src/share/classes/java/math/BigDecimal.java

Print this page




 207  * {@code NullPointerException} when passed a {@code null} object
 208  * reference for any input parameter.
 209  *
 210  * @see     BigInteger
 211  * @see     MathContext
 212  * @see     RoundingMode
 213  * @see     java.util.SortedMap
 214  * @see     java.util.SortedSet
 215  * @author  Josh Bloch
 216  * @author  Mike Cowlishaw
 217  * @author  Joseph D. Darcy
 218  */
 219 public class BigDecimal extends Number implements Comparable<BigDecimal> {
 220     /**
 221      * The unscaled value of this BigDecimal, as returned by {@link
 222      * #unscaledValue}.
 223      *
 224      * @serial
 225      * @see #unscaledValue
 226      */
 227     private volatile BigInteger intVal;
 228 
 229     /**
 230      * The scale of this BigDecimal, as returned by {@link #scale}.
 231      *
 232      * @serial
 233      * @see #scale
 234      */
 235     private int scale;  // Note: this may have any value, so
 236                         // calculations must be done in longs

 237     /**
 238      * The number of decimal digits in this BigDecimal, or 0 if the
 239      * number of digits are not known (lookaside information).  If
 240      * nonzero, the value is guaranteed correct.  Use the precision()
 241      * method to obtain and set the value if it might be 0.  This
 242      * field is mutable until set nonzero.
 243      *
 244      * @since  1.5
 245      */
 246     private transient int precision;
 247 
 248     /**
 249      * Used to store the canonical string representation, if computed.
 250      */
 251     private transient String stringCache;
 252 
 253     /**
 254      * Sentinel value for {@link #intCompact} indicating the
 255      * significand information is only available from {@code intVal}.
 256      */
 257     static final long INFLATED = Long.MIN_VALUE;
 258 


 259     /**
 260      * If the absolute value of the significand of this BigDecimal is
 261      * less than or equal to {@code Long.MAX_VALUE}, the value can be
 262      * compactly stored in this field and used in computations.
 263      */
 264     private transient long intCompact;
 265 
 266     // All 18-digit base ten strings fit into a long; not all 19-digit
 267     // strings will
 268     private static final int MAX_COMPACT_DIGITS = 18;
 269 
 270     private static final int MAX_BIGINT_BITS = 62;
 271 
 272     /* Appease the serialization gods */
 273     private static final long serialVersionUID = 6108874887143696463L;
 274 
 275     private static final ThreadLocal<StringBuilderHelper>
 276         threadLocalStringBuilderHelper = new ThreadLocal<StringBuilderHelper>() {
 277         @Override
 278         protected StringBuilderHelper initialValue() {
 279             return new StringBuilderHelper();
 280         }
 281     };
 282 
 283     // Cache of common small BigDecimal values.
 284     private static final BigDecimal zeroThroughTen[] = {
 285         new BigDecimal(BigInteger.ZERO,         0,  0, 1),
 286         new BigDecimal(BigInteger.ONE,          1,  0, 1),
 287         new BigDecimal(BigInteger.valueOf(2),   2,  0, 1),
 288         new BigDecimal(BigInteger.valueOf(3),   3,  0, 1),
 289         new BigDecimal(BigInteger.valueOf(4),   4,  0, 1),
 290         new BigDecimal(BigInteger.valueOf(5),   5,  0, 1),
 291         new BigDecimal(BigInteger.valueOf(6),   6,  0, 1),


 361     /**
 362      * Translates a character array representation of a
 363      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 364      * same sequence of characters as the {@link #BigDecimal(String)}
 365      * constructor, while allowing a sub-array to be specified.
 366      *
 367      * <p>Note that if the sequence of characters is already available
 368      * within a character array, using this constructor is faster than
 369      * converting the {@code char} array to string and using the
 370      * {@code BigDecimal(String)} constructor .
 371      *
 372      * @param  in {@code char} array that is the source of characters.
 373      * @param  offset first character in the array to inspect.
 374      * @param  len number of characters to consider.
 375      * @throws NumberFormatException if {@code in} is not a valid
 376      *         representation of a {@code BigDecimal} or the defined subarray
 377      *         is not wholly within {@code in}.
 378      * @since  1.5
 379      */
 380     public BigDecimal(char[] in, int offset, int len) {



























 381         // protect against huge length.
 382         if (offset+len > in.length || offset < 0)
 383             throw new NumberFormatException();
 384         // This is the primary string to BigDecimal constructor; all
 385         // incoming strings end up here; it uses explicit (inline)
 386         // parsing for speed and generates at most one intermediate
 387         // (temporary) object (a char[] array) for non-compact case.
 388 
 389         // Use locals for all fields values until completion
 390         int prec = 0;                 // record precision value
 391         int scl = 0;                  // record scale value
 392         long rs = 0;                  // the compact value in long
 393         BigInteger rb = null;         // the inflated value in BigInteger
 394 
 395         // use array bounds checking to handle too-long, len == 0,
 396         // bad offset, etc.
 397         try {
 398             // handle the sign
 399             boolean isneg = false;          // assume positive
 400             if (in[offset] == '-') {
 401                 isneg = true;               // leading minus means negative
 402                 offset++;
 403                 len--;
 404             } else if (in[offset] == '+') { // leading + allowed
 405                 offset++;
 406                 len--;
 407             }
 408 
 409             // should now be at numeric part of the significand
 410             boolean dot = false;             // true when there is a '.'
 411             int cfirst = offset;             // record start of integer
 412             long exp = 0;                    // exponent
 413             char c;                          // current character
 414 
 415             boolean isCompact = (len <= MAX_COMPACT_DIGITS);
 416             // integer significand array & idx is the index to it. The array
 417             // is ONLY used when we can't use a compact representation.
 418             char coeff[] = isCompact ? null : new char[len];
 419             int idx = 0;
 420 
 421             for (; len > 0; offset++, len--) {
 422                 c = in[offset];
 423                 // have digit
 424                 if ((c >= '0' && c <= '9') || Character.isDigit(c)) {
 425                     // First compact case, we need not to preserve the character
 426                     // and we can just compute the value in place.
 427                     if (isCompact) {























 428                         int digit = Character.digit(c, 10);
 429                         if (digit == 0) {
 430                             if (prec == 0)
 431                                 prec = 1;
 432                             else if (rs != 0) {
 433                                 rs *= 10;
 434                                 ++prec;
 435                             } // else digit is a redundant leading zero
 436                         } else {
 437                             if (prec != 1 || rs != 0)
 438                                 ++prec; // prec unchanged if preceded by 0s
 439                             rs = rs * 10 + digit;
 440                         }
 441                     } else { // the unscaled value is likely a BigInteger object.




































 442                         if (c == '0' || Character.digit(c, 10) == 0) {
 443                             if (prec == 0) {
 444                                 coeff[idx] = c;
 445                                 prec = 1;
 446                             } else if (idx != 0) {
 447                                 coeff[idx++] = c;
 448                                 ++prec;
 449                             } // else c must be a redundant leading zero
 450                         } else {
 451                             if (prec != 1 || idx != 0)
 452                                 ++prec; // prec unchanged if preceded by 0s
 453                             coeff[idx++] = c;
 454                         }
 455                     }
 456                     if (dot)
 457                         ++scl;
 458                     continue;
 459                 }
 460                 // have dot
 461                 if (c == '.') {
 462                     // have dot
 463                     if (dot)         // two dots
 464                         throw new NumberFormatException();
 465                     dot = true;
 466                     continue;
 467                 }
 468                 // exponent expected
 469                 if ((c != 'e') && (c != 'E'))
 470                     throw new NumberFormatException();




































































 471                 offset++;
 472                 c = in[offset];
 473                 len--;
 474                 boolean negexp = (c == '-');
 475                 // optional sign
 476                 if (negexp || c == '+') {
 477                     offset++;
 478                     c = in[offset];
 479                     len--;
 480                 }
 481                 if (len <= 0)    // no exponent digits
 482                     throw new NumberFormatException();
 483                 // skip leading zeros in the exponent
 484                 while (len > 10 && Character.digit(c, 10) == 0) {
 485                     offset++;
 486                     c = in[offset];
 487                     len--;
 488                 }
 489                 if (len > 10)  // too many nonzero exponent digits
 490                     throw new NumberFormatException();
 491                 // c now holds first digit of exponent
 492                 for (;; len--) {
 493                     int v;
 494                     if (c >= '0' && c <= '9') {
 495                         v = c - '0';
 496                     } else {
 497                         v = Character.digit(c, 10);
 498                         if (v < 0)            // not a digit
 499                             throw new NumberFormatException();
 500                     }
 501                     exp = exp * 10 + v;
 502                     if (len == 1)
 503                         break;               // that was final character
 504                     offset++;
 505                     c = in[offset];
 506                 }
 507                 if (negexp)                  // apply sign
 508                     exp = -exp;
 509                 // Next test is required for backwards compatibility
 510                 if ((int)exp != exp)         // overflow
 511                     throw new NumberFormatException();
 512                 break;                       // [saves a test]
 513             }
 514             // here when no characters left
 515             if (prec == 0)              // no digits found
 516                 throw new NumberFormatException();
 517 
 518             // Adjust scale if exp is not zero.
 519             if (exp != 0) {                  // had significant exponent
 520                 // Can't call checkScale which relies on proper fields value
 521                 long adjustedScale = scl - exp;
 522                 if (adjustedScale > Integer.MAX_VALUE ||
 523                     adjustedScale < Integer.MIN_VALUE)
 524                     throw new NumberFormatException("Scale out of range.");
 525                 scl = (int)adjustedScale;
 526             }
 527 
 528             // Remove leading zeros from precision (digits count)
 529             if (isCompact) {
 530                 rs = isneg ? -rs : rs;
 531             } else {
 532                 char quick[];
 533                 if (!isneg) {
 534                     quick = (coeff.length != prec) ?
 535                         Arrays.copyOf(coeff, prec) : coeff;
 536                 } else {
 537                     quick = new char[prec + 1];
 538                     quick[0] = '-';
 539                     System.arraycopy(coeff, 0, quick, 1, prec);
 540                 }
 541                 rb = new BigInteger(quick);
 542                 rs = compactValFor(rb);
 543             }
 544         } catch (ArrayIndexOutOfBoundsException e) {
 545             throw new NumberFormatException();
 546         } catch (NegativeArraySizeException e) {
 547             throw new NumberFormatException();
 548         }
 549         this.scale = scl;
 550         this.precision = prec;
 551         this.intCompact = rs;
 552         this.intVal = (rs != INFLATED) ? null : rb;
 553     }
 554 
 555     /**
 556      * Translates a character array representation of a
 557      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 558      * same sequence of characters as the {@link #BigDecimal(String)}
 559      * constructor, while allowing a sub-array to be specified and
 560      * with rounding according to the context settings.
 561      *
 562      * <p>Note that if the sequence of characters is already available
 563      * within a character array, using this constructor is faster than
 564      * converting the {@code char} array to string and using the
 565      * {@code BigDecimal(String)} constructor .
 566      *
 567      * @param  in {@code char} array that is the source of characters.
 568      * @param  offset first character in the array to inspect.
 569      * @param  len number of characters to consider..
 570      * @param  mc the context to use.
 571      * @throws ArithmeticException if the result is inexact but the
 572      *         rounding mode is {@code UNNECESSARY}.
 573      * @throws NumberFormatException if {@code in} is not a valid
 574      *         representation of a {@code BigDecimal} or the defined subarray
 575      *         is not wholly within {@code in}.
 576      * @since  1.5
 577      */
 578     public BigDecimal(char[] in, int offset, int len, MathContext mc) {
 579         this(in, offset, len);
 580         if (mc.precision > 0)
 581             roundThis(mc);
 582     }
 583 
 584     /**
 585      * Translates a character array representation of a
 586      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 587      * same sequence of characters as the {@link #BigDecimal(String)}
 588      * constructor.
 589      *
 590      * <p>Note that if the sequence of characters is already available
 591      * as a character array, using this constructor is faster than
 592      * converting the {@code char} array to string and using the
 593      * {@code BigDecimal(String)} constructor .
 594      *
 595      * @param in {@code char} array that is the source of characters.
 596      * @throws NumberFormatException if {@code in} is not a valid
 597      *         representation of a {@code BigDecimal}.
 598      * @since  1.5
 599      */
 600     public BigDecimal(char[] in) {
 601         this(in, 0, in.length);


 737      */
 738     public BigDecimal(String val) {
 739         this(val.toCharArray(), 0, val.length());
 740     }
 741 
 742     /**
 743      * Translates the string representation of a {@code BigDecimal}
 744      * into a {@code BigDecimal}, accepting the same strings as the
 745      * {@link #BigDecimal(String)} constructor, with rounding
 746      * according to the context settings.
 747      *
 748      * @param  val string representation of a {@code BigDecimal}.
 749      * @param  mc the context to use.
 750      * @throws ArithmeticException if the result is inexact but the
 751      *         rounding mode is {@code UNNECESSARY}.
 752      * @throws NumberFormatException if {@code val} is not a valid
 753      *         representation of a BigDecimal.
 754      * @since  1.5
 755      */
 756     public BigDecimal(String val, MathContext mc) {
 757         this(val.toCharArray(), 0, val.length());
 758         if (mc.precision > 0)
 759             roundThis(mc);
 760     }
 761 
 762     /**
 763      * Translates a {@code double} into a {@code BigDecimal} which
 764      * is the exact decimal representation of the {@code double}'s
 765      * binary floating-point value.  The scale of the returned
 766      * {@code BigDecimal} is the smallest value such that
 767      * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
 768      * <p>
 769      * <b>Notes:</b>
 770      * <ol>
 771      * <li>
 772      * The results of this constructor can be somewhat unpredictable.
 773      * One might assume that writing {@code new BigDecimal(0.1)} in
 774      * Java creates a {@code BigDecimal} which is exactly equal to
 775      * 0.1 (an unscaled value of 1, with a scale of 1), but it is
 776      * actually equal to
 777      * 0.1000000000000000055511151231257827021181583404541015625.
 778      * This is because 0.1 cannot be represented exactly as a
 779      * {@code double} (or, for that matter, as a binary fraction of


 787      * creates a {@code BigDecimal} which is <i>exactly</i> equal to
 788      * 0.1, as one would expect.  Therefore, it is generally
 789      * recommended that the {@linkplain #BigDecimal(String)
 790      * <tt>String</tt> constructor} be used in preference to this one.
 791      *
 792      * <li>
 793      * When a {@code double} must be used as a source for a
 794      * {@code BigDecimal}, note that this constructor provides an
 795      * exact conversion; it does not give the same result as
 796      * converting the {@code double} to a {@code String} using the
 797      * {@link Double#toString(double)} method and then using the
 798      * {@link #BigDecimal(String)} constructor.  To get that result,
 799      * use the {@code static} {@link #valueOf(double)} method.
 800      * </ol>
 801      *
 802      * @param val {@code double} value to be converted to
 803      *        {@code BigDecimal}.
 804      * @throws NumberFormatException if {@code val} is infinite or NaN.
 805      */
 806     public BigDecimal(double val) {






















 807         if (Double.isInfinite(val) || Double.isNaN(val))
 808             throw new NumberFormatException("Infinite or NaN");
 809 
 810         // Translate the double into sign, exponent and significand, according
 811         // to the formulae in JLS, Section 20.10.22.
 812         long valBits = Double.doubleToLongBits(val);
 813         int sign = ((valBits >> 63)==0 ? 1 : -1);
 814         int exponent = (int) ((valBits >> 52) & 0x7ffL);
 815         long significand = (exponent==0 ? (valBits & ((1L<<52) - 1)) << 1
 816                             : (valBits & ((1L<<52) - 1)) | (1L<<52));

 817         exponent -= 1075;
 818         // At this point, val == sign * significand * 2**exponent.
 819 
 820         /*
 821          * Special case zero to supress nonterminating normalization
 822          * and bogus scale calculation.
 823          */
 824         if (significand == 0) {
 825             intVal = BigInteger.ZERO;
 826             intCompact = 0;
 827             precision = 1;

 828             return;
 829         }
 830 
 831         // Normalize
 832         while((significand & 1) == 0) {    //  i.e., significand is even
 833             significand >>= 1;
 834             exponent++;
 835         }
 836 
 837         // Calculate intVal and scale
 838         long s = sign * significand;
 839         BigInteger b;



 840         if (exponent < 0) {
 841             b = BigInteger.valueOf(5).pow(-exponent).multiply(s);
 842             scale = -exponent;
 843         } else if (exponent > 0) {
 844             b = BigInteger.valueOf(2).pow(exponent).multiply(s);
 845         } else {
 846             b = BigInteger.valueOf(s);
 847         }
 848         intCompact = compactValFor(b);
 849         intVal = (intCompact != INFLATED) ? null : b;
 850     }
 851 
 852     /**
 853      * Translates a {@code double} into a {@code BigDecimal}, with
 854      * rounding according to the context settings.  The scale of the
 855      * {@code BigDecimal} is the smallest value such that
 856      * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
 857      *
 858      * <p>The results of this constructor can be somewhat unpredictable
 859      * and its use is generally not recommended; see the notes under
 860      * the {@link #BigDecimal(double)} constructor.
 861      *
 862      * @param  val {@code double} value to be converted to
 863      *         {@code BigDecimal}.
 864      * @param  mc the context to use.
 865      * @throws ArithmeticException if the result is inexact but the
 866      *         RoundingMode is UNNECESSARY.
 867      * @throws NumberFormatException if {@code val} is infinite or NaN.
 868      * @since  1.5
 869      */
 870     public BigDecimal(double val, MathContext mc) {
 871         this(val);
 872         if (mc.precision > 0)
 873             roundThis(mc);












 874     }
 875 
 876     /**
 877      * Translates a {@code BigInteger} into a {@code BigDecimal}.
 878      * The scale of the {@code BigDecimal} is zero.
 879      *
 880      * @param val {@code BigInteger} value to be converted to
 881      *            {@code BigDecimal}.
 882      */
 883     public BigDecimal(BigInteger val) {


 884         intCompact = compactValFor(val);
 885         intVal = (intCompact != INFLATED) ? null : val;
 886     }
 887 
 888     /**
 889      * Translates a {@code BigInteger} into a {@code BigDecimal}
 890      * rounding according to the context settings.  The scale of the
 891      * {@code BigDecimal} is zero.
 892      *
 893      * @param val {@code BigInteger} value to be converted to
 894      *            {@code BigDecimal}.
 895      * @param  mc the context to use.
 896      * @throws ArithmeticException if the result is inexact but the
 897      *         rounding mode is {@code UNNECESSARY}.
 898      * @since  1.5
 899      */
 900     public BigDecimal(BigInteger val, MathContext mc) {
 901         this(val);
 902         if (mc.precision > 0)
 903             roundThis(mc);
 904     }
 905 
 906     /**
 907      * Translates a {@code BigInteger} unscaled value and an
 908      * {@code int} scale into a {@code BigDecimal}.  The value of
 909      * the {@code BigDecimal} is
 910      * <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
 911      *
 912      * @param unscaledVal unscaled value of the {@code BigDecimal}.
 913      * @param scale scale of the {@code BigDecimal}.
 914      */
 915     public BigDecimal(BigInteger unscaledVal, int scale) {
 916         // Negative scales are now allowed
 917         this(unscaledVal);

 918         this.scale = scale;
 919     }
 920 
 921     /**
 922      * Translates a {@code BigInteger} unscaled value and an
 923      * {@code int} scale into a {@code BigDecimal}, with rounding
 924      * according to the context settings.  The value of the
 925      * {@code BigDecimal} is <tt>(unscaledVal &times;
 926      * 10<sup>-scale</sup>)</tt>, rounded according to the
 927      * {@code precision} and rounding mode settings.
 928      *
 929      * @param  unscaledVal unscaled value of the {@code BigDecimal}.
 930      * @param  scale scale of the {@code BigDecimal}.
 931      * @param  mc the context to use.
 932      * @throws ArithmeticException if the result is inexact but the
 933      *         rounding mode is {@code UNNECESSARY}.
 934      * @since  1.5
 935      */
 936     public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) {
 937         this(unscaledVal);
































 938         this.scale = scale;
 939         if (mc.precision > 0)
 940             roundThis(mc);
 941     }
 942 
 943     /**
 944      * Translates an {@code int} into a {@code BigDecimal}.  The
 945      * scale of the {@code BigDecimal} is zero.
 946      *
 947      * @param val {@code int} value to be converted to
 948      *            {@code BigDecimal}.
 949      * @since  1.5
 950      */
 951     public BigDecimal(int val) {
 952         intCompact = val;


 953     }
 954 
 955     /**
 956      * Translates an {@code int} into a {@code BigDecimal}, with
 957      * rounding according to the context settings.  The scale of the
 958      * {@code BigDecimal}, before any rounding, is zero.
 959      *
 960      * @param  val {@code int} value to be converted to {@code BigDecimal}.
 961      * @param  mc the context to use.
 962      * @throws ArithmeticException if the result is inexact but the
 963      *         rounding mode is {@code UNNECESSARY}.
 964      * @since  1.5
 965      */
 966     public BigDecimal(int val, MathContext mc) {
 967         intCompact = val;
 968         if (mc.precision > 0)
 969             roundThis(mc);









 970     }
 971 
 972     /**
 973      * Translates a {@code long} into a {@code BigDecimal}.  The






 974      * scale of the {@code BigDecimal} is zero.
 975      *
 976      * @param val {@code long} value to be converted to {@code BigDecimal}.
 977      * @since  1.5
 978      */
 979     public BigDecimal(long val) {
 980         this.intCompact = val;
 981         this.intVal = (val == INFLATED) ? BigInteger.valueOf(val) : null;

 982     }
 983 
 984     /**
 985      * Translates a {@code long} into a {@code BigDecimal}, with
 986      * rounding according to the context settings.  The scale of the
 987      * {@code BigDecimal}, before any rounding, is zero.
 988      *
 989      * @param  val {@code long} value to be converted to {@code BigDecimal}.
 990      * @param  mc the context to use.
 991      * @throws ArithmeticException if the result is inexact but the
 992      *         rounding mode is {@code UNNECESSARY}.
 993      * @since  1.5
 994      */
 995     public BigDecimal(long val, MathContext mc) {
 996         this(val);
 997         if (mc.precision > 0)
 998             roundThis(mc);

































 999     }
1000 
1001     // Static Factory Methods
1002 
1003     /**
1004      * Translates a {@code long} unscaled value and an
1005      * {@code int} scale into a {@code BigDecimal}.  This
1006      * {@literal "static factory method"} is provided in preference to
1007      * a ({@code long}, {@code int}) constructor because it
1008      * allows for reuse of frequently used {@code BigDecimal} values..
1009      *
1010      * @param unscaledVal unscaled value of the {@code BigDecimal}.
1011      * @param scale scale of the {@code BigDecimal}.
1012      * @return a {@code BigDecimal} whose value is
1013      *         <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
1014      */
1015     public static BigDecimal valueOf(long unscaledVal, int scale) {
1016         if (scale == 0)
1017             return valueOf(unscaledVal);
1018         else if (unscaledVal == 0) {
1019             if (scale > 0 && scale < ZERO_SCALED_BY.length)
1020                 return ZERO_SCALED_BY[scale];
1021             else
1022                 return new BigDecimal(BigInteger.ZERO, 0, scale, 1);
1023         }
1024         return new BigDecimal(unscaledVal == INFLATED ?
1025                               BigInteger.valueOf(unscaledVal) : null,
1026                               unscaledVal, scale, 0);
1027     }
1028 
1029     /**
1030      * Translates a {@code long} value into a {@code BigDecimal}
1031      * with a scale of zero.  This {@literal "static factory method"}
1032      * is provided in preference to a ({@code long}) constructor
1033      * because it allows for reuse of frequently used
1034      * {@code BigDecimal} values.
1035      *
1036      * @param val value of the {@code BigDecimal}.
1037      * @return a {@code BigDecimal} whose value is {@code val}.
1038      */
1039     public static BigDecimal valueOf(long val) {
1040         if (val >= 0 && val < zeroThroughTen.length)
1041             return zeroThroughTen[(int)val];
1042         else if (val != INFLATED)
1043             return new BigDecimal(null, val, 0, 0);
1044         return new BigDecimal(BigInteger.valueOf(val), val, 0, 0);



























1045     }
1046 
1047     /**
1048      * Translates a {@code double} into a {@code BigDecimal}, using
1049      * the {@code double}'s canonical string representation provided
1050      * by the {@link Double#toString(double)} method.
1051      *
1052      * <p><b>Note:</b> This is generally the preferred way to convert
1053      * a {@code double} (or {@code float}) into a
1054      * {@code BigDecimal}, as the value returned is equal to that
1055      * resulting from constructing a {@code BigDecimal} from the
1056      * result of using {@link Double#toString(double)}.
1057      *
1058      * @param  val {@code double} to convert to a {@code BigDecimal}.
1059      * @return a {@code BigDecimal} whose value is equal to or approximately
1060      *         equal to the value of {@code val}.
1061      * @throws NumberFormatException if {@code val} is infinite or NaN.
1062      * @since  1.5
1063      */
1064     public static BigDecimal valueOf(double val) {
1065         // Reminder: a zero double returns '0.0', so we cannot fastpath
1066         // to use the constant ZERO.  This might be important enough to
1067         // justify a factory approach, a cache, or a few private
1068         // constants, later.
1069         return new BigDecimal(Double.toString(val));
1070     }
1071 
1072     // Arithmetic Operations
1073     /**
1074      * Returns a {@code BigDecimal} whose value is {@code (this +
1075      * augend)}, and whose scale is {@code max(this.scale(),
1076      * augend.scale())}.
1077      *
1078      * @param  augend value to be added to this {@code BigDecimal}.
1079      * @return {@code this + augend}
1080      */
1081     public BigDecimal add(BigDecimal augend) {
1082         long xs = this.intCompact;
1083         long ys = augend.intCompact;
1084         BigInteger fst = (xs != INFLATED) ? null : this.intVal;
1085         BigInteger snd = (ys != INFLATED) ? null : augend.intVal;
1086         int rscale = this.scale;
1087 
1088         long sdiff = (long)rscale - augend.scale;
1089         if (sdiff != 0) {
1090             if (sdiff < 0) {
1091                 int raise = checkScale(-sdiff);
1092                 rscale = augend.scale;
1093                 if (xs == INFLATED ||
1094                     (xs = longMultiplyPowerTen(xs, raise)) == INFLATED)
1095                     fst = bigMultiplyPowerTen(raise);
1096             } else {
1097                 int raise = augend.checkScale(sdiff);
1098                 if (ys == INFLATED ||
1099                     (ys = longMultiplyPowerTen(ys, raise)) == INFLATED)
1100                     snd = augend.bigMultiplyPowerTen(raise);
1101             }





1102         }
1103         if (xs != INFLATED && ys != INFLATED) {
1104             long sum = xs + ys;
1105             // See "Hacker's Delight" section 2-12 for explanation of
1106             // the overflow test.
1107             if ( (((sum ^ xs) & (sum ^ ys))) >= 0L) // not overflowed
1108                 return BigDecimal.valueOf(sum, rscale);
1109         }
1110         if (fst == null)
1111             fst = BigInteger.valueOf(xs);
1112         if (snd == null)
1113             snd = BigInteger.valueOf(ys);
1114         BigInteger sum = fst.add(snd);
1115         return (fst.signum == snd.signum) ?
1116             new BigDecimal(sum, INFLATED, rscale, 0) :
1117             new BigDecimal(sum, rscale);
1118     }
1119 
1120     /**
1121      * Returns a {@code BigDecimal} whose value is {@code (this + augend)},
1122      * with rounding according to the context settings.
1123      *
1124      * If either number is zero and the precision setting is nonzero then
1125      * the other number, rounded if necessary, is used as the result.
1126      *
1127      * @param  augend value to be added to this {@code BigDecimal}.
1128      * @param  mc the context to use.
1129      * @return {@code this + augend}, rounded as necessary.
1130      * @throws ArithmeticException if the result is inexact but the
1131      *         rounding mode is {@code UNNECESSARY}.
1132      * @since  1.5
1133      */
1134     public BigDecimal add(BigDecimal augend, MathContext mc) {
1135         if (mc.precision == 0)
1136             return add(augend);
1137         BigDecimal lhs = this;
1138 
1139         // Could optimize if values are compact
1140         this.inflate();
1141         augend.inflate();
1142 
1143         // If either number is zero then the other number, rounded and
1144         // scaled if necessary, is used as the result.
1145         {
1146             boolean lhsIsZero = lhs.signum() == 0;
1147             boolean augendIsZero = augend.signum() == 0;
1148 
1149             if (lhsIsZero || augendIsZero) {
1150                 int preferredScale = Math.max(lhs.scale(), augend.scale());
1151                 BigDecimal result;
1152 
1153                 // Could use a factory for zero instead of a new object
1154                 if (lhsIsZero && augendIsZero)
1155                     return new BigDecimal(BigInteger.ZERO, 0, preferredScale, 0);
1156 
1157                 result = lhsIsZero ? doRound(augend, mc) : doRound(lhs, mc);
1158 
1159                 if (result.scale() == preferredScale)
1160                     return result;
1161                 else if (result.scale() > preferredScale) {
1162                     BigDecimal scaledResult =
1163                         new BigDecimal(result.intVal, result.intCompact,
1164                                        result.scale, 0);
1165                     scaledResult.stripZerosToMatchScale(preferredScale);
1166                     return scaledResult;
1167                 } else { // result.scale < preferredScale
1168                     int precisionDiff = mc.precision - result.precision();
1169                     int scaleDiff     = preferredScale - result.scale();
1170 
1171                     if (precisionDiff >= scaleDiff)
1172                         return result.setScale(preferredScale); // can achieve target scale
1173                     else
1174                         return result.setScale(result.scale() + precisionDiff);
1175                 }
1176             }
1177         }
1178 
1179         long padding = (long)lhs.scale - augend.scale;
1180         if (padding != 0) {        // scales differ; alignment needed
1181             BigDecimal arg[] = preAlign(lhs, augend, padding, mc);
1182             matchScale(arg);
1183             lhs    = arg[0];
1184             augend = arg[1];
1185         }
1186 
1187         BigDecimal d = new BigDecimal(lhs.inflate().add(augend.inflate()),
1188                                       lhs.scale);
1189         return doRound(d, mc);
1190     }
1191 
1192     /**
1193      * Returns an array of length two, the sum of whose entries is
1194      * equal to the rounded sum of the {@code BigDecimal} arguments.
1195      *
1196      * <p>If the digit positions of the arguments have a sufficient
1197      * gap between them, the value smaller in magnitude can be
1198      * condensed into a {@literal "sticky bit"} and the end result will
1199      * round the same way <em>if</em> the precision of the final
1200      * result does not include the high order digit of the small
1201      * magnitude operand.
1202      *
1203      * <p>Note that while strictly speaking this is an optimization,
1204      * it makes a much wider range of additions practical.
1205      *
1206      * <p>This corresponds to a pre-shift operation in a fixed
1207      * precision floating-point adder; this method is complicated by
1208      * variable precision of the result as determined by the
1209      * MathContext.  A more nuanced operation could implement a
1210      * {@literal "right shift"} on the smaller magnitude operand so
1211      * that the number of digits of the smaller operand could be
1212      * reduced even though the significands partially overlapped.
1213      */
1214     private BigDecimal[] preAlign(BigDecimal lhs, BigDecimal augend,
1215                                   long padding, MathContext mc) {
1216         assert padding != 0;
1217         BigDecimal big;
1218         BigDecimal small;
1219 
1220         if (padding < 0) {     // lhs is big;   augend is small
1221             big   = lhs;
1222             small = augend;
1223         } else {               // lhs is small; augend is big
1224             big   = augend;
1225             small = lhs;
1226         }
1227 
1228         /*
1229          * This is the estimated scale of an ulp of the result; it
1230          * assumes that the result doesn't have a carry-out on a true
1231          * add (e.g. 999 + 1 => 1000) or any subtractive cancellation
1232          * on borrowing (e.g. 100 - 1.2 => 98.8)
1233          */
1234         long estResultUlpScale = (long)big.scale - big.precision() + mc.precision;
1235 
1236         /*
1237          * The low-order digit position of big is big.scale().  This
1238          * is true regardless of whether big has a positive or
1239          * negative scale.  The high-order digit position of small is
1240          * small.scale - (small.precision() - 1).  To do the full
1241          * condensation, the digit positions of big and small must be
1242          * disjoint *and* the digit positions of small should not be
1243          * directly visible in the result.
1244          */
1245         long smallHighDigitPos = (long)small.scale - small.precision() + 1;
1246         if (smallHighDigitPos > big.scale + 2 &&         // big and small disjoint
1247             smallHighDigitPos > estResultUlpScale + 2) { // small digits not visible
1248             small = BigDecimal.valueOf(small.signum(),
1249                                        this.checkScale(Math.max(big.scale, estResultUlpScale) + 3));
1250         }
1251 
1252         // Since addition is symmetric, preserving input order in
1253         // returned operands doesn't matter
1254         BigDecimal[] result = {big, small};
1255         return result;
1256     }
1257 
1258     /**
1259      * Returns a {@code BigDecimal} whose value is {@code (this -
1260      * subtrahend)}, and whose scale is {@code max(this.scale(),
1261      * subtrahend.scale())}.
1262      *
1263      * @param  subtrahend value to be subtracted from this {@code BigDecimal}.
1264      * @return {@code this - subtrahend}
1265      */
1266     public BigDecimal subtract(BigDecimal subtrahend) {
1267         return add(subtrahend.negate());















1268     }
1269 
1270     /**
1271      * Returns a {@code BigDecimal} whose value is {@code (this - subtrahend)},
1272      * with rounding according to the context settings.
1273      *
1274      * If {@code subtrahend} is zero then this, rounded if necessary, is used as the
1275      * result.  If this is zero then the result is {@code subtrahend.negate(mc)}.
1276      *
1277      * @param  subtrahend value to be subtracted from this {@code BigDecimal}.
1278      * @param  mc the context to use.
1279      * @return {@code this - subtrahend}, rounded as necessary.
1280      * @throws ArithmeticException if the result is inexact but the
1281      *         rounding mode is {@code UNNECESSARY}.
1282      * @since  1.5
1283      */
1284     public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) {
1285         BigDecimal nsubtrahend = subtrahend.negate();
1286         if (mc.precision == 0)
1287             return add(nsubtrahend);
1288         // share the special rounding code in add()
1289         return add(nsubtrahend, mc);
1290     }
1291 
1292     /**
1293      * Returns a {@code BigDecimal} whose value is <tt>(this &times;
1294      * multiplicand)</tt>, and whose scale is {@code (this.scale() +
1295      * multiplicand.scale())}.
1296      *
1297      * @param  multiplicand value to be multiplied by this {@code BigDecimal}.
1298      * @return {@code this * multiplicand}
1299      */
1300     public BigDecimal multiply(BigDecimal multiplicand) {
1301         long x = this.intCompact;
1302         long y = multiplicand.intCompact;
1303         int productScale = checkScale((long)scale + multiplicand.scale);
1304 
1305         // Might be able to do a more clever check incorporating the
1306         // inflated check into the overflow computation.
1307         if (x != INFLATED && y != INFLATED) {
1308             /*
1309              * If the product is not an overflowed value, continue
1310              * to use the compact representation.  if either of x or y
1311              * is INFLATED, the product should also be regarded as
1312              * an overflow. Before using the overflow test suggested in
1313              * "Hacker's Delight" section 2-12, we perform quick checks
1314              * using the precision information to see whether the overflow
1315              * would occur since division is expensive on most CPUs.
1316              */
1317             long product = x * y;
1318             long prec = this.precision() + multiplicand.precision();
1319             if (prec < 19 || (prec < 21 && (y == 0 || product / y == x)))
1320                 return BigDecimal.valueOf(product, productScale);
1321             return new BigDecimal(BigInteger.valueOf(x).multiply(y), INFLATED,
1322                                   productScale, 0);
1323         }
1324         BigInteger rb;
1325         if (x == INFLATED && y == INFLATED)
1326             rb = this.intVal.multiply(multiplicand.intVal);
1327         else if (x != INFLATED)
1328             rb = multiplicand.intVal.multiply(x);
1329         else
1330             rb = this.intVal.multiply(y);
1331         return new BigDecimal(rb, INFLATED, productScale, 0);
1332     }
1333 
1334     /**
1335      * Returns a {@code BigDecimal} whose value is <tt>(this &times;
1336      * multiplicand)</tt>, with rounding according to the context settings.
1337      *
1338      * @param  multiplicand value to be multiplied by this {@code BigDecimal}.
1339      * @param  mc the context to use.
1340      * @return {@code this * multiplicand}, rounded as necessary.
1341      * @throws ArithmeticException if the result is inexact but the
1342      *         rounding mode is {@code UNNECESSARY}.
1343      * @since  1.5
1344      */
1345     public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) {
1346         if (mc.precision == 0)
1347             return multiply(multiplicand);
1348         return doRound(this.multiply(multiplicand), mc);













1349     }
1350 
1351     /**
1352      * Returns a {@code BigDecimal} whose value is {@code (this /
1353      * divisor)}, and whose scale is as specified.  If rounding must
1354      * be performed to generate a result with the specified scale, the
1355      * specified rounding mode is applied.
1356      *
1357      * <p>The new {@link #divide(BigDecimal, int, RoundingMode)} method
1358      * should be used in preference to this legacy method.
1359      *
1360      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1361      * @param  scale scale of the {@code BigDecimal} quotient to be returned.
1362      * @param  roundingMode rounding mode to apply.
1363      * @return {@code this / divisor}
1364      * @throws ArithmeticException if {@code divisor} is zero,
1365      *         {@code roundingMode==ROUND_UNNECESSARY} and
1366      *         the specified scale is insufficient to represent the result
1367      *         of the division exactly.
1368      * @throws IllegalArgumentException if {@code roundingMode} does not
1369      *         represent a valid rounding mode.
1370      * @see    #ROUND_UP
1371      * @see    #ROUND_DOWN
1372      * @see    #ROUND_CEILING
1373      * @see    #ROUND_FLOOR
1374      * @see    #ROUND_HALF_UP
1375      * @see    #ROUND_HALF_DOWN
1376      * @see    #ROUND_HALF_EVEN
1377      * @see    #ROUND_UNNECESSARY
1378      */
1379     public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) {
1380         /*
1381          * IMPLEMENTATION NOTE: This method *must* return a new object
1382          * since divideAndRound uses divide to generate a value whose
1383          * scale is then modified.
1384          */
1385         if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
1386             throw new IllegalArgumentException("Invalid rounding mode");
1387         /*
1388          * Rescale dividend or divisor (whichever can be "upscaled" to
1389          * produce correctly scaled quotient).
1390          * Take care to detect out-of-range scales
1391          */
1392         BigDecimal dividend = this;
1393         if (checkScale((long)scale + divisor.scale) > this.scale)
1394             dividend = this.setScale(scale + divisor.scale, ROUND_UNNECESSARY);
1395         else
1396             divisor = divisor.setScale(checkScale((long)this.scale - scale),
1397                                        ROUND_UNNECESSARY);
1398         return divideAndRound(dividend.intCompact, dividend.intVal,
1399                               divisor.intCompact, divisor.intVal,
1400                               scale, roundingMode, scale);
1401     }
1402 
1403     /**
1404      * Internally used for division operation. The dividend and divisor are
1405      * passed both in {@code long} format and {@code BigInteger} format. The
1406      * returned {@code BigDecimal} object is the quotient whose scale is set to
1407      * the passed in scale. If the remainder is not zero, it will be rounded
1408      * based on the passed in roundingMode. Also, if the remainder is zero and
1409      * the last parameter, i.e. preferredScale is NOT equal to scale, the
1410      * trailing zeros of the result is stripped to match the preferredScale.
1411      */
1412     private static BigDecimal divideAndRound(long ldividend, BigInteger bdividend,
1413                                              long ldivisor,  BigInteger bdivisor,
1414                                              int scale, int roundingMode,
1415                                              int preferredScale) {
1416         boolean isRemainderZero;       // record remainder is zero or not
1417         int qsign;                     // quotient sign
1418         long q = 0, r = 0;             // store quotient & remainder in long
1419         MutableBigInteger mq = null;   // store quotient
1420         MutableBigInteger mr = null;   // store remainder
1421         MutableBigInteger mdivisor = null;
1422         boolean isLongDivision = (ldividend != INFLATED && ldivisor != INFLATED);
1423         if (isLongDivision) {
1424             q = ldividend / ldivisor;
1425             if (roundingMode == ROUND_DOWN && scale == preferredScale)
1426                 return new BigDecimal(null, q, scale, 0);
1427             r = ldividend % ldivisor;
1428             isRemainderZero = (r == 0);
1429             qsign = ((ldividend < 0) == (ldivisor < 0)) ? 1 : -1;
1430         } else {
1431             if (bdividend == null)
1432                 bdividend = BigInteger.valueOf(ldividend);
1433             // Descend into mutables for faster remainder checks
1434             MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
1435             mq = new MutableBigInteger();
1436             if (ldivisor != INFLATED) {
1437                 r = mdividend.divide(ldivisor, mq);
1438                 isRemainderZero = (r == 0);
1439                 qsign = (ldivisor < 0) ? -bdividend.signum : bdividend.signum;
1440             } else {
1441                 mdivisor = new MutableBigInteger(bdivisor.mag);
1442                 mr = mdividend.divide(mdivisor, mq);
1443                 isRemainderZero = mr.isZero();
1444                 qsign = (bdividend.signum != bdivisor.signum) ? -1 : 1;
1445             }
1446         }
1447         boolean increment = false;
1448         if (!isRemainderZero) {
1449             int cmpFracHalf;
1450             /* Round as appropriate */
1451             if (roundingMode == ROUND_UNNECESSARY) {  // Rounding prohibited
1452                 throw new ArithmeticException("Rounding necessary");
1453             } else if (roundingMode == ROUND_UP) {      // Away from zero
1454                 increment = true;
1455             } else if (roundingMode == ROUND_DOWN) {    // Towards zero
1456                 increment = false;
1457             } else if (roundingMode == ROUND_CEILING) { // Towards +infinity
1458                 increment = (qsign > 0);
1459             } else if (roundingMode == ROUND_FLOOR) {   // Towards -infinity
1460                 increment = (qsign < 0);
1461             } else {
1462                 if (isLongDivision || ldivisor != INFLATED) {
1463                     if (r <= HALF_LONG_MIN_VALUE || r > HALF_LONG_MAX_VALUE) {
1464                         cmpFracHalf = 1;    // 2 * r can't fit into long
1465                     } else {
1466                         cmpFracHalf = longCompareMagnitude(2 * r, ldivisor);
1467                     }
1468                 } else {
1469                     cmpFracHalf = mr.compareHalf(mdivisor);
1470                 }
1471                 if (cmpFracHalf < 0)
1472                     increment = false;     // We're closer to higher digit
1473                 else if (cmpFracHalf > 0)  // We're closer to lower digit
1474                     increment = true;
1475                 else if (roundingMode == ROUND_HALF_UP)
1476                     increment = true;
1477                 else if (roundingMode == ROUND_HALF_DOWN)
1478                     increment = false;
1479                 else  // roundingMode == ROUND_HALF_EVEN, true iff quotient is odd
1480                     increment = isLongDivision ? (q & 1L) != 0L : mq.isOdd();
1481             }
1482         }
1483         BigDecimal res;
1484         if (isLongDivision)
1485             res = new BigDecimal(null, (increment ? q + qsign : q), scale, 0);
1486         else {
1487             if (increment)
1488                 mq.add(MutableBigInteger.ONE);
1489             res = mq.toBigDecimal(qsign, scale);
1490         }
1491         if (isRemainderZero && preferredScale != scale)
1492             res.stripZerosToMatchScale(preferredScale);
1493         return res;
1494     }
1495 
1496     /**
1497      * Returns a {@code BigDecimal} whose value is {@code (this /
1498      * divisor)}, and whose scale is as specified.  If rounding must
1499      * be performed to generate a result with the specified scale, the
1500      * specified rounding mode is applied.
1501      *
1502      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1503      * @param  scale scale of the {@code BigDecimal} quotient to be returned.
1504      * @param  roundingMode rounding mode to apply.
1505      * @return {@code this / divisor}
1506      * @throws ArithmeticException if {@code divisor} is zero,
1507      *         {@code roundingMode==RoundingMode.UNNECESSARY} and
1508      *         the specified scale is insufficient to represent the result
1509      *         of the division exactly.
1510      * @since 1.5
1511      */
1512     public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
1513         return divide(divisor, scale, roundingMode.oldMode);


1571      * expansion) an {@code ArithmeticException} is thrown.
1572      *
1573      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1574      * @throws ArithmeticException if the exact quotient does not have a
1575      *         terminating decimal expansion
1576      * @return {@code this / divisor}
1577      * @since 1.5
1578      * @author Joseph D. Darcy
1579      */
1580     public BigDecimal divide(BigDecimal divisor) {
1581         /*
1582          * Handle zero cases first.
1583          */
1584         if (divisor.signum() == 0) {   // x/0
1585             if (this.signum() == 0)    // 0/0
1586                 throw new ArithmeticException("Division undefined");  // NaN
1587             throw new ArithmeticException("Division by zero");
1588         }
1589 
1590         // Calculate preferred scale
1591         int preferredScale = saturateLong((long)this.scale - divisor.scale);

1592         if (this.signum() == 0)        // 0/y
1593             return (preferredScale >= 0 &&
1594                     preferredScale < ZERO_SCALED_BY.length) ?
1595                 ZERO_SCALED_BY[preferredScale] :
1596                 BigDecimal.valueOf(0, preferredScale);
1597         else {
1598             this.inflate();
1599             divisor.inflate();
1600             /*
1601              * If the quotient this/divisor has a terminating decimal
1602              * expansion, the expansion can have no more than
1603              * (a.precision() + ceil(10*b.precision)/3) digits.
1604              * Therefore, create a MathContext object with this
1605              * precision and do a divide with the UNNECESSARY rounding
1606              * mode.
1607              */
1608             MathContext mc = new MathContext( (int)Math.min(this.precision() +
1609                                                             (long)Math.ceil(10.0*divisor.precision()/3.0),
1610                                                             Integer.MAX_VALUE),
1611                                               RoundingMode.UNNECESSARY);
1612             BigDecimal quotient;
1613             try {
1614                 quotient = this.divide(divisor, mc);
1615             } catch (ArithmeticException e) {
1616                 throw new ArithmeticException("Non-terminating decimal expansion; " +
1617                                               "no exact representable decimal result.");
1618             }
1619 
1620             int quotientScale = quotient.scale();
1621 
1622             // divide(BigDecimal, mc) tries to adjust the quotient to
1623             // the desired one by removing trailing zeros; since the
1624             // exact divide method does not have an explicit digit
1625             // limit, we can add zeros too.
1626 
1627             if (preferredScale > quotientScale)
1628                 return quotient.setScale(preferredScale, ROUND_UNNECESSARY);
1629 
1630             return quotient;
1631         }
1632     }
1633 
1634     /**
1635      * Returns a {@code BigDecimal} whose value is {@code (this /
1636      * divisor)}, with rounding according to the context settings.
1637      *
1638      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1639      * @param  mc the context to use.
1640      * @return {@code this / divisor}, rounded as necessary.
1641      * @throws ArithmeticException if the result is inexact but the
1642      *         rounding mode is {@code UNNECESSARY} or
1643      *         {@code mc.precision == 0} and the quotient has a
1644      *         non-terminating decimal expansion.
1645      * @since  1.5
1646      */


1652         BigDecimal dividend = this;
1653         long preferredScale = (long)dividend.scale - divisor.scale;
1654         // Now calculate the answer.  We use the existing
1655         // divide-and-round method, but as this rounds to scale we have
1656         // to normalize the values here to achieve the desired result.
1657         // For x/y we first handle y=0 and x=0, and then normalize x and
1658         // y to give x' and y' with the following constraints:
1659         //   (a) 0.1 <= x' < 1
1660         //   (b)  x' <= y' < 10*x'
1661         // Dividing x'/y' with the required scale set to mc.precision then
1662         // will give a result in the range 0.1 to 1 rounded to exactly
1663         // the right number of digits (except in the case of a result of
1664         // 1.000... which can arise when x=y, or when rounding overflows
1665         // The 1.000... case will reduce properly to 1.
1666         if (divisor.signum() == 0) {      // x/0
1667             if (dividend.signum() == 0)    // 0/0
1668                 throw new ArithmeticException("Division undefined");  // NaN
1669             throw new ArithmeticException("Division by zero");
1670         }
1671         if (dividend.signum() == 0)        // 0/y
1672             return new BigDecimal(BigInteger.ZERO, 0,
1673                                   saturateLong(preferredScale), 1);
1674 
1675         // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
1676         int xscale = dividend.precision();
1677         int yscale = divisor.precision();
1678         dividend = new BigDecimal(dividend.intVal, dividend.intCompact,
1679                                   xscale, xscale);
1680         divisor = new BigDecimal(divisor.intVal, divisor.intCompact,
1681                                  yscale, yscale);
1682         if (dividend.compareMagnitude(divisor) > 0) // satisfy constraint (b)
1683             yscale = divisor.scale -= 1;            // [that is, divisor *= 10]
1684 
1685         // In order to find out whether the divide generates the exact result,
1686         // we avoid calling the above divide method. 'quotient' holds the
1687         // return BigDecimal object whose scale will be set to 'scl'.
1688         BigDecimal quotient;
1689         int scl = checkScale(preferredScale + yscale - xscale + mcp);
1690         if (checkScale((long)mcp + yscale) > xscale)
1691             dividend = dividend.setScale(mcp + yscale, ROUND_UNNECESSARY);
1692         else
1693             divisor = divisor.setScale(checkScale((long)xscale - mcp),
1694                                        ROUND_UNNECESSARY);
1695         quotient = divideAndRound(dividend.intCompact, dividend.intVal,
1696                                   divisor.intCompact, divisor.intVal,
1697                                   scl, mc.roundingMode.oldMode,
1698                                   checkScale(preferredScale));
1699         // doRound, here, only affects 1000000000 case.
1700         quotient = doRound(quotient, mc);
1701 
1702         return quotient;
1703     }
1704 
1705     /**
1706      * Returns a {@code BigDecimal} whose value is the integer part
1707      * of the quotient {@code (this / divisor)} rounded down.  The
1708      * preferred scale of the result is {@code (this.scale() -
1709      * divisor.scale())}.
1710      *
1711      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1712      * @return The integer part of {@code this / divisor}.
1713      * @throws ArithmeticException if {@code divisor==0}
1714      * @since  1.5
1715      */
1716     public BigDecimal divideToIntegralValue(BigDecimal divisor) {
1717         // Calculate preferred scale
1718         int preferredScale = saturateLong((long)this.scale - divisor.scale);
1719         if (this.compareMagnitude(divisor) < 0) {
1720             // much faster when this << divisor
1721             return BigDecimal.valueOf(0, preferredScale);
1722         }
1723 
1724         if(this.signum() == 0 && divisor.signum() != 0)
1725             return this.setScale(preferredScale, ROUND_UNNECESSARY);
1726 
1727         // Perform a divide with enough digits to round to a correct
1728         // integer value; then remove any fractional digits
1729 
1730         int maxDigits = (int)Math.min(this.precision() +
1731                                       (long)Math.ceil(10.0*divisor.precision()/3.0) +
1732                                       Math.abs((long)this.scale() - divisor.scale()) + 2,
1733                                       Integer.MAX_VALUE);
1734         BigDecimal quotient = this.divide(divisor, new MathContext(maxDigits,
1735                                                                    RoundingMode.DOWN));
1736         if (quotient.scale > 0) {
1737             quotient = quotient.setScale(0, RoundingMode.DOWN);
1738             quotient.stripZerosToMatchScale(preferredScale);
1739         }
1740 
1741         if (quotient.scale < preferredScale) {
1742             // pad with zeros if necessary
1743             quotient = quotient.setScale(preferredScale, ROUND_UNNECESSARY);
1744         }

1745         return quotient;
1746     }
1747 
1748     /**
1749      * Returns a {@code BigDecimal} whose value is the integer part
1750      * of {@code (this / divisor)}.  Since the integer part of the
1751      * exact quotient does not depend on the rounding mode, the
1752      * rounding mode does not affect the values returned by this
1753      * method.  The preferred scale of the result is
1754      * {@code (this.scale() - divisor.scale())}.  An
1755      * {@code ArithmeticException} is thrown if the integer part of
1756      * the exact quotient needs more than {@code mc.precision}
1757      * digits.
1758      *
1759      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1760      * @param  mc the context to use.
1761      * @return The integer part of {@code this / divisor}.
1762      * @throws ArithmeticException if {@code divisor==0}
1763      * @throws ArithmeticException if {@code mc.precision} {@literal >} 0 and the result
1764      *         requires a precision of more than {@code mc.precision} digits.
1765      * @since  1.5
1766      * @author Joseph D. Darcy
1767      */
1768     public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) {
1769         if (mc.precision == 0 ||                        // exact result
1770             (this.compareMagnitude(divisor) < 0) )      // zero result
1771             return divideToIntegralValue(divisor);
1772 
1773         // Calculate preferred scale
1774         int preferredScale = saturateLong((long)this.scale - divisor.scale);
1775 
1776         /*
1777          * Perform a normal divide to mc.precision digits.  If the
1778          * remainder has absolute value less than the divisor, the
1779          * integer portion of the quotient fits into mc.precision
1780          * digits.  Next, remove any fractional digits from the
1781          * quotient and adjust the scale to the preferred value.
1782          */
1783         BigDecimal result = this.
1784             divide(divisor, new MathContext(mc.precision, RoundingMode.DOWN));
1785 
1786         if (result.scale() < 0) {
1787             /*
1788              * Result is an integer. See if quotient represents the
1789              * full integer portion of the exact quotient; if it does,
1790              * the computed remainder will be less than the divisor.
1791              */
1792             BigDecimal product = result.multiply(divisor);
1793             // If the quotient is the full integer value,
1794             // |dividend-product| < |divisor|.
1795             if (this.subtract(product).compareMagnitude(divisor) >= 0) {
1796                 throw new ArithmeticException("Division impossible");
1797             }
1798         } else if (result.scale() > 0) {
1799             /*
1800              * Integer portion of quotient will fit into precision
1801              * digits; recompute quotient to scale 0 to avoid double
1802              * rounding and then try to adjust, if necessary.
1803              */
1804             result = result.setScale(0, RoundingMode.DOWN);
1805         }
1806         // else result.scale() == 0;
1807 
1808         int precisionDiff;
1809         if ((preferredScale > result.scale()) &&
1810             (precisionDiff = mc.precision - result.precision()) > 0) {
1811             return result.setScale(result.scale() +
1812                                    Math.min(precisionDiff, preferredScale - result.scale) );
1813         } else {
1814             result.stripZerosToMatchScale(preferredScale);
1815             return result;
1816         }
1817     }
1818 
1819     /**
1820      * Returns a {@code BigDecimal} whose value is {@code (this % divisor)}.
1821      *
1822      * <p>The remainder is given by
1823      * {@code this.subtract(this.divideToIntegralValue(divisor).multiply(divisor))}.
1824      * Note that this is not the modulo operation (the result can be
1825      * negative).
1826      *
1827      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1828      * @return {@code this % divisor}.
1829      * @throws ArithmeticException if {@code divisor==0}
1830      * @since  1.5
1831      */
1832     public BigDecimal remainder(BigDecimal divisor) {
1833         BigDecimal divrem[] = this.divideAndRemainder(divisor);
1834         return divrem[1];
1835     }


1937      * unlimited precision.
1938      *
1939      * <p>The parameter {@code n} must be in the range 0 through
1940      * 999999999, inclusive.  {@code ZERO.pow(0)} returns {@link
1941      * #ONE}.
1942      *
1943      * Note that future releases may expand the allowable exponent
1944      * range of this method.
1945      *
1946      * @param  n power to raise this {@code BigDecimal} to.
1947      * @return <tt>this<sup>n</sup></tt>
1948      * @throws ArithmeticException if {@code n} is out of range.
1949      * @since  1.5
1950      */
1951     public BigDecimal pow(int n) {
1952         if (n < 0 || n > 999999999)
1953             throw new ArithmeticException("Invalid operation");
1954         // No need to calculate pow(n) if result will over/underflow.
1955         // Don't attempt to support "supernormal" numbers.
1956         int newScale = checkScale((long)scale * n);
1957         this.inflate();
1958         return new BigDecimal(intVal.pow(n), newScale);
1959     }
1960 
1961 
1962     /**
1963      * Returns a {@code BigDecimal} whose value is
1964      * <tt>(this<sup>n</sup>)</tt>.  The current implementation uses
1965      * the core algorithm defined in ANSI standard X3.274-1996 with
1966      * rounding according to the context settings.  In general, the
1967      * returned numerical value is within two ulps of the exact
1968      * numerical value for the chosen precision.  Note that future
1969      * releases may use a different algorithm with a decreased
1970      * allowable error bound and increased allowable exponent range.
1971      *
1972      * <p>The X3.274-1996 algorithm is:
1973      *
1974      * <ul>
1975      * <li> An {@code ArithmeticException} exception is thrown if
1976      *  <ul>
1977      *    <li>{@code abs(n) > 999999999}
1978      *    <li>{@code mc.precision == 0} and {@code n < 0}


1999      *   is then rounded to the destination precision.
2000      *   </ul>
2001      * </ul>
2002      *
2003      * @param  n power to raise this {@code BigDecimal} to.
2004      * @param  mc the context to use.
2005      * @return <tt>this<sup>n</sup></tt> using the ANSI standard X3.274-1996
2006      *         algorithm
2007      * @throws ArithmeticException if the result is inexact but the
2008      *         rounding mode is {@code UNNECESSARY}, or {@code n} is out
2009      *         of range.
2010      * @since  1.5
2011      */
2012     public BigDecimal pow(int n, MathContext mc) {
2013         if (mc.precision == 0)
2014             return pow(n);
2015         if (n < -999999999 || n > 999999999)
2016             throw new ArithmeticException("Invalid operation");
2017         if (n == 0)
2018             return ONE;                      // x**0 == 1 in X3.274
2019         this.inflate();
2020         BigDecimal lhs = this;
2021         MathContext workmc = mc;           // working settings
2022         int mag = Math.abs(n);               // magnitude of n
2023         if (mc.precision > 0) {
2024 
2025             int elength = longDigitLength(mag); // length of n in digits
2026             if (elength > mc.precision)        // X3.274 rule
2027                 throw new ArithmeticException("Invalid operation");
2028             workmc = new MathContext(mc.precision + elength + 1,
2029                                       mc.roundingMode);
2030         }
2031         // ready to carry out power calculation...
2032         BigDecimal acc = ONE;           // accumulator
2033         boolean seenbit = false;        // set once we've seen a 1-bit
2034         for (int i=1;;i++) {            // for each bit [top bit ignored]
2035             mag += mag;                 // shift left 1 bit
2036             if (mag < 0) {              // top bit is set
2037                 seenbit = true;         // OK, we're off
2038                 acc = acc.multiply(lhs, workmc); // acc=acc*x
2039             }
2040             if (i == 31)
2041                 break;                  // that was the last bit
2042             if (seenbit)
2043                 acc=acc.multiply(acc, workmc);   // acc=acc*acc [square]
2044                 // else (!seenbit) no point in squaring ONE
2045         }
2046         // if negative n, calculate the reciprocal using working precision
2047         if (n<0)                          // [hence mc.precision>0]
2048             acc=ONE.divide(acc, workmc);
2049         // round to final precision and strip zeros
2050         return doRound(acc, mc);
2051     }
2052 
2053     /**
2054      * Returns a {@code BigDecimal} whose value is the absolute value
2055      * of this {@code BigDecimal}, and whose scale is
2056      * {@code this.scale()}.
2057      *
2058      * @return {@code abs(this)}
2059      */
2060     public BigDecimal abs() {
2061         return (signum() < 0 ? negate() : this);
2062     }
2063 
2064     /**
2065      * Returns a {@code BigDecimal} whose value is the absolute value
2066      * of this {@code BigDecimal}, with rounding according to the
2067      * context settings.
2068      *
2069      * @param mc the context to use.
2070      * @return {@code abs(this)}, rounded as necessary.
2071      * @throws ArithmeticException if the result is inexact but the
2072      *         rounding mode is {@code UNNECESSARY}.
2073      * @since 1.5
2074      */
2075     public BigDecimal abs(MathContext mc) {
2076         return (signum() < 0 ? negate(mc) : plus(mc));
2077     }
2078 
2079     /**
2080      * Returns a {@code BigDecimal} whose value is {@code (-this)},
2081      * and whose scale is {@code this.scale()}.
2082      *
2083      * @return {@code -this}.
2084      */
2085     public BigDecimal negate() {
2086         BigDecimal result;
2087         if (intCompact != INFLATED)
2088             result = BigDecimal.valueOf(-intCompact, scale);
2089         else {
2090             result = new BigDecimal(intVal.negate(), scale);
2091             result.precision = precision;
2092         }
2093         return result;
2094     }
2095 
2096     /**
2097      * Returns a {@code BigDecimal} whose value is {@code (-this)},
2098      * with rounding according to the context settings.
2099      *
2100      * @param mc the context to use.
2101      * @return {@code -this}, rounded as necessary.
2102      * @throws ArithmeticException if the result is inexact but the
2103      *         rounding mode is {@code UNNECESSARY}.
2104      * @since  1.5
2105      */
2106     public BigDecimal negate(MathContext mc) {
2107         return negate().plus(mc);
2108     }
2109 
2110     /**
2111      * Returns a {@code BigDecimal} whose value is {@code (+this)}, and whose
2112      * scale is {@code this.scale()}.
2113      *


2169     public int scale() {
2170         return scale;
2171     }
2172 
2173     /**
2174      * Returns the <i>precision</i> of this {@code BigDecimal}.  (The
2175      * precision is the number of digits in the unscaled value.)
2176      *
2177      * <p>The precision of a zero value is 1.
2178      *
2179      * @return the precision of this {@code BigDecimal}.
2180      * @since  1.5
2181      */
2182     public int precision() {
2183         int result = precision;
2184         if (result == 0) {
2185             long s = intCompact;
2186             if (s != INFLATED)
2187                 result = longDigitLength(s);
2188             else
2189                 result = bigDigitLength(inflate());
2190             precision = result;
2191         }
2192         return result;
2193     }
2194 
2195 
2196     /**
2197      * Returns a {@code BigInteger} whose value is the <i>unscaled
2198      * value</i> of this {@code BigDecimal}.  (Computes <tt>(this *
2199      * 10<sup>this.scale()</sup>)</tt>.)
2200      *
2201      * @return the unscaled value of this {@code BigDecimal}.
2202      * @since  1.2
2203      */
2204     public BigInteger unscaledValue() {
2205         return this.inflate();
2206     }
2207 
2208     // Rounding Modes
2209 
2210     /**
2211      * Rounding mode to round away from zero.  Always increments the
2212      * digit prior to a nonzero discarded fraction.  Note that this rounding
2213      * mode never decreases the magnitude of the calculated value.
2214      */
2215     public final static int ROUND_UP =           0;
2216 
2217     /**
2218      * Rounding mode to round towards zero.  Never increments the digit
2219      * prior to a discarded fraction (i.e., truncates).  Note that this
2220      * rounding mode never increases the magnitude of the calculated value.
2221      */
2222     public final static int ROUND_DOWN =         1;
2223 
2224     /**
2225      * Rounding mode to round towards positive infinity.  If the


2366      *         rounding.
2367      * @throws IllegalArgumentException if {@code roundingMode} does not
2368      *         represent a valid rounding mode.
2369      * @see    #ROUND_UP
2370      * @see    #ROUND_DOWN
2371      * @see    #ROUND_CEILING
2372      * @see    #ROUND_FLOOR
2373      * @see    #ROUND_HALF_UP
2374      * @see    #ROUND_HALF_DOWN
2375      * @see    #ROUND_HALF_EVEN
2376      * @see    #ROUND_UNNECESSARY
2377      */
2378     public BigDecimal setScale(int newScale, int roundingMode) {
2379         if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
2380             throw new IllegalArgumentException("Invalid rounding mode");
2381 
2382         int oldScale = this.scale;
2383         if (newScale == oldScale)        // easy case
2384             return this;
2385         if (this.signum() == 0)            // zero can have any scale
2386             return BigDecimal.valueOf(0, newScale);
2387 
2388         long rs = this.intCompact;
2389         if (newScale > oldScale) {
2390             int raise = checkScale((long)newScale - oldScale);
2391             BigInteger rb = null;
2392             if (rs == INFLATED ||
2393                 (rs = longMultiplyPowerTen(rs, raise)) == INFLATED)
2394                 rb = bigMultiplyPowerTen(raise);
2395             return new BigDecimal(rb, rs, newScale,
2396                                   (precision > 0) ? precision + raise : 0);














2397         } else {
2398             // newScale < oldScale -- drop some digits
2399             // Can't predict the precision due to the effect of rounding.
2400             int drop = checkScale((long)oldScale - newScale);
2401             if (drop < LONG_TEN_POWERS_TABLE.length)
2402                 return divideAndRound(rs, this.intVal,
2403                                       LONG_TEN_POWERS_TABLE[drop], null,
2404                                       newScale, roundingMode, newScale);
2405             else
2406                 return divideAndRound(rs, this.intVal,
2407                                       INFLATED, bigTenToThe(drop),
2408                                       newScale, roundingMode, newScale);
2409         }
2410     }
2411 
2412     /**
2413      * Returns a {@code BigDecimal} whose scale is the specified
2414      * value, and whose value is numerically equal to this
2415      * {@code BigDecimal}'s.  Throws an {@code ArithmeticException}
2416      * if this is not possible.
2417      *
2418      * <p>This call is typically used to increase the scale, in which
2419      * case it is guaranteed that there exists a {@code BigDecimal}
2420      * of the specified scale and the correct value.  The call can
2421      * also be used to reduce the scale if the caller knows that the
2422      * {@code BigDecimal} has sufficiently many zeros at the end of
2423      * its fractional part (i.e., factors of ten in its integer value)
2424      * to allow for the rescaling without changing its value.
2425      *
2426      * <p>This method returns the same result as the two-argument
2427      * versions of {@code setScale}, but saves the caller the trouble
2428      * of specifying a rounding mode in cases where it is irrelevant.


2507      */
2508     public BigDecimal scaleByPowerOfTen(int n) {
2509         return new BigDecimal(intVal, intCompact,
2510                               checkScale((long)scale - n), precision);
2511     }
2512 
2513     /**
2514      * Returns a {@code BigDecimal} which is numerically equal to
2515      * this one but with any trailing zeros removed from the
2516      * representation.  For example, stripping the trailing zeros from
2517      * the {@code BigDecimal} value {@code 600.0}, which has
2518      * [{@code BigInteger}, {@code scale}] components equals to
2519      * [6000, 1], yields {@code 6E2} with [{@code BigInteger},
2520      * {@code scale}] components equals to [6, -2]
2521      *
2522      * @return a numerically equal {@code BigDecimal} with any
2523      * trailing zeros removed.
2524      * @since 1.5
2525      */
2526     public BigDecimal stripTrailingZeros() {
2527         this.inflate();
2528         BigDecimal result = new BigDecimal(intVal, scale);
2529         result.stripZerosToMatchScale(Long.MIN_VALUE);
2530         return result;

2531     }
2532 
2533     // Comparison Operations
2534 
2535     /**
2536      * Compares this {@code BigDecimal} with the specified
2537      * {@code BigDecimal}.  Two {@code BigDecimal} objects that are
2538      * equal in value but have a different scale (like 2.0 and 2.00)
2539      * are considered equal by this method.  This method is provided
2540      * in preference to individual methods for each of the six boolean
2541      * comparison operators ({@literal <}, ==,
2542      * {@literal >}, {@literal >=}, !=, {@literal <=}).  The
2543      * suggested idiom for performing these comparisons is:
2544      * {@code (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
2545      * &lt;<i>op</i>&gt; is one of the six comparison operators.
2546      *
2547      * @param  val {@code BigDecimal} to which this {@code BigDecimal} is
2548      *         to be compared.
2549      * @return -1, 0, or 1 as this {@code BigDecimal} is numerically
2550      *          less than, equal to, or greater than {@code val}.


2630      * @see    #hashCode
2631      */
2632     @Override
2633     public boolean equals(Object x) {
2634         if (!(x instanceof BigDecimal))
2635             return false;
2636         BigDecimal xDec = (BigDecimal) x;
2637         if (x == this)
2638             return true;
2639         if (scale != xDec.scale)
2640             return false;
2641         long s = this.intCompact;
2642         long xs = xDec.intCompact;
2643         if (s != INFLATED) {
2644             if (xs == INFLATED)
2645                 xs = compactValFor(xDec.intVal);
2646             return xs == s;
2647         } else if (xs != INFLATED)
2648             return xs == compactValFor(this.intVal);
2649 
2650         return this.inflate().equals(xDec.inflate());
2651     }
2652 
2653     /**
2654      * Returns the minimum of this {@code BigDecimal} and
2655      * {@code val}.
2656      *
2657      * @param  val value with which the minimum is to be computed.
2658      * @return the {@code BigDecimal} whose value is the lesser of this
2659      *         {@code BigDecimal} and {@code val}.  If they are equal,
2660      *         as defined by the {@link #compareTo(BigDecimal) compareTo}
2661      *         method, {@code this} is returned.
2662      * @see    #compareTo(java.math.BigDecimal)
2663      */
2664     public BigDecimal min(BigDecimal val) {
2665         return (compareTo(val) <= 0 ? this : val);
2666     }
2667 
2668     /**
2669      * Returns the maximum of this {@code BigDecimal} and {@code val}.
2670      *


2855      *
2856      * Note that if the result of this method is passed to the
2857      * {@linkplain #BigDecimal(String) string constructor}, only the
2858      * numerical value of this {@code BigDecimal} will necessarily be
2859      * recovered; the representation of the new {@code BigDecimal}
2860      * may have a different scale.  In particular, if this
2861      * {@code BigDecimal} has a negative scale, the string resulting
2862      * from this method will have a scale of zero when processed by
2863      * the string constructor.
2864      *
2865      * (This method behaves analogously to the {@code toString}
2866      * method in 1.4 and earlier releases.)
2867      *
2868      * @return a string representation of this {@code BigDecimal}
2869      * without an exponent field.
2870      * @since 1.5
2871      * @see #toString()
2872      * @see #toEngineeringString()
2873      */
2874     public String toPlainString() {
2875         BigDecimal bd = this;
2876         if (bd.scale < 0)
2877             bd = bd.setScale(0);
2878         bd.inflate();
2879         if (bd.scale == 0)      // No decimal point
2880             return bd.intVal.toString();
2881         return bd.getValueString(bd.signum(), bd.intVal.abs().toString(), bd.scale);

























2882     }
2883 
2884     /* Returns a digit.digit string */
2885     private String getValueString(int signum, String intString, int scale) {
2886         /* Insert decimal point */
2887         StringBuilder buf;
2888         int insertionPoint = intString.length() - scale;
2889         if (insertionPoint == 0) {  /* Point goes right before intVal */
2890             return (signum<0 ? "-0." : "0.") + intString;
2891         } else if (insertionPoint > 0) { /* Point goes inside intVal */
2892             buf = new StringBuilder(intString);
2893             buf.insert(insertionPoint, '.');
2894             if (signum < 0)
2895                 buf.insert(0, '-');
2896         } else { /* We must insert zeros between point and intVal */
2897             buf = new StringBuilder(3-insertionPoint + intString.length());
2898             buf.append(signum<0 ? "-0." : "0.");
2899             for (int i=0; i<-insertionPoint; i++)
2900                 buf.append('0');
2901             buf.append(intString);


2905 
2906     /**
2907      * Converts this {@code BigDecimal} to a {@code BigInteger}.
2908      * This conversion is analogous to the
2909      * <i>narrowing primitive conversion</i> from {@code double} to
2910      * {@code long} as defined in section 5.1.3 of
2911      * <cite>The Java&trade; Language Specification</cite>:
2912      * any fractional part of this
2913      * {@code BigDecimal} will be discarded.  Note that this
2914      * conversion can lose information about the precision of the
2915      * {@code BigDecimal} value.
2916      * <p>
2917      * To have an exception thrown if the conversion is inexact (in
2918      * other words if a nonzero fractional part is discarded), use the
2919      * {@link #toBigIntegerExact()} method.
2920      *
2921      * @return this {@code BigDecimal} converted to a {@code BigInteger}.
2922      */
2923     public BigInteger toBigInteger() {
2924         // force to an integer, quietly
2925         return this.setScale(0, ROUND_DOWN).inflate();
2926     }
2927 
2928     /**
2929      * Converts this {@code BigDecimal} to a {@code BigInteger},
2930      * checking for lost information.  An exception is thrown if this
2931      * {@code BigDecimal} has a nonzero fractional part.
2932      *
2933      * @return this {@code BigDecimal} converted to a {@code BigInteger}.
2934      * @throws ArithmeticException if {@code this} has a nonzero
2935      *         fractional part.
2936      * @since  1.5
2937      */
2938     public BigInteger toBigIntegerExact() {
2939         // round to an integer, with Exception if decimal part non-0
2940         return this.setScale(0, ROUND_UNNECESSARY).inflate();
2941     }
2942 
2943     /**
2944      * Converts this {@code BigDecimal} to a {@code long}.
2945      * This conversion is analogous to the
2946      * <i>narrowing primitive conversion</i> from {@code double} to
2947      * {@code short} as defined in section 5.1.3 of
2948      * <cite>The Java&trade; Language Specification</cite>:
2949      * any fractional part of this
2950      * {@code BigDecimal} will be discarded, and if the resulting
2951      * "{@code BigInteger}" is too big to fit in a
2952      * {@code long}, only the low-order 64 bits are returned.
2953      * Note that this conversion can lose information about the
2954      * overall magnitude and precision of this {@code BigDecimal} value as well
2955      * as return a result with the opposite sign.
2956      *
2957      * @return this {@code BigDecimal} converted to a {@code long}.
2958      */
2959     public long longValue(){
2960         return (intCompact != INFLATED && scale == 0) ?


2973      * @throws ArithmeticException if {@code this} has a nonzero
2974      *         fractional part, or will not fit in a {@code long}.
2975      * @since  1.5
2976      */
2977     public long longValueExact() {
2978         if (intCompact != INFLATED && scale == 0)
2979             return intCompact;
2980         // If more than 19 digits in integer part it cannot possibly fit
2981         if ((precision() - scale) > 19) // [OK for negative scale too]
2982             throw new java.lang.ArithmeticException("Overflow");
2983         // Fastpath zero and < 1.0 numbers (the latter can be very slow
2984         // to round if very small)
2985         if (this.signum() == 0)
2986             return 0;
2987         if ((this.precision() - this.scale) <= 0)
2988             throw new ArithmeticException("Rounding necessary");
2989         // round to an integer, with Exception if decimal part non-0
2990         BigDecimal num = this.setScale(0, ROUND_UNNECESSARY);
2991         if (num.precision() >= 19) // need to check carefully
2992             LongOverflow.check(num);
2993         return num.inflate().longValue();
2994     }
2995 
2996     private static class LongOverflow {
2997         /** BigInteger equal to Long.MIN_VALUE. */
2998         private static final BigInteger LONGMIN = BigInteger.valueOf(Long.MIN_VALUE);
2999 
3000         /** BigInteger equal to Long.MAX_VALUE. */
3001         private static final BigInteger LONGMAX = BigInteger.valueOf(Long.MAX_VALUE);
3002 
3003         public static void check(BigDecimal num) {
3004             num.inflate();
3005             if ((num.intVal.compareTo(LONGMIN) < 0) ||
3006                 (num.intVal.compareTo(LONGMAX) > 0))
3007                 throw new java.lang.ArithmeticException("Overflow");
3008         }
3009     }
3010 
3011     /**
3012      * Converts this {@code BigDecimal} to an {@code int}.
3013      * This conversion is analogous to the
3014      * <i>narrowing primitive conversion</i> from {@code double} to
3015      * {@code short} as defined in section 5.1.3 of
3016      * <cite>The Java&trade; Language Specification</cite>:
3017      * any fractional part of this
3018      * {@code BigDecimal} will be discarded, and if the resulting
3019      * "{@code BigInteger}" is too big to fit in an
3020      * {@code int}, only the low-order 32 bits are returned.
3021      * Note that this conversion can lose information about the
3022      * overall magnitude and precision of this {@code BigDecimal}
3023      * value as well as return a result with the opposite sign.
3024      *
3025      * @return this {@code BigDecimal} converted to an {@code int}.
3026      */


3090        return (byte)num;
3091     }
3092 
3093     /**
3094      * Converts this {@code BigDecimal} to a {@code float}.
3095      * This conversion is similar to the
3096      * <i>narrowing primitive conversion</i> from {@code double} to
3097      * {@code float} as defined in section 5.1.3 of
3098      * <cite>The Java&trade; Language Specification</cite>:
3099      * if this {@code BigDecimal} has too great a
3100      * magnitude to represent as a {@code float}, it will be
3101      * converted to {@link Float#NEGATIVE_INFINITY} or {@link
3102      * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
3103      * the return value is finite, this conversion can lose
3104      * information about the precision of the {@code BigDecimal}
3105      * value.
3106      *
3107      * @return this {@code BigDecimal} converted to a {@code float}.
3108      */
3109     public float floatValue(){
3110         if (scale == 0 && intCompact != INFLATED)

3111                 return (float)intCompact;
















3112         // Somewhat inefficient, but guaranteed to work.
3113         return Float.parseFloat(this.toString());
3114     }
3115 
3116     /**
3117      * Converts this {@code BigDecimal} to a {@code double}.
3118      * This conversion is similar to the
3119      * <i>narrowing primitive conversion</i> from {@code double} to
3120      * {@code float} as defined in section 5.1.3 of
3121      * <cite>The Java&trade; Language Specification</cite>:
3122      * if this {@code BigDecimal} has too great a
3123      * magnitude represent as a {@code double}, it will be
3124      * converted to {@link Double#NEGATIVE_INFINITY} or {@link
3125      * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
3126      * the return value is finite, this conversion can lose
3127      * information about the precision of the {@code BigDecimal}
3128      * value.
3129      *
3130      * @return this {@code BigDecimal} converted to a {@code double}.
3131      */
3132     public double doubleValue(){
3133         if (scale == 0 && intCompact != INFLATED)

3134             return (double)intCompact;
















3135         // Somewhat inefficient, but guaranteed to work.
3136         return Double.parseDouble(this.toString());
3137     }
3138 
3139     /**




















3140      * Returns the size of an ulp, a unit in the last place, of this
3141      * {@code BigDecimal}.  An ulp of a nonzero {@code BigDecimal}
3142      * value is the positive distance between this value and the
3143      * {@code BigDecimal} value next larger in magnitude with the
3144      * same number of digits.  An ulp of a zero value is numerically
3145      * equal to 1 with the scale of {@code this}.  The result is
3146      * stored with the same scale as {@code this} so the result
3147      * for zero and nonzero values is equal to {@code [1,
3148      * this.scale()]}.
3149      *
3150      * @return the size of an ulp of {@code this}
3151      * @since 1.5
3152      */
3153     public BigDecimal ulp() {
3154         return BigDecimal.valueOf(1, this.scale());
3155     }
3156 
3157 
3158     // Private class to build a string representation for BigDecimal object.
3159     // "StringBuilderHelper" is constructed as a thread local variable so it is
3160     // thread safe. The StringBuilder field acts as a buffer to hold the temporary
3161     // representation of BigDecimal. The cmpCharArray holds all the characters for
3162     // the compact representation of BigDecimal (except for '-' sign' if it is
3163     // negative) if its intCompact field is not INFLATED. It is shared by all
3164     // calls to toString() and its variants in that particular thread.
3165     static class StringBuilderHelper {
3166         final StringBuilder sb;    // Placeholder for BigDecimal string
3167         final char[] cmpCharArray; // character array to place the intCompact
3168 
3169         StringBuilderHelper() {
3170             sb = new StringBuilder();
3171             // All non negative longs can be made to fit into 19 character array.
3172             cmpCharArray = new char[19];
3173         }
3174 
3175         // Accessors.
3176         StringBuilder getStringBuilder() {
3177             sb.setLength(0);


3251             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3252             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3253             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3254         };
3255     }
3256 
3257     /**
3258      * Lay out this {@code BigDecimal} into a {@code char[]} array.
3259      * The Java 1.2 equivalent to this was called {@code getValueString}.
3260      *
3261      * @param  sci {@code true} for Scientific exponential notation;
3262      *          {@code false} for Engineering
3263      * @return string with canonical string representation of this
3264      *         {@code BigDecimal}
3265      */
3266     private String layoutChars(boolean sci) {
3267         if (scale == 0)                      // zero scale is trivial
3268             return (intCompact != INFLATED) ?
3269                 Long.toString(intCompact):
3270                 intVal.toString();









3271 
3272         StringBuilderHelper sbHelper = threadLocalStringBuilderHelper.get();
3273         char[] coeff;
3274         int offset;  // offset is the starting index for coeff array
3275         // Get the significand as an absolute value
3276         if (intCompact != INFLATED) {
3277             offset = sbHelper.putIntCompact(Math.abs(intCompact));
3278             coeff  = sbHelper.getCompactCharArray();
3279         } else {
3280             offset = 0;
3281             coeff  = intVal.abs().toString().toCharArray();
3282         }
3283 
3284         // Construct a buffer, with sufficient capacity for all cases.
3285         // If E-notation is needed, length will be: +1 if negative, +1
3286         // if '.' needed, +2 for "E+", + up to 10 for adjusted exponent.
3287         // Otherwise it could have +1 if negative, plus leading "0.00000"
3288         StringBuilder buf = sbHelper.getStringBuilder();
3289         if (signum() < 0)             // prefix '-' if negative
3290             buf.append('-');


3360      * @param  n the power of ten to be returned (>=0)
3361      * @return a {@code BigInteger} with the value (10<sup>n</sup>)
3362      */
3363     private static BigInteger bigTenToThe(int n) {
3364         if (n < 0)
3365             return BigInteger.ZERO;
3366 
3367         if (n < BIG_TEN_POWERS_TABLE_MAX) {
3368             BigInteger[] pows = BIG_TEN_POWERS_TABLE;
3369             if (n < pows.length)
3370                 return pows[n];
3371             else
3372                 return expandBigIntegerTenPowers(n);
3373         }
3374         // BigInteger.pow is slow, so make 10**n by constructing a
3375         // BigInteger from a character string (still not very fast)
3376         char tenpow[] = new char[n + 1];
3377         tenpow[0] = '1';
3378         for (int i = 1; i <= n; i++)
3379             tenpow[i] = '0';
3380         return new BigInteger(tenpow);
3381     }
3382 
3383     /**
3384      * Expand the BIG_TEN_POWERS_TABLE array to contain at least 10**n.
3385      *
3386      * @param n the power of ten to be returned (>=0)
3387      * @return a {@code BigDecimal} with the value (10<sup>n</sup>) and
3388      *         in the meantime, the BIG_TEN_POWERS_TABLE array gets
3389      *         expanded to the size greater than n.
3390      */
3391     private static BigInteger expandBigIntegerTenPowers(int n) {
3392         synchronized(BigDecimal.class) {
3393             BigInteger[] pows = BIG_TEN_POWERS_TABLE;
3394             int curLen = pows.length;
3395             // The following comparison and the above synchronized statement is
3396             // to prevent multiple threads from expanding the same array.
3397             if (curLen <= n) {
3398                 int newLen = curLen << 1;
3399                 while (newLen <= n)
3400                     newLen <<= 1;


3416         10,                    // 1 / 10^1
3417         100,                   // 2 / 10^2
3418         1000,                  // 3 / 10^3
3419         10000,                 // 4 / 10^4
3420         100000,                // 5 / 10^5
3421         1000000,               // 6 / 10^6
3422         10000000,              // 7 / 10^7
3423         100000000,             // 8 / 10^8
3424         1000000000,            // 9 / 10^9
3425         10000000000L,          // 10 / 10^10
3426         100000000000L,         // 11 / 10^11
3427         1000000000000L,        // 12 / 10^12
3428         10000000000000L,       // 13 / 10^13
3429         100000000000000L,      // 14 / 10^14
3430         1000000000000000L,     // 15 / 10^15
3431         10000000000000000L,    // 16 / 10^16
3432         100000000000000000L,   // 17 / 10^17
3433         1000000000000000000L   // 18 / 10^18
3434     };
3435 
3436     private static volatile BigInteger BIG_TEN_POWERS_TABLE[] = {BigInteger.ONE,
3437         BigInteger.valueOf(10),       BigInteger.valueOf(100),
3438         BigInteger.valueOf(1000),     BigInteger.valueOf(10000),
3439         BigInteger.valueOf(100000),   BigInteger.valueOf(1000000),
3440         BigInteger.valueOf(10000000), BigInteger.valueOf(100000000),





3441         BigInteger.valueOf(1000000000),
3442         BigInteger.valueOf(10000000000L),
3443         BigInteger.valueOf(100000000000L),
3444         BigInteger.valueOf(1000000000000L),
3445         BigInteger.valueOf(10000000000000L),
3446         BigInteger.valueOf(100000000000000L),
3447         BigInteger.valueOf(1000000000000000L),
3448         BigInteger.valueOf(10000000000000000L),
3449         BigInteger.valueOf(100000000000000000L),
3450         BigInteger.valueOf(1000000000000000000L)
3451     };
3452 
3453     private static final int BIG_TEN_POWERS_TABLE_INITLEN =
3454         BIG_TEN_POWERS_TABLE.length;
3455     private static final int BIG_TEN_POWERS_TABLE_MAX =
3456         16 * BIG_TEN_POWERS_TABLE_INITLEN;
3457 
3458     private static final long THRESHOLDS_TABLE[] = {
3459         Long.MAX_VALUE,                     // 0
3460         Long.MAX_VALUE/10L,                 // 1


3485         if (val == 0 || n <= 0)
3486             return val;
3487         long[] tab = LONG_TEN_POWERS_TABLE;
3488         long[] bounds = THRESHOLDS_TABLE;
3489         if (n < tab.length && n < bounds.length) {
3490             long tenpower = tab[n];
3491             if (val == 1)
3492                 return tenpower;
3493             if (Math.abs(val) <= bounds[n])
3494                 return val * tenpower;
3495         }
3496         return INFLATED;
3497     }
3498 
3499     /**
3500      * Compute this * 10 ^ n.
3501      * Needed mainly to allow special casing to trap zero value
3502      */
3503     private BigInteger bigMultiplyPowerTen(int n) {
3504         if (n <= 0)
3505             return this.inflate();
3506 
3507         if (intCompact != INFLATED)
3508             return bigTenToThe(n).multiply(intCompact);
3509         else
3510             return intVal.multiply(bigTenToThe(n));
3511     }
3512 
3513     /**
3514      * Assign appropriate BigInteger to intVal field if intVal is
3515      * null, i.e. the compact representation is in use.
3516      */
3517     private BigInteger inflate() {
3518         if (intVal == null)
3519             intVal = BigInteger.valueOf(intCompact);

3520         return intVal;
3521     }
3522 
3523     /**
3524      * Match the scales of two {@code BigDecimal}s to align their
3525      * least significant digits.
3526      *
3527      * <p>If the scales of val[0] and val[1] differ, rescale
3528      * (non-destructively) the lower-scaled {@code BigDecimal} so
3529      * they match.  That is, the lower-scaled reference will be
3530      * replaced by a reference to a new object with the same scale as
3531      * the other {@code BigDecimal}.
3532      *
3533      * @param  val array of two elements referring to the two
3534      *         {@code BigDecimal}s to be aligned.
3535      */
3536     private static void matchScale(BigDecimal[] val) {
3537         if (val[0].scale == val[1].scale) {
3538             return;
3539         } else if (val[0].scale < val[1].scale) {
3540             val[0] = val[0].setScale(val[1].scale, ROUND_UNNECESSARY);
3541         } else if (val[1].scale < val[0].scale) {
3542             val[1] = val[1].setScale(val[0].scale, ROUND_UNNECESSARY);
3543         }
3544     }
3545 






















3546     /**
3547      * Reconstitute the {@code BigDecimal} instance from a stream (that is,
3548      * deserialize it).
3549      *
3550      * @param s the stream being read.
3551      */
3552     private void readObject(java.io.ObjectInputStream s)
3553         throws java.io.IOException, ClassNotFoundException {
3554         // Read in all fields
3555         s.defaultReadObject();
3556         // validate possibly bad fields
3557         if (intVal == null) {
3558             String message = "BigDecimal: null intVal in stream";
3559             throw new java.io.StreamCorruptedException(message);
3560         // [all values of scale are now allowed]
3561         }
3562         intCompact = compactValFor(intVal);
3563     }
3564 
3565    /**
3566     * Serialize this {@code BigDecimal} to the stream in question
3567     *
3568     * @param s the stream to serialize to.
3569     */
3570    private void writeObject(java.io.ObjectOutputStream s)
3571        throws java.io.IOException {
3572        // Must inflate to maintain compatible serial form.
3573        this.inflate();
3574 
3575        // Write proper fields
3576        s.defaultWriteObject();
3577    }
3578 
3579 
3580     /**
3581      * Returns the length of the absolute value of a {@code long}, in decimal
3582      * digits.
3583      *
3584      * @param x the {@code long}

3585      * @return the length of the unscaled value, in deciaml digits.
3586      */
3587     private static int longDigitLength(long x) {
3588         /*
3589          * As described in "Bit Twiddling Hacks" by Sean Anderson,
3590          * (http://graphics.stanford.edu/~seander/bithacks.html)
3591          * integer log 10 of x is within 1 of
3592          * (1233/4096)* (1 + integer log 2 of x).
3593          * The fraction 1233/4096 approximates log10(2). So we first
3594          * do a version of log2 (a variant of Long class with
3595          * pre-checks and opposite directionality) and then scale and
3596          * check against powers table. This is a little simpler in
3597          * present context than the version in Hacker's Delight sec
3598          * 11-4.  Adding one to bit length allows comparing downward
3599          * from the LONG_TEN_POWERS_TABLE that we need anyway.
3600          */
3601         assert x != INFLATED;
3602         if (x < 0)
3603             x = -x;
3604         if (x < 10) // must screen for 0, might as well 10
3605             return 1;
3606         int n = 64; // not 63, to avoid needing to add 1 later
3607         int y = (int)(x >>> 32);
3608         if (y == 0) { n -= 32; y = (int)x; }
3609         if (y >>> 16 == 0) { n -= 16; y <<= 16; }
3610         if (y >>> 24 == 0) { n -=  8; y <<=  8; }
3611         if (y >>> 28 == 0) { n -=  4; y <<=  4; }
3612         if (y >>> 30 == 0) { n -=  2; y <<=  2; }
3613         int r = (((y >>> 31) + n) * 1233) >>> 12;
3614         long[] tab = LONG_TEN_POWERS_TABLE;
3615         // if r >= length, must have max possible digits for long
3616         return (r >= tab.length || x < tab[r])? r : r+1;
3617     }
3618 
3619     /**
3620      * Returns the length of the absolute value of a BigInteger, in
3621      * decimal digits.
3622      *
3623      * @param b the BigInteger
3624      * @return the length of the unscaled value, in decimal digits
3625      */
3626     private static int bigDigitLength(BigInteger b) {
3627         /*
3628          * Same idea as the long version, but we need a better
3629          * approximation of log10(2). Using 646456993/2^31
3630          * is accurate up to max possible reported bitLength.
3631          */
3632         if (b.signum == 0)
3633             return 1;
3634         int r = (int)((((long)b.bitLength() + 1) * 646456993) >>> 31);
3635         return b.compareMagnitude(bigTenToThe(r)) < 0? r : r+1;
3636     }
3637 
3638 
3639     /**
3640      * Remove insignificant trailing zeros from this
3641      * {@code BigDecimal} until the preferred scale is reached or no
3642      * more zeros can be removed.  If the preferred scale is less than
3643      * Integer.MIN_VALUE, all the trailing zeros will be removed.
3644      *
3645      * {@code BigInteger} assistance could help, here?
3646      *
3647      * <p>WARNING: This method should only be called on new objects as
3648      * it mutates the value fields.
3649      *
3650      * @return this {@code BigDecimal} with a scale possibly reduced
3651      * to be closed to the preferred scale.
3652      */
3653     private BigDecimal stripZerosToMatchScale(long preferredScale) {
3654         this.inflate();
3655         BigInteger qr[];                // quotient-remainder pair
3656         while ( intVal.compareMagnitude(BigInteger.TEN) >= 0 &&
3657                 scale > preferredScale) {
3658             if (intVal.testBit(0))
3659                 break;                  // odd number cannot end in 0
3660             qr = intVal.divideAndRemainder(BigInteger.TEN);
3661             if (qr[1].signum() != 0)
3662                 break;                  // non-0 remainder
3663             intVal=qr[0];
3664             scale = checkScale((long)scale-1);  // could Overflow
3665             if (precision > 0)          // adjust precision if known
3666               precision--;
3667         }
3668         if (intVal != null)
3669             intCompact = compactValFor(intVal);
3670         return this;
3671     }
3672 
3673     /**
3674      * Check a scale for Underflow or Overflow.  If this BigDecimal is
3675      * nonzero, throw an exception if the scale is outof range. If this
3676      * is zero, saturate the scale to the extreme value of the right
3677      * sign if the scale is out of range.
3678      *
3679      * @param val The new scale.
3680      * @throws ArithmeticException (overflow or underflow) if the new
3681      *         scale is out of range.
3682      * @return validated scale as an int.
3683      */
3684     private int checkScale(long val) {
3685         int asInt = (int)val;
3686         if (asInt != val) {
3687             asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
3688             BigInteger b;
3689             if (intCompact != 0 &&
3690                 ((b = intVal) == null || b.signum() != 0))
3691                 throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
3692         }
3693         return asInt;
3694     }
3695 
3696     /**
3697      * Round an operand; used only if digits &gt; 0.  Does not change
3698      * {@code this}; if rounding is needed a new {@code BigDecimal}
3699      * is created and returned.
3700      *
3701      * @param mc the context to use.
3702      * @throws ArithmeticException if the result is inexact but the
3703      *         rounding mode is {@code UNNECESSARY}.
3704      */
3705     private BigDecimal roundOp(MathContext mc) {
3706         BigDecimal rounded = doRound(this, mc);
3707         return rounded;
3708     }
3709 
3710     /** Round this BigDecimal according to the MathContext settings;
3711      *  used only if precision {@literal >} 0.
3712      *
3713      * <p>WARNING: This method should only be called on new objects as
3714      * it mutates the value fields.
3715      *
3716      * @param mc the context to use.
3717      * @throws ArithmeticException if the rounding mode is
3718      *         {@code RoundingMode.UNNECESSARY} and the
3719      *         {@code BigDecimal} operation would require rounding.
3720      */
3721     private void roundThis(MathContext mc) {
3722         BigDecimal rounded = doRound(this, mc);
3723         if (rounded == this)                 // wasn't rounded
3724             return;
3725         this.intVal     = rounded.intVal;
3726         this.intCompact = rounded.intCompact;
3727         this.scale      = rounded.scale;
3728         this.precision  = rounded.precision;
3729     }
3730 
3731     /**
3732      * Returns a {@code BigDecimal} rounded according to the
3733      * MathContext settings; used only if {@code mc.precision > 0}.
3734      * Does not change {@code this}; if rounding is needed a new
3735      * {@code BigDecimal} is created and returned.
3736      *
3737      * @param mc the context to use.
3738      * @return a {@code BigDecimal} rounded according to the MathContext
3739      *         settings.  May return this, if no rounding needed.
3740      * @throws ArithmeticException if the rounding mode is
3741      *         {@code RoundingMode.UNNECESSARY} and the
3742      *         result is inexact.
3743      */
3744     private static BigDecimal doRound(BigDecimal d, MathContext mc) {
3745         int mcp = mc.precision;
3746         int drop;
3747         // This might (rarely) iterate to cover the 999=>1000 case
3748         while ((drop = d.precision() - mcp) > 0) {
3749             int newScale = d.checkScale((long)d.scale - drop);
3750             int mode = mc.roundingMode.oldMode;
3751             if (drop < LONG_TEN_POWERS_TABLE.length)
3752                 d = divideAndRound(d.intCompact, d.intVal,
3753                                    LONG_TEN_POWERS_TABLE[drop], null,
3754                                    newScale, mode, newScale);
3755             else
3756                 d = divideAndRound(d.intCompact, d.intVal,
3757                                    INFLATED, bigTenToThe(drop),
3758                                    newScale, mode, newScale);
3759         }
3760         return d;
3761     }
3762 
3763     /**
3764      * Returns the compact value for given {@code BigInteger}, or
3765      * INFLATED if too big. Relies on internal representation of
3766      * {@code BigInteger}.
3767      */
3768     private static long compactValFor(BigInteger b) {
3769         int[] m = b.mag;
3770         int len = m.length;
3771         if (len == 0)
3772             return 0;
3773         int d = m[0];
3774         if (len > 2 || (len == 2 && d < 0))
3775             return INFLATED;
3776 
3777         long u = (len == 2)?
3778             (((long) m[1] & LONG_MASK) + (((long)d) << 32)) :
3779             (((long)d)   & LONG_MASK);
3780         return (b.signum < 0)? -u : u;
3781     }
3782 
3783     private static int longCompareMagnitude(long x, long y) {
3784         if (x < 0)
3785             x = -x;
3786         if (y < 0)


3835                 print("audit", this);
3836                 throw new AssertionError("precision mismatch");
3837             }
3838         } else {
3839             if (intVal != null) {
3840                 long val = intVal.longValue();
3841                 if (val != intCompact) {
3842                     print("audit", this);
3843                     throw new AssertionError("Inconsistent state, intCompact=" +
3844                                              intCompact + "\t intVal=" + val);
3845                 }
3846             }
3847             // Check precision
3848             if (precision > 0 && precision != longDigitLength(intCompact)) {
3849                 print("audit", this);
3850                 throw new AssertionError("precision mismatch");
3851             }
3852         }
3853         return this;
3854     }























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































3855 }


 207  * {@code NullPointerException} when passed a {@code null} object
 208  * reference for any input parameter.
 209  *
 210  * @see     BigInteger
 211  * @see     MathContext
 212  * @see     RoundingMode
 213  * @see     java.util.SortedMap
 214  * @see     java.util.SortedSet
 215  * @author  Josh Bloch
 216  * @author  Mike Cowlishaw
 217  * @author  Joseph D. Darcy
 218  */
 219 public class BigDecimal extends Number implements Comparable<BigDecimal> {
 220     /**
 221      * The unscaled value of this BigDecimal, as returned by {@link
 222      * #unscaledValue}.
 223      *
 224      * @serial
 225      * @see #unscaledValue
 226      */
 227     private final BigInteger intVal;
 228 
 229     /**
 230      * The scale of this BigDecimal, as returned by {@link #scale}.
 231      *
 232      * @serial
 233      * @see #scale
 234      */
 235     private final int scale;  // Note: this may have any value, so
 236                               // calculations must be done in longs
 237 
 238     /**
 239      * The number of decimal digits in this BigDecimal, or 0 if the
 240      * number of digits are not known (lookaside information).  If
 241      * nonzero, the value is guaranteed correct.  Use the precision()
 242      * method to obtain and set the value if it might be 0.  This
 243      * field is mutable until set nonzero.
 244      *
 245      * @since  1.5
 246      */
 247     private transient int precision;
 248 
 249     /**
 250      * Used to store the canonical string representation, if computed.
 251      */
 252     private transient String stringCache;
 253 
 254     /**
 255      * Sentinel value for {@link #intCompact} indicating the
 256      * significand information is only available from {@code intVal}.
 257      */
 258     static final long INFLATED = Long.MIN_VALUE;
 259 
 260     private static final BigInteger INFLATED_BIGINT = BigInteger.valueOf(INFLATED);
 261 
 262     /**
 263      * If the absolute value of the significand of this BigDecimal is
 264      * less than or equal to {@code Long.MAX_VALUE}, the value can be
 265      * compactly stored in this field and used in computations.
 266      */
 267     private final transient long intCompact;
 268 
 269     // All 18-digit base ten strings fit into a long; not all 19-digit
 270     // strings will
 271     private static final int MAX_COMPACT_DIGITS = 18;
 272 


 273     /* Appease the serialization gods */
 274     private static final long serialVersionUID = 6108874887143696463L;
 275 
 276     private static final ThreadLocal<StringBuilderHelper>
 277         threadLocalStringBuilderHelper = new ThreadLocal<StringBuilderHelper>() {
 278         @Override
 279         protected StringBuilderHelper initialValue() {
 280             return new StringBuilderHelper();
 281         }
 282     };
 283 
 284     // Cache of common small BigDecimal values.
 285     private static final BigDecimal zeroThroughTen[] = {
 286         new BigDecimal(BigInteger.ZERO,       0,  0, 1),
 287         new BigDecimal(BigInteger.ONE,        1,  0, 1),
 288         new BigDecimal(BigInteger.valueOf(2), 2,  0, 1),
 289         new BigDecimal(BigInteger.valueOf(3), 3,  0, 1),
 290         new BigDecimal(BigInteger.valueOf(4), 4,  0, 1),
 291         new BigDecimal(BigInteger.valueOf(5), 5,  0, 1),
 292         new BigDecimal(BigInteger.valueOf(6), 6,  0, 1),


 362     /**
 363      * Translates a character array representation of a
 364      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 365      * same sequence of characters as the {@link #BigDecimal(String)}
 366      * constructor, while allowing a sub-array to be specified.
 367      *
 368      * <p>Note that if the sequence of characters is already available
 369      * within a character array, using this constructor is faster than
 370      * converting the {@code char} array to string and using the
 371      * {@code BigDecimal(String)} constructor .
 372      *
 373      * @param  in {@code char} array that is the source of characters.
 374      * @param  offset first character in the array to inspect.
 375      * @param  len number of characters to consider.
 376      * @throws NumberFormatException if {@code in} is not a valid
 377      *         representation of a {@code BigDecimal} or the defined subarray
 378      *         is not wholly within {@code in}.
 379      * @since  1.5
 380      */
 381     public BigDecimal(char[] in, int offset, int len) {
 382         this(in,offset,len,MathContext.UNLIMITED);
 383     }
 384 
 385     /**
 386      * Translates a character array representation of a
 387      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 388      * same sequence of characters as the {@link #BigDecimal(String)}
 389      * constructor, while allowing a sub-array to be specified and
 390      * with rounding according to the context settings.
 391      *
 392      * <p>Note that if the sequence of characters is already available
 393      * within a character array, using this constructor is faster than
 394      * converting the {@code char} array to string and using the
 395      * {@code BigDecimal(String)} constructor .
 396      *
 397      * @param  in {@code char} array that is the source of characters.
 398      * @param  offset first character in the array to inspect.
 399      * @param  len number of characters to consider..
 400      * @param  mc the context to use.
 401      * @throws ArithmeticException if the result is inexact but the
 402      *         rounding mode is {@code UNNECESSARY}.
 403      * @throws NumberFormatException if {@code in} is not a valid
 404      *         representation of a {@code BigDecimal} or the defined subarray
 405      *         is not wholly within {@code in}.
 406      * @since  1.5
 407      */
 408     public BigDecimal(char[] in, int offset, int len, MathContext mc) {
 409         // protect against huge length.
 410         if (offset + len > in.length || offset < 0)
 411             throw new NumberFormatException();
 412         // This is the primary string to BigDecimal constructor; all
 413         // incoming strings end up here; it uses explicit (inline)
 414         // parsing for speed and generates at most one intermediate
 415         // (temporary) object (a char[] array) for non-compact case.
 416 
 417         // Use locals for all fields values until completion
 418         int prec = 0;                 // record precision value
 419         int scl = 0;                  // record scale value
 420         long rs = 0;                  // the compact value in long
 421         BigInteger rb = null;         // the inflated value in BigInteger

 422         // use array bounds checking to handle too-long, len == 0,
 423         // bad offset, etc.
 424         try {
 425             // handle the sign
 426             boolean isneg = false;          // assume positive
 427             if (in[offset] == '-') {
 428                 isneg = true;               // leading minus means negative
 429                 offset++;
 430                 len--;
 431             } else if (in[offset] == '+') { // leading + allowed
 432                 offset++;
 433                 len--;
 434             }
 435 
 436             // should now be at numeric part of the significand
 437             // int cfirst = offset; // record start of integer

 438             long exp = 0;                    // exponent
 439             char c;                          // current character
 440             boolean dot = false; // true when there is a '.'
 441             boolean isCompact = (len <= MAX_COMPACT_DIGITS);
 442             // integer significand array & idx is the index to it. The array
 443             // is ONLY used when we can't use a compact representation.

 444             int idx = 0;
 445             if (isCompact) {




 446                 // First compact case, we need not to preserve the character
 447                 // and we can just compute the value in place.
 448                 for (; len > 0; offset++, len--) {
 449                     c = in[offset];
 450                     if ((c == '0')) { // have zero
 451                         if (prec == 0)
 452                             prec = 1;
 453                         else if (rs != 0) {
 454                             rs *= 10;
 455                             ++prec;
 456                         } // else digit is a redundant leading zero
 457                         if (dot)
 458                             ++scl;
 459                     } else if ((c >= '1' && c <= '9')) { // have digit
 460                         int digit = c - '0';
 461                         if (prec != 1 || rs != 0)
 462                             ++prec; // prec unchanged if preceded by 0s
 463                         rs = rs * 10 + digit;
 464                         if (dot)
 465                             ++scl;
 466                     } else if (c == '.') {   // have dot
 467                         // have dot
 468                         if (dot) // two dots
 469                             throw new NumberFormatException();
 470                         dot = true;
 471                     } else if (Character.isDigit(c)) { // slow path
 472                         int digit = Character.digit(c, 10);
 473                         if (digit == 0) {
 474                             if (prec == 0)
 475                                 prec = 1;
 476                             else if (rs != 0) {
 477                                 rs *= 10;
 478                                 ++prec;
 479                             } // else digit is a redundant leading zero
 480                         } else {
 481                             if (prec != 1 || rs != 0)
 482                                 ++prec; // prec unchanged if preceded by 0s
 483                             rs = rs * 10 + digit;
 484                         }
 485                         if (dot)
 486                             ++scl;
 487                     } else if ((c == 'e') || (c == 'E')) {
 488                         exp = parseExp(in, offset, len);
 489                         // Next test is required for backwards compatibility
 490                         if ((int) exp != exp) // overflow
 491                             throw new NumberFormatException();
 492                         break; // [saves a test]
 493                     } else {
 494                         throw new NumberFormatException();
 495                     }
 496                 }
 497                 if (prec == 0) // no digits found
 498                     throw new NumberFormatException();
 499                 // Adjust scale if exp is not zero.
 500                 if (exp != 0) { // had significant exponent
 501                     scl = adjustScale(scl, exp);
 502                 }
 503                 rs = isneg ? -rs : rs;
 504                 int mcp = mc.precision;
 505                 int drop;
 506                 if (mcp > 0 && (drop = prec - mcp) > 0) {  // do rounding
 507                     while (drop > 0) {
 508                         scl = checkScaleNonZero((long) scl - drop);
 509                         rs = divideAndRound(rs, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
 510                         prec = longDigitLength(rs);
 511                         drop = prec - mcp;
 512                     }
 513                 }
 514             } else {
 515                 char coeff[] = new char[len];
 516                 for (; len > 0; offset++, len--) {
 517                     c = in[offset];
 518                     // have digit
 519                     if ((c >= '0' && c <= '9') || Character.isDigit(c)) {
 520                         // First compact case, we need not to preserve the character
 521                         // and we can just compute the value in place.
 522                         if (c == '0' || Character.digit(c, 10) == 0) {
 523                             if (prec == 0) {
 524                                 coeff[idx] = c;
 525                                 prec = 1;
 526                             } else if (idx != 0) {
 527                                 coeff[idx++] = c;
 528                                 ++prec;
 529                             } // else c must be a redundant leading zero
 530                         } else {
 531                             if (prec != 1 || idx != 0)
 532                                 ++prec; // prec unchanged if preceded by 0s
 533                             coeff[idx++] = c;
 534                         }

 535                         if (dot)
 536                             ++scl;
 537                         continue;
 538                     }
 539                     // have dot
 540                     if (c == '.') {
 541                         // have dot
 542                         if (dot) // two dots
 543                             throw new NumberFormatException();
 544                         dot = true;
 545                         continue;
 546                     }
 547                     // exponent expected
 548                     if ((c != 'e') && (c != 'E'))
 549                         throw new NumberFormatException();
 550                     exp = parseExp(in, offset, len);
 551                     // Next test is required for backwards compatibility
 552                     if ((int) exp != exp) // overflow
 553                         throw new NumberFormatException();
 554                     break; // [saves a test]
 555                 }
 556                 // here when no characters left
 557                 if (prec == 0) // no digits found
 558                     throw new NumberFormatException();
 559                 // Adjust scale if exp is not zero.
 560                 if (exp != 0) { // had significant exponent
 561                     scl = adjustScale(scl, exp);
 562                 }
 563                 // Remove leading zeros from precision (digits count)
 564                 rb = new BigInteger(coeff, isneg ? -1 : 1, prec);
 565                 rs = compactValFor(rb);
 566                 int mcp = mc.precision;
 567                 if (mcp > 0 && (prec > mcp)) {
 568                     if (rs == INFLATED) {
 569                         int drop = prec - mcp;
 570                         while (drop > 0) {
 571                             scl = checkScaleNonZero((long) scl - drop);
 572                             rb = divideAndRoundByTenPow(rb, drop, mc.roundingMode.oldMode);
 573                             rs = compactValFor(rb);
 574                             if (rs != INFLATED) {
 575                                 prec = longDigitLength(rs);
 576                                 break;
 577                             }
 578                             prec = bigDigitLength(rb);
 579                             drop = prec - mcp;
 580                         }
 581                     }
 582                     if (rs != INFLATED) {
 583                         int drop = prec - mcp;
 584                         while (drop > 0) {
 585                             scl = checkScaleNonZero((long) scl - drop);
 586                             rs = divideAndRound(rs, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
 587                             prec = longDigitLength(rs);
 588                             drop = prec - mcp;
 589                         }
 590                         rb = null;
 591                     }
 592                 }
 593             }
 594         } catch (ArrayIndexOutOfBoundsException e) {
 595             throw new NumberFormatException();
 596         } catch (NegativeArraySizeException e) {
 597             throw new NumberFormatException();
 598         }
 599         this.scale = scl;
 600         this.precision = prec;
 601         this.intCompact = rs;
 602         this.intVal = rb;
 603     }
 604 
 605     private int adjustScale(int scl, long exp) {
 606         long adjustedScale = scl - exp;
 607         if (adjustedScale > Integer.MAX_VALUE || adjustedScale < Integer.MIN_VALUE)
 608             throw new NumberFormatException("Scale out of range.");
 609         scl = (int) adjustedScale;
 610         return scl;
 611     }
 612 
 613     /*
 614      * parse exponent
 615      */
 616     private static long parseExp(char[] in, int offset, int len){
 617         long exp = 0;
 618         offset++;
 619         char c = in[offset];
 620         len--;
 621         boolean negexp = (c == '-');
 622         // optional sign
 623         if (negexp || c == '+') {
 624             offset++;
 625             c = in[offset];
 626             len--;
 627         }
 628         if (len <= 0) // no exponent digits
 629             throw new NumberFormatException();
 630         // skip leading zeros in the exponent
 631         while (len > 10 && (c=='0' || (Character.digit(c, 10) == 0))) {
 632             offset++;
 633             c = in[offset];
 634             len--;
 635         }
 636         if (len > 10) // too many nonzero exponent digits
 637             throw new NumberFormatException();
 638         // c now holds first digit of exponent
 639         for (;; len--) {
 640             int v;
 641             if (c >= '0' && c <= '9') {
 642                 v = c - '0';
 643             } else {
 644                 v = Character.digit(c, 10);
 645                 if (v < 0) // not a digit
 646                     throw new NumberFormatException();
 647             }
 648             exp = exp * 10 + v;
 649             if (len == 1)
 650                 break; // that was final character
 651             offset++;
 652             c = in[offset];
 653         }
 654         if (negexp) // apply sign
 655             exp = -exp;
 656         return exp;








































































 657     }
 658 
 659     /**
 660      * Translates a character array representation of a
 661      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 662      * same sequence of characters as the {@link #BigDecimal(String)}
 663      * constructor.
 664      *
 665      * <p>Note that if the sequence of characters is already available
 666      * as a character array, using this constructor is faster than
 667      * converting the {@code char} array to string and using the
 668      * {@code BigDecimal(String)} constructor .
 669      *
 670      * @param in {@code char} array that is the source of characters.
 671      * @throws NumberFormatException if {@code in} is not a valid
 672      *         representation of a {@code BigDecimal}.
 673      * @since  1.5
 674      */
 675     public BigDecimal(char[] in) {
 676         this(in, 0, in.length);


 812      */
 813     public BigDecimal(String val) {
 814         this(val.toCharArray(), 0, val.length());
 815     }
 816 
 817     /**
 818      * Translates the string representation of a {@code BigDecimal}
 819      * into a {@code BigDecimal}, accepting the same strings as the
 820      * {@link #BigDecimal(String)} constructor, with rounding
 821      * according to the context settings.
 822      *
 823      * @param  val string representation of a {@code BigDecimal}.
 824      * @param  mc the context to use.
 825      * @throws ArithmeticException if the result is inexact but the
 826      *         rounding mode is {@code UNNECESSARY}.
 827      * @throws NumberFormatException if {@code val} is not a valid
 828      *         representation of a BigDecimal.
 829      * @since  1.5
 830      */
 831     public BigDecimal(String val, MathContext mc) {
 832         this(val.toCharArray(), 0, val.length(), mc);


 833     }
 834 
 835     /**
 836      * Translates a {@code double} into a {@code BigDecimal} which
 837      * is the exact decimal representation of the {@code double}'s
 838      * binary floating-point value.  The scale of the returned
 839      * {@code BigDecimal} is the smallest value such that
 840      * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
 841      * <p>
 842      * <b>Notes:</b>
 843      * <ol>
 844      * <li>
 845      * The results of this constructor can be somewhat unpredictable.
 846      * One might assume that writing {@code new BigDecimal(0.1)} in
 847      * Java creates a {@code BigDecimal} which is exactly equal to
 848      * 0.1 (an unscaled value of 1, with a scale of 1), but it is
 849      * actually equal to
 850      * 0.1000000000000000055511151231257827021181583404541015625.
 851      * This is because 0.1 cannot be represented exactly as a
 852      * {@code double} (or, for that matter, as a binary fraction of


 860      * creates a {@code BigDecimal} which is <i>exactly</i> equal to
 861      * 0.1, as one would expect.  Therefore, it is generally
 862      * recommended that the {@linkplain #BigDecimal(String)
 863      * <tt>String</tt> constructor} be used in preference to this one.
 864      *
 865      * <li>
 866      * When a {@code double} must be used as a source for a
 867      * {@code BigDecimal}, note that this constructor provides an
 868      * exact conversion; it does not give the same result as
 869      * converting the {@code double} to a {@code String} using the
 870      * {@link Double#toString(double)} method and then using the
 871      * {@link #BigDecimal(String)} constructor.  To get that result,
 872      * use the {@code static} {@link #valueOf(double)} method.
 873      * </ol>
 874      *
 875      * @param val {@code double} value to be converted to
 876      *        {@code BigDecimal}.
 877      * @throws NumberFormatException if {@code val} is infinite or NaN.
 878      */
 879     public BigDecimal(double val) {
 880         this(val,MathContext.UNLIMITED);
 881     }
 882 
 883     /**
 884      * Translates a {@code double} into a {@code BigDecimal}, with
 885      * rounding according to the context settings.  The scale of the
 886      * {@code BigDecimal} is the smallest value such that
 887      * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
 888      *
 889      * <p>The results of this constructor can be somewhat unpredictable
 890      * and its use is generally not recommended; see the notes under
 891      * the {@link #BigDecimal(double)} constructor.
 892      *
 893      * @param  val {@code double} value to be converted to
 894      *         {@code BigDecimal}.
 895      * @param  mc the context to use.
 896      * @throws ArithmeticException if the result is inexact but the
 897      *         RoundingMode is UNNECESSARY.
 898      * @throws NumberFormatException if {@code val} is infinite or NaN.
 899      * @since  1.5
 900      */
 901     public BigDecimal(double val, MathContext mc) {
 902         if (Double.isInfinite(val) || Double.isNaN(val))
 903             throw new NumberFormatException("Infinite or NaN");

 904         // Translate the double into sign, exponent and significand, according
 905         // to the formulae in JLS, Section 20.10.22.
 906         long valBits = Double.doubleToLongBits(val);
 907         int sign = ((valBits >> 63) == 0 ? 1 : -1);
 908         int exponent = (int) ((valBits >> 52) & 0x7ffL);
 909         long significand = (exponent == 0
 910                 ? (valBits & ((1L << 52) - 1)) << 1
 911                 : (valBits & ((1L << 52) - 1)) | (1L << 52));
 912         exponent -= 1075;
 913         // At this point, val == sign * significand * 2**exponent.
 914 
 915         /*
 916          * Special case zero to supress nonterminating normalization and bogus
 917          * scale calculation.
 918          */
 919         if (significand == 0) {
 920             this.intVal = BigInteger.ZERO;
 921             this.scale = 0;
 922             this.intCompact = 0;
 923             this.precision = 1;
 924             return;
 925         }

 926         // Normalize
 927         while ((significand & 1) == 0) { // i.e., significand is even
 928             significand >>= 1;
 929             exponent++;
 930         }
 931         int scale = 0;
 932         // Calculate intVal and scale
 933         BigInteger intVal;
 934         long compactVal = sign * significand;
 935         if (exponent == 0) {
 936             intVal = (compactVal == INFLATED) ? INFLATED_BIGINT : null;
 937         } else {
 938             if (exponent < 0) {
 939                 intVal = BigInteger.valueOf(5).pow(-exponent).multiply(compactVal);
 940                 scale = -exponent;
 941             } else { //  (exponent > 0)
 942                 intVal = BigInteger.valueOf(2).pow(exponent).multiply(compactVal);


 943             }
 944             compactVal = compactValFor(intVal);

 945         }
 946         int prec = 0;
 947         int mcp = mc.precision;
 948         if (mcp > 0) { // do rounding
 949             int mode = mc.roundingMode.oldMode;
 950             int drop;
 951             if (compactVal == INFLATED) {
 952                 prec = bigDigitLength(intVal);
 953                 drop = prec - mcp;
 954                 while (drop > 0) {
 955                     scale = checkScaleNonZero((long) scale - drop);
 956                     intVal = divideAndRoundByTenPow(intVal, drop, mode);
 957                     compactVal = compactValFor(intVal);
 958                     if (compactVal != INFLATED) {
 959                         break;
 960                     }
 961                     prec = bigDigitLength(intVal);
 962                     drop = prec - mcp;
 963                 }
 964             }
 965             if (compactVal != INFLATED) {
 966                 prec = longDigitLength(compactVal);
 967                 drop = prec - mcp;
 968                 while (drop > 0) {
 969                     scale = checkScaleNonZero((long) scale - drop);
 970                     compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
 971                     prec = longDigitLength(compactVal);
 972                     drop = prec - mcp;
 973                 }
 974                 intVal = null;
 975             }
 976         }
 977         this.intVal = intVal;
 978         this.intCompact = compactVal;
 979         this.scale = scale;
 980         this.precision = prec;
 981     }
 982 
 983     /**
 984      * Translates a {@code BigInteger} into a {@code BigDecimal}.
 985      * The scale of the {@code BigDecimal} is zero.
 986      *
 987      * @param val {@code BigInteger} value to be converted to
 988      *            {@code BigDecimal}.
 989      */
 990     public BigDecimal(BigInteger val) {
 991         scale = 0;
 992         intVal = val;
 993         intCompact = compactValFor(val);

 994     }
 995 
 996     /**
 997      * Translates a {@code BigInteger} into a {@code BigDecimal}
 998      * rounding according to the context settings.  The scale of the
 999      * {@code BigDecimal} is zero.
1000      *
1001      * @param val {@code BigInteger} value to be converted to
1002      *            {@code BigDecimal}.
1003      * @param  mc the context to use.
1004      * @throws ArithmeticException if the result is inexact but the
1005      *         rounding mode is {@code UNNECESSARY}.
1006      * @since  1.5
1007      */
1008     public BigDecimal(BigInteger val, MathContext mc) {
1009         this(val,0,mc);


1010     }
1011 
1012     /**
1013      * Translates a {@code BigInteger} unscaled value and an
1014      * {@code int} scale into a {@code BigDecimal}.  The value of
1015      * the {@code BigDecimal} is
1016      * <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
1017      *
1018      * @param unscaledVal unscaled value of the {@code BigDecimal}.
1019      * @param scale scale of the {@code BigDecimal}.
1020      */
1021     public BigDecimal(BigInteger unscaledVal, int scale) {
1022         // Negative scales are now allowed
1023         this.intVal = unscaledVal;
1024         this.intCompact = compactValFor(unscaledVal);
1025         this.scale = scale;
1026     }
1027 
1028     /**
1029      * Translates a {@code BigInteger} unscaled value and an
1030      * {@code int} scale into a {@code BigDecimal}, with rounding
1031      * according to the context settings.  The value of the
1032      * {@code BigDecimal} is <tt>(unscaledVal &times;
1033      * 10<sup>-scale</sup>)</tt>, rounded according to the
1034      * {@code precision} and rounding mode settings.
1035      *
1036      * @param  unscaledVal unscaled value of the {@code BigDecimal}.
1037      * @param  scale scale of the {@code BigDecimal}.
1038      * @param  mc the context to use.
1039      * @throws ArithmeticException if the result is inexact but the
1040      *         rounding mode is {@code UNNECESSARY}.
1041      * @since  1.5
1042      */
1043     public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) {
1044         long compactVal = compactValFor(unscaledVal);
1045         int mcp = mc.precision;
1046         int prec = 0;
1047         if (mcp > 0) { // do rounding
1048             int mode = mc.roundingMode.oldMode;
1049             if (compactVal == INFLATED) {
1050                 prec = bigDigitLength(unscaledVal);
1051                 int drop = prec - mcp;
1052                 while (drop > 0) {
1053                     scale = checkScaleNonZero((long) scale - drop);
1054                     unscaledVal = divideAndRoundByTenPow(unscaledVal, drop, mode);
1055                     compactVal = compactValFor(unscaledVal);
1056                     if (compactVal != INFLATED) {
1057                         break;
1058                     }
1059                     prec = bigDigitLength(unscaledVal);
1060                     drop = prec - mcp;
1061                 }
1062             }
1063             if (compactVal != INFLATED) {
1064                 prec = longDigitLength(compactVal);
1065                 int drop = prec - mcp;     // drop can't be more than 18
1066                 while (drop > 0) {
1067                     scale = checkScaleNonZero((long) scale - drop);
1068                     compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mode);
1069                     prec = longDigitLength(compactVal);
1070                     drop = prec - mcp;
1071                 }
1072                 unscaledVal = null;
1073             }
1074         }
1075         this.intVal = unscaledVal;
1076         this.intCompact = compactVal;
1077         this.scale = scale;
1078         this.precision = prec;

1079     }
1080 
1081     /**
1082      * Translates an {@code int} into a {@code BigDecimal}.  The
1083      * scale of the {@code BigDecimal} is zero.
1084      *
1085      * @param val {@code int} value to be converted to
1086      *            {@code BigDecimal}.
1087      * @since  1.5
1088      */
1089     public BigDecimal(int val) {
1090         this.intCompact = val;
1091         this.scale = 0;
1092         this.intVal = null;
1093     }
1094 
1095     /**
1096      * Translates an {@code int} into a {@code BigDecimal}, with
1097      * rounding according to the context settings.  The scale of the
1098      * {@code BigDecimal}, before any rounding, is zero.
1099      *
1100      * @param  val {@code int} value to be converted to {@code BigDecimal}.
1101      * @param  mc the context to use.
1102      * @throws ArithmeticException if the result is inexact but the
1103      *         rounding mode is {@code UNNECESSARY}.
1104      * @since  1.5
1105      */
1106     public BigDecimal(int val, MathContext mc) {
1107         int mcp = mc.precision;
1108         long compactVal = val;
1109         int scale = 0;
1110         int prec = 0;
1111         if (mcp > 0) { // do rounding
1112             prec = longDigitLength(compactVal);
1113             int drop = prec - mcp; // drop can't be more than 18
1114             while (drop > 0) {
1115                 scale = checkScaleNonZero((long) scale - drop);
1116                 compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
1117                 prec = longDigitLength(compactVal);
1118                 drop = prec - mcp;
1119             }
1120         }
1121         this.intVal = null;
1122         this.intCompact = compactVal;
1123         this.scale = scale;
1124         this.precision = prec;
1125     }
1126 
1127     /**
1128      * Translates a {@code long} into a {@code BigDecimal}.  The
1129      * scale of the {@code BigDecimal} is zero.
1130      *
1131      * @param val {@code long} value to be converted to {@code BigDecimal}.
1132      * @since  1.5
1133      */
1134     public BigDecimal(long val) {
1135         this.intCompact = val;
1136         this.intVal = (val == INFLATED) ? INFLATED_BIGINT : null;
1137         this.scale = 0;
1138     }
1139 
1140     /**
1141      * Translates a {@code long} into a {@code BigDecimal}, with
1142      * rounding according to the context settings.  The scale of the
1143      * {@code BigDecimal}, before any rounding, is zero.
1144      *
1145      * @param  val {@code long} value to be converted to {@code BigDecimal}.
1146      * @param  mc the context to use.
1147      * @throws ArithmeticException if the result is inexact but the
1148      *         rounding mode is {@code UNNECESSARY}.
1149      * @since  1.5
1150      */
1151     public BigDecimal(long val, MathContext mc) {
1152         int mcp = mc.precision;
1153         int mode = mc.roundingMode.oldMode;
1154         int prec = 0;
1155         int scale = 0;
1156         BigInteger intVal = (val == INFLATED) ? INFLATED_BIGINT : null;
1157         if (mcp > 0) { // do rounding
1158             if (val == INFLATED) {
1159                 prec = 19;
1160                 int drop = prec - mcp;
1161                 while (drop > 0) {
1162                     scale = checkScaleNonZero((long) scale - drop);
1163                     intVal = divideAndRoundByTenPow(intVal, drop, mode);
1164                     val = compactValFor(intVal);
1165                     if (val != INFLATED) {
1166                         break;
1167                     }
1168                     prec = bigDigitLength(intVal);
1169                     drop = prec - mcp;
1170                 }
1171             }
1172             if (val != INFLATED) {
1173                 prec = longDigitLength(val);
1174                 int drop = prec - mcp;
1175                 while (drop > 0) {
1176                     scale = checkScaleNonZero((long) scale - drop);
1177                     val = divideAndRound(val, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
1178                     prec = longDigitLength(val);
1179                     drop = prec - mcp;
1180                 }
1181                 intVal = null;
1182             }
1183         }
1184         this.intVal = intVal;
1185         this.intCompact = val;
1186         this.scale = scale;
1187         this.precision = prec;
1188     }
1189 
1190     // Static Factory Methods
1191 
1192     /**
1193      * Translates a {@code long} unscaled value and an
1194      * {@code int} scale into a {@code BigDecimal}.  This
1195      * {@literal "static factory method"} is provided in preference to
1196      * a ({@code long}, {@code int}) constructor because it
1197      * allows for reuse of frequently used {@code BigDecimal} values..
1198      *
1199      * @param unscaledVal unscaled value of the {@code BigDecimal}.
1200      * @param scale scale of the {@code BigDecimal}.
1201      * @return a {@code BigDecimal} whose value is
1202      *         <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
1203      */
1204     public static BigDecimal valueOf(long unscaledVal, int scale) {
1205         if (scale == 0)
1206             return valueOf(unscaledVal);
1207         else if (unscaledVal == 0) {
1208             return zeroValueOf(scale);



1209         }
1210         return new BigDecimal(unscaledVal == INFLATED ?
1211                               INFLATED_BIGINT : null,
1212                               unscaledVal, scale, 0);
1213     }
1214 
1215     /**
1216      * Translates a {@code long} value into a {@code BigDecimal}
1217      * with a scale of zero.  This {@literal "static factory method"}
1218      * is provided in preference to a ({@code long}) constructor
1219      * because it allows for reuse of frequently used
1220      * {@code BigDecimal} values.
1221      *
1222      * @param val value of the {@code BigDecimal}.
1223      * @return a {@code BigDecimal} whose value is {@code val}.
1224      */
1225     public static BigDecimal valueOf(long val) {
1226         if (val >= 0 && val < zeroThroughTen.length)
1227             return zeroThroughTen[(int)val];
1228         else if (val != INFLATED)
1229             return new BigDecimal(null, val, 0, 0);
1230         return new BigDecimal(INFLATED_BIGINT, val, 0, 0);
1231     }
1232 
1233     static BigDecimal valueOf(long unscaledVal, int scale, int prec) {
1234         if (scale == 0 && unscaledVal >= 0 && unscaledVal < zeroThroughTen.length) {
1235             return zeroThroughTen[(int) unscaledVal];
1236         } else if (unscaledVal == 0) {
1237             return zeroValueOf(scale);
1238         }
1239         return new BigDecimal(unscaledVal == INFLATED ? INFLATED_BIGINT : null,
1240                 unscaledVal, scale, prec);
1241     }
1242 
1243     static BigDecimal valueOf(BigInteger intVal, int scale, int prec) {
1244         long val = compactValFor(intVal);
1245         if (val == 0) {
1246             return zeroValueOf(scale);
1247         } else if (scale == 0 && val >= 0 && val < zeroThroughTen.length) {
1248             return zeroThroughTen[(int) val];
1249         }
1250         return new BigDecimal(intVal, val, scale, prec);
1251     }
1252 
1253     static BigDecimal zeroValueOf(int scale) {
1254         if (scale >= 0 && scale < ZERO_SCALED_BY.length)
1255             return ZERO_SCALED_BY[scale];
1256         else
1257             return new BigDecimal(BigInteger.ZERO, 0, scale, 1);
1258     }
1259 
1260     /**
1261      * Translates a {@code double} into a {@code BigDecimal}, using
1262      * the {@code double}'s canonical string representation provided
1263      * by the {@link Double#toString(double)} method.
1264      *
1265      * <p><b>Note:</b> This is generally the preferred way to convert
1266      * a {@code double} (or {@code float}) into a
1267      * {@code BigDecimal}, as the value returned is equal to that
1268      * resulting from constructing a {@code BigDecimal} from the
1269      * result of using {@link Double#toString(double)}.
1270      *
1271      * @param  val {@code double} to convert to a {@code BigDecimal}.
1272      * @return a {@code BigDecimal} whose value is equal to or approximately
1273      *         equal to the value of {@code val}.
1274      * @throws NumberFormatException if {@code val} is infinite or NaN.
1275      * @since  1.5
1276      */
1277     public static BigDecimal valueOf(double val) {
1278         // Reminder: a zero double returns '0.0', so we cannot fastpath
1279         // to use the constant ZERO.  This might be important enough to
1280         // justify a factory approach, a cache, or a few private
1281         // constants, later.
1282         return new BigDecimal(Double.toString(val));
1283     }
1284 
1285     // Arithmetic Operations
1286     /**
1287      * Returns a {@code BigDecimal} whose value is {@code (this +
1288      * augend)}, and whose scale is {@code max(this.scale(),
1289      * augend.scale())}.
1290      *
1291      * @param  augend value to be added to this {@code BigDecimal}.
1292      * @return {@code this + augend}
1293      */
1294     public BigDecimal add(BigDecimal augend) {
1295         if (this.intCompact != INFLATED) {
1296             if ((augend.intCompact != INFLATED)) {
1297                 return add(this.intCompact, this.scale, augend.intCompact, augend.scale);
1298             } else {
1299                 return add(this.intCompact, this.scale, augend.intVal, augend.scale);














1300             }
1301         } else {
1302             if ((augend.intCompact != INFLATED)) {
1303                 return add(augend.intCompact, augend.scale, this.intVal, this.scale);
1304             } else {
1305                 return add(this.intVal, this.scale, augend.intVal, augend.scale);
1306             }






1307         }








1308     }
1309 
1310     /**
1311      * Returns a {@code BigDecimal} whose value is {@code (this + augend)},
1312      * with rounding according to the context settings.
1313      *
1314      * If either number is zero and the precision setting is nonzero then
1315      * the other number, rounded if necessary, is used as the result.
1316      *
1317      * @param  augend value to be added to this {@code BigDecimal}.
1318      * @param  mc the context to use.
1319      * @return {@code this + augend}, rounded as necessary.
1320      * @throws ArithmeticException if the result is inexact but the
1321      *         rounding mode is {@code UNNECESSARY}.
1322      * @since  1.5
1323      */
1324     public BigDecimal add(BigDecimal augend, MathContext mc) {
1325         if (mc.precision == 0)
1326             return add(augend);
1327         BigDecimal lhs = this;
1328 




1329         // If either number is zero then the other number, rounded and
1330         // scaled if necessary, is used as the result.
1331         {
1332             boolean lhsIsZero = lhs.signum() == 0;
1333             boolean augendIsZero = augend.signum() == 0;
1334 
1335             if (lhsIsZero || augendIsZero) {
1336                 int preferredScale = Math.max(lhs.scale(), augend.scale());
1337                 BigDecimal result;

1338                 // Could use a factory for zero instead of a new object
1339                 if (lhsIsZero && augendIsZero)
1340                     return zeroValueOf(preferredScale);

1341                 result = lhsIsZero ? doRound(augend, mc) : doRound(lhs, mc);
1342 
1343                 if (result.scale() == preferredScale)
1344                     return result;
1345                 else if (result.scale() > preferredScale) {
1346                     return stripZerosToMatchScale(result.intVal, result.intCompact, result.scale, preferredScale);




1347                 } else { // result.scale < preferredScale
1348                     int precisionDiff = mc.precision - result.precision();
1349                     int scaleDiff     = preferredScale - result.scale();
1350 
1351                     if (precisionDiff >= scaleDiff)
1352                         return result.setScale(preferredScale); // can achieve target scale
1353                     else
1354                         return result.setScale(result.scale() + precisionDiff);
1355                 }
1356             }
1357         }
1358 
1359         long padding = (long) lhs.scale - augend.scale;
1360         if (padding != 0) { // scales differ; alignment needed
1361             BigDecimal arg[] = preAlign(lhs, augend, padding, mc);
1362             matchScale(arg);
1363             lhs = arg[0];
1364             augend = arg[1];
1365         }
1366         return doRound(lhs.inflated().add(augend.inflated()), lhs.scale, mc);



1367     }
1368     
1369     /**
1370      * Returns an array of length two, the sum of whose entries is
1371      * equal to the rounded sum of the {@code BigDecimal} arguments.
1372      *
1373      * <p>If the digit positions of the arguments have a sufficient
1374      * gap between them, the value smaller in magnitude can be
1375      * condensed into a {@literal "sticky bit"} and the end result will
1376      * round the same way <em>if</em> the precision of the final
1377      * result does not include the high order digit of the small
1378      * magnitude operand.
1379      *
1380      * <p>Note that while strictly speaking this is an optimization,
1381      * it makes a much wider range of additions practical.
1382      *
1383      * <p>This corresponds to a pre-shift operation in a fixed
1384      * precision floating-point adder; this method is complicated by
1385      * variable precision of the result as determined by the
1386      * MathContext.  A more nuanced operation could implement a
1387      * {@literal "right shift"} on the smaller magnitude operand so
1388      * that the number of digits of the smaller operand could be
1389      * reduced even though the significands partially overlapped.
1390      */
1391     private BigDecimal[] preAlign(BigDecimal lhs, BigDecimal augend, long padding, MathContext mc) {

1392         assert padding != 0;
1393         BigDecimal big;
1394         BigDecimal small;
1395 
1396         if (padding < 0) { // lhs is big; augend is small
1397             big = lhs;
1398             small = augend;
1399         } else { // lhs is small; augend is big
1400             big = augend;
1401             small = lhs;
1402         }
1403 
1404         /*
1405          * This is the estimated scale of an ulp of the result; it assumes that
1406          * the result doesn't have a carry-out on a true add (e.g. 999 + 1 =>
1407          * 1000) or any subtractive cancellation on borrowing (e.g. 100 - 1.2 =>
1408          * 98.8)
1409          */
1410         long estResultUlpScale = (long) big.scale - big.precision() + mc.precision;
1411 
1412         /*
1413          * The low-order digit position of big is big.scale().  This
1414          * is true regardless of whether big has a positive or
1415          * negative scale.  The high-order digit position of small is
1416          * small.scale - (small.precision() - 1).  To do the full
1417          * condensation, the digit positions of big and small must be
1418          * disjoint *and* the digit positions of small should not be
1419          * directly visible in the result.
1420          */
1421         long smallHighDigitPos = (long) small.scale - small.precision() + 1;
1422         if (smallHighDigitPos > big.scale + 2 && // big and small disjoint
1423             smallHighDigitPos > estResultUlpScale + 2) { // small digits not visible
1424             small = BigDecimal.valueOf(small.signum(), this.checkScale(Math.max(big.scale, estResultUlpScale) + 3));

1425         }
1426 
1427         // Since addition is symmetric, preserving input order in
1428         // returned operands doesn't matter
1429         BigDecimal[] result = {big, small};
1430         return result;
1431     }
1432 
1433     /**
1434      * Returns a {@code BigDecimal} whose value is {@code (this -
1435      * subtrahend)}, and whose scale is {@code max(this.scale(),
1436      * subtrahend.scale())}.
1437      *
1438      * @param  subtrahend value to be subtracted from this {@code BigDecimal}.
1439      * @return {@code this - subtrahend}
1440      */
1441     public BigDecimal subtract(BigDecimal subtrahend) {
1442         if (this.intCompact != INFLATED) {
1443             if ((subtrahend.intCompact != INFLATED)) {
1444                 return add(this.intCompact, this.scale, -subtrahend.intCompact, subtrahend.scale);
1445             } else {
1446                 return add(this.intCompact, this.scale, subtrahend.intVal.negate(), subtrahend.scale);
1447             }
1448         } else {
1449             if ((subtrahend.intCompact != INFLATED)) {
1450                 // Pair of subtrahend values given before pair of
1451                 // values from this BigDecimal to avoid need for
1452                 // method overloading on the specialized add method
1453                 return add(-subtrahend.intCompact, subtrahend.scale, this.intVal, this.scale);
1454             } else {
1455                 return add(this.intVal, this.scale, subtrahend.intVal.negate(), subtrahend.scale);
1456             }
1457         }
1458     }
1459 
1460     /**
1461      * Returns a {@code BigDecimal} whose value is {@code (this - subtrahend)},
1462      * with rounding according to the context settings.
1463      *
1464      * If {@code subtrahend} is zero then this, rounded if necessary, is used as the
1465      * result.  If this is zero then the result is {@code subtrahend.negate(mc)}.
1466      *
1467      * @param  subtrahend value to be subtracted from this {@code BigDecimal}.
1468      * @param  mc the context to use.
1469      * @return {@code this - subtrahend}, rounded as necessary.
1470      * @throws ArithmeticException if the result is inexact but the
1471      *         rounding mode is {@code UNNECESSARY}.
1472      * @since  1.5
1473      */
1474     public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) {

1475         if (mc.precision == 0)
1476             return subtract(subtrahend);
1477         // share the special rounding code in add()
1478         return add(subtrahend.negate(), mc);
1479     }
1480 
1481     /**
1482      * Returns a {@code BigDecimal} whose value is <tt>(this &times;
1483      * multiplicand)</tt>, and whose scale is {@code (this.scale() +
1484      * multiplicand.scale())}.
1485      *
1486      * @param  multiplicand value to be multiplied by this {@code BigDecimal}.
1487      * @return {@code this * multiplicand}
1488      */
1489     public BigDecimal multiply(BigDecimal multiplicand) {
1490         int productScale = checkScale((long) scale + multiplicand.scale);
1491         if (this.intCompact != INFLATED) {
1492             if ((multiplicand.intCompact != INFLATED)) {
1493                 return multiply(this.intCompact, multiplicand.intCompact, productScale);
1494             } else {
1495                 return multiply(this.intCompact, multiplicand.intVal, productScale);
1496             }
1497         } else {
1498             if ((multiplicand.intCompact != INFLATED)) {
1499                 return multiply(multiplicand.intCompact, this.intVal, productScale);
1500             } else {
1501                 return multiply(this.intVal, multiplicand.intVal, productScale);
1502             }
1503         }

















1504     }
1505 
1506     /**
1507      * Returns a {@code BigDecimal} whose value is <tt>(this &times;
1508      * multiplicand)</tt>, with rounding according to the context settings.
1509      *
1510      * @param  multiplicand value to be multiplied by this {@code BigDecimal}.
1511      * @param  mc the context to use.
1512      * @return {@code this * multiplicand}, rounded as necessary.
1513      * @throws ArithmeticException if the result is inexact but the
1514      *         rounding mode is {@code UNNECESSARY}.
1515      * @since  1.5
1516      */
1517     public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) {
1518         if (mc.precision == 0)
1519             return multiply(multiplicand);
1520         int productScale = checkScale((long) scale + multiplicand.scale);
1521         if (this.intCompact != INFLATED) {
1522             if ((multiplicand.intCompact != INFLATED)) {
1523                 return multiplyAndRound(this.intCompact, multiplicand.intCompact, productScale, mc);
1524             } else {
1525                 return multiplyAndRound(this.intCompact, multiplicand.intVal, productScale, mc);
1526             }
1527         } else {
1528             if ((multiplicand.intCompact != INFLATED)) {
1529                 return multiplyAndRound(multiplicand.intCompact, this.intVal, productScale, mc);
1530             } else {
1531                 return multiplyAndRound(this.intVal, multiplicand.intVal, productScale, mc);
1532             }
1533         }
1534     }
1535 
1536     /**
1537      * Returns a {@code BigDecimal} whose value is {@code (this /
1538      * divisor)}, and whose scale is as specified.  If rounding must
1539      * be performed to generate a result with the specified scale, the
1540      * specified rounding mode is applied.
1541      *
1542      * <p>The new {@link #divide(BigDecimal, int, RoundingMode)} method
1543      * should be used in preference to this legacy method.
1544      *
1545      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1546      * @param  scale scale of the {@code BigDecimal} quotient to be returned.
1547      * @param  roundingMode rounding mode to apply.
1548      * @return {@code this / divisor}
1549      * @throws ArithmeticException if {@code divisor} is zero,
1550      *         {@code roundingMode==ROUND_UNNECESSARY} and
1551      *         the specified scale is insufficient to represent the result
1552      *         of the division exactly.
1553      * @throws IllegalArgumentException if {@code roundingMode} does not
1554      *         represent a valid rounding mode.
1555      * @see    #ROUND_UP
1556      * @see    #ROUND_DOWN
1557      * @see    #ROUND_CEILING
1558      * @see    #ROUND_FLOOR
1559      * @see    #ROUND_HALF_UP
1560      * @see    #ROUND_HALF_DOWN
1561      * @see    #ROUND_HALF_EVEN
1562      * @see    #ROUND_UNNECESSARY
1563      */
1564     public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) {





1565         if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
1566             throw new IllegalArgumentException("Invalid rounding mode");
1567         if (this.intCompact != INFLATED) {
1568             if ((divisor.intCompact != INFLATED)) {
1569                 return divide(this.intCompact, this.scale, divisor.intCompact, divisor.scale, scale, roundingMode);


















































1570             } else {
1571                 return divide(this.intCompact, this.scale, divisor.intVal, divisor.scale, scale, roundingMode);




1572             }














1573         } else {
1574             if ((divisor.intCompact != INFLATED)) {
1575                 return divide(this.intVal, this.scale, divisor.intCompact, divisor.scale, scale, roundingMode);




1576             } else {
1577                 return divide(this.intVal, this.scale, divisor.intVal, divisor.scale, scale, roundingMode);











1578             }
1579         }











1580     }
1581 
1582     /**
1583      * Returns a {@code BigDecimal} whose value is {@code (this /
1584      * divisor)}, and whose scale is as specified.  If rounding must
1585      * be performed to generate a result with the specified scale, the
1586      * specified rounding mode is applied.
1587      *
1588      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1589      * @param  scale scale of the {@code BigDecimal} quotient to be returned.
1590      * @param  roundingMode rounding mode to apply.
1591      * @return {@code this / divisor}
1592      * @throws ArithmeticException if {@code divisor} is zero,
1593      *         {@code roundingMode==RoundingMode.UNNECESSARY} and
1594      *         the specified scale is insufficient to represent the result
1595      *         of the division exactly.
1596      * @since 1.5
1597      */
1598     public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
1599         return divide(divisor, scale, roundingMode.oldMode);


1657      * expansion) an {@code ArithmeticException} is thrown.
1658      *
1659      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1660      * @throws ArithmeticException if the exact quotient does not have a
1661      *         terminating decimal expansion
1662      * @return {@code this / divisor}
1663      * @since 1.5
1664      * @author Joseph D. Darcy
1665      */
1666     public BigDecimal divide(BigDecimal divisor) {
1667         /*
1668          * Handle zero cases first.
1669          */
1670         if (divisor.signum() == 0) {   // x/0
1671             if (this.signum() == 0)    // 0/0
1672                 throw new ArithmeticException("Division undefined");  // NaN
1673             throw new ArithmeticException("Division by zero");
1674         }
1675 
1676         // Calculate preferred scale
1677         int preferredScale = saturateLong((long) this.scale - divisor.scale);
1678 
1679         if (this.signum() == 0) // 0/y
1680             return zeroValueOf(preferredScale);



1681         else {


1682             /*
1683              * If the quotient this/divisor has a terminating decimal
1684              * expansion, the expansion can have no more than
1685              * (a.precision() + ceil(10*b.precision)/3) digits.
1686              * Therefore, create a MathContext object with this
1687              * precision and do a divide with the UNNECESSARY rounding
1688              * mode.
1689              */
1690             MathContext mc = new MathContext( (int)Math.min(this.precision() +
1691                                                             (long)Math.ceil(10.0*divisor.precision()/3.0),
1692                                                             Integer.MAX_VALUE),
1693                                               RoundingMode.UNNECESSARY);
1694             BigDecimal quotient;
1695             try {
1696                 quotient = this.divide(divisor, mc);
1697             } catch (ArithmeticException e) {
1698                 throw new ArithmeticException("Non-terminating decimal expansion; " +
1699                                               "no exact representable decimal result.");
1700             }
1701 
1702             int quotientScale = quotient.scale();
1703 
1704             // divide(BigDecimal, mc) tries to adjust the quotient to
1705             // the desired one by removing trailing zeros; since the
1706             // exact divide method does not have an explicit digit
1707             // limit, we can add zeros too.

1708             if (preferredScale > quotientScale)
1709                 return quotient.setScale(preferredScale, ROUND_UNNECESSARY);
1710 
1711             return quotient;
1712         }
1713     }
1714 
1715     /**
1716      * Returns a {@code BigDecimal} whose value is {@code (this /
1717      * divisor)}, with rounding according to the context settings.
1718      *
1719      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1720      * @param  mc the context to use.
1721      * @return {@code this / divisor}, rounded as necessary.
1722      * @throws ArithmeticException if the result is inexact but the
1723      *         rounding mode is {@code UNNECESSARY} or
1724      *         {@code mc.precision == 0} and the quotient has a
1725      *         non-terminating decimal expansion.
1726      * @since  1.5
1727      */


1733         BigDecimal dividend = this;
1734         long preferredScale = (long)dividend.scale - divisor.scale;
1735         // Now calculate the answer.  We use the existing
1736         // divide-and-round method, but as this rounds to scale we have
1737         // to normalize the values here to achieve the desired result.
1738         // For x/y we first handle y=0 and x=0, and then normalize x and
1739         // y to give x' and y' with the following constraints:
1740         //   (a) 0.1 <= x' < 1
1741         //   (b)  x' <= y' < 10*x'
1742         // Dividing x'/y' with the required scale set to mc.precision then
1743         // will give a result in the range 0.1 to 1 rounded to exactly
1744         // the right number of digits (except in the case of a result of
1745         // 1.000... which can arise when x=y, or when rounding overflows
1746         // The 1.000... case will reduce properly to 1.
1747         if (divisor.signum() == 0) {      // x/0
1748             if (dividend.signum() == 0)    // 0/0
1749                 throw new ArithmeticException("Division undefined");  // NaN
1750             throw new ArithmeticException("Division by zero");
1751         }
1752         if (dividend.signum() == 0) // 0/y
1753             return zeroValueOf(saturateLong(preferredScale));



1754         int xscale = dividend.precision();
1755         int yscale = divisor.precision();
1756         if(dividend.intCompact!=INFLATED) {
1757             if(divisor.intCompact!=INFLATED) {
1758                 return divide(dividend.intCompact, xscale, divisor.intCompact, yscale, preferredScale, mc);
1759             } else {
1760                 return divide(dividend.intCompact, xscale, divisor.intVal, yscale, preferredScale, mc);
1761             }
1762         } else {
1763             if(divisor.intCompact!=INFLATED) {
1764                 return divide(dividend.intVal, xscale, divisor.intCompact, yscale, preferredScale, mc);
1765             } else {
1766                 return divide(dividend.intVal, xscale, divisor.intVal, yscale, preferredScale, mc);
1767             }
1768         }












1769     }
1770 
1771     /**
1772      * Returns a {@code BigDecimal} whose value is the integer part
1773      * of the quotient {@code (this / divisor)} rounded down.  The
1774      * preferred scale of the result is {@code (this.scale() -
1775      * divisor.scale())}.
1776      *
1777      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1778      * @return The integer part of {@code this / divisor}.
1779      * @throws ArithmeticException if {@code divisor==0}
1780      * @since  1.5
1781      */
1782     public BigDecimal divideToIntegralValue(BigDecimal divisor) {
1783         // Calculate preferred scale
1784         int preferredScale = saturateLong((long) this.scale - divisor.scale);
1785         if (this.compareMagnitude(divisor) < 0) {
1786             // much faster when this << divisor
1787             return zeroValueOf(preferredScale);
1788         }
1789 
1790         if (this.signum() == 0 && divisor.signum() != 0)
1791             return this.setScale(preferredScale, ROUND_UNNECESSARY);
1792 
1793         // Perform a divide with enough digits to round to a correct
1794         // integer value; then remove any fractional digits
1795 
1796         int maxDigits = (int)Math.min(this.precision() +
1797                                       (long)Math.ceil(10.0*divisor.precision()/3.0) +
1798                                       Math.abs((long)this.scale() - divisor.scale()) + 2,
1799                                       Integer.MAX_VALUE);
1800         BigDecimal quotient = this.divide(divisor, new MathContext(maxDigits,
1801                                                                    RoundingMode.DOWN));
1802         if (quotient.scale > 0) {
1803             quotient = quotient.setScale(0, RoundingMode.DOWN);
1804             quotient = stripZerosToMatchScale(quotient.intVal, quotient.intCompact, quotient.scale, preferredScale);
1805         }
1806 
1807         if (quotient.scale < preferredScale) {
1808             // pad with zeros if necessary
1809             quotient = quotient.setScale(preferredScale, ROUND_UNNECESSARY);
1810         }
1811 
1812         return quotient;
1813     }
1814 
1815     /**
1816      * Returns a {@code BigDecimal} whose value is the integer part
1817      * of {@code (this / divisor)}.  Since the integer part of the
1818      * exact quotient does not depend on the rounding mode, the
1819      * rounding mode does not affect the values returned by this
1820      * method.  The preferred scale of the result is
1821      * {@code (this.scale() - divisor.scale())}.  An
1822      * {@code ArithmeticException} is thrown if the integer part of
1823      * the exact quotient needs more than {@code mc.precision}
1824      * digits.
1825      *
1826      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1827      * @param  mc the context to use.
1828      * @return The integer part of {@code this / divisor}.
1829      * @throws ArithmeticException if {@code divisor==0}
1830      * @throws ArithmeticException if {@code mc.precision} {@literal >} 0 and the result
1831      *         requires a precision of more than {@code mc.precision} digits.
1832      * @since  1.5
1833      * @author Joseph D. Darcy
1834      */
1835     public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) {
1836         if (mc.precision == 0 || // exact result
1837             (this.compareMagnitude(divisor) < 0)) // zero result
1838             return divideToIntegralValue(divisor);
1839 
1840         // Calculate preferred scale
1841         int preferredScale = saturateLong((long)this.scale - divisor.scale);
1842 
1843         /*
1844          * Perform a normal divide to mc.precision digits.  If the
1845          * remainder has absolute value less than the divisor, the
1846          * integer portion of the quotient fits into mc.precision
1847          * digits.  Next, remove any fractional digits from the
1848          * quotient and adjust the scale to the preferred value.
1849          */
1850         BigDecimal result = this.divide(divisor, new MathContext(mc.precision, RoundingMode.DOWN));

1851 
1852         if (result.scale() < 0) {
1853             /*
1854              * Result is an integer. See if quotient represents the
1855              * full integer portion of the exact quotient; if it does,
1856              * the computed remainder will be less than the divisor.
1857              */
1858             BigDecimal product = result.multiply(divisor);
1859             // If the quotient is the full integer value,
1860             // |dividend-product| < |divisor|.
1861             if (this.subtract(product).compareMagnitude(divisor) >= 0) {
1862                 throw new ArithmeticException("Division impossible");
1863             }
1864         } else if (result.scale() > 0) {
1865             /*
1866              * Integer portion of quotient will fit into precision
1867              * digits; recompute quotient to scale 0 to avoid double
1868              * rounding and then try to adjust, if necessary.
1869              */
1870             result = result.setScale(0, RoundingMode.DOWN);
1871         }
1872         // else result.scale() == 0;
1873 
1874         int precisionDiff;
1875         if ((preferredScale > result.scale()) &&
1876             (precisionDiff = mc.precision - result.precision()) > 0) {
1877             return result.setScale(result.scale() +
1878                                    Math.min(precisionDiff, preferredScale - result.scale) );
1879         } else {
1880             return stripZerosToMatchScale(result.intVal,result.intCompact,result.scale,preferredScale);

1881         }
1882     }
1883 
1884     /**
1885      * Returns a {@code BigDecimal} whose value is {@code (this % divisor)}.
1886      *
1887      * <p>The remainder is given by
1888      * {@code this.subtract(this.divideToIntegralValue(divisor).multiply(divisor))}.
1889      * Note that this is not the modulo operation (the result can be
1890      * negative).
1891      *
1892      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1893      * @return {@code this % divisor}.
1894      * @throws ArithmeticException if {@code divisor==0}
1895      * @since  1.5
1896      */
1897     public BigDecimal remainder(BigDecimal divisor) {
1898         BigDecimal divrem[] = this.divideAndRemainder(divisor);
1899         return divrem[1];
1900     }


2002      * unlimited precision.
2003      *
2004      * <p>The parameter {@code n} must be in the range 0 through
2005      * 999999999, inclusive.  {@code ZERO.pow(0)} returns {@link
2006      * #ONE}.
2007      *
2008      * Note that future releases may expand the allowable exponent
2009      * range of this method.
2010      *
2011      * @param  n power to raise this {@code BigDecimal} to.
2012      * @return <tt>this<sup>n</sup></tt>
2013      * @throws ArithmeticException if {@code n} is out of range.
2014      * @since  1.5
2015      */
2016     public BigDecimal pow(int n) {
2017         if (n < 0 || n > 999999999)
2018             throw new ArithmeticException("Invalid operation");
2019         // No need to calculate pow(n) if result will over/underflow.
2020         // Don't attempt to support "supernormal" numbers.
2021         int newScale = checkScale((long)scale * n);
2022         return new BigDecimal(this.inflated().pow(n), newScale);

2023     }
2024 
2025 
2026     /**
2027      * Returns a {@code BigDecimal} whose value is
2028      * <tt>(this<sup>n</sup>)</tt>.  The current implementation uses
2029      * the core algorithm defined in ANSI standard X3.274-1996 with
2030      * rounding according to the context settings.  In general, the
2031      * returned numerical value is within two ulps of the exact
2032      * numerical value for the chosen precision.  Note that future
2033      * releases may use a different algorithm with a decreased
2034      * allowable error bound and increased allowable exponent range.
2035      *
2036      * <p>The X3.274-1996 algorithm is:
2037      *
2038      * <ul>
2039      * <li> An {@code ArithmeticException} exception is thrown if
2040      *  <ul>
2041      *    <li>{@code abs(n) > 999999999}
2042      *    <li>{@code mc.precision == 0} and {@code n < 0}


2063      *   is then rounded to the destination precision.
2064      *   </ul>
2065      * </ul>
2066      *
2067      * @param  n power to raise this {@code BigDecimal} to.
2068      * @param  mc the context to use.
2069      * @return <tt>this<sup>n</sup></tt> using the ANSI standard X3.274-1996
2070      *         algorithm
2071      * @throws ArithmeticException if the result is inexact but the
2072      *         rounding mode is {@code UNNECESSARY}, or {@code n} is out
2073      *         of range.
2074      * @since  1.5
2075      */
2076     public BigDecimal pow(int n, MathContext mc) {
2077         if (mc.precision == 0)
2078             return pow(n);
2079         if (n < -999999999 || n > 999999999)
2080             throw new ArithmeticException("Invalid operation");
2081         if (n == 0)
2082             return ONE;                      // x**0 == 1 in X3.274

2083         BigDecimal lhs = this;
2084         MathContext workmc = mc;           // working settings
2085         int mag = Math.abs(n);               // magnitude of n
2086         if (mc.precision > 0) {

2087             int elength = longDigitLength(mag); // length of n in digits
2088             if (elength > mc.precision)        // X3.274 rule
2089                 throw new ArithmeticException("Invalid operation");
2090             workmc = new MathContext(mc.precision + elength + 1,
2091                                       mc.roundingMode);
2092         }
2093         // ready to carry out power calculation...
2094         BigDecimal acc = ONE;           // accumulator
2095         boolean seenbit = false;        // set once we've seen a 1-bit
2096         for (int i=1;;i++) {            // for each bit [top bit ignored]
2097             mag += mag;                 // shift left 1 bit
2098             if (mag < 0) {              // top bit is set
2099                 seenbit = true;         // OK, we're off
2100                 acc = acc.multiply(lhs, workmc); // acc=acc*x
2101             }
2102             if (i == 31)
2103                 break;                  // that was the last bit
2104             if (seenbit)
2105                 acc=acc.multiply(acc, workmc);   // acc=acc*acc [square]
2106                 // else (!seenbit) no point in squaring ONE
2107         }
2108         // if negative n, calculate the reciprocal using working precision
2109         if (n < 0) // [hence mc.precision>0]
2110             acc=ONE.divide(acc, workmc);
2111         // round to final precision and strip zeros
2112         return doRound(acc, mc);
2113     }
2114 
2115     /**
2116      * Returns a {@code BigDecimal} whose value is the absolute value
2117      * of this {@code BigDecimal}, and whose scale is
2118      * {@code this.scale()}.
2119      *
2120      * @return {@code abs(this)}
2121      */
2122     public BigDecimal abs() {
2123         return (signum() < 0 ? negate() : this);
2124     }
2125 
2126     /**
2127      * Returns a {@code BigDecimal} whose value is the absolute value
2128      * of this {@code BigDecimal}, with rounding according to the
2129      * context settings.
2130      *
2131      * @param mc the context to use.
2132      * @return {@code abs(this)}, rounded as necessary.
2133      * @throws ArithmeticException if the result is inexact but the
2134      *         rounding mode is {@code UNNECESSARY}.
2135      * @since 1.5
2136      */
2137     public BigDecimal abs(MathContext mc) {
2138         return (signum() < 0 ? negate(mc) : plus(mc));
2139     }
2140 
2141     /**
2142      * Returns a {@code BigDecimal} whose value is {@code (-this)},
2143      * and whose scale is {@code this.scale()}.
2144      *
2145      * @return {@code -this}.
2146      */
2147     public BigDecimal negate() {
2148         if (intCompact == INFLATED) {
2149             return new BigDecimal(intVal.negate(), INFLATED, scale, precision);
2150         } else {
2151             return valueOf(-intCompact, scale, precision);


2152         }

2153     }
2154 
2155     /**
2156      * Returns a {@code BigDecimal} whose value is {@code (-this)},
2157      * with rounding according to the context settings.
2158      *
2159      * @param mc the context to use.
2160      * @return {@code -this}, rounded as necessary.
2161      * @throws ArithmeticException if the result is inexact but the
2162      *         rounding mode is {@code UNNECESSARY}.
2163      * @since  1.5
2164      */
2165     public BigDecimal negate(MathContext mc) {
2166         return negate().plus(mc);
2167     }
2168 
2169     /**
2170      * Returns a {@code BigDecimal} whose value is {@code (+this)}, and whose
2171      * scale is {@code this.scale()}.
2172      *


2228     public int scale() {
2229         return scale;
2230     }
2231 
2232     /**
2233      * Returns the <i>precision</i> of this {@code BigDecimal}.  (The
2234      * precision is the number of digits in the unscaled value.)
2235      *
2236      * <p>The precision of a zero value is 1.
2237      *
2238      * @return the precision of this {@code BigDecimal}.
2239      * @since  1.5
2240      */
2241     public int precision() {
2242         int result = precision;
2243         if (result == 0) {
2244             long s = intCompact;
2245             if (s != INFLATED)
2246                 result = longDigitLength(s);
2247             else
2248                 result = bigDigitLength(intVal);
2249             precision = result;
2250         }
2251         return result;
2252     }
2253 
2254 
2255     /**
2256      * Returns a {@code BigInteger} whose value is the <i>unscaled
2257      * value</i> of this {@code BigDecimal}.  (Computes <tt>(this *
2258      * 10<sup>this.scale()</sup>)</tt>.)
2259      *
2260      * @return the unscaled value of this {@code BigDecimal}.
2261      * @since  1.2
2262      */
2263     public BigInteger unscaledValue() {
2264         return this.inflated();
2265     }
2266 
2267     // Rounding Modes
2268 
2269     /**
2270      * Rounding mode to round away from zero.  Always increments the
2271      * digit prior to a nonzero discarded fraction.  Note that this rounding
2272      * mode never decreases the magnitude of the calculated value.
2273      */
2274     public final static int ROUND_UP =           0;
2275 
2276     /**
2277      * Rounding mode to round towards zero.  Never increments the digit
2278      * prior to a discarded fraction (i.e., truncates).  Note that this
2279      * rounding mode never increases the magnitude of the calculated value.
2280      */
2281     public final static int ROUND_DOWN =         1;
2282 
2283     /**
2284      * Rounding mode to round towards positive infinity.  If the


2425      *         rounding.
2426      * @throws IllegalArgumentException if {@code roundingMode} does not
2427      *         represent a valid rounding mode.
2428      * @see    #ROUND_UP
2429      * @see    #ROUND_DOWN
2430      * @see    #ROUND_CEILING
2431      * @see    #ROUND_FLOOR
2432      * @see    #ROUND_HALF_UP
2433      * @see    #ROUND_HALF_DOWN
2434      * @see    #ROUND_HALF_EVEN
2435      * @see    #ROUND_UNNECESSARY
2436      */
2437     public BigDecimal setScale(int newScale, int roundingMode) {
2438         if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
2439             throw new IllegalArgumentException("Invalid rounding mode");
2440 
2441         int oldScale = this.scale;
2442         if (newScale == oldScale)        // easy case
2443             return this;
2444         if (this.signum() == 0)            // zero can have any scale
2445             return zeroValueOf(newScale);
2446         if(this.intCompact!=INFLATED) {
2447             long rs = this.intCompact;
2448             if (newScale > oldScale) {
2449                 int raise = checkScale((long) newScale - oldScale);
2450                 if ((rs = longMultiplyPowerTen(rs, raise)) != INFLATED) {
2451                     return valueOf(rs,newScale);
2452                 }
2453                 BigInteger rb = bigMultiplyPowerTen(raise);
2454                 return new BigDecimal(rb, INFLATED, newScale, (precision > 0) ? precision + raise : 0);
2455             } else {
2456                 // newScale < oldScale -- drop some digits
2457                 // Can't predict the precision due to the effect of rounding.
2458                 int drop = checkScale((long) oldScale - newScale);
2459                 if (drop < LONG_TEN_POWERS_TABLE.length) {
2460                     return divideAndRound(rs, LONG_TEN_POWERS_TABLE[drop], newScale, roundingMode, newScale);
2461                 } else {
2462                     return divideAndRound(this.inflated(), bigTenToThe(drop), newScale, roundingMode, newScale);
2463                 }
2464             }
2465         } else {
2466             if (newScale > oldScale) {
2467                 int raise = checkScale((long) newScale - oldScale);
2468                 BigInteger rb = bigMultiplyPowerTen(this.intVal,raise);
2469                 return new BigDecimal(rb, INFLATED, newScale, (precision > 0) ? precision + raise : 0);
2470             } else {
2471                 // newScale < oldScale -- drop some digits
2472                 // Can't predict the precision due to the effect of rounding.
2473                 int drop = checkScale((long) oldScale - newScale);
2474                 if (drop < LONG_TEN_POWERS_TABLE.length)
2475                     return divideAndRound(this.intVal, LONG_TEN_POWERS_TABLE[drop], newScale, roundingMode,
2476                                           newScale);

2477                 else
2478                     return divideAndRound(this.intVal,  bigTenToThe(drop), newScale, roundingMode, newScale);
2479             }

2480         }
2481     }
2482 
2483     /**
2484      * Returns a {@code BigDecimal} whose scale is the specified
2485      * value, and whose value is numerically equal to this
2486      * {@code BigDecimal}'s.  Throws an {@code ArithmeticException}
2487      * if this is not possible.
2488      *
2489      * <p>This call is typically used to increase the scale, in which
2490      * case it is guaranteed that there exists a {@code BigDecimal}
2491      * of the specified scale and the correct value.  The call can
2492      * also be used to reduce the scale if the caller knows that the
2493      * {@code BigDecimal} has sufficiently many zeros at the end of
2494      * its fractional part (i.e., factors of ten in its integer value)
2495      * to allow for the rescaling without changing its value.
2496      *
2497      * <p>This method returns the same result as the two-argument
2498      * versions of {@code setScale}, but saves the caller the trouble
2499      * of specifying a rounding mode in cases where it is irrelevant.


2578      */
2579     public BigDecimal scaleByPowerOfTen(int n) {
2580         return new BigDecimal(intVal, intCompact,
2581                               checkScale((long)scale - n), precision);
2582     }
2583 
2584     /**
2585      * Returns a {@code BigDecimal} which is numerically equal to
2586      * this one but with any trailing zeros removed from the
2587      * representation.  For example, stripping the trailing zeros from
2588      * the {@code BigDecimal} value {@code 600.0}, which has
2589      * [{@code BigInteger}, {@code scale}] components equals to
2590      * [6000, 1], yields {@code 6E2} with [{@code BigInteger},
2591      * {@code scale}] components equals to [6, -2]
2592      *
2593      * @return a numerically equal {@code BigDecimal} with any
2594      * trailing zeros removed.
2595      * @since 1.5
2596      */
2597     public BigDecimal stripTrailingZeros() {
2598         if(intCompact!=INFLATED) {
2599             return createAndStripZerosToMatchScale(intCompact, scale, Long.MIN_VALUE);
2600         } else {
2601             return createAndStripZerosToMatchScale(intVal, scale, Long.MIN_VALUE);
2602         }
2603     }
2604 
2605     // Comparison Operations
2606 
2607     /**
2608      * Compares this {@code BigDecimal} with the specified
2609      * {@code BigDecimal}.  Two {@code BigDecimal} objects that are
2610      * equal in value but have a different scale (like 2.0 and 2.00)
2611      * are considered equal by this method.  This method is provided
2612      * in preference to individual methods for each of the six boolean
2613      * comparison operators ({@literal <}, ==,
2614      * {@literal >}, {@literal >=}, !=, {@literal <=}).  The
2615      * suggested idiom for performing these comparisons is:
2616      * {@code (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
2617      * &lt;<i>op</i>&gt; is one of the six comparison operators.
2618      *
2619      * @param  val {@code BigDecimal} to which this {@code BigDecimal} is
2620      *         to be compared.
2621      * @return -1, 0, or 1 as this {@code BigDecimal} is numerically
2622      *          less than, equal to, or greater than {@code val}.


2702      * @see    #hashCode
2703      */
2704     @Override
2705     public boolean equals(Object x) {
2706         if (!(x instanceof BigDecimal))
2707             return false;
2708         BigDecimal xDec = (BigDecimal) x;
2709         if (x == this)
2710             return true;
2711         if (scale != xDec.scale)
2712             return false;
2713         long s = this.intCompact;
2714         long xs = xDec.intCompact;
2715         if (s != INFLATED) {
2716             if (xs == INFLATED)
2717                 xs = compactValFor(xDec.intVal);
2718             return xs == s;
2719         } else if (xs != INFLATED)
2720             return xs == compactValFor(this.intVal);
2721 
2722         return this.inflated().equals(xDec.inflated());
2723     }
2724 
2725     /**
2726      * Returns the minimum of this {@code BigDecimal} and
2727      * {@code val}.
2728      *
2729      * @param  val value with which the minimum is to be computed.
2730      * @return the {@code BigDecimal} whose value is the lesser of this
2731      *         {@code BigDecimal} and {@code val}.  If they are equal,
2732      *         as defined by the {@link #compareTo(BigDecimal) compareTo}
2733      *         method, {@code this} is returned.
2734      * @see    #compareTo(java.math.BigDecimal)
2735      */
2736     public BigDecimal min(BigDecimal val) {
2737         return (compareTo(val) <= 0 ? this : val);
2738     }
2739 
2740     /**
2741      * Returns the maximum of this {@code BigDecimal} and {@code val}.
2742      *


2927      *
2928      * Note that if the result of this method is passed to the
2929      * {@linkplain #BigDecimal(String) string constructor}, only the
2930      * numerical value of this {@code BigDecimal} will necessarily be
2931      * recovered; the representation of the new {@code BigDecimal}
2932      * may have a different scale.  In particular, if this
2933      * {@code BigDecimal} has a negative scale, the string resulting
2934      * from this method will have a scale of zero when processed by
2935      * the string constructor.
2936      *
2937      * (This method behaves analogously to the {@code toString}
2938      * method in 1.4 and earlier releases.)
2939      *
2940      * @return a string representation of this {@code BigDecimal}
2941      * without an exponent field.
2942      * @since 1.5
2943      * @see #toString()
2944      * @see #toEngineeringString()
2945      */
2946     public String toPlainString() {
2947         if(scale==0) {
2948             if(intCompact!=INFLATED) {
2949                 return Long.toString(intCompact);
2950             } else {
2951                 return intVal.toString();
2952             }
2953         }
2954         if(this.scale<0) { // No decimal point
2955             if(signum()==0) {
2956                 return "0";
2957             }
2958             int tailingZeros = checkScaleNonZero((-(long)scale));
2959             StringBuilder buf;
2960             if(intCompact!=INFLATED) {
2961                 buf = new StringBuilder(20+tailingZeros);
2962                 buf.append(intCompact);
2963             } else {
2964                 String str = intVal.toString();
2965                 buf = new StringBuilder(str.length()+tailingZeros);
2966                 buf.append(str);
2967             }
2968             for (int i = 0; i < tailingZeros; i++)
2969                 buf.append('0');
2970             return buf.toString();
2971         }
2972         String str ;
2973         if(intCompact!=INFLATED) {
2974             str = Long.toString(Math.abs(intCompact));
2975         } else {
2976             str = intVal.abs().toString();
2977         }
2978         return getValueString(signum(), str, scale);
2979     }
2980 
2981     /* Returns a digit.digit string */
2982     private String getValueString(int signum, String intString, int scale) {
2983         /* Insert decimal point */
2984         StringBuilder buf;
2985         int insertionPoint = intString.length() - scale;
2986         if (insertionPoint == 0) {  /* Point goes right before intVal */
2987             return (signum<0 ? "-0." : "0.") + intString;
2988         } else if (insertionPoint > 0) { /* Point goes inside intVal */
2989             buf = new StringBuilder(intString);
2990             buf.insert(insertionPoint, '.');
2991             if (signum < 0)
2992                 buf.insert(0, '-');
2993         } else { /* We must insert zeros between point and intVal */
2994             buf = new StringBuilder(3-insertionPoint + intString.length());
2995             buf.append(signum<0 ? "-0." : "0.");
2996             for (int i=0; i<-insertionPoint; i++)
2997                 buf.append('0');
2998             buf.append(intString);


3002 
3003     /**
3004      * Converts this {@code BigDecimal} to a {@code BigInteger}.
3005      * This conversion is analogous to the
3006      * <i>narrowing primitive conversion</i> from {@code double} to
3007      * {@code long} as defined in section 5.1.3 of
3008      * <cite>The Java&trade; Language Specification</cite>:
3009      * any fractional part of this
3010      * {@code BigDecimal} will be discarded.  Note that this
3011      * conversion can lose information about the precision of the
3012      * {@code BigDecimal} value.
3013      * <p>
3014      * To have an exception thrown if the conversion is inexact (in
3015      * other words if a nonzero fractional part is discarded), use the
3016      * {@link #toBigIntegerExact()} method.
3017      *
3018      * @return this {@code BigDecimal} converted to a {@code BigInteger}.
3019      */
3020     public BigInteger toBigInteger() {
3021         // force to an integer, quietly
3022         return this.setScale(0, ROUND_DOWN).inflated();
3023     }
3024 
3025     /**
3026      * Converts this {@code BigDecimal} to a {@code BigInteger},
3027      * checking for lost information.  An exception is thrown if this
3028      * {@code BigDecimal} has a nonzero fractional part.
3029      *
3030      * @return this {@code BigDecimal} converted to a {@code BigInteger}.
3031      * @throws ArithmeticException if {@code this} has a nonzero
3032      *         fractional part.
3033      * @since  1.5
3034      */
3035     public BigInteger toBigIntegerExact() {
3036         // round to an integer, with Exception if decimal part non-0
3037         return this.setScale(0, ROUND_UNNECESSARY).inflated();
3038     }
3039 
3040     /**
3041      * Converts this {@code BigDecimal} to a {@code long}.
3042      * This conversion is analogous to the
3043      * <i>narrowing primitive conversion</i> from {@code double} to
3044      * {@code short} as defined in section 5.1.3 of
3045      * <cite>The Java&trade; Language Specification</cite>:
3046      * any fractional part of this
3047      * {@code BigDecimal} will be discarded, and if the resulting
3048      * "{@code BigInteger}" is too big to fit in a
3049      * {@code long}, only the low-order 64 bits are returned.
3050      * Note that this conversion can lose information about the
3051      * overall magnitude and precision of this {@code BigDecimal} value as well
3052      * as return a result with the opposite sign.
3053      *
3054      * @return this {@code BigDecimal} converted to a {@code long}.
3055      */
3056     public long longValue(){
3057         return (intCompact != INFLATED && scale == 0) ?


3070      * @throws ArithmeticException if {@code this} has a nonzero
3071      *         fractional part, or will not fit in a {@code long}.
3072      * @since  1.5
3073      */
3074     public long longValueExact() {
3075         if (intCompact != INFLATED && scale == 0)
3076             return intCompact;
3077         // If more than 19 digits in integer part it cannot possibly fit
3078         if ((precision() - scale) > 19) // [OK for negative scale too]
3079             throw new java.lang.ArithmeticException("Overflow");
3080         // Fastpath zero and < 1.0 numbers (the latter can be very slow
3081         // to round if very small)
3082         if (this.signum() == 0)
3083             return 0;
3084         if ((this.precision() - this.scale) <= 0)
3085             throw new ArithmeticException("Rounding necessary");
3086         // round to an integer, with Exception if decimal part non-0
3087         BigDecimal num = this.setScale(0, ROUND_UNNECESSARY);
3088         if (num.precision() >= 19) // need to check carefully
3089             LongOverflow.check(num);
3090         return num.inflated().longValue();
3091     }
3092 
3093     private static class LongOverflow {
3094         /** BigInteger equal to Long.MIN_VALUE. */
3095         private static final BigInteger LONGMIN = BigInteger.valueOf(Long.MIN_VALUE);
3096 
3097         /** BigInteger equal to Long.MAX_VALUE. */
3098         private static final BigInteger LONGMAX = BigInteger.valueOf(Long.MAX_VALUE);
3099 
3100         public static void check(BigDecimal num) {
3101             BigInteger intVal = num.inflated();
3102             if (intVal.compareTo(LONGMIN) < 0 ||
3103                 intVal.compareTo(LONGMAX) > 0)
3104                 throw new java.lang.ArithmeticException("Overflow");
3105         }
3106     }
3107 
3108     /**
3109      * Converts this {@code BigDecimal} to an {@code int}.
3110      * This conversion is analogous to the
3111      * <i>narrowing primitive conversion</i> from {@code double} to
3112      * {@code short} as defined in section 5.1.3 of
3113      * <cite>The Java&trade; Language Specification</cite>:
3114      * any fractional part of this
3115      * {@code BigDecimal} will be discarded, and if the resulting
3116      * "{@code BigInteger}" is too big to fit in an
3117      * {@code int}, only the low-order 32 bits are returned.
3118      * Note that this conversion can lose information about the
3119      * overall magnitude and precision of this {@code BigDecimal}
3120      * value as well as return a result with the opposite sign.
3121      *
3122      * @return this {@code BigDecimal} converted to an {@code int}.
3123      */


3187        return (byte)num;
3188     }
3189 
3190     /**
3191      * Converts this {@code BigDecimal} to a {@code float}.
3192      * This conversion is similar to the
3193      * <i>narrowing primitive conversion</i> from {@code double} to
3194      * {@code float} as defined in section 5.1.3 of
3195      * <cite>The Java&trade; Language Specification</cite>:
3196      * if this {@code BigDecimal} has too great a
3197      * magnitude to represent as a {@code float}, it will be
3198      * converted to {@link Float#NEGATIVE_INFINITY} or {@link
3199      * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
3200      * the return value is finite, this conversion can lose
3201      * information about the precision of the {@code BigDecimal}
3202      * value.
3203      *
3204      * @return this {@code BigDecimal} converted to a {@code float}.
3205      */
3206     public float floatValue(){
3207         if(intCompact != INFLATED) {
3208             if (scale == 0) {
3209                 return (float)intCompact;
3210             } else {
3211                 /*
3212                  * If both intCompact and the scale can be exactly
3213                  * represented as float values, perform a single float
3214                  * multiply or divide to compute the (properly
3215                  * rounded) result.
3216                  */
3217                 if (scale > 0 && scale < float10pow.length
3218                     && intCompact > -1L<<22 && intCompact < 1L<<22) {
3219                     return (float)intCompact / float10pow[scale];
3220                 } else if (scale < 0 && scale > -float10pow.length
3221                            && intCompact > -1L<<22 && intCompact < 1L<<22) {
3222                     return (float)intCompact * float10pow[-scale];
3223                 }
3224             }
3225         }
3226         // Somewhat inefficient, but guaranteed to work.
3227         return Float.parseFloat(this.toString());
3228     }
3229 
3230     /**
3231      * Converts this {@code BigDecimal} to a {@code double}.
3232      * This conversion is similar to the
3233      * <i>narrowing primitive conversion</i> from {@code double} to
3234      * {@code float} as defined in section 5.1.3 of
3235      * <cite>The Java&trade; Language Specification</cite>:
3236      * if this {@code BigDecimal} has too great a
3237      * magnitude represent as a {@code double}, it will be
3238      * converted to {@link Double#NEGATIVE_INFINITY} or {@link
3239      * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
3240      * the return value is finite, this conversion can lose
3241      * information about the precision of the {@code BigDecimal}
3242      * value.
3243      *
3244      * @return this {@code BigDecimal} converted to a {@code double}.
3245      */
3246     public double doubleValue(){
3247         if(intCompact != INFLATED) {
3248             if (scale == 0) {
3249                 return (double)intCompact;
3250             } else {
3251                 /*
3252                  * If both intCompact and the scale can be exactly
3253                  * represented as double values, perform a single
3254                  * double multiply or divide to compute the (properly
3255                  * rounded) result.
3256                  */
3257                 if (scale > 0 && scale < double10pow.length
3258                     && intCompact > -1L<<52 && intCompact < 1L<<52) {
3259                     return (double)intCompact / double10pow[scale];
3260                 } else if (scale < 0 && scale > -double10pow.length
3261                            && intCompact > -1L<<52 && intCompact < 1L<<52) {
3262                     return (double)intCompact * double10pow[-scale];
3263                 }
3264             }
3265         }
3266         // Somewhat inefficient, but guaranteed to work.
3267         return Double.parseDouble(this.toString());
3268     }
3269 
3270     /**
3271      * Powers of 10 which can be represented exactly in {@code
3272      * double}.
3273      */
3274     private static final double double10pow[] = {
3275         1.0e0,  1.0e1,  1.0e2,  1.0e3,  1.0e4,  1.0e5,
3276         1.0e6,  1.0e7,  1.0e8,  1.0e9,  1.0e10, 1.0e11,
3277         1.0e12, 1.0e13, 1.0e14, 1.0e15, 1.0e16, 1.0e17,
3278         1.0e18, 1.0e19, 1.0e20, 1.0e21, 1.0e22
3279     };
3280 
3281     /**
3282      * Powers of 10 which can be represented exactly in {@code
3283      * float}.
3284      */
3285     private static final float float10pow[] = {
3286         1.0e0f, 1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f,
3287         1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f
3288     };
3289 
3290     /**
3291      * Returns the size of an ulp, a unit in the last place, of this
3292      * {@code BigDecimal}.  An ulp of a nonzero {@code BigDecimal}
3293      * value is the positive distance between this value and the
3294      * {@code BigDecimal} value next larger in magnitude with the
3295      * same number of digits.  An ulp of a zero value is numerically
3296      * equal to 1 with the scale of {@code this}.  The result is
3297      * stored with the same scale as {@code this} so the result
3298      * for zero and nonzero values is equal to {@code [1,
3299      * this.scale()]}.
3300      *
3301      * @return the size of an ulp of {@code this}
3302      * @since 1.5
3303      */
3304     public BigDecimal ulp() {
3305         return BigDecimal.valueOf(1, this.scale(), 1);
3306     }
3307 

3308     // Private class to build a string representation for BigDecimal object.
3309     // "StringBuilderHelper" is constructed as a thread local variable so it is
3310     // thread safe. The StringBuilder field acts as a buffer to hold the temporary
3311     // representation of BigDecimal. The cmpCharArray holds all the characters for
3312     // the compact representation of BigDecimal (except for '-' sign' if it is
3313     // negative) if its intCompact field is not INFLATED. It is shared by all
3314     // calls to toString() and its variants in that particular thread.
3315     static class StringBuilderHelper {
3316         final StringBuilder sb;    // Placeholder for BigDecimal string
3317         final char[] cmpCharArray; // character array to place the intCompact
3318 
3319         StringBuilderHelper() {
3320             sb = new StringBuilder();
3321             // All non negative longs can be made to fit into 19 character array.
3322             cmpCharArray = new char[19];
3323         }
3324 
3325         // Accessors.
3326         StringBuilder getStringBuilder() {
3327             sb.setLength(0);


3401             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3402             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3403             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3404         };
3405     }
3406 
3407     /**
3408      * Lay out this {@code BigDecimal} into a {@code char[]} array.
3409      * The Java 1.2 equivalent to this was called {@code getValueString}.
3410      *
3411      * @param  sci {@code true} for Scientific exponential notation;
3412      *          {@code false} for Engineering
3413      * @return string with canonical string representation of this
3414      *         {@code BigDecimal}
3415      */
3416     private String layoutChars(boolean sci) {
3417         if (scale == 0)                      // zero scale is trivial
3418             return (intCompact != INFLATED) ?
3419                 Long.toString(intCompact):
3420                 intVal.toString();
3421         if (scale == 2  &&
3422             intCompact >= 0 && intCompact < Integer.MAX_VALUE) {
3423             // currency fast path
3424             int lowInt = (int)intCompact % 100;
3425             int highInt = (int)intCompact / 100;
3426             return (Integer.toString(highInt) + '.' +
3427                     StringBuilderHelper.DIGIT_TENS[lowInt] +
3428                     StringBuilderHelper.DIGIT_ONES[lowInt]) ;
3429         }
3430 
3431         StringBuilderHelper sbHelper = threadLocalStringBuilderHelper.get();
3432         char[] coeff;
3433         int offset;  // offset is the starting index for coeff array
3434         // Get the significand as an absolute value
3435         if (intCompact != INFLATED) {
3436             offset = sbHelper.putIntCompact(Math.abs(intCompact));
3437             coeff  = sbHelper.getCompactCharArray();
3438         } else {
3439             offset = 0;
3440             coeff  = intVal.abs().toString().toCharArray();
3441         }
3442 
3443         // Construct a buffer, with sufficient capacity for all cases.
3444         // If E-notation is needed, length will be: +1 if negative, +1
3445         // if '.' needed, +2 for "E+", + up to 10 for adjusted exponent.
3446         // Otherwise it could have +1 if negative, plus leading "0.00000"
3447         StringBuilder buf = sbHelper.getStringBuilder();
3448         if (signum() < 0)             // prefix '-' if negative
3449             buf.append('-');


3519      * @param  n the power of ten to be returned (>=0)
3520      * @return a {@code BigInteger} with the value (10<sup>n</sup>)
3521      */
3522     private static BigInteger bigTenToThe(int n) {
3523         if (n < 0)
3524             return BigInteger.ZERO;
3525 
3526         if (n < BIG_TEN_POWERS_TABLE_MAX) {
3527             BigInteger[] pows = BIG_TEN_POWERS_TABLE;
3528             if (n < pows.length)
3529                 return pows[n];
3530             else
3531                 return expandBigIntegerTenPowers(n);
3532         }
3533         // BigInteger.pow is slow, so make 10**n by constructing a
3534         // BigInteger from a character string (still not very fast)
3535         char tenpow[] = new char[n + 1];
3536         tenpow[0] = '1';
3537         for (int i = 1; i <= n; i++)
3538             tenpow[i] = '0';
3539         return new BigInteger(tenpow,1, tenpow.length);
3540     }
3541 
3542     /**
3543      * Expand the BIG_TEN_POWERS_TABLE array to contain at least 10**n.
3544      *
3545      * @param n the power of ten to be returned (>=0)
3546      * @return a {@code BigDecimal} with the value (10<sup>n</sup>) and
3547      *         in the meantime, the BIG_TEN_POWERS_TABLE array gets
3548      *         expanded to the size greater than n.
3549      */
3550     private static BigInteger expandBigIntegerTenPowers(int n) {
3551         synchronized(BigDecimal.class) {
3552             BigInteger[] pows = BIG_TEN_POWERS_TABLE;
3553             int curLen = pows.length;
3554             // The following comparison and the above synchronized statement is
3555             // to prevent multiple threads from expanding the same array.
3556             if (curLen <= n) {
3557                 int newLen = curLen << 1;
3558                 while (newLen <= n)
3559                     newLen <<= 1;


3575         10,                    // 1 / 10^1
3576         100,                   // 2 / 10^2
3577         1000,                  // 3 / 10^3
3578         10000,                 // 4 / 10^4
3579         100000,                // 5 / 10^5
3580         1000000,               // 6 / 10^6
3581         10000000,              // 7 / 10^7
3582         100000000,             // 8 / 10^8
3583         1000000000,            // 9 / 10^9
3584         10000000000L,          // 10 / 10^10
3585         100000000000L,         // 11 / 10^11
3586         1000000000000L,        // 12 / 10^12
3587         10000000000000L,       // 13 / 10^13
3588         100000000000000L,      // 14 / 10^14
3589         1000000000000000L,     // 15 / 10^15
3590         10000000000000000L,    // 16 / 10^16
3591         100000000000000000L,   // 17 / 10^17
3592         1000000000000000000L   // 18 / 10^18
3593     };
3594 
3595     private static volatile BigInteger BIG_TEN_POWERS_TABLE[] = {
3596         BigInteger.ONE,
3597         BigInteger.valueOf(10),
3598         BigInteger.valueOf(100),
3599         BigInteger.valueOf(1000),
3600         BigInteger.valueOf(10000),
3601         BigInteger.valueOf(100000),
3602         BigInteger.valueOf(1000000),
3603         BigInteger.valueOf(10000000),
3604         BigInteger.valueOf(100000000),
3605         BigInteger.valueOf(1000000000),
3606         BigInteger.valueOf(10000000000L),
3607         BigInteger.valueOf(100000000000L),
3608         BigInteger.valueOf(1000000000000L),
3609         BigInteger.valueOf(10000000000000L),
3610         BigInteger.valueOf(100000000000000L),
3611         BigInteger.valueOf(1000000000000000L),
3612         BigInteger.valueOf(10000000000000000L),
3613         BigInteger.valueOf(100000000000000000L),
3614         BigInteger.valueOf(1000000000000000000L)
3615     };
3616 
3617     private static final int BIG_TEN_POWERS_TABLE_INITLEN =
3618         BIG_TEN_POWERS_TABLE.length;
3619     private static final int BIG_TEN_POWERS_TABLE_MAX =
3620         16 * BIG_TEN_POWERS_TABLE_INITLEN;
3621 
3622     private static final long THRESHOLDS_TABLE[] = {
3623         Long.MAX_VALUE,                     // 0
3624         Long.MAX_VALUE/10L,                 // 1


3649         if (val == 0 || n <= 0)
3650             return val;
3651         long[] tab = LONG_TEN_POWERS_TABLE;
3652         long[] bounds = THRESHOLDS_TABLE;
3653         if (n < tab.length && n < bounds.length) {
3654             long tenpower = tab[n];
3655             if (val == 1)
3656                 return tenpower;
3657             if (Math.abs(val) <= bounds[n])
3658                 return val * tenpower;
3659         }
3660         return INFLATED;
3661     }
3662 
3663     /**
3664      * Compute this * 10 ^ n.
3665      * Needed mainly to allow special casing to trap zero value
3666      */
3667     private BigInteger bigMultiplyPowerTen(int n) {
3668         if (n <= 0)
3669             return this.inflated();
3670 
3671         if (intCompact != INFLATED)
3672             return bigTenToThe(n).multiply(intCompact);
3673         else
3674             return intVal.multiply(bigTenToThe(n));
3675     }
3676 
3677     /**
3678      * Returns appropriate BigInteger from intVal field if intVal is
3679      * null, i.e. the compact representation is in use.
3680      */
3681     private BigInteger inflated() {
3682         if (intVal == null) {
3683             return BigInteger.valueOf(intCompact);
3684         }
3685         return intVal;
3686     }
3687 
3688     /**
3689      * Match the scales of two {@code BigDecimal}s to align their
3690      * least significant digits.
3691      *
3692      * <p>If the scales of val[0] and val[1] differ, rescale
3693      * (non-destructively) the lower-scaled {@code BigDecimal} so
3694      * they match.  That is, the lower-scaled reference will be
3695      * replaced by a reference to a new object with the same scale as
3696      * the other {@code BigDecimal}.
3697      *
3698      * @param  val array of two elements referring to the two
3699      *         {@code BigDecimal}s to be aligned.
3700      */
3701     private static void matchScale(BigDecimal[] val) {
3702         if (val[0].scale == val[1].scale) {
3703             return;
3704         } else if (val[0].scale < val[1].scale) {
3705             val[0] = val[0].setScale(val[1].scale, ROUND_UNNECESSARY);
3706         } else if (val[1].scale < val[0].scale) {
3707             val[1] = val[1].setScale(val[0].scale, ROUND_UNNECESSARY);
3708         }
3709     }
3710 
3711     private static final sun.misc.Unsafe unsafe = sun.misc.Unsafe.getUnsafe();
3712     private static final long intCompactOffset;
3713     private static final long intValOffset;
3714     static {
3715         try {
3716             intCompactOffset = unsafe.objectFieldOffset
3717                 (BigDecimal.class.getDeclaredField("intCompact"));
3718             intValOffset = unsafe.objectFieldOffset
3719                 (BigDecimal.class.getDeclaredField("intVal"));
3720         } catch (Exception ex) {
3721             throw new Error(ex);
3722         }
3723     }
3724 
3725     private void setIntCompactVolatile(long val) {
3726         unsafe.putLongVolatile(this, intCompactOffset, val);
3727     }
3728 
3729     private void setIntValVolatile(BigInteger val) {
3730         unsafe.putObjectVolatile(this, intValOffset, val);
3731     }
3732 
3733     /**
3734      * Reconstitute the {@code BigDecimal} instance from a stream (that is,
3735      * deserialize it).
3736      *
3737      * @param s the stream being read.
3738      */
3739     private void readObject(java.io.ObjectInputStream s)
3740         throws java.io.IOException, ClassNotFoundException {
3741         // Read in all fields
3742         s.defaultReadObject();
3743         // validate possibly bad fields
3744         if (intVal == null) {
3745             String message = "BigDecimal: null intVal in stream";
3746             throw new java.io.StreamCorruptedException(message);
3747         // [all values of scale are now allowed]
3748         }
3749         setIntCompactVolatile(compactValFor(intVal));
3750     }
3751 
3752    /**
3753     * Serialize this {@code BigDecimal} to the stream in question
3754     *
3755     * @param s the stream to serialize to.
3756     */
3757    private void writeObject(java.io.ObjectOutputStream s)
3758        throws java.io.IOException {
3759        // Must inflate to maintain compatible serial form.
3760        if (this.intVal == null)
3761            this.setIntValVolatile(BigInteger.valueOf(this.intCompact));

3762        s.defaultWriteObject();
3763    }
3764 

3765     /**
3766      * Returns the length of the absolute value of a {@code long}, in decimal
3767      * digits.
3768      *
3769      * @param x
3770      *            the {@code long}
3771      * @return the length of the unscaled value, in deciaml digits.
3772      */
3773     static int longDigitLength(long x) {
3774         /*
3775          * As described in "Bit Twiddling Hacks" by Sean Anderson,
3776          * (http://graphics.stanford.edu/~seander/bithacks.html) integer log 10
3777          * of x is within 1 of (1233/4096)* (1 + integer log 2 of x). The
3778          * fraction 1233/4096 approximates log10(2). So we first do a version of
3779          * log2 (a variant of Long class with pre-checks and opposite
3780          * directionality) and then scale and check against powers table. This
3781          * is a little simpler in present context than the version in Hacker's
3782          * Delight sec 11-4. Adding one to bit length allows comparing downward


3783          * from the LONG_TEN_POWERS_TABLE that we need anyway.
3784          */
3785         assert x != BigDecimal.INFLATED;
3786         if (x < 0)
3787             x = -x;
3788         if (x < 10) // must screen for 0, might as well 10
3789             return 1;
3790         int r = ((64 - Long.numberOfLeadingZeros(x) + 1) * 1233) >>> 12;







3791         long[] tab = LONG_TEN_POWERS_TABLE;
3792         // if r >= length, must have max possible digits for long
3793         return (r >= tab.length || x < tab[r]) ? r : r + 1;
3794     }
3795 
3796     /**
3797      * Returns the length of the absolute value of a BigInteger, in
3798      * decimal digits.
3799      *
3800      * @param b the BigInteger
3801      * @return the length of the unscaled value, in decimal digits
3802      */
3803     private static int bigDigitLength(BigInteger b) {
3804         /*
3805          * Same idea as the long version, but we need a better
3806          * approximation of log10(2). Using 646456993/2^31
3807          * is accurate up to max possible reported bitLength.
3808          */
3809         if (b.signum == 0)
3810             return 1;
3811         int r = (int)((((long)b.bitLength() + 1) * 646456993) >>> 31);
3812         return b.compareMagnitude(bigTenToThe(r)) < 0? r : r+1;
3813     }
3814 



































3815     /**
3816      * Check a scale for Underflow or Overflow.  If this BigDecimal is
3817      * nonzero, throw an exception if the scale is outof range. If this
3818      * is zero, saturate the scale to the extreme value of the right
3819      * sign if the scale is out of range.
3820      *
3821      * @param val The new scale.
3822      * @throws ArithmeticException (overflow or underflow) if the new
3823      *         scale is out of range.
3824      * @return validated scale as an int.
3825      */
3826     private int checkScale(long val) {
3827         int asInt = (int)val;
3828         if (asInt != val) {
3829             asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
3830             BigInteger b;
3831             if (intCompact != 0 &&
3832                 ((b = intVal) == null || b.signum() != 0))
3833                 throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
3834         }
3835         return asInt;
3836     }
3837 
3838    /**
3839      * Returns the compact value for given {@code BigInteger}, or
3840      * INFLATED if too big. Relies on internal representation of
3841      * {@code BigInteger}.



































































3842      */
3843     private static long compactValFor(BigInteger b) {
3844         int[] m = b.mag;
3845         int len = m.length;
3846         if (len == 0)
3847             return 0;
3848         int d = m[0];
3849         if (len > 2 || (len == 2 && d < 0))
3850             return INFLATED;
3851 
3852         long u = (len == 2)?
3853             (((long) m[1] & LONG_MASK) + (((long)d) << 32)) :
3854             (((long)d)   & LONG_MASK);
3855         return (b.signum < 0)? -u : u;
3856     }
3857 
3858     private static int longCompareMagnitude(long x, long y) {
3859         if (x < 0)
3860             x = -x;
3861         if (y < 0)


3910                 print("audit", this);
3911                 throw new AssertionError("precision mismatch");
3912             }
3913         } else {
3914             if (intVal != null) {
3915                 long val = intVal.longValue();
3916                 if (val != intCompact) {
3917                     print("audit", this);
3918                     throw new AssertionError("Inconsistent state, intCompact=" +
3919                                              intCompact + "\t intVal=" + val);
3920                 }
3921             }
3922             // Check precision
3923             if (precision > 0 && precision != longDigitLength(intCompact)) {
3924                 print("audit", this);
3925                 throw new AssertionError("precision mismatch");
3926             }
3927         }
3928         return this;
3929     }
3930 
3931     /* the same as checkScale where value!=0 */
3932     private static int checkScaleNonZero(long val) {
3933         int asInt = (int)val;
3934         if (asInt != val) {
3935             throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
3936         }
3937         return asInt;
3938     }
3939 
3940     private static int checkScale(long intCompact, long val) {
3941         int asInt = (int)val;
3942         if (asInt != val) {
3943             asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
3944             if (intCompact != 0)
3945                 throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
3946         }
3947         return asInt;
3948     }
3949 
3950     private static int checkScale(BigInteger intVal, long val) {
3951         int asInt = (int)val;
3952         if (asInt != val) {
3953             asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
3954             if (intVal.signum() != 0)
3955                 throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
3956         }
3957         return asInt;
3958     }
3959 
3960     /**
3961      * Returns a {@code BigDecimal} rounded according to the MathContext
3962      * settings;
3963      * If rounding is needed a new {@code BigDecimal} is created and returned.
3964      *
3965      * @param val the value to be rounded
3966      * @param mc the context to use.
3967      * @return a {@code BigDecimal} rounded according to the MathContext
3968      *         settings.  May return {@code value}, if no rounding needed.
3969      * @throws ArithmeticException if the rounding mode is
3970      *         {@code RoundingMode.UNNECESSARY} and the
3971      *         result is inexact.
3972      */
3973     private static BigDecimal doRound(BigDecimal val, MathContext mc) {
3974         int mcp = mc.precision;
3975         boolean wasDivided = false;
3976         if (mcp > 0) {
3977             BigInteger intVal = val.intVal;
3978             long compactVal = val.intCompact;
3979             int scale = val.scale;
3980             int prec = val.precision();
3981             int mode = mc.roundingMode.oldMode;
3982             int drop;
3983             if (compactVal == INFLATED) {
3984                 drop = prec - mcp;
3985                 while (drop > 0) {
3986                     scale = checkScaleNonZero((long) scale - drop);
3987                     intVal = divideAndRoundByTenPow(intVal, drop, mode);
3988                     wasDivided = true;
3989                     compactVal = compactValFor(intVal);
3990                     if (compactVal != INFLATED) {
3991                         prec = longDigitLength(compactVal);
3992                         break;
3993                     }
3994                     prec = bigDigitLength(intVal);
3995                     drop = prec - mcp;
3996                 }
3997             }
3998             if (compactVal != INFLATED) {
3999                 drop = prec - mcp;  // drop can't be more than 18
4000                 while (drop > 0) {
4001                     scale = checkScaleNonZero((long) scale - drop);
4002                     compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
4003                     wasDivided = true;
4004                     prec = longDigitLength(compactVal);
4005                     drop = prec - mcp;
4006                     intVal = null;
4007                 }
4008             }
4009             return wasDivided ? new BigDecimal(intVal,compactVal,scale,prec) : val;
4010         }
4011         return val;
4012     }
4013 
4014     /*
4015      * Returns a {@code BigDecimal} created from {@code long} value with
4016      * given scale rounded according to the MathContext settings
4017      */
4018     private static BigDecimal doRound(long compactVal, int scale, MathContext mc) {
4019         int mcp = mc.precision;
4020         if (mcp > 0 && mcp<19) {
4021             int prec = longDigitLength(compactVal);
4022             int drop = prec - mcp;  // drop can't be more than 18
4023             while (drop > 0) {
4024                 scale = checkScaleNonZero((long) scale - drop);
4025                 compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
4026                 prec = longDigitLength(compactVal);
4027                 drop = prec - mcp;
4028             }
4029             return valueOf(compactVal, scale, prec);
4030         }
4031         return valueOf(compactVal, scale);
4032     }
4033 
4034     /*
4035      * Returns a {@code BigDecimal} created from {@code BigInteger} value with
4036      * given scale rounded according to the MathContext settings
4037      */
4038     private static BigDecimal doRound(BigInteger intVal, int scale, MathContext mc) {
4039         int mcp = mc.precision;
4040         int prec = 0;
4041         if (mcp > 0) {
4042             long compactVal = compactValFor(intVal);
4043             int mode = mc.roundingMode.oldMode;
4044             int drop;
4045             if (compactVal == INFLATED) {
4046                 prec = bigDigitLength(intVal);
4047                 drop = prec - mcp;
4048                 while (drop > 0) {
4049                     scale = checkScaleNonZero((long) scale - drop);
4050                     intVal = divideAndRoundByTenPow(intVal, drop, mode);
4051                     compactVal = compactValFor(intVal);
4052                     if (compactVal != INFLATED) {
4053                         break;
4054                     }
4055                     prec = bigDigitLength(intVal);
4056                     drop = prec - mcp;
4057                 }
4058             }
4059             if (compactVal != INFLATED) {
4060                 prec = longDigitLength(compactVal);
4061                 drop = prec - mcp;     // drop can't be more than 18
4062                 while (drop > 0) {
4063                     scale = checkScaleNonZero((long) scale - drop);
4064                     compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
4065                     prec = longDigitLength(compactVal);
4066                     drop = prec - mcp;
4067                 }
4068                 return valueOf(compactVal,scale,prec);
4069             }
4070         }
4071         return new BigDecimal(intVal,INFLATED,scale,prec);
4072     }
4073 
4074     /*
4075      * Divides {@code BigInteger} value by ten power.
4076      */
4077     private static BigInteger divideAndRoundByTenPow(BigInteger intVal, int tenPow, int roundingMode) {
4078         if (tenPow < LONG_TEN_POWERS_TABLE.length)
4079             intVal = divideAndRound(intVal, LONG_TEN_POWERS_TABLE[tenPow], roundingMode);
4080         else
4081             intVal = divideAndRound(intVal, bigTenToThe(tenPow), roundingMode);
4082         return intVal;
4083     }
4084 
4085     /**
4086      * Internally used for division operation for division {@code long} by
4087      * {@code long}.
4088      * The returned {@code BigDecimal} object is the quotient whose scale is set
4089      * to the passed in scale. If the remainder is not zero, it will be rounded
4090      * based on the passed in roundingMode. Also, if the remainder is zero and
4091      * the last parameter, i.e. preferredScale is NOT equal to scale, the
4092      * trailing zeros of the result is stripped to match the preferredScale.
4093      */
4094     private static BigDecimal divideAndRound(long ldividend, long ldivisor, int scale, int roundingMode,
4095                                              int preferredScale) {
4096 
4097         int qsign; // quotient sign
4098         long q = ldividend / ldivisor; // store quotient in long
4099         if (roundingMode == ROUND_DOWN && scale == preferredScale)
4100             return valueOf(q, scale);
4101         long r = ldividend % ldivisor; // store remainder in long
4102         qsign = ((ldividend < 0) == (ldivisor < 0)) ? 1 : -1;
4103         if (r != 0) {
4104             boolean increment = needIncrement(ldivisor, roundingMode, qsign, q, r);
4105             return valueOf((increment ? q + qsign : q), scale);
4106         } else {
4107             if (preferredScale != scale)
4108                 return createAndStripZerosToMatchScale(q, scale, preferredScale);
4109             else
4110                 return valueOf(q, scale);
4111         }
4112     }
4113 
4114     /**
4115      * Divides {@code long} by {@code long} and do rounding based on the
4116      * passed in roundingMode.
4117      */
4118     private static long divideAndRound(long ldividend, long ldivisor, int roundingMode) {
4119         int qsign; // quotient sign
4120         long q = ldividend / ldivisor; // store quotient in long
4121         if (roundingMode == ROUND_DOWN)
4122             return q;
4123         long r = ldividend % ldivisor; // store remainder in long
4124         qsign = ((ldividend < 0) == (ldivisor < 0)) ? 1 : -1;
4125         if (r != 0) {
4126             boolean increment = needIncrement(ldivisor, roundingMode, qsign, q,     r);
4127             return increment ? q + qsign : q;
4128         } else {
4129             return q;
4130         }
4131     }
4132 
4133     /**
4134      * Tests if quotient has to be incremented according the roundingMode
4135      */
4136     private static boolean needIncrement(long ldivisor, int roundingMode,
4137                                          int qsign, long q, long r) {
4138         boolean increment = false;
4139         int cmpFracHalf;
4140         /* Round as appropriate */
4141         if (roundingMode == ROUND_UNNECESSARY) { // Rounding prohibited
4142             throw new ArithmeticException("Rounding necessary");
4143         } else if (roundingMode == ROUND_UP) { // Away from zero
4144             increment = true;
4145         } else if (roundingMode == ROUND_DOWN) { // Towards zero
4146             increment = false;
4147         } else if (roundingMode == ROUND_CEILING) { // Towards +infinity
4148             increment = (qsign > 0);
4149         } else if (roundingMode == ROUND_FLOOR) { // Towards -infinity
4150             increment = (qsign < 0);
4151         } else {
4152             if (r <= HALF_LONG_MIN_VALUE || r > HALF_LONG_MAX_VALUE) {
4153                 cmpFracHalf = 1; // 2 * r can't fit into long
4154             } else {
4155                 cmpFracHalf = longCompareMagnitude(2 * r, ldivisor);
4156             }
4157             if (cmpFracHalf < 0)
4158                 increment = false; // We're closer to higher digit
4159             else if (cmpFracHalf > 0) // We're closer to lower digit
4160                 increment = true;
4161             else if (roundingMode == ROUND_HALF_UP)
4162                 increment = true;
4163             else if (roundingMode == ROUND_HALF_DOWN)
4164                 increment = false;
4165             else
4166                 // roundingMode == ROUND_HALF_EVEN, true iff quotient is odd
4167                 increment = (q & 1L) != 0L ;
4168         }
4169         return increment;
4170     }
4171 
4172     /**
4173      * Divides {@code BigInteger} value by {@code long} value and
4174      * do rounding based on the passed in roundingMode.
4175      */
4176     private static BigInteger divideAndRound(BigInteger bdividend, long ldivisor, int roundingMode) {
4177         boolean isRemainderZero; // record remainder is zero or not
4178         int qsign; // quotient sign
4179         long r = 0; // store quotient & remainder in long
4180         MutableBigInteger mq = null; // store quotient
4181         // Descend into mutables for faster remainder checks
4182         MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
4183         mq = new MutableBigInteger();
4184         r = mdividend.divide(ldivisor, mq);
4185         isRemainderZero = (r == 0);
4186         qsign = (ldivisor < 0) ? -bdividend.signum : bdividend.signum;
4187         if (!isRemainderZero) {
4188             if(needIncrement(ldivisor, roundingMode, qsign, mq, r)) {
4189                 mq.add(MutableBigInteger.ONE);
4190             }
4191         }
4192         return mq.toBigInteger(qsign);
4193     }
4194 
4195     /**
4196      * Internally used for division operation for division {@code BigInteger}
4197      * by {@code long}.
4198      * The returned {@code BigDecimal} object is the quotient whose scale is set
4199      * to the passed in scale. If the remainder is not zero, it will be rounded
4200      * based on the passed in roundingMode. Also, if the remainder is zero and
4201      * the last parameter, i.e. preferredScale is NOT equal to scale, the
4202      * trailing zeros of the result is stripped to match the preferredScale.
4203      */
4204     private static BigDecimal divideAndRound(BigInteger bdividend,
4205                                              long ldivisor, int scale, int roundingMode, int preferredScale) {
4206         boolean isRemainderZero; // record remainder is zero or not
4207         int qsign; // quotient sign
4208         long r = 0; // store quotient & remainder in long
4209         MutableBigInteger mq = null; // store quotient
4210         // Descend into mutables for faster remainder checks
4211         MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
4212         mq = new MutableBigInteger();
4213         r = mdividend.divide(ldivisor, mq);
4214         isRemainderZero = (r == 0);
4215         qsign = (ldivisor < 0) ? -bdividend.signum : bdividend.signum;
4216         if (!isRemainderZero) {
4217             if(needIncrement(ldivisor, roundingMode, qsign, mq, r)) {
4218                 mq.add(MutableBigInteger.ONE);
4219             }
4220             return mq.toBigDecimal(qsign, scale);
4221         } else {
4222             if (preferredScale != scale) {
4223                 long compactVal = mq.toCompactValue(qsign);
4224                 if(compactVal!=INFLATED) {
4225                     return createAndStripZerosToMatchScale(compactVal, scale, preferredScale);
4226                 }
4227                 BigInteger intVal =  mq.toBigInteger(qsign);
4228                 return createAndStripZerosToMatchScale(intVal,scale, preferredScale);
4229             } else {
4230                 return mq.toBigDecimal(qsign, scale);
4231             }
4232         }
4233     }
4234 
4235     /**
4236      * Tests if quotient has to be incremented according the roundingMode
4237      */
4238     private static boolean needIncrement(long ldivisor, int roundingMode,
4239                                          int qsign, MutableBigInteger mq, long r) {
4240         boolean increment = false;
4241         /* Round as appropriate */
4242         if (roundingMode == ROUND_UNNECESSARY) { // Rounding prohibited
4243             throw new ArithmeticException("Rounding necessary");
4244         } else if (roundingMode == ROUND_UP) { // Away from zero
4245             increment = true;
4246         } else if (roundingMode == ROUND_DOWN) { // Towards zero
4247             increment = false;
4248         } else if (roundingMode == ROUND_CEILING) { // Towards +infinity
4249             increment = (qsign > 0);
4250         } else if (roundingMode == ROUND_FLOOR) { // Towards -infinity
4251             increment = (qsign < 0);
4252         } else {
4253             int cmpFracHalf;
4254             if (r <= HALF_LONG_MIN_VALUE || r > HALF_LONG_MAX_VALUE) {
4255                 cmpFracHalf = 1; // 2 * r can't fit into long
4256             } else {
4257                 cmpFracHalf = longCompareMagnitude(2 * r, ldivisor);
4258             }
4259             if (cmpFracHalf < 0)
4260                 increment = false; // We're closer to higher digit
4261             else if (cmpFracHalf > 0) // We're closer to lower digit
4262                 increment = true;
4263             else if (roundingMode == ROUND_HALF_UP)
4264                 increment = true;
4265             else if (roundingMode == ROUND_HALF_DOWN)
4266                 increment = false;
4267             else
4268                 // roundingMode == ROUND_HALF_EVEN, true iff quotient is odd
4269                 increment = mq.isOdd();
4270         }
4271         return increment;
4272     }
4273 
4274     /**
4275      * Divides {@code BigInteger} value by {@code BigInteger} value and
4276      * do rounding based on the passed in roundingMode.
4277      */
4278     private static BigInteger divideAndRound(BigInteger bdividend, BigInteger bdivisor, int roundingMode) {
4279         boolean isRemainderZero; // record remainder is zero or not
4280         int qsign; // quotient sign
4281         // Descend into mutables for faster remainder checks
4282         MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
4283         MutableBigInteger mq = new MutableBigInteger();
4284         MutableBigInteger mdivisor = new MutableBigInteger(bdivisor.mag);
4285         MutableBigInteger mr = mdividend.divide(mdivisor, mq);
4286         isRemainderZero = mr.isZero();
4287         qsign = (bdividend.signum != bdivisor.signum) ? -1 : 1;
4288         if (!isRemainderZero) {
4289             if (needIncrement(mdivisor, roundingMode, qsign, mq, mr)) {
4290                 mq.add(MutableBigInteger.ONE);
4291             }
4292         }
4293         return mq.toBigInteger(qsign);
4294     }
4295 
4296     /**
4297      * Internally used for division operation for division {@code BigInteger}
4298      * by {@code BigInteger}.
4299      * The returned {@code BigDecimal} object is the quotient whose scale is set
4300      * to the passed in scale. If the remainder is not zero, it will be rounded
4301      * based on the passed in roundingMode. Also, if the remainder is zero and
4302      * the last parameter, i.e. preferredScale is NOT equal to scale, the
4303      * trailing zeros of the result is stripped to match the preferredScale.
4304      */
4305     private static BigDecimal divideAndRound(BigInteger bdividend, BigInteger bdivisor, int scale, int roundingMode,
4306                                              int preferredScale) {
4307         boolean isRemainderZero; // record remainder is zero or not
4308         int qsign; // quotient sign
4309         // Descend into mutables for faster remainder checks
4310         MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
4311         MutableBigInteger mq = new MutableBigInteger();
4312         MutableBigInteger mdivisor = new MutableBigInteger(bdivisor.mag);
4313         MutableBigInteger mr = mdividend.divide(mdivisor, mq);
4314         isRemainderZero = mr.isZero();
4315         qsign = (bdividend.signum != bdivisor.signum) ? -1 : 1;
4316         if (!isRemainderZero) {
4317             if (needIncrement(mdivisor, roundingMode, qsign, mq, mr)) {
4318                 mq.add(MutableBigInteger.ONE);
4319             }
4320             return mq.toBigDecimal(qsign, scale);
4321         } else {
4322             if (preferredScale != scale) {
4323                 long compactVal = mq.toCompactValue(qsign);
4324                 if (compactVal != INFLATED) {
4325                     return createAndStripZerosToMatchScale(compactVal, scale, preferredScale);
4326                 }
4327                 BigInteger intVal = mq.toBigInteger(qsign);
4328                 return createAndStripZerosToMatchScale(intVal, scale, preferredScale);
4329             } else {
4330                 return mq.toBigDecimal(qsign, scale);
4331             }
4332         }
4333     }
4334 
4335     /**
4336      * Tests if quotient has to be incremented according the roundingMode
4337      */
4338     private static boolean needIncrement(MutableBigInteger mdivisor, int roundingMode, int qsign, MutableBigInteger mq,
4339                                          MutableBigInteger mr) {
4340         boolean increment = false;
4341         /* Round as appropriate */
4342         if (roundingMode == ROUND_UNNECESSARY) { // Rounding prohibited
4343             throw new ArithmeticException("Rounding necessary");
4344         } else if (roundingMode == ROUND_UP) { // Away from zero
4345             increment = true;
4346         } else if (roundingMode == ROUND_DOWN) { // Towards zero
4347             increment = false;
4348         } else if (roundingMode == ROUND_CEILING) { // Towards +infinity
4349             increment = (qsign > 0);
4350         } else if (roundingMode == ROUND_FLOOR) { // Towards -infinity
4351             increment = (qsign < 0);
4352         } else {
4353             int cmpFracHalf = mr.compareHalf(mdivisor);
4354             if (cmpFracHalf < 0)
4355                 increment = false; // We're closer to higher digit
4356             else if (cmpFracHalf > 0) // We're closer to lower digit
4357                 increment = true;
4358             else if (roundingMode == ROUND_HALF_UP)
4359                 increment = true;
4360             else if (roundingMode == ROUND_HALF_DOWN)
4361                 increment = false;
4362             else
4363                 // roundingMode == ROUND_HALF_EVEN, true iff quotient is odd
4364                 increment = mq.isOdd();
4365         }
4366         return increment;
4367     }
4368 
4369     /**
4370      * Remove insignificant trailing zeros from this
4371      * {@code BigInteger} value until the preferred scale is reached or no
4372      * more zeros can be removed.  If the preferred scale is less than
4373      * Integer.MIN_VALUE, all the trailing zeros will be removed.
4374      *
4375      * @return new {@code BigDecimal} with a scale possibly reduced
4376      * to be closed to the preferred scale.
4377      */
4378     private static BigDecimal createAndStripZerosToMatchScale(BigInteger intVal, int scale, long preferredScale) {
4379         BigInteger qr[]; // quotient-remainder pair
4380         while (intVal.compareMagnitude(BigInteger.TEN) >= 0
4381                && scale > preferredScale) {
4382             if (intVal.testBit(0))
4383                 break; // odd number cannot end in 0
4384             qr = intVal.divideAndRemainder(BigInteger.TEN);
4385             if (qr[1].signum() != 0)
4386                 break; // non-0 remainder
4387             intVal = qr[0];
4388             scale = checkScale(intVal,(long) scale - 1); // could Overflow
4389         }
4390         return valueOf(intVal, scale, 0);
4391     }
4392 
4393     /**
4394      * Remove insignificant trailing zeros from this
4395      * {@code long} value until the preferred scale is reached or no
4396      * more zeros can be removed.  If the preferred scale is less than
4397      * Integer.MIN_VALUE, all the trailing zeros will be removed.
4398      *
4399      * @return new {@code BigDecimal} with a scale possibly reduced
4400      * to be closed to the preferred scale.
4401      */
4402     private static BigDecimal createAndStripZerosToMatchScale(long compactVal, int scale, long preferredScale) {
4403         while (Math.abs(compactVal) >= 10L && scale > preferredScale) {
4404             if ((compactVal & 1L) != 0L)
4405                 break; // odd number cannot end in 0
4406             long r = compactVal % 10L;
4407             if (r != 0L)
4408                 break; // non-0 remainder
4409             compactVal /= 10;
4410             scale = checkScale(compactVal, (long) scale - 1); // could Overflow
4411         }
4412         return valueOf(compactVal, scale);
4413     }
4414 
4415     private static BigDecimal stripZerosToMatchScale(BigInteger intVal, long intCompact, int scale, int preferredScale) {
4416         if(intCompact!=INFLATED) {
4417             return createAndStripZerosToMatchScale(intCompact, scale, preferredScale);
4418         } else {
4419             return createAndStripZerosToMatchScale(intVal==null ? INFLATED_BIGINT : intVal,
4420                                                    scale, preferredScale);
4421         }
4422     }
4423 
4424     /*
4425      * returns INFLATED if oveflow
4426      */
4427     private static long add(long xs, long ys){
4428         long sum = xs + ys;
4429         // See "Hacker's Delight" section 2-12 for explanation of
4430         // the overflow test.
4431         if ( (((sum ^ xs) & (sum ^ ys))) >= 0L) { // not overflowed
4432             return sum;
4433         }
4434         return INFLATED;
4435     }
4436 
4437     private static BigDecimal add(long xs, long ys, int scale){
4438         long sum = add(xs, ys);
4439         if (sum!=INFLATED)
4440             return BigDecimal.valueOf(sum, scale);
4441         return new BigDecimal(BigInteger.valueOf(xs).add(ys), scale);
4442     }
4443 
4444     private static BigDecimal add(final long xs, int scale1, final long ys, int scale2) {
4445         long sdiff = (long) scale1 - scale2;
4446         if (sdiff == 0) {
4447             return add(xs, ys, scale1);
4448         } else if (sdiff < 0) {
4449             int raise = checkScale(xs,-sdiff);
4450             long scaledX = longMultiplyPowerTen(xs, raise);
4451             if (scaledX != INFLATED) {
4452                 return add(scaledX, ys, scale2);
4453             } else {
4454                 BigInteger bigsum = bigMultiplyPowerTen(xs,raise).add(ys);
4455                 return ((xs^ys)>=0) ? // same sign test
4456                     new BigDecimal(bigsum, INFLATED, scale2, 0)
4457                     : valueOf(bigsum, scale2, 0);
4458             }
4459         } else {
4460             int raise = checkScale(ys,sdiff);
4461             long scaledY = longMultiplyPowerTen(ys, raise);
4462             if (scaledY != INFLATED) {
4463                 return add(xs, scaledY, scale1);
4464             } else {
4465                 BigInteger bigsum = bigMultiplyPowerTen(ys,raise).add(xs);
4466                 return ((xs^ys)>=0) ?
4467                     new BigDecimal(bigsum, INFLATED, scale1, 0)
4468                     : valueOf(bigsum, scale1, 0);
4469             }
4470         }
4471     }
4472 
4473     private static BigDecimal add(final long xs, int scale1, BigInteger snd, int scale2) {
4474         int rscale = scale1;
4475         long sdiff = (long)rscale - scale2;
4476         boolean sameSigns =  (Long.signum(xs) == snd.signum);
4477         BigInteger sum;
4478         if (sdiff < 0) {
4479             int raise = checkScale(xs,-sdiff);
4480             rscale = scale2;
4481             long scaledX = longMultiplyPowerTen(xs, raise);
4482             if (scaledX == INFLATED) {
4483                 sum = snd.add(bigMultiplyPowerTen(xs,raise));
4484             } else {
4485                 sum = snd.add(scaledX);
4486             }
4487         } else { //if (sdiff > 0) {
4488             int raise = checkScale(snd,sdiff);
4489             snd = bigMultiplyPowerTen(snd,raise);
4490             sum = snd.add(xs);
4491         }
4492         return (sameSigns) ?
4493             new BigDecimal(sum, INFLATED, rscale, 0) :
4494             valueOf(sum, rscale, 0);
4495     }
4496 
4497     private static BigDecimal add(BigInteger fst, int scale1, BigInteger snd, int scale2) {
4498         int rscale = scale1;
4499         long sdiff = (long)rscale - scale2;
4500         if (sdiff != 0) {
4501             if (sdiff < 0) {
4502                 int raise = checkScale(fst,-sdiff);
4503                 rscale = scale2;
4504                 fst = bigMultiplyPowerTen(fst,raise);
4505             } else {
4506                 int raise = checkScale(snd,sdiff);
4507                 snd = bigMultiplyPowerTen(snd,raise);
4508             }
4509         }
4510         BigInteger sum = fst.add(snd);
4511         return (fst.signum == snd.signum) ?
4512                 new BigDecimal(sum, INFLATED, rscale, 0) :
4513                 valueOf(sum, rscale, 0);
4514     }
4515 
4516     private static BigInteger bigMultiplyPowerTen(long value, int n) {
4517         if (n <= 0)
4518             return BigInteger.valueOf(value);
4519         return bigTenToThe(n).multiply(value);
4520     }
4521 
4522     private static BigInteger bigMultiplyPowerTen(BigInteger value, int n) {
4523         if (n <= 0)
4524             return value;
4525         if(n<LONG_TEN_POWERS_TABLE.length) {
4526                 return value.multiply(LONG_TEN_POWERS_TABLE[n]);
4527         }
4528         return value.multiply(bigTenToThe(n));
4529     }
4530 
4531     /**
4532      * Returns a {@code BigDecimal} whose value is {@code (xs /
4533      * ys)}, with rounding according to the context settings.
4534      *
4535      * Fast path - used only when (xscale <= yscale && yscale < 18
4536      *  && mc.presision<18) {
4537      */
4538     private static BigDecimal divideSmallFastPath(final long xs, int xscale, final long ys, int yscale, long preferredScale, MathContext mc) {
4539         int mcp = mc.precision;
4540         int roundingMode = mc.roundingMode.oldMode;
4541 
4542         // assert xscale <= yscale && yscale<18 && mcp<18
4543         int xraise = yscale - xscale; // xraise >=0
4544         long scaledX = (xraise==0) ? xs :
4545             longMultiplyPowerTen(xs, xraise); // can't overflow here!
4546         BigDecimal quotient;
4547 
4548         int cmp = longCompareMagnitude(scaledX, ys);
4549         if(cmp > 0) { // satisfy constraint (b)
4550             yscale -= 1; // [that is, divisor *= 10]
4551             int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4552             if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4553                 // assert newScale >= xscale
4554                 int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4555                 long scaledXs;
4556                 if ((scaledXs = longMultiplyPowerTen(xs, raise)) == INFLATED) {
4557                     quotient = null;
4558                     if((mcp-1) >=0 && (mcp-1)<LONG_TEN_POWERS_TABLE.length) {
4559                         quotient = multiplyDivideAndRound(LONG_TEN_POWERS_TABLE[mcp-1], scaledX, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4560                     }
4561                     if(quotient==null) {
4562                         BigInteger rb = bigMultiplyPowerTen(scaledX,mcp-1);
4563                         quotient = divideAndRound(rb, ys,
4564                                                   scl, roundingMode, checkScaleNonZero(preferredScale));
4565                     }
4566                 } else {
4567                     quotient = divideAndRound(scaledXs, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4568                 }
4569             } else {
4570                 int newScale = checkScaleNonZero((long) xscale - mcp);
4571                 // assert newScale >= yscale
4572                 if (newScale == yscale) { // easy case
4573                     quotient = divideAndRound(xs, ys, scl, roundingMode,checkScaleNonZero(preferredScale));
4574                 } else {
4575                     int raise = checkScaleNonZero((long) newScale - yscale);
4576                     long scaledYs;
4577                     if ((scaledYs = longMultiplyPowerTen(ys, raise)) == INFLATED) {
4578                         BigInteger rb = bigMultiplyPowerTen(ys,raise);
4579                         quotient = divideAndRound(BigInteger.valueOf(xs),
4580                                                   rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4581                     } else {
4582                         quotient = divideAndRound(xs, scaledYs, scl, roundingMode,checkScaleNonZero(preferredScale));
4583                     }
4584                 }
4585             }
4586         } else {
4587             // abs(scaledX) <= abs(ys)
4588             // result is "scaledX * 10^msp / ys"
4589             int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4590             if(cmp==0) {
4591                 // abs(scaleX)== abs(ys) => result will be scaled 10^mcp + correct sign
4592                 quotient = roundedTenPower(((scaledX < 0) == (ys < 0)) ? 1 : -1, mcp, scl, checkScaleNonZero(preferredScale));
4593             } else {
4594                 // abs(scaledX) < abs(ys)
4595                 long scaledXs;
4596                 if ((scaledXs = longMultiplyPowerTen(scaledX, mcp)) == INFLATED) {
4597                     quotient = null;
4598                     if(mcp<LONG_TEN_POWERS_TABLE.length) {
4599                         quotient = multiplyDivideAndRound(LONG_TEN_POWERS_TABLE[mcp], scaledX, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4600                     }
4601                     if(quotient==null) {
4602                         BigInteger rb = bigMultiplyPowerTen(scaledX,mcp);
4603                         quotient = divideAndRound(rb, ys,
4604                                                   scl, roundingMode, checkScaleNonZero(preferredScale));
4605                     }
4606                 } else {
4607                     quotient = divideAndRound(scaledXs, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4608                 }
4609             }
4610         }
4611         // doRound, here, only affects 1000000000 case.
4612         return doRound(quotient,mc);
4613     }
4614 
4615     /**
4616      * Returns a {@code BigDecimal} whose value is {@code (xs /
4617      * ys)}, with rounding according to the context settings.
4618      */
4619     private static BigDecimal divide(final long xs, int xscale, final long ys, int yscale, long preferredScale, MathContext mc) {
4620         int mcp = mc.precision;
4621         if(xscale <= yscale && yscale < 18 && mcp<18) {
4622             return divideSmallFastPath(xs, xscale, ys, yscale, preferredScale, mc);
4623         }
4624         if (compareMagnitudeNormalized(xs, xscale, ys, yscale) > 0) {// satisfy constraint (b)
4625             yscale -= 1; // [that is, divisor *= 10]
4626         }
4627         int roundingMode = mc.roundingMode.oldMode;
4628         // In order to find out whether the divide generates the exact result,
4629         // we avoid calling the above divide method. 'quotient' holds the
4630         // return BigDecimal object whose scale will be set to 'scl'.
4631         int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4632         BigDecimal quotient;
4633         if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4634             int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4635             long scaledXs;
4636             if ((scaledXs = longMultiplyPowerTen(xs, raise)) == INFLATED) {
4637                 BigInteger rb = bigMultiplyPowerTen(xs,raise);
4638                 quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4639             } else {
4640                 quotient = divideAndRound(scaledXs, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4641             }
4642         } else {
4643             int newScale = checkScaleNonZero((long) xscale - mcp);
4644             // assert newScale >= yscale
4645             if (newScale == yscale) { // easy case
4646                 quotient = divideAndRound(xs, ys, scl, roundingMode,checkScaleNonZero(preferredScale));
4647             } else {
4648                 int raise = checkScaleNonZero((long) newScale - yscale);
4649                 long scaledYs;
4650                 if ((scaledYs = longMultiplyPowerTen(ys, raise)) == INFLATED) {
4651                     BigInteger rb = bigMultiplyPowerTen(ys,raise);
4652                     quotient = divideAndRound(BigInteger.valueOf(xs),
4653                                               rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4654                 } else {
4655                     quotient = divideAndRound(xs, scaledYs, scl, roundingMode,checkScaleNonZero(preferredScale));
4656                 }
4657             }
4658         }
4659         // doRound, here, only affects 1000000000 case.
4660         return doRound(quotient,mc);
4661     }
4662 
4663     /**
4664      * Returns a {@code BigDecimal} whose value is {@code (xs /
4665      * ys)}, with rounding according to the context settings.
4666      */
4667     private static BigDecimal divide(BigInteger xs, int xscale, long ys, int yscale, long preferredScale, MathContext mc) {
4668         // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4669         if ((-compareMagnitudeNormalized(ys, yscale, xs, xscale)) > 0) {// satisfy constraint (b)
4670             yscale -= 1; // [that is, divisor *= 10]
4671         }
4672         int mcp = mc.precision;
4673         int roundingMode = mc.roundingMode.oldMode;
4674 
4675         // In order to find out whether the divide generates the exact result,
4676         // we avoid calling the above divide method. 'quotient' holds the
4677         // return BigDecimal object whose scale will be set to 'scl'.
4678         BigDecimal quotient;
4679         int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4680         if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4681             int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4682             BigInteger rb = bigMultiplyPowerTen(xs,raise);
4683             quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4684         } else {
4685             int newScale = checkScaleNonZero((long) xscale - mcp);
4686             // assert newScale >= yscale
4687             if (newScale == yscale) { // easy case
4688                 quotient = divideAndRound(xs, ys, scl, roundingMode,checkScaleNonZero(preferredScale));
4689             } else {
4690                 int raise = checkScaleNonZero((long) newScale - yscale);
4691                 long scaledYs;
4692                 if ((scaledYs = longMultiplyPowerTen(ys, raise)) == INFLATED) {
4693                     BigInteger rb = bigMultiplyPowerTen(ys,raise);
4694                     quotient = divideAndRound(xs, rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4695                 } else {
4696                     quotient = divideAndRound(xs, scaledYs, scl, roundingMode,checkScaleNonZero(preferredScale));
4697                 }
4698             }
4699         }
4700         // doRound, here, only affects 1000000000 case.
4701         return doRound(quotient, mc);
4702     }
4703 
4704     /**
4705      * Returns a {@code BigDecimal} whose value is {@code (xs /
4706      * ys)}, with rounding according to the context settings.
4707      */
4708     private static BigDecimal divide(long xs, int xscale, BigInteger ys, int yscale, long preferredScale, MathContext mc) {
4709         // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4710         if (compareMagnitudeNormalized(xs, xscale, ys, yscale) > 0) {// satisfy constraint (b)
4711             yscale -= 1; // [that is, divisor *= 10]
4712         }
4713         int mcp = mc.precision;
4714         int roundingMode = mc.roundingMode.oldMode;
4715 
4716         // In order to find out whether the divide generates the exact result,
4717         // we avoid calling the above divide method. 'quotient' holds the
4718         // return BigDecimal object whose scale will be set to 'scl'.
4719         BigDecimal quotient;
4720         int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4721         if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4722             int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4723             BigInteger rb = bigMultiplyPowerTen(xs,raise);
4724             quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4725         } else {
4726             int newScale = checkScaleNonZero((long) xscale - mcp);
4727             int raise = checkScaleNonZero((long) newScale - yscale);
4728             BigInteger rb = bigMultiplyPowerTen(ys,raise);
4729             quotient = divideAndRound(BigInteger.valueOf(xs), rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4730         }
4731         // doRound, here, only affects 1000000000 case.
4732         return doRound(quotient, mc);
4733     }
4734 
4735     /**
4736      * Returns a {@code BigDecimal} whose value is {@code (xs /
4737      * ys)}, with rounding according to the context settings.
4738      */
4739     private static BigDecimal divide(BigInteger xs, int xscale, BigInteger ys, int yscale, long preferredScale, MathContext mc) {
4740         // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4741         if (compareMagnitudeNormalized(xs, xscale, ys, yscale) > 0) {// satisfy constraint (b)
4742             yscale -= 1; // [that is, divisor *= 10]
4743         }
4744         int mcp = mc.precision;
4745         int roundingMode = mc.roundingMode.oldMode;
4746 
4747         // In order to find out whether the divide generates the exact result,
4748         // we avoid calling the above divide method. 'quotient' holds the
4749         // return BigDecimal object whose scale will be set to 'scl'.
4750         BigDecimal quotient;
4751         int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4752         if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4753             int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4754             BigInteger rb = bigMultiplyPowerTen(xs,raise);
4755             quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4756         } else {
4757             int newScale = checkScaleNonZero((long) xscale - mcp);
4758             int raise = checkScaleNonZero((long) newScale - yscale);
4759             BigInteger rb = bigMultiplyPowerTen(ys,raise);
4760             quotient = divideAndRound(xs, rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4761         }
4762         // doRound, here, only affects 1000000000 case.
4763         return doRound(quotient, mc);
4764     }
4765 
4766     /*
4767      * performs divideAndRound for (dividend0*dividend1, divisor)
4768      * returns null if quotient can't fit into long value;
4769      */
4770     private static BigDecimal multiplyDivideAndRound(long dividend0, long dividend1, long divisor, int scale, int roundingMode,
4771                                                      int preferredScale) {
4772         int qsign = Long.signum(dividend0)*Long.signum(dividend1)*Long.signum(divisor);
4773         dividend0 = Math.abs(dividend0);
4774         dividend1 = Math.abs(dividend1);
4775         divisor = Math.abs(divisor);
4776         // multiply dividend0 * dividend1
4777         long d0_hi = dividend0 >>> 32;
4778         long d0_lo = dividend0 & LONG_MASK;
4779         long d1_hi = dividend1 >>> 32;
4780         long d1_lo = dividend1 & LONG_MASK;
4781         long product = d0_lo * d1_lo;
4782         long d0 = product & LONG_MASK;
4783         long d1 = product >>> 32;
4784         product = d0_hi * d1_lo + d1;
4785         d1 = product & LONG_MASK;
4786         long d2 = product >>> 32;
4787         product = d0_lo * d1_hi + d1;
4788         d1 = product & LONG_MASK;
4789         d2 += product >>> 32;
4790         long d3 = d2>>>32;
4791         d2 &= LONG_MASK;
4792         product = d0_hi*d1_hi + d2;
4793         d2 = product & LONG_MASK;
4794         d3 = ((product>>>32) + d3) & LONG_MASK;
4795         final long dividendHi = make64(d3,d2);
4796         final long dividendLo = make64(d1,d0);
4797         // divide
4798         return divideAndRound128(dividendHi, dividendLo, divisor, qsign, scale, roundingMode, preferredScale);
4799     }
4800 
4801     private static final long DIV_NUM_BASE = (1L<<32); // Number base (32 bits).
4802 
4803     /*
4804      * divideAndRound 128-bit value by long divisor.
4805      * returns null if quotient can't fit into long value;
4806      * Specialized version of Knuth's division
4807      */
4808     private static BigDecimal divideAndRound128(final long dividendHi, final long dividendLo, long divisor, int sign,
4809                                                 int scale, int roundingMode, int preferredScale) {
4810         if (dividendHi >= divisor) {
4811             return null;
4812         }
4813         final int shift = Long.numberOfLeadingZeros(divisor);
4814         divisor <<= shift;
4815 
4816         final long v1 = divisor >>> 32;
4817         final long v0 = divisor & LONG_MASK;
4818 
4819         long q1, q0;
4820         long r_tmp;
4821 
4822         long tmp = dividendLo << shift;
4823         long u1 = tmp >>> 32;
4824         long u0 = tmp & LONG_MASK;
4825 
4826         tmp = (dividendHi << shift) | (dividendLo >>> 64 - shift);
4827         long u2 = tmp & LONG_MASK;
4828         tmp = divWord(tmp,v1);
4829         q1 = tmp & LONG_MASK;
4830         r_tmp = tmp >>> 32;
4831         while(q1 >= DIV_NUM_BASE || unsignedLongCompare(q1*v0, make64(r_tmp, u1))) {
4832             q1--;
4833             r_tmp += v1;
4834             if (r_tmp >= DIV_NUM_BASE)
4835                 break;
4836         }
4837         tmp = mulsub(u2,u1,v1,v0,q1);
4838         u1 = tmp & LONG_MASK;
4839         tmp = divWord(tmp,v1);
4840         q0 = tmp & LONG_MASK;
4841         r_tmp = tmp >>> 32;
4842         while(q0 >= DIV_NUM_BASE || unsignedLongCompare(q0*v0,make64(r_tmp,u0))) {
4843             q0--;
4844             r_tmp += v1;
4845             if (r_tmp >= DIV_NUM_BASE)
4846                 break;
4847         }
4848         if((int)q1 < 0) {
4849             // result (which is positive and unsigned here)
4850             // can't fit into long due to sign bit is used for value
4851             MutableBigInteger mq = new MutableBigInteger(new int[]{(int)q1, (int)q0});
4852             if (roundingMode == ROUND_DOWN && scale == preferredScale) {
4853                 return mq.toBigDecimal(sign, scale);
4854             }
4855             long r = mulsub(u1, u0, v1, v0, q0) >>> shift;
4856             if (r != 0) {
4857                 if(needIncrement(divisor >>> shift, roundingMode, sign, mq, r)){
4858                     mq.add(MutableBigInteger.ONE);
4859                 }
4860                 return mq.toBigDecimal(sign, scale);
4861             } else {
4862                 if (preferredScale != scale) {
4863                     BigInteger intVal =  mq.toBigInteger(sign);
4864                     return createAndStripZerosToMatchScale(intVal,scale, preferredScale);
4865                 } else {
4866                     return mq.toBigDecimal(sign, scale);
4867                 }
4868             }
4869         }
4870         long q = make64(q1,q0);
4871         q*=sign;
4872         if (roundingMode == ROUND_DOWN && scale == preferredScale)
4873             return valueOf(q, scale);
4874         long r = mulsub(u1, u0, v1, v0, q0) >>> shift;
4875         if (r != 0) {
4876             boolean increment = needIncrement(divisor >>> shift, roundingMode, sign, q, r);
4877             return valueOf((increment ? q + sign : q), scale);
4878         } else {
4879             if (preferredScale != scale) {
4880                 return createAndStripZerosToMatchScale(q, scale, preferredScale);
4881             } else {
4882                 return valueOf(q, scale);
4883             }
4884         }
4885     }
4886 
4887     /*
4888      * calculate divideAndRound for ldividend*10^raise / divisor
4889      * when abs(dividend)==abs(divisor);
4890      */
4891     private static BigDecimal roundedTenPower(int qsign, int raise, int scale, int preferredScale) {
4892         if (scale > preferredScale) {
4893             int diff = scale - preferredScale;
4894             if(diff < raise) {
4895                 return scaledTenPow(raise - diff, qsign, preferredScale);
4896             } else {
4897                 return valueOf(qsign,scale-raise);
4898             }
4899         } else {
4900             return scaledTenPow(raise, qsign, scale);
4901         }
4902     }
4903 
4904     static BigDecimal scaledTenPow(int n, int sign, int scale) {
4905         if (n < LONG_TEN_POWERS_TABLE.length)
4906             return valueOf(sign*LONG_TEN_POWERS_TABLE[n],scale);
4907         else {
4908             BigInteger unscaledVal = bigTenToThe(n);
4909             if(sign==-1) {
4910                 unscaledVal = unscaledVal.negate();
4911             }
4912             return new BigDecimal(unscaledVal, INFLATED, scale, n+1);
4913         }
4914     }
4915 
4916     private static long divWord(long n, long dLong) {
4917         long r;
4918         long q;
4919         if (dLong == 1) {
4920             q = (int)n;
4921             return (q & LONG_MASK);
4922         }
4923         // Approximate the quotient and remainder
4924         q = (n >>> 1) / (dLong >>> 1);
4925         r = n - q*dLong;
4926 
4927         // Correct the approximation
4928         while (r < 0) {
4929             r += dLong;
4930             q--;
4931         }
4932         while (r >= dLong) {
4933             r -= dLong;
4934             q++;
4935         }
4936         // n - q*dlong == r && 0 <= r <dLong, hence we're done.
4937         return (r << 32) | (q & LONG_MASK);
4938     }
4939 
4940     private static long make64(long hi, long lo) {
4941         return hi<<32 | lo;
4942     }
4943 
4944     private static long mulsub(long u1, long u0, final long v1, final long v0, long q0) {
4945         long tmp = u0 - q0*v0;
4946         return make64(u1 + (tmp>>>32) - q0*v1,tmp & LONG_MASK);
4947     }
4948 
4949     private static boolean unsignedLongCompare(long one, long two) {
4950         return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE);
4951     }
4952 
4953     private static boolean unsignedLongCompareEq(long one, long two) {
4954         return (one+Long.MIN_VALUE) >= (two+Long.MIN_VALUE);
4955     }
4956 
4957 
4958     // Compare Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4959     private static int compareMagnitudeNormalized(long xs, int xscale, long ys, int yscale) {
4960         // assert xs!=0 && ys!=0
4961         int sdiff = xscale - yscale;
4962         if (sdiff != 0) {
4963             if (sdiff < 0) {
4964                 xs = longMultiplyPowerTen(xs, -sdiff);
4965             } else { // sdiff > 0
4966                 ys = longMultiplyPowerTen(ys, sdiff);
4967             }
4968         }
4969         if (xs != INFLATED)
4970             return (ys != INFLATED) ? longCompareMagnitude(xs, ys) : -1;
4971         else
4972             return 1;
4973     }
4974 
4975     // Compare Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4976     private static int compareMagnitudeNormalized(long xs, int xscale, BigInteger ys, int yscale) {
4977         // assert "ys can't be represented as long"
4978         if (xs == 0)
4979             return -1;
4980         int sdiff = xscale - yscale;
4981         if (sdiff < 0) {
4982             if (longMultiplyPowerTen(xs, -sdiff) == INFLATED ) {
4983                 return bigMultiplyPowerTen(xs, -sdiff).compareMagnitude(ys);
4984             }
4985         }
4986         return -1;
4987     }
4988 
4989     // Compare Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4990     private static int compareMagnitudeNormalized(BigInteger xs, int xscale, BigInteger ys, int yscale) {
4991         int sdiff = xscale - yscale;
4992         if (sdiff < 0) {
4993             return bigMultiplyPowerTen(xs, -sdiff).compareMagnitude(ys);
4994         } else { // sdiff >= 0
4995             return xs.compareMagnitude(bigMultiplyPowerTen(ys, sdiff));
4996         }
4997     }
4998 
4999     private static long multiply(long x, long y){
5000                 long product = x * y;
5001         long ax = Math.abs(x);
5002         long ay = Math.abs(y);
5003         if (((ax | ay) >>> 31 == 0) || (y == 0) || (product / y == x)){
5004                         return product;
5005                 }
5006         return INFLATED;
5007     }
5008 
5009     private static BigDecimal multiply(long x, long y, int scale) {
5010         long product = multiply(x, y);
5011         if(product!=INFLATED) {
5012             return valueOf(product,scale);
5013         }
5014         return new BigDecimal(BigInteger.valueOf(x).multiply(y),INFLATED,scale,0);
5015     }
5016 
5017     private static BigDecimal multiply(long x, BigInteger y, int scale) {
5018         if(x==0) {
5019             return zeroValueOf(scale);
5020         }
5021         return new BigDecimal(y.multiply(x),INFLATED,scale,0);
5022     }
5023 
5024     private static BigDecimal multiply(BigInteger x, BigInteger y, int scale) {
5025         return new BigDecimal(x.multiply(y),INFLATED,scale,0);
5026     }
5027 
5028     /**
5029      * Multiplies two long values and rounds according {@code MathContext}
5030      */
5031     private static BigDecimal multiplyAndRound(long x, long y, int scale, MathContext mc) {
5032         long product = multiply(x, y);
5033         if(product!=INFLATED) {
5034             return doRound(product, scale, mc);
5035         }
5036         // attempt to do it in 128 bits
5037         int rsign = 1;
5038         if(x < 0) {
5039             x = -x;
5040             rsign = -1;
5041         }
5042         if(y < 0) {
5043             y = -y;
5044             rsign *= -1;
5045         }
5046         // multiply dividend0 * dividend1
5047         long m0_hi = x >>> 32;
5048         long m0_lo = x & LONG_MASK;
5049         long m1_hi = y >>> 32;
5050         long m1_lo = y & LONG_MASK;
5051         product = m0_lo * m1_lo;
5052         long m0 = product & LONG_MASK;
5053         long m1 = product >>> 32;
5054         product = m0_hi * m1_lo + m1;
5055         m1 = product & LONG_MASK;
5056         long m2 = product >>> 32;
5057         product = m0_lo * m1_hi + m1;
5058         m1 = product & LONG_MASK;
5059         m2 += product >>> 32;
5060         long m3 = m2>>>32;
5061         m2 &= LONG_MASK;
5062         product = m0_hi*m1_hi + m2;
5063         m2 = product & LONG_MASK;
5064         m3 = ((product>>>32) + m3) & LONG_MASK;
5065         final long mHi = make64(m3,m2);
5066         final long mLo = make64(m1,m0);
5067         BigDecimal res = doRound128(mHi, mLo, rsign, scale, mc);
5068         if(res!=null) {
5069             return res;
5070         }
5071         res = new BigDecimal(BigInteger.valueOf(x).multiply(y*rsign), INFLATED, scale, 0);
5072         return doRound(res,mc);
5073     }
5074 
5075     private static BigDecimal multiplyAndRound(long x, BigInteger y, int scale, MathContext mc) {
5076         if(x==0) {
5077             return zeroValueOf(scale);
5078         }
5079         return doRound(y.multiply(x), scale, mc);
5080     }
5081 
5082     private static BigDecimal multiplyAndRound(BigInteger x, BigInteger y, int scale, MathContext mc) {
5083         return doRound(x.multiply(y), scale, mc);
5084     }
5085 
5086     /**
5087      * rounds 128-bit value according {@code MathContext}
5088      * returns null if result can't be repsented as compact BigDecimal.
5089      */
5090     private static BigDecimal doRound128(long hi, long lo, int sign, int scale, MathContext mc) {
5091         int mcp = mc.precision;
5092         int drop;
5093         BigDecimal res = null;
5094         if(((drop = precision(hi, lo) - mcp) > 0)&&(drop<LONG_TEN_POWERS_TABLE.length)) {
5095             scale = checkScaleNonZero((long)scale - drop);
5096             res = divideAndRound128(hi, lo, LONG_TEN_POWERS_TABLE[drop], sign, scale, mc.roundingMode.oldMode, scale);
5097         }
5098         if(res!=null) {
5099             return doRound(res,mc);
5100         }
5101         return null;
5102     }
5103 
5104     private static final long[][] LONGLONG_TEN_POWERS_TABLE = {
5105         {   0L, 0x8AC7230489E80000L },  //10^19
5106         {       0x5L, 0x6bc75e2d63100000L },  //10^20
5107         {       0x36L, 0x35c9adc5dea00000L },  //10^21
5108         {       0x21eL, 0x19e0c9bab2400000L  },  //10^22
5109         {       0x152dL, 0x02c7e14af6800000L  },  //10^23
5110         {       0xd3c2L, 0x1bcecceda1000000L  },  //10^24
5111         {       0x84595L, 0x161401484a000000L  },  //10^25
5112         {       0x52b7d2L, 0xdcc80cd2e4000000L  },  //10^26
5113         {       0x33b2e3cL, 0x9fd0803ce8000000L  },  //10^27
5114         {       0x204fce5eL, 0x3e25026110000000L  },  //10^28
5115         {       0x1431e0faeL, 0x6d7217caa0000000L  },  //10^29
5116         {       0xc9f2c9cd0L, 0x4674edea40000000L  },  //10^30
5117         {       0x7e37be2022L, 0xc0914b2680000000L  },  //10^31
5118         {       0x4ee2d6d415bL, 0x85acef8100000000L  },  //10^32
5119         {       0x314dc6448d93L, 0x38c15b0a00000000L  },  //10^33
5120         {       0x1ed09bead87c0L, 0x378d8e6400000000L  },  //10^34
5121         {       0x13426172c74d82L, 0x2b878fe800000000L  },  //10^35
5122         {       0xc097ce7bc90715L, 0xb34b9f1000000000L  },  //10^36
5123         {       0x785ee10d5da46d9L, 0x00f436a000000000L  },  //10^37
5124         {       0x4b3b4ca85a86c47aL, 0x098a224000000000L  },  //10^38
5125     };
5126 
5127     /*
5128      * returns precision of 128-bit value
5129      */
5130     private static int precision(long hi, long lo){
5131         if(hi==0) {
5132             if(lo>=0) {
5133                 return longDigitLength(lo);
5134             }
5135             return (unsignedLongCompareEq(lo, LONGLONG_TEN_POWERS_TABLE[0][1])) ? 20 : 19;
5136             // 0x8AC7230489E80000L  = unsigned 2^19
5137         }
5138         int r = ((128 - Long.numberOfLeadingZeros(hi) + 1) * 1233) >>> 12;
5139         int idx = r-19;
5140         return (idx >= LONGLONG_TEN_POWERS_TABLE.length || longLongCompareMagnitude(hi, lo,
5141                                                                                     LONGLONG_TEN_POWERS_TABLE[idx][0], LONGLONG_TEN_POWERS_TABLE[idx][1])) ? r : r + 1;
5142     }
5143 
5144     /*
5145      * returns true if 128 bit number <hi0,lo0> is less then <hi1,lo1>
5146      * hi0 & hi1 should be non-negative
5147      */
5148     private static boolean longLongCompareMagnitude(long hi0, long lo0, long hi1, long lo1) {
5149         if(hi0!=hi1) {
5150             return hi0<hi1;
5151         }
5152         return (lo0+Long.MIN_VALUE) <(lo1+Long.MIN_VALUE);
5153     }
5154 
5155     private static BigDecimal divide(long dividend, int dividendScale, long divisor, int divisorScale, int scale, int roundingMode) {
5156         if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
5157             int newScale = scale + divisorScale;
5158             int raise = newScale - dividendScale;
5159             if(raise<LONG_TEN_POWERS_TABLE.length) {
5160                 long xs = dividend;
5161                 if ((xs = longMultiplyPowerTen(xs, raise)) != INFLATED) {
5162                     return divideAndRound(xs, divisor, scale, roundingMode, scale);
5163                 }
5164                 BigDecimal q = multiplyDivideAndRound(LONG_TEN_POWERS_TABLE[raise], dividend, divisor, scale, roundingMode, scale);
5165                 if(q!=null) {
5166                     return q;
5167                 }
5168             }
5169             BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
5170             return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
5171         } else {
5172             int newScale = checkScale(divisor,(long)dividendScale - scale);
5173             int raise = newScale - divisorScale;
5174             if(raise<LONG_TEN_POWERS_TABLE.length) {
5175                 long ys = divisor;
5176                 if ((ys = longMultiplyPowerTen(ys, raise)) != INFLATED) {
5177                     return divideAndRound(dividend, ys, scale, roundingMode, scale);
5178                 }
5179             }
5180             BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
5181             return divideAndRound(BigInteger.valueOf(dividend), scaledDivisor, scale, roundingMode, scale);
5182         }
5183     }
5184 
5185     private static BigDecimal divide(BigInteger dividend, int dividendScale, long divisor, int divisorScale, int scale, int roundingMode) {
5186         if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
5187             int newScale = scale + divisorScale;
5188             int raise = newScale - dividendScale;
5189             BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
5190             return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
5191         } else {
5192             int newScale = checkScale(divisor,(long)dividendScale - scale);
5193             int raise = newScale - divisorScale;
5194             if(raise<LONG_TEN_POWERS_TABLE.length) {
5195                 long ys = divisor;
5196                 if ((ys = longMultiplyPowerTen(ys, raise)) != INFLATED) {
5197                     return divideAndRound(dividend, ys, scale, roundingMode, scale);
5198                 }
5199             }
5200             BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
5201             return divideAndRound(dividend, scaledDivisor, scale, roundingMode, scale);
5202         }
5203     }
5204 
5205     private static BigDecimal divide(long dividend, int dividendScale, BigInteger divisor, int divisorScale, int scale, int roundingMode) {
5206         if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
5207             int newScale = scale + divisorScale;
5208             int raise = newScale - dividendScale;
5209             BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
5210             return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
5211         } else {
5212             int newScale = checkScale(divisor,(long)dividendScale - scale);
5213             int raise = newScale - divisorScale;
5214             BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
5215             return divideAndRound(BigInteger.valueOf(dividend), scaledDivisor, scale, roundingMode, scale);
5216         }
5217     }
5218 
5219     private static BigDecimal divide(BigInteger dividend, int dividendScale, BigInteger divisor, int divisorScale, int scale, int roundingMode) {
5220         if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
5221             int newScale = scale + divisorScale;
5222             int raise = newScale - dividendScale;
5223             BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
5224             return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
5225         } else {
5226             int newScale = checkScale(divisor,(long)dividendScale - scale);
5227             int raise = newScale - divisorScale;
5228             BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
5229             return divideAndRound(dividend, scaledDivisor, scale, roundingMode, scale);
5230         }
5231     }
5232 
5233 }