1 /*
   2  * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.util.Random;
  28 
  29 
  30 /**
  31  * The class {@code Math} contains methods for performing basic
  32  * numeric operations such as the elementary exponential, logarithm,
  33  * square root, and trigonometric functions.
  34  *
  35  * <p>Unlike some of the numeric methods of class
  36  * {@code StrictMath}, all implementations of the equivalent
  37  * functions of class {@code Math} are not defined to return the
  38  * bit-for-bit same results.  This relaxation permits
  39  * better-performing implementations where strict reproducibility is
  40  * not required.
  41  *
  42  * <p>By default many of the {@code Math} methods simply call
  43  * the equivalent method in {@code StrictMath} for their
  44  * implementation.  Code generators are encouraged to use
  45  * platform-specific native libraries or microprocessor instructions,
  46  * where available, to provide higher-performance implementations of
  47  * {@code Math} methods.  Such higher-performance
  48  * implementations still must conform to the specification for
  49  * {@code Math}.
  50  *
  51  * <p>The quality of implementation specifications concern two
  52  * properties, accuracy of the returned result and monotonicity of the
  53  * method.  Accuracy of the floating-point {@code Math} methods is
  54  * measured in terms of <i>ulps</i>, units in the last place.  For a
  55  * given floating-point format, an {@linkplain #ulp(double) ulp} of a
  56  * specific real number value is the distance between the two
  57  * floating-point values bracketing that numerical value.  When
  58  * discussing the accuracy of a method as a whole rather than at a
  59  * specific argument, the number of ulps cited is for the worst-case
  60  * error at any argument.  If a method always has an error less than
  61  * 0.5 ulps, the method always returns the floating-point number
  62  * nearest the exact result; such a method is <i>correctly
  63  * rounded</i>.  A correctly rounded method is generally the best a
  64  * floating-point approximation can be; however, it is impractical for
  65  * many floating-point methods to be correctly rounded.  Instead, for
  66  * the {@code Math} class, a larger error bound of 1 or 2 ulps is
  67  * allowed for certain methods.  Informally, with a 1 ulp error bound,
  68  * when the exact result is a representable number, the exact result
  69  * should be returned as the computed result; otherwise, either of the
  70  * two floating-point values which bracket the exact result may be
  71  * returned.  For exact results large in magnitude, one of the
  72  * endpoints of the bracket may be infinite.  Besides accuracy at
  73  * individual arguments, maintaining proper relations between the
  74  * method at different arguments is also important.  Therefore, most
  75  * methods with more than 0.5 ulp errors are required to be
  76  * <i>semi-monotonic</i>: whenever the mathematical function is
  77  * non-decreasing, so is the floating-point approximation, likewise,
  78  * whenever the mathematical function is non-increasing, so is the
  79  * floating-point approximation.  Not all approximations that have 1
  80  * ulp accuracy will automatically meet the monotonicity requirements.
  81  *
  82  * @author  unascribed
  83  * @author  Joseph D. Darcy
  84  * @since   JDK1.0
  85  */
  86 
  87 public final class Math {
  88 
  89     /**
  90      * Don't let anyone instantiate this class.
  91      */
  92     private Math() {}
  93 
  94     /**
  95      * The {@code double} value that is closer than any other to
  96      * <i>e</i>, the base of the natural logarithms.
  97      */
  98     public static final double E = 2.7182818284590452354;
  99 
 100     /**
 101      * The {@code double} value that is closer than any other to
 102      * <i>pi</i>, the ratio of the circumference of a circle to its
 103      * diameter.
 104      */
 105     public static final double PI = 3.14159265358979323846;
 106 
 107     /**
 108      * Returns the trigonometric sine of an angle.  Special cases:
 109      * <ul><li>If the argument is NaN or an infinity, then the
 110      * result is NaN.
 111      * <li>If the argument is zero, then the result is a zero with the
 112      * same sign as the argument.</ul>
 113      *
 114      * <p>The computed result must be within 1 ulp of the exact result.
 115      * Results must be semi-monotonic.
 116      *
 117      * @param   a   an angle, in radians.
 118      * @return  the sine of the argument.
 119      */
 120     public static double sin(double a) {
 121         return StrictMath.sin(a); // default impl. delegates to StrictMath
 122     }
 123 
 124     /**
 125      * Returns the trigonometric cosine of an angle. Special cases:
 126      * <ul><li>If the argument is NaN or an infinity, then the
 127      * result is NaN.</ul>
 128      *
 129      * <p>The computed result must be within 1 ulp of the exact result.
 130      * Results must be semi-monotonic.
 131      *
 132      * @param   a   an angle, in radians.
 133      * @return  the cosine of the argument.
 134      */
 135     public static double cos(double a) {
 136         return StrictMath.cos(a); // default impl. delegates to StrictMath
 137     }
 138 
 139     /**
 140      * Returns the trigonometric tangent of an angle.  Special cases:
 141      * <ul><li>If the argument is NaN or an infinity, then the result
 142      * is NaN.
 143      * <li>If the argument is zero, then the result is a zero with the
 144      * same sign as the argument.</ul>
 145      *
 146      * <p>The computed result must be within 1 ulp of the exact result.
 147      * Results must be semi-monotonic.
 148      *
 149      * @param   a   an angle, in radians.
 150      * @return  the tangent of the argument.
 151      */
 152     public static double tan(double a) {
 153         return StrictMath.tan(a); // default impl. delegates to StrictMath
 154     }
 155 
 156     /**
 157      * Returns the arc sine of a value; the returned angle is in the
 158      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 159      * <ul><li>If the argument is NaN or its absolute value is greater
 160      * than 1, then the result is NaN.
 161      * <li>If the argument is zero, then the result is a zero with the
 162      * same sign as the argument.</ul>
 163      *
 164      * <p>The computed result must be within 1 ulp of the exact result.
 165      * Results must be semi-monotonic.
 166      *
 167      * @param   a   the value whose arc sine is to be returned.
 168      * @return  the arc sine of the argument.
 169      */
 170     public static double asin(double a) {
 171         return StrictMath.asin(a); // default impl. delegates to StrictMath
 172     }
 173 
 174     /**
 175      * Returns the arc cosine of a value; the returned angle is in the
 176      * range 0.0 through <i>pi</i>.  Special case:
 177      * <ul><li>If the argument is NaN or its absolute value is greater
 178      * than 1, then the result is NaN.</ul>
 179      *
 180      * <p>The computed result must be within 1 ulp of the exact result.
 181      * Results must be semi-monotonic.
 182      *
 183      * @param   a   the value whose arc cosine is to be returned.
 184      * @return  the arc cosine of the argument.
 185      */
 186     public static double acos(double a) {
 187         return StrictMath.acos(a); // default impl. delegates to StrictMath
 188     }
 189 
 190     /**
 191      * Returns the arc tangent of a value; the returned angle is in the
 192      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 193      * <ul><li>If the argument is NaN, then the result is NaN.
 194      * <li>If the argument is zero, then the result is a zero with the
 195      * same sign as the argument.</ul>
 196      *
 197      * <p>The computed result must be within 1 ulp of the exact result.
 198      * Results must be semi-monotonic.
 199      *
 200      * @param   a   the value whose arc tangent is to be returned.
 201      * @return  the arc tangent of the argument.
 202      */
 203     public static double atan(double a) {
 204         return StrictMath.atan(a); // default impl. delegates to StrictMath
 205     }
 206 
 207     /**
 208      * Converts an angle measured in degrees to an approximately
 209      * equivalent angle measured in radians.  The conversion from
 210      * degrees to radians is generally inexact.
 211      *
 212      * @param   angdeg   an angle, in degrees
 213      * @return  the measurement of the angle {@code angdeg}
 214      *          in radians.
 215      * @since   1.2
 216      */
 217     public static double toRadians(double angdeg) {
 218         return angdeg / 180.0 * PI;
 219     }
 220 
 221     /**
 222      * Converts an angle measured in radians to an approximately
 223      * equivalent angle measured in degrees.  The conversion from
 224      * radians to degrees is generally inexact; users should
 225      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 226      * equal {@code 0.0}.
 227      *
 228      * @param   angrad   an angle, in radians
 229      * @return  the measurement of the angle {@code angrad}
 230      *          in degrees.
 231      * @since   1.2
 232      */
 233     public static double toDegrees(double angrad) {
 234         return angrad * 180.0 / PI;
 235     }
 236 
 237     /**
 238      * Returns Euler's number <i>e</i> raised to the power of a
 239      * {@code double} value.  Special cases:
 240      * <ul><li>If the argument is NaN, the result is NaN.
 241      * <li>If the argument is positive infinity, then the result is
 242      * positive infinity.
 243      * <li>If the argument is negative infinity, then the result is
 244      * positive zero.</ul>
 245      *
 246      * <p>The computed result must be within 1 ulp of the exact result.
 247      * Results must be semi-monotonic.
 248      *
 249      * @param   a   the exponent to raise <i>e</i> to.
 250      * @return  the value <i>e</i><sup>{@code a}</sup>,
 251      *          where <i>e</i> is the base of the natural logarithms.
 252      */
 253     public static double exp(double a) {
 254         return StrictMath.exp(a); // default impl. delegates to StrictMath
 255     }
 256 
 257     /**
 258      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 259      * value.  Special cases:
 260      * <ul><li>If the argument is NaN or less than zero, then the result
 261      * is NaN.
 262      * <li>If the argument is positive infinity, then the result is
 263      * positive infinity.
 264      * <li>If the argument is positive zero or negative zero, then the
 265      * result is negative infinity.</ul>
 266      *
 267      * <p>The computed result must be within 1 ulp of the exact result.
 268      * Results must be semi-monotonic.
 269      *
 270      * @param   a   a value
 271      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 272      *          {@code a}.
 273      */
 274     public static double log(double a) {
 275         return StrictMath.log(a); // default impl. delegates to StrictMath
 276     }
 277 
 278     /**
 279      * Returns the base 10 logarithm of a {@code double} value.
 280      * Special cases:
 281      *
 282      * <ul><li>If the argument is NaN or less than zero, then the result
 283      * is NaN.
 284      * <li>If the argument is positive infinity, then the result is
 285      * positive infinity.
 286      * <li>If the argument is positive zero or negative zero, then the
 287      * result is negative infinity.
 288      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 289      * integer <i>n</i>, then the result is <i>n</i>.
 290      * </ul>
 291      *
 292      * <p>The computed result must be within 1 ulp of the exact result.
 293      * Results must be semi-monotonic.
 294      *
 295      * @param   a   a value
 296      * @return  the base 10 logarithm of  {@code a}.
 297      * @since 1.5
 298      */
 299     public static double log10(double a) {
 300         return StrictMath.log10(a); // default impl. delegates to StrictMath
 301     }
 302 
 303     /**
 304      * Returns the correctly rounded positive square root of a
 305      * {@code double} value.
 306      * Special cases:
 307      * <ul><li>If the argument is NaN or less than zero, then the result
 308      * is NaN.
 309      * <li>If the argument is positive infinity, then the result is positive
 310      * infinity.
 311      * <li>If the argument is positive zero or negative zero, then the
 312      * result is the same as the argument.</ul>
 313      * Otherwise, the result is the {@code double} value closest to
 314      * the true mathematical square root of the argument value.
 315      *
 316      * @param   a   a value.
 317      * @return  the positive square root of {@code a}.
 318      *          If the argument is NaN or less than zero, the result is NaN.
 319      */
 320     public static double sqrt(double a) {
 321         return StrictMath.sqrt(a); // default impl. delegates to StrictMath
 322                                    // Note that hardware sqrt instructions
 323                                    // frequently can be directly used by JITs
 324                                    // and should be much faster than doing
 325                                    // Math.sqrt in software.
 326     }
 327 
 328 
 329     /**
 330      * Returns the cube root of a {@code double} value.  For
 331      * positive finite {@code x}, {@code cbrt(-x) ==
 332      * -cbrt(x)}; that is, the cube root of a negative value is
 333      * the negative of the cube root of that value's magnitude.
 334      *
 335      * Special cases:
 336      *
 337      * <ul>
 338      *
 339      * <li>If the argument is NaN, then the result is NaN.
 340      *
 341      * <li>If the argument is infinite, then the result is an infinity
 342      * with the same sign as the argument.
 343      *
 344      * <li>If the argument is zero, then the result is a zero with the
 345      * same sign as the argument.
 346      *
 347      * </ul>
 348      *
 349      * <p>The computed result must be within 1 ulp of the exact result.
 350      *
 351      * @param   a   a value.
 352      * @return  the cube root of {@code a}.
 353      * @since 1.5
 354      */
 355     public static double cbrt(double a) {
 356         return StrictMath.cbrt(a);
 357     }
 358 
 359     /**
 360      * Computes the remainder operation on two arguments as prescribed
 361      * by the IEEE 754 standard.
 362      * The remainder value is mathematically equal to
 363      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 364      * where <i>n</i> is the mathematical integer closest to the exact
 365      * mathematical value of the quotient {@code f1/f2}, and if two
 366      * mathematical integers are equally close to {@code f1/f2},
 367      * then <i>n</i> is the integer that is even. If the remainder is
 368      * zero, its sign is the same as the sign of the first argument.
 369      * Special cases:
 370      * <ul><li>If either argument is NaN, or the first argument is infinite,
 371      * or the second argument is positive zero or negative zero, then the
 372      * result is NaN.
 373      * <li>If the first argument is finite and the second argument is
 374      * infinite, then the result is the same as the first argument.</ul>
 375      *
 376      * @param   f1   the dividend.
 377      * @param   f2   the divisor.
 378      * @return  the remainder when {@code f1} is divided by
 379      *          {@code f2}.
 380      */
 381     public static double IEEEremainder(double f1, double f2) {
 382         return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
 383     }
 384 
 385     /**
 386      * Returns the smallest (closest to negative infinity)
 387      * {@code double} value that is greater than or equal to the
 388      * argument and is equal to a mathematical integer. Special cases:
 389      * <ul><li>If the argument value is already equal to a
 390      * mathematical integer, then the result is the same as the
 391      * argument.  <li>If the argument is NaN or an infinity or
 392      * positive zero or negative zero, then the result is the same as
 393      * the argument.  <li>If the argument value is less than zero but
 394      * greater than -1.0, then the result is negative zero.</ul> Note
 395      * that the value of {@code Math.ceil(x)} is exactly the
 396      * value of {@code -Math.floor(-x)}.
 397      *
 398      *
 399      * @param   a   a value.
 400      * @return  the smallest (closest to negative infinity)
 401      *          floating-point value that is greater than or equal to
 402      *          the argument and is equal to a mathematical integer.
 403      */
 404     public static double ceil(double a) {
 405         return StrictMath.ceil(a); // default impl. delegates to StrictMath
 406     }
 407 
 408     /**
 409      * Returns the largest (closest to positive infinity)
 410      * {@code double} value that is less than or equal to the
 411      * argument and is equal to a mathematical integer. Special cases:
 412      * <ul><li>If the argument value is already equal to a
 413      * mathematical integer, then the result is the same as the
 414      * argument.  <li>If the argument is NaN or an infinity or
 415      * positive zero or negative zero, then the result is the same as
 416      * the argument.</ul>
 417      *
 418      * @param   a   a value.
 419      * @return  the largest (closest to positive infinity)
 420      *          floating-point value that less than or equal to the argument
 421      *          and is equal to a mathematical integer.
 422      */
 423     public static double floor(double a) {
 424         return StrictMath.floor(a); // default impl. delegates to StrictMath
 425     }
 426 
 427     /**
 428      * Returns the {@code double} value that is closest in value
 429      * to the argument and is equal to a mathematical integer. If two
 430      * {@code double} values that are mathematical integers are
 431      * equally close, the result is the integer value that is
 432      * even. Special cases:
 433      * <ul><li>If the argument value is already equal to a mathematical
 434      * integer, then the result is the same as the argument.
 435      * <li>If the argument is NaN or an infinity or positive zero or negative
 436      * zero, then the result is the same as the argument.</ul>
 437      *
 438      * @param   a   a {@code double} value.
 439      * @return  the closest floating-point value to {@code a} that is
 440      *          equal to a mathematical integer.
 441      */
 442     public static double rint(double a) {
 443         return StrictMath.rint(a); // default impl. delegates to StrictMath
 444     }
 445 
 446     /**
 447      * Returns the angle <i>theta</i> from the conversion of rectangular
 448      * coordinates ({@code x},&nbsp;{@code y}) to polar
 449      * coordinates (r,&nbsp;<i>theta</i>).
 450      * This method computes the phase <i>theta</i> by computing an arc tangent
 451      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 452      * cases:
 453      * <ul><li>If either argument is NaN, then the result is NaN.
 454      * <li>If the first argument is positive zero and the second argument
 455      * is positive, or the first argument is positive and finite and the
 456      * second argument is positive infinity, then the result is positive
 457      * zero.
 458      * <li>If the first argument is negative zero and the second argument
 459      * is positive, or the first argument is negative and finite and the
 460      * second argument is positive infinity, then the result is negative zero.
 461      * <li>If the first argument is positive zero and the second argument
 462      * is negative, or the first argument is positive and finite and the
 463      * second argument is negative infinity, then the result is the
 464      * {@code double} value closest to <i>pi</i>.
 465      * <li>If the first argument is negative zero and the second argument
 466      * is negative, or the first argument is negative and finite and the
 467      * second argument is negative infinity, then the result is the
 468      * {@code double} value closest to -<i>pi</i>.
 469      * <li>If the first argument is positive and the second argument is
 470      * positive zero or negative zero, or the first argument is positive
 471      * infinity and the second argument is finite, then the result is the
 472      * {@code double} value closest to <i>pi</i>/2.
 473      * <li>If the first argument is negative and the second argument is
 474      * positive zero or negative zero, or the first argument is negative
 475      * infinity and the second argument is finite, then the result is the
 476      * {@code double} value closest to -<i>pi</i>/2.
 477      * <li>If both arguments are positive infinity, then the result is the
 478      * {@code double} value closest to <i>pi</i>/4.
 479      * <li>If the first argument is positive infinity and the second argument
 480      * is negative infinity, then the result is the {@code double}
 481      * value closest to 3*<i>pi</i>/4.
 482      * <li>If the first argument is negative infinity and the second argument
 483      * is positive infinity, then the result is the {@code double} value
 484      * closest to -<i>pi</i>/4.
 485      * <li>If both arguments are negative infinity, then the result is the
 486      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 487      *
 488      * <p>The computed result must be within 2 ulps of the exact result.
 489      * Results must be semi-monotonic.
 490      *
 491      * @param   y   the ordinate coordinate
 492      * @param   x   the abscissa coordinate
 493      * @return  the <i>theta</i> component of the point
 494      *          (<i>r</i>,&nbsp;<i>theta</i>)
 495      *          in polar coordinates that corresponds to the point
 496      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 497      */
 498     public static double atan2(double y, double x) {
 499         return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
 500     }
 501 
 502     /**
 503      * Returns the value of the first argument raised to the power of the
 504      * second argument. Special cases:
 505      *
 506      * <ul><li>If the second argument is positive or negative zero, then the
 507      * result is 1.0.
 508      * <li>If the second argument is 1.0, then the result is the same as the
 509      * first argument.
 510      * <li>If the second argument is NaN, then the result is NaN.
 511      * <li>If the first argument is NaN and the second argument is nonzero,
 512      * then the result is NaN.
 513      *
 514      * <li>If
 515      * <ul>
 516      * <li>the absolute value of the first argument is greater than 1
 517      * and the second argument is positive infinity, or
 518      * <li>the absolute value of the first argument is less than 1 and
 519      * the second argument is negative infinity,
 520      * </ul>
 521      * then the result is positive infinity.
 522      *
 523      * <li>If
 524      * <ul>
 525      * <li>the absolute value of the first argument is greater than 1 and
 526      * the second argument is negative infinity, or
 527      * <li>the absolute value of the
 528      * first argument is less than 1 and the second argument is positive
 529      * infinity,
 530      * </ul>
 531      * then the result is positive zero.
 532      *
 533      * <li>If the absolute value of the first argument equals 1 and the
 534      * second argument is infinite, then the result is NaN.
 535      *
 536      * <li>If
 537      * <ul>
 538      * <li>the first argument is positive zero and the second argument
 539      * is greater than zero, or
 540      * <li>the first argument is positive infinity and the second
 541      * argument is less than zero,
 542      * </ul>
 543      * then the result is positive zero.
 544      *
 545      * <li>If
 546      * <ul>
 547      * <li>the first argument is positive zero and the second argument
 548      * is less than zero, or
 549      * <li>the first argument is positive infinity and the second
 550      * argument is greater than zero,
 551      * </ul>
 552      * then the result is positive infinity.
 553      *
 554      * <li>If
 555      * <ul>
 556      * <li>the first argument is negative zero and the second argument
 557      * is greater than zero but not a finite odd integer, or
 558      * <li>the first argument is negative infinity and the second
 559      * argument is less than zero but not a finite odd integer,
 560      * </ul>
 561      * then the result is positive zero.
 562      *
 563      * <li>If
 564      * <ul>
 565      * <li>the first argument is negative zero and the second argument
 566      * is a positive finite odd integer, or
 567      * <li>the first argument is negative infinity and the second
 568      * argument is a negative finite odd integer,
 569      * </ul>
 570      * then the result is negative zero.
 571      *
 572      * <li>If
 573      * <ul>
 574      * <li>the first argument is negative zero and the second argument
 575      * is less than zero but not a finite odd integer, or
 576      * <li>the first argument is negative infinity and the second
 577      * argument is greater than zero but not a finite odd integer,
 578      * </ul>
 579      * then the result is positive infinity.
 580      *
 581      * <li>If
 582      * <ul>
 583      * <li>the first argument is negative zero and the second argument
 584      * is a negative finite odd integer, or
 585      * <li>the first argument is negative infinity and the second
 586      * argument is a positive finite odd integer,
 587      * </ul>
 588      * then the result is negative infinity.
 589      *
 590      * <li>If the first argument is finite and less than zero
 591      * <ul>
 592      * <li> if the second argument is a finite even integer, the
 593      * result is equal to the result of raising the absolute value of
 594      * the first argument to the power of the second argument
 595      *
 596      * <li>if the second argument is a finite odd integer, the result
 597      * is equal to the negative of the result of raising the absolute
 598      * value of the first argument to the power of the second
 599      * argument
 600      *
 601      * <li>if the second argument is finite and not an integer, then
 602      * the result is NaN.
 603      * </ul>
 604      *
 605      * <li>If both arguments are integers, then the result is exactly equal
 606      * to the mathematical result of raising the first argument to the power
 607      * of the second argument if that result can in fact be represented
 608      * exactly as a {@code double} value.</ul>
 609      *
 610      * <p>(In the foregoing descriptions, a floating-point value is
 611      * considered to be an integer if and only if it is finite and a
 612      * fixed point of the method {@link #ceil ceil} or,
 613      * equivalently, a fixed point of the method {@link #floor
 614      * floor}. A value is a fixed point of a one-argument
 615      * method if and only if the result of applying the method to the
 616      * value is equal to the value.)
 617      *
 618      * <p>The computed result must be within 1 ulp of the exact result.
 619      * Results must be semi-monotonic.
 620      *
 621      * @param   a   the base.
 622      * @param   b   the exponent.
 623      * @return  the value {@code a}<sup>{@code b}</sup>.
 624      */
 625     public static double pow(double a, double b) {
 626         return StrictMath.pow(a, b); // default impl. delegates to StrictMath
 627     }
 628 
 629     /**
 630      * Returns the closest {@code int} to the argument, with ties
 631      * rounding up.
 632      *
 633      * <p>
 634      * Special cases:
 635      * <ul><li>If the argument is NaN, the result is 0.
 636      * <li>If the argument is negative infinity or any value less than or
 637      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 638      * equal to the value of {@code Integer.MIN_VALUE}.
 639      * <li>If the argument is positive infinity or any value greater than or
 640      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 641      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 642      *
 643      * @param   a   a floating-point value to be rounded to an integer.
 644      * @return  the value of the argument rounded to the nearest
 645      *          {@code int} value.
 646      * @see     java.lang.Integer#MAX_VALUE
 647      * @see     java.lang.Integer#MIN_VALUE
 648      */
 649     public static int round(float a) {
 650         if (a != 0x1.fffffep-2f) // greatest float value less than 0.5
 651             return (int)floor(a + 0.5f);
 652         else
 653             return 0;
 654     }
 655 
 656     /**
 657      * Returns the closest {@code long} to the argument, with ties
 658      * rounding up.
 659      *
 660      * <p>Special cases:
 661      * <ul><li>If the argument is NaN, the result is 0.
 662      * <li>If the argument is negative infinity or any value less than or
 663      * equal to the value of {@code Long.MIN_VALUE}, the result is
 664      * equal to the value of {@code Long.MIN_VALUE}.
 665      * <li>If the argument is positive infinity or any value greater than or
 666      * equal to the value of {@code Long.MAX_VALUE}, the result is
 667      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 668      *
 669      * @param   a   a floating-point value to be rounded to a
 670      *          {@code long}.
 671      * @return  the value of the argument rounded to the nearest
 672      *          {@code long} value.
 673      * @see     java.lang.Long#MAX_VALUE
 674      * @see     java.lang.Long#MIN_VALUE
 675      */
 676     public static long round(double a) {
 677         if (a != 0x1.fffffffffffffp-2) // greatest double value less than 0.5
 678             return (long)floor(a + 0.5d);
 679         else
 680             return 0;
 681     }
 682 
 683     private static Random randomNumberGenerator;
 684 
 685     private static synchronized Random initRNG() {
 686         Random rnd = randomNumberGenerator;
 687         return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
 688     }
 689 
 690     /**
 691      * Returns a {@code double} value with a positive sign, greater
 692      * than or equal to {@code 0.0} and less than {@code 1.0}.
 693      * Returned values are chosen pseudorandomly with (approximately)
 694      * uniform distribution from that range.
 695      *
 696      * <p>When this method is first called, it creates a single new
 697      * pseudorandom-number generator, exactly as if by the expression
 698      *
 699      * <blockquote>{@code new java.util.Random()}</blockquote>
 700      *
 701      * This new pseudorandom-number generator is used thereafter for
 702      * all calls to this method and is used nowhere else.
 703      *
 704      * <p>This method is properly synchronized to allow correct use by
 705      * more than one thread. However, if many threads need to generate
 706      * pseudorandom numbers at a great rate, it may reduce contention
 707      * for each thread to have its own pseudorandom-number generator.
 708      *
 709      * @return  a pseudorandom {@code double} greater than or equal
 710      * to {@code 0.0} and less than {@code 1.0}.
 711      * @see Random#nextDouble()
 712      */
 713     public static double random() {
 714         Random rnd = randomNumberGenerator;
 715         if (rnd == null) rnd = initRNG();
 716         return rnd.nextDouble();
 717     }
 718 
 719     /**
 720      * Returns the absolute value of an {@code int} value.
 721      * If the argument is not negative, the argument is returned.
 722      * If the argument is negative, the negation of the argument is returned.
 723      *
 724      * <p>Note that if the argument is equal to the value of
 725      * {@link Integer#MIN_VALUE}, the most negative representable
 726      * {@code int} value, the result is that same value, which is
 727      * negative.
 728      *
 729      * @param   a   the argument whose absolute value is to be determined
 730      * @return  the absolute value of the argument.
 731      */
 732     public static int abs(int a) {
 733         return (a < 0) ? -a : a;
 734     }
 735 
 736     /**
 737      * Returns the absolute value of a {@code long} value.
 738      * If the argument is not negative, the argument is returned.
 739      * If the argument is negative, the negation of the argument is returned.
 740      *
 741      * <p>Note that if the argument is equal to the value of
 742      * {@link Long#MIN_VALUE}, the most negative representable
 743      * {@code long} value, the result is that same value, which
 744      * is negative.
 745      *
 746      * @param   a   the argument whose absolute value is to be determined
 747      * @return  the absolute value of the argument.
 748      */
 749     public static long abs(long a) {
 750         return (a < 0) ? -a : a;
 751     }
 752 
 753     /**
 754      * Returns the absolute value of a {@code float} value.
 755      * If the argument is not negative, the argument is returned.
 756      * If the argument is negative, the negation of the argument is returned.
 757      * Special cases:
 758      * <ul><li>If the argument is positive zero or negative zero, the
 759      * result is positive zero.
 760      * <li>If the argument is infinite, the result is positive infinity.
 761      * <li>If the argument is NaN, the result is NaN.</ul>
 762      * In other words, the result is the same as the value of the expression:
 763      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
 764      *
 765      * @param   a   the argument whose absolute value is to be determined
 766      * @return  the absolute value of the argument.
 767      */
 768     public static float abs(float a) {
 769         return (a <= 0.0F) ? 0.0F - a : a;
 770     }
 771 
 772     /**
 773      * Returns the absolute value of a {@code double} value.
 774      * If the argument is not negative, the argument is returned.
 775      * If the argument is negative, the negation of the argument is returned.
 776      * Special cases:
 777      * <ul><li>If the argument is positive zero or negative zero, the result
 778      * is positive zero.
 779      * <li>If the argument is infinite, the result is positive infinity.
 780      * <li>If the argument is NaN, the result is NaN.</ul>
 781      * In other words, the result is the same as the value of the expression:
 782      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
 783      *
 784      * @param   a   the argument whose absolute value is to be determined
 785      * @return  the absolute value of the argument.
 786      */
 787     public static double abs(double a) {
 788         return (a <= 0.0D) ? 0.0D - a : a;
 789     }
 790 
 791     /**
 792      * Returns the greater of two {@code int} values. That is, the
 793      * result is the argument closer to the value of
 794      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
 795      * the result is that same value.
 796      *
 797      * @param   a   an argument.
 798      * @param   b   another argument.
 799      * @return  the larger of {@code a} and {@code b}.
 800      */
 801     public static int max(int a, int b) {
 802         return (a >= b) ? a : b;
 803     }
 804 
 805     /**
 806      * Returns the greater of two {@code long} values. That is, the
 807      * result is the argument closer to the value of
 808      * {@link Long#MAX_VALUE}. If the arguments have the same value,
 809      * the result is that same value.
 810      *
 811      * @param   a   an argument.
 812      * @param   b   another argument.
 813      * @return  the larger of {@code a} and {@code b}.
 814      */
 815     public static long max(long a, long b) {
 816         return (a >= b) ? a : b;
 817     }
 818 
 819     private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
 820     private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
 821 
 822     /**
 823      * Returns the greater of two {@code float} values.  That is,
 824      * the result is the argument closer to positive infinity. If the
 825      * arguments have the same value, the result is that same
 826      * value. If either value is NaN, then the result is NaN.  Unlike
 827      * the numerical comparison operators, this method considers
 828      * negative zero to be strictly smaller than positive zero. If one
 829      * argument is positive zero and the other negative zero, the
 830      * result is positive zero.
 831      *
 832      * @param   a   an argument.
 833      * @param   b   another argument.
 834      * @return  the larger of {@code a} and {@code b}.
 835      */
 836     public static float max(float a, float b) {
 837         if (a != a) return a;   // a is NaN
 838         if ((a == 0.0f) && (b == 0.0f)
 839             && (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
 840             return b;
 841         }
 842         return (a >= b) ? a : b;
 843     }
 844 
 845     /**
 846      * Returns the greater of two {@code double} values.  That
 847      * is, the result is the argument closer to positive infinity. If
 848      * the arguments have the same value, the result is that same
 849      * value. If either value is NaN, then the result is NaN.  Unlike
 850      * the numerical comparison operators, this method considers
 851      * negative zero to be strictly smaller than positive zero. If one
 852      * argument is positive zero and the other negative zero, the
 853      * result is positive zero.
 854      *
 855      * @param   a   an argument.
 856      * @param   b   another argument.
 857      * @return  the larger of {@code a} and {@code b}.
 858      */
 859     public static double max(double a, double b) {
 860         if (a != a) return a;   // a is NaN
 861         if ((a == 0.0d) && (b == 0.0d)
 862             && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
 863             return b;
 864         }
 865         return (a >= b) ? a : b;
 866     }
 867 
 868     /**
 869      * Returns the smaller of two {@code int} values. That is,
 870      * the result the argument closer to the value of
 871      * {@link Integer#MIN_VALUE}.  If the arguments have the same
 872      * value, the result is that same value.
 873      *
 874      * @param   a   an argument.
 875      * @param   b   another argument.
 876      * @return  the smaller of {@code a} and {@code b}.
 877      */
 878     public static int min(int a, int b) {
 879         return (a <= b) ? a : b;
 880     }
 881 
 882     /**
 883      * Returns the smaller of two {@code long} values. That is,
 884      * the result is the argument closer to the value of
 885      * {@link Long#MIN_VALUE}. If the arguments have the same
 886      * value, the result is that same value.
 887      *
 888      * @param   a   an argument.
 889      * @param   b   another argument.
 890      * @return  the smaller of {@code a} and {@code b}.
 891      */
 892     public static long min(long a, long b) {
 893         return (a <= b) ? a : b;
 894     }
 895 
 896     /**
 897      * Returns the smaller of two {@code float} values.  That is,
 898      * the result is the value closer to negative infinity. If the
 899      * arguments have the same value, the result is that same
 900      * value. If either value is NaN, then the result is NaN.  Unlike
 901      * the numerical comparison operators, this method considers
 902      * negative zero to be strictly smaller than positive zero.  If
 903      * one argument is positive zero and the other is negative zero,
 904      * the result is negative zero.
 905      *
 906      * @param   a   an argument.
 907      * @param   b   another argument.
 908      * @return  the smaller of {@code a} and {@code b}.
 909      */
 910     public static float min(float a, float b) {
 911         if (a != a) return a;   // a is NaN
 912         if ((a == 0.0f) && (b == 0.0f)
 913             && (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
 914             return b;
 915         }
 916         return (a <= b) ? a : b;
 917     }
 918 
 919     /**
 920      * Returns the smaller of two {@code double} values.  That
 921      * is, the result is the value closer to negative infinity. If the
 922      * arguments have the same value, the result is that same
 923      * value. If either value is NaN, then the result is NaN.  Unlike
 924      * the numerical comparison operators, this method considers
 925      * negative zero to be strictly smaller than positive zero. If one
 926      * argument is positive zero and the other is negative zero, the
 927      * result is negative zero.
 928      *
 929      * @param   a   an argument.
 930      * @param   b   another argument.
 931      * @return  the smaller of {@code a} and {@code b}.
 932      */
 933     public static double min(double a, double b) {
 934         if (a != a) return a;   // a is NaN
 935         if ((a == 0.0d) && (b == 0.0d)
 936             && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
 937             return b;
 938         }
 939         return (a <= b) ? a : b;
 940     }
 941 
 942     /**
 943      * Returns the size of an ulp of the argument.  An ulp, unit in
 944      * the last place, of a {@code double} value is the positive
 945      * distance between this floating-point value and the {@code
 946      * double} value next larger in magnitude.  Note that for non-NaN
 947      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 948      *
 949      * <p>Special Cases:
 950      * <ul>
 951      * <li> If the argument is NaN, then the result is NaN.
 952      * <li> If the argument is positive or negative infinity, then the
 953      * result is positive infinity.
 954      * <li> If the argument is positive or negative zero, then the result is
 955      * {@code Double.MIN_VALUE}.
 956      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
 957      * the result is equal to 2<sup>971</sup>.
 958      * </ul>
 959      *
 960      * @param d the floating-point value whose ulp is to be returned
 961      * @return the size of an ulp of the argument
 962      * @author Joseph D. Darcy
 963      * @since 1.5
 964      */
 965     public static double ulp(double d) {
 966         return sun.misc.FpUtils.ulp(d);
 967     }
 968 
 969     /**
 970      * Returns the size of an ulp of the argument.  An ulp, unit in
 971      * the last place, of a {@code float} value is the positive
 972      * distance between this floating-point value and the {@code
 973      * float} value next larger in magnitude.  Note that for non-NaN
 974      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 975      *
 976      * <p>Special Cases:
 977      * <ul>
 978      * <li> If the argument is NaN, then the result is NaN.
 979      * <li> If the argument is positive or negative infinity, then the
 980      * result is positive infinity.
 981      * <li> If the argument is positive or negative zero, then the result is
 982      * {@code Float.MIN_VALUE}.
 983      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
 984      * the result is equal to 2<sup>104</sup>.
 985      * </ul>
 986      *
 987      * @param f the floating-point value whose ulp is to be returned
 988      * @return the size of an ulp of the argument
 989      * @author Joseph D. Darcy
 990      * @since 1.5
 991      */
 992     public static float ulp(float f) {
 993         return sun.misc.FpUtils.ulp(f);
 994     }
 995 
 996     /**
 997      * Returns the signum function of the argument; zero if the argument
 998      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
 999      * argument is less than zero.
1000      *
1001      * <p>Special Cases:
1002      * <ul>
1003      * <li> If the argument is NaN, then the result is NaN.
1004      * <li> If the argument is positive zero or negative zero, then the
1005      *      result is the same as the argument.
1006      * </ul>
1007      *
1008      * @param d the floating-point value whose signum is to be returned
1009      * @return the signum function of the argument
1010      * @author Joseph D. Darcy
1011      * @since 1.5
1012      */
1013     public static double signum(double d) {
1014         return sun.misc.FpUtils.signum(d);
1015     }
1016 
1017     /**
1018      * Returns the signum function of the argument; zero if the argument
1019      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1020      * argument is less than zero.
1021      *
1022      * <p>Special Cases:
1023      * <ul>
1024      * <li> If the argument is NaN, then the result is NaN.
1025      * <li> If the argument is positive zero or negative zero, then the
1026      *      result is the same as the argument.
1027      * </ul>
1028      *
1029      * @param f the floating-point value whose signum is to be returned
1030      * @return the signum function of the argument
1031      * @author Joseph D. Darcy
1032      * @since 1.5
1033      */
1034     public static float signum(float f) {
1035         return sun.misc.FpUtils.signum(f);
1036     }
1037 
1038     /**
1039      * Returns the hyperbolic sine of a {@code double} value.
1040      * The hyperbolic sine of <i>x</i> is defined to be
1041      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1042      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1043      *
1044      * <p>Special cases:
1045      * <ul>
1046      *
1047      * <li>If the argument is NaN, then the result is NaN.
1048      *
1049      * <li>If the argument is infinite, then the result is an infinity
1050      * with the same sign as the argument.
1051      *
1052      * <li>If the argument is zero, then the result is a zero with the
1053      * same sign as the argument.
1054      *
1055      * </ul>
1056      *
1057      * <p>The computed result must be within 2.5 ulps of the exact result.
1058      *
1059      * @param   x The number whose hyperbolic sine is to be returned.
1060      * @return  The hyperbolic sine of {@code x}.
1061      * @since 1.5
1062      */
1063     public static double sinh(double x) {
1064         return StrictMath.sinh(x);
1065     }
1066 
1067     /**
1068      * Returns the hyperbolic cosine of a {@code double} value.
1069      * The hyperbolic cosine of <i>x</i> is defined to be
1070      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1071      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1072      *
1073      * <p>Special cases:
1074      * <ul>
1075      *
1076      * <li>If the argument is NaN, then the result is NaN.
1077      *
1078      * <li>If the argument is infinite, then the result is positive
1079      * infinity.
1080      *
1081      * <li>If the argument is zero, then the result is {@code 1.0}.
1082      *
1083      * </ul>
1084      *
1085      * <p>The computed result must be within 2.5 ulps of the exact result.
1086      *
1087      * @param   x The number whose hyperbolic cosine is to be returned.
1088      * @return  The hyperbolic cosine of {@code x}.
1089      * @since 1.5
1090      */
1091     public static double cosh(double x) {
1092         return StrictMath.cosh(x);
1093     }
1094 
1095     /**
1096      * Returns the hyperbolic tangent of a {@code double} value.
1097      * The hyperbolic tangent of <i>x</i> is defined to be
1098      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1099      * in other words, {@linkplain Math#sinh
1100      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1101      * that the absolute value of the exact tanh is always less than
1102      * 1.
1103      *
1104      * <p>Special cases:
1105      * <ul>
1106      *
1107      * <li>If the argument is NaN, then the result is NaN.
1108      *
1109      * <li>If the argument is zero, then the result is a zero with the
1110      * same sign as the argument.
1111      *
1112      * <li>If the argument is positive infinity, then the result is
1113      * {@code +1.0}.
1114      *
1115      * <li>If the argument is negative infinity, then the result is
1116      * {@code -1.0}.
1117      *
1118      * </ul>
1119      *
1120      * <p>The computed result must be within 2.5 ulps of the exact result.
1121      * The result of {@code tanh} for any finite input must have
1122      * an absolute value less than or equal to 1.  Note that once the
1123      * exact result of tanh is within 1/2 of an ulp of the limit value
1124      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
1125      * be returned.
1126      *
1127      * @param   x The number whose hyperbolic tangent is to be returned.
1128      * @return  The hyperbolic tangent of {@code x}.
1129      * @since 1.5
1130      */
1131     public static double tanh(double x) {
1132         return StrictMath.tanh(x);
1133     }
1134 
1135     /**
1136      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1137      * without intermediate overflow or underflow.
1138      *
1139      * <p>Special cases:
1140      * <ul>
1141      *
1142      * <li> If either argument is infinite, then the result
1143      * is positive infinity.
1144      *
1145      * <li> If either argument is NaN and neither argument is infinite,
1146      * then the result is NaN.
1147      *
1148      * </ul>
1149      *
1150      * <p>The computed result must be within 1 ulp of the exact
1151      * result.  If one parameter is held constant, the results must be
1152      * semi-monotonic in the other parameter.
1153      *
1154      * @param x a value
1155      * @param y a value
1156      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1157      * without intermediate overflow or underflow
1158      * @since 1.5
1159      */
1160     public static double hypot(double x, double y) {
1161         return StrictMath.hypot(x, y);
1162     }
1163 
1164     /**
1165      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1166      * <i>x</i> near 0, the exact sum of
1167      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1168      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1169      *
1170      * <p>Special cases:
1171      * <ul>
1172      * <li>If the argument is NaN, the result is NaN.
1173      *
1174      * <li>If the argument is positive infinity, then the result is
1175      * positive infinity.
1176      *
1177      * <li>If the argument is negative infinity, then the result is
1178      * -1.0.
1179      *
1180      * <li>If the argument is zero, then the result is a zero with the
1181      * same sign as the argument.
1182      *
1183      * </ul>
1184      *
1185      * <p>The computed result must be within 1 ulp of the exact result.
1186      * Results must be semi-monotonic.  The result of
1187      * {@code expm1} for any finite input must be greater than or
1188      * equal to {@code -1.0}.  Note that once the exact result of
1189      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
1190      * ulp of the limit value -1, {@code -1.0} should be
1191      * returned.
1192      *
1193      * @param   x   the exponent to raise <i>e</i> to in the computation of
1194      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1195      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1196      * @since 1.5
1197      */
1198     public static double expm1(double x) {
1199         return StrictMath.expm1(x);
1200     }
1201 
1202     /**
1203      * Returns the natural logarithm of the sum of the argument and 1.
1204      * Note that for small values {@code x}, the result of
1205      * {@code log1p(x)} is much closer to the true result of ln(1
1206      * + {@code x}) than the floating-point evaluation of
1207      * {@code log(1.0+x)}.
1208      *
1209      * <p>Special cases:
1210      *
1211      * <ul>
1212      *
1213      * <li>If the argument is NaN or less than -1, then the result is
1214      * NaN.
1215      *
1216      * <li>If the argument is positive infinity, then the result is
1217      * positive infinity.
1218      *
1219      * <li>If the argument is negative one, then the result is
1220      * negative infinity.
1221      *
1222      * <li>If the argument is zero, then the result is a zero with the
1223      * same sign as the argument.
1224      *
1225      * </ul>
1226      *
1227      * <p>The computed result must be within 1 ulp of the exact result.
1228      * Results must be semi-monotonic.
1229      *
1230      * @param   x   a value
1231      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1232      * log of {@code x}&nbsp;+&nbsp;1
1233      * @since 1.5
1234      */
1235     public static double log1p(double x) {
1236         return StrictMath.log1p(x);
1237     }
1238 
1239     /**
1240      * Returns the first floating-point argument with the sign of the
1241      * second floating-point argument.  Note that unlike the {@link
1242      * StrictMath#copySign(double, double) StrictMath.copySign}
1243      * method, this method does not require NaN {@code sign}
1244      * arguments to be treated as positive values; implementations are
1245      * permitted to treat some NaN arguments as positive and other NaN
1246      * arguments as negative to allow greater performance.
1247      *
1248      * @param magnitude  the parameter providing the magnitude of the result
1249      * @param sign   the parameter providing the sign of the result
1250      * @return a value with the magnitude of {@code magnitude}
1251      * and the sign of {@code sign}.
1252      * @since 1.6
1253      */
1254     public static double copySign(double magnitude, double sign) {
1255         return sun.misc.FpUtils.rawCopySign(magnitude, sign);
1256     }
1257 
1258     /**
1259      * Returns the first floating-point argument with the sign of the
1260      * second floating-point argument.  Note that unlike the {@link
1261      * StrictMath#copySign(float, float) StrictMath.copySign}
1262      * method, this method does not require NaN {@code sign}
1263      * arguments to be treated as positive values; implementations are
1264      * permitted to treat some NaN arguments as positive and other NaN
1265      * arguments as negative to allow greater performance.
1266      *
1267      * @param magnitude  the parameter providing the magnitude of the result
1268      * @param sign   the parameter providing the sign of the result
1269      * @return a value with the magnitude of {@code magnitude}
1270      * and the sign of {@code sign}.
1271      * @since 1.6
1272      */
1273     public static float copySign(float magnitude, float sign) {
1274         return sun.misc.FpUtils.rawCopySign(magnitude, sign);
1275     }
1276 
1277     /**
1278      * Returns the unbiased exponent used in the representation of a
1279      * {@code float}.  Special cases:
1280      *
1281      * <ul>
1282      * <li>If the argument is NaN or infinite, then the result is
1283      * {@link Float#MAX_EXPONENT} + 1.
1284      * <li>If the argument is zero or subnormal, then the result is
1285      * {@link Float#MIN_EXPONENT} -1.
1286      * </ul>
1287      * @param f a {@code float} value
1288      * @return the unbiased exponent of the argument
1289      * @since 1.6
1290      */
1291     public static int getExponent(float f) {
1292         return sun.misc.FpUtils.getExponent(f);
1293     }
1294 
1295     /**
1296      * Returns the unbiased exponent used in the representation of a
1297      * {@code double}.  Special cases:
1298      *
1299      * <ul>
1300      * <li>If the argument is NaN or infinite, then the result is
1301      * {@link Double#MAX_EXPONENT} + 1.
1302      * <li>If the argument is zero or subnormal, then the result is
1303      * {@link Double#MIN_EXPONENT} -1.
1304      * </ul>
1305      * @param d a {@code double} value
1306      * @return the unbiased exponent of the argument
1307      * @since 1.6
1308      */
1309     public static int getExponent(double d) {
1310         return sun.misc.FpUtils.getExponent(d);
1311     }
1312 
1313     /**
1314      * Returns the floating-point number adjacent to the first
1315      * argument in the direction of the second argument.  If both
1316      * arguments compare as equal the second argument is returned.
1317      *
1318      * <p>
1319      * Special cases:
1320      * <ul>
1321      * <li> If either argument is a NaN, then NaN is returned.
1322      *
1323      * <li> If both arguments are signed zeros, {@code direction}
1324      * is returned unchanged (as implied by the requirement of
1325      * returning the second argument if the arguments compare as
1326      * equal).
1327      *
1328      * <li> If {@code start} is
1329      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1330      * has a value such that the result should have a smaller
1331      * magnitude, then a zero with the same sign as {@code start}
1332      * is returned.
1333      *
1334      * <li> If {@code start} is infinite and
1335      * {@code direction} has a value such that the result should
1336      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1337      * same sign as {@code start} is returned.
1338      *
1339      * <li> If {@code start} is equal to &plusmn;
1340      * {@link Double#MAX_VALUE} and {@code direction} has a
1341      * value such that the result should have a larger magnitude, an
1342      * infinity with same sign as {@code start} is returned.
1343      * </ul>
1344      *
1345      * @param start  starting floating-point value
1346      * @param direction value indicating which of
1347      * {@code start}'s neighbors or {@code start} should
1348      * be returned
1349      * @return The floating-point number adjacent to {@code start} in the
1350      * direction of {@code direction}.
1351      * @since 1.6
1352      */
1353     public static double nextAfter(double start, double direction) {
1354         return sun.misc.FpUtils.nextAfter(start, direction);
1355     }
1356 
1357     /**
1358      * Returns the floating-point number adjacent to the first
1359      * argument in the direction of the second argument.  If both
1360      * arguments compare as equal a value equivalent to the second argument
1361      * is returned.
1362      *
1363      * <p>
1364      * Special cases:
1365      * <ul>
1366      * <li> If either argument is a NaN, then NaN is returned.
1367      *
1368      * <li> If both arguments are signed zeros, a value equivalent
1369      * to {@code direction} is returned.
1370      *
1371      * <li> If {@code start} is
1372      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1373      * has a value such that the result should have a smaller
1374      * magnitude, then a zero with the same sign as {@code start}
1375      * is returned.
1376      *
1377      * <li> If {@code start} is infinite and
1378      * {@code direction} has a value such that the result should
1379      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1380      * same sign as {@code start} is returned.
1381      *
1382      * <li> If {@code start} is equal to &plusmn;
1383      * {@link Float#MAX_VALUE} and {@code direction} has a
1384      * value such that the result should have a larger magnitude, an
1385      * infinity with same sign as {@code start} is returned.
1386      * </ul>
1387      *
1388      * @param start  starting floating-point value
1389      * @param direction value indicating which of
1390      * {@code start}'s neighbors or {@code start} should
1391      * be returned
1392      * @return The floating-point number adjacent to {@code start} in the
1393      * direction of {@code direction}.
1394      * @since 1.6
1395      */
1396     public static float nextAfter(float start, double direction) {
1397         return sun.misc.FpUtils.nextAfter(start, direction);
1398     }
1399 
1400     /**
1401      * Returns the floating-point value adjacent to {@code d} in
1402      * the direction of positive infinity.  This method is
1403      * semantically equivalent to {@code nextAfter(d,
1404      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1405      * implementation may run faster than its equivalent
1406      * {@code nextAfter} call.
1407      *
1408      * <p>Special Cases:
1409      * <ul>
1410      * <li> If the argument is NaN, the result is NaN.
1411      *
1412      * <li> If the argument is positive infinity, the result is
1413      * positive infinity.
1414      *
1415      * <li> If the argument is zero, the result is
1416      * {@link Double#MIN_VALUE}
1417      *
1418      * </ul>
1419      *
1420      * @param d starting floating-point value
1421      * @return The adjacent floating-point value closer to positive
1422      * infinity.
1423      * @since 1.6
1424      */
1425     public static double nextUp(double d) {
1426         return sun.misc.FpUtils.nextUp(d);
1427     }
1428 
1429     /**
1430      * Returns the floating-point value adjacent to {@code f} in
1431      * the direction of positive infinity.  This method is
1432      * semantically equivalent to {@code nextAfter(f,
1433      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1434      * implementation may run faster than its equivalent
1435      * {@code nextAfter} call.
1436      *
1437      * <p>Special Cases:
1438      * <ul>
1439      * <li> If the argument is NaN, the result is NaN.
1440      *
1441      * <li> If the argument is positive infinity, the result is
1442      * positive infinity.
1443      *
1444      * <li> If the argument is zero, the result is
1445      * {@link Float#MIN_VALUE}
1446      *
1447      * </ul>
1448      *
1449      * @param f starting floating-point value
1450      * @return The adjacent floating-point value closer to positive
1451      * infinity.
1452      * @since 1.6
1453      */
1454     public static float nextUp(float f) {
1455         return sun.misc.FpUtils.nextUp(f);
1456     }
1457 
1458 
1459     /**
1460      * Return {@code d} &times;
1461      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1462      * by a single correctly rounded floating-point multiply to a
1463      * member of the double value set.  See the Java
1464      * Language Specification for a discussion of floating-point
1465      * value sets.  If the exponent of the result is between {@link
1466      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1467      * answer is calculated exactly.  If the exponent of the result
1468      * would be larger than {@code Double.MAX_EXPONENT}, an
1469      * infinity is returned.  Note that if the result is subnormal,
1470      * precision may be lost; that is, when {@code scalb(x, n)}
1471      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1472      * <i>x</i>.  When the result is non-NaN, the result has the same
1473      * sign as {@code d}.
1474      *
1475      * <p>Special cases:
1476      * <ul>
1477      * <li> If the first argument is NaN, NaN is returned.
1478      * <li> If the first argument is infinite, then an infinity of the
1479      * same sign is returned.
1480      * <li> If the first argument is zero, then a zero of the same
1481      * sign is returned.
1482      * </ul>
1483      *
1484      * @param d number to be scaled by a power of two.
1485      * @param scaleFactor power of 2 used to scale {@code d}
1486      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1487      * @since 1.6
1488      */
1489     public static double scalb(double d, int scaleFactor) {
1490         return sun.misc.FpUtils.scalb(d, scaleFactor);
1491     }
1492 
1493     /**
1494      * Return {@code f} &times;
1495      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1496      * by a single correctly rounded floating-point multiply to a
1497      * member of the float value set.  See the Java
1498      * Language Specification for a discussion of floating-point
1499      * value sets.  If the exponent of the result is between {@link
1500      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1501      * answer is calculated exactly.  If the exponent of the result
1502      * would be larger than {@code Float.MAX_EXPONENT}, an
1503      * infinity is returned.  Note that if the result is subnormal,
1504      * precision may be lost; that is, when {@code scalb(x, n)}
1505      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1506      * <i>x</i>.  When the result is non-NaN, the result has the same
1507      * sign as {@code f}.
1508      *
1509      * <p>Special cases:
1510      * <ul>
1511      * <li> If the first argument is NaN, NaN is returned.
1512      * <li> If the first argument is infinite, then an infinity of the
1513      * same sign is returned.
1514      * <li> If the first argument is zero, then a zero of the same
1515      * sign is returned.
1516      * </ul>
1517      *
1518      * @param f number to be scaled by a power of two.
1519      * @param scaleFactor power of 2 used to scale {@code f}
1520      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1521      * @since 1.6
1522      */
1523     public static float scalb(float f, int scaleFactor) {
1524         return sun.misc.FpUtils.scalb(f, scaleFactor);
1525     }
1526 }