1 /*
   2  * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import sun.misc.FloatingDecimal;
  29 import sun.misc.FloatConsts;
  30 import sun.misc.DoubleConsts;
  31 
  32 /**
  33  * The {@code Float} class wraps a value of primitive type
  34  * {@code float} in an object. An object of type
  35  * {@code Float} contains a single field whose type is
  36  * {@code float}.
  37  *
  38  * <p>In addition, this class provides several methods for converting a
  39  * {@code float} to a {@code String} and a
  40  * {@code String} to a {@code float}, as well as other
  41  * constants and methods useful when dealing with a
  42  * {@code float}.
  43  *
  44  * @author  Lee Boynton
  45  * @author  Arthur van Hoff
  46  * @author  Joseph D. Darcy
  47  * @since JDK1.0
  48  */
  49 public final class Float extends Number implements Comparable<Float> {
  50     /**
  51      * A constant holding the positive infinity of type
  52      * {@code float}. It is equal to the value returned by
  53      * {@code Float.intBitsToFloat(0x7f800000)}.
  54      */
  55     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
  56 
  57     /**
  58      * A constant holding the negative infinity of type
  59      * {@code float}. It is equal to the value returned by
  60      * {@code Float.intBitsToFloat(0xff800000)}.
  61      */
  62     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
  63 
  64     /**
  65      * A constant holding a Not-a-Number (NaN) value of type
  66      * {@code float}.  It is equivalent to the value returned by
  67      * {@code Float.intBitsToFloat(0x7fc00000)}.
  68      */
  69     public static final float NaN = 0.0f / 0.0f;
  70 
  71     /**
  72      * A constant holding the largest positive finite value of type
  73      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
  74      * It is equal to the hexadecimal floating-point literal
  75      * {@code 0x1.fffffeP+127f} and also equal to
  76      * {@code Float.intBitsToFloat(0x7f7fffff)}.
  77      */
  78     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
  79 
  80     /**
  81      * A constant holding the smallest positive normal value of type
  82      * {@code float}, 2<sup>-126</sup>.  It is equal to the
  83      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
  84      * equal to {@code Float.intBitsToFloat(0x00800000)}.
  85      *
  86      * @since 1.6
  87      */
  88     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
  89 
  90     /**
  91      * A constant holding the smallest positive nonzero value of type
  92      * {@code float}, 2<sup>-149</sup>. It is equal to the
  93      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
  94      * and also equal to {@code Float.intBitsToFloat(0x1)}.
  95      */
  96     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
  97 
  98     /**
  99      * Maximum exponent a finite {@code float} variable may have.  It
 100      * is equal to the value returned by {@code
 101      * Math.getExponent(Float.MAX_VALUE)}.
 102      *
 103      * @since 1.6
 104      */
 105     public static final int MAX_EXPONENT = 127;
 106 
 107     /**
 108      * Minimum exponent a normalized {@code float} variable may have.
 109      * It is equal to the value returned by {@code
 110      * Math.getExponent(Float.MIN_NORMAL)}.
 111      *
 112      * @since 1.6
 113      */
 114     public static final int MIN_EXPONENT = -126;
 115 
 116     /**
 117      * The number of bits used to represent a {@code float} value.
 118      *
 119      * @since 1.5
 120      */
 121     public static final int SIZE = 32;
 122 
 123     /**
 124      * The {@code Class} instance representing the primitive type
 125      * {@code float}.
 126      *
 127      * @since JDK1.1
 128      */
 129     public static final Class<Float> TYPE = Class.getPrimitiveClass("float");
 130 
 131     /**
 132      * Returns a string representation of the {@code float}
 133      * argument. All characters mentioned below are ASCII characters.
 134      * <ul>
 135      * <li>If the argument is NaN, the result is the string
 136      * "{@code NaN}".
 137      * <li>Otherwise, the result is a string that represents the sign and
 138      *     magnitude (absolute value) of the argument. If the sign is
 139      *     negative, the first character of the result is
 140      *     '{@code -}' (<code>'&#92;u002D'</code>); if the sign is
 141      *     positive, no sign character appears in the result. As for
 142      *     the magnitude <i>m</i>:
 143      * <ul>
 144      * <li>If <i>m</i> is infinity, it is represented by the characters
 145      *     {@code "Infinity"}; thus, positive infinity produces
 146      *     the result {@code "Infinity"} and negative infinity
 147      *     produces the result {@code "-Infinity"}.
 148      * <li>If <i>m</i> is zero, it is represented by the characters
 149      *     {@code "0.0"}; thus, negative zero produces the result
 150      *     {@code "-0.0"} and positive zero produces the result
 151      *     {@code "0.0"}.
 152      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
 153      *      less than 10<sup>7</sup>, then it is represented as the
 154      *      integer part of <i>m</i>, in decimal form with no leading
 155      *      zeroes, followed by '{@code .}'
 156      *      (<code>'&#92;u002E'</code>), followed by one or more
 157      *      decimal digits representing the fractional part of
 158      *      <i>m</i>.
 159      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
 160      *      equal to 10<sup>7</sup>, then it is represented in
 161      *      so-called "computerized scientific notation." Let <i>n</i>
 162      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
 163      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
 164      *      be the mathematically exact quotient of <i>m</i> and
 165      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
 166      *      The magnitude is then represented as the integer part of
 167      *      <i>a</i>, as a single decimal digit, followed by
 168      *      '{@code .}' (<code>'&#92;u002E'</code>), followed by
 169      *      decimal digits representing the fractional part of
 170      *      <i>a</i>, followed by the letter '{@code E}'
 171      *      (<code>'&#92;u0045'</code>), followed by a representation
 172      *      of <i>n</i> as a decimal integer, as produced by the
 173      *      method {@link java.lang.Integer#toString(int)}.
 174      *
 175      * </ul>
 176      * </ul>
 177      * How many digits must be printed for the fractional part of
 178      * <i>m</i> or <i>a</i>? There must be at least one digit
 179      * to represent the fractional part, and beyond that as many, but
 180      * only as many, more digits as are needed to uniquely distinguish
 181      * the argument value from adjacent values of type
 182      * {@code float}. That is, suppose that <i>x</i> is the
 183      * exact mathematical value represented by the decimal
 184      * representation produced by this method for a finite nonzero
 185      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
 186      * value nearest to <i>x</i>; or, if two {@code float} values are
 187      * equally close to <i>x</i>, then <i>f</i> must be one of
 188      * them and the least significant bit of the significand of
 189      * <i>f</i> must be {@code 0}.
 190      *
 191      * <p>To create localized string representations of a floating-point
 192      * value, use subclasses of {@link java.text.NumberFormat}.
 193      *
 194      * @param   f   the float to be converted.
 195      * @return a string representation of the argument.
 196      */
 197     public static String toString(float f) {
 198         return new FloatingDecimal(f).toJavaFormatString();
 199     }
 200 
 201     /**
 202      * Returns a hexadecimal string representation of the
 203      * {@code float} argument. All characters mentioned below are
 204      * ASCII characters.
 205      *
 206      * <ul>
 207      * <li>If the argument is NaN, the result is the string
 208      *     "{@code NaN}".
 209      * <li>Otherwise, the result is a string that represents the sign and
 210      * magnitude (absolute value) of the argument. If the sign is negative,
 211      * the first character of the result is '{@code -}'
 212      * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
 213      * appears in the result. As for the magnitude <i>m</i>:
 214      *
 215      * <ul>
 216      * <li>If <i>m</i> is infinity, it is represented by the string
 217      * {@code "Infinity"}; thus, positive infinity produces the
 218      * result {@code "Infinity"} and negative infinity produces
 219      * the result {@code "-Infinity"}.
 220      *
 221      * <li>If <i>m</i> is zero, it is represented by the string
 222      * {@code "0x0.0p0"}; thus, negative zero produces the result
 223      * {@code "-0x0.0p0"} and positive zero produces the result
 224      * {@code "0x0.0p0"}.
 225      *
 226      * <li>If <i>m</i> is a {@code float} value with a
 227      * normalized representation, substrings are used to represent the
 228      * significand and exponent fields.  The significand is
 229      * represented by the characters {@code "0x1."}
 230      * followed by a lowercase hexadecimal representation of the rest
 231      * of the significand as a fraction.  Trailing zeros in the
 232      * hexadecimal representation are removed unless all the digits
 233      * are zero, in which case a single zero is used. Next, the
 234      * exponent is represented by {@code "p"} followed
 235      * by a decimal string of the unbiased exponent as if produced by
 236      * a call to {@link Integer#toString(int) Integer.toString} on the
 237      * exponent value.
 238      *
 239      * <li>If <i>m</i> is a {@code float} value with a subnormal
 240      * representation, the significand is represented by the
 241      * characters {@code "0x0."} followed by a
 242      * hexadecimal representation of the rest of the significand as a
 243      * fraction.  Trailing zeros in the hexadecimal representation are
 244      * removed. Next, the exponent is represented by
 245      * {@code "p-126"}.  Note that there must be at
 246      * least one nonzero digit in a subnormal significand.
 247      *
 248      * </ul>
 249      *
 250      * </ul>
 251      *
 252      * <table border>
 253      * <caption><h3>Examples</h3></caption>
 254      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
 255      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
 256      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
 257      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
 258      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
 259      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
 260      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
 261      * <tr><td>{@code Float.MAX_VALUE}</td>
 262      *     <td>{@code 0x1.fffffep127}</td>
 263      * <tr><td>{@code Minimum Normal Value}</td>
 264      *     <td>{@code 0x1.0p-126}</td>
 265      * <tr><td>{@code Maximum Subnormal Value}</td>
 266      *     <td>{@code 0x0.fffffep-126}</td>
 267      * <tr><td>{@code Float.MIN_VALUE}</td>
 268      *     <td>{@code 0x0.000002p-126}</td>
 269      * </table>
 270      * @param   f   the {@code float} to be converted.
 271      * @return a hex string representation of the argument.
 272      * @since 1.5
 273      * @author Joseph D. Darcy
 274      */
 275     public static String toHexString(float f) {
 276         if (Math.abs(f) < FloatConsts.MIN_NORMAL
 277             &&  f != 0.0f ) {// float subnormal
 278             // Adjust exponent to create subnormal double, then
 279             // replace subnormal double exponent with subnormal float
 280             // exponent
 281             String s = Double.toHexString(Math.scalb((double)f,
 282                                                      /* -1022+126 */
 283                                                      DoubleConsts.MIN_EXPONENT-
 284                                                      FloatConsts.MIN_EXPONENT));
 285             return s.replaceFirst("p-1022$", "p-126");
 286         }
 287         else // double string will be the same as float string
 288             return Double.toHexString(f);
 289     }
 290 
 291     /**
 292      * Returns a {@code Float} object holding the
 293      * {@code float} value represented by the argument string
 294      * {@code s}.
 295      *
 296      * <p>If {@code s} is {@code null}, then a
 297      * {@code NullPointerException} is thrown.
 298      *
 299      * <p>Leading and trailing whitespace characters in {@code s}
 300      * are ignored.  Whitespace is removed as if by the {@link
 301      * String#trim} method; that is, both ASCII space and control
 302      * characters are removed. The rest of {@code s} should
 303      * constitute a <i>FloatValue</i> as described by the lexical
 304      * syntax rules:
 305      *
 306      * <blockquote>
 307      * <dl>
 308      * <dt><i>FloatValue:</i>
 309      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
 310      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
 311      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
 312      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
 313      * <dd><i>SignedInteger</i>
 314      * </dl>
 315      *
 316      * <p>
 317      *
 318      * <dl>
 319      * <dt><i>HexFloatingPointLiteral</i>:
 320      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
 321      * </dl>
 322      *
 323      * <p>
 324      *
 325      * <dl>
 326      * <dt><i>HexSignificand:</i>
 327      * <dd><i>HexNumeral</i>
 328      * <dd><i>HexNumeral</i> {@code .}
 329      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
 330      *     </i>{@code .}<i> HexDigits</i>
 331      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
 332      *     </i>{@code .} <i>HexDigits</i>
 333      * </dl>
 334      *
 335      * <p>
 336      *
 337      * <dl>
 338      * <dt><i>BinaryExponent:</i>
 339      * <dd><i>BinaryExponentIndicator SignedInteger</i>
 340      * </dl>
 341      *
 342      * <p>
 343      *
 344      * <dl>
 345      * <dt><i>BinaryExponentIndicator:</i>
 346      * <dd>{@code p}
 347      * <dd>{@code P}
 348      * </dl>
 349      *
 350      * </blockquote>
 351      *
 352      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
 353      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
 354      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
 355      * sections of
 356      * <cite>The Java&trade; Language Specification</cite>,
 357      * except that underscores are not accepted between digits.
 358      * If {@code s} does not have the form of
 359      * a <i>FloatValue</i>, then a {@code NumberFormatException}
 360      * is thrown. Otherwise, {@code s} is regarded as
 361      * representing an exact decimal value in the usual
 362      * "computerized scientific notation" or as an exact
 363      * hexadecimal value; this exact numerical value is then
 364      * conceptually converted to an "infinitely precise"
 365      * binary value that is then rounded to type {@code float}
 366      * by the usual round-to-nearest rule of IEEE 754 floating-point
 367      * arithmetic, which includes preserving the sign of a zero
 368      * value.
 369      *
 370      * Note that the round-to-nearest rule also implies overflow and
 371      * underflow behaviour; if the exact value of {@code s} is large
 372      * enough in magnitude (greater than or equal to ({@link
 373      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
 374      * rounding to {@code float} will result in an infinity and if the
 375      * exact value of {@code s} is small enough in magnitude (less
 376      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
 377      * result in a zero.
 378      *
 379      * Finally, after rounding a {@code Float} object representing
 380      * this {@code float} value is returned.
 381      *
 382      * <p>To interpret localized string representations of a
 383      * floating-point value, use subclasses of {@link
 384      * java.text.NumberFormat}.
 385      *
 386      * <p>Note that trailing format specifiers, specifiers that
 387      * determine the type of a floating-point literal
 388      * ({@code 1.0f} is a {@code float} value;
 389      * {@code 1.0d} is a {@code double} value), do
 390      * <em>not</em> influence the results of this method.  In other
 391      * words, the numerical value of the input string is converted
 392      * directly to the target floating-point type.  In general, the
 393      * two-step sequence of conversions, string to {@code double}
 394      * followed by {@code double} to {@code float}, is
 395      * <em>not</em> equivalent to converting a string directly to
 396      * {@code float}.  For example, if first converted to an
 397      * intermediate {@code double} and then to
 398      * {@code float}, the string<br>
 399      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
 400      * results in the {@code float} value
 401      * {@code 1.0000002f}; if the string is converted directly to
 402      * {@code float}, <code>1.000000<b>1</b>f</code> results.
 403      *
 404      * <p>To avoid calling this method on an invalid string and having
 405      * a {@code NumberFormatException} be thrown, the documentation
 406      * for {@link Double#valueOf Double.valueOf} lists a regular
 407      * expression which can be used to screen the input.
 408      *
 409      * @param   s   the string to be parsed.
 410      * @return  a {@code Float} object holding the value
 411      *          represented by the {@code String} argument.
 412      * @throws  NumberFormatException  if the string does not contain a
 413      *          parsable number.
 414      */
 415     public static Float valueOf(String s) throws NumberFormatException {
 416         return new Float(FloatingDecimal.readJavaFormatString(s).floatValue());
 417     }
 418 
 419     /**
 420      * Returns a {@code Float} instance representing the specified
 421      * {@code float} value.
 422      * If a new {@code Float} instance is not required, this method
 423      * should generally be used in preference to the constructor
 424      * {@link #Float(float)}, as this method is likely to yield
 425      * significantly better space and time performance by caching
 426      * frequently requested values.
 427      *
 428      * @param  f a float value.
 429      * @return a {@code Float} instance representing {@code f}.
 430      * @since  1.5
 431      */
 432     public static Float valueOf(float f) {
 433         return new Float(f);
 434     }
 435 
 436     /**
 437      * Returns a new {@code float} initialized to the value
 438      * represented by the specified {@code String}, as performed
 439      * by the {@code valueOf} method of class {@code Float}.
 440      *
 441      * @param  s the string to be parsed.
 442      * @return the {@code float} value represented by the string
 443      *         argument.
 444      * @throws NullPointerException  if the string is null
 445      * @throws NumberFormatException if the string does not contain a
 446      *               parsable {@code float}.
 447      * @see    java.lang.Float#valueOf(String)
 448      * @since 1.2
 449      */
 450     public static float parseFloat(String s) throws NumberFormatException {
 451         return FloatingDecimal.readJavaFormatString(s).floatValue();
 452     }
 453 
 454     /**
 455      * Returns {@code true} if the specified number is a
 456      * Not-a-Number (NaN) value, {@code false} otherwise.
 457      *
 458      * @param   v   the value to be tested.
 459      * @return  {@code true} if the argument is NaN;
 460      *          {@code false} otherwise.
 461      */
 462     public static boolean isNaN(float v) {
 463         return (v != v);
 464     }
 465 
 466     /**
 467      * Returns {@code true} if the specified number is infinitely
 468      * large in magnitude, {@code false} otherwise.
 469      *
 470      * @param   v   the value to be tested.
 471      * @return  {@code true} if the argument is positive infinity or
 472      *          negative infinity; {@code false} otherwise.
 473      */
 474     public static boolean isInfinite(float v) {
 475         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
 476     }
 477 
 478 
 479     /**
 480      * Returns {@code true} if the argument is a finite floating-point
 481      * value; returns {@code false} otherwise (for NaN and infinity
 482      * arguments).
 483      *
 484      * @param f the {@code float} value to be tested
 485      * @return {@code true} if the argument is a finite
 486      * floating-point value, {@code false} otherwise.
 487      * @since 1.8
 488      */
 489      public static boolean isFinite(float f) {
 490         return Math.abs(f) <= FloatConsts.MAX_VALUE;
 491     }
 492 
 493     /**
 494      * The value of the Float.
 495      *
 496      * @serial
 497      */
 498     private final float value;
 499 
 500     /**
 501      * Constructs a newly allocated {@code Float} object that
 502      * represents the primitive {@code float} argument.
 503      *
 504      * @param   value   the value to be represented by the {@code Float}.
 505      */
 506     public Float(float value) {
 507         this.value = value;
 508     }
 509 
 510     /**
 511      * Constructs a newly allocated {@code Float} object that
 512      * represents the argument converted to type {@code float}.
 513      *
 514      * @param   value   the value to be represented by the {@code Float}.
 515      */
 516     public Float(double value) {
 517         this.value = (float)value;
 518     }
 519 
 520     /**
 521      * Constructs a newly allocated {@code Float} object that
 522      * represents the floating-point value of type {@code float}
 523      * represented by the string. The string is converted to a
 524      * {@code float} value as if by the {@code valueOf} method.
 525      *
 526      * @param      s   a string to be converted to a {@code Float}.
 527      * @throws  NumberFormatException  if the string does not contain a
 528      *               parsable number.
 529      * @see        java.lang.Float#valueOf(java.lang.String)
 530      */
 531     public Float(String s) throws NumberFormatException {
 532         // REMIND: this is inefficient
 533         this(valueOf(s).floatValue());
 534     }
 535 
 536     /**
 537      * Returns {@code true} if this {@code Float} value is a
 538      * Not-a-Number (NaN), {@code false} otherwise.
 539      *
 540      * @return  {@code true} if the value represented by this object is
 541      *          NaN; {@code false} otherwise.
 542      */
 543     public boolean isNaN() {
 544         return isNaN(value);
 545     }
 546 
 547     /**
 548      * Returns {@code true} if this {@code Float} value is
 549      * infinitely large in magnitude, {@code false} otherwise.
 550      *
 551      * @return  {@code true} if the value represented by this object is
 552      *          positive infinity or negative infinity;
 553      *          {@code false} otherwise.
 554      */
 555     public boolean isInfinite() {
 556         return isInfinite(value);
 557     }
 558 
 559     /**
 560      * Returns a string representation of this {@code Float} object.
 561      * The primitive {@code float} value represented by this object
 562      * is converted to a {@code String} exactly as if by the method
 563      * {@code toString} of one argument.
 564      *
 565      * @return  a {@code String} representation of this object.
 566      * @see java.lang.Float#toString(float)
 567      */
 568     public String toString() {
 569         return Float.toString(value);
 570     }
 571 
 572     /**
 573      * Returns the value of this {@code Float} as a {@code byte} after
 574      * a narrowing primitive conversion.
 575      *
 576      * @return  the {@code float} value represented by this object
 577      *          converted to type {@code byte}
 578      * @jls 5.1.3 Narrowing Primitive Conversions
 579      */
 580     public byte byteValue() {
 581         return (byte)value;
 582     }
 583 
 584     /**
 585      * Returns the value of this {@code Float} as a {@code short}
 586      * after a narrowing primitive conversion.
 587      *
 588      * @return  the {@code float} value represented by this object
 589      *          converted to type {@code short}
 590      * @jls 5.1.3 Narrowing Primitive Conversions
 591      * @since JDK1.1
 592      */
 593     public short shortValue() {
 594         return (short)value;
 595     }
 596 
 597     /**
 598      * Returns the value of this {@code Float} as an {@code int} after
 599      * a narrowing primitive conversion.
 600      *
 601      * @return  the {@code float} value represented by this object
 602      *          converted to type {@code int}
 603      * @jls 5.1.3 Narrowing Primitive Conversions
 604      */
 605     public int intValue() {
 606         return (int)value;
 607     }
 608 
 609     /**
 610      * Returns value of this {@code Float} as a {@code long} after a
 611      * narrowing primitive conversion.
 612      *
 613      * @return  the {@code float} value represented by this object
 614      *          converted to type {@code long}
 615      * @jls 5.1.3 Narrowing Primitive Conversions
 616      */
 617     public long longValue() {
 618         return (long)value;
 619     }
 620 
 621     /**
 622      * Returns the {@code float} value of this {@code Float} object.
 623      *
 624      * @return the {@code float} value represented by this object
 625      */
 626     public float floatValue() {
 627         return value;
 628     }
 629 
 630     /**
 631      * Returns the value of this {@code Float} as a {@code double}
 632      * after a widening primitive conversion.
 633      *
 634      * @return the {@code float} value represented by this
 635      *         object converted to type {@code double}
 636      * @jls 5.1.2 Widening Primitive Conversions
 637      */
 638     public double doubleValue() {
 639         return (double)value;
 640     }
 641 
 642     /**
 643      * Returns a hash code for this {@code Float} object. The
 644      * result is the integer bit representation, exactly as produced
 645      * by the method {@link #floatToIntBits(float)}, of the primitive
 646      * {@code float} value represented by this {@code Float}
 647      * object.
 648      *
 649      * @return a hash code value for this object.
 650      */
 651     public int hashCode() {
 652         return floatToIntBits(value);
 653     }
 654 
 655     /**
 656 
 657      * Compares this object against the specified object.  The result
 658      * is {@code true} if and only if the argument is not
 659      * {@code null} and is a {@code Float} object that
 660      * represents a {@code float} with the same value as the
 661      * {@code float} represented by this object. For this
 662      * purpose, two {@code float} values are considered to be the
 663      * same if and only if the method {@link #floatToIntBits(float)}
 664      * returns the identical {@code int} value when applied to
 665      * each.
 666      *
 667      * <p>Note that in most cases, for two instances of class
 668      * {@code Float}, {@code f1} and {@code f2}, the value
 669      * of {@code f1.equals(f2)} is {@code true} if and only if
 670      *
 671      * <blockquote><pre>
 672      *   f1.floatValue() == f2.floatValue()
 673      * </pre></blockquote>
 674      *
 675      * <p>also has the value {@code true}. However, there are two exceptions:
 676      * <ul>
 677      * <li>If {@code f1} and {@code f2} both represent
 678      *     {@code Float.NaN}, then the {@code equals} method returns
 679      *     {@code true}, even though {@code Float.NaN==Float.NaN}
 680      *     has the value {@code false}.
 681      * <li>If {@code f1} represents {@code +0.0f} while
 682      *     {@code f2} represents {@code -0.0f}, or vice
 683      *     versa, the {@code equal} test has the value
 684      *     {@code false}, even though {@code 0.0f==-0.0f}
 685      *     has the value {@code true}.
 686      * </ul>
 687      *
 688      * This definition allows hash tables to operate properly.
 689      *
 690      * @param obj the object to be compared
 691      * @return  {@code true} if the objects are the same;
 692      *          {@code false} otherwise.
 693      * @see java.lang.Float#floatToIntBits(float)
 694      */
 695     public boolean equals(Object obj) {
 696         return (obj instanceof Float)
 697                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
 698     }
 699 
 700     /**
 701      * Returns a representation of the specified floating-point value
 702      * according to the IEEE 754 floating-point "single format" bit
 703      * layout.
 704      *
 705      * <p>Bit 31 (the bit that is selected by the mask
 706      * {@code 0x80000000}) represents the sign of the floating-point
 707      * number.
 708      * Bits 30-23 (the bits that are selected by the mask
 709      * {@code 0x7f800000}) represent the exponent.
 710      * Bits 22-0 (the bits that are selected by the mask
 711      * {@code 0x007fffff}) represent the significand (sometimes called
 712      * the mantissa) of the floating-point number.
 713      *
 714      * <p>If the argument is positive infinity, the result is
 715      * {@code 0x7f800000}.
 716      *
 717      * <p>If the argument is negative infinity, the result is
 718      * {@code 0xff800000}.
 719      *
 720      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
 721      *
 722      * <p>In all cases, the result is an integer that, when given to the
 723      * {@link #intBitsToFloat(int)} method, will produce a floating-point
 724      * value the same as the argument to {@code floatToIntBits}
 725      * (except all NaN values are collapsed to a single
 726      * "canonical" NaN value).
 727      *
 728      * @param   value   a floating-point number.
 729      * @return the bits that represent the floating-point number.
 730      */
 731     public static int floatToIntBits(float value) {
 732         int result = floatToRawIntBits(value);
 733         // Check for NaN based on values of bit fields, maximum
 734         // exponent and nonzero significand.
 735         if ( ((result & FloatConsts.EXP_BIT_MASK) ==
 736               FloatConsts.EXP_BIT_MASK) &&
 737              (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
 738             result = 0x7fc00000;
 739         return result;
 740     }
 741 
 742     /**
 743      * Returns a representation of the specified floating-point value
 744      * according to the IEEE 754 floating-point "single format" bit
 745      * layout, preserving Not-a-Number (NaN) values.
 746      *
 747      * <p>Bit 31 (the bit that is selected by the mask
 748      * {@code 0x80000000}) represents the sign of the floating-point
 749      * number.
 750      * Bits 30-23 (the bits that are selected by the mask
 751      * {@code 0x7f800000}) represent the exponent.
 752      * Bits 22-0 (the bits that are selected by the mask
 753      * {@code 0x007fffff}) represent the significand (sometimes called
 754      * the mantissa) of the floating-point number.
 755      *
 756      * <p>If the argument is positive infinity, the result is
 757      * {@code 0x7f800000}.
 758      *
 759      * <p>If the argument is negative infinity, the result is
 760      * {@code 0xff800000}.
 761      *
 762      * <p>If the argument is NaN, the result is the integer representing
 763      * the actual NaN value.  Unlike the {@code floatToIntBits}
 764      * method, {@code floatToRawIntBits} does not collapse all the
 765      * bit patterns encoding a NaN to a single "canonical"
 766      * NaN value.
 767      *
 768      * <p>In all cases, the result is an integer that, when given to the
 769      * {@link #intBitsToFloat(int)} method, will produce a
 770      * floating-point value the same as the argument to
 771      * {@code floatToRawIntBits}.
 772      *
 773      * @param   value   a floating-point number.
 774      * @return the bits that represent the floating-point number.
 775      * @since 1.3
 776      */
 777     public static native int floatToRawIntBits(float value);
 778 
 779     /**
 780      * Returns the {@code float} value corresponding to a given
 781      * bit representation.
 782      * The argument is considered to be a representation of a
 783      * floating-point value according to the IEEE 754 floating-point
 784      * "single format" bit layout.
 785      *
 786      * <p>If the argument is {@code 0x7f800000}, the result is positive
 787      * infinity.
 788      *
 789      * <p>If the argument is {@code 0xff800000}, the result is negative
 790      * infinity.
 791      *
 792      * <p>If the argument is any value in the range
 793      * {@code 0x7f800001} through {@code 0x7fffffff} or in
 794      * the range {@code 0xff800001} through
 795      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
 796      * floating-point operation provided by Java can distinguish
 797      * between two NaN values of the same type with different bit
 798      * patterns.  Distinct values of NaN are only distinguishable by
 799      * use of the {@code Float.floatToRawIntBits} method.
 800      *
 801      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
 802      * values that can be computed from the argument:
 803      *
 804      * <blockquote><pre>
 805      * int s = ((bits &gt;&gt; 31) == 0) ? 1 : -1;
 806      * int e = ((bits &gt;&gt; 23) & 0xff);
 807      * int m = (e == 0) ?
 808      *                 (bits & 0x7fffff) &lt;&lt; 1 :
 809      *                 (bits & 0x7fffff) | 0x800000;
 810      * </pre></blockquote>
 811      *
 812      * Then the floating-point result equals the value of the mathematical
 813      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
 814      *
 815      * <p>Note that this method may not be able to return a
 816      * {@code float} NaN with exactly same bit pattern as the
 817      * {@code int} argument.  IEEE 754 distinguishes between two
 818      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
 819      * differences between the two kinds of NaN are generally not
 820      * visible in Java.  Arithmetic operations on signaling NaNs turn
 821      * them into quiet NaNs with a different, but often similar, bit
 822      * pattern.  However, on some processors merely copying a
 823      * signaling NaN also performs that conversion.  In particular,
 824      * copying a signaling NaN to return it to the calling method may
 825      * perform this conversion.  So {@code intBitsToFloat} may
 826      * not be able to return a {@code float} with a signaling NaN
 827      * bit pattern.  Consequently, for some {@code int} values,
 828      * {@code floatToRawIntBits(intBitsToFloat(start))} may
 829      * <i>not</i> equal {@code start}.  Moreover, which
 830      * particular bit patterns represent signaling NaNs is platform
 831      * dependent; although all NaN bit patterns, quiet or signaling,
 832      * must be in the NaN range identified above.
 833      *
 834      * @param   bits   an integer.
 835      * @return  the {@code float} floating-point value with the same bit
 836      *          pattern.
 837      */
 838     public static native float intBitsToFloat(int bits);
 839 
 840     /**
 841      * Compares two {@code Float} objects numerically.  There are
 842      * two ways in which comparisons performed by this method differ
 843      * from those performed by the Java language numerical comparison
 844      * operators ({@code <, <=, ==, >=, >}) when
 845      * applied to primitive {@code float} values:
 846      *
 847      * <ul><li>
 848      *          {@code Float.NaN} is considered by this method to
 849      *          be equal to itself and greater than all other
 850      *          {@code float} values
 851      *          (including {@code Float.POSITIVE_INFINITY}).
 852      * <li>
 853      *          {@code 0.0f} is considered by this method to be greater
 854      *          than {@code -0.0f}.
 855      * </ul>
 856      *
 857      * This ensures that the <i>natural ordering</i> of {@code Float}
 858      * objects imposed by this method is <i>consistent with equals</i>.
 859      *
 860      * @param   anotherFloat   the {@code Float} to be compared.
 861      * @return  the value {@code 0} if {@code anotherFloat} is
 862      *          numerically equal to this {@code Float}; a value
 863      *          less than {@code 0} if this {@code Float}
 864      *          is numerically less than {@code anotherFloat};
 865      *          and a value greater than {@code 0} if this
 866      *          {@code Float} is numerically greater than
 867      *          {@code anotherFloat}.
 868      *
 869      * @since   1.2
 870      * @see Comparable#compareTo(Object)
 871      */
 872     public int compareTo(Float anotherFloat) {
 873         return Float.compare(value, anotherFloat.value);
 874     }
 875 
 876     /**
 877      * Compares the two specified {@code float} values. The sign
 878      * of the integer value returned is the same as that of the
 879      * integer that would be returned by the call:
 880      * <pre>
 881      *    new Float(f1).compareTo(new Float(f2))
 882      * </pre>
 883      *
 884      * @param   f1        the first {@code float} to compare.
 885      * @param   f2        the second {@code float} to compare.
 886      * @return  the value {@code 0} if {@code f1} is
 887      *          numerically equal to {@code f2}; a value less than
 888      *          {@code 0} if {@code f1} is numerically less than
 889      *          {@code f2}; and a value greater than {@code 0}
 890      *          if {@code f1} is numerically greater than
 891      *          {@code f2}.
 892      * @since 1.4
 893      */
 894     public static int compare(float f1, float f2) {
 895         if (f1 < f2)
 896             return -1;           // Neither val is NaN, thisVal is smaller
 897         if (f1 > f2)
 898             return 1;            // Neither val is NaN, thisVal is larger
 899 
 900         // Cannot use floatToRawIntBits because of possibility of NaNs.
 901         int thisBits    = Float.floatToIntBits(f1);
 902         int anotherBits = Float.floatToIntBits(f2);
 903 
 904         return (thisBits == anotherBits ?  0 : // Values are equal
 905                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
 906                  1));                          // (0.0, -0.0) or (NaN, !NaN)
 907     }
 908 
 909     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 910     private static final long serialVersionUID = -2671257302660747028L;
 911 }