--- old/src/share/native/java/lang/fdlibm/src/e_lgamma_r.c 2011-08-04 10:54:17.000000000 -0700 +++ /dev/null 2011-08-03 01:04:26.146397172 -0700 @@ -1,316 +0,0 @@ - -/* - * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * This code is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 only, as - * published by the Free Software Foundation. Oracle designates this - * particular file as subject to the "Classpath" exception as provided - * by Oracle in the LICENSE file that accompanied this code. - * - * This code is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * version 2 for more details (a copy is included in the LICENSE file that - * accompanied this code). - * - * You should have received a copy of the GNU General Public License version - * 2 along with this work; if not, write to the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA - * or visit www.oracle.com if you need additional information or have any - * questions. - */ - -/* __ieee754_lgamma_r(x, signgamp) - * Reentrant version of the logarithm of the Gamma function - * with user provide pointer for the sign of Gamma(x). - * - * Method: - * 1. Argument Reduction for 0 < x <= 8 - * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may - * reduce x to a number in [1.5,2.5] by - * lgamma(1+s) = log(s) + lgamma(s) - * for example, - * lgamma(7.3) = log(6.3) + lgamma(6.3) - * = log(6.3*5.3) + lgamma(5.3) - * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) - * 2. Polynomial approximation of lgamma around its - * minimun ymin=1.461632144968362245 to maintain monotonicity. - * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use - * Let z = x-ymin; - * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) - * where - * poly(z) is a 14 degree polynomial. - * 2. Rational approximation in the primary interval [2,3] - * We use the following approximation: - * s = x-2.0; - * lgamma(x) = 0.5*s + s*P(s)/Q(s) - * with accuracy - * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 - * Our algorithms are based on the following observation - * - * zeta(2)-1 2 zeta(3)-1 3 - * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... - * 2 3 - * - * where Euler = 0.5771... is the Euler constant, which is very - * close to 0.5. - * - * 3. For x>=8, we have - * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... - * (better formula: - * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) - * Let z = 1/x, then we approximation - * f(z) = lgamma(x) - (x-0.5)(log(x)-1) - * by - * 3 5 11 - * w = w0 + w1*z + w2*z + w3*z + ... + w6*z - * where - * |w - f(z)| < 2**-58.74 - * - * 4. For negative x, since (G is gamma function) - * -x*G(-x)*G(x) = pi/sin(pi*x), - * we have - * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) - * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 - * Hence, for x<0, signgam = sign(sin(pi*x)) and - * lgamma(x) = log(|Gamma(x)|) - * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); - * Note: one should avoid compute pi*(-x) directly in the - * computation of sin(pi*(-x)). - * - * 5. Special Cases - * lgamma(2+s) ~ s*(1-Euler) for tiny s - * lgamma(1)=lgamma(2)=0 - * lgamma(x) ~ -log(x) for tiny x - * lgamma(0) = lgamma(inf) = inf - * lgamma(-integer) = +-inf - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const double -#else -static double -#endif -two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ -half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ -a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ -a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ -a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ -a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ -a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ -a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ -a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ -a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ -a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ -a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ -a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ -a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ -tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ -tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ -/* tt = -(tail of tf) */ -tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ -t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ -t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ -t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ -t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ -t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ -t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ -t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ -t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ -t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ -t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ -t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ -t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ -t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ -t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ -t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ -u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ -u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ -u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ -u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ -u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ -u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ -v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ -v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ -v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ -v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ -v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ -s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ -s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ -s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ -s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ -s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ -s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ -s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ -r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ -r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ -r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ -r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ -r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ -r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ -w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ -w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ -w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ -w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ -w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ -w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ -w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ - -static double zero= 0.00000000000000000000e+00; - -#ifdef __STDC__ - static double sin_pi(double x) -#else - static double sin_pi(x) - double x; -#endif -{ - double y,z; - int n,ix; - - ix = 0x7fffffff&__HI(x); - - if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0); - y = -x; /* x is assume negative */ - - /* - * argument reduction, make sure inexact flag not raised if input - * is an integer - */ - z = floor(y); - if(z!=y) { /* inexact anyway */ - y *= 0.5; - y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */ - n = (int) (y*4.0); - } else { - if(ix>=0x43400000) { - y = zero; n = 0; /* y must be even */ - } else { - if(ix<0x43300000) z = y+two52; /* exact */ - n = __LO(z)&1; /* lower word of z */ - y = n; - n<<= 2; - } - } - switch (n) { - case 0: y = __kernel_sin(pi*y,zero,0); break; - case 1: - case 2: y = __kernel_cos(pi*(0.5-y),zero); break; - case 3: - case 4: y = __kernel_sin(pi*(one-y),zero,0); break; - case 5: - case 6: y = -__kernel_cos(pi*(y-1.5),zero); break; - default: y = __kernel_sin(pi*(y-2.0),zero,0); break; - } - return -y; -} - - -#ifdef __STDC__ - double __ieee754_lgamma_r(double x, int *signgamp) -#else - double __ieee754_lgamma_r(x,signgamp) - double x; int *signgamp; -#endif -{ - double t,y,z,nadj=0,p,p1,p2,p3,q,r,w; - int i,hx,lx,ix; - - hx = __HI(x); - lx = __LO(x); - - /* purge off +-inf, NaN, +-0, and negative arguments */ - *signgamp = 1; - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return x*x; - if((ix|lx)==0) return one/zero; - if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */ - if(hx<0) { - *signgamp = -1; - return -__ieee754_log(-x); - } else return -__ieee754_log(x); - } - if(hx<0) { - if(ix>=0x43300000) /* |x|>=2**52, must be -integer */ - return one/zero; - t = sin_pi(x); - if(t==zero) return one/zero; /* -integer */ - nadj = __ieee754_log(pi/fabs(t*x)); - if(t=0x3FE76944) {y = one-x; i= 0;} - else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;} - else {y = x; i=2;} - } else { - r = zero; - if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */ - else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */ - else {y=x-one;i=2;} - } - switch(i) { - case 0: - z = y*y; - p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); - p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); - p = y*p1+p2; - r += (p-0.5*y); break; - case 1: - z = y*y; - w = z*y; - p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ - p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); - p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); - p = z*p1-(tt-w*(p2+y*p3)); - r += (tf + p); break; - case 2: - p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); - p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); - r += (-0.5*y + p1/p2); - } - } - else if(ix<0x40200000) { /* x < 8.0 */ - i = (int)x; - t = zero; - y = x-(double)i; - p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); - q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); - r = half*y+p/q; - z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ - switch(i) { - case 7: z *= (y+6.0); /* FALLTHRU */ - case 6: z *= (y+5.0); /* FALLTHRU */ - case 5: z *= (y+4.0); /* FALLTHRU */ - case 4: z *= (y+3.0); /* FALLTHRU */ - case 3: z *= (y+2.0); /* FALLTHRU */ - r += __ieee754_log(z); break; - } - /* 8.0 <= x < 2**58 */ - } else if (ix < 0x43900000) { - t = __ieee754_log(x); - z = one/x; - y = z*z; - w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); - r = (x-half)*(t-one)+w; - } else - /* 2**58 <= x <= inf */ - r = x*(__ieee754_log(x)-one); - if(hx<0) r = nadj - r; - return r; -}