--- old/src/share/classes/java/lang/Double.java 2010-12-01 13:01:46.000000000 -0800 +++ new/src/share/classes/java/lang/Double.java 2010-12-01 13:01:45.000000000 -0800 @@ -1,5 +1,5 @@ /* - * Copyright (c) 1994, 2009, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it @@ -973,7 +973,8 @@ if (d1 > d2) return 1; // Neither val is NaN, thisVal is larger - long thisBits = Double.doubleToLongBits(d1); + // Cannot use doubleToRawLongBits because of possibility of NaNs. + long thisBits = Double.doubleToLongBits(d1); long anotherBits = Double.doubleToLongBits(d2); return (thisBits == anotherBits ? 0 : // Values are equal --- old/src/share/classes/java/lang/Float.java 2010-12-01 13:01:46.000000000 -0800 +++ new/src/share/classes/java/lang/Float.java 2010-12-01 13:01:46.000000000 -0800 @@ -1,5 +1,5 @@ /* - * Copyright (c) 1994, 2009, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it @@ -872,12 +872,13 @@ * @since 1.4 */ public static int compare(float f1, float f2) { - if (f1 < f2) + if (f1 < f2) return -1; // Neither val is NaN, thisVal is smaller if (f1 > f2) return 1; // Neither val is NaN, thisVal is larger - int thisBits = Float.floatToIntBits(f1); + // Cannot use floatToRawIntBits because of possibility of NaNs. + int thisBits = Float.floatToIntBits(f1); int anotherBits = Float.floatToIntBits(f2); return (thisBits == anotherBits ? 0 : // Values are equal --- old/src/share/classes/java/lang/StrictMath.java 2010-12-01 13:01:47.000000000 -0800 +++ new/src/share/classes/java/lang/StrictMath.java 2010-12-01 13:01:47.000000000 -0800 @@ -1,5 +1,5 @@ /* - * Copyright (c) 1999, 2006, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it @@ -801,8 +801,9 @@ return (a >= b) ? a : b; } - private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f); - private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d); + // Use raw bit-wise conversions on guaranteed non-NaN arguments. + private static long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); + private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); /** * Returns the greater of two {@code float} values. That is, @@ -819,9 +820,12 @@ * @return the larger of {@code a} and {@code b}. */ public static float max(float a, float b) { - if (a != a) return a; // a is NaN - if ((a == 0.0f) && (b == 0.0f) - && (Float.floatToIntBits(a) == negativeZeroFloatBits)) { + if (a != a) + return a; // a is NaN + if ((a == 0.0f) && + (b == 0.0f) && + (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { + // Raw conversion ok since NaN can't map to -0.0. return b; } return (a >= b) ? a : b; @@ -842,9 +846,12 @@ * @return the larger of {@code a} and {@code b}. */ public static double max(double a, double b) { - if (a != a) return a; // a is NaN - if ((a == 0.0d) && (b == 0.0d) - && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) { + if (a != a) + return a; // a is NaN + if ((a == 0.0d) && + (b == 0.0d) && + (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { + // Raw conversion ok since NaN can't map to -0.0. return b; } return (a >= b) ? a : b; @@ -893,9 +900,12 @@ * @return the smaller of {@code a} and {@code b.} */ public static float min(float a, float b) { - if (a != a) return a; // a is NaN - if ((a == 0.0f) && (b == 0.0f) - && (Float.floatToIntBits(b) == negativeZeroFloatBits)) { + if (a != a) + return a; // a is NaN + if ((a == 0.0f) && + (b == 0.0f) && + (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { + // Raw conversion ok since NaN can't map to -0.0. return b; } return (a <= b) ? a : b; @@ -916,9 +926,12 @@ * @return the smaller of {@code a} and {@code b}. */ public static double min(double a, double b) { - if (a != a) return a; // a is NaN - if ((a == 0.0d) && (b == 0.0d) - && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) { + if (a != a) + return a; // a is NaN + if ((a == 0.0d) && + (b == 0.0d) && + (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { + // Raw conversion ok since NaN can't map to -0.0. return b; } return (a <= b) ? a : b; --- old/src/share/classes/sun/misc/FpUtils.java 2010-12-01 13:01:48.000000000 -0800 +++ new/src/share/classes/sun/misc/FpUtils.java 2010-12-01 13:01:48.000000000 -0800 @@ -1,5 +1,5 @@ /* - * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 2003, 2010 Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it @@ -29,9 +29,9 @@ import sun.misc.DoubleConsts; /** - * The class FpUtils contains static utility methods for - * manipulating and inspecting float and - * double floating-point numbers. These methods include + * The class {@code FpUtils} contains static utility methods for + * manipulating and inspecting {@code float} and + * {@code double} floating-point numbers. These methods include * functionality recommended or required by the IEEE 754 * floating-point standard. * @@ -136,7 +136,7 @@ // tests for exception cases. /** - * Returns unbiased exponent of a double. + * Returns unbiased exponent of a {@code double}. */ public static int getExponent(double d){ /* @@ -149,7 +149,7 @@ } /** - * Returns unbiased exponent of a float. + * Returns unbiased exponent of a {@code float}. */ public static int getExponent(float f){ /* @@ -185,15 +185,15 @@ * Returns the first floating-point argument with the sign of the * second floating-point argument. Note that unlike the {@link * FpUtils#copySign(double, double) copySign} method, this method - * does not require NaN sign arguments to be treated + * does not require NaN {@code sign} arguments to be treated * as positive values; implementations are permitted to treat some * NaN arguments as positive and other NaN arguments as negative * to allow greater performance. * * @param magnitude the parameter providing the magnitude of the result * @param sign the parameter providing the sign of the result - * @return a value with the magnitude of magnitude - * and the sign of sign. + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. * @author Joseph D. Darcy */ public static double rawCopySign(double magnitude, double sign) { @@ -208,15 +208,15 @@ * Returns the first floating-point argument with the sign of the * second floating-point argument. Note that unlike the {@link * FpUtils#copySign(float, float) copySign} method, this method - * does not require NaN sign arguments to be treated + * does not require NaN {@code sign} arguments to be treated * as positive values; implementations are permitted to treat some * NaN arguments as positive and other NaN arguments as negative * to allow greater performance. * * @param magnitude the parameter providing the magnitude of the result * @param sign the parameter providing the sign of the result - * @return a value with the magnitude of magnitude - * and the sign of sign. + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. * @author Joseph D. Darcy */ public static float rawCopySign(float magnitude, float sign) { @@ -230,129 +230,129 @@ /* ***************************************************************** */ /** - * Returns true if the argument is a finite - * floating-point value; returns false otherwise (for + * Returns {@code true} if the argument is a finite + * floating-point value; returns {@code false} otherwise (for * NaN and infinity arguments). * - * @param d the double value to be tested - * @return true if the argument is a finite - * floating-point value, false otherwise. + * @param d the {@code double} value to be tested + * @return {@code true} if the argument is a finite + * floating-point value, {@code false} otherwise. */ public static boolean isFinite(double d) { return Math.abs(d) <= DoubleConsts.MAX_VALUE; } /** - * Returns true if the argument is a finite - * floating-point value; returns false otherwise (for + * Returns {@code true} if the argument is a finite + * floating-point value; returns {@code false} otherwise (for * NaN and infinity arguments). * - * @param f the float value to be tested - * @return true if the argument is a finite - * floating-point value, false otherwise. + * @param f the {@code float} value to be tested + * @return {@code true} if the argument is a finite + * floating-point value, {@code false} otherwise. */ public static boolean isFinite(float f) { return Math.abs(f) <= FloatConsts.MAX_VALUE; } /** - * Returns true if the specified number is infinitely - * large in magnitude, false otherwise. + * Returns {@code true} if the specified number is infinitely + * large in magnitude, {@code false} otherwise. * *

Note that this method is equivalent to the {@link * Double#isInfinite(double) Double.isInfinite} method; the * functionality is included in this class for convenience. * * @param d the value to be tested. - * @return true if the value of the argument is positive - * infinity or negative infinity; false otherwise. + * @return {@code true} if the value of the argument is positive + * infinity or negative infinity; {@code false} otherwise. */ public static boolean isInfinite(double d) { return Double.isInfinite(d); } /** - * Returns true if the specified number is infinitely - * large in magnitude, false otherwise. + * Returns {@code true} if the specified number is infinitely + * large in magnitude, {@code false} otherwise. * *

Note that this method is equivalent to the {@link * Float#isInfinite(float) Float.isInfinite} method; the * functionality is included in this class for convenience. * * @param f the value to be tested. - * @return true if the argument is positive infinity or - * negative infinity; false otherwise. + * @return {@code true} if the argument is positive infinity or + * negative infinity; {@code false} otherwise. */ public static boolean isInfinite(float f) { return Float.isInfinite(f); } /** - * Returns true if the specified number is a - * Not-a-Number (NaN) value, false otherwise. + * Returns {@code true} if the specified number is a + * Not-a-Number (NaN) value, {@code false} otherwise. * *

Note that this method is equivalent to the {@link * Double#isNaN(double) Double.isNaN} method; the functionality is * included in this class for convenience. * * @param d the value to be tested. - * @return true if the value of the argument is NaN; - * false otherwise. + * @return {@code true} if the value of the argument is NaN; + * {@code false} otherwise. */ public static boolean isNaN(double d) { return Double.isNaN(d); } /** - * Returns true if the specified number is a - * Not-a-Number (NaN) value, false otherwise. + * Returns {@code true} if the specified number is a + * Not-a-Number (NaN) value, {@code false} otherwise. * *

Note that this method is equivalent to the {@link * Float#isNaN(float) Float.isNaN} method; the functionality is * included in this class for convenience. * * @param f the value to be tested. - * @return true if the argument is NaN; - * false otherwise. + * @return {@code true} if the argument is NaN; + * {@code false} otherwise. */ public static boolean isNaN(float f) { return Float.isNaN(f); } /** - * Returns true if the unordered relation holds + * Returns {@code true} if the unordered relation holds * between the two arguments. When two floating-point values are * unordered, one value is neither less than, equal to, nor * greater than the other. For the unordered relation to be true, - * at least one argument must be a NaN. + * at least one argument must be a {@code NaN}. * * @param arg1 the first argument * @param arg2 the second argument - * @return true if at least one argument is a NaN, - * false otherwise. + * @return {@code true} if at least one argument is a NaN, + * {@code false} otherwise. */ public static boolean isUnordered(double arg1, double arg2) { return isNaN(arg1) || isNaN(arg2); } /** - * Returns true if the unordered relation holds + * Returns {@code true} if the unordered relation holds * between the two arguments. When two floating-point values are * unordered, one value is neither less than, equal to, nor * greater than the other. For the unordered relation to be true, - * at least one argument must be a NaN. + * at least one argument must be a {@code NaN}. * * @param arg1 the first argument * @param arg2 the second argument - * @return true if at least one argument is a NaN, - * false otherwise. + * @return {@code true} if at least one argument is a NaN, + * {@code false} otherwise. */ public static boolean isUnordered(float arg1, float arg2) { return isNaN(arg1) || isNaN(arg2); } /** - * Returns unbiased exponent of a double; for + * Returns unbiased exponent of a {@code double}; for * subnormal values, the number is treated as if it were * normalized. That is for all finite, non-zero, positive numbers * x, scalb(x, -ilogb(x)) is @@ -378,7 +378,6 @@ return (1<<30); // 2^30 else // infinite value return (1<<28); // 2^28 - // break; case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal if(d == 0.0) { @@ -414,18 +413,16 @@ exponent < DoubleConsts.MIN_EXPONENT); return exponent; } - // break; default: assert( exponent >= DoubleConsts.MIN_EXPONENT && exponent <= DoubleConsts.MAX_EXPONENT); return exponent; - // break; } } /** - * Returns unbiased exponent of a float; for + * Returns unbiased exponent of a {@code float}; for * subnormal values, the number is treated as if it were * normalized. That is for all finite, non-zero, positive numbers * x, scalb(x, -ilogb(x)) is @@ -451,7 +448,6 @@ return (1<<30); // 2^30 else // infinite value return (1<<28); // 2^28 - // break; case FloatConsts.MIN_EXPONENT-1: // zero or subnormal if(f == 0.0f) { @@ -487,13 +483,11 @@ exponent < FloatConsts.MIN_EXPONENT); return exponent; } - // break; default: assert( exponent >= FloatConsts.MIN_EXPONENT && exponent <= FloatConsts.MAX_EXPONENT); return exponent; - // break; } } @@ -534,22 +528,22 @@ */ /** - * Return d × - * 2scale_factor rounded as if performed + * Return {@code d} × + * 2{@code scale_factor} rounded as if performed * by a single correctly rounded floating-point multiply to a * member of the double value set. See §4.2.3 * of the Java * Language Specification for a discussion of floating-point * value sets. If the exponent of the result is between the - * double's minimum exponent and maximum exponent, + * {@code double}'s minimum exponent and maximum exponent, * the answer is calculated exactly. If the exponent of the - * result would be larger than doubles's maximum + * result would be larger than {@code doubles}'s maximum * exponent, an infinity is returned. Note that if the result is - * subnormal, precision may be lost; that is, when scalb(x, - * n) is subnormal, scalb(scalb(x, n), -n) may + * subnormal, precision may be lost; that is, when {@code scalb(x, + * n)} is subnormal, {@code scalb(scalb(x, n), -n)} may * not equal x. When the result is non-NaN, the result has - * the same sign as d. + * the same sign as {@code d}. * *

* Special cases: @@ -562,8 +556,8 @@ * * * @param d number to be scaled by a power of two. - * @param scale_factor power of 2 used to scale d - * @return d * 2scale_factor + * @param scale_factor power of 2 used to scale {@code d} + * @return {@code d * }2{@code scale_factor} * @author Joseph D. Darcy */ public static double scalb(double d, int scale_factor) { @@ -644,22 +638,22 @@ } /** - * Return f × - * 2scale_factor rounded as if performed + * Return {@code f} × + * 2{@code scale_factor} rounded as if performed * by a single correctly rounded floating-point multiply to a * member of the float value set. See §4.2.3 * of the Java * Language Specification for a discussion of floating-point * value set. If the exponent of the result is between the - * float's minimum exponent and maximum exponent, the + * {@code float}'s minimum exponent and maximum exponent, the * answer is calculated exactly. If the exponent of the result - * would be larger than float's maximum exponent, an + * would be larger than {@code float}'s maximum exponent, an * infinity is returned. Note that if the result is subnormal, - * precision may be lost; that is, when scalb(x, n) - * is subnormal, scalb(scalb(x, n), -n) may not equal + * precision may be lost; that is, when {@code scalb(x, n)} + * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal * x. When the result is non-NaN, the result has the same - * sign as f. + * sign as {@code f}. * *

* Special cases: @@ -672,8 +666,8 @@ * * * @param f number to be scaled by a power of two. - * @param scale_factor power of 2 used to scale f - * @return f * 2scale_factor + * @param scale_factor power of 2 used to scale {@code f} + * @return {@code f * }2{@code scale_factor} * @author Joseph D. Darcy */ public static float scalb(float f, int scale_factor) { @@ -709,34 +703,34 @@ *

* * @param start starting floating-point value * @param direction value indicating which of - * start's neighbors or start should + * {@code start}'s neighbors or {@code start} should * be returned - * @return The floating-point number adjacent to start in the - * direction of direction. + * @return The floating-point number adjacent to {@code start} in the + * direction of {@code direction}. * @author Joseph D. Darcy */ public static double nextAfter(double start, double direction) { @@ -809,34 +803,34 @@ * * * @param start starting floating-point value * @param direction value indicating which of - * start's neighbors or start should + * {@code start}'s neighbors or {@code start} should * be returned - * @return The floating-point number adjacent to start in the - * direction of direction. + * @return The floating-point number adjacent to {@code start} in the + * direction of {@code direction}. * @author Joseph D. Darcy */ public static float nextAfter(float start, double direction) { @@ -900,12 +894,12 @@ } /** - * Returns the floating-point value adjacent to d in + * Returns the floating-point value adjacent to {@code d} in * the direction of positive infinity. This method is - * semantically equivalent to nextAfter(d, - * Double.POSITIVE_INFINITY); however, a nextUp + * semantically equivalent to {@code nextAfter(d, + * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} * implementation may run faster than its equivalent - * nextAfter call. + * {@code nextAfter} call. * *

Special Cases: *

* @@ -935,12 +929,12 @@ } /** - * Returns the floating-point value adjacent to f in + * Returns the floating-point value adjacent to {@code f} in * the direction of positive infinity. This method is - * semantically equivalent to nextAfter(f, - * Double.POSITIVE_INFINITY); however, a nextUp + * semantically equivalent to {@code nextAfter(f, + * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} * implementation may run faster than its equivalent - * nextAfter call. + * {@code nextAfter} call. * *

Special Cases: *

* @@ -970,12 +964,12 @@ } /** - * Returns the floating-point value adjacent to d in + * Returns the floating-point value adjacent to {@code d} in * the direction of negative infinity. This method is - * semantically equivalent to nextAfter(d, - * Double.NEGATIVE_INFINITY); however, a - * nextDown implementation may run faster than its - * equivalent nextAfter call. + * semantically equivalent to {@code nextAfter(d, + * Double.NEGATIVE_INFINITY)}; however, a + * {@code nextDown} implementation may run faster than its + * equivalent {@code nextAfter} call. * *

Special Cases: *

* @@ -1007,12 +1001,12 @@ } /** - * Returns the floating-point value adjacent to f in + * Returns the floating-point value adjacent to {@code f} in * the direction of negative infinity. This method is - * semantically equivalent to nextAfter(f, - * Float.NEGATIVE_INFINITY); however, a - * nextDown implementation may run faster than its - * equivalent nextAfter call. + * semantically equivalent to {@code nextAfter(f, + * Float.NEGATIVE_INFINITY)}; however, a + * {@code nextDown} implementation may run faster than its + * equivalent {@code nextAfter} call. * *

Special Cases: *

* @@ -1046,13 +1040,13 @@ /** * Returns the first floating-point argument with the sign of the * second floating-point argument. For this method, a NaN - * sign argument is always treated as if it were + * {@code sign} argument is always treated as if it were * positive. * * @param magnitude the parameter providing the magnitude of the result * @param sign the parameter providing the sign of the result - * @return a value with the magnitude of magnitude - * and the sign of sign. + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. * @author Joseph D. Darcy * @since 1.5 */ @@ -1063,13 +1057,13 @@ /** * Returns the first floating-point argument with the sign of the * second floating-point argument. For this method, a NaN - * sign argument is always treated as if it were + * {@code sign} argument is always treated as if it were * positive. * * @param magnitude the parameter providing the magnitude of the result * @param sign the parameter providing the sign of the result - * @return a value with the magnitude of magnitude - * and the sign of sign. + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. * @author Joseph D. Darcy */ public static float copySign(float magnitude, float sign) { @@ -1078,8 +1072,8 @@ /** * Returns the size of an ulp of the argument. An ulp of a - * double value is the positive distance between this - * floating-point value and the double value next + * {@code double} value is the positive distance between this + * floating-point value and the {@code double} value next * larger in magnitude. Note that for non-NaN x, * ulp(-x) == ulp(x). * @@ -1089,8 +1083,8 @@ *
  • If the argument is positive or negative infinity, then the * result is positive infinity. *
  • If the argument is positive or negative zero, then the result is - * Double.MIN_VALUE. - *
  • If the argument is ±Double.MAX_VALUE, then + * {@code Double.MIN_VALUE}. + *
  • If the argument is ±{@code Double.MAX_VALUE}, then * the result is equal to 2971. * * @@ -1105,11 +1099,9 @@ switch(exp) { case DoubleConsts.MAX_EXPONENT+1: // NaN or infinity return Math.abs(d); - // break; case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal return Double.MIN_VALUE; - // break default: assert exp <= DoubleConsts.MAX_EXPONENT && exp >= DoubleConsts.MIN_EXPONENT; @@ -1126,14 +1118,13 @@ return Double.longBitsToDouble(1L << (exp - (DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) )); } - // break } } /** * Returns the size of an ulp of the argument. An ulp of a - * float value is the positive distance between this - * floating-point value and the float value next + * {@code float} value is the positive distance between this + * floating-point value and the {@code float} value next * larger in magnitude. Note that for non-NaN x, * ulp(-x) == ulp(x). * @@ -1143,8 +1134,8 @@ *
  • If the argument is positive or negative infinity, then the * result is positive infinity. *
  • If the argument is positive or negative zero, then the result is - * Float.MIN_VALUE. - *
  • If the argument is ±Float.MAX_VALUE, then + * {@code Float.MIN_VALUE}. + *
  • If the argument is ±{@code Float.MAX_VALUE}, then * the result is equal to 2104. * * @@ -1159,11 +1150,9 @@ switch(exp) { case FloatConsts.MAX_EXPONENT+1: // NaN or infinity return Math.abs(f); - // break; case FloatConsts.MIN_EXPONENT-1: // zero or subnormal return FloatConsts.MIN_VALUE; - // break default: assert exp <= FloatConsts.MAX_EXPONENT && exp >= FloatConsts.MIN_EXPONENT; @@ -1180,7 +1169,6 @@ return Float.intBitsToFloat(1 << (exp - (FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) )); } - // break } }