1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.util.Random;
  28 import sun.misc.FpUtils;
  29 import sun.misc.DoubleConsts;
  30 
  31 /**
  32  * The class {@code StrictMath} contains methods for performing basic
  33  * numeric operations such as the elementary exponential, logarithm,
  34  * square root, and trigonometric functions.
  35  *
  36  * <p>To help ensure portability of Java programs, the definitions of
  37  * some of the numeric functions in this package require that they
  38  * produce the same results as certain published algorithms. These
  39  * algorithms are available from the well-known network library
  40  * {@code netlib} as the package "Freely Distributable Math
  41  * Library," <a
  42  * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
  43  * algorithms, which are written in the C programming language, are
  44  * then to be understood as executed with all floating-point
  45  * operations following the rules of Java floating-point arithmetic.
  46  *
  47  * <p>The Java math library is defined with respect to
  48  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
  49  * more than one definition for a function (such as
  50  * {@code acos}), use the "IEEE 754 core function" version
  51  * (residing in a file whose name begins with the letter
  52  * {@code e}).  The methods which require {@code fdlibm}
  53  * semantics are {@code sin}, {@code cos}, {@code tan},
  54  * {@code asin}, {@code acos}, {@code atan},
  55  * {@code exp}, {@code log}, {@code log10},
  56  * {@code cbrt}, {@code atan2}, {@code pow},
  57  * {@code sinh}, {@code cosh}, {@code tanh},
  58  * {@code hypot}, {@code expm1}, and {@code log1p}.
  59  *
  60  * @author  unascribed
  61  * @author  Joseph D. Darcy
  62  * @since   1.3
  63  */
  64 
  65 public final class StrictMath {
  66 
  67     /**
  68      * Don't let anyone instantiate this class.
  69      */
  70     private StrictMath() {}
  71 
  72     /**
  73      * The {@code double} value that is closer than any other to
  74      * <i>e</i>, the base of the natural logarithms.
  75      */
  76     public static final double E = 2.7182818284590452354;
  77 
  78     /**
  79      * The {@code double} value that is closer than any other to
  80      * <i>pi</i>, the ratio of the circumference of a circle to its
  81      * diameter.
  82      */
  83     public static final double PI = 3.14159265358979323846;
  84 
  85     /**
  86      * Returns the trigonometric sine of an angle. Special cases:
  87      * <ul><li>If the argument is NaN or an infinity, then the
  88      * result is NaN.
  89      * <li>If the argument is zero, then the result is a zero with the
  90      * same sign as the argument.</ul>
  91      *
  92      * @param   a   an angle, in radians.
  93      * @return  the sine of the argument.
  94      */
  95     public static native double sin(double a);
  96 
  97     /**
  98      * Returns the trigonometric cosine of an angle. Special cases:
  99      * <ul><li>If the argument is NaN or an infinity, then the
 100      * result is NaN.</ul>
 101      *
 102      * @param   a   an angle, in radians.
 103      * @return  the cosine of the argument.
 104      */
 105     public static native double cos(double a);
 106 
 107     /**
 108      * Returns the trigonometric tangent of an angle. Special cases:
 109      * <ul><li>If the argument is NaN or an infinity, then the result
 110      * is NaN.
 111      * <li>If the argument is zero, then the result is a zero with the
 112      * same sign as the argument.</ul>
 113      *
 114      * @param   a   an angle, in radians.
 115      * @return  the tangent of the argument.
 116      */
 117     public static native double tan(double a);
 118 
 119     /**
 120      * Returns the arc sine of a value; the returned angle is in the
 121      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 122      * <ul><li>If the argument is NaN or its absolute value is greater
 123      * than 1, then the result is NaN.
 124      * <li>If the argument is zero, then the result is a zero with the
 125      * same sign as the argument.</ul>
 126      *
 127      * @param   a   the value whose arc sine is to be returned.
 128      * @return  the arc sine of the argument.
 129      */
 130     public static native double asin(double a);
 131 
 132     /**
 133      * Returns the arc cosine of a value; the returned angle is in the
 134      * range 0.0 through <i>pi</i>.  Special case:
 135      * <ul><li>If the argument is NaN or its absolute value is greater
 136      * than 1, then the result is NaN.</ul>
 137      *
 138      * @param   a   the value whose arc cosine is to be returned.
 139      * @return  the arc cosine of the argument.
 140      */
 141     public static native double acos(double a);
 142 
 143     /**
 144      * Returns the arc tangent of a value; the returned angle is in the
 145      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 146      * <ul><li>If the argument is NaN, then the result is NaN.
 147      * <li>If the argument is zero, then the result is a zero with the
 148      * same sign as the argument.</ul>
 149      *
 150      * @param   a   the value whose arc tangent is to be returned.
 151      * @return  the arc tangent of the argument.
 152      */
 153     public static native double atan(double a);
 154 
 155     /**
 156      * Converts an angle measured in degrees to an approximately
 157      * equivalent angle measured in radians.  The conversion from
 158      * degrees to radians is generally inexact.
 159      *
 160      * @param   angdeg   an angle, in degrees
 161      * @return  the measurement of the angle {@code angdeg}
 162      *          in radians.
 163      */
 164     public static strictfp double toRadians(double angdeg) {
 165         return angdeg / 180.0 * PI;
 166     }
 167 
 168     /**
 169      * Converts an angle measured in radians to an approximately
 170      * equivalent angle measured in degrees.  The conversion from
 171      * radians to degrees is generally inexact; users should
 172      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 173      * equal {@code 0.0}.
 174      *
 175      * @param   angrad   an angle, in radians
 176      * @return  the measurement of the angle {@code angrad}
 177      *          in degrees.
 178      */
 179     public static strictfp double toDegrees(double angrad) {
 180         return angrad * 180.0 / PI;
 181     }
 182 
 183     /**
 184      * Returns Euler's number <i>e</i> raised to the power of a
 185      * {@code double} value. Special cases:
 186      * <ul><li>If the argument is NaN, the result is NaN.
 187      * <li>If the argument is positive infinity, then the result is
 188      * positive infinity.
 189      * <li>If the argument is negative infinity, then the result is
 190      * positive zero.</ul>
 191      *
 192      * @param   a   the exponent to raise <i>e</i> to.
 193      * @return  the value <i>e</i><sup>{@code a}</sup>,
 194      *          where <i>e</i> is the base of the natural logarithms.
 195      */
 196     public static native double exp(double a);
 197 
 198     /**
 199      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 200      * value. Special cases:
 201      * <ul><li>If the argument is NaN or less than zero, then the result
 202      * is NaN.
 203      * <li>If the argument is positive infinity, then the result is
 204      * positive infinity.
 205      * <li>If the argument is positive zero or negative zero, then the
 206      * result is negative infinity.</ul>
 207      *
 208      * @param   a   a value
 209      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 210      *          {@code a}.
 211      */
 212     public static native double log(double a);
 213 
 214 
 215     /**
 216      * Returns the base 10 logarithm of a {@code double} value.
 217      * Special cases:
 218      *
 219      * <ul><li>If the argument is NaN or less than zero, then the result
 220      * is NaN.
 221      * <li>If the argument is positive infinity, then the result is
 222      * positive infinity.
 223      * <li>If the argument is positive zero or negative zero, then the
 224      * result is negative infinity.
 225      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 226      * integer <i>n</i>, then the result is <i>n</i>.
 227      * </ul>
 228      *
 229      * @param   a   a value
 230      * @return  the base 10 logarithm of  {@code a}.
 231      * @since 1.5
 232      */
 233     public static native double log10(double a);
 234 
 235     /**
 236      * Returns the correctly rounded positive square root of a
 237      * {@code double} value.
 238      * Special cases:
 239      * <ul><li>If the argument is NaN or less than zero, then the result
 240      * is NaN.
 241      * <li>If the argument is positive infinity, then the result is positive
 242      * infinity.
 243      * <li>If the argument is positive zero or negative zero, then the
 244      * result is the same as the argument.</ul>
 245      * Otherwise, the result is the {@code double} value closest to
 246      * the true mathematical square root of the argument value.
 247      *
 248      * @param   a   a value.
 249      * @return  the positive square root of {@code a}.
 250      */
 251     public static native double sqrt(double a);
 252 
 253     /**
 254      * Returns the cube root of a {@code double} value.  For
 255      * positive finite {@code x}, {@code cbrt(-x) ==
 256      * -cbrt(x)}; that is, the cube root of a negative value is
 257      * the negative of the cube root of that value's magnitude.
 258      * Special cases:
 259      *
 260      * <ul>
 261      *
 262      * <li>If the argument is NaN, then the result is NaN.
 263      *
 264      * <li>If the argument is infinite, then the result is an infinity
 265      * with the same sign as the argument.
 266      *
 267      * <li>If the argument is zero, then the result is a zero with the
 268      * same sign as the argument.
 269      *
 270      * </ul>
 271      *
 272      * @param   a   a value.
 273      * @return  the cube root of {@code a}.
 274      * @since 1.5
 275      */
 276     public static native double cbrt(double a);
 277 
 278     /**
 279      * Computes the remainder operation on two arguments as prescribed
 280      * by the IEEE 754 standard.
 281      * The remainder value is mathematically equal to
 282      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 283      * where <i>n</i> is the mathematical integer closest to the exact
 284      * mathematical value of the quotient {@code f1/f2}, and if two
 285      * mathematical integers are equally close to {@code f1/f2},
 286      * then <i>n</i> is the integer that is even. If the remainder is
 287      * zero, its sign is the same as the sign of the first argument.
 288      * Special cases:
 289      * <ul><li>If either argument is NaN, or the first argument is infinite,
 290      * or the second argument is positive zero or negative zero, then the
 291      * result is NaN.
 292      * <li>If the first argument is finite and the second argument is
 293      * infinite, then the result is the same as the first argument.</ul>
 294      *
 295      * @param   f1   the dividend.
 296      * @param   f2   the divisor.
 297      * @return  the remainder when {@code f1} is divided by
 298      *          {@code f2}.
 299      */
 300     public static native double IEEEremainder(double f1, double f2);
 301 
 302     /**
 303      * Returns the smallest (closest to negative infinity)
 304      * {@code double} value that is greater than or equal to the
 305      * argument and is equal to a mathematical integer. Special cases:
 306      * <ul><li>If the argument value is already equal to a
 307      * mathematical integer, then the result is the same as the
 308      * argument.  <li>If the argument is NaN or an infinity or
 309      * positive zero or negative zero, then the result is the same as
 310      * the argument.  <li>If the argument value is less than zero but
 311      * greater than -1.0, then the result is negative zero.</ul> Note
 312      * that the value of {@code StrictMath.ceil(x)} is exactly the
 313      * value of {@code -StrictMath.floor(-x)}.
 314      *
 315      * @param   a   a value.
 316      * @return  the smallest (closest to negative infinity)
 317      *          floating-point value that is greater than or equal to
 318      *          the argument and is equal to a mathematical integer.
 319      */
 320     public static double ceil(double a) {
 321         return floorOrCeil(a, -0.0, 1.0, 1.0);
 322     }
 323 
 324     /**
 325      * Returns the largest (closest to positive infinity)
 326      * {@code double} value that is less than or equal to the
 327      * argument and is equal to a mathematical integer. Special cases:
 328      * <ul><li>If the argument value is already equal to a
 329      * mathematical integer, then the result is the same as the
 330      * argument.  <li>If the argument is NaN or an infinity or
 331      * positive zero or negative zero, then the result is the same as
 332      * the argument.</ul>
 333      *
 334      * @param   a   a value.
 335      * @return  the largest (closest to positive infinity)
 336      *          floating-point value that less than or equal to the argument
 337      *          and is equal to a mathematical integer.
 338      */
 339     public static double floor(double a) {
 340         return floorOrCeil(a, -1.0, 0.0, -1.0);
 341     }
 342 
 343     /**
 344      * Internal method to share logic between floor and ceil.
 345      *
 346      * @param a the value to be floored or ceiled
 347      * @param negativeBoundary result for values in (-1, 0)
 348      * @param positiveBoundary result for values in (0, 1)
 349      * @param increment value to add when the argument is non-integral
 350      */
 351     private static double floorOrCeil(double a,
 352                                       double negativeBoundary,
 353                                       double positiveBoundary,
 354                                       double sign) {
 355         int exponent = Math.getExponent(a);
 356 
 357         if (exponent < 0) {
 358             /*
 359              * Absolute value of argument is less than 1.
 360              * floorOrceil(-0.0) => -0.0
 361              * floorOrceil(+0.0) => +0.0
 362              */
 363             return ((a == 0.0) ? a :
 364                     ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
 365         } else if (exponent >= 52) {
 366             /*
 367              * Infinity, NaN, or a value so large it must be integral.
 368              */
 369             return a;
 370         }
 371         // Else the argument is either an integral value already XOR it
 372         // has to be rounded to one.
 373         assert exponent >= 0 && exponent <= 51;
 374 
 375         long doppel = Double.doubleToRawLongBits(a);
 376         long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
 377 
 378         if ( (mask & doppel) == 0L )
 379             return a; // integral value
 380         else {
 381             double result = Double.longBitsToDouble(doppel & (~mask));
 382             if (sign*a > 0.0)
 383                 result = result + sign;
 384             return result;
 385         }
 386     }
 387 
 388     /**
 389      * Returns the {@code double} value that is closest in value
 390      * to the argument and is equal to a mathematical integer. If two
 391      * {@code double} values that are mathematical integers are
 392      * equally close to the value of the argument, the result is the
 393      * integer value that is even. Special cases:
 394      * <ul><li>If the argument value is already equal to a mathematical
 395      * integer, then the result is the same as the argument.
 396      * <li>If the argument is NaN or an infinity or positive zero or negative
 397      * zero, then the result is the same as the argument.</ul>
 398      *
 399      * @param   a   a value.
 400      * @return  the closest floating-point value to {@code a} that is
 401      *          equal to a mathematical integer.
 402      * @author Joseph D. Darcy
 403      */
 404     public static double rint(double a) {
 405         /*
 406          * If the absolute value of a is not less than 2^52, it
 407          * is either a finite integer (the double format does not have
 408          * enough significand bits for a number that large to have any
 409          * fractional portion), an infinity, or a NaN.  In any of
 410          * these cases, rint of the argument is the argument.
 411          *
 412          * Otherwise, the sum (twoToThe52 + a ) will properly round
 413          * away any fractional portion of a since ulp(twoToThe52) ==
 414          * 1.0; subtracting out twoToThe52 from this sum will then be
 415          * exact and leave the rounded integer portion of a.
 416          *
 417          * This method does *not* need to be declared strictfp to get
 418          * fully reproducible results.  Whether or not a method is
 419          * declared strictfp can only make a difference in the
 420          * returned result if some operation would overflow or
 421          * underflow with strictfp semantics.  The operation
 422          * (twoToThe52 + a ) cannot overflow since large values of a
 423          * are screened out; the add cannot underflow since twoToThe52
 424          * is too large.  The subtraction ((twoToThe52 + a ) -
 425          * twoToThe52) will be exact as discussed above and thus
 426          * cannot overflow or meaningfully underflow.  Finally, the
 427          * last multiply in the return statement is by plus or minus
 428          * 1.0, which is exact too.
 429          */
 430         double twoToThe52 = (double)(1L << 52); // 2^52
 431         double sign = FpUtils.rawCopySign(1.0, a); // preserve sign info
 432         a = Math.abs(a);
 433 
 434         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
 435             a = ((twoToThe52 + a ) - twoToThe52);
 436         }
 437 
 438         return sign * a; // restore original sign
 439     }
 440 
 441     /**
 442      * Returns the angle <i>theta</i> from the conversion of rectangular
 443      * coordinates ({@code x},&nbsp;{@code y}) to polar
 444      * coordinates (r,&nbsp;<i>theta</i>).
 445      * This method computes the phase <i>theta</i> by computing an arc tangent
 446      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 447      * cases:
 448      * <ul><li>If either argument is NaN, then the result is NaN.
 449      * <li>If the first argument is positive zero and the second argument
 450      * is positive, or the first argument is positive and finite and the
 451      * second argument is positive infinity, then the result is positive
 452      * zero.
 453      * <li>If the first argument is negative zero and the second argument
 454      * is positive, or the first argument is negative and finite and the
 455      * second argument is positive infinity, then the result is negative zero.
 456      * <li>If the first argument is positive zero and the second argument
 457      * is negative, or the first argument is positive and finite and the
 458      * second argument is negative infinity, then the result is the
 459      * {@code double} value closest to <i>pi</i>.
 460      * <li>If the first argument is negative zero and the second argument
 461      * is negative, or the first argument is negative and finite and the
 462      * second argument is negative infinity, then the result is the
 463      * {@code double} value closest to -<i>pi</i>.
 464      * <li>If the first argument is positive and the second argument is
 465      * positive zero or negative zero, or the first argument is positive
 466      * infinity and the second argument is finite, then the result is the
 467      * {@code double} value closest to <i>pi</i>/2.
 468      * <li>If the first argument is negative and the second argument is
 469      * positive zero or negative zero, or the first argument is negative
 470      * infinity and the second argument is finite, then the result is the
 471      * {@code double} value closest to -<i>pi</i>/2.
 472      * <li>If both arguments are positive infinity, then the result is the
 473      * {@code double} value closest to <i>pi</i>/4.
 474      * <li>If the first argument is positive infinity and the second argument
 475      * is negative infinity, then the result is the {@code double}
 476      * value closest to 3*<i>pi</i>/4.
 477      * <li>If the first argument is negative infinity and the second argument
 478      * is positive infinity, then the result is the {@code double} value
 479      * closest to -<i>pi</i>/4.
 480      * <li>If both arguments are negative infinity, then the result is the
 481      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 482      *
 483      * @param   y   the ordinate coordinate
 484      * @param   x   the abscissa coordinate
 485      * @return  the <i>theta</i> component of the point
 486      *          (<i>r</i>,&nbsp;<i>theta</i>)
 487      *          in polar coordinates that corresponds to the point
 488      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 489      */
 490     public static native double atan2(double y, double x);
 491 
 492 
 493     /**
 494      * Returns the value of the first argument raised to the power of the
 495      * second argument. Special cases:
 496      *
 497      * <ul><li>If the second argument is positive or negative zero, then the
 498      * result is 1.0.
 499      * <li>If the second argument is 1.0, then the result is the same as the
 500      * first argument.
 501      * <li>If the second argument is NaN, then the result is NaN.
 502      * <li>If the first argument is NaN and the second argument is nonzero,
 503      * then the result is NaN.
 504      *
 505      * <li>If
 506      * <ul>
 507      * <li>the absolute value of the first argument is greater than 1
 508      * and the second argument is positive infinity, or
 509      * <li>the absolute value of the first argument is less than 1 and
 510      * the second argument is negative infinity,
 511      * </ul>
 512      * then the result is positive infinity.
 513      *
 514      * <li>If
 515      * <ul>
 516      * <li>the absolute value of the first argument is greater than 1 and
 517      * the second argument is negative infinity, or
 518      * <li>the absolute value of the
 519      * first argument is less than 1 and the second argument is positive
 520      * infinity,
 521      * </ul>
 522      * then the result is positive zero.
 523      *
 524      * <li>If the absolute value of the first argument equals 1 and the
 525      * second argument is infinite, then the result is NaN.
 526      *
 527      * <li>If
 528      * <ul>
 529      * <li>the first argument is positive zero and the second argument
 530      * is greater than zero, or
 531      * <li>the first argument is positive infinity and the second
 532      * argument is less than zero,
 533      * </ul>
 534      * then the result is positive zero.
 535      *
 536      * <li>If
 537      * <ul>
 538      * <li>the first argument is positive zero and the second argument
 539      * is less than zero, or
 540      * <li>the first argument is positive infinity and the second
 541      * argument is greater than zero,
 542      * </ul>
 543      * then the result is positive infinity.
 544      *
 545      * <li>If
 546      * <ul>
 547      * <li>the first argument is negative zero and the second argument
 548      * is greater than zero but not a finite odd integer, or
 549      * <li>the first argument is negative infinity and the second
 550      * argument is less than zero but not a finite odd integer,
 551      * </ul>
 552      * then the result is positive zero.
 553      *
 554      * <li>If
 555      * <ul>
 556      * <li>the first argument is negative zero and the second argument
 557      * is a positive finite odd integer, or
 558      * <li>the first argument is negative infinity and the second
 559      * argument is a negative finite odd integer,
 560      * </ul>
 561      * then the result is negative zero.
 562      *
 563      * <li>If
 564      * <ul>
 565      * <li>the first argument is negative zero and the second argument
 566      * is less than zero but not a finite odd integer, or
 567      * <li>the first argument is negative infinity and the second
 568      * argument is greater than zero but not a finite odd integer,
 569      * </ul>
 570      * then the result is positive infinity.
 571      *
 572      * <li>If
 573      * <ul>
 574      * <li>the first argument is negative zero and the second argument
 575      * is a negative finite odd integer, or
 576      * <li>the first argument is negative infinity and the second
 577      * argument is a positive finite odd integer,
 578      * </ul>
 579      * then the result is negative infinity.
 580      *
 581      * <li>If the first argument is finite and less than zero
 582      * <ul>
 583      * <li> if the second argument is a finite even integer, the
 584      * result is equal to the result of raising the absolute value of
 585      * the first argument to the power of the second argument
 586      *
 587      * <li>if the second argument is a finite odd integer, the result
 588      * is equal to the negative of the result of raising the absolute
 589      * value of the first argument to the power of the second
 590      * argument
 591      *
 592      * <li>if the second argument is finite and not an integer, then
 593      * the result is NaN.
 594      * </ul>
 595      *
 596      * <li>If both arguments are integers, then the result is exactly equal
 597      * to the mathematical result of raising the first argument to the power
 598      * of the second argument if that result can in fact be represented
 599      * exactly as a {@code double} value.</ul>
 600      *
 601      * <p>(In the foregoing descriptions, a floating-point value is
 602      * considered to be an integer if and only if it is finite and a
 603      * fixed point of the method {@link #ceil ceil} or,
 604      * equivalently, a fixed point of the method {@link #floor
 605      * floor}. A value is a fixed point of a one-argument
 606      * method if and only if the result of applying the method to the
 607      * value is equal to the value.)
 608      *
 609      * @param   a   base.
 610      * @param   b   the exponent.
 611      * @return  the value {@code a}<sup>{@code b}</sup>.
 612      */
 613     public static native double pow(double a, double b);
 614 
 615     /**
 616      * Returns the closest {@code int} to the argument, with ties
 617      * rounding up.
 618      *
 619      * <p>Special cases:
 620      * <ul><li>If the argument is NaN, the result is 0.
 621      * <li>If the argument is negative infinity or any value less than or
 622      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 623      * equal to the value of {@code Integer.MIN_VALUE}.
 624      * <li>If the argument is positive infinity or any value greater than or
 625      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 626      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 627      *
 628      * @param   a   a floating-point value to be rounded to an integer.
 629      * @return  the value of the argument rounded to the nearest
 630      *          {@code int} value.
 631      * @see     java.lang.Integer#MAX_VALUE
 632      * @see     java.lang.Integer#MIN_VALUE
 633      */
 634     public static int round(float a) {
 635         return Math.round(a);
 636     }
 637 
 638     /**
 639      * Returns the closest {@code long} to the argument, with ties
 640      * rounding up.
 641      *
 642      * <p>Special cases:
 643      * <ul><li>If the argument is NaN, the result is 0.
 644      * <li>If the argument is negative infinity or any value less than or
 645      * equal to the value of {@code Long.MIN_VALUE}, the result is
 646      * equal to the value of {@code Long.MIN_VALUE}.
 647      * <li>If the argument is positive infinity or any value greater than or
 648      * equal to the value of {@code Long.MAX_VALUE}, the result is
 649      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 650      *
 651      * @param   a  a floating-point value to be rounded to a
 652      *          {@code long}.
 653      * @return  the value of the argument rounded to the nearest
 654      *          {@code long} value.
 655      * @see     java.lang.Long#MAX_VALUE
 656      * @see     java.lang.Long#MIN_VALUE
 657      */
 658     public static long round(double a) {
 659         return Math.round(a);
 660     }
 661 
 662     private static Random randomNumberGenerator;
 663 
 664     private static synchronized Random initRNG() {
 665         Random rnd = randomNumberGenerator;
 666         return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
 667     }
 668 
 669     /**
 670      * Returns a {@code double} value with a positive sign, greater
 671      * than or equal to {@code 0.0} and less than {@code 1.0}.
 672      * Returned values are chosen pseudorandomly with (approximately)
 673      * uniform distribution from that range.
 674      *
 675      * <p>When this method is first called, it creates a single new
 676      * pseudorandom-number generator, exactly as if by the expression
 677      *
 678      * <blockquote>{@code new java.util.Random()}</blockquote>
 679      *
 680      * This new pseudorandom-number generator is used thereafter for
 681      * all calls to this method and is used nowhere else.
 682      *
 683      * <p>This method is properly synchronized to allow correct use by
 684      * more than one thread. However, if many threads need to generate
 685      * pseudorandom numbers at a great rate, it may reduce contention
 686      * for each thread to have its own pseudorandom number generator.
 687      *
 688      * @return  a pseudorandom {@code double} greater than or equal
 689      * to {@code 0.0} and less than {@code 1.0}.
 690      * @see Random#nextDouble()
 691      */
 692     public static double random() {
 693         Random rnd = randomNumberGenerator;
 694         if (rnd == null) rnd = initRNG();
 695         return rnd.nextDouble();
 696     }
 697 
 698     /**
 699      * Returns the absolute value of an {@code int} value..
 700      * If the argument is not negative, the argument is returned.
 701      * If the argument is negative, the negation of the argument is returned.
 702      *
 703      * <p>Note that if the argument is equal to the value of
 704      * {@link Integer#MIN_VALUE}, the most negative representable
 705      * {@code int} value, the result is that same value, which is
 706      * negative.
 707      *
 708      * @param   a   the  argument whose absolute value is to be determined.
 709      * @return  the absolute value of the argument.
 710      */
 711     public static int abs(int a) {
 712         return (a < 0) ? -a : a;
 713     }
 714 
 715     /**
 716      * Returns the absolute value of a {@code long} value.
 717      * If the argument is not negative, the argument is returned.
 718      * If the argument is negative, the negation of the argument is returned.
 719      *
 720      * <p>Note that if the argument is equal to the value of
 721      * {@link Long#MIN_VALUE}, the most negative representable
 722      * {@code long} value, the result is that same value, which
 723      * is negative.
 724      *
 725      * @param   a   the  argument whose absolute value is to be determined.
 726      * @return  the absolute value of the argument.
 727      */
 728     public static long abs(long a) {
 729         return (a < 0) ? -a : a;
 730     }
 731 
 732     /**
 733      * Returns the absolute value of a {@code float} value.
 734      * If the argument is not negative, the argument is returned.
 735      * If the argument is negative, the negation of the argument is returned.
 736      * Special cases:
 737      * <ul><li>If the argument is positive zero or negative zero, the
 738      * result is positive zero.
 739      * <li>If the argument is infinite, the result is positive infinity.
 740      * <li>If the argument is NaN, the result is NaN.</ul>
 741      * In other words, the result is the same as the value of the expression:
 742      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
 743      *
 744      * @param   a   the argument whose absolute value is to be determined
 745      * @return  the absolute value of the argument.
 746      */
 747     public static float abs(float a) {
 748         return (a <= 0.0F) ? 0.0F - a : a;
 749     }
 750 
 751     /**
 752      * Returns the absolute value of a {@code double} value.
 753      * If the argument is not negative, the argument is returned.
 754      * If the argument is negative, the negation of the argument is returned.
 755      * Special cases:
 756      * <ul><li>If the argument is positive zero or negative zero, the result
 757      * is positive zero.
 758      * <li>If the argument is infinite, the result is positive infinity.
 759      * <li>If the argument is NaN, the result is NaN.</ul>
 760      * In other words, the result is the same as the value of the expression:
 761      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
 762      *
 763      * @param   a   the argument whose absolute value is to be determined
 764      * @return  the absolute value of the argument.
 765      */
 766     public static double abs(double a) {
 767         return (a <= 0.0D) ? 0.0D - a : a;
 768     }
 769 
 770     /**
 771      * Returns the greater of two {@code int} values. That is, the
 772      * result is the argument closer to the value of
 773      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
 774      * the result is that same value.
 775      *
 776      * @param   a   an argument.
 777      * @param   b   another argument.
 778      * @return  the larger of {@code a} and {@code b}.
 779      */
 780     public static int max(int a, int b) {
 781         return (a >= b) ? a : b;
 782     }
 783 
 784     /**
 785      * Returns the greater of two {@code long} values. That is, the
 786      * result is the argument closer to the value of
 787      * {@link Long#MAX_VALUE}. If the arguments have the same value,
 788      * the result is that same value.
 789      *
 790      * @param   a   an argument.
 791      * @param   b   another argument.
 792      * @return  the larger of {@code a} and {@code b}.
 793         */
 794     public static long max(long a, long b) {
 795         return (a >= b) ? a : b;
 796     }
 797 
 798     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
 799     private static long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
 800     private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
 801 
 802     /**
 803      * Returns the greater of two {@code float} values.  That is,
 804      * the result is the argument closer to positive infinity. If the
 805      * arguments have the same value, the result is that same
 806      * value. If either value is NaN, then the result is NaN.  Unlike
 807      * the numerical comparison operators, this method considers
 808      * negative zero to be strictly smaller than positive zero. If one
 809      * argument is positive zero and the other negative zero, the
 810      * result is positive zero.
 811      *
 812      * @param   a   an argument.
 813      * @param   b   another argument.
 814      * @return  the larger of {@code a} and {@code b}.
 815      */
 816     public static float max(float a, float b) {
 817         if (a != a)
 818             return a;   // a is NaN
 819         if ((a == 0.0f) &&
 820             (b == 0.0f) &&
 821             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
 822             // Raw conversion ok since NaN can't map to -0.0.
 823             return b;
 824         }
 825         return (a >= b) ? a : b;
 826     }
 827 
 828     /**
 829      * Returns the greater of two {@code double} values.  That
 830      * is, the result is the argument closer to positive infinity. If
 831      * the arguments have the same value, the result is that same
 832      * value. If either value is NaN, then the result is NaN.  Unlike
 833      * the numerical comparison operators, this method considers
 834      * negative zero to be strictly smaller than positive zero. If one
 835      * argument is positive zero and the other negative zero, the
 836      * result is positive zero.
 837      *
 838      * @param   a   an argument.
 839      * @param   b   another argument.
 840      * @return  the larger of {@code a} and {@code b}.
 841      */
 842     public static double max(double a, double b) {
 843         if (a != a)
 844             return a;   // a is NaN
 845         if ((a == 0.0d) &&
 846             (b == 0.0d) &&
 847             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
 848             // Raw conversion ok since NaN can't map to -0.0.
 849             return b;
 850         }
 851         return (a >= b) ? a : b;
 852     }
 853 
 854     /**
 855      * Returns the smaller of two {@code int} values. That is,
 856      * the result the argument closer to the value of
 857      * {@link Integer#MIN_VALUE}.  If the arguments have the same
 858      * value, the result is that same value.
 859      *
 860      * @param   a   an argument.
 861      * @param   b   another argument.
 862      * @return  the smaller of {@code a} and {@code b}.
 863      */
 864     public static int min(int a, int b) {
 865         return (a <= b) ? a : b;
 866     }
 867 
 868     /**
 869      * Returns the smaller of two {@code long} values. That is,
 870      * the result is the argument closer to the value of
 871      * {@link Long#MIN_VALUE}. If the arguments have the same
 872      * value, the result is that same value.
 873      *
 874      * @param   a   an argument.
 875      * @param   b   another argument.
 876      * @return  the smaller of {@code a} and {@code b}.
 877      */
 878     public static long min(long a, long b) {
 879         return (a <= b) ? a : b;
 880     }
 881 
 882     /**
 883      * Returns the smaller of two {@code float} values.  That is,
 884      * the result is the value closer to negative infinity. If the
 885      * arguments have the same value, the result is that same
 886      * value. If either value is NaN, then the result is NaN.  Unlike
 887      * the numerical comparison operators, this method considers
 888      * negative zero to be strictly smaller than positive zero.  If
 889      * one argument is positive zero and the other is negative zero,
 890      * the result is negative zero.
 891      *
 892      * @param   a   an argument.
 893      * @param   b   another argument.
 894      * @return  the smaller of {@code a} and {@code b.}
 895      */
 896     public static float min(float a, float b) {
 897         if (a != a)
 898             return a;   // a is NaN
 899         if ((a == 0.0f) &&
 900             (b == 0.0f) &&
 901             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
 902             // Raw conversion ok since NaN can't map to -0.0.
 903             return b;
 904         }
 905         return (a <= b) ? a : b;
 906     }
 907 
 908     /**
 909      * Returns the smaller of two {@code double} values.  That
 910      * is, the result is the value closer to negative infinity. If the
 911      * arguments have the same value, the result is that same
 912      * value. If either value is NaN, then the result is NaN.  Unlike
 913      * the numerical comparison operators, this method considers
 914      * negative zero to be strictly smaller than positive zero. If one
 915      * argument is positive zero and the other is negative zero, the
 916      * result is negative zero.
 917      *
 918      * @param   a   an argument.
 919      * @param   b   another argument.
 920      * @return  the smaller of {@code a} and {@code b}.
 921      */
 922     public static double min(double a, double b) {
 923         if (a != a)
 924             return a;   // a is NaN
 925         if ((a == 0.0d) &&
 926             (b == 0.0d) &&
 927             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
 928             // Raw conversion ok since NaN can't map to -0.0.
 929             return b;
 930         }
 931         return (a <= b) ? a : b;
 932     }
 933 
 934     /**
 935      * Returns the size of an ulp of the argument.  An ulp, unit in
 936      * the last place, of a {@code double} value is the positive
 937      * distance between this floating-point value and the {@code
 938      * double} value next larger in magnitude.  Note that for non-NaN
 939      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 940      *
 941      * <p>Special Cases:
 942      * <ul>
 943      * <li> If the argument is NaN, then the result is NaN.
 944      * <li> If the argument is positive or negative infinity, then the
 945      * result is positive infinity.
 946      * <li> If the argument is positive or negative zero, then the result is
 947      * {@code Double.MIN_VALUE}.
 948      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
 949      * the result is equal to 2<sup>971</sup>.
 950      * </ul>
 951      *
 952      * @param d the floating-point value whose ulp is to be returned
 953      * @return the size of an ulp of the argument
 954      * @author Joseph D. Darcy
 955      * @since 1.5
 956      */
 957     public static double ulp(double d) {
 958         return sun.misc.FpUtils.ulp(d);
 959     }
 960 
 961     /**
 962      * Returns the size of an ulp of the argument.  An ulp, unit in
 963      * the last place, of a {@code float} value is the positive
 964      * distance between this floating-point value and the {@code
 965      * float} value next larger in magnitude.  Note that for non-NaN
 966      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 967      *
 968      * <p>Special Cases:
 969      * <ul>
 970      * <li> If the argument is NaN, then the result is NaN.
 971      * <li> If the argument is positive or negative infinity, then the
 972      * result is positive infinity.
 973      * <li> If the argument is positive or negative zero, then the result is
 974      * {@code Float.MIN_VALUE}.
 975      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
 976      * the result is equal to 2<sup>104</sup>.
 977      * </ul>
 978      *
 979      * @param f the floating-point value whose ulp is to be returned
 980      * @return the size of an ulp of the argument
 981      * @author Joseph D. Darcy
 982      * @since 1.5
 983      */
 984     public static float ulp(float f) {
 985         return sun.misc.FpUtils.ulp(f);
 986     }
 987 
 988     /**
 989      * Returns the signum function of the argument; zero if the argument
 990      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
 991      * argument is less than zero.
 992      *
 993      * <p>Special Cases:
 994      * <ul>
 995      * <li> If the argument is NaN, then the result is NaN.
 996      * <li> If the argument is positive zero or negative zero, then the
 997      *      result is the same as the argument.
 998      * </ul>
 999      *
1000      * @param d the floating-point value whose signum is to be returned
1001      * @return the signum function of the argument
1002      * @author Joseph D. Darcy
1003      * @since 1.5
1004      */
1005     public static double signum(double d) {
1006         return sun.misc.FpUtils.signum(d);
1007     }
1008 
1009     /**
1010      * Returns the signum function of the argument; zero if the argument
1011      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1012      * argument is less than zero.
1013      *
1014      * <p>Special Cases:
1015      * <ul>
1016      * <li> If the argument is NaN, then the result is NaN.
1017      * <li> If the argument is positive zero or negative zero, then the
1018      *      result is the same as the argument.
1019      * </ul>
1020      *
1021      * @param f the floating-point value whose signum is to be returned
1022      * @return the signum function of the argument
1023      * @author Joseph D. Darcy
1024      * @since 1.5
1025      */
1026     public static float signum(float f) {
1027         return sun.misc.FpUtils.signum(f);
1028     }
1029 
1030     /**
1031      * Returns the hyperbolic sine of a {@code double} value.
1032      * The hyperbolic sine of <i>x</i> is defined to be
1033      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1034      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1035      *
1036      * <p>Special cases:
1037      * <ul>
1038      *
1039      * <li>If the argument is NaN, then the result is NaN.
1040      *
1041      * <li>If the argument is infinite, then the result is an infinity
1042      * with the same sign as the argument.
1043      *
1044      * <li>If the argument is zero, then the result is a zero with the
1045      * same sign as the argument.
1046      *
1047      * </ul>
1048      *
1049      * @param   x The number whose hyperbolic sine is to be returned.
1050      * @return  The hyperbolic sine of {@code x}.
1051      * @since 1.5
1052      */
1053     public static native double sinh(double x);
1054 
1055     /**
1056      * Returns the hyperbolic cosine of a {@code double} value.
1057      * The hyperbolic cosine of <i>x</i> is defined to be
1058      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1059      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1060      *
1061      * <p>Special cases:
1062      * <ul>
1063      *
1064      * <li>If the argument is NaN, then the result is NaN.
1065      *
1066      * <li>If the argument is infinite, then the result is positive
1067      * infinity.
1068      *
1069      * <li>If the argument is zero, then the result is {@code 1.0}.
1070      *
1071      * </ul>
1072      *
1073      * @param   x The number whose hyperbolic cosine is to be returned.
1074      * @return  The hyperbolic cosine of {@code x}.
1075      * @since 1.5
1076      */
1077     public static native double cosh(double x);
1078 
1079     /**
1080      * Returns the hyperbolic tangent of a {@code double} value.
1081      * The hyperbolic tangent of <i>x</i> is defined to be
1082      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1083      * in other words, {@linkplain Math#sinh
1084      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1085      * that the absolute value of the exact tanh is always less than
1086      * 1.
1087      *
1088      * <p>Special cases:
1089      * <ul>
1090      *
1091      * <li>If the argument is NaN, then the result is NaN.
1092      *
1093      * <li>If the argument is zero, then the result is a zero with the
1094      * same sign as the argument.
1095      *
1096      * <li>If the argument is positive infinity, then the result is
1097      * {@code +1.0}.
1098      *
1099      * <li>If the argument is negative infinity, then the result is
1100      * {@code -1.0}.
1101      *
1102      * </ul>
1103      *
1104      * @param   x The number whose hyperbolic tangent is to be returned.
1105      * @return  The hyperbolic tangent of {@code x}.
1106      * @since 1.5
1107      */
1108     public static native double tanh(double x);
1109 
1110     /**
1111      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1112      * without intermediate overflow or underflow.
1113      *
1114      * <p>Special cases:
1115      * <ul>
1116      *
1117      * <li> If either argument is infinite, then the result
1118      * is positive infinity.
1119      *
1120      * <li> If either argument is NaN and neither argument is infinite,
1121      * then the result is NaN.
1122      *
1123      * </ul>
1124      *
1125      * @param x a value
1126      * @param y a value
1127      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1128      * without intermediate overflow or underflow
1129      * @since 1.5
1130      */
1131     public static native double hypot(double x, double y);
1132 
1133     /**
1134      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1135      * <i>x</i> near 0, the exact sum of
1136      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1137      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1138      *
1139      * <p>Special cases:
1140      * <ul>
1141      * <li>If the argument is NaN, the result is NaN.
1142      *
1143      * <li>If the argument is positive infinity, then the result is
1144      * positive infinity.
1145      *
1146      * <li>If the argument is negative infinity, then the result is
1147      * -1.0.
1148      *
1149      * <li>If the argument is zero, then the result is a zero with the
1150      * same sign as the argument.
1151      *
1152      * </ul>
1153      *
1154      * @param   x   the exponent to raise <i>e</i> to in the computation of
1155      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1156      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1157      * @since 1.5
1158      */
1159     public static native double expm1(double x);
1160 
1161     /**
1162      * Returns the natural logarithm of the sum of the argument and 1.
1163      * Note that for small values {@code x}, the result of
1164      * {@code log1p(x)} is much closer to the true result of ln(1
1165      * + {@code x}) than the floating-point evaluation of
1166      * {@code log(1.0+x)}.
1167      *
1168      * <p>Special cases:
1169      * <ul>
1170      *
1171      * <li>If the argument is NaN or less than -1, then the result is
1172      * NaN.
1173      *
1174      * <li>If the argument is positive infinity, then the result is
1175      * positive infinity.
1176      *
1177      * <li>If the argument is negative one, then the result is
1178      * negative infinity.
1179      *
1180      * <li>If the argument is zero, then the result is a zero with the
1181      * same sign as the argument.
1182      *
1183      * </ul>
1184      *
1185      * @param   x   a value
1186      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1187      * log of {@code x}&nbsp;+&nbsp;1
1188      * @since 1.5
1189      */
1190     public static native double log1p(double x);
1191 
1192     /**
1193      * Returns the first floating-point argument with the sign of the
1194      * second floating-point argument.  For this method, a NaN
1195      * {@code sign} argument is always treated as if it were
1196      * positive.
1197      *
1198      * @param magnitude  the parameter providing the magnitude of the result
1199      * @param sign   the parameter providing the sign of the result
1200      * @return a value with the magnitude of {@code magnitude}
1201      * and the sign of {@code sign}.
1202      * @since 1.6
1203      */
1204     public static double copySign(double magnitude, double sign) {
1205         return sun.misc.FpUtils.copySign(magnitude, sign);
1206     }
1207 
1208     /**
1209      * Returns the first floating-point argument with the sign of the
1210      * second floating-point argument.  For this method, a NaN
1211      * {@code sign} argument is always treated as if it were
1212      * positive.
1213      *
1214      * @param magnitude  the parameter providing the magnitude of the result
1215      * @param sign   the parameter providing the sign of the result
1216      * @return a value with the magnitude of {@code magnitude}
1217      * and the sign of {@code sign}.
1218      * @since 1.6
1219      */
1220     public static float copySign(float magnitude, float sign) {
1221         return sun.misc.FpUtils.copySign(magnitude, sign);
1222     }
1223     /**
1224      * Returns the unbiased exponent used in the representation of a
1225      * {@code float}.  Special cases:
1226      *
1227      * <ul>
1228      * <li>If the argument is NaN or infinite, then the result is
1229      * {@link Float#MAX_EXPONENT} + 1.
1230      * <li>If the argument is zero or subnormal, then the result is
1231      * {@link Float#MIN_EXPONENT} -1.
1232      * </ul>
1233      * @param f a {@code float} value
1234      * @since 1.6
1235      */
1236     public static int getExponent(float f) {
1237         return sun.misc.FpUtils.getExponent(f);
1238     }
1239 
1240     /**
1241      * Returns the unbiased exponent used in the representation of a
1242      * {@code double}.  Special cases:
1243      *
1244      * <ul>
1245      * <li>If the argument is NaN or infinite, then the result is
1246      * {@link Double#MAX_EXPONENT} + 1.
1247      * <li>If the argument is zero or subnormal, then the result is
1248      * {@link Double#MIN_EXPONENT} -1.
1249      * </ul>
1250      * @param d a {@code double} value
1251      * @since 1.6
1252      */
1253     public static int getExponent(double d) {
1254         return sun.misc.FpUtils.getExponent(d);
1255     }
1256 
1257     /**
1258      * Returns the floating-point number adjacent to the first
1259      * argument in the direction of the second argument.  If both
1260      * arguments compare as equal the second argument is returned.
1261      *
1262      * <p>Special cases:
1263      * <ul>
1264      * <li> If either argument is a NaN, then NaN is returned.
1265      *
1266      * <li> If both arguments are signed zeros, {@code direction}
1267      * is returned unchanged (as implied by the requirement of
1268      * returning the second argument if the arguments compare as
1269      * equal).
1270      *
1271      * <li> If {@code start} is
1272      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1273      * has a value such that the result should have a smaller
1274      * magnitude, then a zero with the same sign as {@code start}
1275      * is returned.
1276      *
1277      * <li> If {@code start} is infinite and
1278      * {@code direction} has a value such that the result should
1279      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1280      * same sign as {@code start} is returned.
1281      *
1282      * <li> If {@code start} is equal to &plusmn;
1283      * {@link Double#MAX_VALUE} and {@code direction} has a
1284      * value such that the result should have a larger magnitude, an
1285      * infinity with same sign as {@code start} is returned.
1286      * </ul>
1287      *
1288      * @param start  starting floating-point value
1289      * @param direction value indicating which of
1290      * {@code start}'s neighbors or {@code start} should
1291      * be returned
1292      * @return The floating-point number adjacent to {@code start} in the
1293      * direction of {@code direction}.
1294      * @since 1.6
1295      */
1296     public static double nextAfter(double start, double direction) {
1297         return sun.misc.FpUtils.nextAfter(start, direction);
1298     }
1299 
1300     /**
1301      * Returns the floating-point number adjacent to the first
1302      * argument in the direction of the second argument.  If both
1303      * arguments compare as equal a value equivalent to the second argument
1304      * is returned.
1305      *
1306      * <p>Special cases:
1307      * <ul>
1308      * <li> If either argument is a NaN, then NaN is returned.
1309      *
1310      * <li> If both arguments are signed zeros, a value equivalent
1311      * to {@code direction} is returned.
1312      *
1313      * <li> If {@code start} is
1314      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1315      * has a value such that the result should have a smaller
1316      * magnitude, then a zero with the same sign as {@code start}
1317      * is returned.
1318      *
1319      * <li> If {@code start} is infinite and
1320      * {@code direction} has a value such that the result should
1321      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1322      * same sign as {@code start} is returned.
1323      *
1324      * <li> If {@code start} is equal to &plusmn;
1325      * {@link Float#MAX_VALUE} and {@code direction} has a
1326      * value such that the result should have a larger magnitude, an
1327      * infinity with same sign as {@code start} is returned.
1328      * </ul>
1329      *
1330      * @param start  starting floating-point value
1331      * @param direction value indicating which of
1332      * {@code start}'s neighbors or {@code start} should
1333      * be returned
1334      * @return The floating-point number adjacent to {@code start} in the
1335      * direction of {@code direction}.
1336      * @since 1.6
1337      */
1338     public static float nextAfter(float start, double direction) {
1339         return sun.misc.FpUtils.nextAfter(start, direction);
1340     }
1341 
1342     /**
1343      * Returns the floating-point value adjacent to {@code d} in
1344      * the direction of positive infinity.  This method is
1345      * semantically equivalent to {@code nextAfter(d,
1346      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1347      * implementation may run faster than its equivalent
1348      * {@code nextAfter} call.
1349      *
1350      * <p>Special Cases:
1351      * <ul>
1352      * <li> If the argument is NaN, the result is NaN.
1353      *
1354      * <li> If the argument is positive infinity, the result is
1355      * positive infinity.
1356      *
1357      * <li> If the argument is zero, the result is
1358      * {@link Double#MIN_VALUE}
1359      *
1360      * </ul>
1361      *
1362      * @param d starting floating-point value
1363      * @return The adjacent floating-point value closer to positive
1364      * infinity.
1365      * @since 1.6
1366      */
1367     public static double nextUp(double d) {
1368         return sun.misc.FpUtils.nextUp(d);
1369     }
1370 
1371     /**
1372      * Returns the floating-point value adjacent to {@code f} in
1373      * the direction of positive infinity.  This method is
1374      * semantically equivalent to {@code nextAfter(f,
1375      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1376      * implementation may run faster than its equivalent
1377      * {@code nextAfter} call.
1378      *
1379      * <p>Special Cases:
1380      * <ul>
1381      * <li> If the argument is NaN, the result is NaN.
1382      *
1383      * <li> If the argument is positive infinity, the result is
1384      * positive infinity.
1385      *
1386      * <li> If the argument is zero, the result is
1387      * {@link Float#MIN_VALUE}
1388      *
1389      * </ul>
1390      *
1391      * @param f starting floating-point value
1392      * @return The adjacent floating-point value closer to positive
1393      * infinity.
1394      * @since 1.6
1395      */
1396     public static float nextUp(float f) {
1397         return sun.misc.FpUtils.nextUp(f);
1398     }
1399 
1400 
1401     /**
1402      * Return {@code d} &times;
1403      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1404      * by a single correctly rounded floating-point multiply to a
1405      * member of the double value set.  See the Java
1406      * Language Specification for a discussion of floating-point
1407      * value sets.  If the exponent of the result is between {@link
1408      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1409      * answer is calculated exactly.  If the exponent of the result
1410      * would be larger than {@code Double.MAX_EXPONENT}, an
1411      * infinity is returned.  Note that if the result is subnormal,
1412      * precision may be lost; that is, when {@code scalb(x, n)}
1413      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1414      * <i>x</i>.  When the result is non-NaN, the result has the same
1415      * sign as {@code d}.
1416      *
1417      * <p>Special cases:
1418      * <ul>
1419      * <li> If the first argument is NaN, NaN is returned.
1420      * <li> If the first argument is infinite, then an infinity of the
1421      * same sign is returned.
1422      * <li> If the first argument is zero, then a zero of the same
1423      * sign is returned.
1424      * </ul>
1425      *
1426      * @param d number to be scaled by a power of two.
1427      * @param scaleFactor power of 2 used to scale {@code d}
1428      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1429      * @since 1.6
1430      */
1431     public static double scalb(double d, int scaleFactor) {
1432         return sun.misc.FpUtils.scalb(d, scaleFactor);
1433     }
1434 
1435     /**
1436      * Return {@code f} &times;
1437      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1438      * by a single correctly rounded floating-point multiply to a
1439      * member of the float value set.  See the Java
1440      * Language Specification for a discussion of floating-point
1441      * value sets.  If the exponent of the result is between {@link
1442      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1443      * answer is calculated exactly.  If the exponent of the result
1444      * would be larger than {@code Float.MAX_EXPONENT}, an
1445      * infinity is returned.  Note that if the result is subnormal,
1446      * precision may be lost; that is, when {@code scalb(x, n)}
1447      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1448      * <i>x</i>.  When the result is non-NaN, the result has the same
1449      * sign as {@code f}.
1450      *
1451      * <p>Special cases:
1452      * <ul>
1453      * <li> If the first argument is NaN, NaN is returned.
1454      * <li> If the first argument is infinite, then an infinity of the
1455      * same sign is returned.
1456      * <li> If the first argument is zero, then a zero of the same
1457      * sign is returned.
1458      * </ul>
1459      *
1460      * @param f number to be scaled by a power of two.
1461      * @param scaleFactor power of 2 used to scale {@code f}
1462      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1463      * @since 1.6
1464      */
1465     public static float scalb(float f, int scaleFactor) {
1466         return sun.misc.FpUtils.scalb(f, scaleFactor);
1467     }
1468 }