1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.util.Random;
  28 import sun.misc.DoubleConsts;
  29 
  30 /**
  31  * The class {@code StrictMath} contains methods for performing basic
  32  * numeric operations such as the elementary exponential, logarithm,
  33  * square root, and trigonometric functions.
  34  *
  35  * <p>To help ensure portability of Java programs, the definitions of
  36  * some of the numeric functions in this package require that they
  37  * produce the same results as certain published algorithms. These
  38  * algorithms are available from the well-known network library
  39  * {@code netlib} as the package "Freely Distributable Math
  40  * Library," <a
  41  * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
  42  * algorithms, which are written in the C programming language, are
  43  * then to be understood as executed with all floating-point
  44  * operations following the rules of Java floating-point arithmetic.
  45  *
  46  * <p>The Java math library is defined with respect to
  47  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
  48  * more than one definition for a function (such as
  49  * {@code acos}), use the "IEEE 754 core function" version
  50  * (residing in a file whose name begins with the letter
  51  * {@code e}).  The methods which require {@code fdlibm}
  52  * semantics are {@code sin}, {@code cos}, {@code tan},
  53  * {@code asin}, {@code acos}, {@code atan},
  54  * {@code exp}, {@code log}, {@code log10},
  55  * {@code cbrt}, {@code atan2}, {@code pow},
  56  * {@code sinh}, {@code cosh}, {@code tanh},
  57  * {@code hypot}, {@code expm1}, and {@code log1p}.
  58  *
  59  * @author  unascribed
  60  * @author  Joseph D. Darcy
  61  * @since   1.3
  62  */
  63 
  64 public final class StrictMath {
  65 
  66     /**
  67      * Don't let anyone instantiate this class.
  68      */
  69     private StrictMath() {}
  70 
  71     /**
  72      * The {@code double} value that is closer than any other to
  73      * <i>e</i>, the base of the natural logarithms.
  74      */
  75     public static final double E = 2.7182818284590452354;
  76 
  77     /**
  78      * The {@code double} value that is closer than any other to
  79      * <i>pi</i>, the ratio of the circumference of a circle to its
  80      * diameter.
  81      */
  82     public static final double PI = 3.14159265358979323846;
  83 
  84     /**
  85      * Returns the trigonometric sine of an angle. Special cases:
  86      * <ul><li>If the argument is NaN or an infinity, then the
  87      * result is NaN.
  88      * <li>If the argument is zero, then the result is a zero with the
  89      * same sign as the argument.</ul>
  90      *
  91      * @param   a   an angle, in radians.
  92      * @return  the sine of the argument.
  93      */
  94     public static native double sin(double a);
  95 
  96     /**
  97      * Returns the trigonometric cosine of an angle. Special cases:
  98      * <ul><li>If the argument is NaN or an infinity, then the
  99      * result is NaN.</ul>
 100      *
 101      * @param   a   an angle, in radians.
 102      * @return  the cosine of the argument.
 103      */
 104     public static native double cos(double a);
 105 
 106     /**
 107      * Returns the trigonometric tangent of an angle. Special cases:
 108      * <ul><li>If the argument is NaN or an infinity, then the result
 109      * is NaN.
 110      * <li>If the argument is zero, then the result is a zero with the
 111      * same sign as the argument.</ul>
 112      *
 113      * @param   a   an angle, in radians.
 114      * @return  the tangent of the argument.
 115      */
 116     public static native double tan(double a);
 117 
 118     /**
 119      * Returns the arc sine of a value; the returned angle is in the
 120      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 121      * <ul><li>If the argument is NaN or its absolute value is greater
 122      * than 1, then the result is NaN.
 123      * <li>If the argument is zero, then the result is a zero with the
 124      * same sign as the argument.</ul>
 125      *
 126      * @param   a   the value whose arc sine is to be returned.
 127      * @return  the arc sine of the argument.
 128      */
 129     public static native double asin(double a);
 130 
 131     /**
 132      * Returns the arc cosine of a value; the returned angle is in the
 133      * range 0.0 through <i>pi</i>.  Special case:
 134      * <ul><li>If the argument is NaN or its absolute value is greater
 135      * than 1, then the result is NaN.</ul>
 136      *
 137      * @param   a   the value whose arc cosine is to be returned.
 138      * @return  the arc cosine of the argument.
 139      */
 140     public static native double acos(double a);
 141 
 142     /**
 143      * Returns the arc tangent of a value; the returned angle is in the
 144      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 145      * <ul><li>If the argument is NaN, then the result is NaN.
 146      * <li>If the argument is zero, then the result is a zero with the
 147      * same sign as the argument.</ul>
 148      *
 149      * @param   a   the value whose arc tangent is to be returned.
 150      * @return  the arc tangent of the argument.
 151      */
 152     public static native double atan(double a);
 153 
 154     /**
 155      * Converts an angle measured in degrees to an approximately
 156      * equivalent angle measured in radians.  The conversion from
 157      * degrees to radians is generally inexact.
 158      *
 159      * @param   angdeg   an angle, in degrees
 160      * @return  the measurement of the angle {@code angdeg}
 161      *          in radians.
 162      */
 163     public static strictfp double toRadians(double angdeg) {
 164         return angdeg / 180.0 * PI;
 165     }
 166 
 167     /**
 168      * Converts an angle measured in radians to an approximately
 169      * equivalent angle measured in degrees.  The conversion from
 170      * radians to degrees is generally inexact; users should
 171      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 172      * equal {@code 0.0}.
 173      *
 174      * @param   angrad   an angle, in radians
 175      * @return  the measurement of the angle {@code angrad}
 176      *          in degrees.
 177      */
 178     public static strictfp double toDegrees(double angrad) {
 179         return angrad * 180.0 / PI;
 180     }
 181 
 182     /**
 183      * Returns Euler's number <i>e</i> raised to the power of a
 184      * {@code double} value. Special cases:
 185      * <ul><li>If the argument is NaN, the result is NaN.
 186      * <li>If the argument is positive infinity, then the result is
 187      * positive infinity.
 188      * <li>If the argument is negative infinity, then the result is
 189      * positive zero.</ul>
 190      *
 191      * @param   a   the exponent to raise <i>e</i> to.
 192      * @return  the value <i>e</i><sup>{@code a}</sup>,
 193      *          where <i>e</i> is the base of the natural logarithms.
 194      */
 195     public static native double exp(double a);
 196 
 197     /**
 198      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 199      * value. Special cases:
 200      * <ul><li>If the argument is NaN or less than zero, then the result
 201      * is NaN.
 202      * <li>If the argument is positive infinity, then the result is
 203      * positive infinity.
 204      * <li>If the argument is positive zero or negative zero, then the
 205      * result is negative infinity.</ul>
 206      *
 207      * @param   a   a value
 208      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 209      *          {@code a}.
 210      */
 211     public static native double log(double a);
 212 
 213 
 214     /**
 215      * Returns the base 10 logarithm of a {@code double} value.
 216      * Special cases:
 217      *
 218      * <ul><li>If the argument is NaN or less than zero, then the result
 219      * is NaN.
 220      * <li>If the argument is positive infinity, then the result is
 221      * positive infinity.
 222      * <li>If the argument is positive zero or negative zero, then the
 223      * result is negative infinity.
 224      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 225      * integer <i>n</i>, then the result is <i>n</i>.
 226      * </ul>
 227      *
 228      * @param   a   a value
 229      * @return  the base 10 logarithm of  {@code a}.
 230      * @since 1.5
 231      */
 232     public static native double log10(double a);
 233 
 234     /**
 235      * Returns the correctly rounded positive square root of a
 236      * {@code double} value.
 237      * Special cases:
 238      * <ul><li>If the argument is NaN or less than zero, then the result
 239      * is NaN.
 240      * <li>If the argument is positive infinity, then the result is positive
 241      * infinity.
 242      * <li>If the argument is positive zero or negative zero, then the
 243      * result is the same as the argument.</ul>
 244      * Otherwise, the result is the {@code double} value closest to
 245      * the true mathematical square root of the argument value.
 246      *
 247      * @param   a   a value.
 248      * @return  the positive square root of {@code a}.
 249      */
 250     public static native double sqrt(double a);
 251 
 252     /**
 253      * Returns the cube root of a {@code double} value.  For
 254      * positive finite {@code x}, {@code cbrt(-x) ==
 255      * -cbrt(x)}; that is, the cube root of a negative value is
 256      * the negative of the cube root of that value's magnitude.
 257      * Special cases:
 258      *
 259      * <ul>
 260      *
 261      * <li>If the argument is NaN, then the result is NaN.
 262      *
 263      * <li>If the argument is infinite, then the result is an infinity
 264      * with the same sign as the argument.
 265      *
 266      * <li>If the argument is zero, then the result is a zero with the
 267      * same sign as the argument.
 268      *
 269      * </ul>
 270      *
 271      * @param   a   a value.
 272      * @return  the cube root of {@code a}.
 273      * @since 1.5
 274      */
 275     public static native double cbrt(double a);
 276 
 277     /**
 278      * Computes the remainder operation on two arguments as prescribed
 279      * by the IEEE 754 standard.
 280      * The remainder value is mathematically equal to
 281      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 282      * where <i>n</i> is the mathematical integer closest to the exact
 283      * mathematical value of the quotient {@code f1/f2}, and if two
 284      * mathematical integers are equally close to {@code f1/f2},
 285      * then <i>n</i> is the integer that is even. If the remainder is
 286      * zero, its sign is the same as the sign of the first argument.
 287      * Special cases:
 288      * <ul><li>If either argument is NaN, or the first argument is infinite,
 289      * or the second argument is positive zero or negative zero, then the
 290      * result is NaN.
 291      * <li>If the first argument is finite and the second argument is
 292      * infinite, then the result is the same as the first argument.</ul>
 293      *
 294      * @param   f1   the dividend.
 295      * @param   f2   the divisor.
 296      * @return  the remainder when {@code f1} is divided by
 297      *          {@code f2}.
 298      */
 299     public static native double IEEEremainder(double f1, double f2);
 300 
 301     /**
 302      * Returns the smallest (closest to negative infinity)
 303      * {@code double} value that is greater than or equal to the
 304      * argument and is equal to a mathematical integer. Special cases:
 305      * <ul><li>If the argument value is already equal to a
 306      * mathematical integer, then the result is the same as the
 307      * argument.  <li>If the argument is NaN or an infinity or
 308      * positive zero or negative zero, then the result is the same as
 309      * the argument.  <li>If the argument value is less than zero but
 310      * greater than -1.0, then the result is negative zero.</ul> Note
 311      * that the value of {@code StrictMath.ceil(x)} is exactly the
 312      * value of {@code -StrictMath.floor(-x)}.
 313      *
 314      * @param   a   a value.
 315      * @return  the smallest (closest to negative infinity)
 316      *          floating-point value that is greater than or equal to
 317      *          the argument and is equal to a mathematical integer.
 318      */
 319     public static double ceil(double a) {
 320         return floorOrCeil(a, -0.0, 1.0, 1.0);
 321     }
 322 
 323     /**
 324      * Returns the largest (closest to positive infinity)
 325      * {@code double} value that is less than or equal to the
 326      * argument and is equal to a mathematical integer. Special cases:
 327      * <ul><li>If the argument value is already equal to a
 328      * mathematical integer, then the result is the same as the
 329      * argument.  <li>If the argument is NaN or an infinity or
 330      * positive zero or negative zero, then the result is the same as
 331      * the argument.</ul>
 332      *
 333      * @param   a   a value.
 334      * @return  the largest (closest to positive infinity)
 335      *          floating-point value that less than or equal to the argument
 336      *          and is equal to a mathematical integer.
 337      */
 338     public static double floor(double a) {
 339         return floorOrCeil(a, -1.0, 0.0, -1.0);
 340     }
 341 
 342     /**
 343      * Internal method to share logic between floor and ceil.
 344      *
 345      * @param a the value to be floored or ceiled
 346      * @param negativeBoundary result for values in (-1, 0)
 347      * @param positiveBoundary result for values in (0, 1)
 348      * @param increment value to add when the argument is non-integral
 349      */
 350     private static double floorOrCeil(double a,
 351                                       double negativeBoundary,
 352                                       double positiveBoundary,
 353                                       double sign) {
 354         int exponent = Math.getExponent(a);
 355 
 356         if (exponent < 0) {
 357             /*
 358              * Absolute value of argument is less than 1.
 359              * floorOrceil(-0.0) => -0.0
 360              * floorOrceil(+0.0) => +0.0
 361              */
 362             return ((a == 0.0) ? a :
 363                     ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
 364         } else if (exponent >= 52) {
 365             /*
 366              * Infinity, NaN, or a value so large it must be integral.
 367              */
 368             return a;
 369         }
 370         // Else the argument is either an integral value already XOR it
 371         // has to be rounded to one.
 372         assert exponent >= 0 && exponent <= 51;
 373 
 374         long doppel = Double.doubleToRawLongBits(a);
 375         long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
 376 
 377         if ( (mask & doppel) == 0L )
 378             return a; // integral value
 379         else {
 380             double result = Double.longBitsToDouble(doppel & (~mask));
 381             if (sign*a > 0.0)
 382                 result = result + sign;
 383             return result;
 384         }
 385     }
 386 
 387     /**
 388      * Returns the {@code double} value that is closest in value
 389      * to the argument and is equal to a mathematical integer. If two
 390      * {@code double} values that are mathematical integers are
 391      * equally close to the value of the argument, the result is the
 392      * integer value that is even. Special cases:
 393      * <ul><li>If the argument value is already equal to a mathematical
 394      * integer, then the result is the same as the argument.
 395      * <li>If the argument is NaN or an infinity or positive zero or negative
 396      * zero, then the result is the same as the argument.</ul>
 397      *
 398      * @param   a   a value.
 399      * @return  the closest floating-point value to {@code a} that is
 400      *          equal to a mathematical integer.
 401      * @author Joseph D. Darcy
 402      */
 403     public static double rint(double a) {
 404         /*
 405          * If the absolute value of a is not less than 2^52, it
 406          * is either a finite integer (the double format does not have
 407          * enough significand bits for a number that large to have any
 408          * fractional portion), an infinity, or a NaN.  In any of
 409          * these cases, rint of the argument is the argument.
 410          *
 411          * Otherwise, the sum (twoToThe52 + a ) will properly round
 412          * away any fractional portion of a since ulp(twoToThe52) ==
 413          * 1.0; subtracting out twoToThe52 from this sum will then be
 414          * exact and leave the rounded integer portion of a.
 415          *
 416          * This method does *not* need to be declared strictfp to get
 417          * fully reproducible results.  Whether or not a method is
 418          * declared strictfp can only make a difference in the
 419          * returned result if some operation would overflow or
 420          * underflow with strictfp semantics.  The operation
 421          * (twoToThe52 + a ) cannot overflow since large values of a
 422          * are screened out; the add cannot underflow since twoToThe52
 423          * is too large.  The subtraction ((twoToThe52 + a ) -
 424          * twoToThe52) will be exact as discussed above and thus
 425          * cannot overflow or meaningfully underflow.  Finally, the
 426          * last multiply in the return statement is by plus or minus
 427          * 1.0, which is exact too.
 428          */
 429         double twoToThe52 = (double)(1L << 52); // 2^52
 430         double sign = Math.copySign(1.0, a); // preserve sign info
 431         a = Math.abs(a);
 432 
 433         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
 434             a = ((twoToThe52 + a ) - twoToThe52);
 435         }
 436 
 437         return sign * a; // restore original sign
 438     }
 439 
 440     /**
 441      * Returns the angle <i>theta</i> from the conversion of rectangular
 442      * coordinates ({@code x},&nbsp;{@code y}) to polar
 443      * coordinates (r,&nbsp;<i>theta</i>).
 444      * This method computes the phase <i>theta</i> by computing an arc tangent
 445      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 446      * cases:
 447      * <ul><li>If either argument is NaN, then the result is NaN.
 448      * <li>If the first argument is positive zero and the second argument
 449      * is positive, or the first argument is positive and finite and the
 450      * second argument is positive infinity, then the result is positive
 451      * zero.
 452      * <li>If the first argument is negative zero and the second argument
 453      * is positive, or the first argument is negative and finite and the
 454      * second argument is positive infinity, then the result is negative zero.
 455      * <li>If the first argument is positive zero and the second argument
 456      * is negative, or the first argument is positive and finite and the
 457      * second argument is negative infinity, then the result is the
 458      * {@code double} value closest to <i>pi</i>.
 459      * <li>If the first argument is negative zero and the second argument
 460      * is negative, or the first argument is negative and finite and the
 461      * second argument is negative infinity, then the result is the
 462      * {@code double} value closest to -<i>pi</i>.
 463      * <li>If the first argument is positive and the second argument is
 464      * positive zero or negative zero, or the first argument is positive
 465      * infinity and the second argument is finite, then the result is the
 466      * {@code double} value closest to <i>pi</i>/2.
 467      * <li>If the first argument is negative and the second argument is
 468      * positive zero or negative zero, or the first argument is negative
 469      * infinity and the second argument is finite, then the result is the
 470      * {@code double} value closest to -<i>pi</i>/2.
 471      * <li>If both arguments are positive infinity, then the result is the
 472      * {@code double} value closest to <i>pi</i>/4.
 473      * <li>If the first argument is positive infinity and the second argument
 474      * is negative infinity, then the result is the {@code double}
 475      * value closest to 3*<i>pi</i>/4.
 476      * <li>If the first argument is negative infinity and the second argument
 477      * is positive infinity, then the result is the {@code double} value
 478      * closest to -<i>pi</i>/4.
 479      * <li>If both arguments are negative infinity, then the result is the
 480      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 481      *
 482      * @param   y   the ordinate coordinate
 483      * @param   x   the abscissa coordinate
 484      * @return  the <i>theta</i> component of the point
 485      *          (<i>r</i>,&nbsp;<i>theta</i>)
 486      *          in polar coordinates that corresponds to the point
 487      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 488      */
 489     public static native double atan2(double y, double x);
 490 
 491 
 492     /**
 493      * Returns the value of the first argument raised to the power of the
 494      * second argument. Special cases:
 495      *
 496      * <ul><li>If the second argument is positive or negative zero, then the
 497      * result is 1.0.
 498      * <li>If the second argument is 1.0, then the result is the same as the
 499      * first argument.
 500      * <li>If the second argument is NaN, then the result is NaN.
 501      * <li>If the first argument is NaN and the second argument is nonzero,
 502      * then the result is NaN.
 503      *
 504      * <li>If
 505      * <ul>
 506      * <li>the absolute value of the first argument is greater than 1
 507      * and the second argument is positive infinity, or
 508      * <li>the absolute value of the first argument is less than 1 and
 509      * the second argument is negative infinity,
 510      * </ul>
 511      * then the result is positive infinity.
 512      *
 513      * <li>If
 514      * <ul>
 515      * <li>the absolute value of the first argument is greater than 1 and
 516      * the second argument is negative infinity, or
 517      * <li>the absolute value of the
 518      * first argument is less than 1 and the second argument is positive
 519      * infinity,
 520      * </ul>
 521      * then the result is positive zero.
 522      *
 523      * <li>If the absolute value of the first argument equals 1 and the
 524      * second argument is infinite, then the result is NaN.
 525      *
 526      * <li>If
 527      * <ul>
 528      * <li>the first argument is positive zero and the second argument
 529      * is greater than zero, or
 530      * <li>the first argument is positive infinity and the second
 531      * argument is less than zero,
 532      * </ul>
 533      * then the result is positive zero.
 534      *
 535      * <li>If
 536      * <ul>
 537      * <li>the first argument is positive zero and the second argument
 538      * is less than zero, or
 539      * <li>the first argument is positive infinity and the second
 540      * argument is greater than zero,
 541      * </ul>
 542      * then the result is positive infinity.
 543      *
 544      * <li>If
 545      * <ul>
 546      * <li>the first argument is negative zero and the second argument
 547      * is greater than zero but not a finite odd integer, or
 548      * <li>the first argument is negative infinity and the second
 549      * argument is less than zero but not a finite odd integer,
 550      * </ul>
 551      * then the result is positive zero.
 552      *
 553      * <li>If
 554      * <ul>
 555      * <li>the first argument is negative zero and the second argument
 556      * is a positive finite odd integer, or
 557      * <li>the first argument is negative infinity and the second
 558      * argument is a negative finite odd integer,
 559      * </ul>
 560      * then the result is negative zero.
 561      *
 562      * <li>If
 563      * <ul>
 564      * <li>the first argument is negative zero and the second argument
 565      * is less than zero but not a finite odd integer, or
 566      * <li>the first argument is negative infinity and the second
 567      * argument is greater than zero but not a finite odd integer,
 568      * </ul>
 569      * then the result is positive infinity.
 570      *
 571      * <li>If
 572      * <ul>
 573      * <li>the first argument is negative zero and the second argument
 574      * is a negative finite odd integer, or
 575      * <li>the first argument is negative infinity and the second
 576      * argument is a positive finite odd integer,
 577      * </ul>
 578      * then the result is negative infinity.
 579      *
 580      * <li>If the first argument is finite and less than zero
 581      * <ul>
 582      * <li> if the second argument is a finite even integer, the
 583      * result is equal to the result of raising the absolute value of
 584      * the first argument to the power of the second argument
 585      *
 586      * <li>if the second argument is a finite odd integer, the result
 587      * is equal to the negative of the result of raising the absolute
 588      * value of the first argument to the power of the second
 589      * argument
 590      *
 591      * <li>if the second argument is finite and not an integer, then
 592      * the result is NaN.
 593      * </ul>
 594      *
 595      * <li>If both arguments are integers, then the result is exactly equal
 596      * to the mathematical result of raising the first argument to the power
 597      * of the second argument if that result can in fact be represented
 598      * exactly as a {@code double} value.</ul>
 599      *
 600      * <p>(In the foregoing descriptions, a floating-point value is
 601      * considered to be an integer if and only if it is finite and a
 602      * fixed point of the method {@link #ceil ceil} or,
 603      * equivalently, a fixed point of the method {@link #floor
 604      * floor}. A value is a fixed point of a one-argument
 605      * method if and only if the result of applying the method to the
 606      * value is equal to the value.)
 607      *
 608      * @param   a   base.
 609      * @param   b   the exponent.
 610      * @return  the value {@code a}<sup>{@code b}</sup>.
 611      */
 612     public static native double pow(double a, double b);
 613 
 614     /**
 615      * Returns the closest {@code int} to the argument, with ties
 616      * rounding up.
 617      *
 618      * <p>Special cases:
 619      * <ul><li>If the argument is NaN, the result is 0.
 620      * <li>If the argument is negative infinity or any value less than or
 621      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 622      * equal to the value of {@code Integer.MIN_VALUE}.
 623      * <li>If the argument is positive infinity or any value greater than or
 624      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 625      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 626      *
 627      * @param   a   a floating-point value to be rounded to an integer.
 628      * @return  the value of the argument rounded to the nearest
 629      *          {@code int} value.
 630      * @see     java.lang.Integer#MAX_VALUE
 631      * @see     java.lang.Integer#MIN_VALUE
 632      */
 633     public static int round(float a) {
 634         return Math.round(a);
 635     }
 636 
 637     /**
 638      * Returns the closest {@code long} to the argument, with ties
 639      * rounding up.
 640      *
 641      * <p>Special cases:
 642      * <ul><li>If the argument is NaN, the result is 0.
 643      * <li>If the argument is negative infinity or any value less than or
 644      * equal to the value of {@code Long.MIN_VALUE}, the result is
 645      * equal to the value of {@code Long.MIN_VALUE}.
 646      * <li>If the argument is positive infinity or any value greater than or
 647      * equal to the value of {@code Long.MAX_VALUE}, the result is
 648      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 649      *
 650      * @param   a  a floating-point value to be rounded to a
 651      *          {@code long}.
 652      * @return  the value of the argument rounded to the nearest
 653      *          {@code long} value.
 654      * @see     java.lang.Long#MAX_VALUE
 655      * @see     java.lang.Long#MIN_VALUE
 656      */
 657     public static long round(double a) {
 658         return Math.round(a);
 659     }
 660 
 661     private static Random randomNumberGenerator;
 662 
 663     private static synchronized Random initRNG() {
 664         Random rnd = randomNumberGenerator;
 665         return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
 666     }
 667 
 668     /**
 669      * Returns a {@code double} value with a positive sign, greater
 670      * than or equal to {@code 0.0} and less than {@code 1.0}.
 671      * Returned values are chosen pseudorandomly with (approximately)
 672      * uniform distribution from that range.
 673      *
 674      * <p>When this method is first called, it creates a single new
 675      * pseudorandom-number generator, exactly as if by the expression
 676      *
 677      * <blockquote>{@code new java.util.Random()}</blockquote>
 678      *
 679      * This new pseudorandom-number generator is used thereafter for
 680      * all calls to this method and is used nowhere else.
 681      *
 682      * <p>This method is properly synchronized to allow correct use by
 683      * more than one thread. However, if many threads need to generate
 684      * pseudorandom numbers at a great rate, it may reduce contention
 685      * for each thread to have its own pseudorandom number generator.
 686      *
 687      * @return  a pseudorandom {@code double} greater than or equal
 688      * to {@code 0.0} and less than {@code 1.0}.
 689      * @see Random#nextDouble()
 690      */
 691     public static double random() {
 692         Random rnd = randomNumberGenerator;
 693         if (rnd == null) rnd = initRNG();
 694         return rnd.nextDouble();
 695     }
 696 
 697     /**
 698      * Returns the absolute value of an {@code int} value..
 699      * If the argument is not negative, the argument is returned.
 700      * If the argument is negative, the negation of the argument is returned.
 701      *
 702      * <p>Note that if the argument is equal to the value of
 703      * {@link Integer#MIN_VALUE}, the most negative representable
 704      * {@code int} value, the result is that same value, which is
 705      * negative.
 706      *
 707      * @param   a   the  argument whose absolute value is to be determined.
 708      * @return  the absolute value of the argument.
 709      */
 710     public static int abs(int a) {
 711         return (a < 0) ? -a : a;
 712     }
 713 
 714     /**
 715      * Returns the absolute value of a {@code long} value.
 716      * If the argument is not negative, the argument is returned.
 717      * If the argument is negative, the negation of the argument is returned.
 718      *
 719      * <p>Note that if the argument is equal to the value of
 720      * {@link Long#MIN_VALUE}, the most negative representable
 721      * {@code long} value, the result is that same value, which
 722      * is negative.
 723      *
 724      * @param   a   the  argument whose absolute value is to be determined.
 725      * @return  the absolute value of the argument.
 726      */
 727     public static long abs(long a) {
 728         return (a < 0) ? -a : a;
 729     }
 730 
 731     /**
 732      * Returns the absolute value of a {@code float} value.
 733      * If the argument is not negative, the argument is returned.
 734      * If the argument is negative, the negation of the argument is returned.
 735      * Special cases:
 736      * <ul><li>If the argument is positive zero or negative zero, the
 737      * result is positive zero.
 738      * <li>If the argument is infinite, the result is positive infinity.
 739      * <li>If the argument is NaN, the result is NaN.</ul>
 740      * In other words, the result is the same as the value of the expression:
 741      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
 742      *
 743      * @param   a   the argument whose absolute value is to be determined
 744      * @return  the absolute value of the argument.
 745      */
 746     public static float abs(float a) {
 747         return (a <= 0.0F) ? 0.0F - a : a;
 748     }
 749 
 750     /**
 751      * Returns the absolute value of a {@code double} value.
 752      * If the argument is not negative, the argument is returned.
 753      * If the argument is negative, the negation of the argument is returned.
 754      * Special cases:
 755      * <ul><li>If the argument is positive zero or negative zero, the result
 756      * is positive zero.
 757      * <li>If the argument is infinite, the result is positive infinity.
 758      * <li>If the argument is NaN, the result is NaN.</ul>
 759      * In other words, the result is the same as the value of the expression:
 760      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
 761      *
 762      * @param   a   the argument whose absolute value is to be determined
 763      * @return  the absolute value of the argument.
 764      */
 765     public static double abs(double a) {
 766         return (a <= 0.0D) ? 0.0D - a : a;
 767     }
 768 
 769     /**
 770      * Returns the greater of two {@code int} values. That is, the
 771      * result is the argument closer to the value of
 772      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
 773      * the result is that same value.
 774      *
 775      * @param   a   an argument.
 776      * @param   b   another argument.
 777      * @return  the larger of {@code a} and {@code b}.
 778      */
 779     public static int max(int a, int b) {
 780         return (a >= b) ? a : b;
 781     }
 782 
 783     /**
 784      * Returns the greater of two {@code long} values. That is, the
 785      * result is the argument closer to the value of
 786      * {@link Long#MAX_VALUE}. If the arguments have the same value,
 787      * the result is that same value.
 788      *
 789      * @param   a   an argument.
 790      * @param   b   another argument.
 791      * @return  the larger of {@code a} and {@code b}.
 792         */
 793     public static long max(long a, long b) {
 794         return (a >= b) ? a : b;
 795     }
 796 
 797     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
 798     private static long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
 799     private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
 800 
 801     /**
 802      * Returns the greater of two {@code float} values.  That is,
 803      * the result is the argument closer to positive infinity. If the
 804      * arguments have the same value, the result is that same
 805      * value. If either value is NaN, then the result is NaN.  Unlike
 806      * the numerical comparison operators, this method considers
 807      * negative zero to be strictly smaller than positive zero. If one
 808      * argument is positive zero and the other negative zero, the
 809      * result is positive zero.
 810      *
 811      * @param   a   an argument.
 812      * @param   b   another argument.
 813      * @return  the larger of {@code a} and {@code b}.
 814      */
 815     public static float max(float a, float b) {
 816         if (a != a)
 817             return a;   // a is NaN
 818         if ((a == 0.0f) &&
 819             (b == 0.0f) &&
 820             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
 821             // Raw conversion ok since NaN can't map to -0.0.
 822             return b;
 823         }
 824         return (a >= b) ? a : b;
 825     }
 826 
 827     /**
 828      * Returns the greater of two {@code double} values.  That
 829      * is, the result is the argument closer to positive infinity. If
 830      * the arguments have the same value, the result is that same
 831      * value. If either value is NaN, then the result is NaN.  Unlike
 832      * the numerical comparison operators, this method considers
 833      * negative zero to be strictly smaller than positive zero. If one
 834      * argument is positive zero and the other negative zero, the
 835      * result is positive zero.
 836      *
 837      * @param   a   an argument.
 838      * @param   b   another argument.
 839      * @return  the larger of {@code a} and {@code b}.
 840      */
 841     public static double max(double a, double b) {
 842         if (a != a)
 843             return a;   // a is NaN
 844         if ((a == 0.0d) &&
 845             (b == 0.0d) &&
 846             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
 847             // Raw conversion ok since NaN can't map to -0.0.
 848             return b;
 849         }
 850         return (a >= b) ? a : b;
 851     }
 852 
 853     /**
 854      * Returns the smaller of two {@code int} values. That is,
 855      * the result the argument closer to the value of
 856      * {@link Integer#MIN_VALUE}.  If the arguments have the same
 857      * value, the result is that same value.
 858      *
 859      * @param   a   an argument.
 860      * @param   b   another argument.
 861      * @return  the smaller of {@code a} and {@code b}.
 862      */
 863     public static int min(int a, int b) {
 864         return (a <= b) ? a : b;
 865     }
 866 
 867     /**
 868      * Returns the smaller of two {@code long} values. That is,
 869      * the result is the argument closer to the value of
 870      * {@link Long#MIN_VALUE}. If the arguments have the same
 871      * value, the result is that same value.
 872      *
 873      * @param   a   an argument.
 874      * @param   b   another argument.
 875      * @return  the smaller of {@code a} and {@code b}.
 876      */
 877     public static long min(long a, long b) {
 878         return (a <= b) ? a : b;
 879     }
 880 
 881     /**
 882      * Returns the smaller of two {@code float} values.  That is,
 883      * the result is the value closer to negative infinity. If the
 884      * arguments have the same value, the result is that same
 885      * value. If either value is NaN, then the result is NaN.  Unlike
 886      * the numerical comparison operators, this method considers
 887      * negative zero to be strictly smaller than positive zero.  If
 888      * one argument is positive zero and the other is negative zero,
 889      * the result is negative zero.
 890      *
 891      * @param   a   an argument.
 892      * @param   b   another argument.
 893      * @return  the smaller of {@code a} and {@code b.}
 894      */
 895     public static float min(float a, float b) {
 896         if (a != a)
 897             return a;   // a is NaN
 898         if ((a == 0.0f) &&
 899             (b == 0.0f) &&
 900             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
 901             // Raw conversion ok since NaN can't map to -0.0.
 902             return b;
 903         }
 904         return (a <= b) ? a : b;
 905     }
 906 
 907     /**
 908      * Returns the smaller of two {@code double} values.  That
 909      * is, the result is the value closer to negative infinity. If the
 910      * arguments have the same value, the result is that same
 911      * value. If either value is NaN, then the result is NaN.  Unlike
 912      * the numerical comparison operators, this method considers
 913      * negative zero to be strictly smaller than positive zero. If one
 914      * argument is positive zero and the other is negative zero, the
 915      * result is negative zero.
 916      *
 917      * @param   a   an argument.
 918      * @param   b   another argument.
 919      * @return  the smaller of {@code a} and {@code b}.
 920      */
 921     public static double min(double a, double b) {
 922         if (a != a)
 923             return a;   // a is NaN
 924         if ((a == 0.0d) &&
 925             (b == 0.0d) &&
 926             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
 927             // Raw conversion ok since NaN can't map to -0.0.
 928             return b;
 929         }
 930         return (a <= b) ? a : b;
 931     }
 932 
 933     /**
 934      * Returns the size of an ulp of the argument.  An ulp, unit in
 935      * the last place, of a {@code double} value is the positive
 936      * distance between this floating-point value and the {@code
 937      * double} value next larger in magnitude.  Note that for non-NaN
 938      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 939      *
 940      * <p>Special Cases:
 941      * <ul>
 942      * <li> If the argument is NaN, then the result is NaN.
 943      * <li> If the argument is positive or negative infinity, then the
 944      * result is positive infinity.
 945      * <li> If the argument is positive or negative zero, then the result is
 946      * {@code Double.MIN_VALUE}.
 947      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
 948      * the result is equal to 2<sup>971</sup>.
 949      * </ul>
 950      *
 951      * @param d the floating-point value whose ulp is to be returned
 952      * @return the size of an ulp of the argument
 953      * @author Joseph D. Darcy
 954      * @since 1.5
 955      */
 956     public static double ulp(double d) {
 957         return Math.ulp(d);
 958     }
 959 
 960     /**
 961      * Returns the size of an ulp of the argument.  An ulp, unit in
 962      * the last place, of a {@code float} value is the positive
 963      * distance between this floating-point value and the {@code
 964      * float} value next larger in magnitude.  Note that for non-NaN
 965      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
 966      *
 967      * <p>Special Cases:
 968      * <ul>
 969      * <li> If the argument is NaN, then the result is NaN.
 970      * <li> If the argument is positive or negative infinity, then the
 971      * result is positive infinity.
 972      * <li> If the argument is positive or negative zero, then the result is
 973      * {@code Float.MIN_VALUE}.
 974      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
 975      * the result is equal to 2<sup>104</sup>.
 976      * </ul>
 977      *
 978      * @param f the floating-point value whose ulp is to be returned
 979      * @return the size of an ulp of the argument
 980      * @author Joseph D. Darcy
 981      * @since 1.5
 982      */
 983     public static float ulp(float f) {
 984         return Math.ulp(f);
 985     }
 986 
 987     /**
 988      * Returns the signum function of the argument; zero if the argument
 989      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
 990      * argument is less than zero.
 991      *
 992      * <p>Special Cases:
 993      * <ul>
 994      * <li> If the argument is NaN, then the result is NaN.
 995      * <li> If the argument is positive zero or negative zero, then the
 996      *      result is the same as the argument.
 997      * </ul>
 998      *
 999      * @param d the floating-point value whose signum is to be returned
1000      * @return the signum function of the argument
1001      * @author Joseph D. Darcy
1002      * @since 1.5
1003      */
1004     public static double signum(double d) {
1005         return Math.signum(d);
1006     }
1007 
1008     /**
1009      * Returns the signum function of the argument; zero if the argument
1010      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1011      * argument is less than zero.
1012      *
1013      * <p>Special Cases:
1014      * <ul>
1015      * <li> If the argument is NaN, then the result is NaN.
1016      * <li> If the argument is positive zero or negative zero, then the
1017      *      result is the same as the argument.
1018      * </ul>
1019      *
1020      * @param f the floating-point value whose signum is to be returned
1021      * @return the signum function of the argument
1022      * @author Joseph D. Darcy
1023      * @since 1.5
1024      */
1025     public static float signum(float f) {
1026         return Math.signum(f);
1027     }
1028 
1029     /**
1030      * Returns the hyperbolic sine of a {@code double} value.
1031      * The hyperbolic sine of <i>x</i> is defined to be
1032      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1033      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1034      *
1035      * <p>Special cases:
1036      * <ul>
1037      *
1038      * <li>If the argument is NaN, then the result is NaN.
1039      *
1040      * <li>If the argument is infinite, then the result is an infinity
1041      * with the same sign as the argument.
1042      *
1043      * <li>If the argument is zero, then the result is a zero with the
1044      * same sign as the argument.
1045      *
1046      * </ul>
1047      *
1048      * @param   x The number whose hyperbolic sine is to be returned.
1049      * @return  The hyperbolic sine of {@code x}.
1050      * @since 1.5
1051      */
1052     public static native double sinh(double x);
1053 
1054     /**
1055      * Returns the hyperbolic cosine of a {@code double} value.
1056      * The hyperbolic cosine of <i>x</i> is defined to be
1057      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1058      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1059      *
1060      * <p>Special cases:
1061      * <ul>
1062      *
1063      * <li>If the argument is NaN, then the result is NaN.
1064      *
1065      * <li>If the argument is infinite, then the result is positive
1066      * infinity.
1067      *
1068      * <li>If the argument is zero, then the result is {@code 1.0}.
1069      *
1070      * </ul>
1071      *
1072      * @param   x The number whose hyperbolic cosine is to be returned.
1073      * @return  The hyperbolic cosine of {@code x}.
1074      * @since 1.5
1075      */
1076     public static native double cosh(double x);
1077 
1078     /**
1079      * Returns the hyperbolic tangent of a {@code double} value.
1080      * The hyperbolic tangent of <i>x</i> is defined to be
1081      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1082      * in other words, {@linkplain Math#sinh
1083      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1084      * that the absolute value of the exact tanh is always less than
1085      * 1.
1086      *
1087      * <p>Special cases:
1088      * <ul>
1089      *
1090      * <li>If the argument is NaN, then the result is NaN.
1091      *
1092      * <li>If the argument is zero, then the result is a zero with the
1093      * same sign as the argument.
1094      *
1095      * <li>If the argument is positive infinity, then the result is
1096      * {@code +1.0}.
1097      *
1098      * <li>If the argument is negative infinity, then the result is
1099      * {@code -1.0}.
1100      *
1101      * </ul>
1102      *
1103      * @param   x The number whose hyperbolic tangent is to be returned.
1104      * @return  The hyperbolic tangent of {@code x}.
1105      * @since 1.5
1106      */
1107     public static native double tanh(double x);
1108 
1109     /**
1110      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1111      * without intermediate overflow or underflow.
1112      *
1113      * <p>Special cases:
1114      * <ul>
1115      *
1116      * <li> If either argument is infinite, then the result
1117      * is positive infinity.
1118      *
1119      * <li> If either argument is NaN and neither argument is infinite,
1120      * then the result is NaN.
1121      *
1122      * </ul>
1123      *
1124      * @param x a value
1125      * @param y a value
1126      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1127      * without intermediate overflow or underflow
1128      * @since 1.5
1129      */
1130     public static native double hypot(double x, double y);
1131 
1132     /**
1133      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1134      * <i>x</i> near 0, the exact sum of
1135      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1136      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1137      *
1138      * <p>Special cases:
1139      * <ul>
1140      * <li>If the argument is NaN, the result is NaN.
1141      *
1142      * <li>If the argument is positive infinity, then the result is
1143      * positive infinity.
1144      *
1145      * <li>If the argument is negative infinity, then the result is
1146      * -1.0.
1147      *
1148      * <li>If the argument is zero, then the result is a zero with the
1149      * same sign as the argument.
1150      *
1151      * </ul>
1152      *
1153      * @param   x   the exponent to raise <i>e</i> to in the computation of
1154      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1155      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1156      * @since 1.5
1157      */
1158     public static native double expm1(double x);
1159 
1160     /**
1161      * Returns the natural logarithm of the sum of the argument and 1.
1162      * Note that for small values {@code x}, the result of
1163      * {@code log1p(x)} is much closer to the true result of ln(1
1164      * + {@code x}) than the floating-point evaluation of
1165      * {@code log(1.0+x)}.
1166      *
1167      * <p>Special cases:
1168      * <ul>
1169      *
1170      * <li>If the argument is NaN or less than -1, then the result is
1171      * NaN.
1172      *
1173      * <li>If the argument is positive infinity, then the result is
1174      * positive infinity.
1175      *
1176      * <li>If the argument is negative one, then the result is
1177      * negative infinity.
1178      *
1179      * <li>If the argument is zero, then the result is a zero with the
1180      * same sign as the argument.
1181      *
1182      * </ul>
1183      *
1184      * @param   x   a value
1185      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1186      * log of {@code x}&nbsp;+&nbsp;1
1187      * @since 1.5
1188      */
1189     public static native double log1p(double x);
1190 
1191     /**
1192      * Returns the first floating-point argument with the sign of the
1193      * second floating-point argument.  For this method, a NaN
1194      * {@code sign} argument is always treated as if it were
1195      * positive.
1196      *
1197      * @param magnitude  the parameter providing the magnitude of the result
1198      * @param sign   the parameter providing the sign of the result
1199      * @return a value with the magnitude of {@code magnitude}
1200      * and the sign of {@code sign}.
1201      * @since 1.6
1202      */
1203     public static double copySign(double magnitude, double sign) {
1204         return Math.copySign(magnitude, (Double.isNaN(sign)?1.0d:sign));
1205     }
1206 
1207     /**
1208      * Returns the first floating-point argument with the sign of the
1209      * second floating-point argument.  For this method, a NaN
1210      * {@code sign} argument is always treated as if it were
1211      * positive.
1212      *
1213      * @param magnitude  the parameter providing the magnitude of the result
1214      * @param sign   the parameter providing the sign of the result
1215      * @return a value with the magnitude of {@code magnitude}
1216      * and the sign of {@code sign}.
1217      * @since 1.6
1218      */
1219     public static float copySign(float magnitude, float sign) {
1220         return Math.copySign(magnitude, (Float.isNaN(sign)?1.0f:sign));
1221     }
1222     /**
1223      * Returns the unbiased exponent used in the representation of a
1224      * {@code float}.  Special cases:
1225      *
1226      * <ul>
1227      * <li>If the argument is NaN or infinite, then the result is
1228      * {@link Float#MAX_EXPONENT} + 1.
1229      * <li>If the argument is zero or subnormal, then the result is
1230      * {@link Float#MIN_EXPONENT} -1.
1231      * </ul>
1232      * @param f a {@code float} value
1233      * @since 1.6
1234      */
1235     public static int getExponent(float f) {
1236         return Math.getExponent(f);
1237     }
1238 
1239     /**
1240      * Returns the unbiased exponent used in the representation of a
1241      * {@code double}.  Special cases:
1242      *
1243      * <ul>
1244      * <li>If the argument is NaN or infinite, then the result is
1245      * {@link Double#MAX_EXPONENT} + 1.
1246      * <li>If the argument is zero or subnormal, then the result is
1247      * {@link Double#MIN_EXPONENT} -1.
1248      * </ul>
1249      * @param d a {@code double} value
1250      * @since 1.6
1251      */
1252     public static int getExponent(double d) {
1253         return Math.getExponent(d);
1254     }
1255 
1256     /**
1257      * Returns the floating-point number adjacent to the first
1258      * argument in the direction of the second argument.  If both
1259      * arguments compare as equal the second argument is returned.
1260      *
1261      * <p>Special cases:
1262      * <ul>
1263      * <li> If either argument is a NaN, then NaN is returned.
1264      *
1265      * <li> If both arguments are signed zeros, {@code direction}
1266      * is returned unchanged (as implied by the requirement of
1267      * returning the second argument if the arguments compare as
1268      * equal).
1269      *
1270      * <li> If {@code start} is
1271      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1272      * has a value such that the result should have a smaller
1273      * magnitude, then a zero with the same sign as {@code start}
1274      * is returned.
1275      *
1276      * <li> If {@code start} is infinite and
1277      * {@code direction} has a value such that the result should
1278      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1279      * same sign as {@code start} is returned.
1280      *
1281      * <li> If {@code start} is equal to &plusmn;
1282      * {@link Double#MAX_VALUE} and {@code direction} has a
1283      * value such that the result should have a larger magnitude, an
1284      * infinity with same sign as {@code start} is returned.
1285      * </ul>
1286      *
1287      * @param start  starting floating-point value
1288      * @param direction value indicating which of
1289      * {@code start}'s neighbors or {@code start} should
1290      * be returned
1291      * @return The floating-point number adjacent to {@code start} in the
1292      * direction of {@code direction}.
1293      * @since 1.6
1294      */
1295     public static double nextAfter(double start, double direction) {
1296         return Math.nextAfter(start, direction);
1297     }
1298 
1299     /**
1300      * Returns the floating-point number adjacent to the first
1301      * argument in the direction of the second argument.  If both
1302      * arguments compare as equal a value equivalent to the second argument
1303      * is returned.
1304      *
1305      * <p>Special cases:
1306      * <ul>
1307      * <li> If either argument is a NaN, then NaN is returned.
1308      *
1309      * <li> If both arguments are signed zeros, a value equivalent
1310      * to {@code direction} is returned.
1311      *
1312      * <li> If {@code start} is
1313      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1314      * has a value such that the result should have a smaller
1315      * magnitude, then a zero with the same sign as {@code start}
1316      * is returned.
1317      *
1318      * <li> If {@code start} is infinite and
1319      * {@code direction} has a value such that the result should
1320      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1321      * same sign as {@code start} is returned.
1322      *
1323      * <li> If {@code start} is equal to &plusmn;
1324      * {@link Float#MAX_VALUE} and {@code direction} has a
1325      * value such that the result should have a larger magnitude, an
1326      * infinity with same sign as {@code start} is returned.
1327      * </ul>
1328      *
1329      * @param start  starting floating-point value
1330      * @param direction value indicating which of
1331      * {@code start}'s neighbors or {@code start} should
1332      * be returned
1333      * @return The floating-point number adjacent to {@code start} in the
1334      * direction of {@code direction}.
1335      * @since 1.6
1336      */
1337     public static float nextAfter(float start, double direction) {
1338         return Math.nextAfter(start, direction);
1339     }
1340 
1341     /**
1342      * Returns the floating-point value adjacent to {@code d} in
1343      * the direction of positive infinity.  This method is
1344      * semantically equivalent to {@code nextAfter(d,
1345      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1346      * implementation may run faster than its equivalent
1347      * {@code nextAfter} call.
1348      *
1349      * <p>Special Cases:
1350      * <ul>
1351      * <li> If the argument is NaN, the result is NaN.
1352      *
1353      * <li> If the argument is positive infinity, the result is
1354      * positive infinity.
1355      *
1356      * <li> If the argument is zero, the result is
1357      * {@link Double#MIN_VALUE}
1358      *
1359      * </ul>
1360      *
1361      * @param d starting floating-point value
1362      * @return The adjacent floating-point value closer to positive
1363      * infinity.
1364      * @since 1.6
1365      */
1366     public static double nextUp(double d) {
1367         return Math.nextUp(d);
1368     }
1369 
1370     /**
1371      * Returns the floating-point value adjacent to {@code f} in
1372      * the direction of positive infinity.  This method is
1373      * semantically equivalent to {@code nextAfter(f,
1374      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1375      * implementation may run faster than its equivalent
1376      * {@code nextAfter} call.
1377      *
1378      * <p>Special Cases:
1379      * <ul>
1380      * <li> If the argument is NaN, the result is NaN.
1381      *
1382      * <li> If the argument is positive infinity, the result is
1383      * positive infinity.
1384      *
1385      * <li> If the argument is zero, the result is
1386      * {@link Float#MIN_VALUE}
1387      *
1388      * </ul>
1389      *
1390      * @param f starting floating-point value
1391      * @return The adjacent floating-point value closer to positive
1392      * infinity.
1393      * @since 1.6
1394      */
1395     public static float nextUp(float f) {
1396         return Math.nextUp(f);
1397     }
1398 
1399     /**
1400      * Return {@code d} &times;
1401      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1402      * by a single correctly rounded floating-point multiply to a
1403      * member of the double value set.  See the Java
1404      * Language Specification for a discussion of floating-point
1405      * value sets.  If the exponent of the result is between {@link
1406      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1407      * answer is calculated exactly.  If the exponent of the result
1408      * would be larger than {@code Double.MAX_EXPONENT}, an
1409      * infinity is returned.  Note that if the result is subnormal,
1410      * precision may be lost; that is, when {@code scalb(x, n)}
1411      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1412      * <i>x</i>.  When the result is non-NaN, the result has the same
1413      * sign as {@code d}.
1414      *
1415      * <p>Special cases:
1416      * <ul>
1417      * <li> If the first argument is NaN, NaN is returned.
1418      * <li> If the first argument is infinite, then an infinity of the
1419      * same sign is returned.
1420      * <li> If the first argument is zero, then a zero of the same
1421      * sign is returned.
1422      * </ul>
1423      *
1424      * @param d number to be scaled by a power of two.
1425      * @param scaleFactor power of 2 used to scale {@code d}
1426      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1427      * @since 1.6
1428      */
1429     public static double scalb(double d, int scaleFactor) {
1430         return Math.scalb(d, scaleFactor);
1431     }
1432 
1433     /**
1434      * Return {@code f} &times;
1435      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1436      * by a single correctly rounded floating-point multiply to a
1437      * member of the float value set.  See the Java
1438      * Language Specification for a discussion of floating-point
1439      * value sets.  If the exponent of the result is between {@link
1440      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1441      * answer is calculated exactly.  If the exponent of the result
1442      * would be larger than {@code Float.MAX_EXPONENT}, an
1443      * infinity is returned.  Note that if the result is subnormal,
1444      * precision may be lost; that is, when {@code scalb(x, n)}
1445      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1446      * <i>x</i>.  When the result is non-NaN, the result has the same
1447      * sign as {@code f}.
1448      *
1449      * <p>Special cases:
1450      * <ul>
1451      * <li> If the first argument is NaN, NaN is returned.
1452      * <li> If the first argument is infinite, then an infinity of the
1453      * same sign is returned.
1454      * <li> If the first argument is zero, then a zero of the same
1455      * sign is returned.
1456      * </ul>
1457      *
1458      * @param f number to be scaled by a power of two.
1459      * @param scaleFactor power of 2 used to scale {@code f}
1460      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1461      * @since 1.6
1462      */
1463     public static float scalb(float f, int scaleFactor) {
1464         return Math.scalb(f, scaleFactor);
1465     }
1466 }