1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.tools.JavaFileManager;
  31 
  32 import com.sun.tools.javac.code.*;
  33 import com.sun.tools.javac.code.Attribute.Compound;
  34 import com.sun.tools.javac.jvm.*;
  35 import com.sun.tools.javac.tree.*;
  36 import com.sun.tools.javac.util.*;
  37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  38 import com.sun.tools.javac.util.List;
  39 
  40 import com.sun.tools.javac.code.Lint;
  41 import com.sun.tools.javac.code.Lint.LintCategory;
  42 import com.sun.tools.javac.code.Type.*;
  43 import com.sun.tools.javac.code.Symbol.*;
  44 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  45 import com.sun.tools.javac.comp.Infer.InferenceContext;
  46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  47 import com.sun.tools.javac.tree.JCTree.*;
  48 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  49 
  50 import static com.sun.tools.javac.code.Flags.*;
  51 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  52 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  53 import static com.sun.tools.javac.code.Kinds.*;
  54 import static com.sun.tools.javac.code.TypeTag.*;
  55 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  56 
  57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  58 
  59 /** Type checking helper class for the attribution phase.
  60  *
  61  *  <p><b>This is NOT part of any supported API.
  62  *  If you write code that depends on this, you do so at your own risk.
  63  *  This code and its internal interfaces are subject to change or
  64  *  deletion without notice.</b>
  65  */
  66 public class Check {
  67     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  68 
  69     private final Names names;
  70     private final Log log;
  71     private final Resolve rs;
  72     private final Symtab syms;
  73     private final Enter enter;
  74     private final DeferredAttr deferredAttr;
  75     private final Infer infer;
  76     private final Types types;
  77     private final JCDiagnostic.Factory diags;
  78     private boolean warnOnSyntheticConflicts;
  79     private boolean suppressAbortOnBadClassFile;
  80     private boolean enableSunApiLintControl;
  81     private final TreeInfo treeinfo;
  82     private final JavaFileManager fileManager;
  83     private final Profile profile;
  84     private final boolean warnOnAccessToSensitiveMembers;
  85 
  86     // The set of lint options currently in effect. It is initialized
  87     // from the context, and then is set/reset as needed by Attr as it
  88     // visits all the various parts of the trees during attribution.
  89     private Lint lint;
  90 
  91     // The method being analyzed in Attr - it is set/reset as needed by
  92     // Attr as it visits new method declarations.
  93     private MethodSymbol method;
  94 
  95     public static Check instance(Context context) {
  96         Check instance = context.get(checkKey);
  97         if (instance == null)
  98             instance = new Check(context);
  99         return instance;
 100     }
 101 
 102     protected Check(Context context) {
 103         context.put(checkKey, this);
 104 
 105         names = Names.instance(context);
 106         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
 107             names.FIELD, names.METHOD, names.CONSTRUCTOR,
 108             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
 109         log = Log.instance(context);
 110         rs = Resolve.instance(context);
 111         syms = Symtab.instance(context);
 112         enter = Enter.instance(context);
 113         deferredAttr = DeferredAttr.instance(context);
 114         infer = Infer.instance(context);
 115         types = Types.instance(context);
 116         diags = JCDiagnostic.Factory.instance(context);
 117         Options options = Options.instance(context);
 118         lint = Lint.instance(context);
 119         treeinfo = TreeInfo.instance(context);
 120         fileManager = context.get(JavaFileManager.class);
 121 
 122         Source source = Source.instance(context);
 123         allowGenerics = source.allowGenerics();
 124         allowVarargs = source.allowVarargs();
 125         allowAnnotations = source.allowAnnotations();
 126         allowCovariantReturns = source.allowCovariantReturns();
 127         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
 128         allowDefaultMethods = source.allowDefaultMethods();
 129         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
 130         allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
 131         complexInference = options.isSet("complexinference");
 132         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
 133         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
 134         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
 135         warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
 136 
 137         Target target = Target.instance(context);
 138         syntheticNameChar = target.syntheticNameChar();
 139 
 140         profile = Profile.instance(context);
 141 
 142         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 143         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 144         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
 145         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
 146 
 147         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
 148                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
 149         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
 150                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
 151         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
 152                 enforceMandatoryWarnings, "sunapi", null);
 153 
 154         deferredLintHandler = DeferredLintHandler.instance(context);
 155     }
 156 
 157     /** Switch: generics enabled?
 158      */
 159     boolean allowGenerics;
 160 
 161     /** Switch: varargs enabled?
 162      */
 163     boolean allowVarargs;
 164 
 165     /** Switch: annotations enabled?
 166      */
 167     boolean allowAnnotations;
 168 
 169     /** Switch: covariant returns enabled?
 170      */
 171     boolean allowCovariantReturns;
 172 
 173     /** Switch: simplified varargs enabled?
 174      */
 175     boolean allowSimplifiedVarargs;
 176 
 177     /** Switch: default methods enabled?
 178      */
 179     boolean allowDefaultMethods;
 180 
 181     /** Switch: should unrelated return types trigger a method clash?
 182      */
 183     boolean allowStrictMethodClashCheck;
 184 
 185     /** Switch: can the @SafeVarargs annotation be applied to private methods?
 186      */
 187     boolean allowPrivateSafeVarargs;
 188 
 189     /** Switch: -complexinference option set?
 190      */
 191     boolean complexInference;
 192 
 193     /** Character for synthetic names
 194      */
 195     char syntheticNameChar;
 196 
 197     /** A table mapping flat names of all compiled classes in this run to their
 198      *  symbols; maintained from outside.
 199      */
 200     public Map<Name,ClassSymbol> compiled = new HashMap<>();
 201 
 202     /** A handler for messages about deprecated usage.
 203      */
 204     private MandatoryWarningHandler deprecationHandler;
 205 
 206     /** A handler for messages about unchecked or unsafe usage.
 207      */
 208     private MandatoryWarningHandler uncheckedHandler;
 209 
 210     /** A handler for messages about using proprietary API.
 211      */
 212     private MandatoryWarningHandler sunApiHandler;
 213 
 214     /** A handler for deferred lint warnings.
 215      */
 216     private DeferredLintHandler deferredLintHandler;
 217 
 218 /* *************************************************************************
 219  * Errors and Warnings
 220  **************************************************************************/
 221 
 222     Lint setLint(Lint newLint) {
 223         Lint prev = lint;
 224         lint = newLint;
 225         return prev;
 226     }
 227 
 228     MethodSymbol setMethod(MethodSymbol newMethod) {
 229         MethodSymbol prev = method;
 230         method = newMethod;
 231         return prev;
 232     }
 233 
 234     /** Warn about deprecated symbol.
 235      *  @param pos        Position to be used for error reporting.
 236      *  @param sym        The deprecated symbol.
 237      */
 238     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 239         if (!lint.isSuppressed(LintCategory.DEPRECATION))
 240             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
 241     }
 242 
 243     /** Warn about unchecked operation.
 244      *  @param pos        Position to be used for error reporting.
 245      *  @param msg        A string describing the problem.
 246      */
 247     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
 248         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 249             uncheckedHandler.report(pos, msg, args);
 250     }
 251 
 252     /** Warn about unsafe vararg method decl.
 253      *  @param pos        Position to be used for error reporting.
 254      */
 255     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
 256         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
 257             log.warning(LintCategory.VARARGS, pos, key, args);
 258     }
 259 
 260     /** Warn about using proprietary API.
 261      *  @param pos        Position to be used for error reporting.
 262      *  @param msg        A string describing the problem.
 263      */
 264     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
 265         if (!lint.isSuppressed(LintCategory.SUNAPI))
 266             sunApiHandler.report(pos, msg, args);
 267     }
 268 
 269     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
 270         if (lint.isEnabled(LintCategory.STATIC))
 271             log.warning(LintCategory.STATIC, pos, msg, args);
 272     }
 273 
 274     /**
 275      * Report any deferred diagnostics.
 276      */
 277     public void reportDeferredDiagnostics() {
 278         deprecationHandler.reportDeferredDiagnostic();
 279         uncheckedHandler.reportDeferredDiagnostic();
 280         sunApiHandler.reportDeferredDiagnostic();
 281     }
 282 
 283 
 284     /** Report a failure to complete a class.
 285      *  @param pos        Position to be used for error reporting.
 286      *  @param ex         The failure to report.
 287      */
 288     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 289         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
 290         if (ex instanceof ClassFinder.BadClassFile
 291                 && !suppressAbortOnBadClassFile) throw new Abort();
 292         else return syms.errType;
 293     }
 294 
 295     /** Report an error that wrong type tag was found.
 296      *  @param pos        Position to be used for error reporting.
 297      *  @param required   An internationalized string describing the type tag
 298      *                    required.
 299      *  @param found      The type that was found.
 300      */
 301     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
 302         // this error used to be raised by the parser,
 303         // but has been delayed to this point:
 304         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
 305             log.error(pos, "illegal.start.of.type");
 306             return syms.errType;
 307         }
 308         log.error(pos, "type.found.req", found, required);
 309         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
 310     }
 311 
 312     /** Report an error that symbol cannot be referenced before super
 313      *  has been called.
 314      *  @param pos        Position to be used for error reporting.
 315      *  @param sym        The referenced symbol.
 316      */
 317     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
 318         log.error(pos, "cant.ref.before.ctor.called", sym);
 319     }
 320 
 321     /** Report duplicate declaration error.
 322      */
 323     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 324         if (!sym.type.isErroneous()) {
 325             Symbol location = sym.location();
 326             if (location.kind == MTH &&
 327                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 328                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
 329                         kindName(sym.location()), kindName(sym.location().enclClass()),
 330                         sym.location().enclClass());
 331             } else {
 332                 log.error(pos, "already.defined", kindName(sym), sym,
 333                         kindName(sym.location()), sym.location());
 334             }
 335         }
 336     }
 337 
 338     /** Report array/varargs duplicate declaration
 339      */
 340     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 341         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 342             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
 343         }
 344     }
 345 
 346 /* ************************************************************************
 347  * duplicate declaration checking
 348  *************************************************************************/
 349 
 350     /** Check that variable does not hide variable with same name in
 351      *  immediately enclosing local scope.
 352      *  @param pos           Position for error reporting.
 353      *  @param v             The symbol.
 354      *  @param s             The scope.
 355      */
 356     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 357         if (s.next != null) {
 358             for (Scope.Entry e = s.next.lookup(v.name);
 359                  e.scope != null && e.sym.owner == v.owner;
 360                  e = e.next()) {
 361                 if (e.sym.kind == VAR &&
 362                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 363                     v.name != names.error) {
 364                     duplicateError(pos, e.sym);
 365                     return;
 366                 }
 367             }
 368         }
 369     }
 370 
 371     /** Check that a class or interface does not hide a class or
 372      *  interface with same name in immediately enclosing local scope.
 373      *  @param pos           Position for error reporting.
 374      *  @param c             The symbol.
 375      *  @param s             The scope.
 376      */
 377     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 378         if (s.next != null) {
 379             for (Scope.Entry e = s.next.lookup(c.name);
 380                  e.scope != null && e.sym.owner == c.owner;
 381                  e = e.next()) {
 382                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
 383                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 384                     c.name != names.error) {
 385                     duplicateError(pos, e.sym);
 386                     return;
 387                 }
 388             }
 389         }
 390     }
 391 
 392     /** Check that class does not have the same name as one of
 393      *  its enclosing classes, or as a class defined in its enclosing scope.
 394      *  return true if class is unique in its enclosing scope.
 395      *  @param pos           Position for error reporting.
 396      *  @param name          The class name.
 397      *  @param s             The enclosing scope.
 398      */
 399     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 400         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
 401             if (e.sym.kind == TYP && e.sym.name != names.error) {
 402                 duplicateError(pos, e.sym);
 403                 return false;
 404             }
 405         }
 406         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 407             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
 408                 duplicateError(pos, sym);
 409                 return true;
 410             }
 411         }
 412         return true;
 413     }
 414 
 415 /* *************************************************************************
 416  * Class name generation
 417  **************************************************************************/
 418 
 419     /** Return name of local class.
 420      *  This is of the form   {@code <enclClass> $ n <classname> }
 421      *  where
 422      *    enclClass is the flat name of the enclosing class,
 423      *    classname is the simple name of the local class
 424      */
 425     Name localClassName(ClassSymbol c) {
 426         for (int i=1; ; i++) {
 427             Name flatname = names.
 428                 fromString("" + c.owner.enclClass().flatname +
 429                            syntheticNameChar + i +
 430                            c.name);
 431             if (compiled.get(flatname) == null) return flatname;
 432         }
 433     }
 434 
 435     public void newRound() {
 436         compiled.clear();
 437     }
 438 
 439 /* *************************************************************************
 440  * Type Checking
 441  **************************************************************************/
 442 
 443     /**
 444      * A check context is an object that can be used to perform compatibility
 445      * checks - depending on the check context, meaning of 'compatibility' might
 446      * vary significantly.
 447      */
 448     public interface CheckContext {
 449         /**
 450          * Is type 'found' compatible with type 'req' in given context
 451          */
 452         boolean compatible(Type found, Type req, Warner warn);
 453         /**
 454          * Report a check error
 455          */
 456         void report(DiagnosticPosition pos, JCDiagnostic details);
 457         /**
 458          * Obtain a warner for this check context
 459          */
 460         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 461 
 462         public Infer.InferenceContext inferenceContext();
 463 
 464         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 465     }
 466 
 467     /**
 468      * This class represent a check context that is nested within another check
 469      * context - useful to check sub-expressions. The default behavior simply
 470      * redirects all method calls to the enclosing check context leveraging
 471      * the forwarding pattern.
 472      */
 473     static class NestedCheckContext implements CheckContext {
 474         CheckContext enclosingContext;
 475 
 476         NestedCheckContext(CheckContext enclosingContext) {
 477             this.enclosingContext = enclosingContext;
 478         }
 479 
 480         public boolean compatible(Type found, Type req, Warner warn) {
 481             return enclosingContext.compatible(found, req, warn);
 482         }
 483 
 484         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 485             enclosingContext.report(pos, details);
 486         }
 487 
 488         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 489             return enclosingContext.checkWarner(pos, found, req);
 490         }
 491 
 492         public Infer.InferenceContext inferenceContext() {
 493             return enclosingContext.inferenceContext();
 494         }
 495 
 496         public DeferredAttrContext deferredAttrContext() {
 497             return enclosingContext.deferredAttrContext();
 498         }
 499     }
 500 
 501     /**
 502      * Check context to be used when evaluating assignment/return statements
 503      */
 504     CheckContext basicHandler = new CheckContext() {
 505         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 506             log.error(pos, "prob.found.req", details);
 507         }
 508         public boolean compatible(Type found, Type req, Warner warn) {
 509             return types.isAssignable(found, req, warn);
 510         }
 511 
 512         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 513             return convertWarner(pos, found, req);
 514         }
 515 
 516         public InferenceContext inferenceContext() {
 517             return infer.emptyContext;
 518         }
 519 
 520         public DeferredAttrContext deferredAttrContext() {
 521             return deferredAttr.emptyDeferredAttrContext;
 522         }
 523 
 524         @Override
 525         public String toString() {
 526             return "CheckContext: basicHandler";
 527         }
 528     };
 529 
 530     /** Check that a given type is assignable to a given proto-type.
 531      *  If it is, return the type, otherwise return errType.
 532      *  @param pos        Position to be used for error reporting.
 533      *  @param found      The type that was found.
 534      *  @param req        The type that was required.
 535      */
 536     Type checkType(DiagnosticPosition pos, Type found, Type req) {
 537         return checkType(pos, found, req, basicHandler);
 538     }
 539 
 540     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 541         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
 542         if (inferenceContext.free(req)) {
 543             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
 544                 @Override
 545                 public void typesInferred(InferenceContext inferenceContext) {
 546                     checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
 547                 }
 548             });
 549         }
 550         if (req.hasTag(ERROR))
 551             return req;
 552         if (req.hasTag(NONE))
 553             return found;
 554         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 555             return found;
 556         } else {
 557             if (found.isNumeric() && req.isNumeric()) {
 558                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
 559                 return types.createErrorType(found);
 560             }
 561             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 562             return types.createErrorType(found);
 563         }
 564     }
 565 
 566     /** Check that a given type can be cast to a given target type.
 567      *  Return the result of the cast.
 568      *  @param pos        Position to be used for error reporting.
 569      *  @param found      The type that is being cast.
 570      *  @param req        The target type of the cast.
 571      */
 572     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 573         return checkCastable(pos, found, req, basicHandler);
 574     }
 575     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 576         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 577             return req;
 578         } else {
 579             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 580             return types.createErrorType(found);
 581         }
 582     }
 583 
 584     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 585      * The problem should only be reported for non-292 cast
 586      */
 587     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 588         if (!tree.type.isErroneous()
 589                 && types.isSameType(tree.expr.type, tree.clazz.type)
 590                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 591                 && !is292targetTypeCast(tree)) {
 592             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
 593                 @Override
 594                 public void report() {
 595                     if (lint.isEnabled(Lint.LintCategory.CAST))
 596                         log.warning(Lint.LintCategory.CAST,
 597                                 tree.pos(), "redundant.cast", tree.expr.type);
 598                 }
 599             });
 600         }
 601     }
 602     //where
 603         private boolean is292targetTypeCast(JCTypeCast tree) {
 604             boolean is292targetTypeCast = false;
 605             JCExpression expr = TreeInfo.skipParens(tree.expr);
 606             if (expr.hasTag(APPLY)) {
 607                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 608                 Symbol sym = TreeInfo.symbol(apply.meth);
 609                 is292targetTypeCast = sym != null &&
 610                     sym.kind == MTH &&
 611                     (sym.flags() & HYPOTHETICAL) != 0;
 612             }
 613             return is292targetTypeCast;
 614         }
 615 
 616         private static final boolean ignoreAnnotatedCasts = true;
 617 
 618     /** Check that a type is within some bounds.
 619      *
 620      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 621      *  type argument.
 622      *  @param a             The type that should be bounded by bs.
 623      *  @param bound         The bound.
 624      */
 625     private boolean checkExtends(Type a, Type bound) {
 626          if (a.isUnbound()) {
 627              return true;
 628          } else if (!a.hasTag(WILDCARD)) {
 629              a = types.cvarUpperBound(a);
 630              return types.isSubtype(a, bound);
 631          } else if (a.isExtendsBound()) {
 632              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 633          } else if (a.isSuperBound()) {
 634              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 635          }
 636          return true;
 637      }
 638 
 639     /** Check that type is different from 'void'.
 640      *  @param pos           Position to be used for error reporting.
 641      *  @param t             The type to be checked.
 642      */
 643     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 644         if (t.hasTag(VOID)) {
 645             log.error(pos, "void.not.allowed.here");
 646             return types.createErrorType(t);
 647         } else {
 648             return t;
 649         }
 650     }
 651 
 652     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 653         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 654             return typeTagError(pos,
 655                                 diags.fragment("type.req.class.array"),
 656                                 asTypeParam(t));
 657         } else {
 658             return t;
 659         }
 660     }
 661 
 662     /** Check that type is a class or interface type.
 663      *  @param pos           Position to be used for error reporting.
 664      *  @param t             The type to be checked.
 665      */
 666     Type checkClassType(DiagnosticPosition pos, Type t) {
 667         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 668             return typeTagError(pos,
 669                                 diags.fragment("type.req.class"),
 670                                 asTypeParam(t));
 671         } else {
 672             return t;
 673         }
 674     }
 675     //where
 676         private Object asTypeParam(Type t) {
 677             return (t.hasTag(TYPEVAR))
 678                                     ? diags.fragment("type.parameter", t)
 679                                     : t;
 680         }
 681 
 682     /** Check that type is a valid qualifier for a constructor reference expression
 683      */
 684     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 685         t = checkClassOrArrayType(pos, t);
 686         if (t.hasTag(CLASS)) {
 687             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 688                 log.error(pos, "abstract.cant.be.instantiated", t.tsym);
 689                 t = types.createErrorType(t);
 690             } else if ((t.tsym.flags() & ENUM) != 0) {
 691                 log.error(pos, "enum.cant.be.instantiated");
 692                 t = types.createErrorType(t);
 693             } else {
 694                 t = checkClassType(pos, t, true);
 695             }
 696         } else if (t.hasTag(ARRAY)) {
 697             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 698                 log.error(pos, "generic.array.creation");
 699                 t = types.createErrorType(t);
 700             }
 701         }
 702         return t;
 703     }
 704 
 705     /** Check that type is a class or interface type.
 706      *  @param pos           Position to be used for error reporting.
 707      *  @param t             The type to be checked.
 708      *  @param noBounds    True if type bounds are illegal here.
 709      */
 710     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 711         t = checkClassType(pos, t);
 712         if (noBounds && t.isParameterized()) {
 713             List<Type> args = t.getTypeArguments();
 714             while (args.nonEmpty()) {
 715                 if (args.head.hasTag(WILDCARD))
 716                     return typeTagError(pos,
 717                                         diags.fragment("type.req.exact"),
 718                                         args.head);
 719                 args = args.tail;
 720             }
 721         }
 722         return t;
 723     }
 724 
 725     /** Check that type is a reference type, i.e. a class, interface or array type
 726      *  or a type variable.
 727      *  @param pos           Position to be used for error reporting.
 728      *  @param t             The type to be checked.
 729      */
 730     Type checkRefType(DiagnosticPosition pos, Type t) {
 731         if (t.isReference())
 732             return t;
 733         else
 734             return typeTagError(pos,
 735                                 diags.fragment("type.req.ref"),
 736                                 t);
 737     }
 738 
 739     /** Check that each type is a reference type, i.e. a class, interface or array type
 740      *  or a type variable.
 741      *  @param trees         Original trees, used for error reporting.
 742      *  @param types         The types to be checked.
 743      */
 744     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 745         List<JCExpression> tl = trees;
 746         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 747             l.head = checkRefType(tl.head.pos(), l.head);
 748             tl = tl.tail;
 749         }
 750         return types;
 751     }
 752 
 753     /** Check that type is a null or reference type.
 754      *  @param pos           Position to be used for error reporting.
 755      *  @param t             The type to be checked.
 756      */
 757     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 758         if (t.isReference() || t.hasTag(BOT))
 759             return t;
 760         else
 761             return typeTagError(pos,
 762                                 diags.fragment("type.req.ref"),
 763                                 t);
 764     }
 765 
 766     /** Check that flag set does not contain elements of two conflicting sets. s
 767      *  Return true if it doesn't.
 768      *  @param pos           Position to be used for error reporting.
 769      *  @param flags         The set of flags to be checked.
 770      *  @param set1          Conflicting flags set #1.
 771      *  @param set2          Conflicting flags set #2.
 772      */
 773     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 774         if ((flags & set1) != 0 && (flags & set2) != 0) {
 775             log.error(pos,
 776                       "illegal.combination.of.modifiers",
 777                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
 778                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
 779             return false;
 780         } else
 781             return true;
 782     }
 783 
 784     /** Check that usage of diamond operator is correct (i.e. diamond should not
 785      * be used with non-generic classes or in anonymous class creation expressions)
 786      */
 787     Type checkDiamond(JCNewClass tree, Type t) {
 788         if (!TreeInfo.isDiamond(tree) ||
 789                 t.isErroneous()) {
 790             return checkClassType(tree.clazz.pos(), t, true);
 791         } else if (tree.def != null) {
 792             log.error(tree.clazz.pos(),
 793                     "cant.apply.diamond.1",
 794                     t, diags.fragment("diamond.and.anon.class", t));
 795             return types.createErrorType(t);
 796         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
 797             log.error(tree.clazz.pos(),
 798                 "cant.apply.diamond.1",
 799                 t, diags.fragment("diamond.non.generic", t));
 800             return types.createErrorType(t);
 801         } else if (tree.typeargs != null &&
 802                 tree.typeargs.nonEmpty()) {
 803             log.error(tree.clazz.pos(),
 804                 "cant.apply.diamond.1",
 805                 t, diags.fragment("diamond.and.explicit.params", t));
 806             return types.createErrorType(t);
 807         } else {
 808             return t;
 809         }
 810     }
 811 
 812     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 813         MethodSymbol m = tree.sym;
 814         if (!allowSimplifiedVarargs) return;
 815         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 816         Type varargElemType = null;
 817         if (m.isVarArgs()) {
 818             varargElemType = types.elemtype(tree.params.last().type);
 819         }
 820         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 821             if (varargElemType != null) {
 822                 log.error(tree,
 823                         "varargs.invalid.trustme.anno",
 824                           syms.trustMeType.tsym,
 825                           allowPrivateSafeVarargs ?
 826                           diags.fragment("varargs.trustme.on.virtual.varargs", m) :
 827                           diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
 828             } else {
 829                 log.error(tree,
 830                             "varargs.invalid.trustme.anno",
 831                             syms.trustMeType.tsym,
 832                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
 833             }
 834         } else if (hasTrustMeAnno && varargElemType != null &&
 835                             types.isReifiable(varargElemType)) {
 836             warnUnsafeVararg(tree,
 837                             "varargs.redundant.trustme.anno",
 838                             syms.trustMeType.tsym,
 839                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
 840         }
 841         else if (!hasTrustMeAnno && varargElemType != null &&
 842                 !types.isReifiable(varargElemType)) {
 843             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
 844         }
 845     }
 846     //where
 847         private boolean isTrustMeAllowedOnMethod(Symbol s) {
 848             return (s.flags() & VARARGS) != 0 &&
 849                 (s.isConstructor() ||
 850                     (s.flags() & (STATIC | FINAL |
 851                                   (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
 852         }
 853 
 854     Type checkMethod(final Type mtype,
 855             final Symbol sym,
 856             final Env<AttrContext> env,
 857             final List<JCExpression> argtrees,
 858             final List<Type> argtypes,
 859             final boolean useVarargs,
 860             InferenceContext inferenceContext) {
 861         // System.out.println("call   : " + env.tree);
 862         // System.out.println("method : " + owntype);
 863         // System.out.println("actuals: " + argtypes);
 864         if (inferenceContext.free(mtype)) {
 865             inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
 866                 public void typesInferred(InferenceContext inferenceContext) {
 867                     checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
 868                 }
 869             });
 870             return mtype;
 871         }
 872         Type owntype = mtype;
 873         List<Type> formals = owntype.getParameterTypes();
 874         List<Type> nonInferred = sym.type.getParameterTypes();
 875         if (nonInferred.length() != formals.length()) nonInferred = formals;
 876         Type last = useVarargs ? formals.last() : null;
 877         if (sym.name == names.init && sym.owner == syms.enumSym) {
 878             formals = formals.tail.tail;
 879             nonInferred = nonInferred.tail.tail;
 880         }
 881         List<JCExpression> args = argtrees;
 882         if (args != null) {
 883             //this is null when type-checking a method reference
 884             while (formals.head != last) {
 885                 JCTree arg = args.head;
 886                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
 887                 assertConvertible(arg, arg.type, formals.head, warn);
 888                 args = args.tail;
 889                 formals = formals.tail;
 890                 nonInferred = nonInferred.tail;
 891             }
 892             if (useVarargs) {
 893                 Type varArg = types.elemtype(last);
 894                 while (args.tail != null) {
 895                     JCTree arg = args.head;
 896                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
 897                     assertConvertible(arg, arg.type, varArg, warn);
 898                     args = args.tail;
 899                 }
 900             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS &&
 901                     allowVarargs) {
 902                 // non-varargs call to varargs method
 903                 Type varParam = owntype.getParameterTypes().last();
 904                 Type lastArg = argtypes.last();
 905                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
 906                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
 907                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
 908                                 types.elemtype(varParam), varParam);
 909             }
 910         }
 911         if (useVarargs) {
 912             Type argtype = owntype.getParameterTypes().last();
 913             if (!types.isReifiable(argtype) &&
 914                 (!allowSimplifiedVarargs ||
 915                  sym.attribute(syms.trustMeType.tsym) == null ||
 916                  !isTrustMeAllowedOnMethod(sym))) {
 917                 warnUnchecked(env.tree.pos(),
 918                                   "unchecked.generic.array.creation",
 919                                   argtype);
 920             }
 921             if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
 922                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
 923             }
 924          }
 925          PolyKind pkind = (sym.type.hasTag(FORALL) &&
 926                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
 927                  PolyKind.POLY : PolyKind.STANDALONE;
 928          TreeInfo.setPolyKind(env.tree, pkind);
 929          return owntype;
 930     }
 931     //where
 932     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
 933         if (types.isConvertible(actual, formal, warn))
 934             return;
 935 
 936         if (formal.isCompound()
 937             && types.isSubtype(actual, types.supertype(formal))
 938             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
 939             return;
 940     }
 941 
 942     /**
 943      * Check that type 't' is a valid instantiation of a generic class
 944      * (see JLS 4.5)
 945      *
 946      * @param t class type to be checked
 947      * @return true if 't' is well-formed
 948      */
 949     public boolean checkValidGenericType(Type t) {
 950         return firstIncompatibleTypeArg(t) == null;
 951     }
 952     //WHERE
 953         private Type firstIncompatibleTypeArg(Type type) {
 954             List<Type> formals = type.tsym.type.allparams();
 955             List<Type> actuals = type.allparams();
 956             List<Type> args = type.getTypeArguments();
 957             List<Type> forms = type.tsym.type.getTypeArguments();
 958             ListBuffer<Type> bounds_buf = new ListBuffer<>();
 959 
 960             // For matching pairs of actual argument types `a' and
 961             // formal type parameters with declared bound `b' ...
 962             while (args.nonEmpty() && forms.nonEmpty()) {
 963                 // exact type arguments needs to know their
 964                 // bounds (for upper and lower bound
 965                 // calculations).  So we create new bounds where
 966                 // type-parameters are replaced with actuals argument types.
 967                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
 968                 args = args.tail;
 969                 forms = forms.tail;
 970             }
 971 
 972             args = type.getTypeArguments();
 973             List<Type> tvars_cap = types.substBounds(formals,
 974                                       formals,
 975                                       types.capture(type).allparams());
 976             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
 977                 // Let the actual arguments know their bound
 978                 args.head.withTypeVar((TypeVar)tvars_cap.head);
 979                 args = args.tail;
 980                 tvars_cap = tvars_cap.tail;
 981             }
 982 
 983             args = type.getTypeArguments();
 984             List<Type> bounds = bounds_buf.toList();
 985 
 986             while (args.nonEmpty() && bounds.nonEmpty()) {
 987                 Type actual = args.head;
 988                 if (!isTypeArgErroneous(actual) &&
 989                         !bounds.head.isErroneous() &&
 990                         !checkExtends(actual, bounds.head)) {
 991                     return args.head;
 992                 }
 993                 args = args.tail;
 994                 bounds = bounds.tail;
 995             }
 996 
 997             args = type.getTypeArguments();
 998             bounds = bounds_buf.toList();
 999 
1000             for (Type arg : types.capture(type).getTypeArguments()) {
1001                 if (arg.hasTag(TYPEVAR) &&
1002                         arg.getUpperBound().isErroneous() &&
1003                         !bounds.head.isErroneous() &&
1004                         !isTypeArgErroneous(args.head)) {
1005                     return args.head;
1006                 }
1007                 bounds = bounds.tail;
1008                 args = args.tail;
1009             }
1010 
1011             return null;
1012         }
1013         //where
1014         boolean isTypeArgErroneous(Type t) {
1015             return isTypeArgErroneous.visit(t);
1016         }
1017 
1018         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1019             public Boolean visitType(Type t, Void s) {
1020                 return t.isErroneous();
1021             }
1022             @Override
1023             public Boolean visitTypeVar(TypeVar t, Void s) {
1024                 return visit(t.getUpperBound());
1025             }
1026             @Override
1027             public Boolean visitCapturedType(CapturedType t, Void s) {
1028                 return visit(t.getUpperBound()) ||
1029                         visit(t.getLowerBound());
1030             }
1031             @Override
1032             public Boolean visitWildcardType(WildcardType t, Void s) {
1033                 return visit(t.type);
1034             }
1035         };
1036 
1037     /** Check that given modifiers are legal for given symbol and
1038      *  return modifiers together with any implicit modifiers for that symbol.
1039      *  Warning: we can't use flags() here since this method
1040      *  is called during class enter, when flags() would cause a premature
1041      *  completion.
1042      *  @param pos           Position to be used for error reporting.
1043      *  @param flags         The set of modifiers given in a definition.
1044      *  @param sym           The defined symbol.
1045      */
1046     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1047         long mask;
1048         long implicit = 0;
1049 
1050         switch (sym.kind) {
1051         case VAR:
1052             if (TreeInfo.isReceiverParam(tree))
1053                 mask = ReceiverParamFlags;
1054             else if (sym.owner.kind != TYP)
1055                 mask = LocalVarFlags;
1056             else if ((sym.owner.flags_field & INTERFACE) != 0)
1057                 mask = implicit = InterfaceVarFlags;
1058             else
1059                 mask = VarFlags;
1060             break;
1061         case MTH:
1062             if (sym.name == names.init) {
1063                 if ((sym.owner.flags_field & ENUM) != 0) {
1064                     // enum constructors cannot be declared public or
1065                     // protected and must be implicitly or explicitly
1066                     // private
1067                     implicit = PRIVATE;
1068                     mask = PRIVATE;
1069                 } else
1070                     mask = ConstructorFlags;
1071             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1072                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1073                     mask = AnnotationTypeElementMask;
1074                     implicit = PUBLIC | ABSTRACT;
1075                 } else if ((flags & (DEFAULT | STATIC)) != 0) {
1076                     mask = InterfaceMethodMask;
1077                     implicit = PUBLIC;
1078                     if ((flags & DEFAULT) != 0) {
1079                         implicit |= ABSTRACT;
1080                     }
1081                 } else {
1082                     mask = implicit = InterfaceMethodFlags;
1083                 }
1084             } else {
1085                 mask = MethodFlags;
1086             }
1087             // Imply STRICTFP if owner has STRICTFP set.
1088             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1089                 ((flags) & Flags.DEFAULT) != 0)
1090                 implicit |= sym.owner.flags_field & STRICTFP;
1091             break;
1092         case TYP:
1093             if (sym.isLocal()) {
1094                 mask = LocalClassFlags;
1095                 if (sym.name.isEmpty()) { // Anonymous class
1096                     // JLS: Anonymous classes are final.
1097                     implicit |= FINAL;
1098                 }
1099                 if ((sym.owner.flags_field & STATIC) == 0 &&
1100                     (flags & ENUM) != 0)
1101                     log.error(pos, "enums.must.be.static");
1102             } else if (sym.owner.kind == TYP) {
1103                 mask = MemberClassFlags;
1104                 if (sym.owner.owner.kind == PCK ||
1105                     (sym.owner.flags_field & STATIC) != 0)
1106                     mask |= STATIC;
1107                 else if ((flags & ENUM) != 0)
1108                     log.error(pos, "enums.must.be.static");
1109                 // Nested interfaces and enums are always STATIC (Spec ???)
1110                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1111             } else {
1112                 mask = ClassFlags;
1113             }
1114             // Interfaces are always ABSTRACT
1115             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1116 
1117             if ((flags & ENUM) != 0) {
1118                 // enums can't be declared abstract or final
1119                 mask &= ~(ABSTRACT | FINAL);
1120                 implicit |= implicitEnumFinalFlag(tree);
1121             }
1122             // Imply STRICTFP if owner has STRICTFP set.
1123             implicit |= sym.owner.flags_field & STRICTFP;
1124             break;
1125         default:
1126             throw new AssertionError();
1127         }
1128         long illegal = flags & ExtendedStandardFlags & ~mask;
1129         if (illegal != 0) {
1130             if ((illegal & INTERFACE) != 0) {
1131                 log.error(pos, "intf.not.allowed.here");
1132                 mask |= INTERFACE;
1133             }
1134             else {
1135                 log.error(pos,
1136                           "mod.not.allowed.here", asFlagSet(illegal));
1137             }
1138         }
1139         else if ((sym.kind == TYP ||
1140                   // ISSUE: Disallowing abstract&private is no longer appropriate
1141                   // in the presence of inner classes. Should it be deleted here?
1142                   checkDisjoint(pos, flags,
1143                                 ABSTRACT,
1144                                 PRIVATE | STATIC | DEFAULT))
1145                  &&
1146                  checkDisjoint(pos, flags,
1147                                 STATIC,
1148                                 DEFAULT)
1149                  &&
1150                  checkDisjoint(pos, flags,
1151                                ABSTRACT | INTERFACE,
1152                                FINAL | NATIVE | SYNCHRONIZED)
1153                  &&
1154                  checkDisjoint(pos, flags,
1155                                PUBLIC,
1156                                PRIVATE | PROTECTED)
1157                  &&
1158                  checkDisjoint(pos, flags,
1159                                PRIVATE,
1160                                PUBLIC | PROTECTED)
1161                  &&
1162                  checkDisjoint(pos, flags,
1163                                FINAL,
1164                                VOLATILE)
1165                  &&
1166                  (sym.kind == TYP ||
1167                   checkDisjoint(pos, flags,
1168                                 ABSTRACT | NATIVE,
1169                                 STRICTFP))) {
1170             // skip
1171         }
1172         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1173     }
1174 
1175 
1176     /** Determine if this enum should be implicitly final.
1177      *
1178      *  If the enum has no specialized enum contants, it is final.
1179      *
1180      *  If the enum does have specialized enum contants, it is
1181      *  <i>not</i> final.
1182      */
1183     private long implicitEnumFinalFlag(JCTree tree) {
1184         if (!tree.hasTag(CLASSDEF)) return 0;
1185         class SpecialTreeVisitor extends JCTree.Visitor {
1186             boolean specialized;
1187             SpecialTreeVisitor() {
1188                 this.specialized = false;
1189             }
1190 
1191             @Override
1192             public void visitTree(JCTree tree) { /* no-op */ }
1193 
1194             @Override
1195             public void visitVarDef(JCVariableDecl tree) {
1196                 if ((tree.mods.flags & ENUM) != 0) {
1197                     if (tree.init instanceof JCNewClass &&
1198                         ((JCNewClass) tree.init).def != null) {
1199                         specialized = true;
1200                     }
1201                 }
1202             }
1203         }
1204 
1205         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1206         JCClassDecl cdef = (JCClassDecl) tree;
1207         for (JCTree defs: cdef.defs) {
1208             defs.accept(sts);
1209             if (sts.specialized) return 0;
1210         }
1211         return FINAL;
1212     }
1213 
1214 /* *************************************************************************
1215  * Type Validation
1216  **************************************************************************/
1217 
1218     /** Validate a type expression. That is,
1219      *  check that all type arguments of a parametric type are within
1220      *  their bounds. This must be done in a second phase after type attribution
1221      *  since a class might have a subclass as type parameter bound. E.g:
1222      *
1223      *  <pre>{@code
1224      *  class B<A extends C> { ... }
1225      *  class C extends B<C> { ... }
1226      *  }</pre>
1227      *
1228      *  and we can't make sure that the bound is already attributed because
1229      *  of possible cycles.
1230      *
1231      * Visitor method: Validate a type expression, if it is not null, catching
1232      *  and reporting any completion failures.
1233      */
1234     void validate(JCTree tree, Env<AttrContext> env) {
1235         validate(tree, env, true);
1236     }
1237     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1238         new Validator(env).validateTree(tree, checkRaw, true);
1239     }
1240 
1241     /** Visitor method: Validate a list of type expressions.
1242      */
1243     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1244         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1245             validate(l.head, env);
1246     }
1247 
1248     /** A visitor class for type validation.
1249      */
1250     class Validator extends JCTree.Visitor {
1251 
1252         boolean checkRaw;
1253         boolean isOuter;
1254         Env<AttrContext> env;
1255 
1256         Validator(Env<AttrContext> env) {
1257             this.env = env;
1258         }
1259 
1260         @Override
1261         public void visitTypeArray(JCArrayTypeTree tree) {
1262             validateTree(tree.elemtype, checkRaw, isOuter);
1263         }
1264 
1265         @Override
1266         public void visitTypeApply(JCTypeApply tree) {
1267             if (tree.type.hasTag(CLASS)) {
1268                 List<JCExpression> args = tree.arguments;
1269                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1270 
1271                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1272                 if (incompatibleArg != null) {
1273                     for (JCTree arg : tree.arguments) {
1274                         if (arg.type == incompatibleArg) {
1275                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1276                         }
1277                         forms = forms.tail;
1278                      }
1279                  }
1280 
1281                 forms = tree.type.tsym.type.getTypeArguments();
1282 
1283                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1284 
1285                 // For matching pairs of actual argument types `a' and
1286                 // formal type parameters with declared bound `b' ...
1287                 while (args.nonEmpty() && forms.nonEmpty()) {
1288                     validateTree(args.head,
1289                             !(isOuter && is_java_lang_Class),
1290                             false);
1291                     args = args.tail;
1292                     forms = forms.tail;
1293                 }
1294 
1295                 // Check that this type is either fully parameterized, or
1296                 // not parameterized at all.
1297                 if (tree.type.getEnclosingType().isRaw())
1298                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1299                 if (tree.clazz.hasTag(SELECT))
1300                     visitSelectInternal((JCFieldAccess)tree.clazz);
1301             }
1302         }
1303 
1304         @Override
1305         public void visitTypeParameter(JCTypeParameter tree) {
1306             validateTrees(tree.bounds, true, isOuter);
1307             checkClassBounds(tree.pos(), tree.type);
1308         }
1309 
1310         @Override
1311         public void visitWildcard(JCWildcard tree) {
1312             if (tree.inner != null)
1313                 validateTree(tree.inner, true, isOuter);
1314         }
1315 
1316         @Override
1317         public void visitSelect(JCFieldAccess tree) {
1318             if (tree.type.hasTag(CLASS)) {
1319                 visitSelectInternal(tree);
1320 
1321                 // Check that this type is either fully parameterized, or
1322                 // not parameterized at all.
1323                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1324                     log.error(tree.pos(), "improperly.formed.type.param.missing");
1325             }
1326         }
1327 
1328         public void visitSelectInternal(JCFieldAccess tree) {
1329             if (tree.type.tsym.isStatic() &&
1330                 tree.selected.type.isParameterized()) {
1331                 // The enclosing type is not a class, so we are
1332                 // looking at a static member type.  However, the
1333                 // qualifying expression is parameterized.
1334                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
1335             } else {
1336                 // otherwise validate the rest of the expression
1337                 tree.selected.accept(this);
1338             }
1339         }
1340 
1341         @Override
1342         public void visitAnnotatedType(JCAnnotatedType tree) {
1343             tree.underlyingType.accept(this);
1344         }
1345 
1346         @Override
1347         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1348             if (that.type.hasTag(TypeTag.VOID)) {
1349                 log.error(that.pos(), "void.not.allowed.here");
1350             }
1351             super.visitTypeIdent(that);
1352         }
1353 
1354         /** Default visitor method: do nothing.
1355          */
1356         @Override
1357         public void visitTree(JCTree tree) {
1358         }
1359 
1360         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1361             if (tree != null) {
1362                 boolean prevCheckRaw = this.checkRaw;
1363                 this.checkRaw = checkRaw;
1364                 this.isOuter = isOuter;
1365 
1366                 try {
1367                     tree.accept(this);
1368                     if (checkRaw)
1369                         checkRaw(tree, env);
1370                 } catch (CompletionFailure ex) {
1371                     completionError(tree.pos(), ex);
1372                 } finally {
1373                     this.checkRaw = prevCheckRaw;
1374                 }
1375             }
1376         }
1377 
1378         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1379             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1380                 validateTree(l.head, checkRaw, isOuter);
1381         }
1382     }
1383 
1384     void checkRaw(JCTree tree, Env<AttrContext> env) {
1385         if (lint.isEnabled(LintCategory.RAW) &&
1386             tree.type.hasTag(CLASS) &&
1387             !TreeInfo.isDiamond(tree) &&
1388             !withinAnonConstr(env) &&
1389             tree.type.isRaw()) {
1390             log.warning(LintCategory.RAW,
1391                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1392         }
1393     }
1394     //where
1395         private boolean withinAnonConstr(Env<AttrContext> env) {
1396             return env.enclClass.name.isEmpty() &&
1397                     env.enclMethod != null && env.enclMethod.name == names.init;
1398         }
1399 
1400 /* *************************************************************************
1401  * Exception checking
1402  **************************************************************************/
1403 
1404     /* The following methods treat classes as sets that contain
1405      * the class itself and all their subclasses
1406      */
1407 
1408     /** Is given type a subtype of some of the types in given list?
1409      */
1410     boolean subset(Type t, List<Type> ts) {
1411         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1412             if (types.isSubtype(t, l.head)) return true;
1413         return false;
1414     }
1415 
1416     /** Is given type a subtype or supertype of
1417      *  some of the types in given list?
1418      */
1419     boolean intersects(Type t, List<Type> ts) {
1420         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1421             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1422         return false;
1423     }
1424 
1425     /** Add type set to given type list, unless it is a subclass of some class
1426      *  in the list.
1427      */
1428     List<Type> incl(Type t, List<Type> ts) {
1429         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1430     }
1431 
1432     /** Remove type set from type set list.
1433      */
1434     List<Type> excl(Type t, List<Type> ts) {
1435         if (ts.isEmpty()) {
1436             return ts;
1437         } else {
1438             List<Type> ts1 = excl(t, ts.tail);
1439             if (types.isSubtype(ts.head, t)) return ts1;
1440             else if (ts1 == ts.tail) return ts;
1441             else return ts1.prepend(ts.head);
1442         }
1443     }
1444 
1445     /** Form the union of two type set lists.
1446      */
1447     List<Type> union(List<Type> ts1, List<Type> ts2) {
1448         List<Type> ts = ts1;
1449         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1450             ts = incl(l.head, ts);
1451         return ts;
1452     }
1453 
1454     /** Form the difference of two type lists.
1455      */
1456     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1457         List<Type> ts = ts1;
1458         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1459             ts = excl(l.head, ts);
1460         return ts;
1461     }
1462 
1463     /** Form the intersection of two type lists.
1464      */
1465     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1466         List<Type> ts = List.nil();
1467         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1468             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1469         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1470             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1471         return ts;
1472     }
1473 
1474     /** Is exc an exception symbol that need not be declared?
1475      */
1476     boolean isUnchecked(ClassSymbol exc) {
1477         return
1478             exc.kind == ERR ||
1479             exc.isSubClass(syms.errorType.tsym, types) ||
1480             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1481     }
1482 
1483     /** Is exc an exception type that need not be declared?
1484      */
1485     boolean isUnchecked(Type exc) {
1486         return
1487             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1488             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1489             exc.hasTag(BOT);
1490     }
1491 
1492     /** Same, but handling completion failures.
1493      */
1494     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1495         try {
1496             return isUnchecked(exc);
1497         } catch (CompletionFailure ex) {
1498             completionError(pos, ex);
1499             return true;
1500         }
1501     }
1502 
1503     /** Is exc handled by given exception list?
1504      */
1505     boolean isHandled(Type exc, List<Type> handled) {
1506         return isUnchecked(exc) || subset(exc, handled);
1507     }
1508 
1509     /** Return all exceptions in thrown list that are not in handled list.
1510      *  @param thrown     The list of thrown exceptions.
1511      *  @param handled    The list of handled exceptions.
1512      */
1513     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1514         List<Type> unhandled = List.nil();
1515         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1516             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1517         return unhandled;
1518     }
1519 
1520 /* *************************************************************************
1521  * Overriding/Implementation checking
1522  **************************************************************************/
1523 
1524     /** The level of access protection given by a flag set,
1525      *  where PRIVATE is highest and PUBLIC is lowest.
1526      */
1527     static int protection(long flags) {
1528         switch ((short)(flags & AccessFlags)) {
1529         case PRIVATE: return 3;
1530         case PROTECTED: return 1;
1531         default:
1532         case PUBLIC: return 0;
1533         case 0: return 2;
1534         }
1535     }
1536 
1537     /** A customized "cannot override" error message.
1538      *  @param m      The overriding method.
1539      *  @param other  The overridden method.
1540      *  @return       An internationalized string.
1541      */
1542     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1543         String key;
1544         if ((other.owner.flags() & INTERFACE) == 0)
1545             key = "cant.override";
1546         else if ((m.owner.flags() & INTERFACE) == 0)
1547             key = "cant.implement";
1548         else
1549             key = "clashes.with";
1550         return diags.fragment(key, m, m.location(), other, other.location());
1551     }
1552 
1553     /** A customized "override" warning message.
1554      *  @param m      The overriding method.
1555      *  @param other  The overridden method.
1556      *  @return       An internationalized string.
1557      */
1558     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1559         String key;
1560         if ((other.owner.flags() & INTERFACE) == 0)
1561             key = "unchecked.override";
1562         else if ((m.owner.flags() & INTERFACE) == 0)
1563             key = "unchecked.implement";
1564         else
1565             key = "unchecked.clash.with";
1566         return diags.fragment(key, m, m.location(), other, other.location());
1567     }
1568 
1569     /** A customized "override" warning message.
1570      *  @param m      The overriding method.
1571      *  @param other  The overridden method.
1572      *  @return       An internationalized string.
1573      */
1574     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1575         String key;
1576         if ((other.owner.flags() & INTERFACE) == 0)
1577             key = "varargs.override";
1578         else  if ((m.owner.flags() & INTERFACE) == 0)
1579             key = "varargs.implement";
1580         else
1581             key = "varargs.clash.with";
1582         return diags.fragment(key, m, m.location(), other, other.location());
1583     }
1584 
1585     /** Check that this method conforms with overridden method 'other'.
1586      *  where `origin' is the class where checking started.
1587      *  Complications:
1588      *  (1) Do not check overriding of synthetic methods
1589      *      (reason: they might be final).
1590      *      todo: check whether this is still necessary.
1591      *  (2) Admit the case where an interface proxy throws fewer exceptions
1592      *      than the method it implements. Augment the proxy methods with the
1593      *      undeclared exceptions in this case.
1594      *  (3) When generics are enabled, admit the case where an interface proxy
1595      *      has a result type
1596      *      extended by the result type of the method it implements.
1597      *      Change the proxies result type to the smaller type in this case.
1598      *
1599      *  @param tree         The tree from which positions
1600      *                      are extracted for errors.
1601      *  @param m            The overriding method.
1602      *  @param other        The overridden method.
1603      *  @param origin       The class of which the overriding method
1604      *                      is a member.
1605      */
1606     void checkOverride(JCTree tree,
1607                        MethodSymbol m,
1608                        MethodSymbol other,
1609                        ClassSymbol origin) {
1610         // Don't check overriding of synthetic methods or by bridge methods.
1611         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1612             return;
1613         }
1614 
1615         // Error if static method overrides instance method (JLS 8.4.6.2).
1616         if ((m.flags() & STATIC) != 0 &&
1617                    (other.flags() & STATIC) == 0) {
1618             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1619                       cannotOverride(m, other));
1620             m.flags_field |= BAD_OVERRIDE;
1621             return;
1622         }
1623 
1624         // Error if instance method overrides static or final
1625         // method (JLS 8.4.6.1).
1626         if ((other.flags() & FINAL) != 0 ||
1627                  (m.flags() & STATIC) == 0 &&
1628                  (other.flags() & STATIC) != 0) {
1629             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1630                       cannotOverride(m, other),
1631                       asFlagSet(other.flags() & (FINAL | STATIC)));
1632             m.flags_field |= BAD_OVERRIDE;
1633             return;
1634         }
1635 
1636         if ((m.owner.flags() & ANNOTATION) != 0) {
1637             // handled in validateAnnotationMethod
1638             return;
1639         }
1640 
1641         // Error if overriding method has weaker access (JLS 8.4.6.3).
1642         if ((origin.flags() & INTERFACE) == 0 &&
1643                  protection(m.flags()) > protection(other.flags())) {
1644             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1645                       cannotOverride(m, other),
1646                       (other.flags() & AccessFlags) == 0 ?
1647                           "package" :
1648                           asFlagSet(other.flags() & AccessFlags));
1649             m.flags_field |= BAD_OVERRIDE;
1650             return;
1651         }
1652 
1653         Type mt = types.memberType(origin.type, m);
1654         Type ot = types.memberType(origin.type, other);
1655         // Error if overriding result type is different
1656         // (or, in the case of generics mode, not a subtype) of
1657         // overridden result type. We have to rename any type parameters
1658         // before comparing types.
1659         List<Type> mtvars = mt.getTypeArguments();
1660         List<Type> otvars = ot.getTypeArguments();
1661         Type mtres = mt.getReturnType();
1662         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1663 
1664         overrideWarner.clear();
1665         boolean resultTypesOK =
1666             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1667         if (!resultTypesOK) {
1668             if (!allowCovariantReturns &&
1669                 m.owner != origin &&
1670                 m.owner.isSubClass(other.owner, types)) {
1671                 // allow limited interoperability with covariant returns
1672             } else {
1673                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1674                           "override.incompatible.ret",
1675                           cannotOverride(m, other),
1676                           mtres, otres);
1677                 m.flags_field |= BAD_OVERRIDE;
1678                 return;
1679             }
1680         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1681             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1682                     "override.unchecked.ret",
1683                     uncheckedOverrides(m, other),
1684                     mtres, otres);
1685         }
1686 
1687         // Error if overriding method throws an exception not reported
1688         // by overridden method.
1689         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1690         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1691         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1692         if (unhandledErased.nonEmpty()) {
1693             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1694                       "override.meth.doesnt.throw",
1695                       cannotOverride(m, other),
1696                       unhandledUnerased.head);
1697             m.flags_field |= BAD_OVERRIDE;
1698             return;
1699         }
1700         else if (unhandledUnerased.nonEmpty()) {
1701             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1702                           "override.unchecked.thrown",
1703                          cannotOverride(m, other),
1704                          unhandledUnerased.head);
1705             return;
1706         }
1707 
1708         // Optional warning if varargs don't agree
1709         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1710             && lint.isEnabled(LintCategory.OVERRIDES)) {
1711             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1712                         ((m.flags() & Flags.VARARGS) != 0)
1713                         ? "override.varargs.missing"
1714                         : "override.varargs.extra",
1715                         varargsOverrides(m, other));
1716         }
1717 
1718         // Warn if instance method overrides bridge method (compiler spec ??)
1719         if ((other.flags() & BRIDGE) != 0) {
1720             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1721                         uncheckedOverrides(m, other));
1722         }
1723 
1724         // Warn if a deprecated method overridden by a non-deprecated one.
1725         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1726             Lint prevLint = setLint(lint.augment(m));
1727             try {
1728                 checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1729             } finally {
1730                 setLint(prevLint);
1731             }
1732         }
1733     }
1734     // where
1735         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1736             // If the method, m, is defined in an interface, then ignore the issue if the method
1737             // is only inherited via a supertype and also implemented in the supertype,
1738             // because in that case, we will rediscover the issue when examining the method
1739             // in the supertype.
1740             // If the method, m, is not defined in an interface, then the only time we need to
1741             // address the issue is when the method is the supertype implemementation: any other
1742             // case, we will have dealt with when examining the supertype classes
1743             ClassSymbol mc = m.enclClass();
1744             Type st = types.supertype(origin.type);
1745             if (!st.hasTag(CLASS))
1746                 return true;
1747             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1748 
1749             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1750                 List<Type> intfs = types.interfaces(origin.type);
1751                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1752             }
1753             else
1754                 return (stimpl != m);
1755         }
1756 
1757 
1758     // used to check if there were any unchecked conversions
1759     Warner overrideWarner = new Warner();
1760 
1761     /** Check that a class does not inherit two concrete methods
1762      *  with the same signature.
1763      *  @param pos          Position to be used for error reporting.
1764      *  @param site         The class type to be checked.
1765      */
1766     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1767         Type sup = types.supertype(site);
1768         if (!sup.hasTag(CLASS)) return;
1769 
1770         for (Type t1 = sup;
1771              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1772              t1 = types.supertype(t1)) {
1773             for (Scope.Entry e1 = t1.tsym.members().elems;
1774                  e1 != null;
1775                  e1 = e1.sibling) {
1776                 Symbol s1 = e1.sym;
1777                 if (s1.kind != MTH ||
1778                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1779                     !s1.isInheritedIn(site.tsym, types) ||
1780                     ((MethodSymbol)s1).implementation(site.tsym,
1781                                                       types,
1782                                                       true) != s1)
1783                     continue;
1784                 Type st1 = types.memberType(t1, s1);
1785                 int s1ArgsLength = st1.getParameterTypes().length();
1786                 if (st1 == s1.type) continue;
1787 
1788                 for (Type t2 = sup;
1789                      t2.hasTag(CLASS);
1790                      t2 = types.supertype(t2)) {
1791                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
1792                          e2.scope != null;
1793                          e2 = e2.next()) {
1794                         Symbol s2 = e2.sym;
1795                         if (s2 == s1 ||
1796                             s2.kind != MTH ||
1797                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1798                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1799                             !s2.isInheritedIn(site.tsym, types) ||
1800                             ((MethodSymbol)s2).implementation(site.tsym,
1801                                                               types,
1802                                                               true) != s2)
1803                             continue;
1804                         Type st2 = types.memberType(t2, s2);
1805                         if (types.overrideEquivalent(st1, st2))
1806                             log.error(pos, "concrete.inheritance.conflict",
1807                                       s1, t1, s2, t2, sup);
1808                     }
1809                 }
1810             }
1811         }
1812     }
1813 
1814     /** Check that classes (or interfaces) do not each define an abstract
1815      *  method with same name and arguments but incompatible return types.
1816      *  @param pos          Position to be used for error reporting.
1817      *  @param t1           The first argument type.
1818      *  @param t2           The second argument type.
1819      */
1820     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1821                                             Type t1,
1822                                             Type t2) {
1823         return checkCompatibleAbstracts(pos, t1, t2,
1824                                         types.makeCompoundType(t1, t2));
1825     }
1826 
1827     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1828                                             Type t1,
1829                                             Type t2,
1830                                             Type site) {
1831         if ((site.tsym.flags() & COMPOUND) != 0) {
1832             // special case for intersections: need to eliminate wildcards in supertypes
1833             t1 = types.capture(t1);
1834             t2 = types.capture(t2);
1835         }
1836         return firstIncompatibility(pos, t1, t2, site) == null;
1837     }
1838 
1839     /** Return the first method which is defined with same args
1840      *  but different return types in two given interfaces, or null if none
1841      *  exists.
1842      *  @param t1     The first type.
1843      *  @param t2     The second type.
1844      *  @param site   The most derived type.
1845      *  @returns symbol from t2 that conflicts with one in t1.
1846      */
1847     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1848         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1849         closure(t1, interfaces1);
1850         Map<TypeSymbol,Type> interfaces2;
1851         if (t1 == t2)
1852             interfaces2 = interfaces1;
1853         else
1854             closure(t2, interfaces1, interfaces2 = new HashMap<>());
1855 
1856         for (Type t3 : interfaces1.values()) {
1857             for (Type t4 : interfaces2.values()) {
1858                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1859                 if (s != null) return s;
1860             }
1861         }
1862         return null;
1863     }
1864 
1865     /** Compute all the supertypes of t, indexed by type symbol. */
1866     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1867         if (!t.hasTag(CLASS)) return;
1868         if (typeMap.put(t.tsym, t) == null) {
1869             closure(types.supertype(t), typeMap);
1870             for (Type i : types.interfaces(t))
1871                 closure(i, typeMap);
1872         }
1873     }
1874 
1875     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1876     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1877         if (!t.hasTag(CLASS)) return;
1878         if (typesSkip.get(t.tsym) != null) return;
1879         if (typeMap.put(t.tsym, t) == null) {
1880             closure(types.supertype(t), typesSkip, typeMap);
1881             for (Type i : types.interfaces(t))
1882                 closure(i, typesSkip, typeMap);
1883         }
1884     }
1885 
1886     /** Return the first method in t2 that conflicts with a method from t1. */
1887     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1888         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
1889             Symbol s1 = e1.sym;
1890             Type st1 = null;
1891             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1892                     (s1.flags() & SYNTHETIC) != 0) continue;
1893             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1894             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1895             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
1896                 Symbol s2 = e2.sym;
1897                 if (s1 == s2) continue;
1898                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1899                         (s2.flags() & SYNTHETIC) != 0) continue;
1900                 if (st1 == null) st1 = types.memberType(t1, s1);
1901                 Type st2 = types.memberType(t2, s2);
1902                 if (types.overrideEquivalent(st1, st2)) {
1903                     List<Type> tvars1 = st1.getTypeArguments();
1904                     List<Type> tvars2 = st2.getTypeArguments();
1905                     Type rt1 = st1.getReturnType();
1906                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1907                     boolean compat =
1908                         types.isSameType(rt1, rt2) ||
1909                         !rt1.isPrimitiveOrVoid() &&
1910                         !rt2.isPrimitiveOrVoid() &&
1911                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1912                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1913                          checkCommonOverriderIn(s1,s2,site);
1914                     if (!compat) {
1915                         log.error(pos, "types.incompatible.diff.ret",
1916                             t1, t2, s2.name +
1917                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1918                         return s2;
1919                     }
1920                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1921                         !checkCommonOverriderIn(s1, s2, site)) {
1922                     log.error(pos,
1923                             "name.clash.same.erasure.no.override",
1924                             s1, s1.location(),
1925                             s2, s2.location());
1926                     return s2;
1927                 }
1928             }
1929         }
1930         return null;
1931     }
1932     //WHERE
1933     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1934         Map<TypeSymbol,Type> supertypes = new HashMap<>();
1935         Type st1 = types.memberType(site, s1);
1936         Type st2 = types.memberType(site, s2);
1937         closure(site, supertypes);
1938         for (Type t : supertypes.values()) {
1939             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
1940                 Symbol s3 = e.sym;
1941                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1942                 Type st3 = types.memberType(site,s3);
1943                 if (types.overrideEquivalent(st3, st1) &&
1944                         types.overrideEquivalent(st3, st2) &&
1945                         types.returnTypeSubstitutable(st3, st1) &&
1946                         types.returnTypeSubstitutable(st3, st2)) {
1947                     return true;
1948                 }
1949             }
1950         }
1951         return false;
1952     }
1953 
1954     /** Check that a given method conforms with any method it overrides.
1955      *  @param tree         The tree from which positions are extracted
1956      *                      for errors.
1957      *  @param m            The overriding method.
1958      */
1959     void checkOverride(JCMethodDecl tree, MethodSymbol m) {
1960         ClassSymbol origin = (ClassSymbol)m.owner;
1961         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1962             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1963                 log.error(tree.pos(), "enum.no.finalize");
1964                 return;
1965             }
1966         for (Type t = origin.type; t.hasTag(CLASS);
1967              t = types.supertype(t)) {
1968             if (t != origin.type) {
1969                 checkOverride(tree, t, origin, m);
1970             }
1971             for (Type t2 : types.interfaces(t)) {
1972                 checkOverride(tree, t2, origin, m);
1973             }
1974         }
1975 
1976         if (m.attribute(syms.overrideType.tsym) != null && !isOverrider(m)) {
1977             DiagnosticPosition pos = tree.pos();
1978             for (JCAnnotation a : tree.getModifiers().annotations) {
1979                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
1980                     pos = a.pos();
1981                     break;
1982                 }
1983             }
1984             log.error(pos, "method.does.not.override.superclass");
1985         }
1986     }
1987 
1988     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
1989         TypeSymbol c = site.tsym;
1990         Scope.Entry e = c.members().lookup(m.name);
1991         while (e.scope != null) {
1992             if (m.overrides(e.sym, origin, types, false)) {
1993                 if ((e.sym.flags() & ABSTRACT) == 0) {
1994                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
1995                 }
1996             }
1997             e = e.next();
1998         }
1999     }
2000 
2001     private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2002         public boolean accepts(Symbol s) {
2003             return MethodSymbol.implementation_filter.accepts(s) &&
2004                     (s.flags() & BAD_OVERRIDE) == 0;
2005 
2006         }
2007     };
2008 
2009     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2010             ClassSymbol someClass) {
2011         /* At present, annotations cannot possibly have a method that is override
2012          * equivalent with Object.equals(Object) but in any case the condition is
2013          * fine for completeness.
2014          */
2015         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2016             someClass.isInterface() || someClass.isEnum() ||
2017             (someClass.flags() & ANNOTATION) != 0 ||
2018             (someClass.flags() & ABSTRACT) != 0) return;
2019         //anonymous inner classes implementing interfaces need especial treatment
2020         if (someClass.isAnonymous()) {
2021             List<Type> interfaces =  types.interfaces(someClass.type);
2022             if (interfaces != null && !interfaces.isEmpty() &&
2023                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2024         }
2025         checkClassOverrideEqualsAndHash(pos, someClass);
2026     }
2027 
2028     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2029             ClassSymbol someClass) {
2030         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2031             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2032                     .tsym.members().lookup(names.equals).sym;
2033             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2034                     .tsym.members().lookup(names.hashCode).sym;
2035             boolean overridesEquals = types.implementation(equalsAtObject,
2036                 someClass, false, equalsHasCodeFilter).owner == someClass;
2037             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2038                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2039 
2040             if (overridesEquals && !overridesHashCode) {
2041                 log.warning(LintCategory.OVERRIDES, pos,
2042                         "override.equals.but.not.hashcode", someClass);
2043             }
2044         }
2045     }
2046 
2047     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2048         ClashFilter cf = new ClashFilter(origin.type);
2049         return (cf.accepts(s1) &&
2050                 cf.accepts(s2) &&
2051                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2052     }
2053 
2054 
2055     /** Check that all abstract members of given class have definitions.
2056      *  @param pos          Position to be used for error reporting.
2057      *  @param c            The class.
2058      */
2059     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2060         try {
2061             MethodSymbol undef = firstUndef(c, c);
2062             if (undef != null) {
2063                 if ((c.flags() & ENUM) != 0 &&
2064                     types.supertype(c.type).tsym == syms.enumSym &&
2065                     (c.flags() & FINAL) == 0) {
2066                     // add the ABSTRACT flag to an enum
2067                     c.flags_field |= ABSTRACT;
2068                 } else {
2069                     MethodSymbol undef1 =
2070                         new MethodSymbol(undef.flags(), undef.name,
2071                                          types.memberType(c.type, undef), undef.owner);
2072                     log.error(pos, "does.not.override.abstract",
2073                               c, undef1, undef1.location());
2074                 }
2075             }
2076         } catch (CompletionFailure ex) {
2077             completionError(pos, ex);
2078         }
2079     }
2080 //where
2081         /** Return first abstract member of class `c' that is not defined
2082          *  in `impl', null if there is none.
2083          */
2084         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
2085             MethodSymbol undef = null;
2086             // Do not bother to search in classes that are not abstract,
2087             // since they cannot have abstract members.
2088             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
2089                 Scope s = c.members();
2090                 for (Scope.Entry e = s.elems;
2091                      undef == null && e != null;
2092                      e = e.sibling) {
2093                     if (e.sym.kind == MTH &&
2094                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
2095                         MethodSymbol absmeth = (MethodSymbol)e.sym;
2096                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
2097                         if (implmeth == null || implmeth == absmeth) {
2098                             //look for default implementations
2099                             if (allowDefaultMethods) {
2100                                 MethodSymbol prov = types.interfaceCandidates(impl.type, absmeth).head;
2101                                 if (prov != null && prov.overrides(absmeth, impl, types, true)) {
2102                                     implmeth = prov;
2103                                 }
2104                             }
2105                         }
2106                         if (implmeth == null || implmeth == absmeth) {
2107                             undef = absmeth;
2108                         }
2109                     }
2110                 }
2111                 if (undef == null) {
2112                     Type st = types.supertype(c.type);
2113                     if (st.hasTag(CLASS))
2114                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
2115                 }
2116                 for (List<Type> l = types.interfaces(c.type);
2117                      undef == null && l.nonEmpty();
2118                      l = l.tail) {
2119                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
2120                 }
2121             }
2122             return undef;
2123         }
2124 
2125     void checkNonCyclicDecl(JCClassDecl tree) {
2126         CycleChecker cc = new CycleChecker();
2127         cc.scan(tree);
2128         if (!cc.errorFound && !cc.partialCheck) {
2129             tree.sym.flags_field |= ACYCLIC;
2130         }
2131     }
2132 
2133     class CycleChecker extends TreeScanner {
2134 
2135         List<Symbol> seenClasses = List.nil();
2136         boolean errorFound = false;
2137         boolean partialCheck = false;
2138 
2139         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2140             if (sym != null && sym.kind == TYP) {
2141                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2142                 if (classEnv != null) {
2143                     DiagnosticSource prevSource = log.currentSource();
2144                     try {
2145                         log.useSource(classEnv.toplevel.sourcefile);
2146                         scan(classEnv.tree);
2147                     }
2148                     finally {
2149                         log.useSource(prevSource.getFile());
2150                     }
2151                 } else if (sym.kind == TYP) {
2152                     checkClass(pos, sym, List.<JCTree>nil());
2153                 }
2154             } else {
2155                 //not completed yet
2156                 partialCheck = true;
2157             }
2158         }
2159 
2160         @Override
2161         public void visitSelect(JCFieldAccess tree) {
2162             super.visitSelect(tree);
2163             checkSymbol(tree.pos(), tree.sym);
2164         }
2165 
2166         @Override
2167         public void visitIdent(JCIdent tree) {
2168             checkSymbol(tree.pos(), tree.sym);
2169         }
2170 
2171         @Override
2172         public void visitTypeApply(JCTypeApply tree) {
2173             scan(tree.clazz);
2174         }
2175 
2176         @Override
2177         public void visitTypeArray(JCArrayTypeTree tree) {
2178             scan(tree.elemtype);
2179         }
2180 
2181         @Override
2182         public void visitClassDef(JCClassDecl tree) {
2183             List<JCTree> supertypes = List.nil();
2184             if (tree.getExtendsClause() != null) {
2185                 supertypes = supertypes.prepend(tree.getExtendsClause());
2186             }
2187             if (tree.getImplementsClause() != null) {
2188                 for (JCTree intf : tree.getImplementsClause()) {
2189                     supertypes = supertypes.prepend(intf);
2190                 }
2191             }
2192             checkClass(tree.pos(), tree.sym, supertypes);
2193         }
2194 
2195         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2196             if ((c.flags_field & ACYCLIC) != 0)
2197                 return;
2198             if (seenClasses.contains(c)) {
2199                 errorFound = true;
2200                 noteCyclic(pos, (ClassSymbol)c);
2201             } else if (!c.type.isErroneous()) {
2202                 try {
2203                     seenClasses = seenClasses.prepend(c);
2204                     if (c.type.hasTag(CLASS)) {
2205                         if (supertypes.nonEmpty()) {
2206                             scan(supertypes);
2207                         }
2208                         else {
2209                             ClassType ct = (ClassType)c.type;
2210                             if (ct.supertype_field == null ||
2211                                     ct.interfaces_field == null) {
2212                                 //not completed yet
2213                                 partialCheck = true;
2214                                 return;
2215                             }
2216                             checkSymbol(pos, ct.supertype_field.tsym);
2217                             for (Type intf : ct.interfaces_field) {
2218                                 checkSymbol(pos, intf.tsym);
2219                             }
2220                         }
2221                         if (c.owner.kind == TYP) {
2222                             checkSymbol(pos, c.owner);
2223                         }
2224                     }
2225                 } finally {
2226                     seenClasses = seenClasses.tail;
2227                 }
2228             }
2229         }
2230     }
2231 
2232     /** Check for cyclic references. Issue an error if the
2233      *  symbol of the type referred to has a LOCKED flag set.
2234      *
2235      *  @param pos      Position to be used for error reporting.
2236      *  @param t        The type referred to.
2237      */
2238     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2239         checkNonCyclicInternal(pos, t);
2240     }
2241 
2242 
2243     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2244         checkNonCyclic1(pos, t, List.<TypeVar>nil());
2245     }
2246 
2247     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2248         final TypeVar tv;
2249         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2250             return;
2251         if (seen.contains(t)) {
2252             tv = (TypeVar)t;
2253             tv.bound = types.createErrorType(t);
2254             log.error(pos, "cyclic.inheritance", t);
2255         } else if (t.hasTag(TYPEVAR)) {
2256             tv = (TypeVar)t;
2257             seen = seen.prepend(tv);
2258             for (Type b : types.getBounds(tv))
2259                 checkNonCyclic1(pos, b, seen);
2260         }
2261     }
2262 
2263     /** Check for cyclic references. Issue an error if the
2264      *  symbol of the type referred to has a LOCKED flag set.
2265      *
2266      *  @param pos      Position to be used for error reporting.
2267      *  @param t        The type referred to.
2268      *  @returns        True if the check completed on all attributed classes
2269      */
2270     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2271         boolean complete = true; // was the check complete?
2272         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2273         Symbol c = t.tsym;
2274         if ((c.flags_field & ACYCLIC) != 0) return true;
2275 
2276         if ((c.flags_field & LOCKED) != 0) {
2277             noteCyclic(pos, (ClassSymbol)c);
2278         } else if (!c.type.isErroneous()) {
2279             try {
2280                 c.flags_field |= LOCKED;
2281                 if (c.type.hasTag(CLASS)) {
2282                     ClassType clazz = (ClassType)c.type;
2283                     if (clazz.interfaces_field != null)
2284                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2285                             complete &= checkNonCyclicInternal(pos, l.head);
2286                     if (clazz.supertype_field != null) {
2287                         Type st = clazz.supertype_field;
2288                         if (st != null && st.hasTag(CLASS))
2289                             complete &= checkNonCyclicInternal(pos, st);
2290                     }
2291                     if (c.owner.kind == TYP)
2292                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2293                 }
2294             } finally {
2295                 c.flags_field &= ~LOCKED;
2296             }
2297         }
2298         if (complete)
2299             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
2300         if (complete) c.flags_field |= ACYCLIC;
2301         return complete;
2302     }
2303 
2304     /** Note that we found an inheritance cycle. */
2305     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2306         log.error(pos, "cyclic.inheritance", c);
2307         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2308             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2309         Type st = types.supertype(c.type);
2310         if (st.hasTag(CLASS))
2311             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2312         c.type = types.createErrorType(c, c.type);
2313         c.flags_field |= ACYCLIC;
2314     }
2315 
2316     /** Check that all methods which implement some
2317      *  method conform to the method they implement.
2318      *  @param tree         The class definition whose members are checked.
2319      */
2320     void checkImplementations(JCClassDecl tree) {
2321         checkImplementations(tree, tree.sym, tree.sym);
2322     }
2323     //where
2324         /** Check that all methods which implement some
2325          *  method in `ic' conform to the method they implement.
2326          */
2327         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2328             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2329                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2330                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
2331                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
2332                         if (e.sym.kind == MTH &&
2333                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2334                             MethodSymbol absmeth = (MethodSymbol)e.sym;
2335                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2336                             if (implmeth != null && implmeth != absmeth &&
2337                                 (implmeth.owner.flags() & INTERFACE) ==
2338                                 (origin.flags() & INTERFACE)) {
2339                                 // don't check if implmeth is in a class, yet
2340                                 // origin is an interface. This case arises only
2341                                 // if implmeth is declared in Object. The reason is
2342                                 // that interfaces really don't inherit from
2343                                 // Object it's just that the compiler represents
2344                                 // things that way.
2345                                 checkOverride(tree, implmeth, absmeth, origin);
2346                             }
2347                         }
2348                     }
2349                 }
2350             }
2351         }
2352 
2353     /** Check that all abstract methods implemented by a class are
2354      *  mutually compatible.
2355      *  @param pos          Position to be used for error reporting.
2356      *  @param c            The class whose interfaces are checked.
2357      */
2358     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2359         List<Type> supertypes = types.interfaces(c);
2360         Type supertype = types.supertype(c);
2361         if (supertype.hasTag(CLASS) &&
2362             (supertype.tsym.flags() & ABSTRACT) != 0)
2363             supertypes = supertypes.prepend(supertype);
2364         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2365             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
2366                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2367                 return;
2368             for (List<Type> m = supertypes; m != l; m = m.tail)
2369                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2370                     return;
2371         }
2372         checkCompatibleConcretes(pos, c);
2373     }
2374 
2375     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2376         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2377             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
2378                 // VM allows methods and variables with differing types
2379                 if (sym.kind == e.sym.kind &&
2380                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
2381                     sym != e.sym &&
2382                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
2383                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
2384                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
2385                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
2386                     return;
2387                 }
2388             }
2389         }
2390     }
2391 
2392     /** Check that all non-override equivalent methods accessible from 'site'
2393      *  are mutually compatible (JLS 8.4.8/9.4.1).
2394      *
2395      *  @param pos  Position to be used for error reporting.
2396      *  @param site The class whose methods are checked.
2397      *  @param sym  The method symbol to be checked.
2398      */
2399     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2400          ClashFilter cf = new ClashFilter(site);
2401         //for each method m1 that is overridden (directly or indirectly)
2402         //by method 'sym' in 'site'...
2403 
2404         List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2405         boolean overridesAny = false;
2406         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
2407             if (!sym.overrides(m1, site.tsym, types, false)) {
2408                 if (m1 == sym) {
2409                     continue;
2410                 }
2411 
2412                 if (!overridesAny) {
2413                     potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2414                 }
2415                 continue;
2416             }
2417 
2418             if (m1 != sym) {
2419                 overridesAny = true;
2420                 potentiallyAmbiguousList = List.nil();
2421             }
2422 
2423             //...check each method m2 that is a member of 'site'
2424             for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
2425                 if (m2 == m1) continue;
2426                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2427                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2428                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2429                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2430                     sym.flags_field |= CLASH;
2431                     String key = m1 == sym ?
2432                             "name.clash.same.erasure.no.override" :
2433                             "name.clash.same.erasure.no.override.1";
2434                     log.error(pos,
2435                             key,
2436                             sym, sym.location(),
2437                             m2, m2.location(),
2438                             m1, m1.location());
2439                     return;
2440                 }
2441             }
2442         }
2443 
2444         if (!overridesAny) {
2445             for (MethodSymbol m: potentiallyAmbiguousList) {
2446                 checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2447             }
2448         }
2449     }
2450 
2451     /** Check that all static methods accessible from 'site' are
2452      *  mutually compatible (JLS 8.4.8).
2453      *
2454      *  @param pos  Position to be used for error reporting.
2455      *  @param site The class whose methods are checked.
2456      *  @param sym  The method symbol to be checked.
2457      */
2458     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2459         ClashFilter cf = new ClashFilter(site);
2460         //for each method m1 that is a member of 'site'...
2461         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
2462             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2463             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2464             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2465                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2466                     log.error(pos,
2467                             "name.clash.same.erasure.no.hide",
2468                             sym, sym.location(),
2469                             s, s.location());
2470                     return;
2471                 } else {
2472                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2473                 }
2474             }
2475          }
2476      }
2477 
2478      //where
2479      private class ClashFilter implements Filter<Symbol> {
2480 
2481          Type site;
2482 
2483          ClashFilter(Type site) {
2484              this.site = site;
2485          }
2486 
2487          boolean shouldSkip(Symbol s) {
2488              return (s.flags() & CLASH) != 0 &&
2489                 s.owner == site.tsym;
2490          }
2491 
2492          public boolean accepts(Symbol s) {
2493              return s.kind == MTH &&
2494                      (s.flags() & SYNTHETIC) == 0 &&
2495                      !shouldSkip(s) &&
2496                      s.isInheritedIn(site.tsym, types) &&
2497                      !s.isConstructor();
2498          }
2499      }
2500 
2501     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2502         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2503         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
2504             Assert.check(m.kind == MTH);
2505             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2506             if (prov.size() > 1) {
2507                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2508                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2509                 for (MethodSymbol provSym : prov) {
2510                     if ((provSym.flags() & DEFAULT) != 0) {
2511                         defaults = defaults.append(provSym);
2512                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2513                         abstracts = abstracts.append(provSym);
2514                     }
2515                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2516                         //strong semantics - issue an error if two sibling interfaces
2517                         //have two override-equivalent defaults - or if one is abstract
2518                         //and the other is default
2519                         String errKey;
2520                         Symbol s1 = defaults.first();
2521                         Symbol s2;
2522                         if (defaults.size() > 1) {
2523                             errKey = "types.incompatible.unrelated.defaults";
2524                             s2 = defaults.toList().tail.head;
2525                         } else {
2526                             errKey = "types.incompatible.abstract.default";
2527                             s2 = abstracts.first();
2528                         }
2529                         log.error(pos, errKey,
2530                                 Kinds.kindName(site.tsym), site,
2531                                 m.name, types.memberType(site, m).getParameterTypes(),
2532                                 s1.location(), s2.location());
2533                         break;
2534                     }
2535                 }
2536             }
2537         }
2538     }
2539 
2540     //where
2541      private class DefaultMethodClashFilter implements Filter<Symbol> {
2542 
2543          Type site;
2544 
2545          DefaultMethodClashFilter(Type site) {
2546              this.site = site;
2547          }
2548 
2549          public boolean accepts(Symbol s) {
2550              return s.kind == MTH &&
2551                      (s.flags() & DEFAULT) != 0 &&
2552                      s.isInheritedIn(site.tsym, types) &&
2553                      !s.isConstructor();
2554          }
2555      }
2556 
2557     /**
2558       * Report warnings for potentially ambiguous method declarations. Two declarations
2559       * are potentially ambiguous if they feature two unrelated functional interface
2560       * in same argument position (in which case, a call site passing an implicit
2561       * lambda would be ambiguous).
2562       */
2563     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2564             MethodSymbol msym1, MethodSymbol msym2) {
2565         if (msym1 != msym2 &&
2566                 allowDefaultMethods &&
2567                 lint.isEnabled(LintCategory.OVERLOADS) &&
2568                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2569                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2570             Type mt1 = types.memberType(site, msym1);
2571             Type mt2 = types.memberType(site, msym2);
2572             //if both generic methods, adjust type variables
2573             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2574                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2575                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2576             }
2577             //expand varargs methods if needed
2578             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2579             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2580             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2581             //if arities don't match, exit
2582             if (args1.length() != args2.length()) return;
2583             boolean potentiallyAmbiguous = false;
2584             while (args1.nonEmpty() && args2.nonEmpty()) {
2585                 Type s = args1.head;
2586                 Type t = args2.head;
2587                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2588                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2589                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2590                             types.findDescriptorType(s).getParameterTypes().length() ==
2591                             types.findDescriptorType(t).getParameterTypes().length()) {
2592                         potentiallyAmbiguous = true;
2593                     } else {
2594                         break;
2595                     }
2596                 }
2597                 args1 = args1.tail;
2598                 args2 = args2.tail;
2599             }
2600             if (potentiallyAmbiguous) {
2601                 //we found two incompatible functional interfaces with same arity
2602                 //this means a call site passing an implicit lambda would be ambigiuous
2603                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2604                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2605                 log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2606                             msym1, msym1.location(),
2607                             msym2, msym2.location());
2608                 return;
2609             }
2610         }
2611     }
2612 
2613     void checkElemAccessFromSerializableLambda(final JCTree tree) {
2614         if (warnOnAccessToSensitiveMembers) {
2615             Symbol sym = TreeInfo.symbol(tree);
2616             if ((sym.kind & (VAR | MTH)) == 0) {
2617                 return;
2618             }
2619 
2620             if (sym.kind == VAR) {
2621                 if ((sym.flags() & PARAMETER) != 0 ||
2622                     sym.isLocal() ||
2623                     sym.name == names._this ||
2624                     sym.name == names._super) {
2625                     return;
2626                 }
2627             }
2628 
2629             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2630                     isEffectivelyNonPublic(sym)) {
2631                 log.warning(tree.pos(),
2632                         "access.to.sensitive.member.from.serializable.element", sym);
2633             }
2634         }
2635     }
2636 
2637     private boolean isEffectivelyNonPublic(Symbol sym) {
2638         if (sym.packge() == syms.rootPackage) {
2639             return false;
2640         }
2641 
2642         while (sym.kind != Kinds.PCK) {
2643             if ((sym.flags() & PUBLIC) == 0) {
2644                 return true;
2645             }
2646             sym = sym.owner;
2647         }
2648         return false;
2649     }
2650 
2651     /** Report a conflict between a user symbol and a synthetic symbol.
2652      */
2653     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2654         if (!sym.type.isErroneous()) {
2655             if (warnOnSyntheticConflicts) {
2656                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
2657             }
2658             else {
2659                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
2660             }
2661         }
2662     }
2663 
2664     /** Check that class c does not implement directly or indirectly
2665      *  the same parameterized interface with two different argument lists.
2666      *  @param pos          Position to be used for error reporting.
2667      *  @param type         The type whose interfaces are checked.
2668      */
2669     void checkClassBounds(DiagnosticPosition pos, Type type) {
2670         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2671     }
2672 //where
2673         /** Enter all interfaces of type `type' into the hash table `seensofar'
2674          *  with their class symbol as key and their type as value. Make
2675          *  sure no class is entered with two different types.
2676          */
2677         void checkClassBounds(DiagnosticPosition pos,
2678                               Map<TypeSymbol,Type> seensofar,
2679                               Type type) {
2680             if (type.isErroneous()) return;
2681             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2682                 Type it = l.head;
2683                 Type oldit = seensofar.put(it.tsym, it);
2684                 if (oldit != null) {
2685                     List<Type> oldparams = oldit.allparams();
2686                     List<Type> newparams = it.allparams();
2687                     if (!types.containsTypeEquivalent(oldparams, newparams))
2688                         log.error(pos, "cant.inherit.diff.arg",
2689                                   it.tsym, Type.toString(oldparams),
2690                                   Type.toString(newparams));
2691                 }
2692                 checkClassBounds(pos, seensofar, it);
2693             }
2694             Type st = types.supertype(type);
2695             if (st != null) checkClassBounds(pos, seensofar, st);
2696         }
2697 
2698     /** Enter interface into into set.
2699      *  If it existed already, issue a "repeated interface" error.
2700      */
2701     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2702         if (its.contains(it))
2703             log.error(pos, "repeated.interface");
2704         else {
2705             its.add(it);
2706         }
2707     }
2708 
2709 /* *************************************************************************
2710  * Check annotations
2711  **************************************************************************/
2712 
2713     /**
2714      * Recursively validate annotations values
2715      */
2716     void validateAnnotationTree(JCTree tree) {
2717         class AnnotationValidator extends TreeScanner {
2718             @Override
2719             public void visitAnnotation(JCAnnotation tree) {
2720                 if (!tree.type.isErroneous()) {
2721                     super.visitAnnotation(tree);
2722                     validateAnnotation(tree);
2723                 }
2724             }
2725         }
2726         tree.accept(new AnnotationValidator());
2727     }
2728 
2729     /**
2730      *  {@literal
2731      *  Annotation types are restricted to primitives, String, an
2732      *  enum, an annotation, Class, Class<?>, Class<? extends
2733      *  Anything>, arrays of the preceding.
2734      *  }
2735      */
2736     void validateAnnotationType(JCTree restype) {
2737         // restype may be null if an error occurred, so don't bother validating it
2738         if (restype != null) {
2739             validateAnnotationType(restype.pos(), restype.type);
2740         }
2741     }
2742 
2743     void validateAnnotationType(DiagnosticPosition pos, Type type) {
2744         if (type.isPrimitive()) return;
2745         if (types.isSameType(type, syms.stringType)) return;
2746         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2747         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2748         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2749         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2750             validateAnnotationType(pos, types.elemtype(type));
2751             return;
2752         }
2753         log.error(pos, "invalid.annotation.member.type");
2754     }
2755 
2756     /**
2757      * "It is also a compile-time error if any method declared in an
2758      * annotation type has a signature that is override-equivalent to
2759      * that of any public or protected method declared in class Object
2760      * or in the interface annotation.Annotation."
2761      *
2762      * @jls 9.6 Annotation Types
2763      */
2764     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2765         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2766             Scope s = sup.tsym.members();
2767             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
2768                 if (e.sym.kind == MTH &&
2769                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2770                     types.overrideEquivalent(m.type, e.sym.type))
2771                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
2772             }
2773         }
2774     }
2775 
2776     /** Check the annotations of a symbol.
2777      */
2778     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2779         for (JCAnnotation a : annotations)
2780             validateAnnotation(a, s);
2781     }
2782 
2783     /** Check the type annotations.
2784      */
2785     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2786         for (JCAnnotation a : annotations)
2787             validateTypeAnnotation(a, isTypeParameter);
2788     }
2789 
2790     /** Check an annotation of a symbol.
2791      */
2792     private void validateAnnotation(JCAnnotation a, Symbol s) {
2793         validateAnnotationTree(a);
2794 
2795         if (!annotationApplicable(a, s))
2796             log.error(a.pos(), "annotation.type.not.applicable");
2797 
2798         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2799             if (s.kind != TYP) {
2800                 log.error(a.pos(), "bad.functional.intf.anno");
2801             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2802                 log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2803             }
2804         }
2805     }
2806 
2807     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2808         Assert.checkNonNull(a.type, "annotation tree hasn't been attributed yet: " + a);
2809         validateAnnotationTree(a);
2810 
2811         if (a.hasTag(TYPE_ANNOTATION) &&
2812                 !a.annotationType.type.isErroneous() &&
2813                 !isTypeAnnotation(a, isTypeParameter)) {
2814             log.error(a.pos(), "annotation.type.not.applicable");
2815         }
2816     }
2817 
2818     /**
2819      * Validate the proposed container 'repeatable' on the
2820      * annotation type symbol 's'. Report errors at position
2821      * 'pos'.
2822      *
2823      * @param s The (annotation)type declaration annotated with a @Repeatable
2824      * @param repeatable the @Repeatable on 's'
2825      * @param pos where to report errors
2826      */
2827     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2828         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2829 
2830         Type t = null;
2831         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2832         if (!l.isEmpty()) {
2833             Assert.check(l.head.fst.name == names.value);
2834             t = ((Attribute.Class)l.head.snd).getValue();
2835         }
2836 
2837         if (t == null) {
2838             // errors should already have been reported during Annotate
2839             return;
2840         }
2841 
2842         validateValue(t.tsym, s, pos);
2843         validateRetention(t.tsym, s, pos);
2844         validateDocumented(t.tsym, s, pos);
2845         validateInherited(t.tsym, s, pos);
2846         validateTarget(t.tsym, s, pos);
2847         validateDefault(t.tsym, pos);
2848     }
2849 
2850     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2851         Scope.Entry e = container.members().lookup(names.value);
2852         if (e.scope != null && e.sym.kind == MTH) {
2853             MethodSymbol m = (MethodSymbol) e.sym;
2854             Type ret = m.getReturnType();
2855             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2856                 log.error(pos, "invalid.repeatable.annotation.value.return",
2857                         container, ret, types.makeArrayType(contained.type));
2858             }
2859         } else {
2860             log.error(pos, "invalid.repeatable.annotation.no.value", container);
2861         }
2862     }
2863 
2864     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
2865         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2866         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2867 
2868         boolean error = false;
2869         switch (containedRetention) {
2870         case RUNTIME:
2871             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2872                 error = true;
2873             }
2874             break;
2875         case CLASS:
2876             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2877                 error = true;
2878             }
2879         }
2880         if (error ) {
2881             log.error(pos, "invalid.repeatable.annotation.retention",
2882                       container, containerRetention,
2883                       contained, containedRetention);
2884         }
2885     }
2886 
2887     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2888         if (contained.attribute(syms.documentedType.tsym) != null) {
2889             if (container.attribute(syms.documentedType.tsym) == null) {
2890                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2891             }
2892         }
2893     }
2894 
2895     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2896         if (contained.attribute(syms.inheritedType.tsym) != null) {
2897             if (container.attribute(syms.inheritedType.tsym) == null) {
2898                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2899             }
2900         }
2901     }
2902 
2903     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
2904         // The set of targets the container is applicable to must be a subset
2905         // (with respect to annotation target semantics) of the set of targets
2906         // the contained is applicable to. The target sets may be implicit or
2907         // explicit.
2908 
2909         Set<Name> containerTargets;
2910         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2911         if (containerTarget == null) {
2912             containerTargets = getDefaultTargetSet();
2913         } else {
2914             containerTargets = new HashSet<>();
2915             for (Attribute app : containerTarget.values) {
2916                 if (!(app instanceof Attribute.Enum)) {
2917                     continue; // recovery
2918                 }
2919                 Attribute.Enum e = (Attribute.Enum)app;
2920                 containerTargets.add(e.value.name);
2921             }
2922         }
2923 
2924         Set<Name> containedTargets;
2925         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2926         if (containedTarget == null) {
2927             containedTargets = getDefaultTargetSet();
2928         } else {
2929             containedTargets = new HashSet<>();
2930             for (Attribute app : containedTarget.values) {
2931                 if (!(app instanceof Attribute.Enum)) {
2932                     continue; // recovery
2933                 }
2934                 Attribute.Enum e = (Attribute.Enum)app;
2935                 containedTargets.add(e.value.name);
2936             }
2937         }
2938 
2939         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2940             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2941         }
2942     }
2943 
2944     /* get a set of names for the default target */
2945     private Set<Name> getDefaultTargetSet() {
2946         if (defaultTargets == null) {
2947             Set<Name> targets = new HashSet<>();
2948             targets.add(names.ANNOTATION_TYPE);
2949             targets.add(names.CONSTRUCTOR);
2950             targets.add(names.FIELD);
2951             targets.add(names.LOCAL_VARIABLE);
2952             targets.add(names.METHOD);
2953             targets.add(names.PACKAGE);
2954             targets.add(names.PARAMETER);
2955             targets.add(names.TYPE);
2956 
2957             defaultTargets = java.util.Collections.unmodifiableSet(targets);
2958         }
2959 
2960         return defaultTargets;
2961     }
2962     private Set<Name> defaultTargets;
2963 
2964 
2965     /** Checks that s is a subset of t, with respect to ElementType
2966      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2967      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2968      * TYPE_PARAMETER}.
2969      */
2970     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2971         // Check that all elements in s are present in t
2972         for (Name n2 : s) {
2973             boolean currentElementOk = false;
2974             for (Name n1 : t) {
2975                 if (n1 == n2) {
2976                     currentElementOk = true;
2977                     break;
2978                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2979                     currentElementOk = true;
2980                     break;
2981                 } else if (n1 == names.TYPE_USE &&
2982                         (n2 == names.TYPE ||
2983                          n2 == names.ANNOTATION_TYPE ||
2984                          n2 == names.TYPE_PARAMETER)) {
2985                     currentElementOk = true;
2986                     break;
2987                 }
2988             }
2989             if (!currentElementOk)
2990                 return false;
2991         }
2992         return true;
2993     }
2994 
2995     private void validateDefault(Symbol container, DiagnosticPosition pos) {
2996         // validate that all other elements of containing type has defaults
2997         Scope scope = container.members();
2998         for(Symbol elm : scope.getElements()) {
2999             if (elm.name != names.value &&
3000                 elm.kind == Kinds.MTH &&
3001                 ((MethodSymbol)elm).defaultValue == null) {
3002                 log.error(pos,
3003                           "invalid.repeatable.annotation.elem.nondefault",
3004                           container,
3005                           elm);
3006             }
3007         }
3008     }
3009 
3010     /** Is s a method symbol that overrides a method in a superclass? */
3011     boolean isOverrider(Symbol s) {
3012         if (s.kind != MTH || s.isStatic())
3013             return false;
3014         MethodSymbol m = (MethodSymbol)s;
3015         TypeSymbol owner = (TypeSymbol)m.owner;
3016         for (Type sup : types.closure(owner.type)) {
3017             if (sup == owner.type)
3018                 continue; // skip "this"
3019             Scope scope = sup.tsym.members();
3020             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
3021                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
3022                     return true;
3023             }
3024         }
3025         return false;
3026     }
3027 
3028     /** Is the annotation applicable to types? */
3029     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3030         Attribute.Compound atTarget =
3031             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
3032         if (atTarget == null) {
3033             // An annotation without @Target is not a type annotation.
3034             return false;
3035         }
3036 
3037         Attribute atValue = atTarget.member(names.value);
3038         if (!(atValue instanceof Attribute.Array)) {
3039             return false; // error recovery
3040         }
3041 
3042         Attribute.Array arr = (Attribute.Array) atValue;
3043         for (Attribute app : arr.values) {
3044             if (!(app instanceof Attribute.Enum)) {
3045                 return false; // recovery
3046             }
3047             Attribute.Enum e = (Attribute.Enum) app;
3048 
3049             if (e.value.name == names.TYPE_USE)
3050                 return true;
3051             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
3052                 return true;
3053         }
3054         return false;
3055     }
3056 
3057     /** Is the annotation applicable to the symbol? */
3058     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3059         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3060         Name[] targets;
3061 
3062         if (arr == null) {
3063             targets = defaultTargetMetaInfo(a, s);
3064         } else {
3065             // TODO: can we optimize this?
3066             targets = new Name[arr.values.length];
3067             for (int i=0; i<arr.values.length; ++i) {
3068                 Attribute app = arr.values[i];
3069                 if (!(app instanceof Attribute.Enum)) {
3070                     return true; // recovery
3071                 }
3072                 Attribute.Enum e = (Attribute.Enum) app;
3073                 targets[i] = e.value.name;
3074             }
3075         }
3076         for (Name target : targets) {
3077             if (target == names.TYPE)
3078                 { if (s.kind == TYP) return true; }
3079             else if (target == names.FIELD)
3080                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
3081             else if (target == names.METHOD)
3082                 { if (s.kind == MTH && !s.isConstructor()) return true; }
3083             else if (target == names.PARAMETER)
3084                 { if (s.kind == VAR &&
3085                       s.owner.kind == MTH &&
3086                       (s.flags() & PARAMETER) != 0)
3087                     return true;
3088                 }
3089             else if (target == names.CONSTRUCTOR)
3090                 { if (s.kind == MTH && s.isConstructor()) return true; }
3091             else if (target == names.LOCAL_VARIABLE)
3092                 { if (s.kind == VAR && s.owner.kind == MTH &&
3093                       (s.flags() & PARAMETER) == 0)
3094                     return true;
3095                 }
3096             else if (target == names.ANNOTATION_TYPE)
3097                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
3098                     return true;
3099                 }
3100             else if (target == names.PACKAGE)
3101                 { if (s.kind == PCK) return true; }
3102             else if (target == names.TYPE_USE)
3103                 { if (s.kind == TYP ||
3104                       s.kind == VAR ||
3105                       (s.kind == MTH && !s.isConstructor() &&
3106                       !s.type.getReturnType().hasTag(VOID)) ||
3107                       (s.kind == MTH && s.isConstructor()))
3108                     return true;
3109                 }
3110             else if (target == names.TYPE_PARAMETER)
3111                 { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3112                     return true;
3113                 }
3114             else
3115                 return true; // recovery
3116         }
3117         return false;
3118     }
3119 
3120 
3121     Attribute.Array getAttributeTargetAttribute(Symbol s) {
3122         Attribute.Compound atTarget =
3123             s.attribute(syms.annotationTargetType.tsym);
3124         if (atTarget == null) return null; // ok, is applicable
3125         Attribute atValue = atTarget.member(names.value);
3126         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3127         return (Attribute.Array) atValue;
3128     }
3129 
3130     private final Name[] dfltTargetMeta;
3131     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3132         return dfltTargetMeta;
3133     }
3134 
3135     /** Check an annotation value.
3136      *
3137      * @param a The annotation tree to check
3138      * @return true if this annotation tree is valid, otherwise false
3139      */
3140     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3141         boolean res = false;
3142         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3143         try {
3144             res = validateAnnotation(a);
3145         } finally {
3146             log.popDiagnosticHandler(diagHandler);
3147         }
3148         return res;
3149     }
3150 
3151     private boolean validateAnnotation(JCAnnotation a) {
3152         boolean isValid = true;
3153         // collect an inventory of the annotation elements
3154         Set<MethodSymbol> members = new LinkedHashSet<>();
3155         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
3156                 e != null;
3157                 e = e.sibling)
3158             if (e.sym.kind == MTH && e.sym.name != names.clinit &&
3159                     (e.sym.flags() & SYNTHETIC) == 0)
3160                 members.add((MethodSymbol) e.sym);
3161 
3162         // remove the ones that are assigned values
3163         for (JCTree arg : a.args) {
3164             if (!arg.hasTag(ASSIGN)) continue; // recovery
3165             JCAssign assign = (JCAssign) arg;
3166             Symbol m = TreeInfo.symbol(assign.lhs);
3167             if (m == null || m.type.isErroneous()) continue;
3168             if (!members.remove(m)) {
3169                 isValid = false;
3170                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3171                           m.name, a.type);
3172             }
3173         }
3174 
3175         // all the remaining ones better have default values
3176         List<Name> missingDefaults = List.nil();
3177         for (MethodSymbol m : members) {
3178             if (m.defaultValue == null && !m.type.isErroneous()) {
3179                 missingDefaults = missingDefaults.append(m.name);
3180             }
3181         }
3182         missingDefaults = missingDefaults.reverse();
3183         if (missingDefaults.nonEmpty()) {
3184             isValid = false;
3185             String key = (missingDefaults.size() > 1)
3186                     ? "annotation.missing.default.value.1"
3187                     : "annotation.missing.default.value";
3188             log.error(a.pos(), key, a.type, missingDefaults);
3189         }
3190 
3191         // special case: java.lang.annotation.Target must not have
3192         // repeated values in its value member
3193         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3194             a.args.tail == null)
3195             return isValid;
3196 
3197         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3198         JCAssign assign = (JCAssign) a.args.head;
3199         Symbol m = TreeInfo.symbol(assign.lhs);
3200         if (m.name != names.value) return false;
3201         JCTree rhs = assign.rhs;
3202         if (!rhs.hasTag(NEWARRAY)) return false;
3203         JCNewArray na = (JCNewArray) rhs;
3204         Set<Symbol> targets = new HashSet<>();
3205         for (JCTree elem : na.elems) {
3206             if (!targets.add(TreeInfo.symbol(elem))) {
3207                 isValid = false;
3208                 log.error(elem.pos(), "repeated.annotation.target");
3209             }
3210         }
3211         return isValid;
3212     }
3213 
3214     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3215         if (allowAnnotations &&
3216             lint.isEnabled(LintCategory.DEP_ANN) &&
3217             (s.flags() & DEPRECATED) != 0 &&
3218             !syms.deprecatedType.isErroneous() &&
3219             s.attribute(syms.deprecatedType.tsym) == null) {
3220             log.warning(LintCategory.DEP_ANN,
3221                     pos, "missing.deprecated.annotation");
3222         }
3223     }
3224 
3225     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3226         if ((s.flags() & DEPRECATED) != 0 &&
3227                 (other.flags() & DEPRECATED) == 0 &&
3228                 s.outermostClass() != other.outermostClass()) {
3229             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3230                 @Override
3231                 public void report() {
3232                     warnDeprecated(pos, s);
3233                 }
3234             });
3235         }
3236     }
3237 
3238     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3239         if ((s.flags() & PROPRIETARY) != 0) {
3240             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3241                 public void report() {
3242                     if (enableSunApiLintControl)
3243                       warnSunApi(pos, "sun.proprietary", s);
3244                     else
3245                       log.mandatoryWarning(pos, "sun.proprietary", s);
3246                 }
3247             });
3248         }
3249     }
3250 
3251     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3252         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3253             log.error(pos, "not.in.profile", s, profile);
3254         }
3255     }
3256 
3257 /* *************************************************************************
3258  * Check for recursive annotation elements.
3259  **************************************************************************/
3260 
3261     /** Check for cycles in the graph of annotation elements.
3262      */
3263     void checkNonCyclicElements(JCClassDecl tree) {
3264         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3265         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3266         try {
3267             tree.sym.flags_field |= LOCKED;
3268             for (JCTree def : tree.defs) {
3269                 if (!def.hasTag(METHODDEF)) continue;
3270                 JCMethodDecl meth = (JCMethodDecl)def;
3271                 checkAnnotationResType(meth.pos(), meth.restype.type);
3272             }
3273         } finally {
3274             tree.sym.flags_field &= ~LOCKED;
3275             tree.sym.flags_field |= ACYCLIC_ANN;
3276         }
3277     }
3278 
3279     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3280         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3281             return;
3282         if ((tsym.flags_field & LOCKED) != 0) {
3283             log.error(pos, "cyclic.annotation.element");
3284             return;
3285         }
3286         try {
3287             tsym.flags_field |= LOCKED;
3288             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
3289                 Symbol s = e.sym;
3290                 if (s.kind != Kinds.MTH)
3291                     continue;
3292                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3293             }
3294         } finally {
3295             tsym.flags_field &= ~LOCKED;
3296             tsym.flags_field |= ACYCLIC_ANN;
3297         }
3298     }
3299 
3300     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3301         switch (type.getTag()) {
3302         case CLASS:
3303             if ((type.tsym.flags() & ANNOTATION) != 0)
3304                 checkNonCyclicElementsInternal(pos, type.tsym);
3305             break;
3306         case ARRAY:
3307             checkAnnotationResType(pos, types.elemtype(type));
3308             break;
3309         default:
3310             break; // int etc
3311         }
3312     }
3313 
3314 /* *************************************************************************
3315  * Check for cycles in the constructor call graph.
3316  **************************************************************************/
3317 
3318     /** Check for cycles in the graph of constructors calling other
3319      *  constructors.
3320      */
3321     void checkCyclicConstructors(JCClassDecl tree) {
3322         Map<Symbol,Symbol> callMap = new HashMap<>();
3323 
3324         // enter each constructor this-call into the map
3325         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3326             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3327             if (app == null) continue;
3328             JCMethodDecl meth = (JCMethodDecl) l.head;
3329             if (TreeInfo.name(app.meth) == names._this) {
3330                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3331             } else {
3332                 meth.sym.flags_field |= ACYCLIC;
3333             }
3334         }
3335 
3336         // Check for cycles in the map
3337         Symbol[] ctors = new Symbol[0];
3338         ctors = callMap.keySet().toArray(ctors);
3339         for (Symbol caller : ctors) {
3340             checkCyclicConstructor(tree, caller, callMap);
3341         }
3342     }
3343 
3344     /** Look in the map to see if the given constructor is part of a
3345      *  call cycle.
3346      */
3347     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3348                                         Map<Symbol,Symbol> callMap) {
3349         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3350             if ((ctor.flags_field & LOCKED) != 0) {
3351                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3352                           "recursive.ctor.invocation");
3353             } else {
3354                 ctor.flags_field |= LOCKED;
3355                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3356                 ctor.flags_field &= ~LOCKED;
3357             }
3358             ctor.flags_field |= ACYCLIC;
3359         }
3360     }
3361 
3362 /* *************************************************************************
3363  * Miscellaneous
3364  **************************************************************************/
3365 
3366     /**
3367      * Return the opcode of the operator but emit an error if it is an
3368      * error.
3369      * @param pos        position for error reporting.
3370      * @param operator   an operator
3371      * @param tag        a tree tag
3372      * @param left       type of left hand side
3373      * @param right      type of right hand side
3374      */
3375     int checkOperator(DiagnosticPosition pos,
3376                        OperatorSymbol operator,
3377                        JCTree.Tag tag,
3378                        Type left,
3379                        Type right) {
3380         if (operator.opcode == ByteCodes.error) {
3381             log.error(pos,
3382                       "operator.cant.be.applied.1",
3383                       treeinfo.operatorName(tag),
3384                       left, right);
3385         }
3386         return operator.opcode;
3387     }
3388 
3389 
3390     /**
3391      *  Check for division by integer constant zero
3392      *  @param pos           Position for error reporting.
3393      *  @param operator      The operator for the expression
3394      *  @param operand       The right hand operand for the expression
3395      */
3396     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
3397         if (operand.constValue() != null
3398             && lint.isEnabled(LintCategory.DIVZERO)
3399             && operand.getTag().isSubRangeOf(LONG)
3400             && ((Number) (operand.constValue())).longValue() == 0) {
3401             int opc = ((OperatorSymbol)operator).opcode;
3402             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3403                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3404                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
3405             }
3406         }
3407     }
3408 
3409     /**
3410      * Check for empty statements after if
3411      */
3412     void checkEmptyIf(JCIf tree) {
3413         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3414                 lint.isEnabled(LintCategory.EMPTY))
3415             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3416     }
3417 
3418     /** Check that symbol is unique in given scope.
3419      *  @param pos           Position for error reporting.
3420      *  @param sym           The symbol.
3421      *  @param s             The scope.
3422      */
3423     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3424         if (sym.type.isErroneous())
3425             return true;
3426         if (sym.owner.name == names.any) return false;
3427         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
3428             if (sym != e.sym &&
3429                     (e.sym.flags() & CLASH) == 0 &&
3430                     sym.kind == e.sym.kind &&
3431                     sym.name != names.error &&
3432                     (sym.kind != MTH ||
3433                      types.hasSameArgs(sym.type, e.sym.type) ||
3434                      types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
3435                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
3436                     varargsDuplicateError(pos, sym, e.sym);
3437                     return true;
3438                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
3439                     duplicateErasureError(pos, sym, e.sym);
3440                     sym.flags_field |= CLASH;
3441                     return true;
3442                 } else {
3443                     duplicateError(pos, e.sym);
3444                     return false;
3445                 }
3446             }
3447         }
3448         return true;
3449     }
3450 
3451     /** Report duplicate declaration error.
3452      */
3453     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3454         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3455             log.error(pos, "name.clash.same.erasure", sym1, sym2);
3456         }
3457     }
3458 
3459     /** Check that single-type import is not already imported or top-level defined,
3460      *  but make an exception for two single-type imports which denote the same type.
3461      *  @param pos           Position for error reporting.
3462      *  @param sym           The symbol.
3463      *  @param s             The scope
3464      */
3465     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
3466         return checkUniqueImport(pos, sym, s, false);
3467     }
3468 
3469     /** Check that static single-type import is not already imported or top-level defined,
3470      *  but make an exception for two single-type imports which denote the same type.
3471      *  @param pos           Position for error reporting.
3472      *  @param sym           The symbol.
3473      *  @param s             The scope
3474      */
3475     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
3476         return checkUniqueImport(pos, sym, s, true);
3477     }
3478 
3479     /** Check that single-type import is not already imported or top-level defined,
3480      *  but make an exception for two single-type imports which denote the same type.
3481      *  @param pos           Position for error reporting.
3482      *  @param sym           The symbol.
3483      *  @param s             The scope.
3484      *  @param staticImport  Whether or not this was a static import
3485      */
3486     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
3487         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
3488             // is encountered class entered via a class declaration?
3489             boolean isClassDecl = e.scope == s;
3490             if ((isClassDecl || sym != e.sym) &&
3491                 sym.kind == e.sym.kind &&
3492                 sym.name != names.error &&
3493                 (!staticImport || !e.isStaticallyImported())) {
3494                 if (!e.sym.type.isErroneous()) {
3495                     if (!isClassDecl) {
3496                         if (staticImport)
3497                             log.error(pos, "already.defined.static.single.import", e.sym);
3498                         else
3499                         log.error(pos, "already.defined.single.import", e.sym);
3500                     }
3501                     else if (sym != e.sym)
3502                         log.error(pos, "already.defined.this.unit", e.sym);
3503                 }
3504                 return false;
3505             }
3506         }
3507         return true;
3508     }
3509 
3510     /** Check that a qualified name is in canonical form (for import decls).
3511      */
3512     public void checkCanonical(JCTree tree) {
3513         if (!isCanonical(tree))
3514             log.error(tree.pos(), "import.requires.canonical",
3515                       TreeInfo.symbol(tree));
3516     }
3517         // where
3518         private boolean isCanonical(JCTree tree) {
3519             while (tree.hasTag(SELECT)) {
3520                 JCFieldAccess s = (JCFieldAccess) tree;
3521                 if (s.sym.owner != TreeInfo.symbol(s.selected))
3522                     return false;
3523                 tree = s.selected;
3524             }
3525             return true;
3526         }
3527 
3528     /** Check that an auxiliary class is not accessed from any other file than its own.
3529      */
3530     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3531         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3532             (c.flags() & AUXILIARY) != 0 &&
3533             rs.isAccessible(env, c) &&
3534             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3535         {
3536             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3537                         c, c.sourcefile);
3538         }
3539     }
3540 
3541     private class ConversionWarner extends Warner {
3542         final String uncheckedKey;
3543         final Type found;
3544         final Type expected;
3545         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3546             super(pos);
3547             this.uncheckedKey = uncheckedKey;
3548             this.found = found;
3549             this.expected = expected;
3550         }
3551 
3552         @Override
3553         public void warn(LintCategory lint) {
3554             boolean warned = this.warned;
3555             super.warn(lint);
3556             if (warned) return; // suppress redundant diagnostics
3557             switch (lint) {
3558                 case UNCHECKED:
3559                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3560                     break;
3561                 case VARARGS:
3562                     if (method != null &&
3563                             method.attribute(syms.trustMeType.tsym) != null &&
3564                             isTrustMeAllowedOnMethod(method) &&
3565                             !types.isReifiable(method.type.getParameterTypes().last())) {
3566                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3567                     }
3568                     break;
3569                 default:
3570                     throw new AssertionError("Unexpected lint: " + lint);
3571             }
3572         }
3573     }
3574 
3575     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3576         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3577     }
3578 
3579     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3580         return new ConversionWarner(pos, "unchecked.assign", found, expected);
3581     }
3582 
3583     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3584         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3585 
3586         if (functionalType != null) {
3587             try {
3588                 types.findDescriptorSymbol((TypeSymbol)cs);
3589             } catch (Types.FunctionDescriptorLookupError ex) {
3590                 DiagnosticPosition pos = tree.pos();
3591                 for (JCAnnotation a : tree.getModifiers().annotations) {
3592                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3593                         pos = a.pos();
3594                         break;
3595                     }
3596                 }
3597                 log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3598             }
3599         }
3600     }
3601 }