1 /*
   2  * Copyright (c) 1996, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * Portions Copyright (c) 1995  Colin Plumb.  All rights reserved.
  28  */
  29 
  30 package java.math;
  31 
  32 import java.util.Random;
  33 import java.io.*;
  34 
  35 /**
  36  * Immutable arbitrary-precision integers.  All operations behave as if
  37  * BigIntegers were represented in two's-complement notation (like Java's
  38  * primitive integer types).  BigInteger provides analogues to all of Java's
  39  * primitive integer operators, and all relevant methods from java.lang.Math.
  40  * Additionally, BigInteger provides operations for modular arithmetic, GCD
  41  * calculation, primality testing, prime generation, bit manipulation,
  42  * and a few other miscellaneous operations.
  43  *
  44  * <p>Semantics of arithmetic operations exactly mimic those of Java's integer
  45  * arithmetic operators, as defined in <i>The Java Language Specification</i>.
  46  * For example, division by zero throws an {@code ArithmeticException}, and
  47  * division of a negative by a positive yields a negative (or zero) remainder.
  48  * All of the details in the Spec concerning overflow are ignored, as
  49  * BigIntegers are made as large as necessary to accommodate the results of an
  50  * operation.
  51  *
  52  * <p>Semantics of shift operations extend those of Java's shift operators
  53  * to allow for negative shift distances.  A right-shift with a negative
  54  * shift distance results in a left shift, and vice-versa.  The unsigned
  55  * right shift operator ({@code >>>}) is omitted, as this operation makes
  56  * little sense in combination with the "infinite word size" abstraction
  57  * provided by this class.
  58  *
  59  * <p>Semantics of bitwise logical operations exactly mimic those of Java's
  60  * bitwise integer operators.  The binary operators ({@code and},
  61  * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
  62  * of the two operands prior to performing the operation.
  63  *
  64  * <p>Comparison operations perform signed integer comparisons, analogous to
  65  * those performed by Java's relational and equality operators.
  66  *
  67  * <p>Modular arithmetic operations are provided to compute residues, perform
  68  * exponentiation, and compute multiplicative inverses.  These methods always
  69  * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
  70  * inclusive.
  71  *
  72  * <p>Bit operations operate on a single bit of the two's-complement
  73  * representation of their operand.  If necessary, the operand is sign-
  74  * extended so that it contains the designated bit.  None of the single-bit
  75  * operations can produce a BigInteger with a different sign from the
  76  * BigInteger being operated on, as they affect only a single bit, and the
  77  * "infinite word size" abstraction provided by this class ensures that there
  78  * are infinitely many "virtual sign bits" preceding each BigInteger.
  79  *
  80  * <p>For the sake of brevity and clarity, pseudo-code is used throughout the
  81  * descriptions of BigInteger methods.  The pseudo-code expression
  82  * {@code (i + j)} is shorthand for "a BigInteger whose value is
  83  * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
  84  * The pseudo-code expression {@code (i == j)} is shorthand for
  85  * "{@code true} if and only if the BigInteger {@code i} represents the same
  86  * value as the BigInteger {@code j}."  Other pseudo-code expressions are
  87  * interpreted similarly.
  88  *
  89  * <p>All methods and constructors in this class throw
  90  * {@code NullPointerException} when passed
  91  * a null object reference for any input parameter.
  92  *
  93  * @see     BigDecimal
  94  * @author  Josh Bloch
  95  * @author  Michael McCloskey
  96  * @since JDK1.1
  97  */
  98 
  99 public class BigInteger extends Number implements Comparable<BigInteger> {
 100     /**
 101      * The signum of this BigInteger: -1 for negative, 0 for zero, or
 102      * 1 for positive.  Note that the BigInteger zero <i>must</i> have
 103      * a signum of 0.  This is necessary to ensures that there is exactly one
 104      * representation for each BigInteger value.
 105      *
 106      * @serial
 107      */
 108     final int signum;
 109 
 110     /**
 111      * The magnitude of this BigInteger, in <i>big-endian</i> order: the
 112      * zeroth element of this array is the most-significant int of the
 113      * magnitude.  The magnitude must be "minimal" in that the most-significant
 114      * int ({@code mag[0]}) must be non-zero.  This is necessary to
 115      * ensure that there is exactly one representation for each BigInteger
 116      * value.  Note that this implies that the BigInteger zero has a
 117      * zero-length mag array.
 118      */
 119     final int[] mag;
 120 
 121     // These "redundant fields" are initialized with recognizable nonsense
 122     // values, and cached the first time they are needed (or never, if they
 123     // aren't needed).
 124 
 125      /**
 126      * One plus the bitCount of this BigInteger. Zeros means unitialized.
 127      *
 128      * @serial
 129      * @see #bitCount
 130      * @deprecated Deprecated since logical value is offset from stored
 131      * value and correction factor is applied in accessor method.
 132      */
 133     @Deprecated
 134     private int bitCount;
 135 
 136     /**
 137      * One plus the bitLength of this BigInteger. Zeros means unitialized.
 138      * (either value is acceptable).
 139      *
 140      * @serial
 141      * @see #bitLength()
 142      * @deprecated Deprecated since logical value is offset from stored
 143      * value and correction factor is applied in accessor method.
 144      */
 145     @Deprecated
 146     private int bitLength;
 147 
 148     /**
 149      * Two plus the lowest set bit of this BigInteger, as returned by
 150      * getLowestSetBit().
 151      *
 152      * @serial
 153      * @see #getLowestSetBit
 154      * @deprecated Deprecated since logical value is offset from stored
 155      * value and correction factor is applied in accessor method.
 156      */
 157     @Deprecated
 158     private int lowestSetBit;
 159 
 160     /**
 161      * Two plus the index of the lowest-order int in the magnitude of this
 162      * BigInteger that contains a nonzero int, or -2 (either value is acceptable).
 163      * The least significant int has int-number 0, the next int in order of
 164      * increasing significance has int-number 1, and so forth.
 165      * @deprecated Deprecated since logical value is offset from stored
 166      * value and correction factor is applied in accessor method.
 167      */
 168     @Deprecated
 169     private int firstNonzeroIntNum;
 170 
 171     /**
 172      * This mask is used to obtain the value of an int as if it were unsigned.
 173      */
 174     final static long LONG_MASK = 0xffffffffL;
 175 
 176     //Constructors
 177 
 178     /**
 179      * Translates a byte array containing the two's-complement binary
 180      * representation of a BigInteger into a BigInteger.  The input array is
 181      * assumed to be in <i>big-endian</i> byte-order: the most significant
 182      * byte is in the zeroth element.
 183      *
 184      * @param  val big-endian two's-complement binary representation of
 185      *         BigInteger.
 186      * @throws NumberFormatException {@code val} is zero bytes long.
 187      */
 188     public BigInteger(byte[] val) {
 189         if (val.length == 0)
 190             throw new NumberFormatException("Zero length BigInteger");
 191 
 192         if (val[0] < 0) {
 193             mag = makePositive(val);
 194             signum = -1;
 195         } else {
 196             mag = stripLeadingZeroBytes(val);
 197             signum = (mag.length == 0 ? 0 : 1);
 198         }
 199     }
 200 
 201     /**
 202      * This private constructor translates an int array containing the
 203      * two's-complement binary representation of a BigInteger into a
 204      * BigInteger. The input array is assumed to be in <i>big-endian</i>
 205      * int-order: the most significant int is in the zeroth element.
 206      */
 207     private BigInteger(int[] val) {
 208         if (val.length == 0)
 209             throw new NumberFormatException("Zero length BigInteger");
 210 
 211         if (val[0] < 0) {
 212             mag = makePositive(val);
 213             signum = -1;
 214         } else {
 215             mag = trustedStripLeadingZeroInts(val);
 216             signum = (mag.length == 0 ? 0 : 1);
 217         }
 218     }
 219 
 220     /**
 221      * Translates the sign-magnitude representation of a BigInteger into a
 222      * BigInteger.  The sign is represented as an integer signum value: -1 for
 223      * negative, 0 for zero, or 1 for positive.  The magnitude is a byte array
 224      * in <i>big-endian</i> byte-order: the most significant byte is in the
 225      * zeroth element.  A zero-length magnitude array is permissible, and will
 226      * result in a BigInteger value of 0, whether signum is -1, 0 or 1.
 227      *
 228      * @param  signum signum of the number (-1 for negative, 0 for zero, 1
 229      *         for positive).
 230      * @param  magnitude big-endian binary representation of the magnitude of
 231      *         the number.
 232      * @throws NumberFormatException {@code signum} is not one of the three
 233      *         legal values (-1, 0, and 1), or {@code signum} is 0 and
 234      *         {@code magnitude} contains one or more non-zero bytes.
 235      */
 236     public BigInteger(int signum, byte[] magnitude) {
 237         this.mag = stripLeadingZeroBytes(magnitude);
 238 
 239         if (signum < -1 || signum > 1)
 240             throw(new NumberFormatException("Invalid signum value"));
 241 
 242         if (this.mag.length==0) {
 243             this.signum = 0;
 244         } else {
 245             if (signum == 0)
 246                 throw(new NumberFormatException("signum-magnitude mismatch"));
 247             this.signum = signum;
 248         }
 249     }
 250 
 251     /**
 252      * A constructor for internal use that translates the sign-magnitude
 253      * representation of a BigInteger into a BigInteger. It checks the
 254      * arguments and copies the magnitude so this constructor would be
 255      * safe for external use.
 256      */
 257     private BigInteger(int signum, int[] magnitude) {
 258         this.mag = stripLeadingZeroInts(magnitude);
 259 
 260         if (signum < -1 || signum > 1)
 261             throw(new NumberFormatException("Invalid signum value"));
 262 
 263         if (this.mag.length==0) {
 264             this.signum = 0;
 265         } else {
 266             if (signum == 0)
 267                 throw(new NumberFormatException("signum-magnitude mismatch"));
 268             this.signum = signum;
 269         }
 270     }
 271 
 272     /**
 273      * Translates the String representation of a BigInteger in the
 274      * specified radix into a BigInteger.  The String representation
 275      * consists of an optional minus or plus sign followed by a
 276      * sequence of one or more digits in the specified radix.  The
 277      * character-to-digit mapping is provided by {@code
 278      * Character.digit}.  The String may not contain any extraneous
 279      * characters (whitespace, for example).
 280      *
 281      * @param val String representation of BigInteger.
 282      * @param radix radix to be used in interpreting {@code val}.
 283      * @throws NumberFormatException {@code val} is not a valid representation
 284      *         of a BigInteger in the specified radix, or {@code radix} is
 285      *         outside the range from {@link Character#MIN_RADIX} to
 286      *         {@link Character#MAX_RADIX}, inclusive.
 287      * @see    Character#digit
 288      */
 289     public BigInteger(String val, int radix) {
 290         int cursor = 0, numDigits;
 291         final int len = val.length();
 292 
 293         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 294             throw new NumberFormatException("Radix out of range");
 295         if (len == 0)
 296             throw new NumberFormatException("Zero length BigInteger");
 297 
 298         // Check for at most one leading sign
 299         int sign = 1;
 300         int index1 = val.lastIndexOf('-');
 301         int index2 = val.lastIndexOf('+');
 302         if ((index1 + index2) <= -1) {
 303             // No leading sign character or at most one leading sign character
 304             if (index1 == 0 || index2 == 0) {
 305                 cursor = 1;
 306                 if (len == 1)
 307                     throw new NumberFormatException("Zero length BigInteger");
 308             }
 309             if (index1 == 0)
 310                 sign = -1;
 311         } else
 312             throw new NumberFormatException("Illegal embedded sign character");
 313 
 314         // Skip leading zeros and compute number of digits in magnitude
 315         while (cursor < len &&
 316                Character.digit(val.charAt(cursor), radix) == 0)
 317             cursor++;
 318         if (cursor == len) {
 319             signum = 0;
 320             mag = ZERO.mag;
 321             return;
 322         }
 323 
 324         numDigits = len - cursor;
 325         signum = sign;
 326 
 327         // Pre-allocate array of expected size. May be too large but can
 328         // never be too small. Typically exact.
 329         int numBits = (int)(((numDigits * bitsPerDigit[radix]) >>> 10) + 1);
 330         int numWords = (numBits + 31) >>> 5;
 331         int[] magnitude = new int[numWords];
 332 
 333         // Process first (potentially short) digit group
 334         int firstGroupLen = numDigits % digitsPerInt[radix];
 335         if (firstGroupLen == 0)
 336             firstGroupLen = digitsPerInt[radix];
 337         String group = val.substring(cursor, cursor += firstGroupLen);
 338         magnitude[numWords - 1] = Integer.parseInt(group, radix);
 339         if (magnitude[numWords - 1] < 0)
 340             throw new NumberFormatException("Illegal digit");
 341 
 342         // Process remaining digit groups
 343         int superRadix = intRadix[radix];
 344         int groupVal = 0;
 345         while (cursor < len) {
 346             group = val.substring(cursor, cursor += digitsPerInt[radix]);
 347             groupVal = Integer.parseInt(group, radix);
 348             if (groupVal < 0)
 349                 throw new NumberFormatException("Illegal digit");
 350             destructiveMulAdd(magnitude, superRadix, groupVal);
 351         }
 352         // Required for cases where the array was overallocated.
 353         mag = trustedStripLeadingZeroInts(magnitude);
 354     }
 355 
 356     /*
 357      * Constructs a new BigInteger using a char array with radix=10.
 358      * Sign is precalculated outside and not allowed in the val.
 359      */
 360     BigInteger(char[] val, int sign, int len) {
 361         int cursor = 0, numDigits;
 362 
 363         // Skip leading zeros and compute number of digits in magnitude
 364         while (cursor < len && Character.digit(val[cursor], 10) == 0) {
 365             cursor++;
 366         }
 367         if (cursor == len) {
 368             signum = 0;
 369             mag = ZERO.mag;
 370             return;
 371         }
 372 
 373         numDigits = len - cursor;
 374         signum = sign;
 375         // Pre-allocate array of expected size
 376         int numWords;
 377         if (len < 10) {
 378             numWords = 1;
 379         } else {
 380             int numBits = (int)(((numDigits * bitsPerDigit[10]) >>> 10) + 1);
 381             numWords = (numBits + 31) >>> 5;
 382         }
 383         int[] magnitude = new int[numWords];
 384 
 385         // Process first (potentially short) digit group
 386         int firstGroupLen = numDigits % digitsPerInt[10];
 387         if (firstGroupLen == 0)
 388             firstGroupLen = digitsPerInt[10];
 389         magnitude[numWords - 1] = parseInt(val, cursor,  cursor += firstGroupLen);
 390 
 391         // Process remaining digit groups
 392         while (cursor < len) {
 393             int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
 394             destructiveMulAdd(magnitude, intRadix[10], groupVal);
 395         }
 396         mag = trustedStripLeadingZeroInts(magnitude);
 397     }
 398 
 399     // Create an integer with the digits between the two indexes
 400     // Assumes start < end. The result may be negative, but it
 401     // is to be treated as an unsigned value.
 402     private int parseInt(char[] source, int start, int end) {
 403         int result = Character.digit(source[start++], 10);
 404         if (result == -1)
 405             throw new NumberFormatException(new String(source));
 406 
 407         for (int index = start; index<end; index++) {
 408             int nextVal = Character.digit(source[index], 10);
 409             if (nextVal == -1)
 410                 throw new NumberFormatException(new String(source));
 411             result = 10*result + nextVal;
 412         }
 413 
 414         return result;
 415     }
 416 
 417     // bitsPerDigit in the given radix times 1024
 418     // Rounded up to avoid underallocation.
 419     private static long bitsPerDigit[] = { 0, 0,
 420         1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
 421         3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
 422         4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
 423                                            5253, 5295};
 424 
 425     // Multiply x array times word y in place, and add word z
 426     private static void destructiveMulAdd(int[] x, int y, int z) {
 427         // Perform the multiplication word by word
 428         long ylong = y & LONG_MASK;
 429         long zlong = z & LONG_MASK;
 430         int len = x.length;
 431 
 432         long product = 0;
 433         long carry = 0;
 434         for (int i = len-1; i >= 0; i--) {
 435             product = ylong * (x[i] & LONG_MASK) + carry;
 436             x[i] = (int)product;
 437             carry = product >>> 32;
 438         }
 439 
 440         // Perform the addition
 441         long sum = (x[len-1] & LONG_MASK) + zlong;
 442         x[len-1] = (int)sum;
 443         carry = sum >>> 32;
 444         for (int i = len-2; i >= 0; i--) {
 445             sum = (x[i] & LONG_MASK) + carry;
 446             x[i] = (int)sum;
 447             carry = sum >>> 32;
 448         }
 449     }
 450 
 451     /**
 452      * Translates the decimal String representation of a BigInteger into a
 453      * BigInteger.  The String representation consists of an optional minus
 454      * sign followed by a sequence of one or more decimal digits.  The
 455      * character-to-digit mapping is provided by {@code Character.digit}.
 456      * The String may not contain any extraneous characters (whitespace, for
 457      * example).
 458      *
 459      * @param val decimal String representation of BigInteger.
 460      * @throws NumberFormatException {@code val} is not a valid representation
 461      *         of a BigInteger.
 462      * @see    Character#digit
 463      */
 464     public BigInteger(String val) {
 465         this(val, 10);
 466     }
 467 
 468     /**
 469      * Constructs a randomly generated BigInteger, uniformly distributed over
 470      * the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive.
 471      * The uniformity of the distribution assumes that a fair source of random
 472      * bits is provided in {@code rnd}.  Note that this constructor always
 473      * constructs a non-negative BigInteger.
 474      *
 475      * @param  numBits maximum bitLength of the new BigInteger.
 476      * @param  rnd source of randomness to be used in computing the new
 477      *         BigInteger.
 478      * @throws IllegalArgumentException {@code numBits} is negative.
 479      * @see #bitLength()
 480      */
 481     public BigInteger(int numBits, Random rnd) {
 482         this(1, randomBits(numBits, rnd));
 483     }
 484 
 485     private static byte[] randomBits(int numBits, Random rnd) {
 486         if (numBits < 0)
 487             throw new IllegalArgumentException("numBits must be non-negative");
 488         int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
 489         byte[] randomBits = new byte[numBytes];
 490 
 491         // Generate random bytes and mask out any excess bits
 492         if (numBytes > 0) {
 493             rnd.nextBytes(randomBits);
 494             int excessBits = 8*numBytes - numBits;
 495             randomBits[0] &= (1 << (8-excessBits)) - 1;
 496         }
 497         return randomBits;
 498     }
 499 
 500     /**
 501      * Constructs a randomly generated positive BigInteger that is probably
 502      * prime, with the specified bitLength.
 503      *
 504      * <p>It is recommended that the {@link #probablePrime probablePrime}
 505      * method be used in preference to this constructor unless there
 506      * is a compelling need to specify a certainty.
 507      *
 508      * @param  bitLength bitLength of the returned BigInteger.
 509      * @param  certainty a measure of the uncertainty that the caller is
 510      *         willing to tolerate.  The probability that the new BigInteger
 511      *         represents a prime number will exceed
 512      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
 513      *         this constructor is proportional to the value of this parameter.
 514      * @param  rnd source of random bits used to select candidates to be
 515      *         tested for primality.
 516      * @throws ArithmeticException {@code bitLength < 2}.
 517      * @see    #bitLength()
 518      */
 519     public BigInteger(int bitLength, int certainty, Random rnd) {
 520         BigInteger prime;
 521 
 522         if (bitLength < 2)
 523             throw new ArithmeticException("bitLength < 2");
 524         // The cutoff of 95 was chosen empirically for best performance
 525         prime = (bitLength < 95 ? smallPrime(bitLength, certainty, rnd)
 526                                 : largePrime(bitLength, certainty, rnd));
 527         signum = 1;
 528         mag = prime.mag;
 529     }
 530 
 531     // Minimum size in bits that the requested prime number has
 532     // before we use the large prime number generating algorithms
 533     private static final int SMALL_PRIME_THRESHOLD = 95;
 534 
 535     // Certainty required to meet the spec of probablePrime
 536     private static final int DEFAULT_PRIME_CERTAINTY = 100;
 537 
 538     /**
 539      * Returns a positive BigInteger that is probably prime, with the
 540      * specified bitLength. The probability that a BigInteger returned
 541      * by this method is composite does not exceed 2<sup>-100</sup>.
 542      *
 543      * @param  bitLength bitLength of the returned BigInteger.
 544      * @param  rnd source of random bits used to select candidates to be
 545      *         tested for primality.
 546      * @return a BigInteger of {@code bitLength} bits that is probably prime
 547      * @throws ArithmeticException {@code bitLength < 2}.
 548      * @see    #bitLength()
 549      * @since 1.4
 550      */
 551     public static BigInteger probablePrime(int bitLength, Random rnd) {
 552         if (bitLength < 2)
 553             throw new ArithmeticException("bitLength < 2");
 554 
 555         // The cutoff of 95 was chosen empirically for best performance
 556         return (bitLength < SMALL_PRIME_THRESHOLD ?
 557                 smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
 558                 largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
 559     }
 560 
 561     /**
 562      * Find a random number of the specified bitLength that is probably prime.
 563      * This method is used for smaller primes, its performance degrades on
 564      * larger bitlengths.
 565      *
 566      * This method assumes bitLength > 1.
 567      */
 568     private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
 569         int magLen = (bitLength + 31) >>> 5;
 570         int temp[] = new int[magLen];
 571         int highBit = 1 << ((bitLength+31) & 0x1f);  // High bit of high int
 572         int highMask = (highBit << 1) - 1;  // Bits to keep in high int
 573 
 574         while(true) {
 575             // Construct a candidate
 576             for (int i=0; i<magLen; i++)
 577                 temp[i] = rnd.nextInt();
 578             temp[0] = (temp[0] & highMask) | highBit;  // Ensure exact length
 579             if (bitLength > 2)
 580                 temp[magLen-1] |= 1;  // Make odd if bitlen > 2
 581 
 582             BigInteger p = new BigInteger(temp, 1);
 583 
 584             // Do cheap "pre-test" if applicable
 585             if (bitLength > 6) {
 586                 long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
 587                 if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 588                     (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 589                     (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
 590                     continue; // Candidate is composite; try another
 591             }
 592 
 593             // All candidates of bitLength 2 and 3 are prime by this point
 594             if (bitLength < 4)
 595                 return p;
 596 
 597             // Do expensive test if we survive pre-test (or it's inapplicable)
 598             if (p.primeToCertainty(certainty, rnd))
 599                 return p;
 600         }
 601     }
 602 
 603     private static final BigInteger SMALL_PRIME_PRODUCT
 604                        = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
 605 
 606     /**
 607      * Find a random number of the specified bitLength that is probably prime.
 608      * This method is more appropriate for larger bitlengths since it uses
 609      * a sieve to eliminate most composites before using a more expensive
 610      * test.
 611      */
 612     private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
 613         BigInteger p;
 614         p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 615         p.mag[p.mag.length-1] &= 0xfffffffe;
 616 
 617         // Use a sieve length likely to contain the next prime number
 618         int searchLen = (bitLength / 20) * 64;
 619         BitSieve searchSieve = new BitSieve(p, searchLen);
 620         BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
 621 
 622         while ((candidate == null) || (candidate.bitLength() != bitLength)) {
 623             p = p.add(BigInteger.valueOf(2*searchLen));
 624             if (p.bitLength() != bitLength)
 625                 p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 626             p.mag[p.mag.length-1] &= 0xfffffffe;
 627             searchSieve = new BitSieve(p, searchLen);
 628             candidate = searchSieve.retrieve(p, certainty, rnd);
 629         }
 630         return candidate;
 631     }
 632 
 633    /**
 634     * Returns the first integer greater than this {@code BigInteger} that
 635     * is probably prime.  The probability that the number returned by this
 636     * method is composite does not exceed 2<sup>-100</sup>. This method will
 637     * never skip over a prime when searching: if it returns {@code p}, there
 638     * is no prime {@code q} such that {@code this < q < p}.
 639     *
 640     * @return the first integer greater than this {@code BigInteger} that
 641     *         is probably prime.
 642     * @throws ArithmeticException {@code this < 0}.
 643     * @since 1.5
 644     */
 645     public BigInteger nextProbablePrime() {
 646         if (this.signum < 0)
 647             throw new ArithmeticException("start < 0: " + this);
 648 
 649         // Handle trivial cases
 650         if ((this.signum == 0) || this.equals(ONE))
 651             return TWO;
 652 
 653         BigInteger result = this.add(ONE);
 654 
 655         // Fastpath for small numbers
 656         if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
 657 
 658             // Ensure an odd number
 659             if (!result.testBit(0))
 660                 result = result.add(ONE);
 661 
 662             while(true) {
 663                 // Do cheap "pre-test" if applicable
 664                 if (result.bitLength() > 6) {
 665                     long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
 666                     if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 667                         (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 668                         (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
 669                         result = result.add(TWO);
 670                         continue; // Candidate is composite; try another
 671                     }
 672                 }
 673 
 674                 // All candidates of bitLength 2 and 3 are prime by this point
 675                 if (result.bitLength() < 4)
 676                     return result;
 677 
 678                 // The expensive test
 679                 if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
 680                     return result;
 681 
 682                 result = result.add(TWO);
 683             }
 684         }
 685 
 686         // Start at previous even number
 687         if (result.testBit(0))
 688             result = result.subtract(ONE);
 689 
 690         // Looking for the next large prime
 691         int searchLen = (result.bitLength() / 20) * 64;
 692 
 693         while(true) {
 694            BitSieve searchSieve = new BitSieve(result, searchLen);
 695            BigInteger candidate = searchSieve.retrieve(result,
 696                                                  DEFAULT_PRIME_CERTAINTY, null);
 697            if (candidate != null)
 698                return candidate;
 699            result = result.add(BigInteger.valueOf(2 * searchLen));
 700         }
 701     }
 702 
 703     /**
 704      * Returns {@code true} if this BigInteger is probably prime,
 705      * {@code false} if it's definitely composite.
 706      *
 707      * This method assumes bitLength > 2.
 708      *
 709      * @param  certainty a measure of the uncertainty that the caller is
 710      *         willing to tolerate: if the call returns {@code true}
 711      *         the probability that this BigInteger is prime exceeds
 712      *         {@code (1 - 1/2<sup>certainty</sup>)}.  The execution time of
 713      *         this method is proportional to the value of this parameter.
 714      * @return {@code true} if this BigInteger is probably prime,
 715      *         {@code false} if it's definitely composite.
 716      */
 717     boolean primeToCertainty(int certainty, Random random) {
 718         int rounds = 0;
 719         int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
 720 
 721         // The relationship between the certainty and the number of rounds
 722         // we perform is given in the draft standard ANSI X9.80, "PRIME
 723         // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
 724         int sizeInBits = this.bitLength();
 725         if (sizeInBits < 100) {
 726             rounds = 50;
 727             rounds = n < rounds ? n : rounds;
 728             return passesMillerRabin(rounds, random);
 729         }
 730 
 731         if (sizeInBits < 256) {
 732             rounds = 27;
 733         } else if (sizeInBits < 512) {
 734             rounds = 15;
 735         } else if (sizeInBits < 768) {
 736             rounds = 8;
 737         } else if (sizeInBits < 1024) {
 738             rounds = 4;
 739         } else {
 740             rounds = 2;
 741         }
 742         rounds = n < rounds ? n : rounds;
 743 
 744         return passesMillerRabin(rounds, random) && passesLucasLehmer();
 745     }
 746 
 747     /**
 748      * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
 749      *
 750      * The following assumptions are made:
 751      * This BigInteger is a positive, odd number.
 752      */
 753     private boolean passesLucasLehmer() {
 754         BigInteger thisPlusOne = this.add(ONE);
 755 
 756         // Step 1
 757         int d = 5;
 758         while (jacobiSymbol(d, this) != -1) {
 759             // 5, -7, 9, -11, ...
 760             d = (d<0) ? Math.abs(d)+2 : -(d+2);
 761         }
 762 
 763         // Step 2
 764         BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
 765 
 766         // Step 3
 767         return u.mod(this).equals(ZERO);
 768     }
 769 
 770     /**
 771      * Computes Jacobi(p,n).
 772      * Assumes n positive, odd, n>=3.
 773      */
 774     private static int jacobiSymbol(int p, BigInteger n) {
 775         if (p == 0)
 776             return 0;
 777 
 778         // Algorithm and comments adapted from Colin Plumb's C library.
 779         int j = 1;
 780         int u = n.mag[n.mag.length-1];
 781 
 782         // Make p positive
 783         if (p < 0) {
 784             p = -p;
 785             int n8 = u & 7;
 786             if ((n8 == 3) || (n8 == 7))
 787                 j = -j; // 3 (011) or 7 (111) mod 8
 788         }
 789 
 790         // Get rid of factors of 2 in p
 791         while ((p & 3) == 0)
 792             p >>= 2;
 793         if ((p & 1) == 0) {
 794             p >>= 1;
 795             if (((u ^ (u>>1)) & 2) != 0)
 796                 j = -j; // 3 (011) or 5 (101) mod 8
 797         }
 798         if (p == 1)
 799             return j;
 800         // Then, apply quadratic reciprocity
 801         if ((p & u & 2) != 0)   // p = u = 3 (mod 4)?
 802             j = -j;
 803         // And reduce u mod p
 804         u = n.mod(BigInteger.valueOf(p)).intValue();
 805 
 806         // Now compute Jacobi(u,p), u < p
 807         while (u != 0) {
 808             while ((u & 3) == 0)
 809                 u >>= 2;
 810             if ((u & 1) == 0) {
 811                 u >>= 1;
 812                 if (((p ^ (p>>1)) & 2) != 0)
 813                     j = -j;     // 3 (011) or 5 (101) mod 8
 814             }
 815             if (u == 1)
 816                 return j;
 817             // Now both u and p are odd, so use quadratic reciprocity
 818             assert (u < p);
 819             int t = u; u = p; p = t;
 820             if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
 821                 j = -j;
 822             // Now u >= p, so it can be reduced
 823             u %= p;
 824         }
 825         return 0;
 826     }
 827 
 828     private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
 829         BigInteger d = BigInteger.valueOf(z);
 830         BigInteger u = ONE; BigInteger u2;
 831         BigInteger v = ONE; BigInteger v2;
 832 
 833         for (int i=k.bitLength()-2; i>=0; i--) {
 834             u2 = u.multiply(v).mod(n);
 835 
 836             v2 = v.square().add(d.multiply(u.square())).mod(n);
 837             if (v2.testBit(0))
 838                 v2 = v2.subtract(n);
 839 
 840             v2 = v2.shiftRight(1);
 841 
 842             u = u2; v = v2;
 843             if (k.testBit(i)) {
 844                 u2 = u.add(v).mod(n);
 845                 if (u2.testBit(0))
 846                     u2 = u2.subtract(n);
 847 
 848                 u2 = u2.shiftRight(1);
 849                 v2 = v.add(d.multiply(u)).mod(n);
 850                 if (v2.testBit(0))
 851                     v2 = v2.subtract(n);
 852                 v2 = v2.shiftRight(1);
 853 
 854                 u = u2; v = v2;
 855             }
 856         }
 857         return u;
 858     }
 859 
 860     private static volatile Random staticRandom;
 861 
 862     private static Random getSecureRandom() {
 863         if (staticRandom == null) {
 864             staticRandom = new java.security.SecureRandom();
 865         }
 866         return staticRandom;
 867     }
 868 
 869     /**
 870      * Returns true iff this BigInteger passes the specified number of
 871      * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
 872      * 186-2).
 873      *
 874      * The following assumptions are made:
 875      * This BigInteger is a positive, odd number greater than 2.
 876      * iterations<=50.
 877      */
 878     private boolean passesMillerRabin(int iterations, Random rnd) {
 879         // Find a and m such that m is odd and this == 1 + 2**a * m
 880         BigInteger thisMinusOne = this.subtract(ONE);
 881         BigInteger m = thisMinusOne;
 882         int a = m.getLowestSetBit();
 883         m = m.shiftRight(a);
 884 
 885         // Do the tests
 886         if (rnd == null) {
 887             rnd = getSecureRandom();
 888         }
 889         for (int i=0; i<iterations; i++) {
 890             // Generate a uniform random on (1, this)
 891             BigInteger b;
 892             do {
 893                 b = new BigInteger(this.bitLength(), rnd);
 894             } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
 895 
 896             int j = 0;
 897             BigInteger z = b.modPow(m, this);
 898             while(!((j==0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
 899                 if (j>0 && z.equals(ONE) || ++j==a)
 900                     return false;
 901                 z = z.modPow(TWO, this);
 902             }
 903         }
 904         return true;
 905     }
 906 
 907     /**
 908      * This internal constructor differs from its public cousin
 909      * with the arguments reversed in two ways: it assumes that its
 910      * arguments are correct, and it doesn't copy the magnitude array.
 911      */
 912     BigInteger(int[] magnitude, int signum) {
 913         this.signum = (magnitude.length==0 ? 0 : signum);
 914         this.mag = magnitude;
 915     }
 916 
 917     /**
 918      * This private constructor is for internal use and assumes that its
 919      * arguments are correct.
 920      */
 921     private BigInteger(byte[] magnitude, int signum) {
 922         this.signum = (magnitude.length==0 ? 0 : signum);
 923         this.mag = stripLeadingZeroBytes(magnitude);
 924     }
 925 
 926     //Static Factory Methods
 927 
 928     /**
 929      * Returns a BigInteger whose value is equal to that of the
 930      * specified {@code long}.  This "static factory method" is
 931      * provided in preference to a ({@code long}) constructor
 932      * because it allows for reuse of frequently used BigIntegers.
 933      *
 934      * @param  val value of the BigInteger to return.
 935      * @return a BigInteger with the specified value.
 936      */
 937     public static BigInteger valueOf(long val) {
 938         // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
 939         if (val == 0)
 940             return ZERO;
 941         if (val > 0 && val <= MAX_CONSTANT)
 942             return posConst[(int) val];
 943         else if (val < 0 && val >= -MAX_CONSTANT)
 944             return negConst[(int) -val];
 945 
 946         return new BigInteger(val);
 947     }
 948 
 949     /**
 950      * Constructs a BigInteger with the specified value, which may not be zero.
 951      */
 952     private BigInteger(long val) {
 953         if (val < 0) {
 954             val = -val;
 955             signum = -1;
 956         } else {
 957             signum = 1;
 958         }
 959 
 960         int highWord = (int)(val >>> 32);
 961         if (highWord==0) {
 962             mag = new int[1];
 963             mag[0] = (int)val;
 964         } else {
 965             mag = new int[2];
 966             mag[0] = highWord;
 967             mag[1] = (int)val;
 968         }
 969     }
 970 
 971     /**
 972      * Returns a BigInteger with the given two's complement representation.
 973      * Assumes that the input array will not be modified (the returned
 974      * BigInteger will reference the input array if feasible).
 975      */
 976     private static BigInteger valueOf(int val[]) {
 977         return (val[0]>0 ? new BigInteger(val, 1) : new BigInteger(val));
 978     }
 979 
 980     // Constants
 981 
 982     /**
 983      * Initialize static constant array when class is loaded.
 984      */
 985     private final static int MAX_CONSTANT = 16;
 986     private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
 987     private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
 988     static {
 989         for (int i = 1; i <= MAX_CONSTANT; i++) {
 990             int[] magnitude = new int[1];
 991             magnitude[0] = i;
 992             posConst[i] = new BigInteger(magnitude,  1);
 993             negConst[i] = new BigInteger(magnitude, -1);
 994         }
 995     }
 996 
 997     /**
 998      * The BigInteger constant zero.
 999      *
1000      * @since   1.2
1001      */
1002     public static final BigInteger ZERO = new BigInteger(new int[0], 0);
1003 
1004     /**
1005      * The BigInteger constant one.
1006      *
1007      * @since   1.2
1008      */
1009     public static final BigInteger ONE = valueOf(1);
1010 
1011     /**
1012      * The BigInteger constant two.  (Not exported.)
1013      */
1014     private static final BigInteger TWO = valueOf(2);
1015 
1016     /**
1017      * The BigInteger constant ten.
1018      *
1019      * @since   1.5
1020      */
1021     public static final BigInteger TEN = valueOf(10);
1022 
1023     // Arithmetic Operations
1024 
1025     /**
1026      * Returns a BigInteger whose value is {@code (this + val)}.
1027      *
1028      * @param  val value to be added to this BigInteger.
1029      * @return {@code this + val}
1030      */
1031     public BigInteger add(BigInteger val) {
1032         if (val.signum == 0)
1033             return this;
1034         if (signum == 0)
1035             return val;
1036         if (val.signum == signum)
1037             return new BigInteger(add(mag, val.mag), signum);
1038 
1039         int cmp = compareMagnitude(val);
1040         if (cmp == 0)
1041             return ZERO;
1042         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1043                            : subtract(val.mag, mag));
1044         resultMag = trustedStripLeadingZeroInts(resultMag);
1045 
1046         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1047     }
1048 
1049     /**
1050      * Package private methods used by BigDecimal code to add a BigInteger
1051      * with a long. Assumes val is not equal to INFLATED.
1052      */
1053     BigInteger add(long val) {
1054         if (val == 0)
1055             return this;
1056         if (signum == 0)
1057             return valueOf(val);
1058         if (Long.signum(val) == signum)
1059             return new BigInteger(add(mag, Math.abs(val)), signum);
1060         int cmp = compareMagnitude(val);
1061         if (cmp == 0)
1062             return ZERO;
1063         int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag));
1064         resultMag = trustedStripLeadingZeroInts(resultMag);
1065         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1066     }
1067 
1068     /**
1069      * Adds the contents of the int array x and long value val. This
1070      * method allocates a new int array to hold the answer and returns
1071      * a reference to that array.  Assumes x.length &gt; 0 and val is
1072      * non-negative
1073      */
1074     private static int[] add(int[] x, long val) {
1075         int[] y;
1076         long sum = 0;
1077         int xIndex = x.length;
1078         int[] result;
1079         int highWord = (int)(val >>> 32);
1080         if (highWord==0) {
1081             result = new int[xIndex];
1082             sum = (x[--xIndex] & LONG_MASK) + val;
1083             result[xIndex] = (int)sum;
1084         } else {
1085             if (xIndex == 1) {
1086                 result = new int[2];
1087                 sum = val  + (x[0] & LONG_MASK);
1088                 result[1] = (int)sum;
1089                 result[0] = (int)(sum >>> 32);
1090                 return result;
1091             } else {
1092                 result = new int[xIndex];
1093                 sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK);
1094                 result[xIndex] = (int)sum;
1095                 sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32);
1096                 result[xIndex] = (int)sum;
1097             }
1098         }
1099         // Copy remainder of longer number while carry propagation is required
1100         boolean carry = (sum >>> 32 != 0);
1101         while (xIndex > 0 && carry)
1102             carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1103         // Copy remainder of longer number
1104         while (xIndex > 0)
1105             result[--xIndex] = x[xIndex];
1106         // Grow result if necessary
1107         if (carry) {
1108             int bigger[] = new int[result.length + 1];
1109             System.arraycopy(result, 0, bigger, 1, result.length);
1110             bigger[0] = 0x01;
1111             return bigger;
1112         }
1113         return result;
1114     }
1115 
1116     /**
1117      * Adds the contents of the int arrays x and y. This method allocates
1118      * a new int array to hold the answer and returns a reference to that
1119      * array.
1120      */
1121     private static int[] add(int[] x, int[] y) {
1122         // If x is shorter, swap the two arrays
1123         if (x.length < y.length) {
1124             int[] tmp = x;
1125             x = y;
1126             y = tmp;
1127         }
1128 
1129         int xIndex = x.length;
1130         int yIndex = y.length;
1131         int result[] = new int[xIndex];
1132         long sum = 0;
1133         if(yIndex==1) {
1134             sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
1135             result[xIndex] = (int)sum;
1136         } else {
1137             // Add common parts of both numbers
1138             while(yIndex > 0) {
1139                 sum = (x[--xIndex] & LONG_MASK) +
1140                       (y[--yIndex] & LONG_MASK) + (sum >>> 32);
1141                 result[xIndex] = (int)sum;
1142             }
1143         }
1144         // Copy remainder of longer number while carry propagation is required
1145         boolean carry = (sum >>> 32 != 0);
1146         while (xIndex > 0 && carry)
1147             carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1148 
1149         // Copy remainder of longer number
1150         while (xIndex > 0)
1151             result[--xIndex] = x[xIndex];
1152 
1153         // Grow result if necessary
1154         if (carry) {
1155             int bigger[] = new int[result.length + 1];
1156             System.arraycopy(result, 0, bigger, 1, result.length);
1157             bigger[0] = 0x01;
1158             return bigger;
1159         }
1160         return result;
1161     }
1162 
1163     private static int[] subtract(long val, int[] little) {
1164         int highWord = (int)(val >>> 32);
1165         if (highWord==0) {
1166             int result[] = new int[1];
1167             result[0] = (int)(val - (little[0] & LONG_MASK));
1168             return result;
1169         } else {
1170             int result[] = new int[2];
1171             if(little.length==1) {
1172                 long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK);
1173                 result[1] = (int)difference;
1174                 // Subtract remainder of longer number while borrow propagates
1175                 boolean borrow = (difference >> 32 != 0);
1176                 if(borrow) {
1177                     result[0] = highWord - 1;
1178                 } else {        // Copy remainder of longer number
1179                     result[0] = highWord;
1180                 }
1181                 return result;
1182             } else { // little.length==2
1183                 long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK);
1184                 result[1] = (int)difference;
1185                 difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32);
1186                 result[0] = (int)difference;
1187                 return result;
1188             }
1189         }
1190     }
1191 
1192     /**
1193      * Subtracts the contents of the second argument (val) from the
1194      * first (big).  The first int array (big) must represent a larger number
1195      * than the second.  This method allocates the space necessary to hold the
1196      * answer.
1197      * assumes val &gt;= 0
1198      */
1199     private static int[] subtract(int[] big, long val) {
1200         int highWord = (int)(val >>> 32);
1201         int bigIndex = big.length;
1202         int result[] = new int[bigIndex];
1203         long difference = 0;
1204 
1205         if (highWord==0) {
1206             difference = (big[--bigIndex] & LONG_MASK) - val;
1207             result[bigIndex] = (int)difference;
1208         } else {
1209             difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK);
1210             result[bigIndex] = (int)difference;
1211             difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32);
1212             result[bigIndex] = (int)difference;
1213         }
1214 
1215 
1216         // Subtract remainder of longer number while borrow propagates
1217         boolean borrow = (difference >> 32 != 0);
1218         while (bigIndex > 0 && borrow)
1219             borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1220 
1221         // Copy remainder of longer number
1222         while (bigIndex > 0)
1223             result[--bigIndex] = big[bigIndex];
1224 
1225         return result;
1226     }
1227 
1228     /**
1229      * Returns a BigInteger whose value is {@code (this - val)}.
1230      *
1231      * @param  val value to be subtracted from this BigInteger.
1232      * @return {@code this - val}
1233      */
1234     public BigInteger subtract(BigInteger val) {
1235         if (val.signum == 0)
1236             return this;
1237         if (signum == 0)
1238             return val.negate();
1239         if (val.signum != signum)
1240             return new BigInteger(add(mag, val.mag), signum);
1241 
1242         int cmp = compareMagnitude(val);
1243         if (cmp == 0)
1244             return ZERO;
1245         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1246                            : subtract(val.mag, mag));
1247         resultMag = trustedStripLeadingZeroInts(resultMag);
1248         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1249     }
1250 
1251     /**
1252      * Subtracts the contents of the second int arrays (little) from the
1253      * first (big).  The first int array (big) must represent a larger number
1254      * than the second.  This method allocates the space necessary to hold the
1255      * answer.
1256      */
1257     private static int[] subtract(int[] big, int[] little) {
1258         int bigIndex = big.length;
1259         int result[] = new int[bigIndex];
1260         int littleIndex = little.length;
1261         long difference = 0;
1262 
1263         // Subtract common parts of both numbers
1264         while(littleIndex > 0) {
1265             difference = (big[--bigIndex] & LONG_MASK) -
1266                          (little[--littleIndex] & LONG_MASK) +
1267                          (difference >> 32);
1268             result[bigIndex] = (int)difference;
1269         }
1270 
1271         // Subtract remainder of longer number while borrow propagates
1272         boolean borrow = (difference >> 32 != 0);
1273         while (bigIndex > 0 && borrow)
1274             borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1275 
1276         // Copy remainder of longer number
1277         while (bigIndex > 0)
1278             result[--bigIndex] = big[bigIndex];
1279 
1280         return result;
1281     }
1282 
1283     /**
1284      * Returns a BigInteger whose value is {@code (this * val)}.
1285      *
1286      * @param  val value to be multiplied by this BigInteger.
1287      * @return {@code this * val}
1288      */
1289     public BigInteger multiply(BigInteger val) {
1290         if (val.signum == 0 || signum == 0)
1291             return ZERO;
1292         int resultSign = signum == val.signum ? 1 : -1;
1293         if (val.mag.length == 1) {
1294             return  multiplyByInt(mag,val.mag[0], resultSign);
1295         }
1296         if(mag.length == 1) {
1297             return multiplyByInt(val.mag,mag[0], resultSign);
1298         }
1299         int[] result = multiplyToLen(mag, mag.length,
1300                                      val.mag, val.mag.length, null);
1301         result = trustedStripLeadingZeroInts(result);
1302         return new BigInteger(result, resultSign);
1303     }
1304 
1305     private static BigInteger multiplyByInt(int[] x, int y, int sign) {
1306         if(Integer.bitCount(y)==1) {
1307             return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign);
1308         }
1309         int xlen = x.length;
1310         int[] rmag =  new int[xlen + 1];
1311         long carry = 0;
1312         long yl = y & LONG_MASK;
1313         int rstart = rmag.length - 1;
1314         for (int i = xlen - 1; i >= 0; i--) {
1315             long product = (x[i] & LONG_MASK) * yl + carry;
1316             rmag[rstart--] = (int)product;
1317             carry = product >>> 32;
1318         }
1319         if (carry == 0L) {
1320             rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
1321         } else {
1322             rmag[rstart] = (int)carry;
1323         }
1324         return new BigInteger(rmag, sign);
1325     }
1326 
1327     /**
1328      * Package private methods used by BigDecimal code to multiply a BigInteger
1329      * with a long. Assumes v is not equal to INFLATED.
1330      */
1331     BigInteger multiply(long v) {
1332         if (v == 0 || signum == 0)
1333           return ZERO;
1334         if (v == BigDecimal.INFLATED)
1335             return multiply(BigInteger.valueOf(v));
1336         int rsign = (v > 0 ? signum : -signum);
1337         if (v < 0)
1338             v = -v;
1339         long dh = v >>> 32;      // higher order bits
1340         long dl = v & LONG_MASK; // lower order bits
1341 
1342         int xlen = mag.length;
1343         int[] value = mag;
1344         int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
1345         long carry = 0;
1346         int rstart = rmag.length - 1;
1347         for (int i = xlen - 1; i >= 0; i--) {
1348             long product = (value[i] & LONG_MASK) * dl + carry;
1349             rmag[rstart--] = (int)product;
1350             carry = product >>> 32;
1351         }
1352         rmag[rstart] = (int)carry;
1353         if (dh != 0L) {
1354             carry = 0;
1355             rstart = rmag.length - 2;
1356             for (int i = xlen - 1; i >= 0; i--) {
1357                 long product = (value[i] & LONG_MASK) * dh +
1358                     (rmag[rstart] & LONG_MASK) + carry;
1359                 rmag[rstart--] = (int)product;
1360                 carry = product >>> 32;
1361             }
1362             rmag[0] = (int)carry;
1363         }
1364         if (carry == 0L)
1365             rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
1366         return new BigInteger(rmag, rsign);
1367     }
1368 
1369     /**
1370      * Multiplies int arrays x and y to the specified lengths and places
1371      * the result into z. There will be no leading zeros in the resultant array.
1372      */
1373     private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
1374         int xstart = xlen - 1;
1375         int ystart = ylen - 1;
1376 
1377         if (z == null || z.length < (xlen+ ylen))
1378             z = new int[xlen+ylen];
1379 
1380         long carry = 0;
1381         for (int j=ystart, k=ystart+1+xstart; j>=0; j--, k--) {
1382             long product = (y[j] & LONG_MASK) *
1383                            (x[xstart] & LONG_MASK) + carry;
1384             z[k] = (int)product;
1385             carry = product >>> 32;
1386         }
1387         z[xstart] = (int)carry;
1388 
1389         for (int i = xstart-1; i >= 0; i--) {
1390             carry = 0;
1391             for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) {
1392                 long product = (y[j] & LONG_MASK) *
1393                                (x[i] & LONG_MASK) +
1394                                (z[k] & LONG_MASK) + carry;
1395                 z[k] = (int)product;
1396                 carry = product >>> 32;
1397             }
1398             z[i] = (int)carry;
1399         }
1400         return z;
1401     }
1402 
1403     /**
1404      * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
1405      *
1406      * @return {@code this<sup>2</sup>}
1407      */
1408     private BigInteger square() {
1409         if (signum == 0)
1410             return ZERO;
1411         int[] z = squareToLen(mag, mag.length, null);
1412         return new BigInteger(trustedStripLeadingZeroInts(z), 1);
1413     }
1414 
1415     /**
1416      * Squares the contents of the int array x. The result is placed into the
1417      * int array z.  The contents of x are not changed.
1418      */
1419     private static final int[] squareToLen(int[] x, int len, int[] z) {
1420         /*
1421          * The algorithm used here is adapted from Colin Plumb's C library.
1422          * Technique: Consider the partial products in the multiplication
1423          * of "abcde" by itself:
1424          *
1425          *               a  b  c  d  e
1426          *            *  a  b  c  d  e
1427          *          ==================
1428          *              ae be ce de ee
1429          *           ad bd cd dd de
1430          *        ac bc cc cd ce
1431          *     ab bb bc bd be
1432          *  aa ab ac ad ae
1433          *
1434          * Note that everything above the main diagonal:
1435          *              ae be ce de = (abcd) * e
1436          *           ad bd cd       = (abc) * d
1437          *        ac bc             = (ab) * c
1438          *     ab                   = (a) * b
1439          *
1440          * is a copy of everything below the main diagonal:
1441          *                       de
1442          *                 cd ce
1443          *           bc bd be
1444          *     ab ac ad ae
1445          *
1446          * Thus, the sum is 2 * (off the diagonal) + diagonal.
1447          *
1448          * This is accumulated beginning with the diagonal (which
1449          * consist of the squares of the digits of the input), which is then
1450          * divided by two, the off-diagonal added, and multiplied by two
1451          * again.  The low bit is simply a copy of the low bit of the
1452          * input, so it doesn't need special care.
1453          */
1454         int zlen = len << 1;
1455         if (z == null || z.length < zlen)
1456             z = new int[zlen];
1457 
1458         // Store the squares, right shifted one bit (i.e., divided by 2)
1459         int lastProductLowWord = 0;
1460         for (int j=0, i=0; j<len; j++) {
1461             long piece = (x[j] & LONG_MASK);
1462             long product = piece * piece;
1463             z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
1464             z[i++] = (int)(product >>> 1);
1465             lastProductLowWord = (int)product;
1466         }
1467 
1468         // Add in off-diagonal sums
1469         for (int i=len, offset=1; i>0; i--, offset+=2) {
1470             int t = x[i-1];
1471             t = mulAdd(z, x, offset, i-1, t);
1472             addOne(z, offset-1, i, t);
1473         }
1474 
1475         // Shift back up and set low bit
1476         primitiveLeftShift(z, zlen, 1);
1477         z[zlen-1] |= x[len-1] & 1;
1478 
1479         return z;
1480     }
1481 
1482     /**
1483      * Returns a BigInteger whose value is {@code (this / val)}.
1484      *
1485      * @param  val value by which this BigInteger is to be divided.
1486      * @return {@code this / val}
1487      * @throws ArithmeticException if {@code val} is zero.
1488      */
1489     public BigInteger divide(BigInteger val) {
1490         MutableBigInteger q = new MutableBigInteger(),
1491                           a = new MutableBigInteger(this.mag),
1492                           b = new MutableBigInteger(val.mag);
1493 
1494         a.divide(b, q, false);
1495         return q.toBigInteger(this.signum * val.signum);
1496     }
1497 
1498     /**
1499      * Returns an array of two BigIntegers containing {@code (this / val)}
1500      * followed by {@code (this % val)}.
1501      *
1502      * @param  val value by which this BigInteger is to be divided, and the
1503      *         remainder computed.
1504      * @return an array of two BigIntegers: the quotient {@code (this / val)}
1505      *         is the initial element, and the remainder {@code (this % val)}
1506      *         is the final element.
1507      * @throws ArithmeticException if {@code val} is zero.
1508      */
1509     public BigInteger[] divideAndRemainder(BigInteger val) {
1510         BigInteger[] result = new BigInteger[2];
1511         MutableBigInteger q = new MutableBigInteger(),
1512                           a = new MutableBigInteger(this.mag),
1513                           b = new MutableBigInteger(val.mag);
1514         MutableBigInteger r = a.divide(b, q);
1515         result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
1516         result[1] = r.toBigInteger(this.signum);
1517         return result;
1518     }
1519 
1520     /**
1521      * Returns a BigInteger whose value is {@code (this % val)}.
1522      *
1523      * @param  val value by which this BigInteger is to be divided, and the
1524      *         remainder computed.
1525      * @return {@code this % val}
1526      * @throws ArithmeticException if {@code val} is zero.
1527      */
1528     public BigInteger remainder(BigInteger val) {
1529         MutableBigInteger q = new MutableBigInteger(),
1530                           a = new MutableBigInteger(this.mag),
1531                           b = new MutableBigInteger(val.mag);
1532 
1533         return a.divide(b, q).toBigInteger(this.signum);
1534     }
1535 
1536     /**
1537      * Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
1538      * Note that {@code exponent} is an integer rather than a BigInteger.
1539      *
1540      * @param  exponent exponent to which this BigInteger is to be raised.
1541      * @return <tt>this<sup>exponent</sup></tt>
1542      * @throws ArithmeticException {@code exponent} is negative.  (This would
1543      *         cause the operation to yield a non-integer value.)
1544      */
1545     public BigInteger pow(int exponent) {
1546         if (exponent < 0)
1547             throw new ArithmeticException("Negative exponent");
1548         if (signum==0)
1549             return (exponent==0 ? ONE : this);
1550 
1551         // Perform exponentiation using repeated squaring trick
1552         int newSign = (signum<0 && (exponent&1)==1 ? -1 : 1);
1553         int[] baseToPow2 = this.mag;
1554         int[] result = {1};
1555 
1556         while (exponent != 0) {
1557             if ((exponent & 1)==1) {
1558                 result = multiplyToLen(result, result.length,
1559                                        baseToPow2, baseToPow2.length, null);
1560                 result = trustedStripLeadingZeroInts(result);
1561             }
1562             if ((exponent >>>= 1) != 0) {
1563                 baseToPow2 = squareToLen(baseToPow2, baseToPow2.length, null);
1564                 baseToPow2 = trustedStripLeadingZeroInts(baseToPow2);
1565             }
1566         }
1567         return new BigInteger(result, newSign);
1568     }
1569 
1570     /**
1571      * Returns a BigInteger whose value is the greatest common divisor of
1572      * {@code abs(this)} and {@code abs(val)}.  Returns 0 if
1573      * {@code this==0 && val==0}.
1574      *
1575      * @param  val value with which the GCD is to be computed.
1576      * @return {@code GCD(abs(this), abs(val))}
1577      */
1578     public BigInteger gcd(BigInteger val) {
1579         if (val.signum == 0)
1580             return this.abs();
1581         else if (this.signum == 0)
1582             return val.abs();
1583 
1584         MutableBigInteger a = new MutableBigInteger(this);
1585         MutableBigInteger b = new MutableBigInteger(val);
1586 
1587         MutableBigInteger result = a.hybridGCD(b);
1588 
1589         return result.toBigInteger(1);
1590     }
1591 
1592     /**
1593      * Package private method to return bit length for an integer.
1594      */
1595     static int bitLengthForInt(int n) {
1596         return 32 - Integer.numberOfLeadingZeros(n);
1597     }
1598 
1599     /**
1600      * Left shift int array a up to len by n bits. Returns the array that
1601      * results from the shift since space may have to be reallocated.
1602      */
1603     private static int[] leftShift(int[] a, int len, int n) {
1604         int nInts = n >>> 5;
1605         int nBits = n&0x1F;
1606         int bitsInHighWord = bitLengthForInt(a[0]);
1607 
1608         // If shift can be done without recopy, do so
1609         if (n <= (32-bitsInHighWord)) {
1610             primitiveLeftShift(a, len, nBits);
1611             return a;
1612         } else { // Array must be resized
1613             if (nBits <= (32-bitsInHighWord)) {
1614                 int result[] = new int[nInts+len];
1615                 for (int i=0; i<len; i++)
1616                     result[i] = a[i];
1617                 primitiveLeftShift(result, result.length, nBits);
1618                 return result;
1619             } else {
1620                 int result[] = new int[nInts+len+1];
1621                 for (int i=0; i<len; i++)
1622                     result[i] = a[i];
1623                 primitiveRightShift(result, result.length, 32 - nBits);
1624                 return result;
1625             }
1626         }
1627     }
1628 
1629     // shifts a up to len right n bits assumes no leading zeros, 0<n<32
1630     static void primitiveRightShift(int[] a, int len, int n) {
1631         int n2 = 32 - n;
1632         for (int i=len-1, c=a[i]; i>0; i--) {
1633             int b = c;
1634             c = a[i-1];
1635             a[i] = (c << n2) | (b >>> n);
1636         }
1637         a[0] >>>= n;
1638     }
1639 
1640     // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
1641     static void primitiveLeftShift(int[] a, int len, int n) {
1642         if (len == 0 || n == 0)
1643             return;
1644 
1645         int n2 = 32 - n;
1646         for (int i=0, c=a[i], m=i+len-1; i<m; i++) {
1647             int b = c;
1648             c = a[i+1];
1649             a[i] = (b << n) | (c >>> n2);
1650         }
1651         a[len-1] <<= n;
1652     }
1653 
1654     /**
1655      * Calculate bitlength of contents of the first len elements an int array,
1656      * assuming there are no leading zero ints.
1657      */
1658     private static int bitLength(int[] val, int len) {
1659         if (len == 0)
1660             return 0;
1661         return ((len - 1) << 5) + bitLengthForInt(val[0]);
1662     }
1663 
1664     /**
1665      * Returns a BigInteger whose value is the absolute value of this
1666      * BigInteger.
1667      *
1668      * @return {@code abs(this)}
1669      */
1670     public BigInteger abs() {
1671         return (signum >= 0 ? this : this.negate());
1672     }
1673 
1674     /**
1675      * Returns a BigInteger whose value is {@code (-this)}.
1676      *
1677      * @return {@code -this}
1678      */
1679     public BigInteger negate() {
1680         return new BigInteger(this.mag, -this.signum);
1681     }
1682 
1683     /**
1684      * Returns the signum function of this BigInteger.
1685      *
1686      * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
1687      *         positive.
1688      */
1689     public int signum() {
1690         return this.signum;
1691     }
1692 
1693     // Modular Arithmetic Operations
1694 
1695     /**
1696      * Returns a BigInteger whose value is {@code (this mod m}).  This method
1697      * differs from {@code remainder} in that it always returns a
1698      * <i>non-negative</i> BigInteger.
1699      *
1700      * @param  m the modulus.
1701      * @return {@code this mod m}
1702      * @throws ArithmeticException {@code m} &le; 0
1703      * @see    #remainder
1704      */
1705     public BigInteger mod(BigInteger m) {
1706         if (m.signum <= 0)
1707             throw new ArithmeticException("BigInteger: modulus not positive");
1708 
1709         BigInteger result = this.remainder(m);
1710         return (result.signum >= 0 ? result : result.add(m));
1711     }
1712 
1713     /**
1714      * Returns a BigInteger whose value is
1715      * <tt>(this<sup>exponent</sup> mod m)</tt>.  (Unlike {@code pow}, this
1716      * method permits negative exponents.)
1717      *
1718      * @param  exponent the exponent.
1719      * @param  m the modulus.
1720      * @return <tt>this<sup>exponent</sup> mod m</tt>
1721      * @throws ArithmeticException {@code m} &le; 0 or the exponent is
1722      *         negative and this BigInteger is not <i>relatively
1723      *         prime</i> to {@code m}.
1724      * @see    #modInverse
1725      */
1726     public BigInteger modPow(BigInteger exponent, BigInteger m) {
1727         if (m.signum <= 0)
1728             throw new ArithmeticException("BigInteger: modulus not positive");
1729 
1730         // Trivial cases
1731         if (exponent.signum == 0)
1732             return (m.equals(ONE) ? ZERO : ONE);
1733 
1734         if (this.equals(ONE))
1735             return (m.equals(ONE) ? ZERO : ONE);
1736 
1737         if (this.equals(ZERO) && exponent.signum >= 0)
1738             return ZERO;
1739 
1740         if (this.equals(negConst[1]) && (!exponent.testBit(0)))
1741             return (m.equals(ONE) ? ZERO : ONE);
1742 
1743         boolean invertResult;
1744         if ((invertResult = (exponent.signum < 0)))
1745             exponent = exponent.negate();
1746 
1747         BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
1748                            ? this.mod(m) : this);
1749         BigInteger result;
1750         if (m.testBit(0)) { // odd modulus
1751             result = base.oddModPow(exponent, m);
1752         } else {
1753             /*
1754              * Even modulus.  Tear it into an "odd part" (m1) and power of two
1755              * (m2), exponentiate mod m1, manually exponentiate mod m2, and
1756              * use Chinese Remainder Theorem to combine results.
1757              */
1758 
1759             // Tear m apart into odd part (m1) and power of 2 (m2)
1760             int p = m.getLowestSetBit();   // Max pow of 2 that divides m
1761 
1762             BigInteger m1 = m.shiftRight(p);  // m/2**p
1763             BigInteger m2 = ONE.shiftLeft(p); // 2**p
1764 
1765             // Calculate new base from m1
1766             BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
1767                                 ? this.mod(m1) : this);
1768 
1769             // Caculate (base ** exponent) mod m1.
1770             BigInteger a1 = (m1.equals(ONE) ? ZERO :
1771                              base2.oddModPow(exponent, m1));
1772 
1773             // Calculate (this ** exponent) mod m2
1774             BigInteger a2 = base.modPow2(exponent, p);
1775 
1776             // Combine results using Chinese Remainder Theorem
1777             BigInteger y1 = m2.modInverse(m1);
1778             BigInteger y2 = m1.modInverse(m2);
1779 
1780             result = a1.multiply(m2).multiply(y1).add
1781                      (a2.multiply(m1).multiply(y2)).mod(m);
1782         }
1783 
1784         return (invertResult ? result.modInverse(m) : result);
1785     }
1786 
1787     static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
1788                                                 Integer.MAX_VALUE}; // Sentinel
1789 
1790     /**
1791      * Returns a BigInteger whose value is x to the power of y mod z.
1792      * Assumes: z is odd && x < z.
1793      */
1794     private BigInteger oddModPow(BigInteger y, BigInteger z) {
1795     /*
1796      * The algorithm is adapted from Colin Plumb's C library.
1797      *
1798      * The window algorithm:
1799      * The idea is to keep a running product of b1 = n^(high-order bits of exp)
1800      * and then keep appending exponent bits to it.  The following patterns
1801      * apply to a 3-bit window (k = 3):
1802      * To append   0: square
1803      * To append   1: square, multiply by n^1
1804      * To append  10: square, multiply by n^1, square
1805      * To append  11: square, square, multiply by n^3
1806      * To append 100: square, multiply by n^1, square, square
1807      * To append 101: square, square, square, multiply by n^5
1808      * To append 110: square, square, multiply by n^3, square
1809      * To append 111: square, square, square, multiply by n^7
1810      *
1811      * Since each pattern involves only one multiply, the longer the pattern
1812      * the better, except that a 0 (no multiplies) can be appended directly.
1813      * We precompute a table of odd powers of n, up to 2^k, and can then
1814      * multiply k bits of exponent at a time.  Actually, assuming random
1815      * exponents, there is on average one zero bit between needs to
1816      * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
1817      * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
1818      * you have to do one multiply per k+1 bits of exponent.
1819      *
1820      * The loop walks down the exponent, squaring the result buffer as
1821      * it goes.  There is a wbits+1 bit lookahead buffer, buf, that is
1822      * filled with the upcoming exponent bits.  (What is read after the
1823      * end of the exponent is unimportant, but it is filled with zero here.)
1824      * When the most-significant bit of this buffer becomes set, i.e.
1825      * (buf & tblmask) != 0, we have to decide what pattern to multiply
1826      * by, and when to do it.  We decide, remember to do it in future
1827      * after a suitable number of squarings have passed (e.g. a pattern
1828      * of "100" in the buffer requires that we multiply by n^1 immediately;
1829      * a pattern of "110" calls for multiplying by n^3 after one more
1830      * squaring), clear the buffer, and continue.
1831      *
1832      * When we start, there is one more optimization: the result buffer
1833      * is implcitly one, so squaring it or multiplying by it can be
1834      * optimized away.  Further, if we start with a pattern like "100"
1835      * in the lookahead window, rather than placing n into the buffer
1836      * and then starting to square it, we have already computed n^2
1837      * to compute the odd-powers table, so we can place that into
1838      * the buffer and save a squaring.
1839      *
1840      * This means that if you have a k-bit window, to compute n^z,
1841      * where z is the high k bits of the exponent, 1/2 of the time
1842      * it requires no squarings.  1/4 of the time, it requires 1
1843      * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
1844      * And the remaining 1/2^(k-1) of the time, the top k bits are a
1845      * 1 followed by k-1 0 bits, so it again only requires k-2
1846      * squarings, not k-1.  The average of these is 1.  Add that
1847      * to the one squaring we have to do to compute the table,
1848      * and you'll see that a k-bit window saves k-2 squarings
1849      * as well as reducing the multiplies.  (It actually doesn't
1850      * hurt in the case k = 1, either.)
1851      */
1852         // Special case for exponent of one
1853         if (y.equals(ONE))
1854             return this;
1855 
1856         // Special case for base of zero
1857         if (signum==0)
1858             return ZERO;
1859 
1860         int[] base = mag.clone();
1861         int[] exp = y.mag;
1862         int[] mod = z.mag;
1863         int modLen = mod.length;
1864 
1865         // Select an appropriate window size
1866         int wbits = 0;
1867         int ebits = bitLength(exp, exp.length);
1868         // if exponent is 65537 (0x10001), use minimum window size
1869         if ((ebits != 17) || (exp[0] != 65537)) {
1870             while (ebits > bnExpModThreshTable[wbits]) {
1871                 wbits++;
1872             }
1873         }
1874 
1875         // Calculate appropriate table size
1876         int tblmask = 1 << wbits;
1877 
1878         // Allocate table for precomputed odd powers of base in Montgomery form
1879         int[][] table = new int[tblmask][];
1880         for (int i=0; i<tblmask; i++)
1881             table[i] = new int[modLen];
1882 
1883         // Compute the modular inverse
1884         int inv = -MutableBigInteger.inverseMod32(mod[modLen-1]);
1885 
1886         // Convert base to Montgomery form
1887         int[] a = leftShift(base, base.length, modLen << 5);
1888 
1889         MutableBigInteger q = new MutableBigInteger(),
1890                           a2 = new MutableBigInteger(a),
1891                           b2 = new MutableBigInteger(mod);
1892 
1893         MutableBigInteger r= a2.divide(b2, q);
1894         table[0] = r.toIntArray();
1895 
1896         // Pad table[0] with leading zeros so its length is at least modLen
1897         if (table[0].length < modLen) {
1898            int offset = modLen - table[0].length;
1899            int[] t2 = new int[modLen];
1900            for (int i=0; i<table[0].length; i++)
1901                t2[i+offset] = table[0][i];
1902            table[0] = t2;
1903         }
1904 
1905         // Set b to the square of the base
1906         int[] b = squareToLen(table[0], modLen, null);
1907         b = montReduce(b, mod, modLen, inv);
1908 
1909         // Set t to high half of b
1910         int[] t = new int[modLen];
1911         for(int i=0; i<modLen; i++)
1912             t[i] = b[i];
1913 
1914         // Fill in the table with odd powers of the base
1915         for (int i=1; i<tblmask; i++) {
1916             int[] prod = multiplyToLen(t, modLen, table[i-1], modLen, null);
1917             table[i] = montReduce(prod, mod, modLen, inv);
1918         }
1919 
1920         // Pre load the window that slides over the exponent
1921         int bitpos = 1 << ((ebits-1) & (32-1));
1922 
1923         int buf = 0;
1924         int elen = exp.length;
1925         int eIndex = 0;
1926         for (int i = 0; i <= wbits; i++) {
1927             buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
1928             bitpos >>>= 1;
1929             if (bitpos == 0) {
1930                 eIndex++;
1931                 bitpos = 1 << (32-1);
1932                 elen--;
1933             }
1934         }
1935 
1936         int multpos = ebits;
1937 
1938         // The first iteration, which is hoisted out of the main loop
1939         ebits--;
1940         boolean isone = true;
1941 
1942         multpos = ebits - wbits;
1943         while ((buf & 1) == 0) {
1944             buf >>>= 1;
1945             multpos++;
1946         }
1947 
1948         int[] mult = table[buf >>> 1];
1949 
1950         buf = 0;
1951         if (multpos == ebits)
1952             isone = false;
1953 
1954         // The main loop
1955         while(true) {
1956             ebits--;
1957             // Advance the window
1958             buf <<= 1;
1959 
1960             if (elen != 0) {
1961                 buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
1962                 bitpos >>>= 1;
1963                 if (bitpos == 0) {
1964                     eIndex++;
1965                     bitpos = 1 << (32-1);
1966                     elen--;
1967                 }
1968             }
1969 
1970             // Examine the window for pending multiplies
1971             if ((buf & tblmask) != 0) {
1972                 multpos = ebits - wbits;
1973                 while ((buf & 1) == 0) {
1974                     buf >>>= 1;
1975                     multpos++;
1976                 }
1977                 mult = table[buf >>> 1];
1978                 buf = 0;
1979             }
1980 
1981             // Perform multiply
1982             if (ebits == multpos) {
1983                 if (isone) {
1984                     b = mult.clone();
1985                     isone = false;
1986                 } else {
1987                     t = b;
1988                     a = multiplyToLen(t, modLen, mult, modLen, a);
1989                     a = montReduce(a, mod, modLen, inv);
1990                     t = a; a = b; b = t;
1991                 }
1992             }
1993 
1994             // Check if done
1995             if (ebits == 0)
1996                 break;
1997 
1998             // Square the input
1999             if (!isone) {
2000                 t = b;
2001                 a = squareToLen(t, modLen, a);
2002                 a = montReduce(a, mod, modLen, inv);
2003                 t = a; a = b; b = t;
2004             }
2005         }
2006 
2007         // Convert result out of Montgomery form and return
2008         int[] t2 = new int[2*modLen];
2009         for(int i=0; i<modLen; i++)
2010             t2[i+modLen] = b[i];
2011 
2012         b = montReduce(t2, mod, modLen, inv);
2013 
2014         t2 = new int[modLen];
2015         for(int i=0; i<modLen; i++)
2016             t2[i] = b[i];
2017 
2018         return new BigInteger(1, t2);
2019     }
2020 
2021     /**
2022      * Montgomery reduce n, modulo mod.  This reduces modulo mod and divides
2023      * by 2^(32*mlen). Adapted from Colin Plumb's C library.
2024      */
2025     private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
2026         int c=0;
2027         int len = mlen;
2028         int offset=0;
2029 
2030         do {
2031             int nEnd = n[n.length-1-offset];
2032             int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
2033             c += addOne(n, offset, mlen, carry);
2034             offset++;
2035         } while(--len > 0);
2036 
2037         while(c>0)
2038             c += subN(n, mod, mlen);
2039 
2040         while (intArrayCmpToLen(n, mod, mlen) >= 0)
2041             subN(n, mod, mlen);
2042 
2043         return n;
2044     }
2045 
2046 
2047     /*
2048      * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
2049      * equal to, or greater than arg2 up to length len.
2050      */
2051     private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
2052         for (int i=0; i<len; i++) {
2053             long b1 = arg1[i] & LONG_MASK;
2054             long b2 = arg2[i] & LONG_MASK;
2055             if (b1 < b2)
2056                 return -1;
2057             if (b1 > b2)
2058                 return 1;
2059         }
2060         return 0;
2061     }
2062 
2063     /**
2064      * Subtracts two numbers of same length, returning borrow.
2065      */
2066     private static int subN(int[] a, int[] b, int len) {
2067         long sum = 0;
2068 
2069         while(--len >= 0) {
2070             sum = (a[len] & LONG_MASK) -
2071                  (b[len] & LONG_MASK) + (sum >> 32);
2072             a[len] = (int)sum;
2073         }
2074 
2075         return (int)(sum >> 32);
2076     }
2077 
2078     /**
2079      * Multiply an array by one word k and add to result, return the carry
2080      */
2081     static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
2082         long kLong = k & LONG_MASK;
2083         long carry = 0;
2084 
2085         offset = out.length-offset - 1;
2086         for (int j=len-1; j >= 0; j--) {
2087             long product = (in[j] & LONG_MASK) * kLong +
2088                            (out[offset] & LONG_MASK) + carry;
2089             out[offset--] = (int)product;
2090             carry = product >>> 32;
2091         }
2092         return (int)carry;
2093     }
2094 
2095     /**
2096      * Add one word to the number a mlen words into a. Return the resulting
2097      * carry.
2098      */
2099     static int addOne(int[] a, int offset, int mlen, int carry) {
2100         offset = a.length-1-mlen-offset;
2101         long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
2102 
2103         a[offset] = (int)t;
2104         if ((t >>> 32) == 0)
2105             return 0;
2106         while (--mlen >= 0) {
2107             if (--offset < 0) { // Carry out of number
2108                 return 1;
2109             } else {
2110                 a[offset]++;
2111                 if (a[offset] != 0)
2112                     return 0;
2113             }
2114         }
2115         return 1;
2116     }
2117 
2118     /**
2119      * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
2120      */
2121     private BigInteger modPow2(BigInteger exponent, int p) {
2122         /*
2123          * Perform exponentiation using repeated squaring trick, chopping off
2124          * high order bits as indicated by modulus.
2125          */
2126         BigInteger result = valueOf(1);
2127         BigInteger baseToPow2 = this.mod2(p);
2128         int expOffset = 0;
2129 
2130         int limit = exponent.bitLength();
2131 
2132         if (this.testBit(0))
2133            limit = (p-1) < limit ? (p-1) : limit;
2134 
2135         while (expOffset < limit) {
2136             if (exponent.testBit(expOffset))
2137                 result = result.multiply(baseToPow2).mod2(p);
2138             expOffset++;
2139             if (expOffset < limit)
2140                 baseToPow2 = baseToPow2.square().mod2(p);
2141         }
2142 
2143         return result;
2144     }
2145 
2146     /**
2147      * Returns a BigInteger whose value is this mod(2**p).
2148      * Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
2149      */
2150     private BigInteger mod2(int p) {
2151         if (bitLength() <= p)
2152             return this;
2153 
2154         // Copy remaining ints of mag
2155         int numInts = (p + 31) >>> 5;
2156         int[] mag = new int[numInts];
2157         for (int i=0; i<numInts; i++)
2158             mag[i] = this.mag[i + (this.mag.length - numInts)];
2159 
2160         // Mask out any excess bits
2161         int excessBits = (numInts << 5) - p;
2162         mag[0] &= (1L << (32-excessBits)) - 1;
2163 
2164         return (mag[0]==0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
2165     }
2166 
2167     /**
2168      * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}.
2169      *
2170      * @param  m the modulus.
2171      * @return {@code this}<sup>-1</sup> {@code mod m}.
2172      * @throws ArithmeticException {@code  m} &le; 0, or this BigInteger
2173      *         has no multiplicative inverse mod m (that is, this BigInteger
2174      *         is not <i>relatively prime</i> to m).
2175      */
2176     public BigInteger modInverse(BigInteger m) {
2177         if (m.signum != 1)
2178             throw new ArithmeticException("BigInteger: modulus not positive");
2179 
2180         if (m.equals(ONE))
2181             return ZERO;
2182 
2183         // Calculate (this mod m)
2184         BigInteger modVal = this;
2185         if (signum < 0 || (this.compareMagnitude(m) >= 0))
2186             modVal = this.mod(m);
2187 
2188         if (modVal.equals(ONE))
2189             return ONE;
2190 
2191         MutableBigInteger a = new MutableBigInteger(modVal);
2192         MutableBigInteger b = new MutableBigInteger(m);
2193 
2194         MutableBigInteger result = a.mutableModInverse(b);
2195         return result.toBigInteger(1);
2196     }
2197 
2198     // Shift Operations
2199 
2200     /**
2201      * Returns a BigInteger whose value is {@code (this << n)}.
2202      * The shift distance, {@code n}, may be negative, in which case
2203      * this method performs a right shift.
2204      * (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.)
2205      *
2206      * @param  n shift distance, in bits.
2207      * @return {@code this << n}
2208      * @throws ArithmeticException if the shift distance is {@code
2209      *         Integer.MIN_VALUE}.
2210      * @see #shiftRight
2211      */
2212     public BigInteger shiftLeft(int n) {
2213         if (signum == 0)
2214             return ZERO;
2215         if (n==0)
2216             return this;
2217         if (n<0) {
2218             if (n == Integer.MIN_VALUE) {
2219                 throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported.");
2220             } else {
2221                 return shiftRight(-n);
2222             }
2223         }
2224         int[] newMag = shiftLeft(mag,n);
2225 
2226         return new BigInteger(newMag, signum);
2227     }
2228 
2229     private static int[] shiftLeft(int[] mag, int n) {
2230         int nInts = n >>> 5;
2231         int nBits = n & 0x1f;
2232         int magLen = mag.length;
2233         int newMag[] = null;
2234 
2235         if (nBits == 0) {
2236             newMag = new int[magLen + nInts];
2237             for (int i=0; i<magLen; i++)
2238                 newMag[i] = mag[i];
2239         } else {
2240             int i = 0;
2241             int nBits2 = 32 - nBits;
2242             int highBits = mag[0] >>> nBits2;
2243             if (highBits != 0) {
2244                 newMag = new int[magLen + nInts + 1];
2245                 newMag[i++] = highBits;
2246             } else {
2247                 newMag = new int[magLen + nInts];
2248             }
2249             int j=0;
2250             while (j < magLen-1)
2251                 newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
2252             newMag[i] = mag[j] << nBits;
2253         }
2254         return newMag;
2255     }
2256 
2257     /**
2258      * Returns a BigInteger whose value is {@code (this >> n)}.  Sign
2259      * extension is performed.  The shift distance, {@code n}, may be
2260      * negative, in which case this method performs a left shift.
2261      * (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.)
2262      *
2263      * @param  n shift distance, in bits.
2264      * @return {@code this >> n}
2265      * @throws ArithmeticException if the shift distance is {@code
2266      *         Integer.MIN_VALUE}.
2267      * @see #shiftLeft
2268      */
2269     public BigInteger shiftRight(int n) {
2270         if (n==0)
2271             return this;
2272         if (n<0) {
2273             if (n == Integer.MIN_VALUE) {
2274                 throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported.");
2275             } else {
2276                 return shiftLeft(-n);
2277             }
2278         }
2279 
2280         int nInts = n >>> 5;
2281         int nBits = n & 0x1f;
2282         int magLen = mag.length;
2283         int newMag[] = null;
2284 
2285         // Special case: entire contents shifted off the end
2286         if (nInts >= magLen)
2287             return (signum >= 0 ? ZERO : negConst[1]);
2288 
2289         if (nBits == 0) {
2290             int newMagLen = magLen - nInts;
2291             newMag = new int[newMagLen];
2292             for (int i=0; i<newMagLen; i++)
2293                 newMag[i] = mag[i];
2294         } else {
2295             int i = 0;
2296             int highBits = mag[0] >>> nBits;
2297             if (highBits != 0) {
2298                 newMag = new int[magLen - nInts];
2299                 newMag[i++] = highBits;
2300             } else {
2301                 newMag = new int[magLen - nInts -1];
2302             }
2303 
2304             int nBits2 = 32 - nBits;
2305             int j=0;
2306             while (j < magLen - nInts - 1)
2307                 newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
2308         }
2309 
2310         if (signum < 0) {
2311             // Find out whether any one-bits were shifted off the end.
2312             boolean onesLost = false;
2313             for (int i=magLen-1, j=magLen-nInts; i>=j && !onesLost; i--)
2314                 onesLost = (mag[i] != 0);
2315             if (!onesLost && nBits != 0)
2316                 onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
2317 
2318             if (onesLost)
2319                 newMag = javaIncrement(newMag);
2320         }
2321 
2322         return new BigInteger(newMag, signum);
2323     }
2324 
2325     int[] javaIncrement(int[] val) {
2326         int lastSum = 0;
2327         for (int i=val.length-1;  i >= 0 && lastSum == 0; i--)
2328             lastSum = (val[i] += 1);
2329         if (lastSum == 0) {
2330             val = new int[val.length+1];
2331             val[0] = 1;
2332         }
2333         return val;
2334     }
2335 
2336     // Bitwise Operations
2337 
2338     /**
2339      * Returns a BigInteger whose value is {@code (this & val)}.  (This
2340      * method returns a negative BigInteger if and only if this and val are
2341      * both negative.)
2342      *
2343      * @param val value to be AND'ed with this BigInteger.
2344      * @return {@code this & val}
2345      */
2346     public BigInteger and(BigInteger val) {
2347         int[] result = new int[Math.max(intLength(), val.intLength())];
2348         for (int i=0; i<result.length; i++)
2349             result[i] = (getInt(result.length-i-1)
2350                          & val.getInt(result.length-i-1));
2351 
2352         return valueOf(result);
2353     }
2354 
2355     /**
2356      * Returns a BigInteger whose value is {@code (this | val)}.  (This method
2357      * returns a negative BigInteger if and only if either this or val is
2358      * negative.)
2359      *
2360      * @param val value to be OR'ed with this BigInteger.
2361      * @return {@code this | val}
2362      */
2363     public BigInteger or(BigInteger val) {
2364         int[] result = new int[Math.max(intLength(), val.intLength())];
2365         for (int i=0; i<result.length; i++)
2366             result[i] = (getInt(result.length-i-1)
2367                          | val.getInt(result.length-i-1));
2368 
2369         return valueOf(result);
2370     }
2371 
2372     /**
2373      * Returns a BigInteger whose value is {@code (this ^ val)}.  (This method
2374      * returns a negative BigInteger if and only if exactly one of this and
2375      * val are negative.)
2376      *
2377      * @param val value to be XOR'ed with this BigInteger.
2378      * @return {@code this ^ val}
2379      */
2380     public BigInteger xor(BigInteger val) {
2381         int[] result = new int[Math.max(intLength(), val.intLength())];
2382         for (int i=0; i<result.length; i++)
2383             result[i] = (getInt(result.length-i-1)
2384                          ^ val.getInt(result.length-i-1));
2385 
2386         return valueOf(result);
2387     }
2388 
2389     /**
2390      * Returns a BigInteger whose value is {@code (~this)}.  (This method
2391      * returns a negative value if and only if this BigInteger is
2392      * non-negative.)
2393      *
2394      * @return {@code ~this}
2395      */
2396     public BigInteger not() {
2397         int[] result = new int[intLength()];
2398         for (int i=0; i<result.length; i++)
2399             result[i] = ~getInt(result.length-i-1);
2400 
2401         return valueOf(result);
2402     }
2403 
2404     /**
2405      * Returns a BigInteger whose value is {@code (this & ~val)}.  This
2406      * method, which is equivalent to {@code and(val.not())}, is provided as
2407      * a convenience for masking operations.  (This method returns a negative
2408      * BigInteger if and only if {@code this} is negative and {@code val} is
2409      * positive.)
2410      *
2411      * @param val value to be complemented and AND'ed with this BigInteger.
2412      * @return {@code this & ~val}
2413      */
2414     public BigInteger andNot(BigInteger val) {
2415         int[] result = new int[Math.max(intLength(), val.intLength())];
2416         for (int i=0; i<result.length; i++)
2417             result[i] = (getInt(result.length-i-1)
2418                          & ~val.getInt(result.length-i-1));
2419 
2420         return valueOf(result);
2421     }
2422 
2423 
2424     // Single Bit Operations
2425 
2426     /**
2427      * Returns {@code true} if and only if the designated bit is set.
2428      * (Computes {@code ((this & (1<<n)) != 0)}.)
2429      *
2430      * @param  n index of bit to test.
2431      * @return {@code true} if and only if the designated bit is set.
2432      * @throws ArithmeticException {@code n} is negative.
2433      */
2434     public boolean testBit(int n) {
2435         if (n<0)
2436             throw new ArithmeticException("Negative bit address");
2437 
2438         return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
2439     }
2440 
2441     /**
2442      * Returns a BigInteger whose value is equivalent to this BigInteger
2443      * with the designated bit set.  (Computes {@code (this | (1<<n))}.)
2444      *
2445      * @param  n index of bit to set.
2446      * @return {@code this | (1<<n)}
2447      * @throws ArithmeticException {@code n} is negative.
2448      */
2449     public BigInteger setBit(int n) {
2450         if (n<0)
2451             throw new ArithmeticException("Negative bit address");
2452 
2453         int intNum = n >>> 5;
2454         int[] result = new int[Math.max(intLength(), intNum+2)];
2455 
2456         for (int i=0; i<result.length; i++)
2457             result[result.length-i-1] = getInt(i);
2458 
2459         result[result.length-intNum-1] |= (1 << (n & 31));
2460 
2461         return valueOf(result);
2462     }
2463 
2464     /**
2465      * Returns a BigInteger whose value is equivalent to this BigInteger
2466      * with the designated bit cleared.
2467      * (Computes {@code (this & ~(1<<n))}.)
2468      *
2469      * @param  n index of bit to clear.
2470      * @return {@code this & ~(1<<n)}
2471      * @throws ArithmeticException {@code n} is negative.
2472      */
2473     public BigInteger clearBit(int n) {
2474         if (n<0)
2475             throw new ArithmeticException("Negative bit address");
2476 
2477         int intNum = n >>> 5;
2478         int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];
2479 
2480         for (int i=0; i<result.length; i++)
2481             result[result.length-i-1] = getInt(i);
2482 
2483         result[result.length-intNum-1] &= ~(1 << (n & 31));
2484 
2485         return valueOf(result);
2486     }
2487 
2488     /**
2489      * Returns a BigInteger whose value is equivalent to this BigInteger
2490      * with the designated bit flipped.
2491      * (Computes {@code (this ^ (1<<n))}.)
2492      *
2493      * @param  n index of bit to flip.
2494      * @return {@code this ^ (1<<n)}
2495      * @throws ArithmeticException {@code n} is negative.
2496      */
2497     public BigInteger flipBit(int n) {
2498         if (n<0)
2499             throw new ArithmeticException("Negative bit address");
2500 
2501         int intNum = n >>> 5;
2502         int[] result = new int[Math.max(intLength(), intNum+2)];
2503 
2504         for (int i=0; i<result.length; i++)
2505             result[result.length-i-1] = getInt(i);
2506 
2507         result[result.length-intNum-1] ^= (1 << (n & 31));
2508 
2509         return valueOf(result);
2510     }
2511 
2512     /**
2513      * Returns the index of the rightmost (lowest-order) one bit in this
2514      * BigInteger (the number of zero bits to the right of the rightmost
2515      * one bit).  Returns -1 if this BigInteger contains no one bits.
2516      * (Computes {@code (this==0? -1 : log2(this & -this))}.)
2517      *
2518      * @return index of the rightmost one bit in this BigInteger.
2519      */
2520     public int getLowestSetBit() {
2521         @SuppressWarnings("deprecation") int lsb = lowestSetBit - 2;
2522         if (lsb == -2) {  // lowestSetBit not initialized yet
2523             lsb = 0;
2524             if (signum == 0) {
2525                 lsb -= 1;
2526             } else {
2527                 // Search for lowest order nonzero int
2528                 int i,b;
2529                 for (i=0; (b = getInt(i))==0; i++)
2530                     ;
2531                 lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
2532             }
2533             lowestSetBit = lsb + 2;
2534         }
2535         return lsb;
2536     }
2537 
2538 
2539     // Miscellaneous Bit Operations
2540 
2541     /**
2542      * Returns the number of bits in the minimal two's-complement
2543      * representation of this BigInteger, <i>excluding</i> a sign bit.
2544      * For positive BigIntegers, this is equivalent to the number of bits in
2545      * the ordinary binary representation.  (Computes
2546      * {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
2547      *
2548      * @return number of bits in the minimal two's-complement
2549      *         representation of this BigInteger, <i>excluding</i> a sign bit.
2550      */
2551     public int bitLength() {
2552         @SuppressWarnings("deprecation") int n = bitLength - 1;
2553         if (n == -1) { // bitLength not initialized yet
2554             int[] m = mag;
2555             int len = m.length;
2556             if (len == 0) {
2557                 n = 0; // offset by one to initialize
2558             }  else {
2559                 // Calculate the bit length of the magnitude
2560                 int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
2561                  if (signum < 0) {
2562                      // Check if magnitude is a power of two
2563                      boolean pow2 = (Integer.bitCount(mag[0]) == 1);
2564                      for(int i=1; i< len && pow2; i++)
2565                          pow2 = (mag[i] == 0);
2566 
2567                      n = (pow2 ? magBitLength -1 : magBitLength);
2568                  } else {
2569                      n = magBitLength;
2570                  }
2571             }
2572             bitLength = n + 1;
2573         }
2574         return n;
2575     }
2576 
2577     /**
2578      * Returns the number of bits in the two's complement representation
2579      * of this BigInteger that differ from its sign bit.  This method is
2580      * useful when implementing bit-vector style sets atop BigIntegers.
2581      *
2582      * @return number of bits in the two's complement representation
2583      *         of this BigInteger that differ from its sign bit.
2584      */
2585     public int bitCount() {
2586         @SuppressWarnings("deprecation") int bc = bitCount - 1;
2587         if (bc == -1) {  // bitCount not initialized yet
2588             bc = 0;      // offset by one to initialize
2589             // Count the bits in the magnitude
2590             for (int i=0; i<mag.length; i++)
2591                 bc += Integer.bitCount(mag[i]);
2592             if (signum < 0) {
2593                 // Count the trailing zeros in the magnitude
2594                 int magTrailingZeroCount = 0, j;
2595                 for (j=mag.length-1; mag[j]==0; j--)
2596                     magTrailingZeroCount += 32;
2597                 magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
2598                 bc += magTrailingZeroCount - 1;
2599             }
2600             bitCount = bc + 1;
2601         }
2602         return bc;
2603     }
2604 
2605     // Primality Testing
2606 
2607     /**
2608      * Returns {@code true} if this BigInteger is probably prime,
2609      * {@code false} if it's definitely composite.  If
2610      * {@code certainty} is &le; 0, {@code true} is
2611      * returned.
2612      *
2613      * @param  certainty a measure of the uncertainty that the caller is
2614      *         willing to tolerate: if the call returns {@code true}
2615      *         the probability that this BigInteger is prime exceeds
2616      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
2617      *         this method is proportional to the value of this parameter.
2618      * @return {@code true} if this BigInteger is probably prime,
2619      *         {@code false} if it's definitely composite.
2620      */
2621     public boolean isProbablePrime(int certainty) {
2622         if (certainty <= 0)
2623             return true;
2624         BigInteger w = this.abs();
2625         if (w.equals(TWO))
2626             return true;
2627         if (!w.testBit(0) || w.equals(ONE))
2628             return false;
2629 
2630         return w.primeToCertainty(certainty, null);
2631     }
2632 
2633     // Comparison Operations
2634 
2635     /**
2636      * Compares this BigInteger with the specified BigInteger.  This
2637      * method is provided in preference to individual methods for each
2638      * of the six boolean comparison operators ({@literal <}, ==,
2639      * {@literal >}, {@literal >=}, !=, {@literal <=}).  The suggested
2640      * idiom for performing these comparisons is: {@code
2641      * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
2642      * &lt;<i>op</i>&gt; is one of the six comparison operators.
2643      *
2644      * @param  val BigInteger to which this BigInteger is to be compared.
2645      * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
2646      *         to, or greater than {@code val}.
2647      */
2648     public int compareTo(BigInteger val) {
2649         if (signum == val.signum) {
2650             switch (signum) {
2651             case 1:
2652                 return compareMagnitude(val);
2653             case -1:
2654                 return val.compareMagnitude(this);
2655             default:
2656                 return 0;
2657             }
2658         }
2659         return signum > val.signum ? 1 : -1;
2660     }
2661 
2662     /**
2663      * Compares the magnitude array of this BigInteger with the specified
2664      * BigInteger's. This is the version of compareTo ignoring sign.
2665      *
2666      * @param val BigInteger whose magnitude array to be compared.
2667      * @return -1, 0 or 1 as this magnitude array is less than, equal to or
2668      *         greater than the magnitude aray for the specified BigInteger's.
2669      */
2670     final int compareMagnitude(BigInteger val) {
2671         int[] m1 = mag;
2672         int len1 = m1.length;
2673         int[] m2 = val.mag;
2674         int len2 = m2.length;
2675         if (len1 < len2)
2676             return -1;
2677         if (len1 > len2)
2678             return 1;
2679         for (int i = 0; i < len1; i++) {
2680             int a = m1[i];
2681             int b = m2[i];
2682             if (a != b)
2683                 return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
2684         }
2685         return 0;
2686     }
2687 
2688     /**
2689      * Version of compareMagnitude that compares magnitude with long value.
2690      * val can't be Long.MIN_VALUE.
2691      */
2692     final int compareMagnitude(long val) {
2693         assert val != Long.MIN_VALUE;
2694         int[] m1 = mag;
2695         int len = m1.length;
2696         if(len > 2) {
2697             return 1;
2698         }
2699         if (val < 0) {
2700             val = -val;
2701         }
2702         int highWord = (int)(val >>> 32);
2703         if (highWord==0) {
2704             if (len < 1)
2705                 return -1;
2706             if (len > 1)
2707                 return 1;
2708             int a = m1[0];
2709             int b = (int)val;
2710             if (a != b) {
2711                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
2712             }
2713             return 0;
2714         } else {
2715             if (len < 2)
2716                 return -1;
2717             int a = m1[0];
2718             int b = highWord;
2719             if (a != b) {
2720                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
2721             }
2722             a = m1[1];
2723             b = (int)val;
2724             if (a != b) {
2725                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
2726             }
2727             return 0;
2728         }
2729     }
2730 
2731     /**
2732      * Compares this BigInteger with the specified Object for equality.
2733      *
2734      * @param  x Object to which this BigInteger is to be compared.
2735      * @return {@code true} if and only if the specified Object is a
2736      *         BigInteger whose value is numerically equal to this BigInteger.
2737      */
2738     public boolean equals(Object x) {
2739         // This test is just an optimization, which may or may not help
2740         if (x == this)
2741             return true;
2742 
2743         if (!(x instanceof BigInteger))
2744             return false;
2745 
2746         BigInteger xInt = (BigInteger) x;
2747         if (xInt.signum != signum)
2748             return false;
2749 
2750         int[] m = mag;
2751         int len = m.length;
2752         int[] xm = xInt.mag;
2753         if (len != xm.length)
2754             return false;
2755 
2756         for (int i = 0; i < len; i++)
2757             if (xm[i] != m[i])
2758                 return false;
2759 
2760         return true;
2761     }
2762 
2763     /**
2764      * Returns the minimum of this BigInteger and {@code val}.
2765      *
2766      * @param  val value with which the minimum is to be computed.
2767      * @return the BigInteger whose value is the lesser of this BigInteger and
2768      *         {@code val}.  If they are equal, either may be returned.
2769      */
2770     public BigInteger min(BigInteger val) {
2771         return (compareTo(val)<0 ? this : val);
2772     }
2773 
2774     /**
2775      * Returns the maximum of this BigInteger and {@code val}.
2776      *
2777      * @param  val value with which the maximum is to be computed.
2778      * @return the BigInteger whose value is the greater of this and
2779      *         {@code val}.  If they are equal, either may be returned.
2780      */
2781     public BigInteger max(BigInteger val) {
2782         return (compareTo(val)>0 ? this : val);
2783     }
2784 
2785 
2786     // Hash Function
2787 
2788     /**
2789      * Returns the hash code for this BigInteger.
2790      *
2791      * @return hash code for this BigInteger.
2792      */
2793     public int hashCode() {
2794         int hashCode = 0;
2795 
2796         for (int i=0; i<mag.length; i++)
2797             hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
2798 
2799         return hashCode * signum;
2800     }
2801 
2802     /**
2803      * Returns the String representation of this BigInteger in the
2804      * given radix.  If the radix is outside the range from {@link
2805      * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
2806      * it will default to 10 (as is the case for
2807      * {@code Integer.toString}).  The digit-to-character mapping
2808      * provided by {@code Character.forDigit} is used, and a minus
2809      * sign is prepended if appropriate.  (This representation is
2810      * compatible with the {@link #BigInteger(String, int) (String,
2811      * int)} constructor.)
2812      *
2813      * @param  radix  radix of the String representation.
2814      * @return String representation of this BigInteger in the given radix.
2815      * @see    Integer#toString
2816      * @see    Character#forDigit
2817      * @see    #BigInteger(java.lang.String, int)
2818      */
2819     public String toString(int radix) {
2820         if (signum == 0)
2821             return "0";
2822         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
2823             radix = 10;
2824 
2825         // Compute upper bound on number of digit groups and allocate space
2826         int maxNumDigitGroups = (4*mag.length + 6)/7;
2827         String digitGroup[] = new String[maxNumDigitGroups];
2828 
2829         // Translate number to string, a digit group at a time
2830         BigInteger tmp = this.abs();
2831         int numGroups = 0;
2832         while (tmp.signum != 0) {
2833             BigInteger d = longRadix[radix];
2834 
2835             MutableBigInteger q = new MutableBigInteger(),
2836                               a = new MutableBigInteger(tmp.mag),
2837                               b = new MutableBigInteger(d.mag);
2838             MutableBigInteger r = a.divide(b, q);
2839             BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
2840             BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
2841 
2842             digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
2843             tmp = q2;
2844         }
2845 
2846         // Put sign (if any) and first digit group into result buffer
2847         StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
2848         if (signum<0)
2849             buf.append('-');
2850         buf.append(digitGroup[numGroups-1]);
2851 
2852         // Append remaining digit groups padded with leading zeros
2853         for (int i=numGroups-2; i>=0; i--) {
2854             // Prepend (any) leading zeros for this digit group
2855             int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
2856             if (numLeadingZeros != 0)
2857                 buf.append(zeros[numLeadingZeros]);
2858             buf.append(digitGroup[i]);
2859         }
2860         return buf.toString();
2861     }
2862 
2863     /* zero[i] is a string of i consecutive zeros. */
2864     private static String zeros[] = new String[64];
2865     static {
2866         zeros[63] =
2867             "000000000000000000000000000000000000000000000000000000000000000";
2868         for (int i=0; i<63; i++)
2869             zeros[i] = zeros[63].substring(0, i);
2870     }
2871 
2872     /**
2873      * Returns the decimal String representation of this BigInteger.
2874      * The digit-to-character mapping provided by
2875      * {@code Character.forDigit} is used, and a minus sign is
2876      * prepended if appropriate.  (This representation is compatible
2877      * with the {@link #BigInteger(String) (String)} constructor, and
2878      * allows for String concatenation with Java's + operator.)
2879      *
2880      * @return decimal String representation of this BigInteger.
2881      * @see    Character#forDigit
2882      * @see    #BigInteger(java.lang.String)
2883      */
2884     public String toString() {
2885         return toString(10);
2886     }
2887 
2888     /**
2889      * Returns a byte array containing the two's-complement
2890      * representation of this BigInteger.  The byte array will be in
2891      * <i>big-endian</i> byte-order: the most significant byte is in
2892      * the zeroth element.  The array will contain the minimum number
2893      * of bytes required to represent this BigInteger, including at
2894      * least one sign bit, which is {@code (ceil((this.bitLength() +
2895      * 1)/8))}.  (This representation is compatible with the
2896      * {@link #BigInteger(byte[]) (byte[])} constructor.)
2897      *
2898      * @return a byte array containing the two's-complement representation of
2899      *         this BigInteger.
2900      * @see    #BigInteger(byte[])
2901      */
2902     public byte[] toByteArray() {
2903         int byteLen = bitLength()/8 + 1;
2904         byte[] byteArray = new byte[byteLen];
2905 
2906         for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i>=0; i--) {
2907             if (bytesCopied == 4) {
2908                 nextInt = getInt(intIndex++);
2909                 bytesCopied = 1;
2910             } else {
2911                 nextInt >>>= 8;
2912                 bytesCopied++;
2913             }
2914             byteArray[i] = (byte)nextInt;
2915         }
2916         return byteArray;
2917     }
2918 
2919     /**
2920      * Converts this BigInteger to an {@code int}.  This
2921      * conversion is analogous to a
2922      * <i>narrowing primitive conversion</i> from {@code long} to
2923      * {@code int} as defined in section 5.1.3 of
2924      * <cite>The Java&trade; Language Specification</cite>:
2925      * if this BigInteger is too big to fit in an
2926      * {@code int}, only the low-order 32 bits are returned.
2927      * Note that this conversion can lose information about the
2928      * overall magnitude of the BigInteger value as well as return a
2929      * result with the opposite sign.
2930      *
2931      * @return this BigInteger converted to an {@code int}.
2932      */
2933     public int intValue() {
2934         int result = 0;
2935         result = getInt(0);
2936         return result;
2937     }
2938 
2939     /**
2940      * Converts this BigInteger to a {@code long}.  This
2941      * conversion is analogous to a
2942      * <i>narrowing primitive conversion</i> from {@code long} to
2943      * {@code int} as defined in section 5.1.3 of
2944      * <cite>The Java&trade; Language Specification</cite>:
2945      * if this BigInteger is too big to fit in a
2946      * {@code long}, only the low-order 64 bits are returned.
2947      * Note that this conversion can lose information about the
2948      * overall magnitude of the BigInteger value as well as return a
2949      * result with the opposite sign.
2950      *
2951      * @return this BigInteger converted to a {@code long}.
2952      */
2953     public long longValue() {
2954         long result = 0;
2955 
2956         for (int i=1; i>=0; i--)
2957             result = (result << 32) + (getInt(i) & LONG_MASK);
2958         return result;
2959     }
2960 
2961     /**
2962      * Converts this BigInteger to a {@code float}.  This
2963      * conversion is similar to the
2964      * <i>narrowing primitive conversion</i> from {@code double} to
2965      * {@code float} as defined in section 5.1.3 of
2966      * <cite>The Java&trade; Language Specification</cite>:
2967      * if this BigInteger has too great a magnitude
2968      * to represent as a {@code float}, it will be converted to
2969      * {@link Float#NEGATIVE_INFINITY} or {@link
2970      * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
2971      * the return value is finite, this conversion can lose
2972      * information about the precision of the BigInteger value.
2973      *
2974      * @return this BigInteger converted to a {@code float}.
2975      */
2976     public float floatValue() {
2977         // Somewhat inefficient, but guaranteed to work.
2978         return Float.parseFloat(this.toString());
2979     }
2980 
2981     /**
2982      * Converts this BigInteger to a {@code double}.  This
2983      * conversion is similar to the
2984      * <i>narrowing primitive conversion</i> from {@code double} to
2985      * {@code float} as defined in section 5.1.3 of
2986      * <cite>The Java&trade; Language Specification</cite>:
2987      * if this BigInteger has too great a magnitude
2988      * to represent as a {@code double}, it will be converted to
2989      * {@link Double#NEGATIVE_INFINITY} or {@link
2990      * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
2991      * the return value is finite, this conversion can lose
2992      * information about the precision of the BigInteger value.
2993      *
2994      * @return this BigInteger converted to a {@code double}.
2995      */
2996     public double doubleValue() {
2997         // Somewhat inefficient, but guaranteed to work.
2998         return Double.parseDouble(this.toString());
2999     }
3000 
3001     /**
3002      * Returns a copy of the input array stripped of any leading zero bytes.
3003      */
3004     private static int[] stripLeadingZeroInts(int val[]) {
3005         int vlen = val.length;
3006         int keep;
3007 
3008         // Find first nonzero byte
3009         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
3010             ;
3011         return java.util.Arrays.copyOfRange(val, keep, vlen);
3012     }
3013 
3014     /**
3015      * Returns the input array stripped of any leading zero bytes.
3016      * Since the source is trusted the copying may be skipped.
3017      */
3018     private static int[] trustedStripLeadingZeroInts(int val[]) {
3019         int vlen = val.length;
3020         int keep;
3021 
3022         // Find first nonzero byte
3023         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
3024             ;
3025         return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
3026     }
3027 
3028     /**
3029      * Returns a copy of the input array stripped of any leading zero bytes.
3030      */
3031     private static int[] stripLeadingZeroBytes(byte a[]) {
3032         int byteLength = a.length;
3033         int keep;
3034 
3035         // Find first nonzero byte
3036         for (keep = 0; keep < byteLength && a[keep]==0; keep++)
3037             ;
3038 
3039         // Allocate new array and copy relevant part of input array
3040         int intLength = ((byteLength - keep) + 3) >>> 2;
3041         int[] result = new int[intLength];
3042         int b = byteLength - 1;
3043         for (int i = intLength-1; i >= 0; i--) {
3044             result[i] = a[b--] & 0xff;
3045             int bytesRemaining = b - keep + 1;
3046             int bytesToTransfer = Math.min(3, bytesRemaining);
3047             for (int j=8; j <= (bytesToTransfer << 3); j += 8)
3048                 result[i] |= ((a[b--] & 0xff) << j);
3049         }
3050         return result;
3051     }
3052 
3053     /**
3054      * Takes an array a representing a negative 2's-complement number and
3055      * returns the minimal (no leading zero bytes) unsigned whose value is -a.
3056      */
3057     private static int[] makePositive(byte a[]) {
3058         int keep, k;
3059         int byteLength = a.length;
3060 
3061         // Find first non-sign (0xff) byte of input
3062         for (keep=0; keep<byteLength && a[keep]==-1; keep++)
3063             ;
3064 
3065 
3066         /* Allocate output array.  If all non-sign bytes are 0x00, we must
3067          * allocate space for one extra output byte. */
3068         for (k=keep; k<byteLength && a[k]==0; k++)
3069             ;
3070 
3071         int extraByte = (k==byteLength) ? 1 : 0;
3072         int intLength = ((byteLength - keep + extraByte) + 3)/4;
3073         int result[] = new int[intLength];
3074 
3075         /* Copy one's complement of input into output, leaving extra
3076          * byte (if it exists) == 0x00 */
3077         int b = byteLength - 1;
3078         for (int i = intLength-1; i >= 0; i--) {
3079             result[i] = a[b--] & 0xff;
3080             int numBytesToTransfer = Math.min(3, b-keep+1);
3081             if (numBytesToTransfer < 0)
3082                 numBytesToTransfer = 0;
3083             for (int j=8; j <= 8*numBytesToTransfer; j += 8)
3084                 result[i] |= ((a[b--] & 0xff) << j);
3085 
3086             // Mask indicates which bits must be complemented
3087             int mask = -1 >>> (8*(3-numBytesToTransfer));
3088             result[i] = ~result[i] & mask;
3089         }
3090 
3091         // Add one to one's complement to generate two's complement
3092         for (int i=result.length-1; i>=0; i--) {
3093             result[i] = (int)((result[i] & LONG_MASK) + 1);
3094             if (result[i] != 0)
3095                 break;
3096         }
3097 
3098         return result;
3099     }
3100 
3101     /**
3102      * Takes an array a representing a negative 2's-complement number and
3103      * returns the minimal (no leading zero ints) unsigned whose value is -a.
3104      */
3105     private static int[] makePositive(int a[]) {
3106         int keep, j;
3107 
3108         // Find first non-sign (0xffffffff) int of input
3109         for (keep=0; keep<a.length && a[keep]==-1; keep++)
3110             ;
3111 
3112         /* Allocate output array.  If all non-sign ints are 0x00, we must
3113          * allocate space for one extra output int. */
3114         for (j=keep; j<a.length && a[j]==0; j++)
3115             ;
3116         int extraInt = (j==a.length ? 1 : 0);
3117         int result[] = new int[a.length - keep + extraInt];
3118 
3119         /* Copy one's complement of input into output, leaving extra
3120          * int (if it exists) == 0x00 */
3121         for (int i = keep; i<a.length; i++)
3122             result[i - keep + extraInt] = ~a[i];
3123 
3124         // Add one to one's complement to generate two's complement
3125         for (int i=result.length-1; ++result[i]==0; i--)
3126             ;
3127 
3128         return result;
3129     }
3130 
3131     /*
3132      * The following two arrays are used for fast String conversions.  Both
3133      * are indexed by radix.  The first is the number of digits of the given
3134      * radix that can fit in a Java long without "going negative", i.e., the
3135      * highest integer n such that radix**n < 2**63.  The second is the
3136      * "long radix" that tears each number into "long digits", each of which
3137      * consists of the number of digits in the corresponding element in
3138      * digitsPerLong (longRadix[i] = i**digitPerLong[i]).  Both arrays have
3139      * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
3140      * used.
3141      */
3142     private static int digitsPerLong[] = {0, 0,
3143         62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
3144         14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
3145 
3146     private static BigInteger longRadix[] = {null, null,
3147         valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
3148         valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
3149         valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
3150         valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
3151         valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
3152         valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
3153         valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
3154         valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
3155         valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
3156         valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
3157         valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
3158         valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
3159         valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
3160         valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
3161         valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
3162         valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
3163         valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
3164         valueOf(0x41c21cb8e1000000L)};
3165 
3166     /*
3167      * These two arrays are the integer analogue of above.
3168      */
3169     private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
3170         11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
3171         6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
3172 
3173     private static int intRadix[] = {0, 0,
3174         0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
3175         0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
3176         0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f,  0x10000000,
3177         0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
3178         0x6c20a40,  0x8d2d931,  0xb640000,  0xe8d4a51,  0x1269ae40,
3179         0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
3180         0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
3181     };
3182 
3183     /**
3184      * These routines provide access to the two's complement representation
3185      * of BigIntegers.
3186      */
3187 
3188     /**
3189      * Returns the length of the two's complement representation in ints,
3190      * including space for at least one sign bit.
3191      */
3192     private int intLength() {
3193         return (bitLength() >>> 5) + 1;
3194     }
3195 
3196     /* Returns sign bit */
3197     private int signBit() {
3198         return signum < 0 ? 1 : 0;
3199     }
3200 
3201     /* Returns an int of sign bits */
3202     private int signInt() {
3203         return signum < 0 ? -1 : 0;
3204     }
3205 
3206     /**
3207      * Returns the specified int of the little-endian two's complement
3208      * representation (int 0 is the least significant).  The int number can
3209      * be arbitrarily high (values are logically preceded by infinitely many
3210      * sign ints).
3211      */
3212     private int getInt(int n) {
3213         if (n < 0)
3214             return 0;
3215         if (n >= mag.length)
3216             return signInt();
3217 
3218         int magInt = mag[mag.length-n-1];
3219 
3220         return (signum >= 0 ? magInt :
3221                 (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
3222     }
3223 
3224     /**
3225      * Returns the index of the int that contains the first nonzero int in the
3226      * little-endian binary representation of the magnitude (int 0 is the
3227      * least significant). If the magnitude is zero, return value is undefined.
3228      */
3229      private int firstNonzeroIntNum() {
3230          int fn = firstNonzeroIntNum - 2;
3231          if (fn == -2) { // firstNonzeroIntNum not initialized yet
3232              fn = 0;
3233 
3234              // Search for the first nonzero int
3235              int i;
3236              int mlen = mag.length;
3237              for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
3238                  ;
3239              fn = mlen - i - 1;
3240              firstNonzeroIntNum = fn + 2; // offset by two to initialize
3241          }
3242          return fn;
3243      }
3244 
3245     /** use serialVersionUID from JDK 1.1. for interoperability */
3246     private static final long serialVersionUID = -8287574255936472291L;
3247 
3248     /**
3249      * Serializable fields for BigInteger.
3250      *
3251      * @serialField signum  int
3252      *              signum of this BigInteger.
3253      * @serialField magnitude int[]
3254      *              magnitude array of this BigInteger.
3255      * @serialField bitCount  int
3256      *              number of bits in this BigInteger
3257      * @serialField bitLength int
3258      *              the number of bits in the minimal two's-complement
3259      *              representation of this BigInteger
3260      * @serialField lowestSetBit int
3261      *              lowest set bit in the twos complement representation
3262      */
3263     private static final ObjectStreamField[] serialPersistentFields = {
3264         new ObjectStreamField("signum", Integer.TYPE),
3265         new ObjectStreamField("magnitude", byte[].class),
3266         new ObjectStreamField("bitCount", Integer.TYPE),
3267         new ObjectStreamField("bitLength", Integer.TYPE),
3268         new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
3269         new ObjectStreamField("lowestSetBit", Integer.TYPE)
3270         };
3271 
3272     /**
3273      * Reconstitute the {@code BigInteger} instance from a stream (that is,
3274      * deserialize it). The magnitude is read in as an array of bytes
3275      * for historical reasons, but it is converted to an array of ints
3276      * and the byte array is discarded.
3277      * Note:
3278      * The current convention is to initialize the cache fields, bitCount,
3279      * bitLength and lowestSetBit, to 0 rather than some other marker value.
3280      * Therefore, no explicit action to set these fields needs to be taken in
3281      * readObject because those fields already have a 0 value be default since
3282      * defaultReadObject is not being used.
3283      */
3284     private void readObject(java.io.ObjectInputStream s)
3285         throws java.io.IOException, ClassNotFoundException {
3286         /*
3287          * In order to maintain compatibility with previous serialized forms,
3288          * the magnitude of a BigInteger is serialized as an array of bytes.
3289          * The magnitude field is used as a temporary store for the byte array
3290          * that is deserialized. The cached computation fields should be
3291          * transient but are serialized for compatibility reasons.
3292          */
3293 
3294         // prepare to read the alternate persistent fields
3295         ObjectInputStream.GetField fields = s.readFields();
3296 
3297         // Read the alternate persistent fields that we care about
3298         int sign = fields.get("signum", -2);
3299         byte[] magnitude = (byte[])fields.get("magnitude", null);
3300 
3301         // Validate signum
3302         if (sign < -1 || sign > 1) {
3303             String message = "BigInteger: Invalid signum value";
3304             if (fields.defaulted("signum"))
3305                 message = "BigInteger: Signum not present in stream";
3306             throw new java.io.StreamCorruptedException(message);
3307         }
3308         if ((magnitude.length == 0) != (sign == 0)) {
3309             String message = "BigInteger: signum-magnitude mismatch";
3310             if (fields.defaulted("magnitude"))
3311                 message = "BigInteger: Magnitude not present in stream";
3312             throw new java.io.StreamCorruptedException(message);
3313         }
3314 
3315         // Commit final fields via Unsafe
3316         unsafe.putIntVolatile(this, signumOffset, sign);
3317 
3318         // Calculate mag field from magnitude and discard magnitude
3319         unsafe.putObjectVolatile(this, magOffset,
3320                                  stripLeadingZeroBytes(magnitude));
3321     }
3322 
3323     // Support for resetting final fields while deserializing
3324     private static final sun.misc.Unsafe unsafe = sun.misc.Unsafe.getUnsafe();
3325     private static final long signumOffset;
3326     private static final long magOffset;
3327     static {
3328         try {
3329             signumOffset = unsafe.objectFieldOffset
3330                 (BigInteger.class.getDeclaredField("signum"));
3331             magOffset = unsafe.objectFieldOffset
3332                 (BigInteger.class.getDeclaredField("mag"));
3333         } catch (Exception ex) {
3334             throw new Error(ex);
3335         }
3336     }
3337 
3338     /**
3339      * Save the {@code BigInteger} instance to a stream.
3340      * The magnitude of a BigInteger is serialized as a byte array for
3341      * historical reasons.
3342      *
3343      * @serialData two necessary fields are written as well as obsolete
3344      *             fields for compatibility with older versions.
3345      */
3346     private void writeObject(ObjectOutputStream s) throws IOException {
3347         // set the values of the Serializable fields
3348         ObjectOutputStream.PutField fields = s.putFields();
3349         fields.put("signum", signum);
3350         fields.put("magnitude", magSerializedForm());
3351         // The values written for cached fields are compatible with older
3352         // versions, but are ignored in readObject so don't otherwise matter.
3353         fields.put("bitCount", -1);
3354         fields.put("bitLength", -1);
3355         fields.put("lowestSetBit", -2);
3356         fields.put("firstNonzeroByteNum", -2);
3357 
3358         // save them
3359         s.writeFields();
3360 }
3361 
3362     /**
3363      * Returns the mag array as an array of bytes.
3364      */
3365     private byte[] magSerializedForm() {
3366         int len = mag.length;
3367 
3368         int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
3369         int byteLen = (bitLen + 7) >>> 3;
3370         byte[] result = new byte[byteLen];
3371 
3372         for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
3373              i>=0; i--) {
3374             if (bytesCopied == 4) {
3375                 nextInt = mag[intIndex--];
3376                 bytesCopied = 1;
3377             } else {
3378                 nextInt >>>= 8;
3379                 bytesCopied++;
3380             }
3381             result[i] = (byte)nextInt;
3382         }
3383         return result;
3384     }
3385 }