if (localEnv.info.varArgs)
1390                 assert mtype.isErroneous() || tree.varargsElement != null;
1391 
1392             // Compute the result type.
1393             Type restype = mtype.getReturnType();
1394             assert restype.tag != WILDCARD : mtype;
1395 
1396             // as a special case, array.clone() has a result that is
1397             // the same as static type of the array being cloned
1398             if (tree.meth.getTag() == JCTree.SELECT &&
1399                 allowCovariantReturns &&
1400                 methName == names.clone &&
1401                 types.isArray(((JCFieldAccess) tree.meth).selected.type))
1402                 restype = ((JCFieldAccess) tree.meth).selected.type;
1403 
1404             // as a special case, x.getClass() has type Class<? extends |X|>
1405             if (allowGenerics &&
1406                 methName == names.getClass && tree.args.isEmpty()) {
1407                 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
1408                     ? ((JCFieldAccess) tree.meth).selected.type
1409                     : env.enclClass.sym.type;
1410                 restype = new
1411                     ClassType(restype.getEnclosingType(),
1412                               List.<Type>of(new WildcardType(types.erasure(qualifier),
1413                                                                BoundKind.EXTENDS,
1414                                                                syms.boundClass)),
1415                               restype.tsym);
1416             }
1417 
1418             // as a special case, MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
1419             // has type <T>, and T can be a primitive type.
1420             if (tree.meth.getTag() == JCTree.SELECT && !typeargtypes.isEmpty()) {
1421               JCFieldAccess mfield = (JCFieldAccess) tree.meth;
1422               if ((mfield.selected.type.tsym != null &&
1423                    (mfield.selected.type.tsym.flags() & POLYMORPHIC_SIGNATURE) != 0)
1424                   ||
1425                   (mfield.sym != null &&
1426                    (mfield.sym.flags() & POLYMORPHIC_SIGNATURE) != 0)) {
1427                   assert types.isSameType(restype, typeargtypes.head) : mtype;
1428                   assert mfield.selected.type == syms.methodHandleType
1429                       || mfield.selected.type == syms.invokeDynamicType;
1430                   typeargtypesNonRefOK = true;
1431               }
1432             }
1433 
1434             if (!typeargtypesNonRefOK) {
1435                 chk.checkRefTypes(tree.typeargs, typeargtypes);
1436             }
1437 
1438             // Check that value of resulting type is admissible in the
1439             // current context.  Also, capture the return type
1440             result = check(tree, capture(restype), VAL, pkind, pt);
1441         }
1442         chk.validate(tree.typeargs, localEnv);
1443     }
1444     //where
1445         /** Check that given application node appears as first statement
1446          *  in a constructor call.
1447          *  @param tree   The application node
1448          *  @param env    The environment current at the application.
1449          */
1450         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1451             JCMethodDecl enclMethod = env.enclMethod;
1452             if (enclMethod != null && enclMethod.name == names.init) {
1453                 JCBlock body = enclMethod.body;
1454                 if (body.stats.head.getTag() == JCTree.EXEC &&
1455                     ((JCExpressionStatement) body.stats.head).expr == tree)
1456                     return true;
1457             }
1458             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1459                       TreeInfo.name(tree.meth));
1460             return false;
1461         }
1462 
1463         /** Obtain a method type with given argument types.
1464          */
1465         Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
1466             MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
1467             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1468         }
1469 
1470     public void visitNewClass(JCNewClass tree) {
1471         Type owntype = types.createErrorType(tree.type);
1472 
1473         // The local environment of a class creation is
1474         // a new environment nested in the current one.
1475         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1476 
1477         // The anonymous inner class definition of the new expression,
1478         // if one is defined by it.
1479         JCClassDecl cdef = tree.def;
1480 
1481         // If enclosing class is given, attribute it, and
1482         // complete class name to be fully qualified
1483         JCExpression clazz = tree.clazz; // Class field following new
1484         JCExpression clazzid =          // Identifier in class field
1485             (clazz.getTag() == JCTree.TYPEAPPLY)
1486             ? ((JCTypeApply) clazz).clazz
1487             : clazz;
1488 
1489         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1490 
1491         if (tree.encl != null) {
1492             // We are seeing a qualified new, of the form
1493             //    <expr>.new C <...> (...) ...
1494             // In this case, we let clazz stand for the name of the
1495             // allocated class C prefixed with the type of the qualifier
1496             // expression, so that we can
1497             // resolve it with standard techniques later. I.e., if
1498             // <expr> has type T, then <expr>.new C <...> (...)
1499             // yields a clazz T.C.
1500             Type encltype = chk.checkRefType(tree.encl.pos(),
1501                                              attribExpr(tree.encl, env));
1502             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1503                                                  ((JCIdent) clazzid).name);
1504             if (clazz.getTag() == JCTree.TYPEAPPLY)
1505                 clazz = make.at(tree.pos).
1506                     TypeApply(clazzid1,
1507                               ((JCTypeApply) clazz).arguments);
1508             else
1509                 clazz = clazzid1;
1510         }
1511 
1512         // Attribute clazz expression and store
1513         // symbol + type back into the attributed tree.
1514         Type clazztype = attribType(clazz, env);
1515         Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype);
1516         if (!TreeInfo.isDiamond(tree)) {
1517             clazztype = chk.checkClassType(
1518                 tree.clazz.pos(), clazztype, true);
1519         }
1520         chk.validate(clazz, localEnv);
1521         if (tree.encl != null) {
1522             // We have to work in this case to store
1523             // symbol + type back into the attributed tree.
1524             tree.clazz.type = clazztype;
1525             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1526             clazzid.type = ((JCIdent) clazzid).sym.type;
1527             if (!clazztype.isErroneous()) {
1528                 if (cdef != null && clazztype.tsym.isInterface()) {
1529                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1530                 } else if (clazztype.tsym.isStatic()) {
1531                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1532                 }
1533             }
1534         } else if (!clazztype.tsym.isInterface() &&
1535                    clazztype.getEnclosingType().tag == CLASS) {
1536             // Check for the existence of an apropos outer instance
1537             rs.resolveImplicitThis(tree.pos(), env, clazztype);
1538         }
1539 
1540         // Attribute constructor arguments.
1541         List<Type> argtypes = attribArgs(tree.args, localEnv);
1542         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1543 
1544         if (TreeInfo.isDiamond(tree)) {
1545             clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes, true);
1546             clazz.type = clazztype;
1547         }
1548 
1549         // If we have made no mistakes in the class type...
1550         if (clazztype.tag == CLASS) {
1551             // Enums may not be instantiated except implicitly
1552             if (allowEnums &&
1553                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
1554                 (env.tree.getTag() != JCTree.VARDEF ||
1555                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
1556                  ((JCVariableDecl) env.tree).init != tree))
1557                 log.error(tree.pos(), "enum.cant.be.instantiated");
1558             // Check that class is not abstract
1559             if (cdef == null &&
1560                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
1561                 log.error(tree.pos(), "abstract.cant.be.instantiated",
1562                           clazztype.tsym);
1563             } else if (cdef != null && clazztype.tsym.isInterface()) {
1564                 // Check that no constructor arguments are given to
1565                 // anonymous classes implementing an interface
1566                 if (!argtypes.isEmpty())
1567                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
1568 
1569                 if (!typeargtypes.isEmpty())
1570                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
1571 
1572                 // Error recovery: pretend no arguments were supplied.
1573                 argtypes = List.nil();
1574                 typeargtypes = List.nil();
1575             }
1576 
1577             // Resolve the called constructor under the assumption
1578             // that we are referring to a superclass instance of the
1579             // current instance (JLS ???).
1580             else {
1581                 localEnv.info.selectSuper = cdef != null;
1582                 localEnv.info.varArgs = false;
1583                 tree.constructor = rs.resolveConstructor(
1584                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
1585                 tree.constructorType = checkMethod(clazztype,
1586                                                 tree.constructor,
1587                                                 localEnv,
1588                                                 tree.args,
1589                                                 argtypes,
1590                                                 typeargtypes,
1591                                                 localEnv.info.varArgs);
1592                 if (localEnv.info.varArgs)
1593                     assert tree.constructorType.isErroneous() || tree.varargsElement != null;
1594             }
1595 
1596             if (cdef != null) {
1597                 // We are seeing an anonymous class instance creation.
1598                 // In this case, the class instance creation
1599                 // expression
1600                 //
1601                 //    E.new <typeargs1>C<typargs2>(args) { ... }
1602                 //
1603                 // is represented internally as
1604                 //
1605                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
1606                 //
1607                 // This expression is then *transformed* as follows:
1608                 //
1609                 // (1) add a STATIC flag to the class definition
1610                 //     if the current environment is static
1611                 // (2) add an extends or implements clause
1612                 // (3) add a constructor.
1613                 //
1614                 // For instance, if C is a class, and ET is the type of E,
1615                 // the expression
1616                 //
1617                 //    E.new <typeargs1>C<typargs2>(args) { ... }
1618                 //
1619                 // is translated to (where X is a fresh name and typarams is the
1620                 // parameter list of the super constructor):
1621                 //
1622                 //   new <typeargs1>X(<*nullchk*>E, args) where
1623                 //     X extends C<typargs2> {
1624                 //       <typarams> X(ET e, args) {
1625                 //         e.<typeargs1>super(args)
1626                 //       }
1627                 //       ...
1628                 //     }
1629                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
1630 
1631                 if (clazztype.tsym.isInterface()) {
1632                     cdef.implementing = List.of(clazz);
1633                 } else {
1634                     cdef.extending = clazz;
1635                 }
1636 
1637                 attribStat(cdef, localEnv);
1638 
1639                 // If an outer instance is given,
1640                 // prefix it to the constructor arguments
1641                 // and delete it from the new expression
1642                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
1643                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
1644                     argtypes = argtypes.prepend(tree.encl.type);
1645                     tree.encl = null;
1646                 }
1647 
1648                 // Reassign clazztype and recompute constructor.
1649                 clazztype = cdef.sym.type;
1650                 Symbol sym = rs.resolveConstructor(
1651                     tree.pos(), localEnv, clazztype, argtypes,
1652                     typeargtypes, true, tree.varargsElement != null);
1653                 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
1654                 tree.constructor = sym;
1655                 if (tree.constructor.kind > ERRONEOUS) {
1656                     tree.constructorType =  syms.errType;
1657                 }
1658                 else {
1659                     tree.constructorType = checkMethod(clazztype,
1660                             tree.constructor,
1661                             localEnv,
1662                             tree.args,
1663                             argtypes,
1664                             typeargtypes,
1665                             localEnv.info.varArgs);
1666                 }
1667             }
1668 
1669             if (tree.constructor != null && tree.constructor.kind == MTH)
1670                 owntype = clazztype;
1671         }
1672         result = check(tree, owntype, VAL, pkind, pt);
1673         chk.validate(tree.typeargs, localEnv);
1674     }
1675 
1676     Type attribDiamond(Env<AttrContext> env,
1677                         JCNewClass tree,
1678                         Type clazztype,
1679                         Pair<Scope, Scope> mapping,
1680                         List<Type> argtypes,
1681                         List<Type> typeargtypes,
1682                         boolean reportErrors) {
1683         if (clazztype.isErroneous() || mapping == erroneousMapping) {
1684             //if the type of the instance creation expression is erroneous,
1685             //or something prevented us to form a valid mapping, return the
1686             //(possibly erroneous) type unchanged
1687             return clazztype;
1688         }
1689         else if (clazztype.isInterface()) {
1690             //if the type of the instance creation expression is an interface
1691             //skip the method resolution step (JLS 15.12.2.7). The type to be
1692             //inferred is of the kind <X1,X2, ... Xn>C<X1,X2, ... Xn>
1693             clazztype = new ForAll(clazztype.tsym.type.allparams(),
1694                     clazztype.tsym.type);
1695         } else {
1696             //if the type of the instance creation expression is a class type
1697             //apply method resolution inference (JLS 15.12.2.7). The return type
1698             //of the resolved constructor will be a partially instantiated type
1699             ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
1700             Symbol constructor;
1701             try {
1702                 constructor = rs.resolveDiamond(tree.pos(),
1703                         env,
1704                         clazztype.tsym.type,
1705                         argtypes,
1706                         typeargtypes, reportErrors);
1707             } finally {
1708                 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
1709             }
1710             if (constructor.kind == MTH) {
1711                 ClassType ct = new ClassType(clazztype.getEnclosingType(),
1712                         clazztype.tsym.type.getTypeArguments(),
1713                         clazztype.tsym);
1714                 clazztype = checkMethod(ct,
1715                         constructor,
1716                         env,
1717                         tree.args,
1718                         argtypes,
1719                         typeargtypes,
1720                         env.info.varArgs).getReturnType();
1721             } else {
1722                 clazztype = syms.errType;
1723             }
1724         }
1725         if (clazztype.tag == FORALL && !pt.isErroneous()) {
1726             //if the resolved constructor's return type has some uninferred
1727             //type-variables, infer them using the expected type and declared
1728             //bounds (JLS 15.12.2.8).
1729             try {
1730                 clazztype = infer.instantiateExpr((ForAll) clazztype,
1731                         pt.tag == NONE ? syms.objectType : pt,
1732                         Warner.noWarnings);
1733             } catch (Infer.InferenceException ex) {
1734                 //an error occurred while inferring uninstantiated type-variables
1735                 //we need to optionally report an error
1736                 if (reportErrors) {
1737                     log.error(tree.clazz.pos(),
1738                             "cant.apply.diamond.1",
1739                             diags.fragment("diamond", clazztype.tsym),
1740                             ex.diagnostic);
1741                 }
1742             }
1743         }
1744         if (reportErrors) {
1745             clazztype = chk.checkClassType(tree.clazz.pos(),
1746                     clazztype,
1747                     true);
1748             if (clazztype.tag == CLASS) {
1749                 List<Type> invalidDiamondArgs = chk.checkDiamond((ClassType)clazztype);
1750                 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
1751                     //one or more types inferred in the previous steps is either a
1752                     //captured type or an intersection type --- we need to report an error.
1753                     String subkey = invalidDiamondArgs.size() > 1 ?
1754                         "diamond.invalid.args" :
1755                         "diamond.invalid.arg";
1756                     //The error message is of the kind:
1757                     //
1758                     //cannot infer type arguments for {clazztype}<>;
1759                     //reason: {subkey}
1760                     //
1761                     //where subkey is a fragment of the kind:
1762                     //
1763                     //type argument(s) {invalidDiamondArgs} inferred for {clazztype}<> is not allowed in this context
1764                     log.error(tree.clazz.pos(),
1765                                 "cant.apply.diamond.1",
1766                                 diags.fragment("diamond", clazztype.tsym),
1767                                 diags.fragment(subkey,
1768                                                invalidDiamondArgs,
1769                                                diags.fragment("diamond", clazztype.tsym)));
1770                 }
1771             }
1772         }
1773         return clazztype;
1774     }
1775 
1776     /** Creates a synthetic scope containing fake generic constructors.
1777      *  Assuming that the original scope contains a constructor of the kind:
1778      *  Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
1779      *  the synthetic scope is added a generic constructor of the kind:
1780      *  <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
1781      *  inference. The inferred return type of the synthetic constructor IS
1782      *  the inferred type for the diamond operator.
1783      */
1784     private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype) {
1785         if (ctype.tag != CLASS) {
1786             return erroneousMapping;
1787         }
1788         Pair<Scope, Scope> mapping =
1789                 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
1790         List<Type> typevars = ctype.tsym.type.getTypeArguments();
1791         for (Scope.Entry e = mapping.fst.lookup(names.init);
1792                 e.scope != null;
1793                 e = e.next()) {
1794             MethodSymbol newConstr = (MethodSymbol) e.sym.clone(ctype.tsym);
1795             newConstr.name = names.init;
1796             List<Type> oldTypeargs = List.nil();
1797             if (newConstr.type.tag == FORALL) {
1798                 oldTypeargs = ((ForAll) newConstr.type).tvars;
1799             }
1800             newConstr.type = new MethodType(newConstr.type.getParameterTypes(),
1801                     new ClassType(ctype.getEnclosingType(), ctype.tsym.type.getTypeArguments(), ctype.tsym),
1802                     newConstr.type.getThrownTypes(),
1803                     syms.methodClass);
1804             newConstr.type = new ForAll(typevars.prependList(oldTypeargs), newConstr.type);
1805             mapping.snd.enter(newConstr);
1806         }
1807         return mapping;
1808     }
1809 
1810     private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
1811 
1812     /** Make an attributed null check tree.
1813      */
1814     public JCExpression makeNullCheck(JCExpression arg) {
1815         // optimization: X.this is never null; skip null check
1816         Name name = TreeInfo.name(arg);
1817         if (name == names._this || name == names._super) return arg;
1818 
1819         int optag = JCTree.NULLCHK;
1820         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
1821         tree.operator = syms.nullcheck;
1822         tree.type = arg.type;
1823         return tree;
1824     }
1825 
1826     public void visitNewArray(JCNewArray tree) {
1827         Type owntype = types.createErrorType(tree.type);
1828         Type elemtype;
1829         if (tree.elemtype != null) {
1830             elemtype = attribType(tree.elemtype, env);
1831             chk.validate(tree.elemtype, env);
1832             owntype = elemtype;
1833             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1834                 attribExpr(l.head, env, syms.intType);
1835                 owntype = new ArrayType(owntype, syms.arrayClass);
1836             }
1837         } else {
1838             // we are seeing an untyped aggregate { ... }
1839             // this is allowed only if the prototype is an array
1840             if (pt.tag == ARRAY) {
1841                 elemtype = types.elemtype(pt);
1842             } else {
1843                 if (pt.tag != ERROR) {
1844                     log.error(tree.pos(), "illegal.initializer.for.type",
1845                               pt);
1846                 }
1847                 elemtype = types.createErrorType(pt);
1848             }
1849         }
1850         if (tree.elems != null) {
1851             attribExprs(tree.elems, env, elemtype);
1852             owntype = new ArrayType(elemtype, syms.arrayClass);
1853         }
1854         if (!types.isReifiable(elemtype))
1855             log.error(tree.pos(), "generic.array.creation");
1856         result = check(tree, owntype, VAL, pkind, pt);
1857     }
1858 
1859     public void visitParens(JCParens tree) {
1860         Type owntype = attribTree(tree.expr, env, pkind, pt);
1861         result = check(tree, owntype, pkind, pkind, pt);
1862         Symbol sym = TreeInfo.symbol(tree);
1863         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
1864             log.error(tree.pos(), "illegal.start.of.type");
1865     }
1866 
1867     public void visitAssign(JCAssign tree) {
1868         Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
1869         Type capturedType = capture(owntype);
1870         attribExpr(tree.rhs, env, owntype);
1871         result = check(tree, capturedType, VAL, pkind, pt);
1872     }
1873 
1874     public void visitAssignop(JCAssignOp tree) {
1875         // Attribute arguments.
1876         Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
1877         Type operand = attribExpr(tree.rhs, env);
1878         // Find operator.
1879         Symbol operator = tree.operator = rs.resolveBinaryOperator(
1880             tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
1881             owntype, operand);
1882 
1883         if (operator.kind == MTH) {
1884             chk.checkOperator(tree.pos(),
1885                               (OperatorSymbol)operator,
1886                               tree.getTag() - JCTree.ASGOffset,
1887                               owntype,
1888                               operand);
1889             chk.checkDivZero(tree.rhs.pos(), operator, operand);
1890             chk.checkCastable(tree.rhs.pos(),
1891                               operator.type.getReturnType(),
1892                               owntype);
1893         }
1894         result = check(tree, owntype, VAL, pkind, pt);
1895     }
1896 
1897     public void visitUnary(JCUnary tree) {
1898         // Attribute arguments.
1899         Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
1900             ? attribTree(tree.arg, env, VAR, Type.noType)
1901             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
1902 
1903         // Find operator.
1904         Symbol operator = tree.operator =
1905             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
1906 
1907         Type owntype = types.createErrorType(tree.type);
1908         if (operator.kind == MTH) {
1909             owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
1910                 ? tree.arg.type
1911                 : operator.type.getReturnType();
1912             int opc = ((OperatorSymbol)operator).opcode;
1913 
1914             // If the argument is constant, fold it.
1915             if (argtype.constValue() != null) {
1916                 Type ctype = cfolder.fold1(opc, argtype);
1917                 if (ctype != null) {
1918                     owntype = cfolder.coerce(ctype, owntype);
1919 
1920                     // Remove constant types from arguments to
1921                     // conserve space. The parser will fold concatenations
1922                     // of string literals; the code here also
1923                     // gets rid of intermediate results when some of the
1924                     // operands are constant identifiers.
1925                     if (tree.arg.type.tsym == syms.stringType.tsym) {
1926                         tree.arg.type = syms.stringType;
1927                     }
1928                 }
1929             }
1930         }
1931         result = check(tree, owntype, VAL, pkind, pt);
1932     }
1933 
1934     public void visitBinary(JCBinary tree) {
1935         // Attribute arguments.
1936         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
1937         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
1938 
1939         // Find operator.
1940         Symbol operator = tree.operator =
1941             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
1942 
1943         Type owntype = types.createErrorType(tree.type);
1944         if (operator.kind == MTH) {
1945             owntype = operator.type.getReturnType();
1946             int opc = chk.checkOperator(tree.lhs.pos(),
1947                                         (OperatorSymbol)operator,
1948                                         tree.getTag(),
1949                                         left,
1950                                         right);
1951 
1952             // If both arguments are constants, fold them.
1953             if (left.constValue() != null && right.constValue() != null) {
1954                 Type ctype = cfolder.fold2(opc, left, right);
1955                 if (ctype != null) {
1956                     owntype = cfolder.coerce(ctype, owntype);
1957 
1958                     // Remove constant types from arguments to
1959                     // conserve space. The parser will fold concatenations
1960                     // of string literals; the code here also
1961                     // gets rid of intermediate results when some of the
1962                     // operands are constant identifiers.
1963                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
1964                         tree.lhs.type = syms.stringType;
1965                     }
1966                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
1967                         tree.rhs.type = syms.stringType;
1968                     }
1969                 }
1970             }
1971 
1972             // Check that argument types of a reference ==, != are
1973             // castable to each other, (JLS???).
1974             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
1975                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
1976                     log.error(tree.pos(), "incomparable.types", left, right);
1977                 }
1978             }
1979 
1980             chk.checkDivZero(tree.rhs.pos(), operator, right);
1981         }
1982         result = check(tree, owntype, VAL, pkind, pt);
1983     }
1984 
1985     public void visitTypeCast(JCTypeCast tree) {
1986         Type clazztype = attribType(tree.clazz, env);
1987         chk.validate(tree.clazz, env);
1988         Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
1989         Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
1990         if (exprtype.constValue() != null)
1991             owntype = cfolder.coerce(exprtype, owntype);
1992         result = check(tree, capture(owntype), VAL, pkind, pt);
1993     }
1994 
1995     public void visitTypeTest(JCInstanceOf tree) {
1996         Type exprtype = chk.checkNullOrRefType(
1997             tree.expr.pos(), attribExpr(tree.expr, env));
1998         Type clazztype = chk.checkReifiableReferenceType(
1999             tree.clazz.pos(), attribType(tree.clazz, env));
2000         chk.validate(tree.clazz, env);
2001         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
2002         result = check(tree, syms.booleanType, VAL, pkind, pt);
2003     }
2004 
2005     public void visitIndexed(JCArrayAccess tree) {
2006         Type owntype = types.createErrorType(tree.type);
2007         Type atype = attribExpr(tree.indexed, env);
2008         attribExpr(tree.index, env, syms.intType);
2009         if (types.isArray(atype))
2010             owntype = types.elemtype(atype);
2011         else if (atype.tag != ERROR)
2012             log.error(tree.pos(), "array.req.but.found", atype);
2013         if ((pkind & VAR) == 0) owntype = capture(owntype);
2014         result = check(tree, owntype, VAR, pkind, pt);
2015     }
2016 
2017     public void visitIdent(JCIdent tree) {
2018         Symbol sym;
2019         boolean varArgs = false;
2020 
2021         // Find symbol
2022         if (pt.tag == METHOD || pt.tag == FORALL) {
2023             // If we are looking for a method, the prototype `pt' will be a
2024             // method type with the type of the call's arguments as parameters.
2025             env.info.varArgs = false;
2026             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
2027             varArgs = env.info.varArgs;
2028         } else if (tree.sym != null && tree.sym.kind != VAR) {
2029             sym = tree.sym;
2030         } else {
2031             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
2032         }
2033         tree.sym = sym;
2034 
2035         // (1) Also find the environment current for the class where
2036         //     sym is defined (`symEnv').
2037         // Only for pre-tiger versions (1.4 and earlier):
2038         // (2) Also determine whether we access symbol out of an anonymous
2039         //     class in a this or super call.  This is illegal for instance
2040         //     members since such classes don't carry a this$n link.
2041         //     (`noOuterThisPath').
2042         Env<AttrContext> symEnv = env;
2043         boolean noOuterThisPath = false;
2044         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
2045             (sym.kind & (VAR | MTH | TYP)) != 0 &&
2046             sym.owner.kind == TYP &&
2047             tree.name != names._this && tree.name != names._super) {
2048 
2049             // Find environment in which identifier is defined.
2050             while (symEnv.outer != null &&
2051                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
2052                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
2053                     noOuterThisPath = !allowAnonOuterThis;
2054                 symEnv = symEnv.outer;
2055             }
2056         }
2057 
2058         // If symbol is a variable, ...
2059         if (sym.kind == VAR) {
2060             VarSymbol v = (VarSymbol)sym;
2061 
2062             // ..., evaluate its initializer, if it has one, and check for
2063             // illegal forward reference.
2064             checkInit(tree, env, v, false);
2065 
2066             // If symbol is a local variable accessed from an embedded
2067             // inner class check that it is final.
2068             if (v.owner.kind == MTH &&
2069                 v.owner != env.info.scope.owner &&
2070                 (v.flags_field & FINAL) == 0) {
2071                 log.error(tree.pos(),
2072                           "local.var.accessed.from.icls.needs.final",
2073                           v);
2074             }
2075 
2076             // If we are expecting a variable (as opposed to a value), check
2077             // that the variable is assignable in the current environment.
2078             if (pkind == VAR)
2079                 checkAssignable(tree.pos(), v, null, env);
2080         }
2081 
2082         // In a constructor body,
2083         // if symbol is a field or instance method, check that it is
2084         // not accessed before the supertype constructor is called.
2085         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
2086             (sym.kind & (VAR | MTH)) != 0 &&
2087             sym.owner.kind == TYP &&
2088             (sym.flags() & STATIC) == 0) {
2089             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
2090         }
2091         Env<AttrContext> env1 = env;
2092         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
2093             // If the found symbol is inaccessible, then it is
2094             // accessed through an enclosing instance.  Locate this
2095             // enclosing instance:
2096             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
2097                 env1 = env1.outer;
2098         }
2099         result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
2100     }
2101 
2102     public void visitSelect(JCFieldAccess tree) {
2103         // Determine the expected kind of the qualifier expression.
2104         int skind = 0;
2105         if (tree.name == names._this || tree.name == names._super ||
2106             tree.name == names._class)
2107         {
2108             skind = TYP;
2109         } else {
2110             if ((pkind & PCK) != 0) skind = skind | PCK;
2111             if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
2112             if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
2113         }
2114 
2115         // Attribute the qualifier expression, and determine its symbol (if any).
2116         Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
2117         if ((pkind & (PCK | TYP)) == 0)
2118             site = capture(site); // Capture field access
2119 
2120         // don't allow T.class T[].class, etc
2121         if (skind == TYP) {
2122             Type elt = site;
2123             while (elt.tag == ARRAY)
2124                 elt = ((ArrayType)elt).elemtype;
2125             if (elt.tag == TYPEVAR) {
2126                 log.error(tree.pos(), "type.var.cant.be.deref");
2127                 result = types.createErrorType(tree.type);
2128                 return;
2129             }
2130         }
2131 
2132         // If qualifier symbol is a type or `super', assert `selectSuper'
2133         // for the selection. This is relevant for determining whether
2134         // protected symbols are accessible.
2135         Symbol sitesym = TreeInfo.symbol(tree.selected);
2136         boolean selectSuperPrev = env.info.selectSuper;
2137         env.info.selectSuper =
2138             sitesym != null &&
2139             sitesym.name == names._super;
2140 
2141         // If selected expression is polymorphic, strip
2142         // type parameters and remember in env.info.tvars, so that
2143         // they can be added later (in Attr.checkId and Infer.instantiateMethod).
2144         if (tree.selected.type.tag == FORALL) {
2145             ForAll pstype = (ForAll)tree.selected.type;
2146             env.info.tvars = pstype.tvars;
2147             site = tree.selected.type = pstype.qtype;
2148         }
2149 
2150         // Determine the symbol represented by the selection.
2151         env.info.varArgs = false;
2152         Symbol sym = selectSym(tree, site, env, pt, pkind);
2153         if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
2154             site = capture(site);
2155             sym = selectSym(tree, site, env, pt, pkind);
2156         }
2157         boolean varArgs = env.info.varArgs;
2158         tree.sym = sym;
2159 
2160         if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
2161             while (site.tag == TYPEVAR) site = site.getUpperBound();
2162             site = capture(site);
2163         }
2164 
2165         // If that symbol is a variable, ...
2166         if (sym.kind == VAR) {
2167             VarSymbol v = (VarSymbol)sym;
2168 
2169             // ..., evaluate its initializer, if it has one, and check for
2170             // illegal forward reference.
2171             checkInit(tree, env, v, true);
2172 
2173             // If we are expecting a variable (as opposed to a value), check
2174             // that the variable is assignable in the current environment.
2175             if (pkind == VAR)
2176                 checkAssignable(tree.pos(), v, tree.selected, env);
2177         }
2178 
2179         if (sitesym != null &&
2180                 sitesym.kind == VAR &&
2181                 ((VarSymbol)sitesym).isResourceVariable() &&
2182                 sym.kind == MTH &&
2183                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
2184                 env.info.lint.isEnabled(Lint.LintCategory.ARM)) {
2185             log.warning(tree, "arm.explicit.close.call");
2186         }
2187 
2188         // Disallow selecting a type from an expression
2189         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
2190             tree.type = check(tree.selected, pt,
2191                               sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
2192         }
2193 
2194         if (isType(sitesym)) {
2195             if (sym.name == names._this) {
2196                 // If `C' is the currently compiled class, check that
2197                 // C.this' does not appear in a call to a super(...)
2198                 if (env.info.isSelfCall &&
2199                     site.tsym == env.enclClass.sym) {
2200                     chk.earlyRefError(tree.pos(), sym);
2201                 }
2202             } else {
2203                 // Check if type-qualified fields or methods are static (JLS)
2204                 if ((sym.flags() & STATIC) == 0 &&
2205                     sym.name != names._super &&
2206                     (sym.kind == VAR || sym.kind == MTH)) {
2207                     rs.access(rs.new StaticError(sym),
2208                               tree.pos(), site, sym.name, true);
2209                 }
2210             }
2211         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
2212             // If the qualified item is not a type and the selected item is static, report
2213             // a warning. Make allowance for the class of an array type e.g. Object[].class)
2214             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
2215         }
2216 
2217         // If we are selecting an instance member via a `super', ...
2218         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
2219 
2220             // Check that super-qualified symbols are not abstract (JLS)
2221             rs.checkNonAbstract(tree.pos(), sym);
2222 
2223             if (site.isRaw()) {
2224                 // Determine argument types for site.
2225                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
2226                 if (site1 != null) site = site1;
2227             }
2228         }
2229 
2230         env.info.selectSuper = selectSuperPrev;
2231         result = checkId(tree, site, sym, env, pkind, pt, varArgs);
2232         env.info.tvars = List.nil();
2233     }
2234     //where
2235         /** Determine symbol referenced by a Select expression,
2236          *
2237          *  @param tree   The select tree.
2238          *  @param site   The type of the selected expression,
2239          *  @param env    The current environment.
2240          *  @param pt     The current prototype.
2241          *  @param pkind  The expected kind(s) of the Select expression.
2242          */
2243         private Symbol selectSym(JCFieldAccess tree,
2244                                  Type site,
2245                                  Env<AttrContext> env,
2246                                  Type pt,
2247                                  int pkind) {
2248             DiagnosticPosition pos = tree.pos();
2249             Name name = tree.name;
2250 
2251             switch (site.tag) {
2252             case PACKAGE:
2253                 return rs.access(
2254                     rs.findIdentInPackage(env, site.tsym, name, pkind),
2255                     pos, site, name, true);
2256             case ARRAY:
2257             case CLASS:
2258                 if (pt.tag == METHOD || pt.tag == FORALL) {
2259                     return rs.resolveQualifiedMethod(
2260                         pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
2261                 } else if (name == names._this || name == names._super) {
2262                     return rs.resolveSelf(pos, env, site.tsym, name);
2263                 } else if (name == names._class) {
2264                     // In this case, we have already made sure in
2265                     // visitSelect that qualifier expression is a type.
2266                     Type t = syms.classType;
2267                     List<Type> typeargs = allowGenerics
2268                         ? List.of(types.erasure(site))
2269                         : List.<Type>nil();
2270                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
2271                     return new VarSymbol(
2272                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
2273                 } else {
2274                     // We are seeing a plain identifier as selector.
2275                     Symbol sym = rs.findIdentInType(env, site, name, pkind);
2276                     if ((pkind & ERRONEOUS) == 0)
2277                         sym = rs.access(sym, pos, site, name, true);
2278                     return sym;
2279                 }
2280             case WILDCARD:
2281                 throw new AssertionError(tree);
2282             case TYPEVAR:
2283                 // Normally, site.getUpperBound() shouldn't be null.
2284                 // It should only happen during memberEnter/attribBase
2285                 // when determining the super type which *must* be
2286                 // done before attributing the type variables.  In
2287                 // other words, we are seeing this illegal program:
2288                 // class B<T> extends A<T.foo> {}
2289                 Symbol sym = (site.getUpperBound() != null)
2290                     ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
2291                     : null;
2292                 if (sym == null) {
2293                     log.error(pos, "type.var.cant.be.deref");
2294                     return syms.errSymbol;
2295                 } else {
2296                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
2297                         rs.new AccessError(env, site, sym) :
2298                                 sym;
2299                     rs.access(sym2, pos, site, name, true);
2300                     return sym;
2301                 }
2302             case ERROR:
2303                 // preserve identifier names through errors
2304                 return types.createErrorType(name, site.tsym, site).tsym;
2305             default:
2306                 // The qualifier expression is of a primitive type -- only
2307                 // .class is allowed for these.
2308                 if (name == names._class) {
2309                     // In this case, we have already made sure in Select that
2310                     // qualifier expression is a type.
2311                     Type t = syms.classType;
2312                     Type arg = types.boxedClass(site).type;
2313                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
2314                     return new VarSymbol(
2315                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
2316                 } else {
2317                     log.error(pos, "cant.deref", site);
2318                     return syms.errSymbol;
2319                 }
2320             }
2321         }
2322 
2323         /** Determine type of identifier or select expression and check that
2324          *  (1) the referenced symbol is not deprecated
2325          *  (2) the symbol's type is safe (@see checkSafe)
2326          *  (3) if symbol is a variable, check that its type and kind are
2327          *      compatible with the prototype and protokind.
2328          *  (4) if symbol is an instance field of a raw type,
2329          *      which is being assigned to, issue an unchecked warning if its
2330          *      type changes under erasure.
2331          *  (5) if symbol is an instance method of a raw type, issue an
2332          *      unchecked warning if its argument types change under erasure.
2333          *  If checks succeed:
2334          *    If symbol is a constant, return its constant type
2335          *    else if symbol is a method, return its result type
2336          *    otherwise return its type.
2337          *  Otherwise return errType.
2338          *
2339          *  @param tree       The syntax tree representing the identifier
2340          *  @param site       If this is a select, the type of the selected
2341          *                    expression, otherwise the type of the current class.
2342          *  @param sym        The symbol representing the identifier.
2343          *  @param env        The current environment.
2344          *  @param pkind      The set of expected kinds.
2345          *  @param pt         The expected type.
2346          */
2347         Type checkId(JCTree tree,
2348                      Type site,
2349                      Symbol sym,
2350                      Env<AttrContext> env,
2351                      int pkind,
2352                      Type pt,
2353                      boolean useVarargs) {
2354             if (pt.isErroneous()) return types.createErrorType(site);
2355             Type owntype; // The computed type of this identifier occurrence.
2356             switch (sym.kind) {
2357             case TYP:
2358                 // For types, the computed type equals the symbol's type,
2359                 // except for two situations:
2360                 owntype = sym.type;
2361                 if (owntype.tag == CLASS) {
2362                     Type ownOuter = owntype.getEnclosingType();
2363 
2364                     // (a) If the symbol's type is parameterized, erase it
2365                     // because no type parameters were given.
2366                     // We recover generic outer type later in visitTypeApply.
2367                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
2368                         owntype = types.erasure(owntype);
2369                     }
2370 
2371                     // (b) If the symbol's type is an inner class, then
2372                     // we have to interpret its outer type as a superclass
2373                     // of the site type. Example:
2374                     //
2375                     // class Tree<A> { class Visitor { ... } }
2376                     // class PointTree extends Tree<Point> { ... }
2377                     // ...PointTree.Visitor...
2378                     //
2379                     // Then the type of the last expression above is
2380                     // Tree<Point>.Visitor.
2381                     else if (ownOuter.tag == CLASS && site != ownOuter) {
2382                         Type normOuter = site;
2383                         if (normOuter.tag == CLASS)
2384                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
2385                         if (normOuter == null) // perhaps from an import
2386                             normOuter = types.erasure(ownOuter);
2387                         if (normOuter != ownOuter)
2388                             owntype = new ClassType(
2389                                 normOuter, List.<Type>nil(), owntype.tsym);
2390                     }
2391                 }
2392                 break;
2393             case VAR:
2394                 VarSymbol v = (VarSymbol)sym;
2395                 // Test (4): if symbol is an instance field of a raw type,
2396                 // which is being assigned to, issue an unchecked warning if
2397                 // its type changes under erasure.
2398                 if (allowGenerics &&
2399                     pkind == VAR &&
2400                     v.owner.kind == TYP &&
2401                     (v.flags() & STATIC) == 0 &&
2402                     (site.tag == CLASS || site.tag == TYPEVAR)) {
2403                     Type s = types.asOuterSuper(site, v.owner);
2404                     if (s != null &&
2405                         s.isRaw() &&
2406                         !types.isSameType(v.type, v.erasure(types))) {
2407                         chk.warnUnchecked(tree.pos(),
2408                                           "unchecked.assign.to.var",
2409                                           v, s);
2410                     }
2411                 }
2412                 // The computed type of a variable is the type of the
2413                 // variable symbol, taken as a member of the site type.
2414                 owntype = (sym.owner.kind == TYP &&
2415                            sym.name != names._this && sym.name != names._super)
2416                     ? types.memberType(site, sym)
2417                     : sym.type;
2418 
2419                 if (env.info.tvars.nonEmpty()) {
2420                     Type owntype1 = new ForAll(env.info.tvars, owntype);
2421                     for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
2422                         if (!owntype.contains(l.head)) {
2423                             log.error(tree.pos(), "undetermined.type", owntype1);
2424                             owntype1 = types.createErrorType(owntype1);
2425                         }
2426                     owntype = owntype1;
2427                 }
2428 
2429                 // If the variable is a constant, record constant value in
2430                 // computed type.
2431                 if (v.getConstValue() != null && isStaticReference(tree))
2432                     owntype = owntype.constType(v.getConstValue());
2433 
2434                 if (pkind == VAL) {
2435                     owntype = capture(owntype); // capture "names as expressions"
2436                 }
2437                 break;
2438             case MTH: {
2439                 JCMethodInvocation app = (JCMethodInvocation)env.tree;
2440                 owntype = checkMethod(site, sym, env, app.args,
2441                                       pt.getParameterTypes(), pt.getTypeArguments(),
2442                                       env.info.varArgs);
2443                 break;
2444             }
2445             case PCK: case ERR:
2446                 owntype = sym.type;
2447                 break;
2448             default:
2449                 throw new AssertionError("unexpected kind: " + sym.kind +
2450                                          " in tree " + tree);
2451             }
2452 
2453             // Test (1): emit a `deprecation' warning if symbol is deprecated.
2454             // (for constructors, the error was given when the constructor was
2455             // resolved)
2456             if (sym.name != names.init &&
2457                 (sym.flags() & DEPRECATED) != 0 &&
2458                 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
2459                 sym.outermostClass() != env.info.scope.owner.outermostClass())
2460                 chk.warnDeprecated(tree.pos(), sym);
2461 
2462             if ((sym.flags() & PROPRIETARY) != 0) {
2463                 if (enableSunApiLintControl)
2464                   chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
2465                 else
2466                   log.strictWarning(tree.pos(), "sun.proprietary", sym);
2467             }
2468 
2469             // Test (3): if symbol is a variable, check that its type and
2470             // kind are compatible with the prototype and protokind.
2471             return check(tree, owntype, sym.kind, pkind, pt);
2472         }
2473 
2474         /** Check that variable is initialized and evaluate the variable's
2475          *  initializer, if not yet done. Also check that variable is not
2476          *  referenced before it is defined.
2477          *  @param tree    The tree making up the variable reference.
2478          *  @param env     The current environment.
2479          *  @param v       The variable's symbol.
2480          */
2481         private void checkInit(JCTree tree,
2482                                Env<AttrContext> env,
2483                                VarSymbol v,
2484                                boolean onlyWarning) {
2485 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
2486 //                             tree.pos + " " + v.pos + " " +
2487 //                             Resolve.isStatic(env));//DEBUG
2488 
2489             // A forward reference is diagnosed if the declaration position
2490             // of the variable is greater than the current tree position
2491             // and the tree and variable definition occur in the same class
2492             // definition.  Note that writes don't count as references.
2493             // This check applies only to class and instance
2494             // variables.  Local variables follow different scope rules,
2495             // and are subject to definite assignment checking.
2496             if ((env.info.enclVar == v || v.pos > tree.pos) &&
2497                 v.owner.kind == TYP &&
2498                 canOwnInitializer(env.info.scope.owner) &&
2499                 v.owner == env.info.scope.owner.enclClass() &&
2500                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
2501                 (env.tree.getTag() != JCTree.ASSIGN ||
2502                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
2503                 String suffix = (env.info.enclVar == v) ?
2504                                 "self.ref" : "forward.ref";
2505                 if (!onlyWarning || isStaticEnumField(v)) {
2506                     log.error(tree.pos(), "illegal." + suffix);
2507                 } else if (useBeforeDeclarationWarning) {
2508                     log.warning(tree.pos(), suffix, v);
2509                 }
2510             }
2511 
2512             v.getConstValue(); // ensure initializer is evaluated
2513 
2514             checkEnumInitializer(tree, env, v);
2515         }
2516 
2517         /**
2518          * Check for illegal references to static members of enum.  In
2519          * an enum type, constructors and initializers may not
2520          * reference its static members unless they are constant.
2521          *
2522          * @param tree    The tree making up the variable reference.
2523          * @param env     The current environment.
2524          * @param v       The variable's symbol.
2525          * @see JLS 3rd Ed. (8.9 Enums)
2526          */
2527         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
2528             // JLS 3rd Ed.:
2529             //
2530             // "It is a compile-time error to reference a static field
2531             // of an enum type that is not a compile-time constant
2532             // (15.28) from constructors, instance initializer blocks,
2533             // or instance variable initializer expressions of that
2534             // type. It is a compile-time error for the constructors,
2535             // instance initializer blocks, or instance variable
2536             // initializer expressions of an enum constant e to refer
2537             // to itself or to an enum constant of the same type that
2538             // is declared to the right of e."
2539             if (isStaticEnumField(v)) {
2540                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
2541 
2542                 if (enclClass == null || enclClass.owner == null)
2543                     return;
2544 
2545                 // See if the enclosing class is the enum (or a
2546                 // subclass thereof) declaring v.  If not, this
2547                 // reference is OK.
2548                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
2549                     return;
2550 
2551                 // If the reference isn't from an initializer, then
2552                 // the reference is OK.
2553                 if (!Resolve.isInitializer(env))
2554                     return;
2555 
2556                 log.error(tree.pos(), "illegal.enum.static.ref");
2557             }
2558         }
2559 
2560         /** Is the given symbol a static, non-constant field of an Enum?
2561          *  Note: enum literals should not be regarded as such
2562          */
2563         private boolean isStaticEnumField(VarSymbol v) {
2564             return Flags.isEnum(v.owner) &&
2565                    Flags.isStatic(v) &&
2566                    !Flags.isConstant(v) &&
2567                    v.name != names._class;
2568         }
2569 
2570         /** Can the given symbol be the owner of code which forms part
2571          *  if class initialization? This is the case if the symbol is
2572          *  a type or field, or if the symbol is the synthetic method.
2573          *  owning a block.
2574          */
2575         private boolean canOwnInitializer(Symbol sym) {
2576             return
2577                 (sym.kind & (VAR | TYP)) != 0 ||
2578                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
2579         }
2580 
2581     Warner noteWarner = new Warner();
2582 
2583     /**
2584      * Check that method arguments conform to its instantation.
2585      **/
2586     public Type checkMethod(Type site,
2587                             Symbol sym,
2588                             Env<AttrContext> env,
2589                             final List<JCExpression> argtrees,
2590                             List<Type> argtypes,
2591                             List<Type> typeargtypes,
2592                             boolean useVarargs) {
2593         // Test (5): if symbol is an instance method of a raw type, issue
2594         // an unchecked warning if its argument types change under erasure.
2595         if (allowGenerics &&
2596             (sym.flags() & STATIC) == 0 &&
2597             (site.tag == CLASS || site.tag == TYPEVAR)) {
2598             Type s = types.asOuterSuper(site, sym.owner);
2599             if (s != null && s.isRaw() &&
2600                 !types.isSameTypes(sym.type.getParameterTypes(),
2601                                    sym.erasure(types).getParameterTypes())) {
2602                 chk.warnUnchecked(env.tree.pos(),
2603                                   "unchecked.call.mbr.of.raw.type",
2604                                   sym, s);
2605             }
2606         }
2607 
2608         // Compute the identifier's instantiated type.
2609         // For methods, we need to compute the instance type by
2610         // Resolve.instantiate from the symbol's type as well as
2611         // any type arguments and value arguments.
2612         noteWarner.warned = false;
2613         Type owntype = rs.instantiate(env,
2614                                       site,
2615                                       sym,
2616                                       argtypes,
2617                                       typeargtypes,
2618                                       true,
2619                                       useVarargs,
2620                                       noteWarner);
2621         boolean warned = noteWarner.warned;
2622 
2623         // If this fails, something went wrong; we should not have
2624         // found the identifier in the first place.
2625         if (owntype == null) {
2626             if (!pt.isErroneous())
2627                 log.error(env.tree.pos(),
2628                           "internal.error.cant.instantiate",
2629                           sym, site,
2630                           Type.toString(pt.getParameterTypes()));
2631             owntype = types.createErrorType(site);
2632         } else {
2633             // System.out.println("call   : " + env.tree);
2634             // System.out.println("method : " + owntype);
2635             // System.out.println("actuals: " + argtypes);
2636             List<Type> formals = owntype.getParameterTypes();
2637             Type last = useVarargs ? formals.last() : null;
2638             if (sym.name==names.init &&
2639                 sym.owner == syms.enumSym)
2640                 formals = formals.tail.tail;
2641             List<JCExpression> args = argtrees;
2642             while (formals.head != last) {
2643                 JCTree arg = args.head;
2644                 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
2645                 assertConvertible(arg, arg.type, formals.head, warn);
2646                 warned |= warn.warned;
2647                 args = args.tail;
2648                 formals = formals.tail;
2649             }
2650             if (useVarargs) {
2651                 Type varArg = types.elemtype(last);
2652                 while (args.tail != null) {
2653                     JCTree arg = args.head;
2654                     Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
2655                     assertConvertible(arg, arg.type, varArg, warn);
2656                     warned |= warn.warned;
2657                     args = args.tail;
2658                 }
2659             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
2660                 // non-varargs call to varargs method
2661                 Type varParam = owntype.getParameterTypes().last();
2662                 Type lastArg = argtypes.last();
2663                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
2664                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
2665                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
2666                                 types.elemtype(varParam),
2667                                 varParam);
2668             }
2669 
2670             if (warned && sym.type.tag == FORALL) {
2671                 chk.warnUnchecked(env.tree.pos(),
2672                                   "unchecked.meth.invocation.applied",
2673                                   kindName(sym),
2674                                   sym.name,
2675                                   rs.methodArguments(sym.type.getParameterTypes()),
2676                                   rs.methodArguments(argtypes),
2677                                   kindName(sym.location()),
2678                                   sym.location());
2679                 owntype = new MethodType(owntype.getParameterTypes(),
2680                                          types.erasure(owntype.getReturnType()),
2681                                          owntype.getThrownTypes(),
2682                                          syms.methodClass);
2683             }
2684             if (useVarargs) {
2685                 JCTree tree = env.tree;
2686                 Type argtype = owntype.getParameterTypes().last();
2687                 if (owntype.getReturnType().tag != FORALL || warned) {
2688                     chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym, env);
2689                 }
2690                 Type elemtype = types.elemtype(argtype);
2691                 switch (tree.getTag()) {
2692                 case JCTree.APPLY:
2693                     ((JCMethodInvocation) tree).varargsElement = elemtype;
2694                     break;
2695                 case JCTree.NEWCLASS:
2696                     ((JCNewClass) tree).varargsElement = elemtype;
2697                     break;
2698                 default:
2699                     throw new AssertionError(""+tree);
2700                 }
2701             }
2702         }
2703         return owntype;
2704     }
2705 
2706     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
2707         if (types.isConvertible(actual, formal, warn))
2708             return;
2709 
2710         if (formal.isCompound()
2711             && types.isSubtype(actual, types.supertype(formal))
2712             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
2713             return;
2714 
2715         if (false) {
2716             // TODO: make assertConvertible work
2717             chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
2718             throw new AssertionError("Tree: " + tree
2719                                      + " actual:" + actual
2720                                      + " formal: " + formal);
2721         }
2722     }
2723 
2724     public void visitLiteral(JCLiteral tree) {
2725         result = check(
2726             tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
2727     }
2728     //where
2729     /** Return the type of a literal with given type tag.
2730      */
2731     Type litType(int tag) {
2732         return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
2733     }
2734 
2735     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
2736         result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
2737     }
2738 
2739     public void visitTypeArray(JCArrayTypeTree tree) {
2740         Type etype = attribType(tree.elemtype, env);
2741         Type type = new ArrayType(etype, syms.arrayClass);
2742         result = check(tree, type, TYP, pkind, pt);
2743     }
2744 
2745     /** Visitor method for parameterized types.
2746      *  Bound checking is left until later, since types are attributed
2747      *  before supertype structure is completely known
2748      */
2749     public void visitTypeApply(JCTypeApply tree) {
2750         Type owntype = types.createErrorType(tree.type);
2751 
2752         // Attribute functor part of application and make sure it's a class.
2753         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
2754 
2755         // Attribute type parameters
2756         List<Type> actuals = attribTypes(tree.arguments, env);
2757 
2758         if (clazztype.tag == CLASS) {
2759             List<Type> formals = clazztype.tsym.type.getTypeArguments();
2760 
2761             if (actuals.length() == formals.length() || actuals.length() == 0) {
2762                 List<Type> a = actuals;
2763                 List<Type> f = formals;
2764                 while (a.nonEmpty()) {
2765                     a.head = a.head.withTypeVar(f.head);
2766                     a = a.tail;
2767                     f = f.tail;
2768                 }
2769                 // Compute the proper generic outer
2770                 Type clazzOuter = clazztype.getEnclosingType();
2771                 if (clazzOuter.tag == CLASS) {
2772                     Type site;
2773                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
2774                     if (clazz.getTag() == JCTree.IDENT) {
2775                         site = env.enclClass.sym.type;
2776                     } else if (clazz.getTag() == JCTree.SELECT) {
2777                         site = ((JCFieldAccess) clazz).selected.type;
2778                     } else throw new AssertionError(""+tree);
2779                     if (clazzOuter.tag == CLASS && site != clazzOuter) {
2780                         if (site.tag == CLASS)
2781                             site = types.asOuterSuper(site, clazzOuter.tsym);
2782                         if (site == null)
2783                             site = types.erasure(clazzOuter);
2784                         clazzOuter = site;
2785                     }
2786                 }
2787                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
2788             } else {
2789                 if (formals.length() != 0) {
2790                     log.error(tree.pos(), "wrong.number.type.args",
2791                               Integer.toString(formals.length()));
2792                 } else {
2793                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
2794                 }
2795                 owntype = types.createErrorType(tree.type);
2796             }
2797         }
2798         result = check(tree, owntype, TYP, pkind, pt);
2799     }
2800 
2801     public void visitTypeDisjoint(JCTypeDisjoint tree) {
2802         List<Type> componentTypes = attribTypes(tree.components, env);
2803         tree.type = result = check(tree, types.lub(componentTypes), TYP, pkind, pt);
2804     }
2805 
2806     public void visitTypeParameter(JCTypeParameter tree) {
2807         TypeVar a = (TypeVar)tree.type;
2808         Set<Type> boundSet = new HashSet<Type>();
2809         if (a.bound.isErroneous())
2810             return;
2811         List<Type> bs = types.getBounds(a);
2812         if (tree.bounds.nonEmpty()) {
2813             // accept class or interface or typevar as first bound.
2814             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
2815             boundSet.add(types.erasure(b));
2816             if (b.isErroneous()) {
2817                 a.bound = b;
2818             }
2819             else if (b.tag == TYPEVAR) {
2820                 // if first bound was a typevar, do not accept further bounds.
2821                 if (tree.bounds.tail.nonEmpty()) {
2822                     log.error(tree.bounds.tail.head.pos(),
2823                               "type.var.may.not.be.followed.by.other.bounds");
2824                     log.unrecoverableError = true;
2825                     tree.bounds = List.of(tree.bounds.head);
2826                     a.bound = bs.head;
2827                 }
2828             } else {
2829                 // if first bound was a class or interface, accept only interfaces
2830                 // as further bounds.
2831                 for (JCExpression bound : tree.bounds.tail) {
2832                     bs = bs.tail;
2833                     Type i = checkBase(bs.head, bound, env, false, true, false);
2834                     if (i.isErroneous())
2835                         a.bound = i;
2836                     else if (i.tag == CLASS)
2837                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
2838                 }
2839             }
2840         }
2841         bs = types.getBounds(a);
2842 
2843         // in case of multiple bounds ...
2844         if (bs.length() > 1) {
2845             // ... the variable's bound is a class type flagged COMPOUND
2846             // (see comment for TypeVar.bound).
2847             // In this case, generate a class tree that represents the
2848             // bound class, ...
2849             JCTree extending;
2850             List<JCExpression> implementing;
2851             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
2852                 extending = tree.bounds.head;
2853                 implementing = tree.bounds.tail;
2854             } else {
2855                 extending = null;
2856                 implementing = tree.bounds;
2857             }
2858             JCClassDecl cd = make.at(tree.pos).ClassDef(
2859                 make.Modifiers(PUBLIC | ABSTRACT),
2860                 tree.name, List.<JCTypeParameter>nil(),
2861                 extending, implementing, List.<JCTree>nil());
2862 
2863             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
2864             assert (c.flags() & COMPOUND) != 0;
2865             cd.sym = c;
2866             c.sourcefile = env.toplevel.sourcefile;
2867 
2868             // ... and attribute the bound class
2869             c.flags_field |= UNATTRIBUTED;
2870             Env<AttrContext> cenv = enter.classEnv(cd, env);
2871             enter.typeEnvs.put(c, cenv);
2872         }
2873     }
2874 
2875 
2876     public void visitWildcard(JCWildcard tree) {
2877         //- System.err.println("visitWildcard("+tree+");");//DEBUG
2878         Type type = (tree.kind.kind == BoundKind.UNBOUND)
2879             ? syms.objectType
2880             : attribType(tree.inner, env);
2881         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
2882                                               tree.kind.kind,
2883                                               syms.boundClass),
2884                        TYP, pkind, pt);
2885     }
2886 
2887     public void visitAnnotation(JCAnnotation tree) {
2888         log.error(tree.pos(), "annotation.not.valid.for.type", pt);
2889         result = tree.type = syms.errType;
2890     }
2891 
2892     public void visitAnnotatedType(JCAnnotatedType tree) {
2893         result = tree.type = attribType(tree.getUnderlyingType(), env);
2894     }
2895 
2896     public void visitErroneous(JCErroneous tree) {
2897         if (tree.errs != null)
2898             for (JCTree err : tree.errs)
2899                 attribTree(err, env, ERR, pt);
2900         result = tree.type = syms.errType;
2901     }
2902 
2903     /** Default visitor method for all other trees.
2904      */
2905     public void visitTree(JCTree tree) {
2906         throw new AssertionError();
2907     }
2908 
2909     /** Main method: attribute class definition associated with given class symbol.
2910      *  reporting completion failures at the given position.
2911      *  @param pos The source position at which completion errors are to be
2912      *             reported.
2913      *  @param c   The class symbol whose definition will be attributed.
2914      */
2915     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
2916         try {
2917             annotate.flush();
2918             attribClass(c);
2919         } catch (CompletionFailure ex) {
2920             chk.completionError(pos, ex);
2921         }
2922     }
2923 
2924     /** Attribute class definition associated with given class symbol.
2925      *  @param c   The class symbol whose definition will be attributed.
2926      */
2927     void attribClass(ClassSymbol c) throws CompletionFailure {
2928         if (c.type.tag == ERROR) return;
2929 
2930         // Check for cycles in the inheritance graph, which can arise from
2931         // ill-formed class files.
2932         chk.checkNonCyclic(null, c.type);
2933 
2934         Type st = types.supertype(c.type);
2935         if ((c.flags_field & Flags.COMPOUND) == 0) {
2936             // First, attribute superclass.
2937             if (st.tag == CLASS)
2938                 attribClass((ClassSymbol)st.tsym);
2939 
2940             // Next attribute owner, if it is a class.
2941             if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
2942                 attribClass((ClassSymbol)c.owner);
2943         }
2944 
2945         // The previous operations might have attributed the current class
2946         // if there was a cycle. So we test first whether the class is still
2947         // UNATTRIBUTED.
2948         if ((c.flags_field & UNATTRIBUTED) != 0) {
2949             c.flags_field &= ~UNATTRIBUTED;
2950 
2951             // Get environment current at the point of class definition.
2952             Env<AttrContext> env = enter.typeEnvs.get(c);
2953 
2954             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
2955             // because the annotations were not available at the time the env was created. Therefore,
2956             // we look up the environment chain for the first enclosing environment for which the
2957             // lint value is set. Typically, this is the parent env, but might be further if there
2958             // are any envs created as a result of TypeParameter nodes.
2959             Env<AttrContext> lintEnv = env;
2960             while (lintEnv.info.lint == null)
2961                 lintEnv = lintEnv.next;
2962 
2963             // Having found the enclosing lint value, we can initialize the lint value for this class
2964             env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
2965 
2966             Lint prevLint = chk.setLint(env.info.lint);
2967             JavaFileObject prev = log.useSource(c.sourcefile);
2968 
2969             try {
2970                 // java.lang.Enum may not be subclassed by a non-enum
2971                 if (st.tsym == syms.enumSym &&
2972                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
2973                     log.error(env.tree.pos(), "enum.no.subclassing");
2974 
2975                 // Enums may not be extended by source-level classes
2976                 if (st.tsym != null &&
2977                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
2978                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
2979                     !target.compilerBootstrap(c)) {
2980                     log.error(env.tree.pos(), "enum.types.not.extensible");
2981                 }
2982                 attribClassBody(env, c);
2983 
2984                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
2985             } finally {
2986                 log.useSource(prev);
2987                 chk.setLint(prevLint);
2988             }
2989 
2990         }
2991     }
2992 
2993     public void visitImport(JCImport tree) {
2994         // nothing to do
2995     }
2996 
2997     /** Finish the attribution of a class. */
2998     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
2999         JCClassDecl tree = (JCClassDecl)env.tree;
3000         assert c == tree.sym;
3001 
3002         // Validate annotations
3003         chk.validateAnnotations(tree.mods.annotations, c);
3004 
3005         // Validate type parameters, supertype and interfaces.
3006         attribBounds(tree.typarams);
3007         if (!c.isAnonymous()) {
3008             //already checked if anonymous
3009             chk.validate(tree.typarams, env);
3010             chk.validate(tree.extending, env);
3011             chk.validate(tree.implementing, env);
3012         }
3013 
3014         // If this is a non-abstract class, check that it has no abstract
3015         // methods or unimplemented methods of an implemented interface.
3016         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
3017             if (!relax)
3018                 chk.checkAllDefined(tree.pos(), c);
3019         }
3020 
3021         if ((c.flags() & ANNOTATION) != 0) {
3022             if (tree.implementing.nonEmpty())
3023                 log.error(tree.implementing.head.pos(),
3024                           "cant.extend.intf.annotation");
3025             if (tree.typarams.nonEmpty())
3026                 log.error(tree.typarams.head.pos(),
3027                           "intf.annotation.cant.have.type.params");
3028         } else {
3029             // Check that all extended classes and interfaces
3030             // are compatible (i.e. no two define methods with same arguments
3031             // yet different return types).  (JLS 8.4.6.3)
3032             chk.checkCompatibleSupertypes(tree.pos(), c.type);
3033         }
3034 
3035         // Check that class does not import the same parameterized interface
3036         // with two different argument lists.
3037         chk.checkClassBounds(tree.pos(), c.type);
3038 
3039         tree.type = c.type;
3040 
3041         boolean assertsEnabled = false;
3042         assert assertsEnabled = true;
3043         if (assertsEnabled) {
3044             for (List<JCTypeParameter> l = tree.typarams;
3045                  l.nonEmpty(); l = l.tail)
3046                 assert env.info.scope.lookup(l.head.name).scope != null;
3047         }
3048 
3049         // Check that a generic class doesn't extend Throwable
3050         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
3051             log.error(tree.extending.pos(), "generic.throwable");
3052 
3053         // Check that all methods which implement some
3054         // method conform to the method they implement.
3055         chk.checkImplementations(tree);
3056 
3057         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3058             // Attribute declaration
3059             attribStat(l.head, env);
3060             // Check that declarations in inner classes are not static (JLS 8.1.2)
3061             // Make an exception for static constants.
3062             if (c.owner.kind != PCK &&
3063                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
3064                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
3065                 Symbol sym = null;
3066                 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
3067                 if (sym == null ||
3068                     sym.kind != VAR ||
3069                     ((VarSymbol) sym).getConstValue() == null)
3070                     log.error(l.head.pos(), "icls.cant.have.static.decl");
3071             }
3072         }
3073 
3074         // Check for cycles among non-initial constructors.
3075         chk.checkCyclicConstructors(tree);
3076 
3077         // Check for cycles among annotation elements.
3078         chk.checkNonCyclicElements(tree);
3079 
3080         // Check for proper use of serialVersionUID
3081         if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
3082             isSerializable(c) &&
3083             (c.flags() & Flags.ENUM) == 0 &&
3084             (c.flags() & ABSTRACT) == 0) {
3085             checkSerialVersionUID(tree, c);
3086         }
3087 
3088         // Check type annotations applicability rules
3089         validateTypeAnnotations(tree);
3090     }
3091         // where
3092         /** check if a class is a subtype of Serializable, if that is available. */
3093         private boolean isSerializable(ClassSymbol c) {
3094             try {
3095                 syms.serializableType.complete();
3096             }
3097             catch (CompletionFailure e) {
3098                 return false;
3099             }
3100             return types.isSubtype(c.type, syms.serializableType);
3101         }
3102 
3103         /** Check that an appropriate serialVersionUID member is defined. */
3104         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
3105 
3106             // check for presence of serialVersionUID
3107             Scope.Entry e = c.members().lookup(names.serialVersionUID);
3108             while (e.scope != null && e.sym.kind != VAR) e = e.next();
3109             if (e.scope == null) {
3110                 log.warning(tree.pos(), "missing.SVUID", c);
3111                 return;
3112             }
3113 
3114             // check that it is static final
3115             VarSymbol svuid = (VarSymbol)e.sym;
3116             if ((svuid.flags() & (STATIC | FINAL)) !=
3117                 (STATIC | FINAL))
3118                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
3119 
3120             // check that it is long
3121             else if (svuid.type.tag != TypeTags.LONG)
3122                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
3123 
3124             // check constant
3125             else if (svuid.getConstValue() == null)
3126                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
3127         }
3128 
3129     private Type capture(Type type) {
3130         return types.capture(type);
3131     }
3132 
3133     private void validateTypeAnnotations(JCTree tree) {
3134         tree.accept(typeAnnotationsValidator);
3135     }
3136     //where
3137     private final JCTree.Visitor typeAnnotationsValidator =
3138         new TreeScanner() {
3139         public void visitAnnotation(JCAnnotation tree) {
3140             if (tree instanceof JCTypeAnnotation) {
3141                 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
3142             }
3143             super.visitAnnotation(tree);
3144         }
3145         public void visitTypeParameter(JCTypeParameter tree) {
3146             chk.validateTypeAnnotations(tree.annotations, true);
3147             // don't call super. skip type annotations
3148             scan(tree.bounds);
3149         }
3150         public void visitMethodDef(JCMethodDecl tree) {
3151             // need to check static methods
3152             if ((tree.sym.flags() & Flags.STATIC) != 0) {
3153                 for (JCTypeAnnotation a : tree.receiverAnnotations) {
3154                     if (chk.isTypeAnnotation(a, false))
3155                         log.error(a.pos(), "annotation.type.not.applicable");
3156                 }
3157             }
3158             super.visitMethodDef(tree);
3159         }
3160     };
3161 }