1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.Set;
  30 
  31 import com.sun.tools.javac.code.*;
  32 import com.sun.tools.javac.jvm.*;
  33 import com.sun.tools.javac.tree.*;
  34 import com.sun.tools.javac.util.*;
  35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  36 import com.sun.tools.javac.util.List;
  37 
  38 import com.sun.tools.javac.tree.JCTree.*;
  39 import com.sun.tools.javac.code.Lint;
  40 import com.sun.tools.javac.code.Lint.LintCategory;
  41 import com.sun.tools.javac.code.Type.*;
  42 import com.sun.tools.javac.code.Symbol.*;
  43 
  44 import static com.sun.tools.javac.code.Flags.*;
  45 import static com.sun.tools.javac.code.Kinds.*;
  46 import static com.sun.tools.javac.code.TypeTags.*;
  47 
  48 /** Type checking helper class for the attribution phase.
  49  *
  50  *  <p><b>This is NOT part of any supported API.
  51  *  If you write code that depends on this, you do so at your own risk.
  52  *  This code and its internal interfaces are subject to change or
  53  *  deletion without notice.</b>
  54  */
  55 public class Check {
  56     protected static final Context.Key<Check> checkKey =
  57         new Context.Key<Check>();
  58 
  59     private final Names names;
  60     private final Log log;
  61     private final Symtab syms;
  62     private final Infer infer;
  63     private final Types types;
  64     private final JCDiagnostic.Factory diags;
  65     private final boolean skipAnnotations;
  66     private boolean warnOnSyntheticConflicts;
  67     private boolean suppressAbortOnBadClassFile;
  68     private final TreeInfo treeinfo;
  69 
  70     // The set of lint options currently in effect. It is initialized
  71     // from the context, and then is set/reset as needed by Attr as it
  72     // visits all the various parts of the trees during attribution.
  73     private Lint lint;
  74 
  75     public static Check instance(Context context) {
  76         Check instance = context.get(checkKey);
  77         if (instance == null)
  78             instance = new Check(context);
  79         return instance;
  80     }
  81 
  82     protected Check(Context context) {
  83         context.put(checkKey, this);
  84 
  85         names = Names.instance(context);
  86         log = Log.instance(context);
  87         syms = Symtab.instance(context);
  88         infer = Infer.instance(context);
  89         this.types = Types.instance(context);
  90         diags = JCDiagnostic.Factory.instance(context);
  91         Options options = Options.instance(context);
  92         lint = Lint.instance(context);
  93         treeinfo = TreeInfo.instance(context);
  94 
  95         Source source = Source.instance(context);
  96         allowGenerics = source.allowGenerics();
  97         allowAnnotations = source.allowAnnotations();
  98         allowCovariantReturns = source.allowCovariantReturns();
  99         complexInference = options.get("-complexinference") != null;
 100         skipAnnotations = options.get("skipAnnotations") != null;
 101         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
 102         suppressAbortOnBadClassFile = options.get("suppressAbortOnBadClassFile") != null;
 103 
 104         Target target = Target.instance(context);
 105         syntheticNameChar = target.syntheticNameChar();
 106 
 107         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 108         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 109         boolean verboseVarargs = lint.isEnabled(LintCategory.VARARGS);
 110         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
 111         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
 112 
 113         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
 114                 enforceMandatoryWarnings, "deprecated");
 115         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
 116                 enforceMandatoryWarnings, "unchecked");
 117         unsafeVarargsHandler = new MandatoryWarningHandler(log, verboseVarargs,
 118                 enforceMandatoryWarnings, "varargs");
 119         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
 120                 enforceMandatoryWarnings, "sunapi");
 121     }
 122 
 123     /** Switch: generics enabled?
 124      */
 125     boolean allowGenerics;
 126 
 127     /** Switch: annotations enabled?
 128      */
 129     boolean allowAnnotations;
 130 
 131     /** Switch: covariant returns enabled?
 132      */
 133     boolean allowCovariantReturns;
 134 
 135     /** Switch: -complexinference option set?
 136      */
 137     boolean complexInference;
 138 
 139     /** Character for synthetic names
 140      */
 141     char syntheticNameChar;
 142 
 143     /** A table mapping flat names of all compiled classes in this run to their
 144      *  symbols; maintained from outside.
 145      */
 146     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
 147 
 148     /** A handler for messages about deprecated usage.
 149      */
 150     private MandatoryWarningHandler deprecationHandler;
 151 
 152     /** A handler for messages about unchecked or unsafe usage.
 153      */
 154     private MandatoryWarningHandler uncheckedHandler;
 155 
 156     /** A handler for messages about unchecked or unsafe vararg method decl.
 157      */
 158     private MandatoryWarningHandler unsafeVarargsHandler;
 159 
 160     /** A handler for messages about using proprietary API.
 161      */
 162     private MandatoryWarningHandler sunApiHandler;
 163 
 164 /* *************************************************************************
 165  * Errors and Warnings
 166  **************************************************************************/
 167 
 168     Lint setLint(Lint newLint) {
 169         Lint prev = lint;
 170         lint = newLint;
 171         return prev;
 172     }
 173 
 174     /** Warn about deprecated symbol.
 175      *  @param pos        Position to be used for error reporting.
 176      *  @param sym        The deprecated symbol.
 177      */
 178     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 179         if (!lint.isSuppressed(LintCategory.DEPRECATION))
 180             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
 181     }
 182 
 183     /** Warn about unchecked operation.
 184      *  @param pos        Position to be used for error reporting.
 185      *  @param msg        A string describing the problem.
 186      */
 187     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
 188         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 189             uncheckedHandler.report(pos, msg, args);
 190     }
 191 
 192     /** Warn about unsafe vararg method decl.
 193      *  @param pos        Position to be used for error reporting.
 194      *  @param sym        The deprecated symbol.
 195      */
 196     void warnUnsafeVararg(DiagnosticPosition pos, Type elemType) {
 197         if (!lint.isSuppressed(LintCategory.VARARGS))
 198             unsafeVarargsHandler.report(pos, "varargs.non.reifiable.type", elemType);
 199     }
 200 
 201     /** Warn about using proprietary API.
 202      *  @param pos        Position to be used for error reporting.
 203      *  @param msg        A string describing the problem.
 204      */
 205     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
 206         if (!lint.isSuppressed(LintCategory.SUNAPI))
 207             sunApiHandler.report(pos, msg, args);
 208     }
 209 
 210     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
 211         if (lint.isEnabled(LintCategory.STATIC))
 212             log.warning(pos, msg, args);
 213     }
 214 
 215     /**
 216      * Report any deferred diagnostics.
 217      */
 218     public void reportDeferredDiagnostics() {
 219         deprecationHandler.reportDeferredDiagnostic();
 220         uncheckedHandler.reportDeferredDiagnostic();
 221         unsafeVarargsHandler.reportDeferredDiagnostic();
 222         sunApiHandler.reportDeferredDiagnostic();
 223     }
 224 
 225 
 226     /** Report a failure to complete a class.
 227      *  @param pos        Position to be used for error reporting.
 228      *  @param ex         The failure to report.
 229      */
 230     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 231         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
 232         if (ex instanceof ClassReader.BadClassFile
 233                 && !suppressAbortOnBadClassFile) throw new Abort();
 234         else return syms.errType;
 235     }
 236 
 237     /** Report a type error.
 238      *  @param pos        Position to be used for error reporting.
 239      *  @param problem    A string describing the error.
 240      *  @param found      The type that was found.
 241      *  @param req        The type that was required.
 242      */
 243     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
 244         log.error(pos, "prob.found.req",
 245                   problem, found, req);
 246         return types.createErrorType(found);
 247     }
 248 
 249     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
 250         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
 251         return types.createErrorType(found);
 252     }
 253 
 254     /** Report an error that wrong type tag was found.
 255      *  @param pos        Position to be used for error reporting.
 256      *  @param required   An internationalized string describing the type tag
 257      *                    required.
 258      *  @param found      The type that was found.
 259      */
 260     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
 261         // this error used to be raised by the parser,
 262         // but has been delayed to this point:
 263         if (found instanceof Type && ((Type)found).tag == VOID) {
 264             log.error(pos, "illegal.start.of.type");
 265             return syms.errType;
 266         }
 267         log.error(pos, "type.found.req", found, required);
 268         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
 269     }
 270 
 271     /** Report an error that symbol cannot be referenced before super
 272      *  has been called.
 273      *  @param pos        Position to be used for error reporting.
 274      *  @param sym        The referenced symbol.
 275      */
 276     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
 277         log.error(pos, "cant.ref.before.ctor.called", sym);
 278     }
 279 
 280     /** Report duplicate declaration error.
 281      */
 282     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 283         if (!sym.type.isErroneous()) {
 284             log.error(pos, "already.defined", sym, sym.location());
 285         }
 286     }
 287 
 288     /** Report array/varargs duplicate declaration
 289      */
 290     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 291         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 292             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
 293         }
 294     }
 295 
 296 /* ************************************************************************
 297  * duplicate declaration checking
 298  *************************************************************************/
 299 
 300     /** Check that variable does not hide variable with same name in
 301      *  immediately enclosing local scope.
 302      *  @param pos           Position for error reporting.
 303      *  @param v             The symbol.
 304      *  @param s             The scope.
 305      */
 306     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 307         if (s.next != null) {
 308             for (Scope.Entry e = s.next.lookup(v.name);
 309                  e.scope != null && e.sym.owner == v.owner;
 310                  e = e.next()) {
 311                 if (e.sym.kind == VAR &&
 312                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 313                     v.name != names.error) {
 314                     duplicateError(pos, e.sym);
 315                     return;
 316                 }
 317             }
 318         }
 319     }
 320 
 321     /** Check that a class or interface does not hide a class or
 322      *  interface with same name in immediately enclosing local scope.
 323      *  @param pos           Position for error reporting.
 324      *  @param c             The symbol.
 325      *  @param s             The scope.
 326      */
 327     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 328         if (s.next != null) {
 329             for (Scope.Entry e = s.next.lookup(c.name);
 330                  e.scope != null && e.sym.owner == c.owner;
 331                  e = e.next()) {
 332                 if (e.sym.kind == TYP &&
 333                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 334                     c.name != names.error) {
 335                     duplicateError(pos, e.sym);
 336                     return;
 337                 }
 338             }
 339         }
 340     }
 341 
 342     /** Check that class does not have the same name as one of
 343      *  its enclosing classes, or as a class defined in its enclosing scope.
 344      *  return true if class is unique in its enclosing scope.
 345      *  @param pos           Position for error reporting.
 346      *  @param name          The class name.
 347      *  @param s             The enclosing scope.
 348      */
 349     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 350         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
 351             if (e.sym.kind == TYP && e.sym.name != names.error) {
 352                 duplicateError(pos, e.sym);
 353                 return false;
 354             }
 355         }
 356         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 357             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
 358                 duplicateError(pos, sym);
 359                 return true;
 360             }
 361         }
 362         return true;
 363     }
 364 
 365 /* *************************************************************************
 366  * Class name generation
 367  **************************************************************************/
 368 
 369     /** Return name of local class.
 370      *  This is of the form    <enclClass> $ n <classname>
 371      *  where
 372      *    enclClass is the flat name of the enclosing class,
 373      *    classname is the simple name of the local class
 374      */
 375     Name localClassName(ClassSymbol c) {
 376         for (int i=1; ; i++) {
 377             Name flatname = names.
 378                 fromString("" + c.owner.enclClass().flatname +
 379                            syntheticNameChar + i +
 380                            c.name);
 381             if (compiled.get(flatname) == null) return flatname;
 382         }
 383     }
 384 
 385 /* *************************************************************************
 386  * Type Checking
 387  **************************************************************************/
 388 
 389     /** Check that a given type is assignable to a given proto-type.
 390      *  If it is, return the type, otherwise return errType.
 391      *  @param pos        Position to be used for error reporting.
 392      *  @param found      The type that was found.
 393      *  @param req        The type that was required.
 394      */
 395     Type checkType(DiagnosticPosition pos, Type found, Type req) {
 396         return checkType(pos, found, req, "incompatible.types");
 397     }
 398 
 399     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
 400         if (req.tag == ERROR)
 401             return req;
 402         if (found.tag == FORALL)
 403             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
 404         if (req.tag == NONE)
 405             return found;
 406         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
 407             return found;
 408         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
 409             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
 410         if (found.isSuperBound()) {
 411             log.error(pos, "assignment.from.super-bound", found);
 412             return types.createErrorType(found);
 413         }
 414         if (req.isExtendsBound()) {
 415             log.error(pos, "assignment.to.extends-bound", req);
 416             return types.createErrorType(found);
 417         }
 418         return typeError(pos, diags.fragment(errKey), found, req);
 419     }
 420 
 421     /** Instantiate polymorphic type to some prototype, unless
 422      *  prototype is `anyPoly' in which case polymorphic type
 423      *  is returned unchanged.
 424      */
 425     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
 426         if (pt == Infer.anyPoly && complexInference) {
 427             return t;
 428         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
 429             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
 430             return instantiatePoly(pos, t, newpt, warn);
 431         } else if (pt.tag == ERROR) {
 432             return pt;
 433         } else {
 434             try {
 435                 return infer.instantiateExpr(t, pt, warn);
 436             } catch (Infer.NoInstanceException ex) {
 437                 if (ex.isAmbiguous) {
 438                     JCDiagnostic d = ex.getDiagnostic();
 439                     log.error(pos,
 440                               "undetermined.type" + (d!=null ? ".1" : ""),
 441                               t, d);
 442                     return types.createErrorType(pt);
 443                 } else {
 444                     JCDiagnostic d = ex.getDiagnostic();
 445                     return typeError(pos,
 446                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
 447                                      t, pt);
 448                 }
 449             } catch (Infer.InvalidInstanceException ex) {
 450                 JCDiagnostic d = ex.getDiagnostic();
 451                 log.error(pos, "invalid.inferred.types", t.tvars, d);
 452                 return types.createErrorType(pt);
 453             }
 454         }
 455     }
 456 
 457     /** Check that a given type can be cast to a given target type.
 458      *  Return the result of the cast.
 459      *  @param pos        Position to be used for error reporting.
 460      *  @param found      The type that is being cast.
 461      *  @param req        The target type of the cast.
 462      */
 463     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 464         if (found.tag == FORALL) {
 465             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
 466             return req;
 467         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
 468             return req;
 469         } else {
 470             return typeError(pos,
 471                              diags.fragment("inconvertible.types"),
 472                              found, req);
 473         }
 474     }
 475 //where
 476         /** Is type a type variable, or a (possibly multi-dimensional) array of
 477          *  type variables?
 478          */
 479         boolean isTypeVar(Type t) {
 480             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
 481         }
 482 
 483     /** Check that a type is within some bounds.
 484      *
 485      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
 486      *  type argument.
 487      *  @param pos           Position to be used for error reporting.
 488      *  @param a             The type that should be bounded by bs.
 489      *  @param bs            The bound.
 490      */
 491     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
 492          if (a.isUnbound()) {
 493              return;
 494          } else if (a.tag != WILDCARD) {
 495              a = types.upperBound(a);
 496              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
 497                  if (!types.isSubtype(a, l.head)) {
 498                      log.error(pos, "not.within.bounds", a);
 499                      return;
 500                  }
 501              }
 502          } else if (a.isExtendsBound()) {
 503              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
 504                  log.error(pos, "not.within.bounds", a);
 505          } else if (a.isSuperBound()) {
 506              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
 507                  log.error(pos, "not.within.bounds", a);
 508          }
 509      }
 510 
 511     /** Check that a type is within some bounds.
 512      *
 513      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
 514      *  type argument.
 515      *  @param pos           Position to be used for error reporting.
 516      *  @param a             The type that should be bounded by bs.
 517      *  @param bs            The bound.
 518      */
 519     private void checkCapture(JCTypeApply tree) {
 520         List<JCExpression> args = tree.getTypeArguments();
 521         for (Type arg : types.capture(tree.type).getTypeArguments()) {
 522             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
 523                 log.error(args.head.pos, "not.within.bounds", args.head.type);
 524                 break;
 525             }
 526             args = args.tail;
 527         }
 528      }
 529 
 530     /** Check that type is different from 'void'.
 531      *  @param pos           Position to be used for error reporting.
 532      *  @param t             The type to be checked.
 533      */
 534     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 535         if (t.tag == VOID) {
 536             log.error(pos, "void.not.allowed.here");
 537             return types.createErrorType(t);
 538         } else {
 539             return t;
 540         }
 541     }
 542 
 543     /** Check that type is a class or interface type.
 544      *  @param pos           Position to be used for error reporting.
 545      *  @param t             The type to be checked.
 546      */
 547     Type checkClassType(DiagnosticPosition pos, Type t) {
 548         if (t.tag != CLASS && t.tag != ERROR)
 549             return typeTagError(pos,
 550                                 diags.fragment("type.req.class"),
 551                                 (t.tag == TYPEVAR)
 552                                 ? diags.fragment("type.parameter", t)
 553                                 : t);
 554         else
 555             return t;
 556     }
 557 
 558     /** Check that type is a class or interface type.
 559      *  @param pos           Position to be used for error reporting.
 560      *  @param t             The type to be checked.
 561      *  @param noBounds    True if type bounds are illegal here.
 562      */
 563     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 564         t = checkClassType(pos, t);
 565         if (noBounds && t.isParameterized()) {
 566             List<Type> args = t.getTypeArguments();
 567             while (args.nonEmpty()) {
 568                 if (args.head.tag == WILDCARD)
 569                     return typeTagError(pos,
 570                                         diags.fragment("type.req.exact"),
 571                                         args.head);
 572                 args = args.tail;
 573             }
 574         }
 575         return t;
 576     }
 577 
 578     /** Check that type is a reifiable class, interface or array type.
 579      *  @param pos           Position to be used for error reporting.
 580      *  @param t             The type to be checked.
 581      */
 582     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
 583         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
 584             return typeTagError(pos,
 585                                 diags.fragment("type.req.class.array"),
 586                                 t);
 587         } else if (!types.isReifiable(t)) {
 588             log.error(pos, "illegal.generic.type.for.instof");
 589             return types.createErrorType(t);
 590         } else {
 591             return t;
 592         }
 593     }
 594 
 595     /** Check that type is a reference type, i.e. a class, interface or array type
 596      *  or a type variable.
 597      *  @param pos           Position to be used for error reporting.
 598      *  @param t             The type to be checked.
 599      */
 600     Type checkRefType(DiagnosticPosition pos, Type t) {
 601         switch (t.tag) {
 602         case CLASS:
 603         case ARRAY:
 604         case TYPEVAR:
 605         case WILDCARD:
 606         case ERROR:
 607             return t;
 608         default:
 609             return typeTagError(pos,
 610                                 diags.fragment("type.req.ref"),
 611                                 t);
 612         }
 613     }
 614 
 615     /** Check that each type is a reference type, i.e. a class, interface or array type
 616      *  or a type variable.
 617      *  @param trees         Original trees, used for error reporting.
 618      *  @param types         The types to be checked.
 619      */
 620     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 621         List<JCExpression> tl = trees;
 622         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 623             l.head = checkRefType(tl.head.pos(), l.head);
 624             tl = tl.tail;
 625         }
 626         return types;
 627     }
 628 
 629     /** Check that type is a null or reference type.
 630      *  @param pos           Position to be used for error reporting.
 631      *  @param t             The type to be checked.
 632      */
 633     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 634         switch (t.tag) {
 635         case CLASS:
 636         case ARRAY:
 637         case TYPEVAR:
 638         case WILDCARD:
 639         case BOT:
 640         case ERROR:
 641             return t;
 642         default:
 643             return typeTagError(pos,
 644                                 diags.fragment("type.req.ref"),
 645                                 t);
 646         }
 647     }
 648 
 649     /** Check that flag set does not contain elements of two conflicting sets. s
 650      *  Return true if it doesn't.
 651      *  @param pos           Position to be used for error reporting.
 652      *  @param flags         The set of flags to be checked.
 653      *  @param set1          Conflicting flags set #1.
 654      *  @param set2          Conflicting flags set #2.
 655      */
 656     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 657         if ((flags & set1) != 0 && (flags & set2) != 0) {
 658             log.error(pos,
 659                       "illegal.combination.of.modifiers",
 660                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
 661                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
 662             return false;
 663         } else
 664             return true;
 665     }
 666 
 667     /** Check that the type inferred using the diamond operator does not contain
 668      *  non-denotable types such as captured types or intersection types.
 669      *  @param t the type inferred using the diamond operator
 670      */
 671     List<Type> checkDiamond(ClassType t) {
 672         DiamondTypeChecker dtc = new DiamondTypeChecker();
 673         ListBuffer<Type> buf = ListBuffer.lb();
 674         for (Type arg : t.getTypeArguments()) {
 675             if (!dtc.visit(arg, null)) {
 676                 buf.append(arg);
 677             }
 678         }
 679         return buf.toList();
 680     }
 681 
 682     static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
 683         public Boolean visitType(Type t, Void s) {
 684             return true;
 685         }
 686         @Override
 687         public Boolean visitClassType(ClassType t, Void s) {
 688             if (t.isCompound()) {
 689                 return false;
 690             }
 691             for (Type targ : t.getTypeArguments()) {
 692                 if (!visit(targ, s)) {
 693                     return false;
 694                 }
 695             }
 696             return true;
 697         }
 698         @Override
 699         public Boolean visitCapturedType(CapturedType t, Void s) {
 700             return false;
 701         }
 702     }
 703 
 704     void checkVarargMethodDecl(JCMethodDecl tree) {
 705         MethodSymbol m = tree.sym;
 706         //check the element type of the vararg
 707         if (m.isVarArgs()) {
 708             Type varargElemType = types.elemtype(tree.params.last().type);
 709             if (!types.isReifiable(varargElemType)) {
 710                 warnUnsafeVararg(tree.params.head.pos(), varargElemType);
 711             }
 712         }
 713     }
 714 
 715     /**
 716      * Check that vararg method call is sound
 717      * @param pos Position to be used for error reporting.
 718      * @param argtypes Actual arguments supplied to vararg method.
 719      */
 720     void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym, Env<AttrContext> env) {
 721         Env<AttrContext> calleeLintEnv = env;
 722         while (calleeLintEnv.info.lint == null)
 723             calleeLintEnv = calleeLintEnv.next;
 724         Lint calleeLint = calleeLintEnv.info.lint.augment(msym.attributes_field, msym.flags());
 725         Type argtype = argtypes.last();
 726         if (!types.isReifiable(argtype) && !calleeLint.isSuppressed(Lint.LintCategory.VARARGS)) {
 727             warnUnchecked(pos,
 728                               "unchecked.generic.array.creation",
 729                               argtype);
 730         }
 731     }
 732 
 733     /** Check that given modifiers are legal for given symbol and
 734      *  return modifiers together with any implicit modififiers for that symbol.
 735      *  Warning: we can't use flags() here since this method
 736      *  is called during class enter, when flags() would cause a premature
 737      *  completion.
 738      *  @param pos           Position to be used for error reporting.
 739      *  @param flags         The set of modifiers given in a definition.
 740      *  @param sym           The defined symbol.
 741      */
 742     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
 743         long mask;
 744         long implicit = 0;
 745         switch (sym.kind) {
 746         case VAR:
 747             if (sym.owner.kind != TYP)
 748                 mask = LocalVarFlags;
 749             else if ((sym.owner.flags_field & INTERFACE) != 0)
 750                 mask = implicit = InterfaceVarFlags;
 751             else
 752                 mask = VarFlags;
 753             break;
 754         case MTH:
 755             if (sym.name == names.init) {
 756                 if ((sym.owner.flags_field & ENUM) != 0) {
 757                     // enum constructors cannot be declared public or
 758                     // protected and must be implicitly or explicitly
 759                     // private
 760                     implicit = PRIVATE;
 761                     mask = PRIVATE;
 762                 } else
 763                     mask = ConstructorFlags;
 764             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
 765                 mask = implicit = InterfaceMethodFlags;
 766             else {
 767                 mask = MethodFlags;
 768             }
 769             // Imply STRICTFP if owner has STRICTFP set.
 770             if (((flags|implicit) & Flags.ABSTRACT) == 0)
 771               implicit |= sym.owner.flags_field & STRICTFP;
 772             break;
 773         case TYP:
 774             if (sym.isLocal()) {
 775                 mask = LocalClassFlags;
 776                 if (sym.name.isEmpty()) { // Anonymous class
 777                     // Anonymous classes in static methods are themselves static;
 778                     // that's why we admit STATIC here.
 779                     mask |= STATIC;
 780                     // JLS: Anonymous classes are final.
 781                     implicit |= FINAL;
 782                 }
 783                 if ((sym.owner.flags_field & STATIC) == 0 &&
 784                     (flags & ENUM) != 0)
 785                     log.error(pos, "enums.must.be.static");
 786             } else if (sym.owner.kind == TYP) {
 787                 mask = MemberClassFlags;
 788                 if (sym.owner.owner.kind == PCK ||
 789                     (sym.owner.flags_field & STATIC) != 0)
 790                     mask |= STATIC;
 791                 else if ((flags & ENUM) != 0)
 792                     log.error(pos, "enums.must.be.static");
 793                 // Nested interfaces and enums are always STATIC (Spec ???)
 794                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
 795             } else {
 796                 mask = ClassFlags;
 797             }
 798             // Interfaces are always ABSTRACT
 799             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
 800 
 801             if ((flags & ENUM) != 0) {
 802                 // enums can't be declared abstract or final
 803                 mask &= ~(ABSTRACT | FINAL);
 804                 implicit |= implicitEnumFinalFlag(tree);
 805             }
 806             // Imply STRICTFP if owner has STRICTFP set.
 807             implicit |= sym.owner.flags_field & STRICTFP;
 808             break;
 809         default:
 810             throw new AssertionError();
 811         }
 812         long illegal = flags & StandardFlags & ~mask;
 813         if (illegal != 0) {
 814             if ((illegal & INTERFACE) != 0) {
 815                 log.error(pos, "intf.not.allowed.here");
 816                 mask |= INTERFACE;
 817             }
 818             else {
 819                 log.error(pos,
 820                           "mod.not.allowed.here", asFlagSet(illegal));
 821             }
 822         }
 823         else if ((sym.kind == TYP ||
 824                   // ISSUE: Disallowing abstract&private is no longer appropriate
 825                   // in the presence of inner classes. Should it be deleted here?
 826                   checkDisjoint(pos, flags,
 827                                 ABSTRACT,
 828                                 PRIVATE | STATIC))
 829                  &&
 830                  checkDisjoint(pos, flags,
 831                                ABSTRACT | INTERFACE,
 832                                FINAL | NATIVE | SYNCHRONIZED)
 833                  &&
 834                  checkDisjoint(pos, flags,
 835                                PUBLIC,
 836                                PRIVATE | PROTECTED)
 837                  &&
 838                  checkDisjoint(pos, flags,
 839                                PRIVATE,
 840                                PUBLIC | PROTECTED)
 841                  &&
 842                  checkDisjoint(pos, flags,
 843                                FINAL,
 844                                VOLATILE)
 845                  &&
 846                  (sym.kind == TYP ||
 847                   checkDisjoint(pos, flags,
 848                                 ABSTRACT | NATIVE,
 849                                 STRICTFP))) {
 850             // skip
 851         }
 852         return flags & (mask | ~StandardFlags) | implicit;
 853     }
 854 
 855 
 856     /** Determine if this enum should be implicitly final.
 857      *
 858      *  If the enum has no specialized enum contants, it is final.
 859      *
 860      *  If the enum does have specialized enum contants, it is
 861      *  <i>not</i> final.
 862      */
 863     private long implicitEnumFinalFlag(JCTree tree) {
 864         if (tree.getTag() != JCTree.CLASSDEF) return 0;
 865         class SpecialTreeVisitor extends JCTree.Visitor {
 866             boolean specialized;
 867             SpecialTreeVisitor() {
 868                 this.specialized = false;
 869             };
 870 
 871             @Override
 872             public void visitTree(JCTree tree) { /* no-op */ }
 873 
 874             @Override
 875             public void visitVarDef(JCVariableDecl tree) {
 876                 if ((tree.mods.flags & ENUM) != 0) {
 877                     if (tree.init instanceof JCNewClass &&
 878                         ((JCNewClass) tree.init).def != null) {
 879                         specialized = true;
 880                     }
 881                 }
 882             }
 883         }
 884 
 885         SpecialTreeVisitor sts = new SpecialTreeVisitor();
 886         JCClassDecl cdef = (JCClassDecl) tree;
 887         for (JCTree defs: cdef.defs) {
 888             defs.accept(sts);
 889             if (sts.specialized) return 0;
 890         }
 891         return FINAL;
 892     }
 893 
 894 /* *************************************************************************
 895  * Type Validation
 896  **************************************************************************/
 897 
 898     /** Validate a type expression. That is,
 899      *  check that all type arguments of a parametric type are within
 900      *  their bounds. This must be done in a second phase after type attributon
 901      *  since a class might have a subclass as type parameter bound. E.g:
 902      *
 903      *  class B<A extends C> { ... }
 904      *  class C extends B<C> { ... }
 905      *
 906      *  and we can't make sure that the bound is already attributed because
 907      *  of possible cycles.
 908      */
 909     private Validator validator = new Validator();
 910 
 911     /** Visitor method: Validate a type expression, if it is not null, catching
 912      *  and reporting any completion failures.
 913      */
 914     void validate(JCTree tree, Env<AttrContext> env) {
 915         try {
 916             if (tree != null) {
 917                 validator.env = env;
 918                 tree.accept(validator);
 919                 checkRaw(tree, env);
 920             }
 921         } catch (CompletionFailure ex) {
 922             completionError(tree.pos(), ex);
 923         }
 924     }
 925     //where
 926     void checkRaw(JCTree tree, Env<AttrContext> env) {
 927         if (lint.isEnabled(Lint.LintCategory.RAW) &&
 928             tree.type.tag == CLASS &&
 929             !TreeInfo.isDiamond(tree) &&
 930             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
 931             tree.type.isRaw()) {
 932             log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
 933         }
 934     }
 935 
 936     /** Visitor method: Validate a list of type expressions.
 937      */
 938     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
 939         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 940             validate(l.head, env);
 941     }
 942 
 943     /** A visitor class for type validation.
 944      */
 945     class Validator extends JCTree.Visitor {
 946 
 947         @Override
 948         public void visitTypeArray(JCArrayTypeTree tree) {
 949             validate(tree.elemtype, env);
 950         }
 951 
 952         @Override
 953         public void visitTypeApply(JCTypeApply tree) {
 954             if (tree.type.tag == CLASS) {
 955                 List<Type> formals = tree.type.tsym.type.allparams();
 956                 List<Type> actuals = tree.type.allparams();
 957                 List<JCExpression> args = tree.arguments;
 958                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
 959                 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
 960 
 961                 // For matching pairs of actual argument types `a' and
 962                 // formal type parameters with declared bound `b' ...
 963                 while (args.nonEmpty() && forms.nonEmpty()) {
 964                     validate(args.head, env);
 965 
 966                     // exact type arguments needs to know their
 967                     // bounds (for upper and lower bound
 968                     // calculations).  So we create new TypeVars with
 969                     // bounds substed with actuals.
 970                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
 971                                                       formals,
 972                                                       actuals));
 973 
 974                     args = args.tail;
 975                     forms = forms.tail;
 976                 }
 977 
 978                 args = tree.arguments;
 979                 List<Type> tvars_cap = types.substBounds(formals,
 980                                           formals,
 981                                           types.capture(tree.type).allparams());
 982                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
 983                     // Let the actual arguments know their bound
 984                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
 985                     args = args.tail;
 986                     tvars_cap = tvars_cap.tail;
 987                 }
 988 
 989                 args = tree.arguments;
 990                 List<Type> tvars = tvars_buf.toList();
 991 
 992                 while (args.nonEmpty() && tvars.nonEmpty()) {
 993                     Type actual = types.subst(args.head.type,
 994                         tree.type.tsym.type.getTypeArguments(),
 995                         tvars_buf.toList());
 996                     checkExtends(args.head.pos(),
 997                                  actual,
 998                                  (TypeVar)tvars.head);
 999                     args = args.tail;
1000                     tvars = tvars.tail;
1001                 }
1002 
1003                 checkCapture(tree);
1004 
1005                 // Check that this type is either fully parameterized, or
1006                 // not parameterized at all.
1007                 if (tree.type.getEnclosingType().isRaw())
1008                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1009                 if (tree.clazz.getTag() == JCTree.SELECT)
1010                     visitSelectInternal((JCFieldAccess)tree.clazz);
1011             }
1012         }
1013 
1014         @Override
1015         public void visitTypeParameter(JCTypeParameter tree) {
1016             validate(tree.bounds, env);
1017             checkClassBounds(tree.pos(), tree.type);
1018         }
1019 
1020         @Override
1021         public void visitWildcard(JCWildcard tree) {
1022             if (tree.inner != null)
1023                 validate(tree.inner, env);
1024         }
1025 
1026         @Override
1027         public void visitSelect(JCFieldAccess tree) {
1028             if (tree.type.tag == CLASS) {
1029                 visitSelectInternal(tree);
1030 
1031                 // Check that this type is either fully parameterized, or
1032                 // not parameterized at all.
1033                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1034                     log.error(tree.pos(), "improperly.formed.type.param.missing");
1035             }
1036         }
1037         public void visitSelectInternal(JCFieldAccess tree) {
1038             if (tree.type.tsym.isStatic() &&
1039                 tree.selected.type.isParameterized()) {
1040                 // The enclosing type is not a class, so we are
1041                 // looking at a static member type.  However, the
1042                 // qualifying expression is parameterized.
1043                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
1044             } else {
1045                 // otherwise validate the rest of the expression
1046                 tree.selected.accept(this);
1047             }
1048         }
1049 
1050         @Override
1051         public void visitAnnotatedType(JCAnnotatedType tree) {
1052             tree.underlyingType.accept(this);
1053         }
1054 
1055         /** Default visitor method: do nothing.
1056          */
1057         @Override
1058         public void visitTree(JCTree tree) {
1059         }
1060 
1061         Env<AttrContext> env;
1062     }
1063 
1064 /* *************************************************************************
1065  * Exception checking
1066  **************************************************************************/
1067 
1068     /* The following methods treat classes as sets that contain
1069      * the class itself and all their subclasses
1070      */
1071 
1072     /** Is given type a subtype of some of the types in given list?
1073      */
1074     boolean subset(Type t, List<Type> ts) {
1075         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1076             if (types.isSubtype(t, l.head)) return true;
1077         return false;
1078     }
1079 
1080     /** Is given type a subtype or supertype of
1081      *  some of the types in given list?
1082      */
1083     boolean intersects(Type t, List<Type> ts) {
1084         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1085             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1086         return false;
1087     }
1088 
1089     /** Add type set to given type list, unless it is a subclass of some class
1090      *  in the list.
1091      */
1092     List<Type> incl(Type t, List<Type> ts) {
1093         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1094     }
1095 
1096     /** Remove type set from type set list.
1097      */
1098     List<Type> excl(Type t, List<Type> ts) {
1099         if (ts.isEmpty()) {
1100             return ts;
1101         } else {
1102             List<Type> ts1 = excl(t, ts.tail);
1103             if (types.isSubtype(ts.head, t)) return ts1;
1104             else if (ts1 == ts.tail) return ts;
1105             else return ts1.prepend(ts.head);
1106         }
1107     }
1108 
1109     /** Form the union of two type set lists.
1110      */
1111     List<Type> union(List<Type> ts1, List<Type> ts2) {
1112         List<Type> ts = ts1;
1113         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1114             ts = incl(l.head, ts);
1115         return ts;
1116     }
1117 
1118     /** Form the difference of two type lists.
1119      */
1120     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1121         List<Type> ts = ts1;
1122         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1123             ts = excl(l.head, ts);
1124         return ts;
1125     }
1126 
1127     /** Form the intersection of two type lists.
1128      */
1129     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1130         List<Type> ts = List.nil();
1131         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1132             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1133         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1134             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1135         return ts;
1136     }
1137 
1138     /** Is exc an exception symbol that need not be declared?
1139      */
1140     boolean isUnchecked(ClassSymbol exc) {
1141         return
1142             exc.kind == ERR ||
1143             exc.isSubClass(syms.errorType.tsym, types) ||
1144             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1145     }
1146 
1147     /** Is exc an exception type that need not be declared?
1148      */
1149     boolean isUnchecked(Type exc) {
1150         return
1151             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
1152             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
1153             exc.tag == BOT;
1154     }
1155 
1156     /** Same, but handling completion failures.
1157      */
1158     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1159         try {
1160             return isUnchecked(exc);
1161         } catch (CompletionFailure ex) {
1162             completionError(pos, ex);
1163             return true;
1164         }
1165     }
1166 
1167     /** Is exc handled by given exception list?
1168      */
1169     boolean isHandled(Type exc, List<Type> handled) {
1170         return isUnchecked(exc) || subset(exc, handled);
1171     }
1172 
1173     /** Return all exceptions in thrown list that are not in handled list.
1174      *  @param thrown     The list of thrown exceptions.
1175      *  @param handled    The list of handled exceptions.
1176      */
1177     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1178         List<Type> unhandled = List.nil();
1179         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1180             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1181         return unhandled;
1182     }
1183 
1184 /* *************************************************************************
1185  * Overriding/Implementation checking
1186  **************************************************************************/
1187 
1188     /** The level of access protection given by a flag set,
1189      *  where PRIVATE is highest and PUBLIC is lowest.
1190      */
1191     static int protection(long flags) {
1192         switch ((short)(flags & AccessFlags)) {
1193         case PRIVATE: return 3;
1194         case PROTECTED: return 1;
1195         default:
1196         case PUBLIC: return 0;
1197         case 0: return 2;
1198         }
1199     }
1200 
1201     /** A customized "cannot override" error message.
1202      *  @param m      The overriding method.
1203      *  @param other  The overridden method.
1204      *  @return       An internationalized string.
1205      */
1206     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1207         String key;
1208         if ((other.owner.flags() & INTERFACE) == 0)
1209             key = "cant.override";
1210         else if ((m.owner.flags() & INTERFACE) == 0)
1211             key = "cant.implement";
1212         else
1213             key = "clashes.with";
1214         return diags.fragment(key, m, m.location(), other, other.location());
1215     }
1216 
1217     /** A customized "override" warning message.
1218      *  @param m      The overriding method.
1219      *  @param other  The overridden method.
1220      *  @return       An internationalized string.
1221      */
1222     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1223         String key;
1224         if ((other.owner.flags() & INTERFACE) == 0)
1225             key = "unchecked.override";
1226         else if ((m.owner.flags() & INTERFACE) == 0)
1227             key = "unchecked.implement";
1228         else
1229             key = "unchecked.clash.with";
1230         return diags.fragment(key, m, m.location(), other, other.location());
1231     }
1232 
1233     /** A customized "override" warning message.
1234      *  @param m      The overriding method.
1235      *  @param other  The overridden method.
1236      *  @return       An internationalized string.
1237      */
1238     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1239         String key;
1240         if ((other.owner.flags() & INTERFACE) == 0)
1241             key = "varargs.override";
1242         else  if ((m.owner.flags() & INTERFACE) == 0)
1243             key = "varargs.implement";
1244         else
1245             key = "varargs.clash.with";
1246         return diags.fragment(key, m, m.location(), other, other.location());
1247     }
1248 
1249     /** Check that this method conforms with overridden method 'other'.
1250      *  where `origin' is the class where checking started.
1251      *  Complications:
1252      *  (1) Do not check overriding of synthetic methods
1253      *      (reason: they might be final).
1254      *      todo: check whether this is still necessary.
1255      *  (2) Admit the case where an interface proxy throws fewer exceptions
1256      *      than the method it implements. Augment the proxy methods with the
1257      *      undeclared exceptions in this case.
1258      *  (3) When generics are enabled, admit the case where an interface proxy
1259      *      has a result type
1260      *      extended by the result type of the method it implements.
1261      *      Change the proxies result type to the smaller type in this case.
1262      *
1263      *  @param tree         The tree from which positions
1264      *                      are extracted for errors.
1265      *  @param m            The overriding method.
1266      *  @param other        The overridden method.
1267      *  @param origin       The class of which the overriding method
1268      *                      is a member.
1269      */
1270     void checkOverride(JCTree tree,
1271                        MethodSymbol m,
1272                        MethodSymbol other,
1273                        ClassSymbol origin) {
1274         // Don't check overriding of synthetic methods or by bridge methods.
1275         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1276             return;
1277         }
1278 
1279         // Error if static method overrides instance method (JLS 8.4.6.2).
1280         if ((m.flags() & STATIC) != 0 &&
1281                    (other.flags() & STATIC) == 0) {
1282             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1283                       cannotOverride(m, other));
1284             return;
1285         }
1286 
1287         // Error if instance method overrides static or final
1288         // method (JLS 8.4.6.1).
1289         if ((other.flags() & FINAL) != 0 ||
1290                  (m.flags() & STATIC) == 0 &&
1291                  (other.flags() & STATIC) != 0) {
1292             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1293                       cannotOverride(m, other),
1294                       asFlagSet(other.flags() & (FINAL | STATIC)));
1295             return;
1296         }
1297 
1298         if ((m.owner.flags() & ANNOTATION) != 0) {
1299             // handled in validateAnnotationMethod
1300             return;
1301         }
1302 
1303         // Error if overriding method has weaker access (JLS 8.4.6.3).
1304         if ((origin.flags() & INTERFACE) == 0 &&
1305                  protection(m.flags()) > protection(other.flags())) {
1306             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1307                       cannotOverride(m, other),
1308                       other.flags() == 0 ?
1309                           Flag.PACKAGE :
1310                           asFlagSet(other.flags() & AccessFlags));
1311             return;
1312         }
1313 
1314         Type mt = types.memberType(origin.type, m);
1315         Type ot = types.memberType(origin.type, other);
1316         // Error if overriding result type is different
1317         // (or, in the case of generics mode, not a subtype) of
1318         // overridden result type. We have to rename any type parameters
1319         // before comparing types.
1320         List<Type> mtvars = mt.getTypeArguments();
1321         List<Type> otvars = ot.getTypeArguments();
1322         Type mtres = mt.getReturnType();
1323         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1324 
1325         overrideWarner.warned = false;
1326         boolean resultTypesOK =
1327             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1328         if (!resultTypesOK) {
1329             if (!allowCovariantReturns &&
1330                 m.owner != origin &&
1331                 m.owner.isSubClass(other.owner, types)) {
1332                 // allow limited interoperability with covariant returns
1333             } else {
1334                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1335                           "override.incompatible.ret",
1336                           cannotOverride(m, other),
1337                           mtres, otres);
1338                 return;
1339             }
1340         } else if (overrideWarner.warned) {
1341             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1342                     "override.unchecked.ret",
1343                     uncheckedOverrides(m, other),
1344                     mtres, otres);
1345         }
1346 
1347         // Error if overriding method throws an exception not reported
1348         // by overridden method.
1349         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1350         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1351         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1352         if (unhandledErased.nonEmpty()) {
1353             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1354                       "override.meth.doesnt.throw",
1355                       cannotOverride(m, other),
1356                       unhandledUnerased.head);
1357             return;
1358         }
1359         else if (unhandledUnerased.nonEmpty()) {
1360             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1361                           "override.unchecked.thrown",
1362                          cannotOverride(m, other),
1363                          unhandledUnerased.head);
1364             return;
1365         }
1366 
1367         // Optional warning if varargs don't agree
1368         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1369             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
1370             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1371                         ((m.flags() & Flags.VARARGS) != 0)
1372                         ? "override.varargs.missing"
1373                         : "override.varargs.extra",
1374                         varargsOverrides(m, other));
1375         }
1376 
1377         // Warn if instance method overrides bridge method (compiler spec ??)
1378         if ((other.flags() & BRIDGE) != 0) {
1379             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1380                         uncheckedOverrides(m, other));
1381         }
1382 
1383         // Warn if a deprecated method overridden by a non-deprecated one.
1384         if ((other.flags() & DEPRECATED) != 0
1385             && (m.flags() & DEPRECATED) == 0
1386             && m.outermostClass() != other.outermostClass()
1387             && !isDeprecatedOverrideIgnorable(other, origin)) {
1388             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
1389         }
1390     }
1391     // where
1392         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1393             // If the method, m, is defined in an interface, then ignore the issue if the method
1394             // is only inherited via a supertype and also implemented in the supertype,
1395             // because in that case, we will rediscover the issue when examining the method
1396             // in the supertype.
1397             // If the method, m, is not defined in an interface, then the only time we need to
1398             // address the issue is when the method is the supertype implemementation: any other
1399             // case, we will have dealt with when examining the supertype classes
1400             ClassSymbol mc = m.enclClass();
1401             Type st = types.supertype(origin.type);
1402             if (st.tag != CLASS)
1403                 return true;
1404             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1405 
1406             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1407                 List<Type> intfs = types.interfaces(origin.type);
1408                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1409             }
1410             else
1411                 return (stimpl != m);
1412         }
1413 
1414 
1415     // used to check if there were any unchecked conversions
1416     Warner overrideWarner = new Warner();
1417 
1418     /** Check that a class does not inherit two concrete methods
1419      *  with the same signature.
1420      *  @param pos          Position to be used for error reporting.
1421      *  @param site         The class type to be checked.
1422      */
1423     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1424         Type sup = types.supertype(site);
1425         if (sup.tag != CLASS) return;
1426 
1427         for (Type t1 = sup;
1428              t1.tsym.type.isParameterized();
1429              t1 = types.supertype(t1)) {
1430             for (Scope.Entry e1 = t1.tsym.members().elems;
1431                  e1 != null;
1432                  e1 = e1.sibling) {
1433                 Symbol s1 = e1.sym;
1434                 if (s1.kind != MTH ||
1435                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1436                     !s1.isInheritedIn(site.tsym, types) ||
1437                     ((MethodSymbol)s1).implementation(site.tsym,
1438                                                       types,
1439                                                       true) != s1)
1440                     continue;
1441                 Type st1 = types.memberType(t1, s1);
1442                 int s1ArgsLength = st1.getParameterTypes().length();
1443                 if (st1 == s1.type) continue;
1444 
1445                 for (Type t2 = sup;
1446                      t2.tag == CLASS;
1447                      t2 = types.supertype(t2)) {
1448                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
1449                          e2.scope != null;
1450                          e2 = e2.next()) {
1451                         Symbol s2 = e2.sym;
1452                         if (s2 == s1 ||
1453                             s2.kind != MTH ||
1454                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1455                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1456                             !s2.isInheritedIn(site.tsym, types) ||
1457                             ((MethodSymbol)s2).implementation(site.tsym,
1458                                                               types,
1459                                                               true) != s2)
1460                             continue;
1461                         Type st2 = types.memberType(t2, s2);
1462                         if (types.overrideEquivalent(st1, st2))
1463                             log.error(pos, "concrete.inheritance.conflict",
1464                                       s1, t1, s2, t2, sup);
1465                     }
1466                 }
1467             }
1468         }
1469     }
1470 
1471     /** Check that classes (or interfaces) do not each define an abstract
1472      *  method with same name and arguments but incompatible return types.
1473      *  @param pos          Position to be used for error reporting.
1474      *  @param t1           The first argument type.
1475      *  @param t2           The second argument type.
1476      */
1477     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1478                                             Type t1,
1479                                             Type t2) {
1480         return checkCompatibleAbstracts(pos, t1, t2,
1481                                         types.makeCompoundType(t1, t2));
1482     }
1483 
1484     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1485                                             Type t1,
1486                                             Type t2,
1487                                             Type site) {
1488         Symbol sym = firstIncompatibility(t1, t2, site);
1489         if (sym != null) {
1490             log.error(pos, "types.incompatible.diff.ret",
1491                       t1, t2, sym.name +
1492                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
1493             return false;
1494         }
1495         return true;
1496     }
1497 
1498     /** Return the first method which is defined with same args
1499      *  but different return types in two given interfaces, or null if none
1500      *  exists.
1501      *  @param t1     The first type.
1502      *  @param t2     The second type.
1503      *  @param site   The most derived type.
1504      *  @returns symbol from t2 that conflicts with one in t1.
1505      */
1506     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
1507         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
1508         closure(t1, interfaces1);
1509         Map<TypeSymbol,Type> interfaces2;
1510         if (t1 == t2)
1511             interfaces2 = interfaces1;
1512         else
1513             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
1514 
1515         for (Type t3 : interfaces1.values()) {
1516             for (Type t4 : interfaces2.values()) {
1517                 Symbol s = firstDirectIncompatibility(t3, t4, site);
1518                 if (s != null) return s;
1519             }
1520         }
1521         return null;
1522     }
1523 
1524     /** Compute all the supertypes of t, indexed by type symbol. */
1525     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1526         if (t.tag != CLASS) return;
1527         if (typeMap.put(t.tsym, t) == null) {
1528             closure(types.supertype(t), typeMap);
1529             for (Type i : types.interfaces(t))
1530                 closure(i, typeMap);
1531         }
1532     }
1533 
1534     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1535     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1536         if (t.tag != CLASS) return;
1537         if (typesSkip.get(t.tsym) != null) return;
1538         if (typeMap.put(t.tsym, t) == null) {
1539             closure(types.supertype(t), typesSkip, typeMap);
1540             for (Type i : types.interfaces(t))
1541                 closure(i, typesSkip, typeMap);
1542         }
1543     }
1544 
1545     /** Return the first method in t2 that conflicts with a method from t1. */
1546     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
1547         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
1548             Symbol s1 = e1.sym;
1549             Type st1 = null;
1550             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
1551             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1552             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1553             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
1554                 Symbol s2 = e2.sym;
1555                 if (s1 == s2) continue;
1556                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
1557                 if (st1 == null) st1 = types.memberType(t1, s1);
1558                 Type st2 = types.memberType(t2, s2);
1559                 if (types.overrideEquivalent(st1, st2)) {
1560                     List<Type> tvars1 = st1.getTypeArguments();
1561                     List<Type> tvars2 = st2.getTypeArguments();
1562                     Type rt1 = st1.getReturnType();
1563                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1564                     boolean compat =
1565                         types.isSameType(rt1, rt2) ||
1566                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
1567                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
1568                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
1569                          checkCommonOverriderIn(s1,s2,site);
1570                     if (!compat) return s2;
1571                 }
1572             }
1573         }
1574         return null;
1575     }
1576     //WHERE
1577     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1578         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
1579         Type st1 = types.memberType(site, s1);
1580         Type st2 = types.memberType(site, s2);
1581         closure(site, supertypes);
1582         for (Type t : supertypes.values()) {
1583             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
1584                 Symbol s3 = e.sym;
1585                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1586                 Type st3 = types.memberType(site,s3);
1587                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
1588                     if (s3.owner == site.tsym) {
1589                         return true;
1590                     }
1591                     List<Type> tvars1 = st1.getTypeArguments();
1592                     List<Type> tvars2 = st2.getTypeArguments();
1593                     List<Type> tvars3 = st3.getTypeArguments();
1594                     Type rt1 = st1.getReturnType();
1595                     Type rt2 = st2.getReturnType();
1596                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
1597                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
1598                     boolean compat =
1599                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
1600                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
1601                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
1602                     if (compat)
1603                         return true;
1604                 }
1605             }
1606         }
1607         return false;
1608     }
1609 
1610     /** Check that a given method conforms with any method it overrides.
1611      *  @param tree         The tree from which positions are extracted
1612      *                      for errors.
1613      *  @param m            The overriding method.
1614      */
1615     void checkOverride(JCTree tree, MethodSymbol m) {
1616         ClassSymbol origin = (ClassSymbol)m.owner;
1617         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1618             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1619                 log.error(tree.pos(), "enum.no.finalize");
1620                 return;
1621             }
1622         for (Type t = types.supertype(origin.type); t.tag == CLASS;
1623              t = types.supertype(t)) {
1624             TypeSymbol c = t.tsym;
1625             Scope.Entry e = c.members().lookup(m.name);
1626             while (e.scope != null) {
1627                 if (m.overrides(e.sym, origin, types, false))
1628                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
1629                 else if (e.sym.kind == MTH &&
1630                         e.sym.isInheritedIn(origin, types) &&
1631                         (e.sym.flags() & SYNTHETIC) == 0 &&
1632                         !m.isConstructor()) {
1633                     Type er1 = m.erasure(types);
1634                     Type er2 = e.sym.erasure(types);
1635                     if (types.isSameTypes(er1.getParameterTypes(),
1636                             er2.getParameterTypes())) {
1637                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1638                                     "name.clash.same.erasure.no.override",
1639                                     m, m.location(),
1640                                     e.sym, e.sym.location());
1641                     }
1642                 }
1643                 e = e.next();
1644             }
1645         }
1646     }
1647 
1648     /** Check that all abstract members of given class have definitions.
1649      *  @param pos          Position to be used for error reporting.
1650      *  @param c            The class.
1651      */
1652     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
1653         try {
1654             MethodSymbol undef = firstUndef(c, c);
1655             if (undef != null) {
1656                 if ((c.flags() & ENUM) != 0 &&
1657                     types.supertype(c.type).tsym == syms.enumSym &&
1658                     (c.flags() & FINAL) == 0) {
1659                     // add the ABSTRACT flag to an enum
1660                     c.flags_field |= ABSTRACT;
1661                 } else {
1662                     MethodSymbol undef1 =
1663                         new MethodSymbol(undef.flags(), undef.name,
1664                                          types.memberType(c.type, undef), undef.owner);
1665                     log.error(pos, "does.not.override.abstract",
1666                               c, undef1, undef1.location());
1667                 }
1668             }
1669         } catch (CompletionFailure ex) {
1670             completionError(pos, ex);
1671         }
1672     }
1673 //where
1674         /** Return first abstract member of class `c' that is not defined
1675          *  in `impl', null if there is none.
1676          */
1677         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
1678             MethodSymbol undef = null;
1679             // Do not bother to search in classes that are not abstract,
1680             // since they cannot have abstract members.
1681             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
1682                 Scope s = c.members();
1683                 for (Scope.Entry e = s.elems;
1684                      undef == null && e != null;
1685                      e = e.sibling) {
1686                     if (e.sym.kind == MTH &&
1687                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
1688                         MethodSymbol absmeth = (MethodSymbol)e.sym;
1689                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
1690                         if (implmeth == null || implmeth == absmeth)
1691                             undef = absmeth;
1692                     }
1693                 }
1694                 if (undef == null) {
1695                     Type st = types.supertype(c.type);
1696                     if (st.tag == CLASS)
1697                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
1698                 }
1699                 for (List<Type> l = types.interfaces(c.type);
1700                      undef == null && l.nonEmpty();
1701                      l = l.tail) {
1702                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
1703                 }
1704             }
1705             return undef;
1706         }
1707 
1708     /** Check for cyclic references. Issue an error if the
1709      *  symbol of the type referred to has a LOCKED flag set.
1710      *
1711      *  @param pos      Position to be used for error reporting.
1712      *  @param t        The type referred to.
1713      */
1714     void checkNonCyclic(DiagnosticPosition pos, Type t) {
1715         checkNonCyclicInternal(pos, t);
1716     }
1717 
1718 
1719     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
1720         checkNonCyclic1(pos, t, List.<TypeVar>nil());
1721     }
1722 
1723     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
1724         final TypeVar tv;
1725         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
1726             return;
1727         if (seen.contains(t)) {
1728             tv = (TypeVar)t;
1729             tv.bound = types.createErrorType(t);
1730             log.error(pos, "cyclic.inheritance", t);
1731         } else if (t.tag == TYPEVAR) {
1732             tv = (TypeVar)t;
1733             seen = seen.prepend(tv);
1734             for (Type b : types.getBounds(tv))
1735                 checkNonCyclic1(pos, b, seen);
1736         }
1737     }
1738 
1739     /** Check for cyclic references. Issue an error if the
1740      *  symbol of the type referred to has a LOCKED flag set.
1741      *
1742      *  @param pos      Position to be used for error reporting.
1743      *  @param t        The type referred to.
1744      *  @returns        True if the check completed on all attributed classes
1745      */
1746     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
1747         boolean complete = true; // was the check complete?
1748         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
1749         Symbol c = t.tsym;
1750         if ((c.flags_field & ACYCLIC) != 0) return true;
1751 
1752         if ((c.flags_field & LOCKED) != 0) {
1753             noteCyclic(pos, (ClassSymbol)c);
1754         } else if (!c.type.isErroneous()) {
1755             try {
1756                 c.flags_field |= LOCKED;
1757                 if (c.type.tag == CLASS) {
1758                     ClassType clazz = (ClassType)c.type;
1759                     if (clazz.interfaces_field != null)
1760                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
1761                             complete &= checkNonCyclicInternal(pos, l.head);
1762                     if (clazz.supertype_field != null) {
1763                         Type st = clazz.supertype_field;
1764                         if (st != null && st.tag == CLASS)
1765                             complete &= checkNonCyclicInternal(pos, st);
1766                     }
1767                     if (c.owner.kind == TYP)
1768                         complete &= checkNonCyclicInternal(pos, c.owner.type);
1769                 }
1770             } finally {
1771                 c.flags_field &= ~LOCKED;
1772             }
1773         }
1774         if (complete)
1775             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
1776         if (complete) c.flags_field |= ACYCLIC;
1777         return complete;
1778     }
1779 
1780     /** Note that we found an inheritance cycle. */
1781     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
1782         log.error(pos, "cyclic.inheritance", c);
1783         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
1784             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
1785         Type st = types.supertype(c.type);
1786         if (st.tag == CLASS)
1787             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
1788         c.type = types.createErrorType(c, c.type);
1789         c.flags_field |= ACYCLIC;
1790     }
1791 
1792     /** Check that all methods which implement some
1793      *  method conform to the method they implement.
1794      *  @param tree         The class definition whose members are checked.
1795      */
1796     void checkImplementations(JCClassDecl tree) {
1797         checkImplementations(tree, tree.sym);
1798     }
1799 //where
1800         /** Check that all methods which implement some
1801          *  method in `ic' conform to the method they implement.
1802          */
1803         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
1804             ClassSymbol origin = tree.sym;
1805             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
1806                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
1807                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
1808                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
1809                         if (e.sym.kind == MTH &&
1810                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
1811                             MethodSymbol absmeth = (MethodSymbol)e.sym;
1812                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
1813                             if (implmeth != null && implmeth != absmeth &&
1814                                 (implmeth.owner.flags() & INTERFACE) ==
1815                                 (origin.flags() & INTERFACE)) {
1816                                 // don't check if implmeth is in a class, yet
1817                                 // origin is an interface. This case arises only
1818                                 // if implmeth is declared in Object. The reason is
1819                                 // that interfaces really don't inherit from
1820                                 // Object it's just that the compiler represents
1821                                 // things that way.
1822                                 checkOverride(tree, implmeth, absmeth, origin);
1823                             }
1824                         }
1825                     }
1826                 }
1827             }
1828         }
1829 
1830     /** Check that all abstract methods implemented by a class are
1831      *  mutually compatible.
1832      *  @param pos          Position to be used for error reporting.
1833      *  @param c            The class whose interfaces are checked.
1834      */
1835     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
1836         List<Type> supertypes = types.interfaces(c);
1837         Type supertype = types.supertype(c);
1838         if (supertype.tag == CLASS &&
1839             (supertype.tsym.flags() & ABSTRACT) != 0)
1840             supertypes = supertypes.prepend(supertype);
1841         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
1842             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
1843                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
1844                 return;
1845             for (List<Type> m = supertypes; m != l; m = m.tail)
1846                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
1847                     return;
1848         }
1849         checkCompatibleConcretes(pos, c);
1850     }
1851 
1852     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
1853         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
1854             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
1855                 // VM allows methods and variables with differing types
1856                 if (sym.kind == e.sym.kind &&
1857                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
1858                     sym != e.sym &&
1859                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
1860                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
1861                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
1862                     return;
1863                 }
1864             }
1865         }
1866     }
1867 
1868     /** Report a conflict between a user symbol and a synthetic symbol.
1869      */
1870     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
1871         if (!sym.type.isErroneous()) {
1872             if (warnOnSyntheticConflicts) {
1873                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
1874             }
1875             else {
1876                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
1877             }
1878         }
1879     }
1880 
1881     /** Check that class c does not implement directly or indirectly
1882      *  the same parameterized interface with two different argument lists.
1883      *  @param pos          Position to be used for error reporting.
1884      *  @param type         The type whose interfaces are checked.
1885      */
1886     void checkClassBounds(DiagnosticPosition pos, Type type) {
1887         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
1888     }
1889 //where
1890         /** Enter all interfaces of type `type' into the hash table `seensofar'
1891          *  with their class symbol as key and their type as value. Make
1892          *  sure no class is entered with two different types.
1893          */
1894         void checkClassBounds(DiagnosticPosition pos,
1895                               Map<TypeSymbol,Type> seensofar,
1896                               Type type) {
1897             if (type.isErroneous()) return;
1898             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
1899                 Type it = l.head;
1900                 Type oldit = seensofar.put(it.tsym, it);
1901                 if (oldit != null) {
1902                     List<Type> oldparams = oldit.allparams();
1903                     List<Type> newparams = it.allparams();
1904                     if (!types.containsTypeEquivalent(oldparams, newparams))
1905                         log.error(pos, "cant.inherit.diff.arg",
1906                                   it.tsym, Type.toString(oldparams),
1907                                   Type.toString(newparams));
1908                 }
1909                 checkClassBounds(pos, seensofar, it);
1910             }
1911             Type st = types.supertype(type);
1912             if (st != null) checkClassBounds(pos, seensofar, st);
1913         }
1914 
1915     /** Enter interface into into set.
1916      *  If it existed already, issue a "repeated interface" error.
1917      */
1918     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
1919         if (its.contains(it))
1920             log.error(pos, "repeated.interface");
1921         else {
1922             its.add(it);
1923         }
1924     }
1925 
1926 /* *************************************************************************
1927  * Check annotations
1928  **************************************************************************/
1929 
1930     /** Annotation types are restricted to primitives, String, an
1931      *  enum, an annotation, Class, Class<?>, Class<? extends
1932      *  Anything>, arrays of the preceding.
1933      */
1934     void validateAnnotationType(JCTree restype) {
1935         // restype may be null if an error occurred, so don't bother validating it
1936         if (restype != null) {
1937             validateAnnotationType(restype.pos(), restype.type);
1938         }
1939     }
1940 
1941     void validateAnnotationType(DiagnosticPosition pos, Type type) {
1942         if (type.isPrimitive()) return;
1943         if (types.isSameType(type, syms.stringType)) return;
1944         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
1945         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
1946         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
1947         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
1948             validateAnnotationType(pos, types.elemtype(type));
1949             return;
1950         }
1951         log.error(pos, "invalid.annotation.member.type");
1952     }
1953 
1954     /**
1955      * "It is also a compile-time error if any method declared in an
1956      * annotation type has a signature that is override-equivalent to
1957      * that of any public or protected method declared in class Object
1958      * or in the interface annotation.Annotation."
1959      *
1960      * @jls3 9.6 Annotation Types
1961      */
1962     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
1963         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
1964             Scope s = sup.tsym.members();
1965             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
1966                 if (e.sym.kind == MTH &&
1967                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
1968                     types.overrideEquivalent(m.type, e.sym.type))
1969                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
1970             }
1971         }
1972     }
1973 
1974     /** Check the annotations of a symbol.
1975      */
1976     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
1977         if (skipAnnotations) return;
1978         for (JCAnnotation a : annotations)
1979             validateAnnotation(a, s);
1980     }
1981 
1982     /** Check the type annotations
1983      */
1984     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
1985         if (skipAnnotations) return;
1986         for (JCTypeAnnotation a : annotations)
1987             validateTypeAnnotation(a, isTypeParameter);
1988     }
1989 
1990     /** Check an annotation of a symbol.
1991      */
1992     public void validateAnnotation(JCAnnotation a, Symbol s) {
1993         validateAnnotation(a);
1994 
1995         if (!annotationApplicable(a, s))
1996             log.error(a.pos(), "annotation.type.not.applicable");
1997 
1998         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
1999             if (!isOverrider(s))
2000                 log.error(a.pos(), "method.does.not.override.superclass");
2001         }
2002     }
2003 
2004     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
2005         if (a.type == null)
2006             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
2007         validateAnnotation(a);
2008 
2009         if (!isTypeAnnotation(a, isTypeParameter))
2010             log.error(a.pos(), "annotation.type.not.applicable");
2011     }
2012 
2013     /** Is s a method symbol that overrides a method in a superclass? */
2014     boolean isOverrider(Symbol s) {
2015         if (s.kind != MTH || s.isStatic())
2016             return false;
2017         MethodSymbol m = (MethodSymbol)s;
2018         TypeSymbol owner = (TypeSymbol)m.owner;
2019         for (Type sup : types.closure(owner.type)) {
2020             if (sup == owner.type)
2021                 continue; // skip "this"
2022             Scope scope = sup.tsym.members();
2023             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
2024                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
2025                     return true;
2026             }
2027         }
2028         return false;
2029     }
2030 
2031     /** Is the annotation applicable to type annotations */
2032     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
2033         Attribute.Compound atTarget =
2034             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
2035         if (atTarget == null) return true;
2036         Attribute atValue = atTarget.member(names.value);
2037         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
2038         Attribute.Array arr = (Attribute.Array) atValue;
2039         for (Attribute app : arr.values) {
2040             if (!(app instanceof Attribute.Enum)) return true; // recovery
2041             Attribute.Enum e = (Attribute.Enum) app;
2042             if (!isTypeParameter && e.value.name == names.TYPE_USE)
2043                 return true;
2044             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
2045                 return true;
2046         }
2047         return false;
2048     }
2049 
2050     /** Is the annotation applicable to the symbol? */
2051     boolean annotationApplicable(JCAnnotation a, Symbol s) {
2052         Attribute.Compound atTarget =
2053             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
2054         if (atTarget == null) return true;
2055         Attribute atValue = atTarget.member(names.value);
2056         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
2057         Attribute.Array arr = (Attribute.Array) atValue;
2058         for (Attribute app : arr.values) {
2059             if (!(app instanceof Attribute.Enum)) return true; // recovery
2060             Attribute.Enum e = (Attribute.Enum) app;
2061             if (e.value.name == names.TYPE)
2062                 { if (s.kind == TYP) return true; }
2063             else if (e.value.name == names.FIELD)
2064                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
2065             else if (e.value.name == names.METHOD)
2066                 { if (s.kind == MTH && !s.isConstructor()) return true; }
2067             else if (e.value.name == names.PARAMETER)
2068                 { if (s.kind == VAR &&
2069                       s.owner.kind == MTH &&
2070                       (s.flags() & PARAMETER) != 0)
2071                     return true;
2072                 }
2073             else if (e.value.name == names.CONSTRUCTOR)
2074                 { if (s.kind == MTH && s.isConstructor()) return true; }
2075             else if (e.value.name == names.LOCAL_VARIABLE)
2076                 { if (s.kind == VAR && s.owner.kind == MTH &&
2077                       (s.flags() & PARAMETER) == 0)
2078                     return true;
2079                 }
2080             else if (e.value.name == names.ANNOTATION_TYPE)
2081                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
2082                     return true;
2083                 }
2084             else if (e.value.name == names.PACKAGE)
2085                 { if (s.kind == PCK) return true; }
2086             else if (e.value.name == names.TYPE_USE)
2087                 { if (s.kind == TYP ||
2088                       s.kind == VAR ||
2089                       (s.kind == MTH && !s.isConstructor() &&
2090                        s.type.getReturnType().tag != VOID))
2091                     return true;
2092                 }
2093             else
2094                 return true; // recovery
2095         }
2096         return false;
2097     }
2098 
2099     /** Check an annotation value.
2100      */
2101     public void validateAnnotation(JCAnnotation a) {
2102         if (a.type.isErroneous()) return;
2103 
2104         // collect an inventory of the members
2105         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
2106         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
2107              e != null;
2108              e = e.sibling)
2109             if (e.sym.kind == MTH)
2110                 members.add((MethodSymbol) e.sym);
2111 
2112         // count them off as they're annotated
2113         for (JCTree arg : a.args) {
2114             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
2115             JCAssign assign = (JCAssign) arg;
2116             Symbol m = TreeInfo.symbol(assign.lhs);
2117             if (m == null || m.type.isErroneous()) continue;
2118             if (!members.remove(m))
2119                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
2120                           m.name, a.type);
2121             if (assign.rhs.getTag() == ANNOTATION)
2122                 validateAnnotation((JCAnnotation)assign.rhs);
2123         }
2124 
2125         // all the remaining ones better have default values
2126         for (MethodSymbol m : members)
2127             if (m.defaultValue == null && !m.type.isErroneous())
2128                 log.error(a.pos(), "annotation.missing.default.value",
2129                           a.type, m.name);
2130 
2131         // special case: java.lang.annotation.Target must not have
2132         // repeated values in its value member
2133         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
2134             a.args.tail == null)
2135             return;
2136 
2137         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
2138         JCAssign assign = (JCAssign) a.args.head;
2139         Symbol m = TreeInfo.symbol(assign.lhs);
2140         if (m.name != names.value) return;
2141         JCTree rhs = assign.rhs;
2142         if (rhs.getTag() != JCTree.NEWARRAY) return;
2143         JCNewArray na = (JCNewArray) rhs;
2144         Set<Symbol> targets = new HashSet<Symbol>();
2145         for (JCTree elem : na.elems) {
2146             if (!targets.add(TreeInfo.symbol(elem))) {
2147                 log.error(elem.pos(), "repeated.annotation.target");
2148             }
2149         }
2150     }
2151 
2152     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
2153         if (allowAnnotations &&
2154             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
2155             (s.flags() & DEPRECATED) != 0 &&
2156             !syms.deprecatedType.isErroneous() &&
2157             s.attribute(syms.deprecatedType.tsym) == null) {
2158             log.warning(pos, "missing.deprecated.annotation");
2159         }
2160     }
2161 
2162 /* *************************************************************************
2163  * Check for recursive annotation elements.
2164  **************************************************************************/
2165 
2166     /** Check for cycles in the graph of annotation elements.
2167      */
2168     void checkNonCyclicElements(JCClassDecl tree) {
2169         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
2170         assert (tree.sym.flags_field & LOCKED) == 0;
2171         try {
2172             tree.sym.flags_field |= LOCKED;
2173             for (JCTree def : tree.defs) {
2174                 if (def.getTag() != JCTree.METHODDEF) continue;
2175                 JCMethodDecl meth = (JCMethodDecl)def;
2176                 checkAnnotationResType(meth.pos(), meth.restype.type);
2177             }
2178         } finally {
2179             tree.sym.flags_field &= ~LOCKED;
2180             tree.sym.flags_field |= ACYCLIC_ANN;
2181         }
2182     }
2183 
2184     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
2185         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
2186             return;
2187         if ((tsym.flags_field & LOCKED) != 0) {
2188             log.error(pos, "cyclic.annotation.element");
2189             return;
2190         }
2191         try {
2192             tsym.flags_field |= LOCKED;
2193             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
2194                 Symbol s = e.sym;
2195                 if (s.kind != Kinds.MTH)
2196                     continue;
2197                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
2198             }
2199         } finally {
2200             tsym.flags_field &= ~LOCKED;
2201             tsym.flags_field |= ACYCLIC_ANN;
2202         }
2203     }
2204 
2205     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
2206         switch (type.tag) {
2207         case TypeTags.CLASS:
2208             if ((type.tsym.flags() & ANNOTATION) != 0)
2209                 checkNonCyclicElementsInternal(pos, type.tsym);
2210             break;
2211         case TypeTags.ARRAY:
2212             checkAnnotationResType(pos, types.elemtype(type));
2213             break;
2214         default:
2215             break; // int etc
2216         }
2217     }
2218 
2219 /* *************************************************************************
2220  * Check for cycles in the constructor call graph.
2221  **************************************************************************/
2222 
2223     /** Check for cycles in the graph of constructors calling other
2224      *  constructors.
2225      */
2226     void checkCyclicConstructors(JCClassDecl tree) {
2227         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
2228 
2229         // enter each constructor this-call into the map
2230         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
2231             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
2232             if (app == null) continue;
2233             JCMethodDecl meth = (JCMethodDecl) l.head;
2234             if (TreeInfo.name(app.meth) == names._this) {
2235                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
2236             } else {
2237                 meth.sym.flags_field |= ACYCLIC;
2238             }
2239         }
2240 
2241         // Check for cycles in the map
2242         Symbol[] ctors = new Symbol[0];
2243         ctors = callMap.keySet().toArray(ctors);
2244         for (Symbol caller : ctors) {
2245             checkCyclicConstructor(tree, caller, callMap);
2246         }
2247     }
2248 
2249     /** Look in the map to see if the given constructor is part of a
2250      *  call cycle.
2251      */
2252     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
2253                                         Map<Symbol,Symbol> callMap) {
2254         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
2255             if ((ctor.flags_field & LOCKED) != 0) {
2256                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
2257                           "recursive.ctor.invocation");
2258             } else {
2259                 ctor.flags_field |= LOCKED;
2260                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
2261                 ctor.flags_field &= ~LOCKED;
2262             }
2263             ctor.flags_field |= ACYCLIC;
2264         }
2265     }
2266 
2267 /* *************************************************************************
2268  * Miscellaneous
2269  **************************************************************************/
2270 
2271     /**
2272      * Return the opcode of the operator but emit an error if it is an
2273      * error.
2274      * @param pos        position for error reporting.
2275      * @param operator   an operator
2276      * @param tag        a tree tag
2277      * @param left       type of left hand side
2278      * @param right      type of right hand side
2279      */
2280     int checkOperator(DiagnosticPosition pos,
2281                        OperatorSymbol operator,
2282                        int tag,
2283                        Type left,
2284                        Type right) {
2285         if (operator.opcode == ByteCodes.error) {
2286             log.error(pos,
2287                       "operator.cant.be.applied",
2288                       treeinfo.operatorName(tag),
2289                       List.of(left, right));
2290         }
2291         return operator.opcode;
2292     }
2293 
2294 
2295     /**
2296      *  Check for division by integer constant zero
2297      *  @param pos           Position for error reporting.
2298      *  @param operator      The operator for the expression
2299      *  @param operand       The right hand operand for the expression
2300      */
2301     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
2302         if (operand.constValue() != null
2303             && lint.isEnabled(Lint.LintCategory.DIVZERO)
2304             && operand.tag <= LONG
2305             && ((Number) (operand.constValue())).longValue() == 0) {
2306             int opc = ((OperatorSymbol)operator).opcode;
2307             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
2308                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
2309                 log.warning(pos, "div.zero");
2310             }
2311         }
2312     }
2313 
2314     /**
2315      * Check for empty statements after if
2316      */
2317     void checkEmptyIf(JCIf tree) {
2318         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
2319             log.warning(tree.thenpart.pos(), "empty.if");
2320     }
2321 
2322     /** Check that symbol is unique in given scope.
2323      *  @param pos           Position for error reporting.
2324      *  @param sym           The symbol.
2325      *  @param s             The scope.
2326      */
2327     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
2328         if (sym.type.isErroneous())
2329             return true;
2330         if (sym.owner.name == names.any) return false;
2331         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
2332             if (sym != e.sym &&
2333                 sym.kind == e.sym.kind &&
2334                 sym.name != names.error &&
2335                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
2336                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
2337                     varargsDuplicateError(pos, sym, e.sym);
2338                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
2339                     duplicateErasureError(pos, sym, e.sym);
2340                 else
2341                     duplicateError(pos, e.sym);
2342                 return false;
2343             }
2344         }
2345         return true;
2346     }
2347     //where
2348     /** Report duplicate declaration error.
2349      */
2350     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
2351         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
2352             log.error(pos, "name.clash.same.erasure", sym1, sym2);
2353         }
2354     }
2355 
2356     /** Check that single-type import is not already imported or top-level defined,
2357      *  but make an exception for two single-type imports which denote the same type.
2358      *  @param pos           Position for error reporting.
2359      *  @param sym           The symbol.
2360      *  @param s             The scope
2361      */
2362     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
2363         return checkUniqueImport(pos, sym, s, false);
2364     }
2365 
2366     /** Check that static single-type import is not already imported or top-level defined,
2367      *  but make an exception for two single-type imports which denote the same type.
2368      *  @param pos           Position for error reporting.
2369      *  @param sym           The symbol.
2370      *  @param s             The scope
2371      *  @param staticImport  Whether or not this was a static import
2372      */
2373     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
2374         return checkUniqueImport(pos, sym, s, true);
2375     }
2376 
2377     /** Check that single-type import is not already imported or top-level defined,
2378      *  but make an exception for two single-type imports which denote the same type.
2379      *  @param pos           Position for error reporting.
2380      *  @param sym           The symbol.
2381      *  @param s             The scope.
2382      *  @param staticImport  Whether or not this was a static import
2383      */
2384     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
2385         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
2386             // is encountered class entered via a class declaration?
2387             boolean isClassDecl = e.scope == s;
2388             if ((isClassDecl || sym != e.sym) &&
2389                 sym.kind == e.sym.kind &&
2390                 sym.name != names.error) {
2391                 if (!e.sym.type.isErroneous()) {
2392                     String what = e.sym.toString();
2393                     if (!isClassDecl) {
2394                         if (staticImport)
2395                             log.error(pos, "already.defined.static.single.import", what);
2396                         else
2397                             log.error(pos, "already.defined.single.import", what);
2398                     }
2399                     else if (sym != e.sym)
2400                         log.error(pos, "already.defined.this.unit", what);
2401                 }
2402                 return false;
2403             }
2404         }
2405         return true;
2406     }
2407 
2408     /** Check that a qualified name is in canonical form (for import decls).
2409      */
2410     public void checkCanonical(JCTree tree) {
2411         if (!isCanonical(tree))
2412             log.error(tree.pos(), "import.requires.canonical",
2413                       TreeInfo.symbol(tree));
2414     }
2415         // where
2416         private boolean isCanonical(JCTree tree) {
2417             while (tree.getTag() == JCTree.SELECT) {
2418                 JCFieldAccess s = (JCFieldAccess) tree;
2419                 if (s.sym.owner != TreeInfo.symbol(s.selected))
2420                     return false;
2421                 tree = s.selected;
2422             }
2423             return true;
2424         }
2425 
2426     private class ConversionWarner extends Warner {
2427         final String key;
2428         final Type found;
2429         final Type expected;
2430         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
2431             super(pos);
2432             this.key = key;
2433             this.found = found;
2434             this.expected = expected;
2435         }
2436 
2437         @Override
2438         public void warnUnchecked() {
2439             boolean warned = this.warned;
2440             super.warnUnchecked();
2441             if (warned) return; // suppress redundant diagnostics
2442             Object problem = diags.fragment(key);
2443             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
2444         }
2445     }
2446 
2447     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
2448         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
2449     }
2450 
2451     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
2452         return new ConversionWarner(pos, "unchecked.assign", found, expected);
2453     }
2454 }