1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.tools.JavaFileManager;
  31 
  32 import com.sun.tools.javac.code.*;
  33 import com.sun.tools.javac.code.Attribute.Compound;
  34 import com.sun.tools.javac.jvm.*;
  35 import com.sun.tools.javac.tree.*;
  36 import com.sun.tools.javac.util.*;
  37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  38 import com.sun.tools.javac.util.List;
  39 
  40 import com.sun.tools.javac.code.Lint;
  41 import com.sun.tools.javac.code.Lint.LintCategory;
  42 import com.sun.tools.javac.code.Type.*;
  43 import com.sun.tools.javac.code.Symbol.*;
  44 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  45 import com.sun.tools.javac.comp.Infer.InferenceContext;
  46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  47 import com.sun.tools.javac.tree.JCTree.*;
  48 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  49 
  50 import static com.sun.tools.javac.code.Flags.*;
  51 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  52 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  53 import static com.sun.tools.javac.code.Kinds.*;
  54 import static com.sun.tools.javac.code.TypeTag.*;
  55 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  56 
  57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  58 
  59 /** Type checking helper class for the attribution phase.
  60  *
  61  *  <p><b>This is NOT part of any supported API.
  62  *  If you write code that depends on this, you do so at your own risk.
  63  *  This code and its internal interfaces are subject to change or
  64  *  deletion without notice.</b>
  65  */
  66 public class Check {
  67     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  68 
  69     private final Names names;
  70     private final Log log;
  71     private final Resolve rs;
  72     private final Symtab syms;
  73     private final Enter enter;
  74     private final DeferredAttr deferredAttr;
  75     private final Infer infer;
  76     private final Types types;
  77     private final JCDiagnostic.Factory diags;
  78     private boolean warnOnSyntheticConflicts;
  79     private boolean suppressAbortOnBadClassFile;
  80     private boolean enableSunApiLintControl;
  81     private final TreeInfo treeinfo;
  82     private final JavaFileManager fileManager;
  83     private final Profile profile;
  84     private final boolean warnOnAccessToSensitiveMembers;
  85 
  86     // The set of lint options currently in effect. It is initialized
  87     // from the context, and then is set/reset as needed by Attr as it
  88     // visits all the various parts of the trees during attribution.
  89     private Lint lint;
  90 
  91     // The method being analyzed in Attr - it is set/reset as needed by
  92     // Attr as it visits new method declarations.
  93     private MethodSymbol method;
  94 
  95     public static Check instance(Context context) {
  96         Check instance = context.get(checkKey);
  97         if (instance == null)
  98             instance = new Check(context);
  99         return instance;
 100     }
 101 
 102     protected Check(Context context) {
 103         context.put(checkKey, this);
 104 
 105         names = Names.instance(context);
 106         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
 107             names.FIELD, names.METHOD, names.CONSTRUCTOR,
 108             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
 109         log = Log.instance(context);
 110         rs = Resolve.instance(context);
 111         syms = Symtab.instance(context);
 112         enter = Enter.instance(context);
 113         deferredAttr = DeferredAttr.instance(context);
 114         infer = Infer.instance(context);
 115         types = Types.instance(context);
 116         diags = JCDiagnostic.Factory.instance(context);
 117         Options options = Options.instance(context);
 118         lint = Lint.instance(context);
 119         treeinfo = TreeInfo.instance(context);
 120         fileManager = context.get(JavaFileManager.class);
 121 
 122         Source source = Source.instance(context);
 123         allowGenerics = source.allowGenerics();
 124         allowVarargs = source.allowVarargs();
 125         allowAnnotations = source.allowAnnotations();
 126         allowCovariantReturns = source.allowCovariantReturns();
 127         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
 128         allowDefaultMethods = source.allowDefaultMethods();
 129         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
 130         complexInference = options.isSet("complexinference");
 131         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
 132         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
 133         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
 134         warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
 135 
 136         Target target = Target.instance(context);
 137         syntheticNameChar = target.syntheticNameChar();
 138 
 139         profile = Profile.instance(context);
 140 
 141         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 142         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 143         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
 144         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
 145 
 146         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
 147                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
 148         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
 149                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
 150         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
 151                 enforceMandatoryWarnings, "sunapi", null);
 152 
 153         deferredLintHandler = DeferredLintHandler.instance(context);
 154     }
 155 
 156     /** Switch: generics enabled?
 157      */
 158     boolean allowGenerics;
 159 
 160     /** Switch: varargs enabled?
 161      */
 162     boolean allowVarargs;
 163 
 164     /** Switch: annotations enabled?
 165      */
 166     boolean allowAnnotations;
 167 
 168     /** Switch: covariant returns enabled?
 169      */
 170     boolean allowCovariantReturns;
 171 
 172     /** Switch: simplified varargs enabled?
 173      */
 174     boolean allowSimplifiedVarargs;
 175 
 176     /** Switch: default methods enabled?
 177      */
 178     boolean allowDefaultMethods;
 179 
 180     /** Switch: should unrelated return types trigger a method clash?
 181      */
 182     boolean allowStrictMethodClashCheck;
 183 
 184     /** Switch: -complexinference option set?
 185      */
 186     boolean complexInference;
 187 
 188     /** Character for synthetic names
 189      */
 190     char syntheticNameChar;
 191 
 192     /** A table mapping flat names of all compiled classes in this run to their
 193      *  symbols; maintained from outside.
 194      */
 195     public Map<Name,ClassSymbol> compiled = new HashMap<>();
 196 
 197     /** A handler for messages about deprecated usage.
 198      */
 199     private MandatoryWarningHandler deprecationHandler;
 200 
 201     /** A handler for messages about unchecked or unsafe usage.
 202      */
 203     private MandatoryWarningHandler uncheckedHandler;
 204 
 205     /** A handler for messages about using proprietary API.
 206      */
 207     private MandatoryWarningHandler sunApiHandler;
 208 
 209     /** A handler for deferred lint warnings.
 210      */
 211     private DeferredLintHandler deferredLintHandler;
 212 
 213 /* *************************************************************************
 214  * Errors and Warnings
 215  **************************************************************************/
 216 
 217     Lint setLint(Lint newLint) {
 218         Lint prev = lint;
 219         lint = newLint;
 220         return prev;
 221     }
 222 
 223     MethodSymbol setMethod(MethodSymbol newMethod) {
 224         MethodSymbol prev = method;
 225         method = newMethod;
 226         return prev;
 227     }
 228 
 229     /** Warn about deprecated symbol.
 230      *  @param pos        Position to be used for error reporting.
 231      *  @param sym        The deprecated symbol.
 232      */
 233     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 234         if (!lint.isSuppressed(LintCategory.DEPRECATION))
 235             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
 236     }
 237 
 238     /** Warn about unchecked operation.
 239      *  @param pos        Position to be used for error reporting.
 240      *  @param msg        A string describing the problem.
 241      */
 242     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
 243         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 244             uncheckedHandler.report(pos, msg, args);
 245     }
 246 
 247     /** Warn about unsafe vararg method decl.
 248      *  @param pos        Position to be used for error reporting.
 249      */
 250     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
 251         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
 252             log.warning(LintCategory.VARARGS, pos, key, args);
 253     }
 254 
 255     /** Warn about using proprietary API.
 256      *  @param pos        Position to be used for error reporting.
 257      *  @param msg        A string describing the problem.
 258      */
 259     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
 260         if (!lint.isSuppressed(LintCategory.SUNAPI))
 261             sunApiHandler.report(pos, msg, args);
 262     }
 263 
 264     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
 265         if (lint.isEnabled(LintCategory.STATIC))
 266             log.warning(LintCategory.STATIC, pos, msg, args);
 267     }
 268 
 269     /**
 270      * Report any deferred diagnostics.
 271      */
 272     public void reportDeferredDiagnostics() {
 273         deprecationHandler.reportDeferredDiagnostic();
 274         uncheckedHandler.reportDeferredDiagnostic();
 275         sunApiHandler.reportDeferredDiagnostic();
 276     }
 277 
 278 
 279     /** Report a failure to complete a class.
 280      *  @param pos        Position to be used for error reporting.
 281      *  @param ex         The failure to report.
 282      */
 283     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 284         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
 285         if (ex instanceof ClassFinder.BadClassFile
 286                 && !suppressAbortOnBadClassFile) throw new Abort();
 287         else return syms.errType;
 288     }
 289 
 290     /** Report an error that wrong type tag was found.
 291      *  @param pos        Position to be used for error reporting.
 292      *  @param required   An internationalized string describing the type tag
 293      *                    required.
 294      *  @param found      The type that was found.
 295      */
 296     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
 297         // this error used to be raised by the parser,
 298         // but has been delayed to this point:
 299         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
 300             log.error(pos, "illegal.start.of.type");
 301             return syms.errType;
 302         }
 303         log.error(pos, "type.found.req", found, required);
 304         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
 305     }
 306 
 307     /** Report an error that symbol cannot be referenced before super
 308      *  has been called.
 309      *  @param pos        Position to be used for error reporting.
 310      *  @param sym        The referenced symbol.
 311      */
 312     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
 313         log.error(pos, "cant.ref.before.ctor.called", sym);
 314     }
 315 
 316     /** Report duplicate declaration error.
 317      */
 318     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 319         if (!sym.type.isErroneous()) {
 320             Symbol location = sym.location();
 321             if (location.kind == MTH &&
 322                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 323                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
 324                         kindName(sym.location()), kindName(sym.location().enclClass()),
 325                         sym.location().enclClass());
 326             } else {
 327                 log.error(pos, "already.defined", kindName(sym), sym,
 328                         kindName(sym.location()), sym.location());
 329             }
 330         }
 331     }
 332 
 333     /** Report array/varargs duplicate declaration
 334      */
 335     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 336         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 337             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
 338         }
 339     }
 340 
 341 /* ************************************************************************
 342  * duplicate declaration checking
 343  *************************************************************************/
 344 
 345     /** Check that variable does not hide variable with same name in
 346      *  immediately enclosing local scope.
 347      *  @param pos           Position for error reporting.
 348      *  @param v             The symbol.
 349      *  @param s             The scope.
 350      */
 351     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 352         if (s.next != null) {
 353             for (Scope.Entry e = s.next.lookup(v.name);
 354                  e.scope != null && e.sym.owner == v.owner;
 355                  e = e.next()) {
 356                 if (e.sym.kind == VAR &&
 357                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 358                     v.name != names.error) {
 359                     duplicateError(pos, e.sym);
 360                     return;
 361                 }
 362             }
 363         }
 364     }
 365 
 366     /** Check that a class or interface does not hide a class or
 367      *  interface with same name in immediately enclosing local scope.
 368      *  @param pos           Position for error reporting.
 369      *  @param c             The symbol.
 370      *  @param s             The scope.
 371      */
 372     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 373         if (s.next != null) {
 374             for (Scope.Entry e = s.next.lookup(c.name);
 375                  e.scope != null && e.sym.owner == c.owner;
 376                  e = e.next()) {
 377                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
 378                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 379                     c.name != names.error) {
 380                     duplicateError(pos, e.sym);
 381                     return;
 382                 }
 383             }
 384         }
 385     }
 386 
 387     /** Check that class does not have the same name as one of
 388      *  its enclosing classes, or as a class defined in its enclosing scope.
 389      *  return true if class is unique in its enclosing scope.
 390      *  @param pos           Position for error reporting.
 391      *  @param name          The class name.
 392      *  @param s             The enclosing scope.
 393      */
 394     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 395         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
 396             if (e.sym.kind == TYP && e.sym.name != names.error) {
 397                 duplicateError(pos, e.sym);
 398                 return false;
 399             }
 400         }
 401         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 402             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
 403                 duplicateError(pos, sym);
 404                 return true;
 405             }
 406         }
 407         return true;
 408     }
 409 
 410 /* *************************************************************************
 411  * Class name generation
 412  **************************************************************************/
 413 
 414     /** Return name of local class.
 415      *  This is of the form   {@code <enclClass> $ n <classname> }
 416      *  where
 417      *    enclClass is the flat name of the enclosing class,
 418      *    classname is the simple name of the local class
 419      */
 420     Name localClassName(ClassSymbol c) {
 421         for (int i=1; ; i++) {
 422             Name flatname = names.
 423                 fromString("" + c.owner.enclClass().flatname +
 424                            syntheticNameChar + i +
 425                            c.name);
 426             if (compiled.get(flatname) == null) return flatname;
 427         }
 428     }
 429 
 430     public void newRound() {
 431         compiled.clear();
 432     }
 433 
 434 /* *************************************************************************
 435  * Type Checking
 436  **************************************************************************/
 437 
 438     /**
 439      * A check context is an object that can be used to perform compatibility
 440      * checks - depending on the check context, meaning of 'compatibility' might
 441      * vary significantly.
 442      */
 443     public interface CheckContext {
 444         /**
 445          * Is type 'found' compatible with type 'req' in given context
 446          */
 447         boolean compatible(Type found, Type req, Warner warn);
 448         /**
 449          * Report a check error
 450          */
 451         void report(DiagnosticPosition pos, JCDiagnostic details);
 452         /**
 453          * Obtain a warner for this check context
 454          */
 455         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 456 
 457         public Infer.InferenceContext inferenceContext();
 458 
 459         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 460     }
 461 
 462     /**
 463      * This class represent a check context that is nested within another check
 464      * context - useful to check sub-expressions. The default behavior simply
 465      * redirects all method calls to the enclosing check context leveraging
 466      * the forwarding pattern.
 467      */
 468     static class NestedCheckContext implements CheckContext {
 469         CheckContext enclosingContext;
 470 
 471         NestedCheckContext(CheckContext enclosingContext) {
 472             this.enclosingContext = enclosingContext;
 473         }
 474 
 475         public boolean compatible(Type found, Type req, Warner warn) {
 476             return enclosingContext.compatible(found, req, warn);
 477         }
 478 
 479         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 480             enclosingContext.report(pos, details);
 481         }
 482 
 483         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 484             return enclosingContext.checkWarner(pos, found, req);
 485         }
 486 
 487         public Infer.InferenceContext inferenceContext() {
 488             return enclosingContext.inferenceContext();
 489         }
 490 
 491         public DeferredAttrContext deferredAttrContext() {
 492             return enclosingContext.deferredAttrContext();
 493         }
 494     }
 495 
 496     /**
 497      * Check context to be used when evaluating assignment/return statements
 498      */
 499     CheckContext basicHandler = new CheckContext() {
 500         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 501             log.error(pos, "prob.found.req", details);
 502         }
 503         public boolean compatible(Type found, Type req, Warner warn) {
 504             return types.isAssignable(found, req, warn);
 505         }
 506 
 507         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 508             return convertWarner(pos, found, req);
 509         }
 510 
 511         public InferenceContext inferenceContext() {
 512             return infer.emptyContext;
 513         }
 514 
 515         public DeferredAttrContext deferredAttrContext() {
 516             return deferredAttr.emptyDeferredAttrContext;
 517         }
 518 
 519         @Override
 520         public String toString() {
 521             return "CheckContext: basicHandler";
 522         }
 523     };
 524 
 525     /** Check that a given type is assignable to a given proto-type.
 526      *  If it is, return the type, otherwise return errType.
 527      *  @param pos        Position to be used for error reporting.
 528      *  @param found      The type that was found.
 529      *  @param req        The type that was required.
 530      */
 531     Type checkType(DiagnosticPosition pos, Type found, Type req) {
 532         return checkType(pos, found, req, basicHandler);
 533     }
 534 
 535     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 536         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
 537         if (inferenceContext.free(req)) {
 538             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
 539                 @Override
 540                 public void typesInferred(InferenceContext inferenceContext) {
 541                     checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
 542                 }
 543             });
 544         }
 545         if (req.hasTag(ERROR))
 546             return req;
 547         if (req.hasTag(NONE))
 548             return found;
 549         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 550             return found;
 551         } else {
 552             if (found.isNumeric() && req.isNumeric()) {
 553                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
 554                 return types.createErrorType(found);
 555             }
 556             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 557             return types.createErrorType(found);
 558         }
 559     }
 560 
 561     /** Check that a given type can be cast to a given target type.
 562      *  Return the result of the cast.
 563      *  @param pos        Position to be used for error reporting.
 564      *  @param found      The type that is being cast.
 565      *  @param req        The target type of the cast.
 566      */
 567     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 568         return checkCastable(pos, found, req, basicHandler);
 569     }
 570     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 571         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 572             return req;
 573         } else {
 574             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 575             return types.createErrorType(found);
 576         }
 577     }
 578 
 579     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 580      * The problem should only be reported for non-292 cast
 581      */
 582     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 583         if (!tree.type.isErroneous()
 584                 && types.isSameType(tree.expr.type, tree.clazz.type)
 585                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 586                 && !is292targetTypeCast(tree)) {
 587             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
 588                 @Override
 589                 public void report() {
 590                     if (lint.isEnabled(Lint.LintCategory.CAST))
 591                         log.warning(Lint.LintCategory.CAST,
 592                                 tree.pos(), "redundant.cast", tree.expr.type);
 593                 }
 594             });
 595         }
 596     }
 597     //where
 598         private boolean is292targetTypeCast(JCTypeCast tree) {
 599             boolean is292targetTypeCast = false;
 600             JCExpression expr = TreeInfo.skipParens(tree.expr);
 601             if (expr.hasTag(APPLY)) {
 602                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 603                 Symbol sym = TreeInfo.symbol(apply.meth);
 604                 is292targetTypeCast = sym != null &&
 605                     sym.kind == MTH &&
 606                     (sym.flags() & HYPOTHETICAL) != 0;
 607             }
 608             return is292targetTypeCast;
 609         }
 610 
 611         private static final boolean ignoreAnnotatedCasts = true;
 612 
 613     /** Check that a type is within some bounds.
 614      *
 615      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 616      *  type argument.
 617      *  @param a             The type that should be bounded by bs.
 618      *  @param bound         The bound.
 619      */
 620     private boolean checkExtends(Type a, Type bound) {
 621          if (a.isUnbound()) {
 622              return true;
 623          } else if (!a.hasTag(WILDCARD)) {
 624              a = types.cvarUpperBound(a);
 625              return types.isSubtype(a, bound);
 626          } else if (a.isExtendsBound()) {
 627              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 628          } else if (a.isSuperBound()) {
 629              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 630          }
 631          return true;
 632      }
 633 
 634     /** Check that type is different from 'void'.
 635      *  @param pos           Position to be used for error reporting.
 636      *  @param t             The type to be checked.
 637      */
 638     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 639         if (t.hasTag(VOID)) {
 640             log.error(pos, "void.not.allowed.here");
 641             return types.createErrorType(t);
 642         } else {
 643             return t;
 644         }
 645     }
 646 
 647     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 648         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 649             return typeTagError(pos,
 650                                 diags.fragment("type.req.class.array"),
 651                                 asTypeParam(t));
 652         } else {
 653             return t;
 654         }
 655     }
 656 
 657     /** Check that type is a class or interface type.
 658      *  @param pos           Position to be used for error reporting.
 659      *  @param t             The type to be checked.
 660      */
 661     Type checkClassType(DiagnosticPosition pos, Type t) {
 662         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 663             return typeTagError(pos,
 664                                 diags.fragment("type.req.class"),
 665                                 asTypeParam(t));
 666         } else {
 667             return t;
 668         }
 669     }
 670     //where
 671         private Object asTypeParam(Type t) {
 672             return (t.hasTag(TYPEVAR))
 673                                     ? diags.fragment("type.parameter", t)
 674                                     : t;
 675         }
 676 
 677     /** Check that type is a valid qualifier for a constructor reference expression
 678      */
 679     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 680         t = checkClassOrArrayType(pos, t);
 681         if (t.hasTag(CLASS)) {
 682             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 683                 log.error(pos, "abstract.cant.be.instantiated", t.tsym);
 684                 t = types.createErrorType(t);
 685             } else if ((t.tsym.flags() & ENUM) != 0) {
 686                 log.error(pos, "enum.cant.be.instantiated");
 687                 t = types.createErrorType(t);
 688             } else {
 689                 t = checkClassType(pos, t, true);
 690             }
 691         } else if (t.hasTag(ARRAY)) {
 692             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 693                 log.error(pos, "generic.array.creation");
 694                 t = types.createErrorType(t);
 695             }
 696         }
 697         return t;
 698     }
 699 
 700     /** Check that type is a class or interface type.
 701      *  @param pos           Position to be used for error reporting.
 702      *  @param t             The type to be checked.
 703      *  @param noBounds    True if type bounds are illegal here.
 704      */
 705     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 706         t = checkClassType(pos, t);
 707         if (noBounds && t.isParameterized()) {
 708             List<Type> args = t.getTypeArguments();
 709             while (args.nonEmpty()) {
 710                 if (args.head.hasTag(WILDCARD))
 711                     return typeTagError(pos,
 712                                         diags.fragment("type.req.exact"),
 713                                         args.head);
 714                 args = args.tail;
 715             }
 716         }
 717         return t;
 718     }
 719 
 720     /** Check that type is a reference type, i.e. a class, interface or array type
 721      *  or a type variable.
 722      *  @param pos           Position to be used for error reporting.
 723      *  @param t             The type to be checked.
 724      */
 725     Type checkRefType(DiagnosticPosition pos, Type t) {
 726         if (t.isReference())
 727             return t;
 728         else
 729             return typeTagError(pos,
 730                                 diags.fragment("type.req.ref"),
 731                                 t);
 732     }
 733 
 734     /** Check that each type is a reference type, i.e. a class, interface or array type
 735      *  or a type variable.
 736      *  @param trees         Original trees, used for error reporting.
 737      *  @param types         The types to be checked.
 738      */
 739     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 740         List<JCExpression> tl = trees;
 741         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 742             l.head = checkRefType(tl.head.pos(), l.head);
 743             tl = tl.tail;
 744         }
 745         return types;
 746     }
 747 
 748     /** Check that type is a null or reference type.
 749      *  @param pos           Position to be used for error reporting.
 750      *  @param t             The type to be checked.
 751      */
 752     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 753         if (t.isReference() || t.hasTag(BOT))
 754             return t;
 755         else
 756             return typeTagError(pos,
 757                                 diags.fragment("type.req.ref"),
 758                                 t);
 759     }
 760 
 761     /** Check that flag set does not contain elements of two conflicting sets. s
 762      *  Return true if it doesn't.
 763      *  @param pos           Position to be used for error reporting.
 764      *  @param flags         The set of flags to be checked.
 765      *  @param set1          Conflicting flags set #1.
 766      *  @param set2          Conflicting flags set #2.
 767      */
 768     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 769         if ((flags & set1) != 0 && (flags & set2) != 0) {
 770             log.error(pos,
 771                       "illegal.combination.of.modifiers",
 772                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
 773                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
 774             return false;
 775         } else
 776             return true;
 777     }
 778 
 779     /** Check that usage of diamond operator is correct (i.e. diamond should not
 780      * be used with non-generic classes or in anonymous class creation expressions)
 781      */
 782     Type checkDiamond(JCNewClass tree, Type t) {
 783         if (!TreeInfo.isDiamond(tree) ||
 784                 t.isErroneous()) {
 785             return checkClassType(tree.clazz.pos(), t, true);
 786         } else if (tree.def != null) {
 787             log.error(tree.clazz.pos(),
 788                     "cant.apply.diamond.1",
 789                     t, diags.fragment("diamond.and.anon.class", t));
 790             return types.createErrorType(t);
 791         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
 792             log.error(tree.clazz.pos(),
 793                 "cant.apply.diamond.1",
 794                 t, diags.fragment("diamond.non.generic", t));
 795             return types.createErrorType(t);
 796         } else if (tree.typeargs != null &&
 797                 tree.typeargs.nonEmpty()) {
 798             log.error(tree.clazz.pos(),
 799                 "cant.apply.diamond.1",
 800                 t, diags.fragment("diamond.and.explicit.params", t));
 801             return types.createErrorType(t);
 802         } else {
 803             return t;
 804         }
 805     }
 806 
 807     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 808         MethodSymbol m = tree.sym;
 809         if (!allowSimplifiedVarargs) return;
 810         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 811         Type varargElemType = null;
 812         if (m.isVarArgs()) {
 813             varargElemType = types.elemtype(tree.params.last().type);
 814         }
 815         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 816             if (varargElemType != null) {
 817                 log.error(tree,
 818                         "varargs.invalid.trustme.anno",
 819                         syms.trustMeType.tsym,
 820                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
 821             } else {
 822                 log.error(tree,
 823                             "varargs.invalid.trustme.anno",
 824                             syms.trustMeType.tsym,
 825                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
 826             }
 827         } else if (hasTrustMeAnno && varargElemType != null &&
 828                             types.isReifiable(varargElemType)) {
 829             warnUnsafeVararg(tree,
 830                             "varargs.redundant.trustme.anno",
 831                             syms.trustMeType.tsym,
 832                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
 833         }
 834         else if (!hasTrustMeAnno && varargElemType != null &&
 835                 !types.isReifiable(varargElemType)) {
 836             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
 837         }
 838     }
 839     //where
 840         private boolean isTrustMeAllowedOnMethod(Symbol s) {
 841             return (s.flags() & VARARGS) != 0 &&
 842                 (s.isConstructor() ||
 843                     (s.flags() & (STATIC | FINAL)) != 0);
 844         }
 845 
 846     Type checkMethod(final Type mtype,
 847             final Symbol sym,
 848             final Env<AttrContext> env,
 849             final List<JCExpression> argtrees,
 850             final List<Type> argtypes,
 851             final boolean useVarargs,
 852             InferenceContext inferenceContext) {
 853         // System.out.println("call   : " + env.tree);
 854         // System.out.println("method : " + owntype);
 855         // System.out.println("actuals: " + argtypes);
 856         if (inferenceContext.free(mtype)) {
 857             inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
 858                 public void typesInferred(InferenceContext inferenceContext) {
 859                     checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
 860                 }
 861             });
 862             return mtype;
 863         }
 864         Type owntype = mtype;
 865         List<Type> formals = owntype.getParameterTypes();
 866         List<Type> nonInferred = sym.type.getParameterTypes();
 867         if (nonInferred.length() != formals.length()) nonInferred = formals;
 868         Type last = useVarargs ? formals.last() : null;
 869         if (sym.name == names.init && sym.owner == syms.enumSym) {
 870             formals = formals.tail.tail;
 871             nonInferred = nonInferred.tail.tail;
 872         }
 873         List<JCExpression> args = argtrees;
 874         if (args != null) {
 875             //this is null when type-checking a method reference
 876             while (formals.head != last) {
 877                 JCTree arg = args.head;
 878                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
 879                 assertConvertible(arg, arg.type, formals.head, warn);
 880                 args = args.tail;
 881                 formals = formals.tail;
 882                 nonInferred = nonInferred.tail;
 883             }
 884             if (useVarargs) {
 885                 Type varArg = types.elemtype(last);
 886                 while (args.tail != null) {
 887                     JCTree arg = args.head;
 888                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
 889                     assertConvertible(arg, arg.type, varArg, warn);
 890                     args = args.tail;
 891                 }
 892             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS &&
 893                     allowVarargs) {
 894                 // non-varargs call to varargs method
 895                 Type varParam = owntype.getParameterTypes().last();
 896                 Type lastArg = argtypes.last();
 897                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
 898                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
 899                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
 900                                 types.elemtype(varParam), varParam);
 901             }
 902         }
 903         if (useVarargs) {
 904             Type argtype = owntype.getParameterTypes().last();
 905             if (!types.isReifiable(argtype) &&
 906                 (!allowSimplifiedVarargs ||
 907                  sym.attribute(syms.trustMeType.tsym) == null ||
 908                  !isTrustMeAllowedOnMethod(sym))) {
 909                 warnUnchecked(env.tree.pos(),
 910                                   "unchecked.generic.array.creation",
 911                                   argtype);
 912             }
 913             if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
 914                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
 915             }
 916          }
 917          PolyKind pkind = (sym.type.hasTag(FORALL) &&
 918                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
 919                  PolyKind.POLY : PolyKind.STANDALONE;
 920          TreeInfo.setPolyKind(env.tree, pkind);
 921          return owntype;
 922     }
 923     //where
 924     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
 925         if (types.isConvertible(actual, formal, warn))
 926             return;
 927 
 928         if (formal.isCompound()
 929             && types.isSubtype(actual, types.supertype(formal))
 930             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
 931             return;
 932     }
 933 
 934     /**
 935      * Check that type 't' is a valid instantiation of a generic class
 936      * (see JLS 4.5)
 937      *
 938      * @param t class type to be checked
 939      * @return true if 't' is well-formed
 940      */
 941     public boolean checkValidGenericType(Type t) {
 942         return firstIncompatibleTypeArg(t) == null;
 943     }
 944     //WHERE
 945         private Type firstIncompatibleTypeArg(Type type) {
 946             List<Type> formals = type.tsym.type.allparams();
 947             List<Type> actuals = type.allparams();
 948             List<Type> args = type.getTypeArguments();
 949             List<Type> forms = type.tsym.type.getTypeArguments();
 950             ListBuffer<Type> bounds_buf = new ListBuffer<>();
 951 
 952             // For matching pairs of actual argument types `a' and
 953             // formal type parameters with declared bound `b' ...
 954             while (args.nonEmpty() && forms.nonEmpty()) {
 955                 // exact type arguments needs to know their
 956                 // bounds (for upper and lower bound
 957                 // calculations).  So we create new bounds where
 958                 // type-parameters are replaced with actuals argument types.
 959                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
 960                 args = args.tail;
 961                 forms = forms.tail;
 962             }
 963 
 964             args = type.getTypeArguments();
 965             List<Type> tvars_cap = types.substBounds(formals,
 966                                       formals,
 967                                       types.capture(type).allparams());
 968             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
 969                 // Let the actual arguments know their bound
 970                 args.head.withTypeVar((TypeVar)tvars_cap.head);
 971                 args = args.tail;
 972                 tvars_cap = tvars_cap.tail;
 973             }
 974 
 975             args = type.getTypeArguments();
 976             List<Type> bounds = bounds_buf.toList();
 977 
 978             while (args.nonEmpty() && bounds.nonEmpty()) {
 979                 Type actual = args.head;
 980                 if (!isTypeArgErroneous(actual) &&
 981                         !bounds.head.isErroneous() &&
 982                         !checkExtends(actual, bounds.head)) {
 983                     return args.head;
 984                 }
 985                 args = args.tail;
 986                 bounds = bounds.tail;
 987             }
 988 
 989             args = type.getTypeArguments();
 990             bounds = bounds_buf.toList();
 991 
 992             for (Type arg : types.capture(type).getTypeArguments()) {
 993                 if (arg.hasTag(TYPEVAR) &&
 994                         arg.getUpperBound().isErroneous() &&
 995                         !bounds.head.isErroneous() &&
 996                         !isTypeArgErroneous(args.head)) {
 997                     return args.head;
 998                 }
 999                 bounds = bounds.tail;
1000                 args = args.tail;
1001             }
1002 
1003             return null;
1004         }
1005         //where
1006         boolean isTypeArgErroneous(Type t) {
1007             return isTypeArgErroneous.visit(t);
1008         }
1009 
1010         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1011             public Boolean visitType(Type t, Void s) {
1012                 return t.isErroneous();
1013             }
1014             @Override
1015             public Boolean visitTypeVar(TypeVar t, Void s) {
1016                 return visit(t.getUpperBound());
1017             }
1018             @Override
1019             public Boolean visitCapturedType(CapturedType t, Void s) {
1020                 return visit(t.getUpperBound()) ||
1021                         visit(t.getLowerBound());
1022             }
1023             @Override
1024             public Boolean visitWildcardType(WildcardType t, Void s) {
1025                 return visit(t.type);
1026             }
1027         };
1028 
1029     /** Check that given modifiers are legal for given symbol and
1030      *  return modifiers together with any implicit modifiers for that symbol.
1031      *  Warning: we can't use flags() here since this method
1032      *  is called during class enter, when flags() would cause a premature
1033      *  completion.
1034      *  @param pos           Position to be used for error reporting.
1035      *  @param flags         The set of modifiers given in a definition.
1036      *  @param sym           The defined symbol.
1037      */
1038     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1039         long mask;
1040         long implicit = 0;
1041 
1042         switch (sym.kind) {
1043         case VAR:
1044             if (TreeInfo.isReceiverParam(tree))
1045                 mask = ReceiverParamFlags;
1046             else if (sym.owner.kind != TYP)
1047                 mask = LocalVarFlags;
1048             else if ((sym.owner.flags_field & INTERFACE) != 0)
1049                 mask = implicit = InterfaceVarFlags;
1050             else
1051                 mask = VarFlags;
1052             break;
1053         case MTH:
1054             if (sym.name == names.init) {
1055                 if ((sym.owner.flags_field & ENUM) != 0) {
1056                     // enum constructors cannot be declared public or
1057                     // protected and must be implicitly or explicitly
1058                     // private
1059                     implicit = PRIVATE;
1060                     mask = PRIVATE;
1061                 } else
1062                     mask = ConstructorFlags;
1063             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1064                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1065                     mask = AnnotationTypeElementMask;
1066                     implicit = PUBLIC | ABSTRACT;
1067                 } else if ((flags & (DEFAULT | STATIC)) != 0) {
1068                     mask = InterfaceMethodMask;
1069                     implicit = PUBLIC;
1070                     if ((flags & DEFAULT) != 0) {
1071                         implicit |= ABSTRACT;
1072                     }
1073                 } else {
1074                     mask = implicit = InterfaceMethodFlags;
1075                 }
1076             } else {
1077                 mask = MethodFlags;
1078             }
1079             // Imply STRICTFP if owner has STRICTFP set.
1080             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1081                 ((flags) & Flags.DEFAULT) != 0)
1082                 implicit |= sym.owner.flags_field & STRICTFP;
1083             break;
1084         case TYP:
1085             if (sym.isLocal()) {
1086                 mask = LocalClassFlags;
1087                 if (sym.name.isEmpty()) { // Anonymous class
1088                     // JLS: Anonymous classes are final.
1089                     implicit |= FINAL;
1090                 }
1091                 if ((sym.owner.flags_field & STATIC) == 0 &&
1092                     (flags & ENUM) != 0)
1093                     log.error(pos, "enums.must.be.static");
1094             } else if (sym.owner.kind == TYP) {
1095                 mask = MemberClassFlags;
1096                 if (sym.owner.owner.kind == PCK ||
1097                     (sym.owner.flags_field & STATIC) != 0)
1098                     mask |= STATIC;
1099                 else if ((flags & ENUM) != 0)
1100                     log.error(pos, "enums.must.be.static");
1101                 // Nested interfaces and enums are always STATIC (Spec ???)
1102                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1103             } else {
1104                 mask = ClassFlags;
1105             }
1106             // Interfaces are always ABSTRACT
1107             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1108 
1109             if ((flags & ENUM) != 0) {
1110                 // enums can't be declared abstract or final
1111                 mask &= ~(ABSTRACT | FINAL);
1112                 implicit |= implicitEnumFinalFlag(tree);
1113             }
1114             // Imply STRICTFP if owner has STRICTFP set.
1115             implicit |= sym.owner.flags_field & STRICTFP;
1116             break;
1117         default:
1118             throw new AssertionError();
1119         }
1120         long illegal = flags & ExtendedStandardFlags & ~mask;
1121         if (illegal != 0) {
1122             if ((illegal & INTERFACE) != 0) {
1123                 log.error(pos, "intf.not.allowed.here");
1124                 mask |= INTERFACE;
1125             }
1126             else {
1127                 log.error(pos,
1128                           "mod.not.allowed.here", asFlagSet(illegal));
1129             }
1130         }
1131         else if ((sym.kind == TYP ||
1132                   // ISSUE: Disallowing abstract&private is no longer appropriate
1133                   // in the presence of inner classes. Should it be deleted here?
1134                   checkDisjoint(pos, flags,
1135                                 ABSTRACT,
1136                                 PRIVATE | STATIC | DEFAULT))
1137                  &&
1138                  checkDisjoint(pos, flags,
1139                                 STATIC,
1140                                 DEFAULT)
1141                  &&
1142                  checkDisjoint(pos, flags,
1143                                ABSTRACT | INTERFACE,
1144                                FINAL | NATIVE | SYNCHRONIZED)
1145                  &&
1146                  checkDisjoint(pos, flags,
1147                                PUBLIC,
1148                                PRIVATE | PROTECTED)
1149                  &&
1150                  checkDisjoint(pos, flags,
1151                                PRIVATE,
1152                                PUBLIC | PROTECTED)
1153                  &&
1154                  checkDisjoint(pos, flags,
1155                                FINAL,
1156                                VOLATILE)
1157                  &&
1158                  (sym.kind == TYP ||
1159                   checkDisjoint(pos, flags,
1160                                 ABSTRACT | NATIVE,
1161                                 STRICTFP))) {
1162             // skip
1163         }
1164         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1165     }
1166 
1167 
1168     /** Determine if this enum should be implicitly final.
1169      *
1170      *  If the enum has no specialized enum contants, it is final.
1171      *
1172      *  If the enum does have specialized enum contants, it is
1173      *  <i>not</i> final.
1174      */
1175     private long implicitEnumFinalFlag(JCTree tree) {
1176         if (!tree.hasTag(CLASSDEF)) return 0;
1177         class SpecialTreeVisitor extends JCTree.Visitor {
1178             boolean specialized;
1179             SpecialTreeVisitor() {
1180                 this.specialized = false;
1181             }
1182 
1183             @Override
1184             public void visitTree(JCTree tree) { /* no-op */ }
1185 
1186             @Override
1187             public void visitVarDef(JCVariableDecl tree) {
1188                 if ((tree.mods.flags & ENUM) != 0) {
1189                     if (tree.init instanceof JCNewClass &&
1190                         ((JCNewClass) tree.init).def != null) {
1191                         specialized = true;
1192                     }
1193                 }
1194             }
1195         }
1196 
1197         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1198         JCClassDecl cdef = (JCClassDecl) tree;
1199         for (JCTree defs: cdef.defs) {
1200             defs.accept(sts);
1201             if (sts.specialized) return 0;
1202         }
1203         return FINAL;
1204     }
1205 
1206 /* *************************************************************************
1207  * Type Validation
1208  **************************************************************************/
1209 
1210     /** Validate a type expression. That is,
1211      *  check that all type arguments of a parametric type are within
1212      *  their bounds. This must be done in a second phase after type attribution
1213      *  since a class might have a subclass as type parameter bound. E.g:
1214      *
1215      *  <pre>{@code
1216      *  class B<A extends C> { ... }
1217      *  class C extends B<C> { ... }
1218      *  }</pre>
1219      *
1220      *  and we can't make sure that the bound is already attributed because
1221      *  of possible cycles.
1222      *
1223      * Visitor method: Validate a type expression, if it is not null, catching
1224      *  and reporting any completion failures.
1225      */
1226     void validate(JCTree tree, Env<AttrContext> env) {
1227         validate(tree, env, true);
1228     }
1229     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1230         new Validator(env).validateTree(tree, checkRaw, true);
1231     }
1232 
1233     /** Visitor method: Validate a list of type expressions.
1234      */
1235     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1236         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1237             validate(l.head, env);
1238     }
1239 
1240     /** A visitor class for type validation.
1241      */
1242     class Validator extends JCTree.Visitor {
1243 
1244         boolean checkRaw;
1245         boolean isOuter;
1246         Env<AttrContext> env;
1247 
1248         Validator(Env<AttrContext> env) {
1249             this.env = env;
1250         }
1251 
1252         @Override
1253         public void visitTypeArray(JCArrayTypeTree tree) {
1254             validateTree(tree.elemtype, checkRaw, isOuter);
1255         }
1256 
1257         @Override
1258         public void visitTypeApply(JCTypeApply tree) {
1259             if (tree.type.hasTag(CLASS)) {
1260                 List<JCExpression> args = tree.arguments;
1261                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1262 
1263                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1264                 if (incompatibleArg != null) {
1265                     for (JCTree arg : tree.arguments) {
1266                         if (arg.type == incompatibleArg) {
1267                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1268                         }
1269                         forms = forms.tail;
1270                      }
1271                  }
1272 
1273                 forms = tree.type.tsym.type.getTypeArguments();
1274 
1275                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1276 
1277                 // For matching pairs of actual argument types `a' and
1278                 // formal type parameters with declared bound `b' ...
1279                 while (args.nonEmpty() && forms.nonEmpty()) {
1280                     validateTree(args.head,
1281                             !(isOuter && is_java_lang_Class),
1282                             false);
1283                     args = args.tail;
1284                     forms = forms.tail;
1285                 }
1286 
1287                 // Check that this type is either fully parameterized, or
1288                 // not parameterized at all.
1289                 if (tree.type.getEnclosingType().isRaw())
1290                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1291                 if (tree.clazz.hasTag(SELECT))
1292                     visitSelectInternal((JCFieldAccess)tree.clazz);
1293             }
1294         }
1295 
1296         @Override
1297         public void visitTypeParameter(JCTypeParameter tree) {
1298             validateTrees(tree.bounds, true, isOuter);
1299             checkClassBounds(tree.pos(), tree.type);
1300         }
1301 
1302         @Override
1303         public void visitWildcard(JCWildcard tree) {
1304             if (tree.inner != null)
1305                 validateTree(tree.inner, true, isOuter);
1306         }
1307 
1308         @Override
1309         public void visitSelect(JCFieldAccess tree) {
1310             if (tree.type.hasTag(CLASS)) {
1311                 visitSelectInternal(tree);
1312 
1313                 // Check that this type is either fully parameterized, or
1314                 // not parameterized at all.
1315                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1316                     log.error(tree.pos(), "improperly.formed.type.param.missing");
1317             }
1318         }
1319 
1320         public void visitSelectInternal(JCFieldAccess tree) {
1321             if (tree.type.tsym.isStatic() &&
1322                 tree.selected.type.isParameterized()) {
1323                 // The enclosing type is not a class, so we are
1324                 // looking at a static member type.  However, the
1325                 // qualifying expression is parameterized.
1326                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
1327             } else {
1328                 // otherwise validate the rest of the expression
1329                 tree.selected.accept(this);
1330             }
1331         }
1332 
1333         @Override
1334         public void visitAnnotatedType(JCAnnotatedType tree) {
1335             tree.underlyingType.accept(this);
1336         }
1337 
1338         @Override
1339         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1340             if (that.type.hasTag(TypeTag.VOID)) {
1341                 log.error(that.pos(), "void.not.allowed.here");
1342             }
1343             super.visitTypeIdent(that);
1344         }
1345 
1346         /** Default visitor method: do nothing.
1347          */
1348         @Override
1349         public void visitTree(JCTree tree) {
1350         }
1351 
1352         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1353             if (tree != null) {
1354                 boolean prevCheckRaw = this.checkRaw;
1355                 this.checkRaw = checkRaw;
1356                 this.isOuter = isOuter;
1357 
1358                 try {
1359                     tree.accept(this);
1360                     if (checkRaw)
1361                         checkRaw(tree, env);
1362                 } catch (CompletionFailure ex) {
1363                     completionError(tree.pos(), ex);
1364                 } finally {
1365                     this.checkRaw = prevCheckRaw;
1366                 }
1367             }
1368         }
1369 
1370         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1371             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1372                 validateTree(l.head, checkRaw, isOuter);
1373         }
1374     }
1375 
1376     void checkRaw(JCTree tree, Env<AttrContext> env) {
1377         if (lint.isEnabled(LintCategory.RAW) &&
1378             tree.type.hasTag(CLASS) &&
1379             !TreeInfo.isDiamond(tree) &&
1380             !withinAnonConstr(env) &&
1381             tree.type.isRaw()) {
1382             log.warning(LintCategory.RAW,
1383                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1384         }
1385     }
1386     //where
1387         private boolean withinAnonConstr(Env<AttrContext> env) {
1388             return env.enclClass.name.isEmpty() &&
1389                     env.enclMethod != null && env.enclMethod.name == names.init;
1390         }
1391 
1392 /* *************************************************************************
1393  * Exception checking
1394  **************************************************************************/
1395 
1396     /* The following methods treat classes as sets that contain
1397      * the class itself and all their subclasses
1398      */
1399 
1400     /** Is given type a subtype of some of the types in given list?
1401      */
1402     boolean subset(Type t, List<Type> ts) {
1403         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1404             if (types.isSubtype(t, l.head)) return true;
1405         return false;
1406     }
1407 
1408     /** Is given type a subtype or supertype of
1409      *  some of the types in given list?
1410      */
1411     boolean intersects(Type t, List<Type> ts) {
1412         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1413             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1414         return false;
1415     }
1416 
1417     /** Add type set to given type list, unless it is a subclass of some class
1418      *  in the list.
1419      */
1420     List<Type> incl(Type t, List<Type> ts) {
1421         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1422     }
1423 
1424     /** Remove type set from type set list.
1425      */
1426     List<Type> excl(Type t, List<Type> ts) {
1427         if (ts.isEmpty()) {
1428             return ts;
1429         } else {
1430             List<Type> ts1 = excl(t, ts.tail);
1431             if (types.isSubtype(ts.head, t)) return ts1;
1432             else if (ts1 == ts.tail) return ts;
1433             else return ts1.prepend(ts.head);
1434         }
1435     }
1436 
1437     /** Form the union of two type set lists.
1438      */
1439     List<Type> union(List<Type> ts1, List<Type> ts2) {
1440         List<Type> ts = ts1;
1441         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1442             ts = incl(l.head, ts);
1443         return ts;
1444     }
1445 
1446     /** Form the difference of two type lists.
1447      */
1448     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1449         List<Type> ts = ts1;
1450         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1451             ts = excl(l.head, ts);
1452         return ts;
1453     }
1454 
1455     /** Form the intersection of two type lists.
1456      */
1457     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1458         List<Type> ts = List.nil();
1459         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1460             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1461         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1462             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1463         return ts;
1464     }
1465 
1466     /** Is exc an exception symbol that need not be declared?
1467      */
1468     boolean isUnchecked(ClassSymbol exc) {
1469         return
1470             exc.kind == ERR ||
1471             exc.isSubClass(syms.errorType.tsym, types) ||
1472             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1473     }
1474 
1475     /** Is exc an exception type that need not be declared?
1476      */
1477     boolean isUnchecked(Type exc) {
1478         return
1479             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1480             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1481             exc.hasTag(BOT);
1482     }
1483 
1484     /** Same, but handling completion failures.
1485      */
1486     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1487         try {
1488             return isUnchecked(exc);
1489         } catch (CompletionFailure ex) {
1490             completionError(pos, ex);
1491             return true;
1492         }
1493     }
1494 
1495     /** Is exc handled by given exception list?
1496      */
1497     boolean isHandled(Type exc, List<Type> handled) {
1498         return isUnchecked(exc) || subset(exc, handled);
1499     }
1500 
1501     /** Return all exceptions in thrown list that are not in handled list.
1502      *  @param thrown     The list of thrown exceptions.
1503      *  @param handled    The list of handled exceptions.
1504      */
1505     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1506         List<Type> unhandled = List.nil();
1507         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1508             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1509         return unhandled;
1510     }
1511 
1512 /* *************************************************************************
1513  * Overriding/Implementation checking
1514  **************************************************************************/
1515 
1516     /** The level of access protection given by a flag set,
1517      *  where PRIVATE is highest and PUBLIC is lowest.
1518      */
1519     static int protection(long flags) {
1520         switch ((short)(flags & AccessFlags)) {
1521         case PRIVATE: return 3;
1522         case PROTECTED: return 1;
1523         default:
1524         case PUBLIC: return 0;
1525         case 0: return 2;
1526         }
1527     }
1528 
1529     /** A customized "cannot override" error message.
1530      *  @param m      The overriding method.
1531      *  @param other  The overridden method.
1532      *  @return       An internationalized string.
1533      */
1534     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1535         String key;
1536         if ((other.owner.flags() & INTERFACE) == 0)
1537             key = "cant.override";
1538         else if ((m.owner.flags() & INTERFACE) == 0)
1539             key = "cant.implement";
1540         else
1541             key = "clashes.with";
1542         return diags.fragment(key, m, m.location(), other, other.location());
1543     }
1544 
1545     /** A customized "override" warning message.
1546      *  @param m      The overriding method.
1547      *  @param other  The overridden method.
1548      *  @return       An internationalized string.
1549      */
1550     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1551         String key;
1552         if ((other.owner.flags() & INTERFACE) == 0)
1553             key = "unchecked.override";
1554         else if ((m.owner.flags() & INTERFACE) == 0)
1555             key = "unchecked.implement";
1556         else
1557             key = "unchecked.clash.with";
1558         return diags.fragment(key, m, m.location(), other, other.location());
1559     }
1560 
1561     /** A customized "override" warning message.
1562      *  @param m      The overriding method.
1563      *  @param other  The overridden method.
1564      *  @return       An internationalized string.
1565      */
1566     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1567         String key;
1568         if ((other.owner.flags() & INTERFACE) == 0)
1569             key = "varargs.override";
1570         else  if ((m.owner.flags() & INTERFACE) == 0)
1571             key = "varargs.implement";
1572         else
1573             key = "varargs.clash.with";
1574         return diags.fragment(key, m, m.location(), other, other.location());
1575     }
1576 
1577     /** Check that this method conforms with overridden method 'other'.
1578      *  where `origin' is the class where checking started.
1579      *  Complications:
1580      *  (1) Do not check overriding of synthetic methods
1581      *      (reason: they might be final).
1582      *      todo: check whether this is still necessary.
1583      *  (2) Admit the case where an interface proxy throws fewer exceptions
1584      *      than the method it implements. Augment the proxy methods with the
1585      *      undeclared exceptions in this case.
1586      *  (3) When generics are enabled, admit the case where an interface proxy
1587      *      has a result type
1588      *      extended by the result type of the method it implements.
1589      *      Change the proxies result type to the smaller type in this case.
1590      *
1591      *  @param tree         The tree from which positions
1592      *                      are extracted for errors.
1593      *  @param m            The overriding method.
1594      *  @param other        The overridden method.
1595      *  @param origin       The class of which the overriding method
1596      *                      is a member.
1597      */
1598     void checkOverride(JCTree tree,
1599                        MethodSymbol m,
1600                        MethodSymbol other,
1601                        ClassSymbol origin) {
1602         // Don't check overriding of synthetic methods or by bridge methods.
1603         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1604             return;
1605         }
1606 
1607         // Error if static method overrides instance method (JLS 8.4.6.2).
1608         if ((m.flags() & STATIC) != 0 &&
1609                    (other.flags() & STATIC) == 0) {
1610             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1611                       cannotOverride(m, other));
1612             m.flags_field |= BAD_OVERRIDE;
1613             return;
1614         }
1615 
1616         // Error if instance method overrides static or final
1617         // method (JLS 8.4.6.1).
1618         if ((other.flags() & FINAL) != 0 ||
1619                  (m.flags() & STATIC) == 0 &&
1620                  (other.flags() & STATIC) != 0) {
1621             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1622                       cannotOverride(m, other),
1623                       asFlagSet(other.flags() & (FINAL | STATIC)));
1624             m.flags_field |= BAD_OVERRIDE;
1625             return;
1626         }
1627 
1628         if ((m.owner.flags() & ANNOTATION) != 0) {
1629             // handled in validateAnnotationMethod
1630             return;
1631         }
1632 
1633         // Error if overriding method has weaker access (JLS 8.4.6.3).
1634         if ((origin.flags() & INTERFACE) == 0 &&
1635                  protection(m.flags()) > protection(other.flags())) {
1636             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1637                       cannotOverride(m, other),
1638                       (other.flags() & AccessFlags) == 0 ?
1639                           "package" :
1640                           asFlagSet(other.flags() & AccessFlags));
1641             m.flags_field |= BAD_OVERRIDE;
1642             return;
1643         }
1644 
1645         Type mt = types.memberType(origin.type, m);
1646         Type ot = types.memberType(origin.type, other);
1647         // Error if overriding result type is different
1648         // (or, in the case of generics mode, not a subtype) of
1649         // overridden result type. We have to rename any type parameters
1650         // before comparing types.
1651         List<Type> mtvars = mt.getTypeArguments();
1652         List<Type> otvars = ot.getTypeArguments();
1653         Type mtres = mt.getReturnType();
1654         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1655 
1656         overrideWarner.clear();
1657         boolean resultTypesOK =
1658             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1659         if (!resultTypesOK) {
1660             if (!allowCovariantReturns &&
1661                 m.owner != origin &&
1662                 m.owner.isSubClass(other.owner, types)) {
1663                 // allow limited interoperability with covariant returns
1664             } else {
1665                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1666                           "override.incompatible.ret",
1667                           cannotOverride(m, other),
1668                           mtres, otres);
1669                 m.flags_field |= BAD_OVERRIDE;
1670                 return;
1671             }
1672         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1673             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1674                     "override.unchecked.ret",
1675                     uncheckedOverrides(m, other),
1676                     mtres, otres);
1677         }
1678 
1679         // Error if overriding method throws an exception not reported
1680         // by overridden method.
1681         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1682         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1683         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1684         if (unhandledErased.nonEmpty()) {
1685             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1686                       "override.meth.doesnt.throw",
1687                       cannotOverride(m, other),
1688                       unhandledUnerased.head);
1689             m.flags_field |= BAD_OVERRIDE;
1690             return;
1691         }
1692         else if (unhandledUnerased.nonEmpty()) {
1693             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1694                           "override.unchecked.thrown",
1695                          cannotOverride(m, other),
1696                          unhandledUnerased.head);
1697             return;
1698         }
1699 
1700         // Optional warning if varargs don't agree
1701         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1702             && lint.isEnabled(LintCategory.OVERRIDES)) {
1703             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1704                         ((m.flags() & Flags.VARARGS) != 0)
1705                         ? "override.varargs.missing"
1706                         : "override.varargs.extra",
1707                         varargsOverrides(m, other));
1708         }
1709 
1710         // Warn if instance method overrides bridge method (compiler spec ??)
1711         if ((other.flags() & BRIDGE) != 0) {
1712             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1713                         uncheckedOverrides(m, other));
1714         }
1715 
1716         // Warn if a deprecated method overridden by a non-deprecated one.
1717         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1718             Lint prevLint = setLint(lint.augment(m));
1719             try {
1720                 checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1721             } finally {
1722                 setLint(prevLint);
1723             }
1724         }
1725     }
1726     // where
1727         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1728             // If the method, m, is defined in an interface, then ignore the issue if the method
1729             // is only inherited via a supertype and also implemented in the supertype,
1730             // because in that case, we will rediscover the issue when examining the method
1731             // in the supertype.
1732             // If the method, m, is not defined in an interface, then the only time we need to
1733             // address the issue is when the method is the supertype implemementation: any other
1734             // case, we will have dealt with when examining the supertype classes
1735             ClassSymbol mc = m.enclClass();
1736             Type st = types.supertype(origin.type);
1737             if (!st.hasTag(CLASS))
1738                 return true;
1739             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1740 
1741             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1742                 List<Type> intfs = types.interfaces(origin.type);
1743                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1744             }
1745             else
1746                 return (stimpl != m);
1747         }
1748 
1749 
1750     // used to check if there were any unchecked conversions
1751     Warner overrideWarner = new Warner();
1752 
1753     /** Check that a class does not inherit two concrete methods
1754      *  with the same signature.
1755      *  @param pos          Position to be used for error reporting.
1756      *  @param site         The class type to be checked.
1757      */
1758     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1759         Type sup = types.supertype(site);
1760         if (!sup.hasTag(CLASS)) return;
1761 
1762         for (Type t1 = sup;
1763              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1764              t1 = types.supertype(t1)) {
1765             for (Scope.Entry e1 = t1.tsym.members().elems;
1766                  e1 != null;
1767                  e1 = e1.sibling) {
1768                 Symbol s1 = e1.sym;
1769                 if (s1.kind != MTH ||
1770                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1771                     !s1.isInheritedIn(site.tsym, types) ||
1772                     ((MethodSymbol)s1).implementation(site.tsym,
1773                                                       types,
1774                                                       true) != s1)
1775                     continue;
1776                 Type st1 = types.memberType(t1, s1);
1777                 int s1ArgsLength = st1.getParameterTypes().length();
1778                 if (st1 == s1.type) continue;
1779 
1780                 for (Type t2 = sup;
1781                      t2.hasTag(CLASS);
1782                      t2 = types.supertype(t2)) {
1783                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
1784                          e2.scope != null;
1785                          e2 = e2.next()) {
1786                         Symbol s2 = e2.sym;
1787                         if (s2 == s1 ||
1788                             s2.kind != MTH ||
1789                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1790                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1791                             !s2.isInheritedIn(site.tsym, types) ||
1792                             ((MethodSymbol)s2).implementation(site.tsym,
1793                                                               types,
1794                                                               true) != s2)
1795                             continue;
1796                         Type st2 = types.memberType(t2, s2);
1797                         if (types.overrideEquivalent(st1, st2))
1798                             log.error(pos, "concrete.inheritance.conflict",
1799                                       s1, t1, s2, t2, sup);
1800                     }
1801                 }
1802             }
1803         }
1804     }
1805 
1806     /** Check that classes (or interfaces) do not each define an abstract
1807      *  method with same name and arguments but incompatible return types.
1808      *  @param pos          Position to be used for error reporting.
1809      *  @param t1           The first argument type.
1810      *  @param t2           The second argument type.
1811      */
1812     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1813                                             Type t1,
1814                                             Type t2) {
1815         return checkCompatibleAbstracts(pos, t1, t2,
1816                                         types.makeCompoundType(t1, t2));
1817     }
1818 
1819     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1820                                             Type t1,
1821                                             Type t2,
1822                                             Type site) {
1823         if ((site.tsym.flags() & COMPOUND) != 0) {
1824             // special case for intersections: need to eliminate wildcards in supertypes
1825             t1 = types.capture(t1);
1826             t2 = types.capture(t2);
1827         }
1828         return firstIncompatibility(pos, t1, t2, site) == null;
1829     }
1830 
1831     /** Return the first method which is defined with same args
1832      *  but different return types in two given interfaces, or null if none
1833      *  exists.
1834      *  @param t1     The first type.
1835      *  @param t2     The second type.
1836      *  @param site   The most derived type.
1837      *  @returns symbol from t2 that conflicts with one in t1.
1838      */
1839     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1840         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1841         closure(t1, interfaces1);
1842         Map<TypeSymbol,Type> interfaces2;
1843         if (t1 == t2)
1844             interfaces2 = interfaces1;
1845         else
1846             closure(t2, interfaces1, interfaces2 = new HashMap<>());
1847 
1848         for (Type t3 : interfaces1.values()) {
1849             for (Type t4 : interfaces2.values()) {
1850                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1851                 if (s != null) return s;
1852             }
1853         }
1854         return null;
1855     }
1856 
1857     /** Compute all the supertypes of t, indexed by type symbol. */
1858     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1859         if (!t.hasTag(CLASS)) return;
1860         if (typeMap.put(t.tsym, t) == null) {
1861             closure(types.supertype(t), typeMap);
1862             for (Type i : types.interfaces(t))
1863                 closure(i, typeMap);
1864         }
1865     }
1866 
1867     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1868     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1869         if (!t.hasTag(CLASS)) return;
1870         if (typesSkip.get(t.tsym) != null) return;
1871         if (typeMap.put(t.tsym, t) == null) {
1872             closure(types.supertype(t), typesSkip, typeMap);
1873             for (Type i : types.interfaces(t))
1874                 closure(i, typesSkip, typeMap);
1875         }
1876     }
1877 
1878     /** Return the first method in t2 that conflicts with a method from t1. */
1879     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1880         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
1881             Symbol s1 = e1.sym;
1882             Type st1 = null;
1883             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1884                     (s1.flags() & SYNTHETIC) != 0) continue;
1885             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1886             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1887             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
1888                 Symbol s2 = e2.sym;
1889                 if (s1 == s2) continue;
1890                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1891                         (s2.flags() & SYNTHETIC) != 0) continue;
1892                 if (st1 == null) st1 = types.memberType(t1, s1);
1893                 Type st2 = types.memberType(t2, s2);
1894                 if (types.overrideEquivalent(st1, st2)) {
1895                     List<Type> tvars1 = st1.getTypeArguments();
1896                     List<Type> tvars2 = st2.getTypeArguments();
1897                     Type rt1 = st1.getReturnType();
1898                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1899                     boolean compat =
1900                         types.isSameType(rt1, rt2) ||
1901                         !rt1.isPrimitiveOrVoid() &&
1902                         !rt2.isPrimitiveOrVoid() &&
1903                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1904                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1905                          checkCommonOverriderIn(s1,s2,site);
1906                     if (!compat) {
1907                         log.error(pos, "types.incompatible.diff.ret",
1908                             t1, t2, s2.name +
1909                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1910                         return s2;
1911                     }
1912                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1913                         !checkCommonOverriderIn(s1, s2, site)) {
1914                     log.error(pos,
1915                             "name.clash.same.erasure.no.override",
1916                             s1, s1.location(),
1917                             s2, s2.location());
1918                     return s2;
1919                 }
1920             }
1921         }
1922         return null;
1923     }
1924     //WHERE
1925     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1926         Map<TypeSymbol,Type> supertypes = new HashMap<>();
1927         Type st1 = types.memberType(site, s1);
1928         Type st2 = types.memberType(site, s2);
1929         closure(site, supertypes);
1930         for (Type t : supertypes.values()) {
1931             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
1932                 Symbol s3 = e.sym;
1933                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1934                 Type st3 = types.memberType(site,s3);
1935                 if (types.overrideEquivalent(st3, st1) &&
1936                         types.overrideEquivalent(st3, st2) &&
1937                         types.returnTypeSubstitutable(st3, st1) &&
1938                         types.returnTypeSubstitutable(st3, st2)) {
1939                     return true;
1940                 }
1941             }
1942         }
1943         return false;
1944     }
1945 
1946     /** Check that a given method conforms with any method it overrides.
1947      *  @param tree         The tree from which positions are extracted
1948      *                      for errors.
1949      *  @param m            The overriding method.
1950      */
1951     void checkOverride(JCMethodDecl tree, MethodSymbol m) {
1952         ClassSymbol origin = (ClassSymbol)m.owner;
1953         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1954             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1955                 log.error(tree.pos(), "enum.no.finalize");
1956                 return;
1957             }
1958         for (Type t = origin.type; t.hasTag(CLASS);
1959              t = types.supertype(t)) {
1960             if (t != origin.type) {
1961                 checkOverride(tree, t, origin, m);
1962             }
1963             for (Type t2 : types.interfaces(t)) {
1964                 checkOverride(tree, t2, origin, m);
1965             }
1966         }
1967 
1968         if (m.attribute(syms.overrideType.tsym) != null && !isOverrider(m)) {
1969             DiagnosticPosition pos = tree.pos();
1970             for (JCAnnotation a : tree.getModifiers().annotations) {
1971                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
1972                     pos = a.pos();
1973                     break;
1974                 }
1975             }
1976             log.error(pos, "method.does.not.override.superclass");
1977         }
1978     }
1979 
1980     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
1981         TypeSymbol c = site.tsym;
1982         Scope.Entry e = c.members().lookup(m.name);
1983         while (e.scope != null) {
1984             if (m.overrides(e.sym, origin, types, false)) {
1985                 if ((e.sym.flags() & ABSTRACT) == 0) {
1986                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
1987                 }
1988             }
1989             e = e.next();
1990         }
1991     }
1992 
1993     private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
1994         public boolean accepts(Symbol s) {
1995             return MethodSymbol.implementation_filter.accepts(s) &&
1996                     (s.flags() & BAD_OVERRIDE) == 0;
1997 
1998         }
1999     };
2000 
2001     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2002             ClassSymbol someClass) {
2003         /* At present, annotations cannot possibly have a method that is override
2004          * equivalent with Object.equals(Object) but in any case the condition is
2005          * fine for completeness.
2006          */
2007         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2008             someClass.isInterface() || someClass.isEnum() ||
2009             (someClass.flags() & ANNOTATION) != 0 ||
2010             (someClass.flags() & ABSTRACT) != 0) return;
2011         //anonymous inner classes implementing interfaces need especial treatment
2012         if (someClass.isAnonymous()) {
2013             List<Type> interfaces =  types.interfaces(someClass.type);
2014             if (interfaces != null && !interfaces.isEmpty() &&
2015                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2016         }
2017         checkClassOverrideEqualsAndHash(pos, someClass);
2018     }
2019 
2020     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2021             ClassSymbol someClass) {
2022         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2023             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2024                     .tsym.members().lookup(names.equals).sym;
2025             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2026                     .tsym.members().lookup(names.hashCode).sym;
2027             boolean overridesEquals = types.implementation(equalsAtObject,
2028                 someClass, false, equalsHasCodeFilter).owner == someClass;
2029             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2030                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2031 
2032             if (overridesEquals && !overridesHashCode) {
2033                 log.warning(LintCategory.OVERRIDES, pos,
2034                         "override.equals.but.not.hashcode", someClass);
2035             }
2036         }
2037     }
2038 
2039     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2040         ClashFilter cf = new ClashFilter(origin.type);
2041         return (cf.accepts(s1) &&
2042                 cf.accepts(s2) &&
2043                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2044     }
2045 
2046 
2047     /** Check that all abstract members of given class have definitions.
2048      *  @param pos          Position to be used for error reporting.
2049      *  @param c            The class.
2050      */
2051     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2052         try {
2053             MethodSymbol undef = firstUndef(c, c);
2054             if (undef != null) {
2055                 if ((c.flags() & ENUM) != 0 &&
2056                     types.supertype(c.type).tsym == syms.enumSym &&
2057                     (c.flags() & FINAL) == 0) {
2058                     // add the ABSTRACT flag to an enum
2059                     c.flags_field |= ABSTRACT;
2060                 } else {
2061                     MethodSymbol undef1 =
2062                         new MethodSymbol(undef.flags(), undef.name,
2063                                          types.memberType(c.type, undef), undef.owner);
2064                     log.error(pos, "does.not.override.abstract",
2065                               c, undef1, undef1.location());
2066                 }
2067             }
2068         } catch (CompletionFailure ex) {
2069             completionError(pos, ex);
2070         }
2071     }
2072 //where
2073         /** Return first abstract member of class `c' that is not defined
2074          *  in `impl', null if there is none.
2075          */
2076         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
2077             MethodSymbol undef = null;
2078             // Do not bother to search in classes that are not abstract,
2079             // since they cannot have abstract members.
2080             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
2081                 Scope s = c.members();
2082                 for (Scope.Entry e = s.elems;
2083                      undef == null && e != null;
2084                      e = e.sibling) {
2085                     if (e.sym.kind == MTH &&
2086                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
2087                         MethodSymbol absmeth = (MethodSymbol)e.sym;
2088                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
2089                         if (implmeth == null || implmeth == absmeth) {
2090                             //look for default implementations
2091                             if (allowDefaultMethods) {
2092                                 MethodSymbol prov = types.interfaceCandidates(impl.type, absmeth).head;
2093                                 if (prov != null && prov.overrides(absmeth, impl, types, true)) {
2094                                     implmeth = prov;
2095                                 }
2096                             }
2097                         }
2098                         if (implmeth == null || implmeth == absmeth) {
2099                             undef = absmeth;
2100                         }
2101                     }
2102                 }
2103                 if (undef == null) {
2104                     Type st = types.supertype(c.type);
2105                     if (st.hasTag(CLASS))
2106                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
2107                 }
2108                 for (List<Type> l = types.interfaces(c.type);
2109                      undef == null && l.nonEmpty();
2110                      l = l.tail) {
2111                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
2112                 }
2113             }
2114             return undef;
2115         }
2116 
2117     void checkNonCyclicDecl(JCClassDecl tree) {
2118         CycleChecker cc = new CycleChecker();
2119         cc.scan(tree);
2120         if (!cc.errorFound && !cc.partialCheck) {
2121             tree.sym.flags_field |= ACYCLIC;
2122         }
2123     }
2124 
2125     class CycleChecker extends TreeScanner {
2126 
2127         List<Symbol> seenClasses = List.nil();
2128         boolean errorFound = false;
2129         boolean partialCheck = false;
2130 
2131         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2132             if (sym != null && sym.kind == TYP) {
2133                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2134                 if (classEnv != null) {
2135                     DiagnosticSource prevSource = log.currentSource();
2136                     try {
2137                         log.useSource(classEnv.toplevel.sourcefile);
2138                         scan(classEnv.tree);
2139                     }
2140                     finally {
2141                         log.useSource(prevSource.getFile());
2142                     }
2143                 } else if (sym.kind == TYP) {
2144                     checkClass(pos, sym, List.<JCTree>nil());
2145                 }
2146             } else {
2147                 //not completed yet
2148                 partialCheck = true;
2149             }
2150         }
2151 
2152         @Override
2153         public void visitSelect(JCFieldAccess tree) {
2154             super.visitSelect(tree);
2155             checkSymbol(tree.pos(), tree.sym);
2156         }
2157 
2158         @Override
2159         public void visitIdent(JCIdent tree) {
2160             checkSymbol(tree.pos(), tree.sym);
2161         }
2162 
2163         @Override
2164         public void visitTypeApply(JCTypeApply tree) {
2165             scan(tree.clazz);
2166         }
2167 
2168         @Override
2169         public void visitTypeArray(JCArrayTypeTree tree) {
2170             scan(tree.elemtype);
2171         }
2172 
2173         @Override
2174         public void visitClassDef(JCClassDecl tree) {
2175             List<JCTree> supertypes = List.nil();
2176             if (tree.getExtendsClause() != null) {
2177                 supertypes = supertypes.prepend(tree.getExtendsClause());
2178             }
2179             if (tree.getImplementsClause() != null) {
2180                 for (JCTree intf : tree.getImplementsClause()) {
2181                     supertypes = supertypes.prepend(intf);
2182                 }
2183             }
2184             checkClass(tree.pos(), tree.sym, supertypes);
2185         }
2186 
2187         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2188             if ((c.flags_field & ACYCLIC) != 0)
2189                 return;
2190             if (seenClasses.contains(c)) {
2191                 errorFound = true;
2192                 noteCyclic(pos, (ClassSymbol)c);
2193             } else if (!c.type.isErroneous()) {
2194                 try {
2195                     seenClasses = seenClasses.prepend(c);
2196                     if (c.type.hasTag(CLASS)) {
2197                         if (supertypes.nonEmpty()) {
2198                             scan(supertypes);
2199                         }
2200                         else {
2201                             ClassType ct = (ClassType)c.type;
2202                             if (ct.supertype_field == null ||
2203                                     ct.interfaces_field == null) {
2204                                 //not completed yet
2205                                 partialCheck = true;
2206                                 return;
2207                             }
2208                             checkSymbol(pos, ct.supertype_field.tsym);
2209                             for (Type intf : ct.interfaces_field) {
2210                                 checkSymbol(pos, intf.tsym);
2211                             }
2212                         }
2213                         if (c.owner.kind == TYP) {
2214                             checkSymbol(pos, c.owner);
2215                         }
2216                     }
2217                 } finally {
2218                     seenClasses = seenClasses.tail;
2219                 }
2220             }
2221         }
2222     }
2223 
2224     /** Check for cyclic references. Issue an error if the
2225      *  symbol of the type referred to has a LOCKED flag set.
2226      *
2227      *  @param pos      Position to be used for error reporting.
2228      *  @param t        The type referred to.
2229      */
2230     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2231         checkNonCyclicInternal(pos, t);
2232     }
2233 
2234 
2235     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2236         checkNonCyclic1(pos, t, List.<TypeVar>nil());
2237     }
2238 
2239     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2240         final TypeVar tv;
2241         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2242             return;
2243         if (seen.contains(t)) {
2244             tv = (TypeVar)t;
2245             tv.bound = types.createErrorType(t);
2246             log.error(pos, "cyclic.inheritance", t);
2247         } else if (t.hasTag(TYPEVAR)) {
2248             tv = (TypeVar)t;
2249             seen = seen.prepend(tv);
2250             for (Type b : types.getBounds(tv))
2251                 checkNonCyclic1(pos, b, seen);
2252         }
2253     }
2254 
2255     /** Check for cyclic references. Issue an error if the
2256      *  symbol of the type referred to has a LOCKED flag set.
2257      *
2258      *  @param pos      Position to be used for error reporting.
2259      *  @param t        The type referred to.
2260      *  @returns        True if the check completed on all attributed classes
2261      */
2262     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2263         boolean complete = true; // was the check complete?
2264         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2265         Symbol c = t.tsym;
2266         if ((c.flags_field & ACYCLIC) != 0) return true;
2267 
2268         if ((c.flags_field & LOCKED) != 0) {
2269             noteCyclic(pos, (ClassSymbol)c);
2270         } else if (!c.type.isErroneous()) {
2271             try {
2272                 c.flags_field |= LOCKED;
2273                 if (c.type.hasTag(CLASS)) {
2274                     ClassType clazz = (ClassType)c.type;
2275                     if (clazz.interfaces_field != null)
2276                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2277                             complete &= checkNonCyclicInternal(pos, l.head);
2278                     if (clazz.supertype_field != null) {
2279                         Type st = clazz.supertype_field;
2280                         if (st != null && st.hasTag(CLASS))
2281                             complete &= checkNonCyclicInternal(pos, st);
2282                     }
2283                     if (c.owner.kind == TYP)
2284                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2285                 }
2286             } finally {
2287                 c.flags_field &= ~LOCKED;
2288             }
2289         }
2290         if (complete)
2291             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
2292         if (complete) c.flags_field |= ACYCLIC;
2293         return complete;
2294     }
2295 
2296     /** Note that we found an inheritance cycle. */
2297     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2298         log.error(pos, "cyclic.inheritance", c);
2299         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2300             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2301         Type st = types.supertype(c.type);
2302         if (st.hasTag(CLASS))
2303             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2304         c.type = types.createErrorType(c, c.type);
2305         c.flags_field |= ACYCLIC;
2306     }
2307 
2308     /** Check that all methods which implement some
2309      *  method conform to the method they implement.
2310      *  @param tree         The class definition whose members are checked.
2311      */
2312     void checkImplementations(JCClassDecl tree) {
2313         checkImplementations(tree, tree.sym, tree.sym);
2314     }
2315     //where
2316         /** Check that all methods which implement some
2317          *  method in `ic' conform to the method they implement.
2318          */
2319         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2320             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2321                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2322                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
2323                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
2324                         if (e.sym.kind == MTH &&
2325                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2326                             MethodSymbol absmeth = (MethodSymbol)e.sym;
2327                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2328                             if (implmeth != null && implmeth != absmeth &&
2329                                 (implmeth.owner.flags() & INTERFACE) ==
2330                                 (origin.flags() & INTERFACE)) {
2331                                 // don't check if implmeth is in a class, yet
2332                                 // origin is an interface. This case arises only
2333                                 // if implmeth is declared in Object. The reason is
2334                                 // that interfaces really don't inherit from
2335                                 // Object it's just that the compiler represents
2336                                 // things that way.
2337                                 checkOverride(tree, implmeth, absmeth, origin);
2338                             }
2339                         }
2340                     }
2341                 }
2342             }
2343         }
2344 
2345     /** Check that all abstract methods implemented by a class are
2346      *  mutually compatible.
2347      *  @param pos          Position to be used for error reporting.
2348      *  @param c            The class whose interfaces are checked.
2349      */
2350     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2351         List<Type> supertypes = types.interfaces(c);
2352         Type supertype = types.supertype(c);
2353         if (supertype.hasTag(CLASS) &&
2354             (supertype.tsym.flags() & ABSTRACT) != 0)
2355             supertypes = supertypes.prepend(supertype);
2356         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2357             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
2358                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2359                 return;
2360             for (List<Type> m = supertypes; m != l; m = m.tail)
2361                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2362                     return;
2363         }
2364         checkCompatibleConcretes(pos, c);
2365     }
2366 
2367     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2368         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2369             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
2370                 // VM allows methods and variables with differing types
2371                 if (sym.kind == e.sym.kind &&
2372                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
2373                     sym != e.sym &&
2374                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
2375                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
2376                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
2377                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
2378                     return;
2379                 }
2380             }
2381         }
2382     }
2383 
2384     /** Check that all non-override equivalent methods accessible from 'site'
2385      *  are mutually compatible (JLS 8.4.8/9.4.1).
2386      *
2387      *  @param pos  Position to be used for error reporting.
2388      *  @param site The class whose methods are checked.
2389      *  @param sym  The method symbol to be checked.
2390      */
2391     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2392          ClashFilter cf = new ClashFilter(site);
2393         //for each method m1 that is overridden (directly or indirectly)
2394         //by method 'sym' in 'site'...
2395 
2396         List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2397         boolean overridesAny = false;
2398         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
2399             if (!sym.overrides(m1, site.tsym, types, false)) {
2400                 if (m1 == sym) {
2401                     continue;
2402                 }
2403 
2404                 if (!overridesAny) {
2405                     potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2406                 }
2407                 continue;
2408             }
2409 
2410             if (m1 != sym) {
2411                 overridesAny = true;
2412                 potentiallyAmbiguousList = List.nil();
2413             }
2414 
2415             //...check each method m2 that is a member of 'site'
2416             for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
2417                 if (m2 == m1) continue;
2418                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2419                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2420                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2421                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2422                     sym.flags_field |= CLASH;
2423                     String key = m1 == sym ?
2424                             "name.clash.same.erasure.no.override" :
2425                             "name.clash.same.erasure.no.override.1";
2426                     log.error(pos,
2427                             key,
2428                             sym, sym.location(),
2429                             m2, m2.location(),
2430                             m1, m1.location());
2431                     return;
2432                 }
2433             }
2434         }
2435 
2436         if (!overridesAny) {
2437             for (MethodSymbol m: potentiallyAmbiguousList) {
2438                 checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2439             }
2440         }
2441     }
2442 
2443     /** Check that all static methods accessible from 'site' are
2444      *  mutually compatible (JLS 8.4.8).
2445      *
2446      *  @param pos  Position to be used for error reporting.
2447      *  @param site The class whose methods are checked.
2448      *  @param sym  The method symbol to be checked.
2449      */
2450     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2451         ClashFilter cf = new ClashFilter(site);
2452         //for each method m1 that is a member of 'site'...
2453         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
2454             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2455             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2456             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2457                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2458                     log.error(pos,
2459                             "name.clash.same.erasure.no.hide",
2460                             sym, sym.location(),
2461                             s, s.location());
2462                     return;
2463                 } else {
2464                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2465                 }
2466             }
2467          }
2468      }
2469 
2470      //where
2471      private class ClashFilter implements Filter<Symbol> {
2472 
2473          Type site;
2474 
2475          ClashFilter(Type site) {
2476              this.site = site;
2477          }
2478 
2479          boolean shouldSkip(Symbol s) {
2480              return (s.flags() & CLASH) != 0 &&
2481                 s.owner == site.tsym;
2482          }
2483 
2484          public boolean accepts(Symbol s) {
2485              return s.kind == MTH &&
2486                      (s.flags() & SYNTHETIC) == 0 &&
2487                      !shouldSkip(s) &&
2488                      s.isInheritedIn(site.tsym, types) &&
2489                      !s.isConstructor();
2490          }
2491      }
2492 
2493     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2494         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2495         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
2496             Assert.check(m.kind == MTH);
2497             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2498             if (prov.size() > 1) {
2499                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2500                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2501                 for (MethodSymbol provSym : prov) {
2502                     if ((provSym.flags() & DEFAULT) != 0) {
2503                         defaults = defaults.append(provSym);
2504                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2505                         abstracts = abstracts.append(provSym);
2506                     }
2507                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2508                         //strong semantics - issue an error if two sibling interfaces
2509                         //have two override-equivalent defaults - or if one is abstract
2510                         //and the other is default
2511                         String errKey;
2512                         Symbol s1 = defaults.first();
2513                         Symbol s2;
2514                         if (defaults.size() > 1) {
2515                             errKey = "types.incompatible.unrelated.defaults";
2516                             s2 = defaults.toList().tail.head;
2517                         } else {
2518                             errKey = "types.incompatible.abstract.default";
2519                             s2 = abstracts.first();
2520                         }
2521                         log.error(pos, errKey,
2522                                 Kinds.kindName(site.tsym), site,
2523                                 m.name, types.memberType(site, m).getParameterTypes(),
2524                                 s1.location(), s2.location());
2525                         break;
2526                     }
2527                 }
2528             }
2529         }
2530     }
2531 
2532     //where
2533      private class DefaultMethodClashFilter implements Filter<Symbol> {
2534 
2535          Type site;
2536 
2537          DefaultMethodClashFilter(Type site) {
2538              this.site = site;
2539          }
2540 
2541          public boolean accepts(Symbol s) {
2542              return s.kind == MTH &&
2543                      (s.flags() & DEFAULT) != 0 &&
2544                      s.isInheritedIn(site.tsym, types) &&
2545                      !s.isConstructor();
2546          }
2547      }
2548 
2549     /**
2550       * Report warnings for potentially ambiguous method declarations. Two declarations
2551       * are potentially ambiguous if they feature two unrelated functional interface
2552       * in same argument position (in which case, a call site passing an implicit
2553       * lambda would be ambiguous).
2554       */
2555     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2556             MethodSymbol msym1, MethodSymbol msym2) {
2557         if (msym1 != msym2 &&
2558                 allowDefaultMethods &&
2559                 lint.isEnabled(LintCategory.OVERLOADS) &&
2560                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2561                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2562             Type mt1 = types.memberType(site, msym1);
2563             Type mt2 = types.memberType(site, msym2);
2564             //if both generic methods, adjust type variables
2565             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2566                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2567                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2568             }
2569             //expand varargs methods if needed
2570             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2571             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2572             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2573             //if arities don't match, exit
2574             if (args1.length() != args2.length()) return;
2575             boolean potentiallyAmbiguous = false;
2576             while (args1.nonEmpty() && args2.nonEmpty()) {
2577                 Type s = args1.head;
2578                 Type t = args2.head;
2579                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2580                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2581                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2582                             types.findDescriptorType(s).getParameterTypes().length() ==
2583                             types.findDescriptorType(t).getParameterTypes().length()) {
2584                         potentiallyAmbiguous = true;
2585                     } else {
2586                         break;
2587                     }
2588                 }
2589                 args1 = args1.tail;
2590                 args2 = args2.tail;
2591             }
2592             if (potentiallyAmbiguous) {
2593                 //we found two incompatible functional interfaces with same arity
2594                 //this means a call site passing an implicit lambda would be ambigiuous
2595                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2596                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2597                 log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2598                             msym1, msym1.location(),
2599                             msym2, msym2.location());
2600                 return;
2601             }
2602         }
2603     }
2604 
2605     void checkElemAccessFromSerializableLambda(final JCTree tree) {
2606         if (warnOnAccessToSensitiveMembers) {
2607             Symbol sym = TreeInfo.symbol(tree);
2608             if ((sym.kind & (VAR | MTH)) == 0) {
2609                 return;
2610             }
2611 
2612             if (sym.kind == VAR) {
2613                 if ((sym.flags() & PARAMETER) != 0 ||
2614                     sym.isLocal() ||
2615                     sym.name == names._this ||
2616                     sym.name == names._super) {
2617                     return;
2618                 }
2619             }
2620 
2621             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2622                     isEffectivelyNonPublic(sym)) {
2623                 log.warning(tree.pos(),
2624                         "access.to.sensitive.member.from.serializable.element", sym);
2625             }
2626         }
2627     }
2628 
2629     private boolean isEffectivelyNonPublic(Symbol sym) {
2630         if (sym.packge() == syms.rootPackage) {
2631             return false;
2632         }
2633 
2634         while (sym.kind != Kinds.PCK) {
2635             if ((sym.flags() & PUBLIC) == 0) {
2636                 return true;
2637             }
2638             sym = sym.owner;
2639         }
2640         return false;
2641     }
2642 
2643     /** Report a conflict between a user symbol and a synthetic symbol.
2644      */
2645     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2646         if (!sym.type.isErroneous()) {
2647             if (warnOnSyntheticConflicts) {
2648                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
2649             }
2650             else {
2651                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
2652             }
2653         }
2654     }
2655 
2656     /** Check that class c does not implement directly or indirectly
2657      *  the same parameterized interface with two different argument lists.
2658      *  @param pos          Position to be used for error reporting.
2659      *  @param type         The type whose interfaces are checked.
2660      */
2661     void checkClassBounds(DiagnosticPosition pos, Type type) {
2662         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2663     }
2664 //where
2665         /** Enter all interfaces of type `type' into the hash table `seensofar'
2666          *  with their class symbol as key and their type as value. Make
2667          *  sure no class is entered with two different types.
2668          */
2669         void checkClassBounds(DiagnosticPosition pos,
2670                               Map<TypeSymbol,Type> seensofar,
2671                               Type type) {
2672             if (type.isErroneous()) return;
2673             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2674                 Type it = l.head;
2675                 Type oldit = seensofar.put(it.tsym, it);
2676                 if (oldit != null) {
2677                     List<Type> oldparams = oldit.allparams();
2678                     List<Type> newparams = it.allparams();
2679                     if (!types.containsTypeEquivalent(oldparams, newparams))
2680                         log.error(pos, "cant.inherit.diff.arg",
2681                                   it.tsym, Type.toString(oldparams),
2682                                   Type.toString(newparams));
2683                 }
2684                 checkClassBounds(pos, seensofar, it);
2685             }
2686             Type st = types.supertype(type);
2687             if (st != null) checkClassBounds(pos, seensofar, st);
2688         }
2689 
2690     /** Enter interface into into set.
2691      *  If it existed already, issue a "repeated interface" error.
2692      */
2693     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2694         if (its.contains(it))
2695             log.error(pos, "repeated.interface");
2696         else {
2697             its.add(it);
2698         }
2699     }
2700 
2701 /* *************************************************************************
2702  * Check annotations
2703  **************************************************************************/
2704 
2705     /**
2706      * Recursively validate annotations values
2707      */
2708     void validateAnnotationTree(JCTree tree) {
2709         class AnnotationValidator extends TreeScanner {
2710             @Override
2711             public void visitAnnotation(JCAnnotation tree) {
2712                 if (!tree.type.isErroneous()) {
2713                     super.visitAnnotation(tree);
2714                     validateAnnotation(tree);
2715                 }
2716             }
2717         }
2718         tree.accept(new AnnotationValidator());
2719     }
2720 
2721     /**
2722      *  {@literal
2723      *  Annotation types are restricted to primitives, String, an
2724      *  enum, an annotation, Class, Class<?>, Class<? extends
2725      *  Anything>, arrays of the preceding.
2726      *  }
2727      */
2728     void validateAnnotationType(JCTree restype) {
2729         // restype may be null if an error occurred, so don't bother validating it
2730         if (restype != null) {
2731             validateAnnotationType(restype.pos(), restype.type);
2732         }
2733     }
2734 
2735     void validateAnnotationType(DiagnosticPosition pos, Type type) {
2736         if (type.isPrimitive()) return;
2737         if (types.isSameType(type, syms.stringType)) return;
2738         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2739         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2740         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2741         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2742             validateAnnotationType(pos, types.elemtype(type));
2743             return;
2744         }
2745         log.error(pos, "invalid.annotation.member.type");
2746     }
2747 
2748     /**
2749      * "It is also a compile-time error if any method declared in an
2750      * annotation type has a signature that is override-equivalent to
2751      * that of any public or protected method declared in class Object
2752      * or in the interface annotation.Annotation."
2753      *
2754      * @jls 9.6 Annotation Types
2755      */
2756     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2757         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2758             Scope s = sup.tsym.members();
2759             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
2760                 if (e.sym.kind == MTH &&
2761                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2762                     types.overrideEquivalent(m.type, e.sym.type))
2763                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
2764             }
2765         }
2766     }
2767 
2768     /** Check the annotations of a symbol.
2769      */
2770     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2771         for (JCAnnotation a : annotations)
2772             validateAnnotation(a, s);
2773     }
2774 
2775     /** Check the type annotations.
2776      */
2777     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2778         for (JCAnnotation a : annotations)
2779             validateTypeAnnotation(a, isTypeParameter);
2780     }
2781 
2782     /** Check an annotation of a symbol.
2783      */
2784     private void validateAnnotation(JCAnnotation a, Symbol s) {
2785         validateAnnotationTree(a);
2786 
2787         if (!annotationApplicable(a, s))
2788             log.error(a.pos(), "annotation.type.not.applicable");
2789 
2790         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2791             if (s.kind != TYP) {
2792                 log.error(a.pos(), "bad.functional.intf.anno");
2793             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2794                 log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2795             }
2796         }
2797     }
2798 
2799     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2800         Assert.checkNonNull(a.type, "annotation tree hasn't been attributed yet: " + a);
2801         validateAnnotationTree(a);
2802 
2803         if (a.hasTag(TYPE_ANNOTATION) &&
2804                 !a.annotationType.type.isErroneous() &&
2805                 !isTypeAnnotation(a, isTypeParameter)) {
2806             log.error(a.pos(), "annotation.type.not.applicable");
2807         }
2808     }
2809 
2810     /**
2811      * Validate the proposed container 'repeatable' on the
2812      * annotation type symbol 's'. Report errors at position
2813      * 'pos'.
2814      *
2815      * @param s The (annotation)type declaration annotated with a @Repeatable
2816      * @param repeatable the @Repeatable on 's'
2817      * @param pos where to report errors
2818      */
2819     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2820         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2821 
2822         Type t = null;
2823         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2824         if (!l.isEmpty()) {
2825             Assert.check(l.head.fst.name == names.value);
2826             t = ((Attribute.Class)l.head.snd).getValue();
2827         }
2828 
2829         if (t == null) {
2830             // errors should already have been reported during Annotate
2831             return;
2832         }
2833 
2834         validateValue(t.tsym, s, pos);
2835         validateRetention(t.tsym, s, pos);
2836         validateDocumented(t.tsym, s, pos);
2837         validateInherited(t.tsym, s, pos);
2838         validateTarget(t.tsym, s, pos);
2839         validateDefault(t.tsym, pos);
2840     }
2841 
2842     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2843         Scope.Entry e = container.members().lookup(names.value);
2844         if (e.scope != null && e.sym.kind == MTH) {
2845             MethodSymbol m = (MethodSymbol) e.sym;
2846             Type ret = m.getReturnType();
2847             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2848                 log.error(pos, "invalid.repeatable.annotation.value.return",
2849                         container, ret, types.makeArrayType(contained.type));
2850             }
2851         } else {
2852             log.error(pos, "invalid.repeatable.annotation.no.value", container);
2853         }
2854     }
2855 
2856     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
2857         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2858         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2859 
2860         boolean error = false;
2861         switch (containedRetention) {
2862         case RUNTIME:
2863             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2864                 error = true;
2865             }
2866             break;
2867         case CLASS:
2868             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2869                 error = true;
2870             }
2871         }
2872         if (error ) {
2873             log.error(pos, "invalid.repeatable.annotation.retention",
2874                       container, containerRetention,
2875                       contained, containedRetention);
2876         }
2877     }
2878 
2879     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2880         if (contained.attribute(syms.documentedType.tsym) != null) {
2881             if (container.attribute(syms.documentedType.tsym) == null) {
2882                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2883             }
2884         }
2885     }
2886 
2887     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2888         if (contained.attribute(syms.inheritedType.tsym) != null) {
2889             if (container.attribute(syms.inheritedType.tsym) == null) {
2890                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2891             }
2892         }
2893     }
2894 
2895     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
2896         // The set of targets the container is applicable to must be a subset
2897         // (with respect to annotation target semantics) of the set of targets
2898         // the contained is applicable to. The target sets may be implicit or
2899         // explicit.
2900 
2901         Set<Name> containerTargets;
2902         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2903         if (containerTarget == null) {
2904             containerTargets = getDefaultTargetSet();
2905         } else {
2906             containerTargets = new HashSet<>();
2907             for (Attribute app : containerTarget.values) {
2908                 if (!(app instanceof Attribute.Enum)) {
2909                     continue; // recovery
2910                 }
2911                 Attribute.Enum e = (Attribute.Enum)app;
2912                 containerTargets.add(e.value.name);
2913             }
2914         }
2915 
2916         Set<Name> containedTargets;
2917         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2918         if (containedTarget == null) {
2919             containedTargets = getDefaultTargetSet();
2920         } else {
2921             containedTargets = new HashSet<>();
2922             for (Attribute app : containedTarget.values) {
2923                 if (!(app instanceof Attribute.Enum)) {
2924                     continue; // recovery
2925                 }
2926                 Attribute.Enum e = (Attribute.Enum)app;
2927                 containedTargets.add(e.value.name);
2928             }
2929         }
2930 
2931         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2932             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2933         }
2934     }
2935 
2936     /* get a set of names for the default target */
2937     private Set<Name> getDefaultTargetSet() {
2938         if (defaultTargets == null) {
2939             Set<Name> targets = new HashSet<>();
2940             targets.add(names.ANNOTATION_TYPE);
2941             targets.add(names.CONSTRUCTOR);
2942             targets.add(names.FIELD);
2943             targets.add(names.LOCAL_VARIABLE);
2944             targets.add(names.METHOD);
2945             targets.add(names.PACKAGE);
2946             targets.add(names.PARAMETER);
2947             targets.add(names.TYPE);
2948 
2949             defaultTargets = java.util.Collections.unmodifiableSet(targets);
2950         }
2951 
2952         return defaultTargets;
2953     }
2954     private Set<Name> defaultTargets;
2955 
2956 
2957     /** Checks that s is a subset of t, with respect to ElementType
2958      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2959      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2960      * TYPE_PARAMETER}.
2961      */
2962     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2963         // Check that all elements in s are present in t
2964         for (Name n2 : s) {
2965             boolean currentElementOk = false;
2966             for (Name n1 : t) {
2967                 if (n1 == n2) {
2968                     currentElementOk = true;
2969                     break;
2970                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2971                     currentElementOk = true;
2972                     break;
2973                 } else if (n1 == names.TYPE_USE &&
2974                         (n2 == names.TYPE ||
2975                          n2 == names.ANNOTATION_TYPE ||
2976                          n2 == names.TYPE_PARAMETER)) {
2977                     currentElementOk = true;
2978                     break;
2979                 }
2980             }
2981             if (!currentElementOk)
2982                 return false;
2983         }
2984         return true;
2985     }
2986 
2987     private void validateDefault(Symbol container, DiagnosticPosition pos) {
2988         // validate that all other elements of containing type has defaults
2989         Scope scope = container.members();
2990         for(Symbol elm : scope.getElements()) {
2991             if (elm.name != names.value &&
2992                 elm.kind == Kinds.MTH &&
2993                 ((MethodSymbol)elm).defaultValue == null) {
2994                 log.error(pos,
2995                           "invalid.repeatable.annotation.elem.nondefault",
2996                           container,
2997                           elm);
2998             }
2999         }
3000     }
3001 
3002     /** Is s a method symbol that overrides a method in a superclass? */
3003     boolean isOverrider(Symbol s) {
3004         if (s.kind != MTH || s.isStatic())
3005             return false;
3006         MethodSymbol m = (MethodSymbol)s;
3007         TypeSymbol owner = (TypeSymbol)m.owner;
3008         for (Type sup : types.closure(owner.type)) {
3009             if (sup == owner.type)
3010                 continue; // skip "this"
3011             Scope scope = sup.tsym.members();
3012             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
3013                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
3014                     return true;
3015             }
3016         }
3017         return false;
3018     }
3019 
3020     /** Is the annotation applicable to types? */
3021     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3022         Attribute.Compound atTarget =
3023             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
3024         if (atTarget == null) {
3025             // An annotation without @Target is not a type annotation.
3026             return false;
3027         }
3028 
3029         Attribute atValue = atTarget.member(names.value);
3030         if (!(atValue instanceof Attribute.Array)) {
3031             return false; // error recovery
3032         }
3033 
3034         Attribute.Array arr = (Attribute.Array) atValue;
3035         for (Attribute app : arr.values) {
3036             if (!(app instanceof Attribute.Enum)) {
3037                 return false; // recovery
3038             }
3039             Attribute.Enum e = (Attribute.Enum) app;
3040 
3041             if (e.value.name == names.TYPE_USE)
3042                 return true;
3043             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
3044                 return true;
3045         }
3046         return false;
3047     }
3048 
3049     /** Is the annotation applicable to the symbol? */
3050     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3051         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3052         Name[] targets;
3053 
3054         if (arr == null) {
3055             targets = defaultTargetMetaInfo(a, s);
3056         } else {
3057             // TODO: can we optimize this?
3058             targets = new Name[arr.values.length];
3059             for (int i=0; i<arr.values.length; ++i) {
3060                 Attribute app = arr.values[i];
3061                 if (!(app instanceof Attribute.Enum)) {
3062                     return true; // recovery
3063                 }
3064                 Attribute.Enum e = (Attribute.Enum) app;
3065                 targets[i] = e.value.name;
3066             }
3067         }
3068         for (Name target : targets) {
3069             if (target == names.TYPE)
3070                 { if (s.kind == TYP) return true; }
3071             else if (target == names.FIELD)
3072                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
3073             else if (target == names.METHOD)
3074                 { if (s.kind == MTH && !s.isConstructor()) return true; }
3075             else if (target == names.PARAMETER)
3076                 { if (s.kind == VAR &&
3077                       s.owner.kind == MTH &&
3078                       (s.flags() & PARAMETER) != 0)
3079                     return true;
3080                 }
3081             else if (target == names.CONSTRUCTOR)
3082                 { if (s.kind == MTH && s.isConstructor()) return true; }
3083             else if (target == names.LOCAL_VARIABLE)
3084                 { if (s.kind == VAR && s.owner.kind == MTH &&
3085                       (s.flags() & PARAMETER) == 0)
3086                     return true;
3087                 }
3088             else if (target == names.ANNOTATION_TYPE)
3089                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
3090                     return true;
3091                 }
3092             else if (target == names.PACKAGE)
3093                 { if (s.kind == PCK) return true; }
3094             else if (target == names.TYPE_USE)
3095                 { if (s.kind == TYP ||
3096                       s.kind == VAR ||
3097                       (s.kind == MTH && !s.isConstructor() &&
3098                       !s.type.getReturnType().hasTag(VOID)) ||
3099                       (s.kind == MTH && s.isConstructor()))
3100                     return true;
3101                 }
3102             else if (target == names.TYPE_PARAMETER)
3103                 { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3104                     return true;
3105                 }
3106             else
3107                 return true; // recovery
3108         }
3109         return false;
3110     }
3111 
3112 
3113     Attribute.Array getAttributeTargetAttribute(Symbol s) {
3114         Attribute.Compound atTarget =
3115             s.attribute(syms.annotationTargetType.tsym);
3116         if (atTarget == null) return null; // ok, is applicable
3117         Attribute atValue = atTarget.member(names.value);
3118         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3119         return (Attribute.Array) atValue;
3120     }
3121 
3122     private final Name[] dfltTargetMeta;
3123     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3124         return dfltTargetMeta;
3125     }
3126 
3127     /** Check an annotation value.
3128      *
3129      * @param a The annotation tree to check
3130      * @return true if this annotation tree is valid, otherwise false
3131      */
3132     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3133         boolean res = false;
3134         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3135         try {
3136             res = validateAnnotation(a);
3137         } finally {
3138             log.popDiagnosticHandler(diagHandler);
3139         }
3140         return res;
3141     }
3142 
3143     private boolean validateAnnotation(JCAnnotation a) {
3144         boolean isValid = true;
3145         // collect an inventory of the annotation elements
3146         Set<MethodSymbol> members = new LinkedHashSet<>();
3147         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
3148                 e != null;
3149                 e = e.sibling)
3150             if (e.sym.kind == MTH && e.sym.name != names.clinit &&
3151                     (e.sym.flags() & SYNTHETIC) == 0)
3152                 members.add((MethodSymbol) e.sym);
3153 
3154         // remove the ones that are assigned values
3155         for (JCTree arg : a.args) {
3156             if (!arg.hasTag(ASSIGN)) continue; // recovery
3157             JCAssign assign = (JCAssign) arg;
3158             Symbol m = TreeInfo.symbol(assign.lhs);
3159             if (m == null || m.type.isErroneous()) continue;
3160             if (!members.remove(m)) {
3161                 isValid = false;
3162                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3163                           m.name, a.type);
3164             }
3165         }
3166 
3167         // all the remaining ones better have default values
3168         List<Name> missingDefaults = List.nil();
3169         for (MethodSymbol m : members) {
3170             if (m.defaultValue == null && !m.type.isErroneous()) {
3171                 missingDefaults = missingDefaults.append(m.name);
3172             }
3173         }
3174         missingDefaults = missingDefaults.reverse();
3175         if (missingDefaults.nonEmpty()) {
3176             isValid = false;
3177             String key = (missingDefaults.size() > 1)
3178                     ? "annotation.missing.default.value.1"
3179                     : "annotation.missing.default.value";
3180             log.error(a.pos(), key, a.type, missingDefaults);
3181         }
3182 
3183         // special case: java.lang.annotation.Target must not have
3184         // repeated values in its value member
3185         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3186             a.args.tail == null)
3187             return isValid;
3188 
3189         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3190         JCAssign assign = (JCAssign) a.args.head;
3191         Symbol m = TreeInfo.symbol(assign.lhs);
3192         if (m.name != names.value) return false;
3193         JCTree rhs = assign.rhs;
3194         if (!rhs.hasTag(NEWARRAY)) return false;
3195         JCNewArray na = (JCNewArray) rhs;
3196         Set<Symbol> targets = new HashSet<>();
3197         for (JCTree elem : na.elems) {
3198             if (!targets.add(TreeInfo.symbol(elem))) {
3199                 isValid = false;
3200                 log.error(elem.pos(), "repeated.annotation.target");
3201             }
3202         }
3203         return isValid;
3204     }
3205 
3206     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3207         if (allowAnnotations &&
3208             lint.isEnabled(LintCategory.DEP_ANN) &&
3209             (s.flags() & DEPRECATED) != 0 &&
3210             !syms.deprecatedType.isErroneous() &&
3211             s.attribute(syms.deprecatedType.tsym) == null) {
3212             log.warning(LintCategory.DEP_ANN,
3213                     pos, "missing.deprecated.annotation");
3214         }
3215     }
3216 
3217     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3218         if ((s.flags() & DEPRECATED) != 0 &&
3219                 (other.flags() & DEPRECATED) == 0 &&
3220                 s.outermostClass() != other.outermostClass()) {
3221             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3222                 @Override
3223                 public void report() {
3224                     warnDeprecated(pos, s);
3225                 }
3226             });
3227         }
3228     }
3229 
3230     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3231         if ((s.flags() & PROPRIETARY) != 0) {
3232             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3233                 public void report() {
3234                     if (enableSunApiLintControl)
3235                       warnSunApi(pos, "sun.proprietary", s);
3236                     else
3237                       log.mandatoryWarning(pos, "sun.proprietary", s);
3238                 }
3239             });
3240         }
3241     }
3242 
3243     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3244         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3245             log.error(pos, "not.in.profile", s, profile);
3246         }
3247     }
3248 
3249 /* *************************************************************************
3250  * Check for recursive annotation elements.
3251  **************************************************************************/
3252 
3253     /** Check for cycles in the graph of annotation elements.
3254      */
3255     void checkNonCyclicElements(JCClassDecl tree) {
3256         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3257         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3258         try {
3259             tree.sym.flags_field |= LOCKED;
3260             for (JCTree def : tree.defs) {
3261                 if (!def.hasTag(METHODDEF)) continue;
3262                 JCMethodDecl meth = (JCMethodDecl)def;
3263                 checkAnnotationResType(meth.pos(), meth.restype.type);
3264             }
3265         } finally {
3266             tree.sym.flags_field &= ~LOCKED;
3267             tree.sym.flags_field |= ACYCLIC_ANN;
3268         }
3269     }
3270 
3271     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3272         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3273             return;
3274         if ((tsym.flags_field & LOCKED) != 0) {
3275             log.error(pos, "cyclic.annotation.element");
3276             return;
3277         }
3278         try {
3279             tsym.flags_field |= LOCKED;
3280             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
3281                 Symbol s = e.sym;
3282                 if (s.kind != Kinds.MTH)
3283                     continue;
3284                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3285             }
3286         } finally {
3287             tsym.flags_field &= ~LOCKED;
3288             tsym.flags_field |= ACYCLIC_ANN;
3289         }
3290     }
3291 
3292     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3293         switch (type.getTag()) {
3294         case CLASS:
3295             if ((type.tsym.flags() & ANNOTATION) != 0)
3296                 checkNonCyclicElementsInternal(pos, type.tsym);
3297             break;
3298         case ARRAY:
3299             checkAnnotationResType(pos, types.elemtype(type));
3300             break;
3301         default:
3302             break; // int etc
3303         }
3304     }
3305 
3306 /* *************************************************************************
3307  * Check for cycles in the constructor call graph.
3308  **************************************************************************/
3309 
3310     /** Check for cycles in the graph of constructors calling other
3311      *  constructors.
3312      */
3313     void checkCyclicConstructors(JCClassDecl tree) {
3314         Map<Symbol,Symbol> callMap = new HashMap<>();
3315 
3316         // enter each constructor this-call into the map
3317         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3318             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3319             if (app == null) continue;
3320             JCMethodDecl meth = (JCMethodDecl) l.head;
3321             if (TreeInfo.name(app.meth) == names._this) {
3322                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3323             } else {
3324                 meth.sym.flags_field |= ACYCLIC;
3325             }
3326         }
3327 
3328         // Check for cycles in the map
3329         Symbol[] ctors = new Symbol[0];
3330         ctors = callMap.keySet().toArray(ctors);
3331         for (Symbol caller : ctors) {
3332             checkCyclicConstructor(tree, caller, callMap);
3333         }
3334     }
3335 
3336     /** Look in the map to see if the given constructor is part of a
3337      *  call cycle.
3338      */
3339     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3340                                         Map<Symbol,Symbol> callMap) {
3341         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3342             if ((ctor.flags_field & LOCKED) != 0) {
3343                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3344                           "recursive.ctor.invocation");
3345             } else {
3346                 ctor.flags_field |= LOCKED;
3347                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3348                 ctor.flags_field &= ~LOCKED;
3349             }
3350             ctor.flags_field |= ACYCLIC;
3351         }
3352     }
3353 
3354 /* *************************************************************************
3355  * Miscellaneous
3356  **************************************************************************/
3357 
3358     /**
3359      * Return the opcode of the operator but emit an error if it is an
3360      * error.
3361      * @param pos        position for error reporting.
3362      * @param operator   an operator
3363      * @param tag        a tree tag
3364      * @param left       type of left hand side
3365      * @param right      type of right hand side
3366      */
3367     int checkOperator(DiagnosticPosition pos,
3368                        OperatorSymbol operator,
3369                        JCTree.Tag tag,
3370                        Type left,
3371                        Type right) {
3372         if (operator.opcode == ByteCodes.error) {
3373             log.error(pos,
3374                       "operator.cant.be.applied.1",
3375                       treeinfo.operatorName(tag),
3376                       left, right);
3377         }
3378         return operator.opcode;
3379     }
3380 
3381 
3382     /**
3383      *  Check for division by integer constant zero
3384      *  @param pos           Position for error reporting.
3385      *  @param operator      The operator for the expression
3386      *  @param operand       The right hand operand for the expression
3387      */
3388     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
3389         if (operand.constValue() != null
3390             && lint.isEnabled(LintCategory.DIVZERO)
3391             && operand.getTag().isSubRangeOf(LONG)
3392             && ((Number) (operand.constValue())).longValue() == 0) {
3393             int opc = ((OperatorSymbol)operator).opcode;
3394             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3395                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3396                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
3397             }
3398         }
3399     }
3400 
3401     /**
3402      * Check for empty statements after if
3403      */
3404     void checkEmptyIf(JCIf tree) {
3405         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3406                 lint.isEnabled(LintCategory.EMPTY))
3407             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3408     }
3409 
3410     /** Check that symbol is unique in given scope.
3411      *  @param pos           Position for error reporting.
3412      *  @param sym           The symbol.
3413      *  @param s             The scope.
3414      */
3415     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3416         if (sym.type.isErroneous())
3417             return true;
3418         if (sym.owner.name == names.any) return false;
3419         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
3420             if (sym != e.sym &&
3421                     (e.sym.flags() & CLASH) == 0 &&
3422                     sym.kind == e.sym.kind &&
3423                     sym.name != names.error &&
3424                     (sym.kind != MTH ||
3425                      types.hasSameArgs(sym.type, e.sym.type) ||
3426                      types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
3427                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
3428                     varargsDuplicateError(pos, sym, e.sym);
3429                     return true;
3430                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
3431                     duplicateErasureError(pos, sym, e.sym);
3432                     sym.flags_field |= CLASH;
3433                     return true;
3434                 } else {
3435                     duplicateError(pos, e.sym);
3436                     return false;
3437                 }
3438             }
3439         }
3440         return true;
3441     }
3442 
3443     /** Report duplicate declaration error.
3444      */
3445     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3446         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3447             log.error(pos, "name.clash.same.erasure", sym1, sym2);
3448         }
3449     }
3450 
3451     /** Check that single-type import is not already imported or top-level defined,
3452      *  but make an exception for two single-type imports which denote the same type.
3453      *  @param pos           Position for error reporting.
3454      *  @param sym           The symbol.
3455      *  @param s             The scope
3456      */
3457     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
3458         return checkUniqueImport(pos, sym, s, false);
3459     }
3460 
3461     /** Check that static single-type import is not already imported or top-level defined,
3462      *  but make an exception for two single-type imports which denote the same type.
3463      *  @param pos           Position for error reporting.
3464      *  @param sym           The symbol.
3465      *  @param s             The scope
3466      */
3467     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
3468         return checkUniqueImport(pos, sym, s, true);
3469     }
3470 
3471     /** Check that single-type import is not already imported or top-level defined,
3472      *  but make an exception for two single-type imports which denote the same type.
3473      *  @param pos           Position for error reporting.
3474      *  @param sym           The symbol.
3475      *  @param s             The scope.
3476      *  @param staticImport  Whether or not this was a static import
3477      */
3478     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
3479         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
3480             // is encountered class entered via a class declaration?
3481             boolean isClassDecl = e.scope == s;
3482             if ((isClassDecl || sym != e.sym) &&
3483                 sym.kind == e.sym.kind &&
3484                 sym.name != names.error &&
3485                 (!staticImport || !e.isStaticallyImported())) {
3486                 if (!e.sym.type.isErroneous()) {
3487                     if (!isClassDecl) {
3488                         if (staticImport)
3489                             log.error(pos, "already.defined.static.single.import", e.sym);
3490                         else
3491                         log.error(pos, "already.defined.single.import", e.sym);
3492                     }
3493                     else if (sym != e.sym)
3494                         log.error(pos, "already.defined.this.unit", e.sym);
3495                 }
3496                 return false;
3497             }
3498         }
3499         return true;
3500     }
3501 
3502     /** Check that a qualified name is in canonical form (for import decls).
3503      */
3504     public void checkCanonical(JCTree tree) {
3505         if (!isCanonical(tree))
3506             log.error(tree.pos(), "import.requires.canonical",
3507                       TreeInfo.symbol(tree));
3508     }
3509         // where
3510         private boolean isCanonical(JCTree tree) {
3511             while (tree.hasTag(SELECT)) {
3512                 JCFieldAccess s = (JCFieldAccess) tree;
3513                 if (s.sym.owner != TreeInfo.symbol(s.selected))
3514                     return false;
3515                 tree = s.selected;
3516             }
3517             return true;
3518         }
3519 
3520     /** Check that an auxiliary class is not accessed from any other file than its own.
3521      */
3522     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3523         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3524             (c.flags() & AUXILIARY) != 0 &&
3525             rs.isAccessible(env, c) &&
3526             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3527         {
3528             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3529                         c, c.sourcefile);
3530         }
3531     }
3532 
3533     private class ConversionWarner extends Warner {
3534         final String uncheckedKey;
3535         final Type found;
3536         final Type expected;
3537         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3538             super(pos);
3539             this.uncheckedKey = uncheckedKey;
3540             this.found = found;
3541             this.expected = expected;
3542         }
3543 
3544         @Override
3545         public void warn(LintCategory lint) {
3546             boolean warned = this.warned;
3547             super.warn(lint);
3548             if (warned) return; // suppress redundant diagnostics
3549             switch (lint) {
3550                 case UNCHECKED:
3551                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3552                     break;
3553                 case VARARGS:
3554                     if (method != null &&
3555                             method.attribute(syms.trustMeType.tsym) != null &&
3556                             isTrustMeAllowedOnMethod(method) &&
3557                             !types.isReifiable(method.type.getParameterTypes().last())) {
3558                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3559                     }
3560                     break;
3561                 default:
3562                     throw new AssertionError("Unexpected lint: " + lint);
3563             }
3564         }
3565     }
3566 
3567     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3568         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3569     }
3570 
3571     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3572         return new ConversionWarner(pos, "unchecked.assign", found, expected);
3573     }
3574 
3575     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3576         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3577 
3578         if (functionalType != null) {
3579             try {
3580                 types.findDescriptorSymbol((TypeSymbol)cs);
3581             } catch (Types.FunctionDescriptorLookupError ex) {
3582                 DiagnosticPosition pos = tree.pos();
3583                 for (JCAnnotation a : tree.getModifiers().annotations) {
3584                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3585                         pos = a.pos();
3586                         break;
3587                     }
3588                 }
3589                 log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3590             }
3591         }
3592     }
3593 }