1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.lang.model.type.TypeKind;
  32 import javax.tools.JavaFileObject;
  33 
  34 import com.sun.source.tree.IdentifierTree;
  35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  36 import com.sun.source.tree.MemberSelectTree;
  37 import com.sun.source.tree.TreeVisitor;
  38 import com.sun.source.util.SimpleTreeVisitor;
  39 import com.sun.tools.javac.code.*;
  40 import com.sun.tools.javac.code.Lint.LintCategory;
  41 import com.sun.tools.javac.code.Symbol.*;
  42 import com.sun.tools.javac.code.Type.*;
  43 import com.sun.tools.javac.comp.Check.CheckContext;
  44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  45 import com.sun.tools.javac.comp.Infer.InferenceContext;
  46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  47 import com.sun.tools.javac.jvm.*;
  48 import com.sun.tools.javac.tree.*;
  49 import com.sun.tools.javac.tree.JCTree.*;
  50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  51 import com.sun.tools.javac.util.*;
  52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  53 import com.sun.tools.javac.util.List;
  54 import static com.sun.tools.javac.code.Flags.*;
  55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  56 import static com.sun.tools.javac.code.Flags.BLOCK;
  57 import static com.sun.tools.javac.code.Kinds.*;
  58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
  59 import static com.sun.tools.javac.code.TypeTag.*;
  60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  61 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  62 
  63 /** This is the main context-dependent analysis phase in GJC. It
  64  *  encompasses name resolution, type checking and constant folding as
  65  *  subtasks. Some subtasks involve auxiliary classes.
  66  *  @see Check
  67  *  @see Resolve
  68  *  @see ConstFold
  69  *  @see Infer
  70  *
  71  *  <p><b>This is NOT part of any supported API.
  72  *  If you write code that depends on this, you do so at your own risk.
  73  *  This code and its internal interfaces are subject to change or
  74  *  deletion without notice.</b>
  75  */
  76 public class Attr extends JCTree.Visitor {
  77     protected static final Context.Key<Attr> attrKey =
  78         new Context.Key<Attr>();
  79 
  80     final Names names;
  81     final Log log;
  82     final Symtab syms;
  83     final Resolve rs;
  84     final Infer infer;
  85     final DeferredAttr deferredAttr;
  86     final Check chk;
  87     final Flow flow;
  88     final MemberEnter memberEnter;
  89     final TreeMaker make;
  90     final ConstFold cfolder;
  91     final Enter enter;
  92     final Target target;
  93     final Types types;
  94     final JCDiagnostic.Factory diags;
  95     final Annotate annotate;
  96     final DeferredLintHandler deferredLintHandler;
  97 
  98     public static Attr instance(Context context) {
  99         Attr instance = context.get(attrKey);
 100         if (instance == null)
 101             instance = new Attr(context);
 102         return instance;
 103     }
 104 
 105     protected Attr(Context context) {
 106         context.put(attrKey, this);
 107 
 108         names = Names.instance(context);
 109         log = Log.instance(context);
 110         syms = Symtab.instance(context);
 111         rs = Resolve.instance(context);
 112         chk = Check.instance(context);
 113         flow = Flow.instance(context);
 114         memberEnter = MemberEnter.instance(context);
 115         make = TreeMaker.instance(context);
 116         enter = Enter.instance(context);
 117         infer = Infer.instance(context);
 118         deferredAttr = DeferredAttr.instance(context);
 119         cfolder = ConstFold.instance(context);
 120         target = Target.instance(context);
 121         types = Types.instance(context);
 122         diags = JCDiagnostic.Factory.instance(context);
 123         annotate = Annotate.instance(context);
 124         deferredLintHandler = DeferredLintHandler.instance(context);
 125 
 126         Options options = Options.instance(context);
 127 
 128         Source source = Source.instance(context);
 129         allowGenerics = source.allowGenerics();
 130         allowVarargs = source.allowVarargs();
 131         allowEnums = source.allowEnums();
 132         allowBoxing = source.allowBoxing();
 133         allowCovariantReturns = source.allowCovariantReturns();
 134         allowAnonOuterThis = source.allowAnonOuterThis();
 135         allowStringsInSwitch = source.allowStringsInSwitch();
 136         allowPoly = source.allowPoly();
 137         allowLambda = source.allowLambda();
 138         allowDefaultMethods = source.allowDefaultMethods();
 139         sourceName = source.name;
 140         relax = (options.isSet("-retrofit") ||
 141                  options.isSet("-relax"));
 142         findDiamonds = options.get("findDiamond") != null &&
 143                  source.allowDiamond();
 144         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 145         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
 146 
 147         statInfo = new ResultInfo(NIL, Type.noType);
 148         varInfo = new ResultInfo(VAR, Type.noType);
 149         unknownExprInfo = new ResultInfo(VAL, Type.noType);
 150         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
 151         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 152     }
 153 
 154     /** Switch: relax some constraints for retrofit mode.
 155      */
 156     boolean relax;
 157 
 158     /** Switch: support target-typing inference
 159      */
 160     boolean allowPoly;
 161 
 162     /** Switch: support generics?
 163      */
 164     boolean allowGenerics;
 165 
 166     /** Switch: allow variable-arity methods.
 167      */
 168     boolean allowVarargs;
 169 
 170     /** Switch: support enums?
 171      */
 172     boolean allowEnums;
 173 
 174     /** Switch: support boxing and unboxing?
 175      */
 176     boolean allowBoxing;
 177 
 178     /** Switch: support covariant result types?
 179      */
 180     boolean allowCovariantReturns;
 181 
 182     /** Switch: support lambda expressions ?
 183      */
 184     boolean allowLambda;
 185 
 186     /** Switch: support default methods ?
 187      */
 188     boolean allowDefaultMethods;
 189 
 190     /** Switch: allow references to surrounding object from anonymous
 191      * objects during constructor call?
 192      */
 193     boolean allowAnonOuterThis;
 194 
 195     /** Switch: generates a warning if diamond can be safely applied
 196      *  to a given new expression
 197      */
 198     boolean findDiamonds;
 199 
 200     /**
 201      * Internally enables/disables diamond finder feature
 202      */
 203     static final boolean allowDiamondFinder = true;
 204 
 205     /**
 206      * Switch: warn about use of variable before declaration?
 207      * RFE: 6425594
 208      */
 209     boolean useBeforeDeclarationWarning;
 210 
 211     /**
 212      * Switch: generate warnings whenever an anonymous inner class that is convertible
 213      * to a lambda expression is found
 214      */
 215     boolean identifyLambdaCandidate;
 216 
 217     /**
 218      * Switch: allow strings in switch?
 219      */
 220     boolean allowStringsInSwitch;
 221 
 222     /**
 223      * Switch: name of source level; used for error reporting.
 224      */
 225     String sourceName;
 226 
 227     /** Check kind and type of given tree against protokind and prototype.
 228      *  If check succeeds, store type in tree and return it.
 229      *  If check fails, store errType in tree and return it.
 230      *  No checks are performed if the prototype is a method type.
 231      *  It is not necessary in this case since we know that kind and type
 232      *  are correct.
 233      *
 234      *  @param tree     The tree whose kind and type is checked
 235      *  @param ownkind  The computed kind of the tree
 236      *  @param resultInfo  The expected result of the tree
 237      */
 238     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
 239         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 240         Type owntype = found;
 241         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
 242             if (inferenceContext.free(found)) {
 243                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
 244                     @Override
 245                     public void typesInferred(InferenceContext inferenceContext) {
 246                         ResultInfo pendingResult =
 247                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 248                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 249                     }
 250                 });
 251                 return tree.type = resultInfo.pt;
 252             } else {
 253                 if ((ownkind & ~resultInfo.pkind) == 0) {
 254                     owntype = resultInfo.check(tree, owntype);
 255                 } else {
 256                     log.error(tree.pos(), "unexpected.type",
 257                             kindNames(resultInfo.pkind),
 258                             kindName(ownkind));
 259                     owntype = types.createErrorType(owntype);
 260                 }
 261             }
 262         }
 263         tree.type = owntype;
 264         return owntype;
 265     }
 266 
 267     /** Is given blank final variable assignable, i.e. in a scope where it
 268      *  may be assigned to even though it is final?
 269      *  @param v      The blank final variable.
 270      *  @param env    The current environment.
 271      */
 272     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 273         Symbol owner = owner(env);
 274            // owner refers to the innermost variable, method or
 275            // initializer block declaration at this point.
 276         return
 277             v.owner == owner
 278             ||
 279             ((owner.name == names.init ||    // i.e. we are in a constructor
 280               owner.kind == VAR ||           // i.e. we are in a variable initializer
 281               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 282              &&
 283              v.owner == owner.owner
 284              &&
 285              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 286     }
 287 
 288     /**
 289      * Return the innermost enclosing owner symbol in a given attribution context
 290      */
 291     Symbol owner(Env<AttrContext> env) {
 292         while (true) {
 293             switch (env.tree.getTag()) {
 294                 case VARDEF:
 295                     //a field can be owner
 296                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
 297                     if (vsym.owner.kind == TYP) {
 298                         return vsym;
 299                     }
 300                     break;
 301                 case METHODDEF:
 302                     //method def is always an owner
 303                     return ((JCMethodDecl)env.tree).sym;
 304                 case CLASSDEF:
 305                     //class def is always an owner
 306                     return ((JCClassDecl)env.tree).sym;
 307                 case LAMBDA:
 308                     //a lambda is an owner - return a fresh synthetic method symbol
 309                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
 310                 case BLOCK:
 311                     //static/instance init blocks are owner
 312                     Symbol blockSym = env.info.scope.owner;
 313                     if ((blockSym.flags() & BLOCK) != 0) {
 314                         return blockSym;
 315                     }
 316                     break;
 317                 case TOPLEVEL:
 318                     //toplevel is always an owner (for pkge decls)
 319                     return env.info.scope.owner;
 320             }
 321             Assert.checkNonNull(env.next);
 322             env = env.next;
 323         }
 324     }
 325 
 326     /** Check that variable can be assigned to.
 327      *  @param pos    The current source code position.
 328      *  @param v      The assigned varaible
 329      *  @param base   If the variable is referred to in a Select, the part
 330      *                to the left of the `.', null otherwise.
 331      *  @param env    The current environment.
 332      */
 333     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 334         if ((v.flags() & FINAL) != 0 &&
 335             ((v.flags() & HASINIT) != 0
 336              ||
 337              !((base == null ||
 338                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
 339                isAssignableAsBlankFinal(v, env)))) {
 340             if (v.isResourceVariable()) { //TWR resource
 341                 log.error(pos, "try.resource.may.not.be.assigned", v);
 342             } else {
 343                 log.error(pos, "cant.assign.val.to.final.var", v);
 344             }
 345         }
 346     }
 347 
 348     /** Does tree represent a static reference to an identifier?
 349      *  It is assumed that tree is either a SELECT or an IDENT.
 350      *  We have to weed out selects from non-type names here.
 351      *  @param tree    The candidate tree.
 352      */
 353     boolean isStaticReference(JCTree tree) {
 354         if (tree.hasTag(SELECT)) {
 355             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 356             if (lsym == null || lsym.kind != TYP) {
 357                 return false;
 358             }
 359         }
 360         return true;
 361     }
 362 
 363     /** Is this symbol a type?
 364      */
 365     static boolean isType(Symbol sym) {
 366         return sym != null && sym.kind == TYP;
 367     }
 368 
 369     /** The current `this' symbol.
 370      *  @param env    The current environment.
 371      */
 372     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 373         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 374     }
 375 
 376     /** Attribute a parsed identifier.
 377      * @param tree Parsed identifier name
 378      * @param topLevel The toplevel to use
 379      */
 380     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 381         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 382         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 383                                            syms.errSymbol.name,
 384                                            null, null, null, null);
 385         localEnv.enclClass.sym = syms.errSymbol;
 386         return tree.accept(identAttributer, localEnv);
 387     }
 388     // where
 389         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 390         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 391             @Override
 392             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 393                 Symbol site = visit(node.getExpression(), env);
 394                 if (site.kind == ERR)
 395                     return site;
 396                 Name name = (Name)node.getIdentifier();
 397                 if (site.kind == PCK) {
 398                     env.toplevel.packge = (PackageSymbol)site;
 399                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
 400                 } else {
 401                     env.enclClass.sym = (ClassSymbol)site;
 402                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 403                 }
 404             }
 405 
 406             @Override
 407             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 408                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
 409             }
 410         }
 411 
 412     public Type coerce(Type etype, Type ttype) {
 413         return cfolder.coerce(etype, ttype);
 414     }
 415 
 416     public Type attribType(JCTree node, TypeSymbol sym) {
 417         Env<AttrContext> env = enter.typeEnvs.get(sym);
 418         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 419         return attribTree(node, localEnv, unknownTypeInfo);
 420     }
 421 
 422     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 423         // Attribute qualifying package or class.
 424         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 425         return attribTree(s.selected,
 426                        env,
 427                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
 428                        Type.noType));
 429     }
 430 
 431     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 432         breakTree = tree;
 433         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 434         try {
 435             attribExpr(expr, env);
 436         } catch (BreakAttr b) {
 437             return b.env;
 438         } catch (AssertionError ae) {
 439             if (ae.getCause() instanceof BreakAttr) {
 440                 return ((BreakAttr)(ae.getCause())).env;
 441             } else {
 442                 throw ae;
 443             }
 444         } finally {
 445             breakTree = null;
 446             log.useSource(prev);
 447         }
 448         return env;
 449     }
 450 
 451     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 452         breakTree = tree;
 453         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 454         try {
 455             attribStat(stmt, env);
 456         } catch (BreakAttr b) {
 457             return b.env;
 458         } catch (AssertionError ae) {
 459             if (ae.getCause() instanceof BreakAttr) {
 460                 return ((BreakAttr)(ae.getCause())).env;
 461             } else {
 462                 throw ae;
 463             }
 464         } finally {
 465             breakTree = null;
 466             log.useSource(prev);
 467         }
 468         return env;
 469     }
 470 
 471     private JCTree breakTree = null;
 472 
 473     private static class BreakAttr extends RuntimeException {
 474         static final long serialVersionUID = -6924771130405446405L;
 475         private Env<AttrContext> env;
 476         private BreakAttr(Env<AttrContext> env) {
 477             this.env = copyEnv(env);
 478         }
 479 
 480         private Env<AttrContext> copyEnv(Env<AttrContext> env) {
 481             Env<AttrContext> newEnv =
 482                     env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 483             if (newEnv.outer != null) {
 484                 newEnv.outer = copyEnv(newEnv.outer);
 485             }
 486             return newEnv;
 487         }
 488 
 489         private Scope copyScope(Scope sc) {
 490             Scope newScope = new Scope(sc.owner);
 491             List<Symbol> elemsList = List.nil();
 492             while (sc != null) {
 493                 for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
 494                     elemsList = elemsList.prepend(e.sym);
 495                 }
 496                 sc = sc.next;
 497             }
 498             for (Symbol s : elemsList) {
 499                 newScope.enter(s);
 500             }
 501             return newScope;
 502         }
 503     }
 504 
 505     class ResultInfo {
 506         final int pkind;
 507         final Type pt;
 508         final CheckContext checkContext;
 509 
 510         ResultInfo(int pkind, Type pt) {
 511             this(pkind, pt, chk.basicHandler);
 512         }
 513 
 514         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
 515             this.pkind = pkind;
 516             this.pt = pt;
 517             this.checkContext = checkContext;
 518         }
 519 
 520         protected Type check(final DiagnosticPosition pos, final Type found) {
 521             return chk.checkType(pos, found, pt, checkContext);
 522         }
 523 
 524         protected ResultInfo dup(Type newPt) {
 525             return new ResultInfo(pkind, newPt, checkContext);
 526         }
 527 
 528         protected ResultInfo dup(CheckContext newContext) {
 529             return new ResultInfo(pkind, pt, newContext);
 530         }
 531     }
 532 
 533     class RecoveryInfo extends ResultInfo {
 534 
 535         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 536             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
 537                 @Override
 538                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 539                     return deferredAttrContext;
 540                 }
 541                 @Override
 542                 public boolean compatible(Type found, Type req, Warner warn) {
 543                     return true;
 544                 }
 545                 @Override
 546                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 547                     chk.basicHandler.report(pos, details);
 548                 }
 549             });
 550         }
 551 
 552         @Override
 553         protected Type check(DiagnosticPosition pos, Type found) {
 554             return chk.checkNonVoid(pos, super.check(pos, found));
 555         }
 556     }
 557 
 558     final ResultInfo statInfo;
 559     final ResultInfo varInfo;
 560     final ResultInfo unknownExprInfo;
 561     final ResultInfo unknownTypeInfo;
 562     final ResultInfo recoveryInfo;
 563 
 564     Type pt() {
 565         return resultInfo.pt;
 566     }
 567 
 568     int pkind() {
 569         return resultInfo.pkind;
 570     }
 571 
 572 /* ************************************************************************
 573  * Visitor methods
 574  *************************************************************************/
 575 
 576     /** Visitor argument: the current environment.
 577      */
 578     Env<AttrContext> env;
 579 
 580     /** Visitor argument: the currently expected attribution result.
 581      */
 582     ResultInfo resultInfo;
 583 
 584     /** Visitor result: the computed type.
 585      */
 586     Type result;
 587 
 588     /** Visitor method: attribute a tree, catching any completion failure
 589      *  exceptions. Return the tree's type.
 590      *
 591      *  @param tree    The tree to be visited.
 592      *  @param env     The environment visitor argument.
 593      *  @param resultInfo   The result info visitor argument.
 594      */
 595     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 596         Env<AttrContext> prevEnv = this.env;
 597         ResultInfo prevResult = this.resultInfo;
 598         try {
 599             this.env = env;
 600             this.resultInfo = resultInfo;
 601             tree.accept(this);
 602             if (tree == breakTree &&
 603                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 604                 throw new BreakAttr(env);
 605             }
 606             return result;
 607         } catch (CompletionFailure ex) {
 608             tree.type = syms.errType;
 609             return chk.completionError(tree.pos(), ex);
 610         } finally {
 611             this.env = prevEnv;
 612             this.resultInfo = prevResult;
 613         }
 614     }
 615 
 616     /** Derived visitor method: attribute an expression tree.
 617      */
 618     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 619         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 620     }
 621 
 622     /** Derived visitor method: attribute an expression tree with
 623      *  no constraints on the computed type.
 624      */
 625     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 626         return attribTree(tree, env, unknownExprInfo);
 627     }
 628 
 629     /** Derived visitor method: attribute a type tree.
 630      */
 631     public Type attribType(JCTree tree, Env<AttrContext> env) {
 632         Type result = attribType(tree, env, Type.noType);
 633         return result;
 634     }
 635 
 636     /** Derived visitor method: attribute a type tree.
 637      */
 638     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 639         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
 640         return result;
 641     }
 642 
 643     /** Derived visitor method: attribute a statement or definition tree.
 644      */
 645     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 646         return attribTree(tree, env, statInfo);
 647     }
 648 
 649     /** Attribute a list of expressions, returning a list of types.
 650      */
 651     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 652         ListBuffer<Type> ts = new ListBuffer<Type>();
 653         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 654             ts.append(attribExpr(l.head, env, pt));
 655         return ts.toList();
 656     }
 657 
 658     /** Attribute a list of statements, returning nothing.
 659      */
 660     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 661         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 662             attribStat(l.head, env);
 663     }
 664 
 665     /** Attribute the arguments in a method call, returning a list of types.
 666      */
 667     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
 668         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 669         for (JCExpression arg : trees) {
 670             Type argtype = allowPoly && TreeInfo.isPoly(arg, env.tree) ?
 671                     deferredAttr.new DeferredType(arg, env) :
 672                     chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly));
 673             argtypes.append(argtype);
 674         }
 675         return argtypes.toList();
 676     }
 677 
 678     /** Attribute a type argument list, returning a list of types.
 679      *  Caller is responsible for calling checkRefTypes.
 680      */
 681     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 682         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 683         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 684             argtypes.append(attribType(l.head, env));
 685         return argtypes.toList();
 686     }
 687 
 688     /** Attribute a type argument list, returning a list of types.
 689      *  Check that all the types are references.
 690      */
 691     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 692         List<Type> types = attribAnyTypes(trees, env);
 693         return chk.checkRefTypes(trees, types);
 694     }
 695 
 696     /**
 697      * Attribute type variables (of generic classes or methods).
 698      * Compound types are attributed later in attribBounds.
 699      * @param typarams the type variables to enter
 700      * @param env      the current environment
 701      */
 702     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 703         for (JCTypeParameter tvar : typarams) {
 704             TypeVar a = (TypeVar)tvar.type;
 705             a.tsym.flags_field |= UNATTRIBUTED;
 706             a.bound = Type.noType;
 707             if (!tvar.bounds.isEmpty()) {
 708                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 709                 for (JCExpression bound : tvar.bounds.tail)
 710                     bounds = bounds.prepend(attribType(bound, env));
 711                 types.setBounds(a, bounds.reverse());
 712             } else {
 713                 // if no bounds are given, assume a single bound of
 714                 // java.lang.Object.
 715                 types.setBounds(a, List.of(syms.objectType));
 716             }
 717             a.tsym.flags_field &= ~UNATTRIBUTED;
 718         }
 719         for (JCTypeParameter tvar : typarams) {
 720             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 721         }
 722     }
 723 
 724     /**
 725      * Attribute the type references in a list of annotations.
 726      */
 727     void attribAnnotationTypes(List<JCAnnotation> annotations,
 728                                Env<AttrContext> env) {
 729         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 730             JCAnnotation a = al.head;
 731             attribType(a.annotationType, env);
 732         }
 733     }
 734 
 735     /**
 736      * Attribute a "lazy constant value".
 737      *  @param env         The env for the const value
 738      *  @param initializer The initializer for the const value
 739      *  @param type        The expected type, or null
 740      *  @see VarSymbol#setLazyConstValue
 741      */
 742     public Object attribLazyConstantValue(Env<AttrContext> env,
 743                                       JCTree.JCExpression initializer,
 744                                       Type type) {
 745 
 746         // in case no lint value has been set up for this env, scan up
 747         // env stack looking for smallest enclosing env for which it is set.
 748         Env<AttrContext> lintEnv = env;
 749         while (lintEnv.info.lint == null)
 750             lintEnv = lintEnv.next;
 751 
 752         // Having found the enclosing lint value, we can initialize the lint value for this class
 753         // ... but ...
 754         // There's a problem with evaluating annotations in the right order, such that
 755         // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
 756         // null. In that case, calling augment will throw an NPE. To avoid this, for now we
 757         // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
 758         if (env.info.enclVar.annotations.pendingCompletion()) {
 759             env.info.lint = lintEnv.info.lint;
 760         } else {
 761             env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations,
 762                                                       env.info.enclVar.flags());
 763         }
 764 
 765         Lint prevLint = chk.setLint(env.info.lint);
 766         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 767 
 768         try {
 769             memberEnter.typeAnnotate(initializer, env, env.info.enclVar);
 770             annotate.flush();
 771             Type itype = attribExpr(initializer, env, type);
 772             if (itype.constValue() != null)
 773                 return coerce(itype, type).constValue();
 774             else
 775                 return null;
 776         } finally {
 777             env.info.lint = prevLint;
 778             log.useSource(prevSource);
 779         }
 780     }
 781 
 782     /** Attribute type reference in an `extends' or `implements' clause.
 783      *  Supertypes of anonymous inner classes are usually already attributed.
 784      *
 785      *  @param tree              The tree making up the type reference.
 786      *  @param env               The environment current at the reference.
 787      *  @param classExpected     true if only a class is expected here.
 788      *  @param interfaceExpected true if only an interface is expected here.
 789      */
 790     Type attribBase(JCTree tree,
 791                     Env<AttrContext> env,
 792                     boolean classExpected,
 793                     boolean interfaceExpected,
 794                     boolean checkExtensible) {
 795         Type t = tree.type != null ?
 796             tree.type :
 797             attribType(tree, env);
 798         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 799     }
 800     Type checkBase(Type t,
 801                    JCTree tree,
 802                    Env<AttrContext> env,
 803                    boolean classExpected,
 804                    boolean interfaceExpected,
 805                    boolean checkExtensible) {
 806         if (t.isErroneous())
 807             return t;
 808         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 809             // check that type variable is already visible
 810             if (t.getUpperBound() == null) {
 811                 log.error(tree.pos(), "illegal.forward.ref");
 812                 return types.createErrorType(t);
 813             }
 814         } else {
 815             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
 816         }
 817         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 818             log.error(tree.pos(), "intf.expected.here");
 819             // return errType is necessary since otherwise there might
 820             // be undetected cycles which cause attribution to loop
 821             return types.createErrorType(t);
 822         } else if (checkExtensible &&
 823                    classExpected &&
 824                    (t.tsym.flags() & INTERFACE) != 0) {
 825                 log.error(tree.pos(), "no.intf.expected.here");
 826             return types.createErrorType(t);
 827         }
 828         if (checkExtensible &&
 829             ((t.tsym.flags() & FINAL) != 0)) {
 830             log.error(tree.pos(),
 831                       "cant.inherit.from.final", t.tsym);
 832         }
 833         chk.checkNonCyclic(tree.pos(), t);
 834         return t;
 835     }
 836 
 837     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 838         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 839         id.type = env.info.scope.owner.type;
 840         id.sym = env.info.scope.owner;
 841         return id.type;
 842     }
 843 
 844     public void visitClassDef(JCClassDecl tree) {
 845         // Local classes have not been entered yet, so we need to do it now:
 846         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
 847             enter.classEnter(tree, env);
 848 
 849         ClassSymbol c = tree.sym;
 850         if (c == null) {
 851             // exit in case something drastic went wrong during enter.
 852             result = null;
 853         } else {
 854             // make sure class has been completed:
 855             c.complete();
 856 
 857             // If this class appears as an anonymous class
 858             // in a superclass constructor call where
 859             // no explicit outer instance is given,
 860             // disable implicit outer instance from being passed.
 861             // (This would be an illegal access to "this before super").
 862             if (env.info.isSelfCall &&
 863                 env.tree.hasTag(NEWCLASS) &&
 864                 ((JCNewClass) env.tree).encl == null)
 865             {
 866                 c.flags_field |= NOOUTERTHIS;
 867             }
 868             attribClass(tree.pos(), c);
 869             result = tree.type = c.type;
 870         }
 871     }
 872 
 873     public void visitMethodDef(JCMethodDecl tree) {
 874         MethodSymbol m = tree.sym;
 875         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 876 
 877         Lint lint = env.info.lint.augment(m.annotations, m.flags());
 878         Lint prevLint = chk.setLint(lint);
 879         MethodSymbol prevMethod = chk.setMethod(m);
 880         try {
 881             deferredLintHandler.flush(tree.pos());
 882             chk.checkDeprecatedAnnotation(tree.pos(), m);
 883 
 884 
 885             // Create a new environment with local scope
 886             // for attributing the method.
 887             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 888             localEnv.info.lint = lint;
 889 
 890             attribStats(tree.typarams, localEnv);
 891 
 892             // If we override any other methods, check that we do so properly.
 893             // JLS ???
 894             if (m.isStatic()) {
 895                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 896             } else {
 897                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 898             }
 899             chk.checkOverride(tree, m);
 900 
 901             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 902                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
 903             }
 904 
 905             // Enter all type parameters into the local method scope.
 906             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 907                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 908 
 909             ClassSymbol owner = env.enclClass.sym;
 910             if ((owner.flags() & ANNOTATION) != 0 &&
 911                 tree.params.nonEmpty())
 912                 log.error(tree.params.head.pos(),
 913                           "intf.annotation.members.cant.have.params");
 914 
 915             // Attribute all value parameters.
 916             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 917                 attribStat(l.head, localEnv);
 918             }
 919 
 920             chk.checkVarargsMethodDecl(localEnv, tree);
 921 
 922             // Check that type parameters are well-formed.
 923             chk.validate(tree.typarams, localEnv);
 924 
 925             // Check that result type is well-formed.
 926             chk.validate(tree.restype, localEnv);
 927 
 928             // Check that receiver type is well-formed.
 929             if (tree.recvparam != null) {
 930                 // Use a new environment to check the receiver parameter.
 931                 // Otherwise I get "might not have been initialized" errors.
 932                 // Is there a better way?
 933                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
 934                 attribType(tree.recvparam, newEnv);
 935                 chk.validate(tree.recvparam, newEnv);
 936                 if (!(tree.recvparam.type == m.owner.type || types.isSameType(tree.recvparam.type, m.owner.type))) {
 937                     // The == covers the common non-generic case, but for generic classes we need isSameType;
 938                     // note that equals didn't work.
 939                     log.error(tree.recvparam.pos(), "incorrect.receiver.type");
 940                 }
 941             }
 942 
 943             // annotation method checks
 944             if ((owner.flags() & ANNOTATION) != 0) {
 945                 // annotation method cannot have throws clause
 946                 if (tree.thrown.nonEmpty()) {
 947                     log.error(tree.thrown.head.pos(),
 948                             "throws.not.allowed.in.intf.annotation");
 949                 }
 950                 // annotation method cannot declare type-parameters
 951                 if (tree.typarams.nonEmpty()) {
 952                     log.error(tree.typarams.head.pos(),
 953                             "intf.annotation.members.cant.have.type.params");
 954                 }
 955                 // validate annotation method's return type (could be an annotation type)
 956                 chk.validateAnnotationType(tree.restype);
 957                 // ensure that annotation method does not clash with members of Object/Annotation
 958                 chk.validateAnnotationMethod(tree.pos(), m);
 959 
 960                 if (tree.defaultValue != null) {
 961                     // if default value is an annotation, check it is a well-formed
 962                     // annotation value (e.g. no duplicate values, no missing values, etc.)
 963                     chk.validateAnnotationTree(tree.defaultValue);
 964                 }
 965             }
 966 
 967             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
 968                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
 969 
 970             if (tree.body == null) {
 971                 // Empty bodies are only allowed for
 972                 // abstract, native, or interface methods, or for methods
 973                 // in a retrofit signature class.
 974                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
 975                     !relax)
 976                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
 977                 if (tree.defaultValue != null) {
 978                     if ((owner.flags() & ANNOTATION) == 0)
 979                         log.error(tree.pos(),
 980                                   "default.allowed.in.intf.annotation.member");
 981                 }
 982             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
 983                 if ((owner.flags() & INTERFACE) != 0) {
 984                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
 985                 } else {
 986                     log.error(tree.pos(), "abstract.meth.cant.have.body");
 987                 }
 988             } else if ((tree.mods.flags & NATIVE) != 0) {
 989                 log.error(tree.pos(), "native.meth.cant.have.body");
 990             } else {
 991                 // Add an implicit super() call unless an explicit call to
 992                 // super(...) or this(...) is given
 993                 // or we are compiling class java.lang.Object.
 994                 if (tree.name == names.init && owner.type != syms.objectType) {
 995                     JCBlock body = tree.body;
 996                     if (body.stats.isEmpty() ||
 997                         !TreeInfo.isSelfCall(body.stats.head)) {
 998                         body.stats = body.stats.
 999                             prepend(memberEnter.SuperCall(make.at(body.pos),
1000                                                           List.<Type>nil(),
1001                                                           List.<JCVariableDecl>nil(),
1002                                                           false));
1003                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1004                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1005                                TreeInfo.isSuperCall(body.stats.head)) {
1006                         // enum constructors are not allowed to call super
1007                         // directly, so make sure there aren't any super calls
1008                         // in enum constructors, except in the compiler
1009                         // generated one.
1010                         log.error(tree.body.stats.head.pos(),
1011                                   "call.to.super.not.allowed.in.enum.ctor",
1012                                   env.enclClass.sym);
1013                     }
1014                 }
1015 
1016                 // Attribute all type annotations in the body
1017                 memberEnter.typeAnnotate(tree.body, localEnv, m);
1018                 annotate.flush();
1019 
1020                 // Attribute method body.
1021                 attribStat(tree.body, localEnv);
1022             }
1023 
1024             localEnv.info.scope.leave();
1025             result = tree.type = m.type;
1026             chk.validateAnnotations(tree.mods.annotations, m);
1027         }
1028         finally {
1029             chk.setLint(prevLint);
1030             chk.setMethod(prevMethod);
1031         }
1032     }
1033 
1034     public void visitVarDef(JCVariableDecl tree) {
1035         // Local variables have not been entered yet, so we need to do it now:
1036         if (env.info.scope.owner.kind == MTH) {
1037             if (tree.sym != null) {
1038                 // parameters have already been entered
1039                 env.info.scope.enter(tree.sym);
1040             } else {
1041                 memberEnter.memberEnter(tree, env);
1042                 annotate.flush();
1043             }
1044         } else {
1045             if (tree.init != null) {
1046                 // Field initializer expression need to be entered.
1047                 memberEnter.typeAnnotate(tree.init, env, tree.sym);
1048                 annotate.flush();
1049             }
1050         }
1051 
1052         VarSymbol v = tree.sym;
1053         Lint lint = env.info.lint.augment(v.annotations, v.flags());
1054         Lint prevLint = chk.setLint(lint);
1055 
1056         // Check that the variable's declared type is well-formed.
1057         chk.validate(tree.vartype, env);
1058         deferredLintHandler.flush(tree.pos());
1059 
1060         try {
1061             chk.checkDeprecatedAnnotation(tree.pos(), v);
1062 
1063             if (tree.init != null) {
1064                 if ((v.flags_field & FINAL) != 0 &&
1065                         !tree.init.hasTag(NEWCLASS) &&
1066                         !tree.init.hasTag(LAMBDA) &&
1067                         !tree.init.hasTag(REFERENCE)) {
1068                     // In this case, `v' is final.  Ensure that it's initializer is
1069                     // evaluated.
1070                     v.getConstValue(); // ensure initializer is evaluated
1071                 } else {
1072                     // Attribute initializer in a new environment
1073                     // with the declared variable as owner.
1074                     // Check that initializer conforms to variable's declared type.
1075                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1076                     initEnv.info.lint = lint;
1077                     // In order to catch self-references, we set the variable's
1078                     // declaration position to maximal possible value, effectively
1079                     // marking the variable as undefined.
1080                     initEnv.info.enclVar = v;
1081                     attribExpr(tree.init, initEnv, v.type);
1082                 }
1083             }
1084             result = tree.type = v.type;
1085             chk.validateAnnotations(tree.mods.annotations, v);
1086         }
1087         finally {
1088             chk.setLint(prevLint);
1089         }
1090     }
1091 
1092     public void visitSkip(JCSkip tree) {
1093         result = null;
1094     }
1095 
1096     public void visitBlock(JCBlock tree) {
1097         if (env.info.scope.owner.kind == TYP) {
1098             // Block is a static or instance initializer;
1099             // let the owner of the environment be a freshly
1100             // created BLOCK-method.
1101             Env<AttrContext> localEnv =
1102                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
1103             localEnv.info.scope.owner =
1104                 new MethodSymbol(tree.flags | BLOCK |
1105                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1106                     env.info.scope.owner);
1107             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1108 
1109             // Attribute all type annotations in the block
1110             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner);
1111             annotate.flush();
1112 
1113             attribStats(tree.stats, localEnv);
1114         } else {
1115             // Create a new local environment with a local scope.
1116             Env<AttrContext> localEnv =
1117                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1118             try {
1119                 attribStats(tree.stats, localEnv);
1120             } finally {
1121                 localEnv.info.scope.leave();
1122             }
1123         }
1124         result = null;
1125     }
1126 
1127     public void visitDoLoop(JCDoWhileLoop tree) {
1128         attribStat(tree.body, env.dup(tree));
1129         attribExpr(tree.cond, env, syms.booleanType);
1130         result = null;
1131     }
1132 
1133     public void visitWhileLoop(JCWhileLoop tree) {
1134         attribExpr(tree.cond, env, syms.booleanType);
1135         attribStat(tree.body, env.dup(tree));
1136         result = null;
1137     }
1138 
1139     public void visitForLoop(JCForLoop tree) {
1140         Env<AttrContext> loopEnv =
1141             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1142         try {
1143             attribStats(tree.init, loopEnv);
1144             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1145             loopEnv.tree = tree; // before, we were not in loop!
1146             attribStats(tree.step, loopEnv);
1147             attribStat(tree.body, loopEnv);
1148             result = null;
1149         }
1150         finally {
1151             loopEnv.info.scope.leave();
1152         }
1153     }
1154 
1155     public void visitForeachLoop(JCEnhancedForLoop tree) {
1156         Env<AttrContext> loopEnv =
1157             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1158         try {
1159             attribStat(tree.var, loopEnv);
1160             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
1161             chk.checkNonVoid(tree.pos(), exprType);
1162             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1163             if (elemtype == null) {
1164                 // or perhaps expr implements Iterable<T>?
1165                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1166                 if (base == null) {
1167                     log.error(tree.expr.pos(),
1168                             "foreach.not.applicable.to.type",
1169                             exprType,
1170                             diags.fragment("type.req.array.or.iterable"));
1171                     elemtype = types.createErrorType(exprType);
1172                 } else {
1173                     List<Type> iterableParams = base.allparams();
1174                     elemtype = iterableParams.isEmpty()
1175                         ? syms.objectType
1176                         : types.upperBound(iterableParams.head);
1177                 }
1178             }
1179             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1180             loopEnv.tree = tree; // before, we were not in loop!
1181             attribStat(tree.body, loopEnv);
1182             result = null;
1183         }
1184         finally {
1185             loopEnv.info.scope.leave();
1186         }
1187     }
1188 
1189     public void visitLabelled(JCLabeledStatement tree) {
1190         // Check that label is not used in an enclosing statement
1191         Env<AttrContext> env1 = env;
1192         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1193             if (env1.tree.hasTag(LABELLED) &&
1194                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1195                 log.error(tree.pos(), "label.already.in.use",
1196                           tree.label);
1197                 break;
1198             }
1199             env1 = env1.next;
1200         }
1201 
1202         attribStat(tree.body, env.dup(tree));
1203         result = null;
1204     }
1205 
1206     public void visitSwitch(JCSwitch tree) {
1207         Type seltype = attribExpr(tree.selector, env);
1208 
1209         Env<AttrContext> switchEnv =
1210             env.dup(tree, env.info.dup(env.info.scope.dup()));
1211 
1212         try {
1213 
1214             boolean enumSwitch =
1215                 allowEnums &&
1216                 (seltype.tsym.flags() & Flags.ENUM) != 0;
1217             boolean stringSwitch = false;
1218             if (types.isSameType(seltype, syms.stringType)) {
1219                 if (allowStringsInSwitch) {
1220                     stringSwitch = true;
1221                 } else {
1222                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1223                 }
1224             }
1225             if (!enumSwitch && !stringSwitch)
1226                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1227 
1228             // Attribute all cases and
1229             // check that there are no duplicate case labels or default clauses.
1230             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
1231             boolean hasDefault = false;      // Is there a default label?
1232             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1233                 JCCase c = l.head;
1234                 Env<AttrContext> caseEnv =
1235                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1236                 try {
1237                     if (c.pat != null) {
1238                         if (enumSwitch) {
1239                             Symbol sym = enumConstant(c.pat, seltype);
1240                             if (sym == null) {
1241                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1242                             } else if (!labels.add(sym)) {
1243                                 log.error(c.pos(), "duplicate.case.label");
1244                             }
1245                         } else {
1246                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
1247                             if (!pattype.hasTag(ERROR)) {
1248                                 if (pattype.constValue() == null) {
1249                                     log.error(c.pat.pos(),
1250                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
1251                                 } else if (labels.contains(pattype.constValue())) {
1252                                     log.error(c.pos(), "duplicate.case.label");
1253                                 } else {
1254                                     labels.add(pattype.constValue());
1255                                 }
1256                             }
1257                         }
1258                     } else if (hasDefault) {
1259                         log.error(c.pos(), "duplicate.default.label");
1260                     } else {
1261                         hasDefault = true;
1262                     }
1263                     attribStats(c.stats, caseEnv);
1264                 } finally {
1265                     caseEnv.info.scope.leave();
1266                     addVars(c.stats, switchEnv.info.scope);
1267                 }
1268             }
1269 
1270             result = null;
1271         }
1272         finally {
1273             switchEnv.info.scope.leave();
1274         }
1275     }
1276     // where
1277         /** Add any variables defined in stats to the switch scope. */
1278         private static void addVars(List<JCStatement> stats, Scope switchScope) {
1279             for (;stats.nonEmpty(); stats = stats.tail) {
1280                 JCTree stat = stats.head;
1281                 if (stat.hasTag(VARDEF))
1282                     switchScope.enter(((JCVariableDecl) stat).sym);
1283             }
1284         }
1285     // where
1286     /** Return the selected enumeration constant symbol, or null. */
1287     private Symbol enumConstant(JCTree tree, Type enumType) {
1288         if (!tree.hasTag(IDENT)) {
1289             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
1290             return syms.errSymbol;
1291         }
1292         JCIdent ident = (JCIdent)tree;
1293         Name name = ident.name;
1294         for (Scope.Entry e = enumType.tsym.members().lookup(name);
1295              e.scope != null; e = e.next()) {
1296             if (e.sym.kind == VAR) {
1297                 Symbol s = ident.sym = e.sym;
1298                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1299                 ident.type = s.type;
1300                 return ((s.flags_field & Flags.ENUM) == 0)
1301                     ? null : s;
1302             }
1303         }
1304         return null;
1305     }
1306 
1307     public void visitSynchronized(JCSynchronized tree) {
1308         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1309         attribStat(tree.body, env);
1310         result = null;
1311     }
1312 
1313     public void visitTry(JCTry tree) {
1314         // Create a new local environment with a local
1315         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1316         try {
1317             boolean isTryWithResource = tree.resources.nonEmpty();
1318             // Create a nested environment for attributing the try block if needed
1319             Env<AttrContext> tryEnv = isTryWithResource ?
1320                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1321                 localEnv;
1322             try {
1323                 // Attribute resource declarations
1324                 for (JCTree resource : tree.resources) {
1325                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1326                         @Override
1327                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1328                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1329                         }
1330                     };
1331                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
1332                     if (resource.hasTag(VARDEF)) {
1333                         attribStat(resource, tryEnv);
1334                         twrResult.check(resource, resource.type);
1335 
1336                         //check that resource type cannot throw InterruptedException
1337                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1338 
1339                         VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
1340                         var.setData(ElementKind.RESOURCE_VARIABLE);
1341                     } else {
1342                         attribTree(resource, tryEnv, twrResult);
1343                     }
1344                 }
1345                 // Attribute body
1346                 attribStat(tree.body, tryEnv);
1347             } finally {
1348                 if (isTryWithResource)
1349                     tryEnv.info.scope.leave();
1350             }
1351 
1352             // Attribute catch clauses
1353             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1354                 JCCatch c = l.head;
1355                 Env<AttrContext> catchEnv =
1356                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1357                 try {
1358                     Type ctype = attribStat(c.param, catchEnv);
1359                     if (TreeInfo.isMultiCatch(c)) {
1360                         //multi-catch parameter is implicitly marked as final
1361                         c.param.sym.flags_field |= FINAL | UNION;
1362                     }
1363                     if (c.param.sym.kind == Kinds.VAR) {
1364                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1365                     }
1366                     chk.checkType(c.param.vartype.pos(),
1367                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1368                                   syms.throwableType);
1369                     attribStat(c.body, catchEnv);
1370                 } finally {
1371                     catchEnv.info.scope.leave();
1372                 }
1373             }
1374 
1375             // Attribute finalizer
1376             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1377             result = null;
1378         }
1379         finally {
1380             localEnv.info.scope.leave();
1381         }
1382     }
1383 
1384     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1385         if (!resource.isErroneous() &&
1386             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1387             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1388             Symbol close = syms.noSymbol;
1389             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1390             try {
1391                 close = rs.resolveQualifiedMethod(pos,
1392                         env,
1393                         resource,
1394                         names.close,
1395                         List.<Type>nil(),
1396                         List.<Type>nil());
1397             }
1398             finally {
1399                 log.popDiagnosticHandler(discardHandler);
1400             }
1401             if (close.kind == MTH &&
1402                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1403                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1404                     env.info.lint.isEnabled(LintCategory.TRY)) {
1405                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1406             }
1407         }
1408     }
1409 
1410     public void visitConditional(JCConditional tree) {
1411         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1412 
1413         tree.polyKind = (!allowPoly ||
1414                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
1415                 isBooleanOrNumeric(env, tree)) ?
1416                 PolyKind.STANDALONE : PolyKind.POLY;
1417 
1418         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1419             //cannot get here (i.e. it means we are returning from void method - which is already an error)
1420             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1421             result = tree.type = types.createErrorType(resultInfo.pt);
1422             return;
1423         }
1424 
1425         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1426                 unknownExprInfo :
1427                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1428                     //this will use enclosing check context to check compatibility of
1429                     //subexpression against target type; if we are in a method check context,
1430                     //depending on whether boxing is allowed, we could have incompatibilities
1431                     @Override
1432                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
1433                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1434                     }
1435                 });
1436 
1437         Type truetype = attribTree(tree.truepart, env, condInfo);
1438         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1439 
1440         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1441         if (condtype.constValue() != null &&
1442                 truetype.constValue() != null &&
1443                 falsetype.constValue() != null &&
1444                 !owntype.hasTag(NONE)) {
1445             //constant folding
1446             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1447         }
1448         result = check(tree, owntype, VAL, resultInfo);
1449     }
1450     //where
1451         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1452             switch (tree.getTag()) {
1453                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1454                               ((JCLiteral)tree).typetag == BOOLEAN ||
1455                               ((JCLiteral)tree).typetag == BOT;
1456                 case LAMBDA: case REFERENCE: return false;
1457                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1458                 case CONDEXPR:
1459                     JCConditional condTree = (JCConditional)tree;
1460                     return isBooleanOrNumeric(env, condTree.truepart) &&
1461                             isBooleanOrNumeric(env, condTree.falsepart);
1462                 case APPLY:
1463                     JCMethodInvocation speculativeMethodTree =
1464                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1465                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
1466                     return types.unboxedTypeOrType(owntype).isPrimitive();
1467                 case NEWCLASS:
1468                     JCExpression className =
1469                             removeClassParams.translate(((JCNewClass)tree).clazz);
1470                     JCExpression speculativeNewClassTree =
1471                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1472                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
1473                 default:
1474                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1475                     speculativeType = types.unboxedTypeOrType(speculativeType);
1476                     return speculativeType.isPrimitive();
1477             }
1478         }
1479         //where
1480             TreeTranslator removeClassParams = new TreeTranslator() {
1481                 @Override
1482                 public void visitTypeApply(JCTypeApply tree) {
1483                     result = translate(tree.clazz);
1484                 }
1485             };
1486 
1487         /** Compute the type of a conditional expression, after
1488          *  checking that it exists.  See JLS 15.25. Does not take into
1489          *  account the special case where condition and both arms
1490          *  are constants.
1491          *
1492          *  @param pos      The source position to be used for error
1493          *                  diagnostics.
1494          *  @param thentype The type of the expression's then-part.
1495          *  @param elsetype The type of the expression's else-part.
1496          */
1497         private Type condType(DiagnosticPosition pos,
1498                                Type thentype, Type elsetype) {
1499             // If same type, that is the result
1500             if (types.isSameType(thentype, elsetype))
1501                 return thentype.baseType();
1502 
1503             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
1504                 ? thentype : types.unboxedType(thentype);
1505             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
1506                 ? elsetype : types.unboxedType(elsetype);
1507 
1508             // Otherwise, if both arms can be converted to a numeric
1509             // type, return the least numeric type that fits both arms
1510             // (i.e. return larger of the two, or return int if one
1511             // arm is short, the other is char).
1512             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1513                 // If one arm has an integer subrange type (i.e., byte,
1514                 // short, or char), and the other is an integer constant
1515                 // that fits into the subrange, return the subrange type.
1516                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) && elseUnboxed.hasTag(INT) &&
1517                     types.isAssignable(elseUnboxed, thenUnboxed))
1518                     return thenUnboxed.baseType();
1519                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) && thenUnboxed.hasTag(INT) &&
1520                     types.isAssignable(thenUnboxed, elseUnboxed))
1521                     return elseUnboxed.baseType();
1522 
1523                 for (TypeTag tag : TypeTag.values()) {
1524                     if (tag.ordinal() >= TypeTag.getTypeTagCount()) break;
1525                     Type candidate = syms.typeOfTag[tag.ordinal()];
1526                     if (candidate != null &&
1527                         candidate.isPrimitive() &&
1528                         types.isSubtype(thenUnboxed, candidate) &&
1529                         types.isSubtype(elseUnboxed, candidate))
1530                         return candidate;
1531                 }
1532             }
1533 
1534             // Those were all the cases that could result in a primitive
1535             if (allowBoxing) {
1536                 if (thentype.isPrimitive())
1537                     thentype = types.boxedClass(thentype).type;
1538                 if (elsetype.isPrimitive())
1539                     elsetype = types.boxedClass(elsetype).type;
1540             }
1541 
1542             if (types.isSubtype(thentype, elsetype))
1543                 return elsetype.baseType();
1544             if (types.isSubtype(elsetype, thentype))
1545                 return thentype.baseType();
1546 
1547             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1548                 log.error(pos, "neither.conditional.subtype",
1549                           thentype, elsetype);
1550                 return thentype.baseType();
1551             }
1552 
1553             // both are known to be reference types.  The result is
1554             // lub(thentype,elsetype). This cannot fail, as it will
1555             // always be possible to infer "Object" if nothing better.
1556             return types.lub(thentype.baseType(), elsetype.baseType());
1557         }
1558 
1559     public void visitIf(JCIf tree) {
1560         attribExpr(tree.cond, env, syms.booleanType);
1561         attribStat(tree.thenpart, env);
1562         if (tree.elsepart != null)
1563             attribStat(tree.elsepart, env);
1564         chk.checkEmptyIf(tree);
1565         result = null;
1566     }
1567 
1568     public void visitExec(JCExpressionStatement tree) {
1569         //a fresh environment is required for 292 inference to work properly ---
1570         //see Infer.instantiatePolymorphicSignatureInstance()
1571         Env<AttrContext> localEnv = env.dup(tree);
1572         attribExpr(tree.expr, localEnv);
1573         result = null;
1574     }
1575 
1576     public void visitBreak(JCBreak tree) {
1577         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1578         result = null;
1579     }
1580 
1581     public void visitContinue(JCContinue tree) {
1582         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1583         result = null;
1584     }
1585     //where
1586         /** Return the target of a break or continue statement, if it exists,
1587          *  report an error if not.
1588          *  Note: The target of a labelled break or continue is the
1589          *  (non-labelled) statement tree referred to by the label,
1590          *  not the tree representing the labelled statement itself.
1591          *
1592          *  @param pos     The position to be used for error diagnostics
1593          *  @param tag     The tag of the jump statement. This is either
1594          *                 Tree.BREAK or Tree.CONTINUE.
1595          *  @param label   The label of the jump statement, or null if no
1596          *                 label is given.
1597          *  @param env     The environment current at the jump statement.
1598          */
1599         private JCTree findJumpTarget(DiagnosticPosition pos,
1600                                     JCTree.Tag tag,
1601                                     Name label,
1602                                     Env<AttrContext> env) {
1603             // Search environments outwards from the point of jump.
1604             Env<AttrContext> env1 = env;
1605             LOOP:
1606             while (env1 != null) {
1607                 switch (env1.tree.getTag()) {
1608                     case LABELLED:
1609                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1610                         if (label == labelled.label) {
1611                             // If jump is a continue, check that target is a loop.
1612                             if (tag == CONTINUE) {
1613                                 if (!labelled.body.hasTag(DOLOOP) &&
1614                                         !labelled.body.hasTag(WHILELOOP) &&
1615                                         !labelled.body.hasTag(FORLOOP) &&
1616                                         !labelled.body.hasTag(FOREACHLOOP))
1617                                     log.error(pos, "not.loop.label", label);
1618                                 // Found labelled statement target, now go inwards
1619                                 // to next non-labelled tree.
1620                                 return TreeInfo.referencedStatement(labelled);
1621                             } else {
1622                                 return labelled;
1623                             }
1624                         }
1625                         break;
1626                     case DOLOOP:
1627                     case WHILELOOP:
1628                     case FORLOOP:
1629                     case FOREACHLOOP:
1630                         if (label == null) return env1.tree;
1631                         break;
1632                     case SWITCH:
1633                         if (label == null && tag == BREAK) return env1.tree;
1634                         break;
1635                     case LAMBDA:
1636                     case METHODDEF:
1637                     case CLASSDEF:
1638                         break LOOP;
1639                     default:
1640                 }
1641                 env1 = env1.next;
1642             }
1643             if (label != null)
1644                 log.error(pos, "undef.label", label);
1645             else if (tag == CONTINUE)
1646                 log.error(pos, "cont.outside.loop");
1647             else
1648                 log.error(pos, "break.outside.switch.loop");
1649             return null;
1650         }
1651 
1652     public void visitReturn(JCReturn tree) {
1653         // Check that there is an enclosing method which is
1654         // nested within than the enclosing class.
1655         if (env.info.returnResult == null) {
1656             log.error(tree.pos(), "ret.outside.meth");
1657         } else {
1658             // Attribute return expression, if it exists, and check that
1659             // it conforms to result type of enclosing method.
1660             if (tree.expr != null) {
1661                 if (env.info.returnResult.pt.hasTag(VOID)) {
1662                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1663                               diags.fragment("unexpected.ret.val"));
1664                 }
1665                 attribTree(tree.expr, env, env.info.returnResult);
1666             } else if (!env.info.returnResult.pt.hasTag(VOID)) {
1667                 env.info.returnResult.checkContext.report(tree.pos(),
1668                               diags.fragment("missing.ret.val"));
1669             }
1670         }
1671         result = null;
1672     }
1673 
1674     public void visitThrow(JCThrow tree) {
1675         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1676         if (allowPoly) {
1677             chk.checkType(tree, owntype, syms.throwableType);
1678         }
1679         result = null;
1680     }
1681 
1682     public void visitAssert(JCAssert tree) {
1683         attribExpr(tree.cond, env, syms.booleanType);
1684         if (tree.detail != null) {
1685             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1686         }
1687         result = null;
1688     }
1689 
1690      /** Visitor method for method invocations.
1691      *  NOTE: The method part of an application will have in its type field
1692      *        the return type of the method, not the method's type itself!
1693      */
1694     public void visitApply(JCMethodInvocation tree) {
1695         // The local environment of a method application is
1696         // a new environment nested in the current one.
1697         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1698 
1699         // The types of the actual method arguments.
1700         List<Type> argtypes;
1701 
1702         // The types of the actual method type arguments.
1703         List<Type> typeargtypes = null;
1704 
1705         Name methName = TreeInfo.name(tree.meth);
1706 
1707         boolean isConstructorCall =
1708             methName == names._this || methName == names._super;
1709 
1710         if (isConstructorCall) {
1711             // We are seeing a ...this(...) or ...super(...) call.
1712             // Check that this is the first statement in a constructor.
1713             if (checkFirstConstructorStat(tree, env)) {
1714 
1715                 // Record the fact
1716                 // that this is a constructor call (using isSelfCall).
1717                 localEnv.info.isSelfCall = true;
1718 
1719                 // Attribute arguments, yielding list of argument types.
1720                 argtypes = attribArgs(tree.args, localEnv);
1721                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1722 
1723                 // Variable `site' points to the class in which the called
1724                 // constructor is defined.
1725                 Type site = env.enclClass.sym.type;
1726                 if (methName == names._super) {
1727                     if (site == syms.objectType) {
1728                         log.error(tree.meth.pos(), "no.superclass", site);
1729                         site = types.createErrorType(syms.objectType);
1730                     } else {
1731                         site = types.supertype(site);
1732                     }
1733                 }
1734 
1735                 if (site.hasTag(CLASS)) {
1736                     Type encl = site.getEnclosingType();
1737                     while (encl != null && encl.hasTag(TYPEVAR))
1738                         encl = encl.getUpperBound();
1739                     if (encl.hasTag(CLASS)) {
1740                         // we are calling a nested class
1741 
1742                         if (tree.meth.hasTag(SELECT)) {
1743                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1744 
1745                             // We are seeing a prefixed call, of the form
1746                             //     <expr>.super(...).
1747                             // Check that the prefix expression conforms
1748                             // to the outer instance type of the class.
1749                             chk.checkRefType(qualifier.pos(),
1750                                              attribExpr(qualifier, localEnv,
1751                                                         encl));
1752                         } else if (methName == names._super) {
1753                             // qualifier omitted; check for existence
1754                             // of an appropriate implicit qualifier.
1755                             rs.resolveImplicitThis(tree.meth.pos(),
1756                                                    localEnv, site, true);
1757                         }
1758                     } else if (tree.meth.hasTag(SELECT)) {
1759                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1760                                   site.tsym);
1761                     }
1762 
1763                     // if we're calling a java.lang.Enum constructor,
1764                     // prefix the implicit String and int parameters
1765                     if (site.tsym == syms.enumSym && allowEnums)
1766                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1767 
1768                     // Resolve the called constructor under the assumption
1769                     // that we are referring to a superclass instance of the
1770                     // current instance (JLS ???).
1771                     boolean selectSuperPrev = localEnv.info.selectSuper;
1772                     localEnv.info.selectSuper = true;
1773                     localEnv.info.pendingResolutionPhase = null;
1774                     Symbol sym = rs.resolveConstructor(
1775                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1776                     localEnv.info.selectSuper = selectSuperPrev;
1777 
1778                     // Set method symbol to resolved constructor...
1779                     TreeInfo.setSymbol(tree.meth, sym);
1780 
1781                     // ...and check that it is legal in the current context.
1782                     // (this will also set the tree's type)
1783                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1784                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
1785                 }
1786                 // Otherwise, `site' is an error type and we do nothing
1787             }
1788             result = tree.type = syms.voidType;
1789         } else {
1790             // Otherwise, we are seeing a regular method call.
1791             // Attribute the arguments, yielding list of argument types, ...
1792             argtypes = attribArgs(tree.args, localEnv);
1793             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1794 
1795             // ... and attribute the method using as a prototype a methodtype
1796             // whose formal argument types is exactly the list of actual
1797             // arguments (this will also set the method symbol).
1798             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1799             localEnv.info.pendingResolutionPhase = null;
1800             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext));
1801 
1802             // Compute the result type.
1803             Type restype = mtype.getReturnType();
1804             if (restype.hasTag(WILDCARD))
1805                 throw new AssertionError(mtype);
1806 
1807             Type qualifier = (tree.meth.hasTag(SELECT))
1808                     ? ((JCFieldAccess) tree.meth).selected.type
1809                     : env.enclClass.sym.type;
1810             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1811 
1812             chk.checkRefTypes(tree.typeargs, typeargtypes);
1813 
1814             // Check that value of resulting type is admissible in the
1815             // current context.  Also, capture the return type
1816             result = check(tree, capture(restype), VAL, resultInfo);
1817 
1818             if (localEnv.info.lastResolveVarargs())
1819                 Assert.check(result.isErroneous() || tree.varargsElement != null);
1820         }
1821         chk.validate(tree.typeargs, localEnv);
1822     }
1823     //where
1824         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1825             if (allowCovariantReturns &&
1826                     methodName == names.clone &&
1827                 types.isArray(qualifierType)) {
1828                 // as a special case, array.clone() has a result that is
1829                 // the same as static type of the array being cloned
1830                 return qualifierType;
1831             } else if (allowGenerics &&
1832                     methodName == names.getClass &&
1833                     argtypes.isEmpty()) {
1834                 // as a special case, x.getClass() has type Class<? extends |X|>
1835                 return new ClassType(restype.getEnclosingType(),
1836                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
1837                                                                BoundKind.EXTENDS,
1838                                                                syms.boundClass)),
1839                               restype.tsym);
1840             } else {
1841                 return restype;
1842             }
1843         }
1844 
1845         /** Check that given application node appears as first statement
1846          *  in a constructor call.
1847          *  @param tree   The application node
1848          *  @param env    The environment current at the application.
1849          */
1850         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1851             JCMethodDecl enclMethod = env.enclMethod;
1852             if (enclMethod != null && enclMethod.name == names.init) {
1853                 JCBlock body = enclMethod.body;
1854                 if (body.stats.head.hasTag(EXEC) &&
1855                     ((JCExpressionStatement) body.stats.head).expr == tree)
1856                     return true;
1857             }
1858             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1859                       TreeInfo.name(tree.meth));
1860             return false;
1861         }
1862 
1863         /** Obtain a method type with given argument types.
1864          */
1865         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1866             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1867             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1868         }
1869 
1870     public void visitNewClass(final JCNewClass tree) {
1871         Type owntype = types.createErrorType(tree.type);
1872 
1873         // The local environment of a class creation is
1874         // a new environment nested in the current one.
1875         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1876 
1877         // The anonymous inner class definition of the new expression,
1878         // if one is defined by it.
1879         JCClassDecl cdef = tree.def;
1880 
1881         // If enclosing class is given, attribute it, and
1882         // complete class name to be fully qualified
1883         JCExpression clazz = tree.clazz; // Class field following new
1884         JCExpression clazzid;            // Identifier in class field
1885         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1886         annoclazzid = null;
1887 
1888         if (clazz.hasTag(TYPEAPPLY)) {
1889             clazzid = ((JCTypeApply) clazz).clazz;
1890             if (clazzid.hasTag(ANNOTATED_TYPE)) {
1891                 annoclazzid = (JCAnnotatedType) clazzid;
1892                 clazzid = annoclazzid.underlyingType;
1893             }
1894         } else {
1895             if (clazz.hasTag(ANNOTATED_TYPE)) {
1896                 annoclazzid = (JCAnnotatedType) clazz;
1897                 clazzid = annoclazzid.underlyingType;
1898             } else {
1899                 clazzid = clazz;
1900             }
1901         }
1902 
1903         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1904 
1905         if (tree.encl != null) {
1906             // We are seeing a qualified new, of the form
1907             //    <expr>.new C <...> (...) ...
1908             // In this case, we let clazz stand for the name of the
1909             // allocated class C prefixed with the type of the qualifier
1910             // expression, so that we can
1911             // resolve it with standard techniques later. I.e., if
1912             // <expr> has type T, then <expr>.new C <...> (...)
1913             // yields a clazz T.C.
1914             Type encltype = chk.checkRefType(tree.encl.pos(),
1915                                              attribExpr(tree.encl, env));
1916             // TODO 308: in <expr>.new C, do we also want to add the type annotations
1917             // from expr to the combined type, or not? Yes, do this.
1918             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1919                                                  ((JCIdent) clazzid).name);
1920 
1921             if (clazz.hasTag(ANNOTATED_TYPE)) {
1922                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1923                 List<JCAnnotation> annos = annoType.annotations;
1924 
1925                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1926                     clazzid1 = make.at(tree.pos).
1927                         TypeApply(clazzid1,
1928                                   ((JCTypeApply) clazz).arguments);
1929                 }
1930 
1931                 clazzid1 = make.at(tree.pos).
1932                     AnnotatedType(annos, clazzid1);
1933             } else if (clazz.hasTag(TYPEAPPLY)) {
1934                 clazzid1 = make.at(tree.pos).
1935                     TypeApply(clazzid1,
1936                               ((JCTypeApply) clazz).arguments);
1937             }
1938 
1939             clazz = clazzid1;
1940         }
1941 
1942         // Attribute clazz expression and store
1943         // symbol + type back into the attributed tree.
1944         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
1945             attribIdentAsEnumType(env, (JCIdent)clazz) :
1946             attribType(clazz, env);
1947 
1948         clazztype = chk.checkDiamond(tree, clazztype);
1949         chk.validate(clazz, localEnv);
1950         if (tree.encl != null) {
1951             // We have to work in this case to store
1952             // symbol + type back into the attributed tree.
1953             tree.clazz.type = clazztype;
1954             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1955             clazzid.type = ((JCIdent) clazzid).sym.type;
1956             if (annoclazzid != null) {
1957                 annoclazzid.type = clazzid.type;
1958             }
1959             if (!clazztype.isErroneous()) {
1960                 if (cdef != null && clazztype.tsym.isInterface()) {
1961                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1962                 } else if (clazztype.tsym.isStatic()) {
1963                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1964                 }
1965             }
1966         } else if (!clazztype.tsym.isInterface() &&
1967                    clazztype.getEnclosingType().hasTag(CLASS)) {
1968             // Check for the existence of an apropos outer instance
1969             rs.resolveImplicitThis(tree.pos(), env, clazztype);
1970         }
1971 
1972         // Attribute constructor arguments.
1973         List<Type> argtypes = attribArgs(tree.args, localEnv);
1974         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1975 
1976         // If we have made no mistakes in the class type...
1977         if (clazztype.hasTag(CLASS)) {
1978             // Enums may not be instantiated except implicitly
1979             if (allowEnums &&
1980                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
1981                 (!env.tree.hasTag(VARDEF) ||
1982                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
1983                  ((JCVariableDecl) env.tree).init != tree))
1984                 log.error(tree.pos(), "enum.cant.be.instantiated");
1985             // Check that class is not abstract
1986             if (cdef == null &&
1987                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
1988                 log.error(tree.pos(), "abstract.cant.be.instantiated",
1989                           clazztype.tsym);
1990             } else if (cdef != null && clazztype.tsym.isInterface()) {
1991                 // Check that no constructor arguments are given to
1992                 // anonymous classes implementing an interface
1993                 if (!argtypes.isEmpty())
1994                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
1995 
1996                 if (!typeargtypes.isEmpty())
1997                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
1998 
1999                 // Error recovery: pretend no arguments were supplied.
2000                 argtypes = List.nil();
2001                 typeargtypes = List.nil();
2002             } else if (TreeInfo.isDiamond(tree)) {
2003                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2004                             clazztype.tsym.type.getTypeArguments(),
2005                             clazztype.tsym);
2006 
2007                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2008                 diamondEnv.info.selectSuper = cdef != null;
2009                 diamondEnv.info.pendingResolutionPhase = null;
2010 
2011                 //if the type of the instance creation expression is a class type
2012                 //apply method resolution inference (JLS 15.12.2.7). The return type
2013                 //of the resolved constructor will be a partially instantiated type
2014                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2015                             diamondEnv,
2016                             site,
2017                             argtypes,
2018                             typeargtypes);
2019                 tree.constructor = constructor.baseSymbol();
2020 
2021                 final TypeSymbol csym = clazztype.tsym;
2022                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2023                     @Override
2024                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2025                         enclosingContext.report(tree.clazz,
2026                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2027                     }
2028                 });
2029                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2030                 constructorType = checkId(tree, site,
2031                         constructor,
2032                         diamondEnv,
2033                         diamondResult);
2034 
2035                 tree.clazz.type = types.createErrorType(clazztype);
2036                 if (!constructorType.isErroneous()) {
2037                     tree.clazz.type = clazztype = constructorType.getReturnType();
2038                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2039                 }
2040                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2041             }
2042 
2043             // Resolve the called constructor under the assumption
2044             // that we are referring to a superclass instance of the
2045             // current instance (JLS ???).
2046             else {
2047                 //the following code alters some of the fields in the current
2048                 //AttrContext - hence, the current context must be dup'ed in
2049                 //order to avoid downstream failures
2050                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2051                 rsEnv.info.selectSuper = cdef != null;
2052                 rsEnv.info.pendingResolutionPhase = null;
2053                 tree.constructor = rs.resolveConstructor(
2054                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2055                 if (cdef == null) { //do not check twice!
2056                     tree.constructorType = checkId(tree,
2057                             clazztype,
2058                             tree.constructor,
2059                             rsEnv,
2060                             new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2061                     if (rsEnv.info.lastResolveVarargs())
2062                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2063                 }
2064                 findDiamondIfNeeded(localEnv, tree, clazztype);
2065             }
2066 
2067             if (cdef != null) {
2068                 // We are seeing an anonymous class instance creation.
2069                 // In this case, the class instance creation
2070                 // expression
2071                 //
2072                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2073                 //
2074                 // is represented internally as
2075                 //
2076                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2077                 //
2078                 // This expression is then *transformed* as follows:
2079                 //
2080                 // (1) add a STATIC flag to the class definition
2081                 //     if the current environment is static
2082                 // (2) add an extends or implements clause
2083                 // (3) add a constructor.
2084                 //
2085                 // For instance, if C is a class, and ET is the type of E,
2086                 // the expression
2087                 //
2088                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2089                 //
2090                 // is translated to (where X is a fresh name and typarams is the
2091                 // parameter list of the super constructor):
2092                 //
2093                 //   new <typeargs1>X(<*nullchk*>E, args) where
2094                 //     X extends C<typargs2> {
2095                 //       <typarams> X(ET e, args) {
2096                 //         e.<typeargs1>super(args)
2097                 //       }
2098                 //       ...
2099                 //     }
2100                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
2101 
2102                 if (clazztype.tsym.isInterface()) {
2103                     cdef.implementing = List.of(clazz);
2104                 } else {
2105                     cdef.extending = clazz;
2106                 }
2107 
2108                 attribStat(cdef, localEnv);
2109 
2110                 checkLambdaCandidate(tree, cdef.sym, clazztype);
2111 
2112                 // If an outer instance is given,
2113                 // prefix it to the constructor arguments
2114                 // and delete it from the new expression
2115                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2116                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2117                     argtypes = argtypes.prepend(tree.encl.type);
2118                     tree.encl = null;
2119                 }
2120 
2121                 // Reassign clazztype and recompute constructor.
2122                 clazztype = cdef.sym.type;
2123                 Symbol sym = tree.constructor = rs.resolveConstructor(
2124                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
2125                 Assert.check(sym.kind < AMBIGUOUS);
2126                 tree.constructor = sym;
2127                 tree.constructorType = checkId(tree,
2128                     clazztype,
2129                     tree.constructor,
2130                     localEnv,
2131                     new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2132             }
2133 
2134             if (tree.constructor != null && tree.constructor.kind == MTH)
2135                 owntype = clazztype;
2136         }
2137         result = check(tree, owntype, VAL, resultInfo);
2138         chk.validate(tree.typeargs, localEnv);
2139     }
2140     //where
2141         void findDiamondIfNeeded(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
2142             if (tree.def == null &&
2143                     !clazztype.isErroneous() &&
2144                     clazztype.getTypeArguments().nonEmpty() &&
2145                     findDiamonds) {
2146                 JCTypeApply ta = (JCTypeApply)tree.clazz;
2147                 List<JCExpression> prevTypeargs = ta.arguments;
2148                 try {
2149                     //create a 'fake' diamond AST node by removing type-argument trees
2150                     ta.arguments = List.nil();
2151                     ResultInfo findDiamondResult = new ResultInfo(VAL,
2152                             resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
2153                     Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
2154                     Type polyPt = allowPoly ?
2155                             syms.objectType :
2156                             clazztype;
2157                     if (!inferred.isErroneous() &&
2158                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings)) {
2159                         String key = types.isSameType(clazztype, inferred) ?
2160                             "diamond.redundant.args" :
2161                             "diamond.redundant.args.1";
2162                         log.warning(tree.clazz.pos(), key, clazztype, inferred);
2163                     }
2164                 } finally {
2165                     ta.arguments = prevTypeargs;
2166                 }
2167             }
2168         }
2169 
2170             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
2171                 if (allowLambda &&
2172                         identifyLambdaCandidate &&
2173                         clazztype.hasTag(CLASS) &&
2174                         !pt().hasTag(NONE) &&
2175                         types.isFunctionalInterface(clazztype.tsym)) {
2176                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
2177                     int count = 0;
2178                     boolean found = false;
2179                     for (Symbol sym : csym.members().getElements()) {
2180                         if ((sym.flags() & SYNTHETIC) != 0 ||
2181                                 sym.isConstructor()) continue;
2182                         count++;
2183                         if (sym.kind != MTH ||
2184                                 !sym.name.equals(descriptor.name)) continue;
2185                         Type mtype = types.memberType(clazztype, sym);
2186                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
2187                             found = true;
2188                         }
2189                     }
2190                     if (found && count == 1) {
2191                         log.note(tree.def, "potential.lambda.found");
2192                     }
2193                 }
2194             }
2195 
2196     /** Make an attributed null check tree.
2197      */
2198     public JCExpression makeNullCheck(JCExpression arg) {
2199         // optimization: X.this is never null; skip null check
2200         Name name = TreeInfo.name(arg);
2201         if (name == names._this || name == names._super) return arg;
2202 
2203         JCTree.Tag optag = NULLCHK;
2204         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2205         tree.operator = syms.nullcheck;
2206         tree.type = arg.type;
2207         return tree;
2208     }
2209 
2210     public void visitNewArray(JCNewArray tree) {
2211         Type owntype = types.createErrorType(tree.type);
2212         Env<AttrContext> localEnv = env.dup(tree);
2213         Type elemtype;
2214         if (tree.elemtype != null) {
2215             elemtype = attribType(tree.elemtype, localEnv);
2216             chk.validate(tree.elemtype, localEnv);
2217             owntype = elemtype;
2218             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2219                 attribExpr(l.head, localEnv, syms.intType);
2220                 owntype = new ArrayType(owntype, syms.arrayClass);
2221             }
2222         } else {
2223             // we are seeing an untyped aggregate { ... }
2224             // this is allowed only if the prototype is an array
2225             if (pt().hasTag(ARRAY)) {
2226                 elemtype = types.elemtype(pt());
2227             } else {
2228                 if (!pt().hasTag(ERROR)) {
2229                     log.error(tree.pos(), "illegal.initializer.for.type",
2230                               pt());
2231                 }
2232                 elemtype = types.createErrorType(pt());
2233             }
2234         }
2235         if (tree.elems != null) {
2236             attribExprs(tree.elems, localEnv, elemtype);
2237             owntype = new ArrayType(elemtype, syms.arrayClass);
2238         }
2239         if (!types.isReifiable(elemtype))
2240             log.error(tree.pos(), "generic.array.creation");
2241         result = check(tree, owntype, VAL, resultInfo);
2242     }
2243 
2244     /*
2245      * A lambda expression can only be attributed when a target-type is available.
2246      * In addition, if the target-type is that of a functional interface whose
2247      * descriptor contains inference variables in argument position the lambda expression
2248      * is 'stuck' (see DeferredAttr).
2249      */
2250     @Override
2251     public void visitLambda(final JCLambda that) {
2252         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2253             if (pt().hasTag(NONE)) {
2254                 //lambda only allowed in assignment or method invocation/cast context
2255                 log.error(that.pos(), "unexpected.lambda");
2256             }
2257             result = that.type = types.createErrorType(pt());
2258             return;
2259         }
2260         //create an environment for attribution of the lambda expression
2261         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2262         boolean needsRecovery =
2263                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2264         try {
2265             Type target = pt();
2266             List<Type> explicitParamTypes = null;
2267             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2268                 //attribute lambda parameters
2269                 attribStats(that.params, localEnv);
2270                 explicitParamTypes = TreeInfo.types(that.params);
2271                 target = infer.instantiateFunctionalInterface(that, target, explicitParamTypes, resultInfo.checkContext);
2272             }
2273 
2274             Type lambdaType;
2275             if (pt() != Type.recoveryType) {
2276                 target = checkIntersectionTarget(that, target, resultInfo.checkContext);
2277                 lambdaType = types.findDescriptorType(target);
2278                 chk.checkFunctionalInterface(that, target);
2279             } else {
2280                 target = Type.recoveryType;
2281                 lambdaType = fallbackDescriptorType(that);
2282             }
2283 
2284             setFunctionalInfo(that, pt(), lambdaType, resultInfo.checkContext.inferenceContext());
2285 
2286             if (lambdaType.hasTag(FORALL)) {
2287                 //lambda expression target desc cannot be a generic method
2288                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2289                         lambdaType, kindName(target.tsym), target.tsym));
2290                 result = that.type = types.createErrorType(pt());
2291                 return;
2292             }
2293 
2294             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2295                 //add param type info in the AST
2296                 List<Type> actuals = lambdaType.getParameterTypes();
2297                 List<JCVariableDecl> params = that.params;
2298 
2299                 boolean arityMismatch = false;
2300 
2301                 while (params.nonEmpty()) {
2302                     if (actuals.isEmpty()) {
2303                         //not enough actuals to perform lambda parameter inference
2304                         arityMismatch = true;
2305                     }
2306                     //reset previously set info
2307                     Type argType = arityMismatch ?
2308                             syms.errType :
2309                             actuals.head;
2310                     params.head.vartype = make.Type(argType);
2311                     params.head.sym = null;
2312                     actuals = actuals.isEmpty() ?
2313                             actuals :
2314                             actuals.tail;
2315                     params = params.tail;
2316                 }
2317 
2318                 //attribute lambda parameters
2319                 attribStats(that.params, localEnv);
2320 
2321                 if (arityMismatch) {
2322                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2323                         result = that.type = types.createErrorType(target);
2324                         return;
2325                 }
2326             }
2327 
2328             //from this point on, no recovery is needed; if we are in assignment context
2329             //we will be able to attribute the whole lambda body, regardless of errors;
2330             //if we are in a 'check' method context, and the lambda is not compatible
2331             //with the target-type, it will be recovered anyway in Attr.checkId
2332             needsRecovery = false;
2333 
2334             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2335                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2336                     new FunctionalReturnContext(resultInfo.checkContext);
2337 
2338             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2339                 recoveryInfo :
2340                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
2341             localEnv.info.returnResult = bodyResultInfo;
2342 
2343             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2344                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2345             } else {
2346                 JCBlock body = (JCBlock)that.body;
2347                 attribStats(body.stats, localEnv);
2348             }
2349 
2350             result = check(that, target, VAL, resultInfo);
2351 
2352             boolean isSpeculativeRound =
2353                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2354 
2355             postAttr(that);
2356             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2357 
2358             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound);
2359 
2360             if (!isSpeculativeRound) {
2361                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, target);
2362             }
2363             result = check(that, target, VAL, resultInfo);
2364         } catch (Types.FunctionDescriptorLookupError ex) {
2365             JCDiagnostic cause = ex.getDiagnostic();
2366             resultInfo.checkContext.report(that, cause);
2367             result = that.type = types.createErrorType(pt());
2368             return;
2369         } finally {
2370             localEnv.info.scope.leave();
2371             if (needsRecovery) {
2372                 attribTree(that, env, recoveryInfo);
2373             }
2374         }
2375     }
2376 
2377     private Type checkIntersectionTarget(DiagnosticPosition pos, Type pt, CheckContext checkContext) {
2378         if (pt != Type.recoveryType && pt.isCompound()) {
2379             IntersectionClassType ict = (IntersectionClassType)pt;
2380             List<Type> bounds = ict.allInterfaces ?
2381                     ict.getComponents().tail :
2382                     ict.getComponents();
2383             types.findDescriptorType(bounds.head); //propagate exception outwards!
2384             for (Type bound : bounds.tail) {
2385                 if (!types.isMarkerInterface(bound)) {
2386                     checkContext.report(pos, diags.fragment("secondary.bound.must.be.marker.intf", bound));
2387                 }
2388             }
2389             //for now (translation doesn't support intersection types)
2390             return bounds.head;
2391         } else {
2392             return pt;
2393         }
2394     }
2395     //where
2396         private Type fallbackDescriptorType(JCExpression tree) {
2397             switch (tree.getTag()) {
2398                 case LAMBDA:
2399                     JCLambda lambda = (JCLambda)tree;
2400                     List<Type> argtypes = List.nil();
2401                     for (JCVariableDecl param : lambda.params) {
2402                         argtypes = param.vartype != null ?
2403                                 argtypes.append(param.vartype.type) :
2404                                 argtypes.append(syms.errType);
2405                     }
2406                     return new MethodType(argtypes, Type.recoveryType, List.<Type>nil(), syms.methodClass);
2407                 case REFERENCE:
2408                     return new MethodType(List.<Type>nil(), Type.recoveryType, List.<Type>nil(), syms.methodClass);
2409                 default:
2410                     Assert.error("Cannot get here!");
2411             }
2412             return null;
2413         }
2414 
2415         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final Type... ts) {
2416             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2417         }
2418 
2419         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final List<Type> ts) {
2420             if (inferenceContext.free(ts)) {
2421                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2422                     @Override
2423                     public void typesInferred(InferenceContext inferenceContext) {
2424                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2425                     }
2426                 });
2427             } else {
2428                 for (Type t : ts) {
2429                     rs.checkAccessibleType(env, t);
2430                 }
2431             }
2432         }
2433 
2434         /**
2435          * Lambda/method reference have a special check context that ensures
2436          * that i.e. a lambda return type is compatible with the expected
2437          * type according to both the inherited context and the assignment
2438          * context.
2439          */
2440         class FunctionalReturnContext extends Check.NestedCheckContext {
2441 
2442             FunctionalReturnContext(CheckContext enclosingContext) {
2443                 super(enclosingContext);
2444             }
2445 
2446             @Override
2447             public boolean compatible(Type found, Type req, Warner warn) {
2448                 //return type must be compatible in both current context and assignment context
2449                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req), warn);
2450             }
2451 
2452             @Override
2453             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2454                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2455             }
2456         }
2457 
2458         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2459 
2460             JCExpression expr;
2461 
2462             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2463                 super(enclosingContext);
2464                 this.expr = expr;
2465             }
2466 
2467             @Override
2468             public boolean compatible(Type found, Type req, Warner warn) {
2469                 //a void return is compatible with an expression statement lambda
2470                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2471                         super.compatible(found, req, warn);
2472             }
2473         }
2474 
2475         /**
2476         * Lambda compatibility. Check that given return types, thrown types, parameter types
2477         * are compatible with the expected functional interface descriptor. This means that:
2478         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2479         * types must be compatible with the return type of the expected descriptor;
2480         * (iii) thrown types must be 'included' in the thrown types list of the expected
2481         * descriptor.
2482         */
2483         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) {
2484             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
2485 
2486             //return values have already been checked - but if lambda has no return
2487             //values, we must ensure that void/value compatibility is correct;
2488             //this amounts at checking that, if a lambda body can complete normally,
2489             //the descriptor's return type must be void
2490             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2491                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2492                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2493                         diags.fragment("missing.ret.val", returnType)));
2494             }
2495 
2496             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes());
2497             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2498                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2499             }
2500 
2501             if (!speculativeAttr) {
2502                 List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
2503                 if (chk.unhandled(tree.inferredThrownTypes == null ? List.<Type>nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) {
2504                     log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes);
2505                 }
2506             }
2507         }
2508 
2509         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2510             Env<AttrContext> lambdaEnv;
2511             Symbol owner = env.info.scope.owner;
2512             if (owner.kind == VAR && owner.owner.kind == TYP) {
2513                 //field initializer
2514                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
2515                 lambdaEnv.info.scope.owner =
2516                     new MethodSymbol(0, names.empty, null,
2517                                      env.info.scope.owner);
2518             } else {
2519                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2520             }
2521             return lambdaEnv;
2522         }
2523 
2524     @Override
2525     public void visitReference(final JCMemberReference that) {
2526         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2527             if (pt().hasTag(NONE)) {
2528                 //method reference only allowed in assignment or method invocation/cast context
2529                 log.error(that.pos(), "unexpected.mref");
2530             }
2531             result = that.type = types.createErrorType(pt());
2532             return;
2533         }
2534         final Env<AttrContext> localEnv = env.dup(that);
2535         try {
2536             //attribute member reference qualifier - if this is a constructor
2537             //reference, the expected kind must be a type
2538             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2539 
2540             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2541                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2542             }
2543 
2544             if (exprType.isErroneous()) {
2545                 //if the qualifier expression contains problems,
2546                 //give up attribution of method reference
2547                 result = that.type = exprType;
2548                 return;
2549             }
2550 
2551             if (TreeInfo.isStaticSelector(that.expr, names) &&
2552                     (that.getMode() != ReferenceMode.NEW || !that.expr.type.isRaw())) {
2553                 //if the qualifier is a type, validate it
2554                 chk.validate(that.expr, env);
2555             }
2556 
2557             //attrib type-arguments
2558             List<Type> typeargtypes = List.nil();
2559             if (that.typeargs != null) {
2560                 typeargtypes = attribTypes(that.typeargs, localEnv);
2561             }
2562 
2563             Type target;
2564             Type desc;
2565             if (pt() != Type.recoveryType) {
2566                 target = checkIntersectionTarget(that, pt(), resultInfo.checkContext);
2567                 desc = types.findDescriptorType(target);
2568                 chk.checkFunctionalInterface(that, target);
2569             } else {
2570                 target = Type.recoveryType;
2571                 desc = fallbackDescriptorType(that);
2572             }
2573 
2574             setFunctionalInfo(that, pt(), desc, resultInfo.checkContext.inferenceContext());
2575             List<Type> argtypes = desc.getParameterTypes();
2576 
2577             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = rs.resolveMemberReference(that.pos(), localEnv, that,
2578                     that.expr.type, that.name, argtypes, typeargtypes, true);
2579 
2580             Symbol refSym = refResult.fst;
2581             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2582 
2583             if (refSym.kind != MTH) {
2584                 boolean targetError;
2585                 switch (refSym.kind) {
2586                     case ABSENT_MTH:
2587                         targetError = false;
2588                         break;
2589                     case WRONG_MTH:
2590                     case WRONG_MTHS:
2591                     case AMBIGUOUS:
2592                     case HIDDEN:
2593                     case STATICERR:
2594                     case MISSING_ENCL:
2595                         targetError = true;
2596                         break;
2597                     default:
2598                         Assert.error("unexpected result kind " + refSym.kind);
2599                         targetError = false;
2600                 }
2601 
2602                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2603                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2604 
2605                 JCDiagnostic.DiagnosticType diagKind = targetError ?
2606                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2607 
2608                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2609                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2610 
2611                 if (targetError && target == Type.recoveryType) {
2612                     //a target error doesn't make sense during recovery stage
2613                     //as we don't know what actual parameter types are
2614                     result = that.type = target;
2615                     return;
2616                 } else {
2617                     if (targetError) {
2618                         resultInfo.checkContext.report(that, diag);
2619                     } else {
2620                         log.report(diag);
2621                     }
2622                     result = that.type = types.createErrorType(target);
2623                     return;
2624                 }
2625             }
2626 
2627             that.sym = refSym.baseSymbol();
2628             that.kind = lookupHelper.referenceKind(that.sym);
2629             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2630 
2631             if (desc.getReturnType() == Type.recoveryType) {
2632                 // stop here
2633                 result = that.type = target;
2634                 return;
2635             }
2636 
2637             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2638 
2639                 if (!that.kind.isUnbound() &&
2640                         that.getMode() == ReferenceMode.INVOKE &&
2641                         TreeInfo.isStaticSelector(that.expr, names) &&
2642                         !that.sym.isStatic()) {
2643                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2644                             diags.fragment("non-static.cant.be.ref", Kinds.kindName(refSym), refSym));
2645                     result = that.type = types.createErrorType(target);
2646                     return;
2647                 }
2648 
2649                 if (that.kind.isUnbound() &&
2650                         that.getMode() == ReferenceMode.INVOKE &&
2651                         TreeInfo.isStaticSelector(that.expr, names) &&
2652                         that.sym.isStatic()) {
2653                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2654                             diags.fragment("static.method.in.unbound.lookup", Kinds.kindName(refSym), refSym));
2655                     result = that.type = types.createErrorType(target);
2656                     return;
2657                 }
2658 
2659                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2660                         exprType.getTypeArguments().nonEmpty()) {
2661                     //static ref with class type-args
2662                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2663                             diags.fragment("static.mref.with.targs"));
2664                     result = that.type = types.createErrorType(target);
2665                     return;
2666                 }
2667 
2668                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
2669                         !that.kind.isUnbound()) {
2670                     //no static bound mrefs
2671                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2672                             diags.fragment("static.bound.mref"));
2673                     result = that.type = types.createErrorType(target);
2674                     return;
2675                 }
2676 
2677                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2678                     // Check that super-qualified symbols are not abstract (JLS)
2679                     rs.checkNonAbstract(that.pos(), that.sym);
2680                 }
2681             }
2682 
2683             that.sym = refSym.baseSymbol();
2684             that.kind = lookupHelper.referenceKind(that.sym);
2685 
2686             ResultInfo checkInfo =
2687                     resultInfo.dup(newMethodTemplate(
2688                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2689                         lookupHelper.argtypes,
2690                         typeargtypes));
2691 
2692             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2693 
2694             if (!refType.isErroneous()) {
2695                 refType = types.createMethodTypeWithReturn(refType,
2696                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2697             }
2698 
2699             //go ahead with standard method reference compatibility check - note that param check
2700             //is a no-op (as this has been taken care during method applicability)
2701             boolean isSpeculativeRound =
2702                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2703             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2704             if (!isSpeculativeRound) {
2705                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
2706             }
2707             result = check(that, target, VAL, resultInfo);
2708         } catch (Types.FunctionDescriptorLookupError ex) {
2709             JCDiagnostic cause = ex.getDiagnostic();
2710             resultInfo.checkContext.report(that, cause);
2711             result = that.type = types.createErrorType(pt());
2712             return;
2713         }
2714     }
2715     //where
2716         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2717             //if this is a constructor reference, the expected kind must be a type
2718             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
2719         }
2720 
2721 
2722     @SuppressWarnings("fallthrough")
2723     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2724         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
2725 
2726         Type resType;
2727         switch (tree.getMode()) {
2728             case NEW:
2729                 if (!tree.expr.type.isRaw()) {
2730                     resType = tree.expr.type;
2731                     break;
2732                 }
2733             default:
2734                 resType = refType.getReturnType();
2735         }
2736 
2737         Type incompatibleReturnType = resType;
2738 
2739         if (returnType.hasTag(VOID)) {
2740             incompatibleReturnType = null;
2741         }
2742 
2743         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2744             if (resType.isErroneous() ||
2745                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2746                 incompatibleReturnType = null;
2747             }
2748         }
2749 
2750         if (incompatibleReturnType != null) {
2751             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2752                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2753         }
2754 
2755         if (!speculativeAttr) {
2756             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
2757             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2758                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2759             }
2760         }
2761     }
2762 
2763     /**
2764      * Set functional type info on the underlying AST. Note: as the target descriptor
2765      * might contain inference variables, we might need to register an hook in the
2766      * current inference context.
2767      */
2768     private void setFunctionalInfo(final JCFunctionalExpression fExpr, final Type pt, final Type descriptorType, InferenceContext inferenceContext) {
2769         if (inferenceContext.free(descriptorType)) {
2770             inferenceContext.addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2771                 public void typesInferred(InferenceContext inferenceContext) {
2772                     setFunctionalInfo(fExpr, pt, inferenceContext.asInstType(descriptorType), inferenceContext);
2773                 }
2774             });
2775         } else {
2776             ListBuffer<TypeSymbol> targets = ListBuffer.lb();
2777             if (pt.hasTag(CLASS)) {
2778                 if (pt.isCompound()) {
2779                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2780                         targets.append(t.tsym);
2781                     }
2782                 } else {
2783                     targets.append(pt.tsym);
2784                 }
2785             }
2786             fExpr.targets = targets.toList();
2787             fExpr.descriptorType = descriptorType;
2788         }
2789     }
2790 
2791     public void visitParens(JCParens tree) {
2792         Type owntype = attribTree(tree.expr, env, resultInfo);
2793         result = check(tree, owntype, pkind(), resultInfo);
2794         Symbol sym = TreeInfo.symbol(tree);
2795         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
2796             log.error(tree.pos(), "illegal.start.of.type");
2797     }
2798 
2799     public void visitAssign(JCAssign tree) {
2800         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
2801         Type capturedType = capture(owntype);
2802         attribExpr(tree.rhs, env, owntype);
2803         result = check(tree, capturedType, VAL, resultInfo);
2804     }
2805 
2806     public void visitAssignop(JCAssignOp tree) {
2807         // Attribute arguments.
2808         Type owntype = attribTree(tree.lhs, env, varInfo);
2809         Type operand = attribExpr(tree.rhs, env);
2810         // Find operator.
2811         Symbol operator = tree.operator = rs.resolveBinaryOperator(
2812             tree.pos(), tree.getTag().noAssignOp(), env,
2813             owntype, operand);
2814 
2815         if (operator.kind == MTH &&
2816                 !owntype.isErroneous() &&
2817                 !operand.isErroneous()) {
2818             chk.checkOperator(tree.pos(),
2819                               (OperatorSymbol)operator,
2820                               tree.getTag().noAssignOp(),
2821                               owntype,
2822                               operand);
2823             chk.checkDivZero(tree.rhs.pos(), operator, operand);
2824             chk.checkCastable(tree.rhs.pos(),
2825                               operator.type.getReturnType(),
2826                               owntype);
2827         }
2828         result = check(tree, owntype, VAL, resultInfo);
2829     }
2830 
2831     public void visitUnary(JCUnary tree) {
2832         // Attribute arguments.
2833         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
2834             ? attribTree(tree.arg, env, varInfo)
2835             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
2836 
2837         // Find operator.
2838         Symbol operator = tree.operator =
2839             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
2840 
2841         Type owntype = types.createErrorType(tree.type);
2842         if (operator.kind == MTH &&
2843                 !argtype.isErroneous()) {
2844             owntype = (tree.getTag().isIncOrDecUnaryOp())
2845                 ? tree.arg.type
2846                 : operator.type.getReturnType();
2847             int opc = ((OperatorSymbol)operator).opcode;
2848 
2849             // If the argument is constant, fold it.
2850             if (argtype.constValue() != null) {
2851                 Type ctype = cfolder.fold1(opc, argtype);
2852                 if (ctype != null) {
2853                     owntype = cfolder.coerce(ctype, owntype);
2854 
2855                     // Remove constant types from arguments to
2856                     // conserve space. The parser will fold concatenations
2857                     // of string literals; the code here also
2858                     // gets rid of intermediate results when some of the
2859                     // operands are constant identifiers.
2860                     if (tree.arg.type.tsym == syms.stringType.tsym) {
2861                         tree.arg.type = syms.stringType;
2862                     }
2863                 }
2864             }
2865         }
2866         result = check(tree, owntype, VAL, resultInfo);
2867     }
2868 
2869     public void visitBinary(JCBinary tree) {
2870         // Attribute arguments.
2871         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
2872         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
2873 
2874         // Find operator.
2875         Symbol operator = tree.operator =
2876             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
2877 
2878         Type owntype = types.createErrorType(tree.type);
2879         if (operator.kind == MTH &&
2880                 !left.isErroneous() &&
2881                 !right.isErroneous()) {
2882             owntype = operator.type.getReturnType();
2883             int opc = chk.checkOperator(tree.lhs.pos(),
2884                                         (OperatorSymbol)operator,
2885                                         tree.getTag(),
2886                                         left,
2887                                         right);
2888 
2889             // If both arguments are constants, fold them.
2890             if (left.constValue() != null && right.constValue() != null) {
2891                 Type ctype = cfolder.fold2(opc, left, right);
2892                 if (ctype != null) {
2893                     owntype = cfolder.coerce(ctype, owntype);
2894 
2895                     // Remove constant types from arguments to
2896                     // conserve space. The parser will fold concatenations
2897                     // of string literals; the code here also
2898                     // gets rid of intermediate results when some of the
2899                     // operands are constant identifiers.
2900                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
2901                         tree.lhs.type = syms.stringType;
2902                     }
2903                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
2904                         tree.rhs.type = syms.stringType;
2905                     }
2906                 }
2907             }
2908 
2909             // Check that argument types of a reference ==, != are
2910             // castable to each other, (JLS???).
2911             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
2912                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
2913                     log.error(tree.pos(), "incomparable.types", left, right);
2914                 }
2915             }
2916 
2917             chk.checkDivZero(tree.rhs.pos(), operator, right);
2918         }
2919         result = check(tree, owntype, VAL, resultInfo);
2920     }
2921 
2922     public void visitTypeCast(final JCTypeCast tree) {
2923         Type clazztype = attribType(tree.clazz, env);
2924         chk.validate(tree.clazz, env, false);
2925         //a fresh environment is required for 292 inference to work properly ---
2926         //see Infer.instantiatePolymorphicSignatureInstance()
2927         Env<AttrContext> localEnv = env.dup(tree);
2928         //should we propagate the target type?
2929         final ResultInfo castInfo;
2930         final boolean isPoly = TreeInfo.isPoly(tree.expr, tree);
2931         if (isPoly) {
2932             //expression is a poly - we need to propagate target type info
2933             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
2934                 @Override
2935                 public boolean compatible(Type found, Type req, Warner warn) {
2936                     return types.isCastable(found, req, warn);
2937                 }
2938             });
2939         } else {
2940             //standalone cast - target-type info is not propagated
2941             castInfo = unknownExprInfo;
2942         }
2943         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
2944         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
2945         if (exprtype.constValue() != null)
2946             owntype = cfolder.coerce(exprtype, owntype);
2947         result = check(tree, capture(owntype), VAL, resultInfo);
2948         if (!isPoly)
2949             chk.checkRedundantCast(localEnv, tree);
2950     }
2951 
2952     public void visitTypeTest(JCInstanceOf tree) {
2953         Type exprtype = chk.checkNullOrRefType(
2954             tree.expr.pos(), attribExpr(tree.expr, env));
2955         Type clazztype = chk.checkReifiableReferenceType(
2956             tree.clazz.pos(), attribType(tree.clazz, env));
2957         chk.validate(tree.clazz, env, false);
2958         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
2959         result = check(tree, syms.booleanType, VAL, resultInfo);
2960     }
2961 
2962     public void visitIndexed(JCArrayAccess tree) {
2963         Type owntype = types.createErrorType(tree.type);
2964         Type atype = attribExpr(tree.indexed, env);
2965         attribExpr(tree.index, env, syms.intType);
2966         if (types.isArray(atype))
2967             owntype = types.elemtype(atype);
2968         else if (!atype.hasTag(ERROR))
2969             log.error(tree.pos(), "array.req.but.found", atype);
2970         if ((pkind() & VAR) == 0) owntype = capture(owntype);
2971         result = check(tree, owntype, VAR, resultInfo);
2972     }
2973 
2974     public void visitIdent(JCIdent tree) {
2975         Symbol sym;
2976 
2977         // Find symbol
2978         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
2979             // If we are looking for a method, the prototype `pt' will be a
2980             // method type with the type of the call's arguments as parameters.
2981             env.info.pendingResolutionPhase = null;
2982             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
2983         } else if (tree.sym != null && tree.sym.kind != VAR) {
2984             sym = tree.sym;
2985         } else {
2986             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
2987         }
2988         tree.sym = sym;
2989 
2990         // (1) Also find the environment current for the class where
2991         //     sym is defined (`symEnv').
2992         // Only for pre-tiger versions (1.4 and earlier):
2993         // (2) Also determine whether we access symbol out of an anonymous
2994         //     class in a this or super call.  This is illegal for instance
2995         //     members since such classes don't carry a this$n link.
2996         //     (`noOuterThisPath').
2997         Env<AttrContext> symEnv = env;
2998         boolean noOuterThisPath = false;
2999         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3000             (sym.kind & (VAR | MTH | TYP)) != 0 &&
3001             sym.owner.kind == TYP &&
3002             tree.name != names._this && tree.name != names._super) {
3003 
3004             // Find environment in which identifier is defined.
3005             while (symEnv.outer != null &&
3006                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3007                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3008                     noOuterThisPath = !allowAnonOuterThis;
3009                 symEnv = symEnv.outer;
3010             }
3011         }
3012 
3013         // If symbol is a variable, ...
3014         if (sym.kind == VAR) {
3015             VarSymbol v = (VarSymbol)sym;
3016 
3017             // ..., evaluate its initializer, if it has one, and check for
3018             // illegal forward reference.
3019             checkInit(tree, env, v, false);
3020 
3021             // If we are expecting a variable (as opposed to a value), check
3022             // that the variable is assignable in the current environment.
3023             if (pkind() == VAR)
3024                 checkAssignable(tree.pos(), v, null, env);
3025         }
3026 
3027         // In a constructor body,
3028         // if symbol is a field or instance method, check that it is
3029         // not accessed before the supertype constructor is called.
3030         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3031             (sym.kind & (VAR | MTH)) != 0 &&
3032             sym.owner.kind == TYP &&
3033             (sym.flags() & STATIC) == 0) {
3034             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
3035         }
3036         Env<AttrContext> env1 = env;
3037         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
3038             // If the found symbol is inaccessible, then it is
3039             // accessed through an enclosing instance.  Locate this
3040             // enclosing instance:
3041             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3042                 env1 = env1.outer;
3043         }
3044         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3045     }
3046 
3047     public void visitSelect(JCFieldAccess tree) {
3048         // Determine the expected kind of the qualifier expression.
3049         int skind = 0;
3050         if (tree.name == names._this || tree.name == names._super ||
3051             tree.name == names._class)
3052         {
3053             skind = TYP;
3054         } else {
3055             if ((pkind() & PCK) != 0) skind = skind | PCK;
3056             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
3057             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
3058         }
3059 
3060         // Attribute the qualifier expression, and determine its symbol (if any).
3061         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3062         if ((pkind() & (PCK | TYP)) == 0)
3063             site = capture(site); // Capture field access
3064 
3065         // don't allow T.class T[].class, etc
3066         if (skind == TYP) {
3067             Type elt = site;
3068             while (elt.hasTag(ARRAY))
3069                 elt = ((ArrayType)elt).elemtype;
3070             if (elt.hasTag(TYPEVAR)) {
3071                 log.error(tree.pos(), "type.var.cant.be.deref");
3072                 result = types.createErrorType(tree.type);
3073                 return;
3074             }
3075         }
3076 
3077         // If qualifier symbol is a type or `super', assert `selectSuper'
3078         // for the selection. This is relevant for determining whether
3079         // protected symbols are accessible.
3080         Symbol sitesym = TreeInfo.symbol(tree.selected);
3081         boolean selectSuperPrev = env.info.selectSuper;
3082         env.info.selectSuper =
3083             sitesym != null &&
3084             sitesym.name == names._super;
3085 
3086         // Determine the symbol represented by the selection.
3087         env.info.pendingResolutionPhase = null;
3088         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3089         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
3090             site = capture(site);
3091             sym = selectSym(tree, sitesym, site, env, resultInfo);
3092         }
3093         boolean varArgs = env.info.lastResolveVarargs();
3094         tree.sym = sym;
3095 
3096         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3097             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
3098             site = capture(site);
3099         }
3100 
3101         // If that symbol is a variable, ...
3102         if (sym.kind == VAR) {
3103             VarSymbol v = (VarSymbol)sym;
3104 
3105             // ..., evaluate its initializer, if it has one, and check for
3106             // illegal forward reference.
3107             checkInit(tree, env, v, true);
3108 
3109             // If we are expecting a variable (as opposed to a value), check
3110             // that the variable is assignable in the current environment.
3111             if (pkind() == VAR)
3112                 checkAssignable(tree.pos(), v, tree.selected, env);
3113         }
3114 
3115         if (sitesym != null &&
3116                 sitesym.kind == VAR &&
3117                 ((VarSymbol)sitesym).isResourceVariable() &&
3118                 sym.kind == MTH &&
3119                 sym.name.equals(names.close) &&
3120                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3121                 env.info.lint.isEnabled(LintCategory.TRY)) {
3122             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3123         }
3124 
3125         // Disallow selecting a type from an expression
3126         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
3127             tree.type = check(tree.selected, pt(),
3128                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
3129         }
3130 
3131         if (isType(sitesym)) {
3132             if (sym.name == names._this) {
3133                 // If `C' is the currently compiled class, check that
3134                 // C.this' does not appear in a call to a super(...)
3135                 if (env.info.isSelfCall &&
3136                     site.tsym == env.enclClass.sym) {
3137                     chk.earlyRefError(tree.pos(), sym);
3138                 }
3139             } else {
3140                 // Check if type-qualified fields or methods are static (JLS)
3141                 if ((sym.flags() & STATIC) == 0 &&
3142                     !env.next.tree.hasTag(REFERENCE) &&
3143                     sym.name != names._super &&
3144                     (sym.kind == VAR || sym.kind == MTH)) {
3145                     rs.accessBase(rs.new StaticError(sym),
3146                               tree.pos(), site, sym.name, true);
3147                 }
3148             }
3149         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
3150             // If the qualified item is not a type and the selected item is static, report
3151             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3152             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
3153         }
3154 
3155         // If we are selecting an instance member via a `super', ...
3156         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3157 
3158             // Check that super-qualified symbols are not abstract (JLS)
3159             rs.checkNonAbstract(tree.pos(), sym);
3160 
3161             if (site.isRaw()) {
3162                 // Determine argument types for site.
3163                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3164                 if (site1 != null) site = site1;
3165             }
3166         }
3167 
3168         env.info.selectSuper = selectSuperPrev;
3169         result = checkId(tree, site, sym, env, resultInfo);
3170     }
3171     //where
3172         /** Determine symbol referenced by a Select expression,
3173          *
3174          *  @param tree   The select tree.
3175          *  @param site   The type of the selected expression,
3176          *  @param env    The current environment.
3177          *  @param resultInfo The current result.
3178          */
3179         private Symbol selectSym(JCFieldAccess tree,
3180                                  Symbol location,
3181                                  Type site,
3182                                  Env<AttrContext> env,
3183                                  ResultInfo resultInfo) {
3184             DiagnosticPosition pos = tree.pos();
3185             Name name = tree.name;
3186             switch (site.getTag()) {
3187             case PACKAGE:
3188                 return rs.accessBase(
3189                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3190                     pos, location, site, name, true);
3191             case ARRAY:
3192             case CLASS:
3193                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3194                     return rs.resolveQualifiedMethod(
3195                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3196                 } else if (name == names._this || name == names._super) {
3197                     return rs.resolveSelf(pos, env, site.tsym, name);
3198                 } else if (name == names._class) {
3199                     // In this case, we have already made sure in
3200                     // visitSelect that qualifier expression is a type.
3201                     Type t = syms.classType;
3202                     List<Type> typeargs = allowGenerics
3203                         ? List.of(types.erasure(site))
3204                         : List.<Type>nil();
3205                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3206                     return new VarSymbol(
3207                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3208                 } else {
3209                     // We are seeing a plain identifier as selector.
3210                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3211                     if ((resultInfo.pkind & ERRONEOUS) == 0)
3212                         sym = rs.accessBase(sym, pos, location, site, name, true);
3213                     return sym;
3214                 }
3215             case WILDCARD:
3216                 throw new AssertionError(tree);
3217             case TYPEVAR:
3218                 // Normally, site.getUpperBound() shouldn't be null.
3219                 // It should only happen during memberEnter/attribBase
3220                 // when determining the super type which *must* beac
3221                 // done before attributing the type variables.  In
3222                 // other words, we are seeing this illegal program:
3223                 // class B<T> extends A<T.foo> {}
3224                 Symbol sym = (site.getUpperBound() != null)
3225                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3226                     : null;
3227                 if (sym == null) {
3228                     log.error(pos, "type.var.cant.be.deref");
3229                     return syms.errSymbol;
3230                 } else {
3231                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3232                         rs.new AccessError(env, site, sym) :
3233                                 sym;
3234                     rs.accessBase(sym2, pos, location, site, name, true);
3235                     return sym;
3236                 }
3237             case ERROR:
3238                 // preserve identifier names through errors
3239                 return types.createErrorType(name, site.tsym, site).tsym;
3240             default:
3241                 // The qualifier expression is of a primitive type -- only
3242                 // .class is allowed for these.
3243                 if (name == names._class) {
3244                     // In this case, we have already made sure in Select that
3245                     // qualifier expression is a type.
3246                     Type t = syms.classType;
3247                     Type arg = types.boxedClass(site).type;
3248                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3249                     return new VarSymbol(
3250                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3251                 } else {
3252                     log.error(pos, "cant.deref", site);
3253                     return syms.errSymbol;
3254                 }
3255             }
3256         }
3257 
3258         /** Determine type of identifier or select expression and check that
3259          *  (1) the referenced symbol is not deprecated
3260          *  (2) the symbol's type is safe (@see checkSafe)
3261          *  (3) if symbol is a variable, check that its type and kind are
3262          *      compatible with the prototype and protokind.
3263          *  (4) if symbol is an instance field of a raw type,
3264          *      which is being assigned to, issue an unchecked warning if its
3265          *      type changes under erasure.
3266          *  (5) if symbol is an instance method of a raw type, issue an
3267          *      unchecked warning if its argument types change under erasure.
3268          *  If checks succeed:
3269          *    If symbol is a constant, return its constant type
3270          *    else if symbol is a method, return its result type
3271          *    otherwise return its type.
3272          *  Otherwise return errType.
3273          *
3274          *  @param tree       The syntax tree representing the identifier
3275          *  @param site       If this is a select, the type of the selected
3276          *                    expression, otherwise the type of the current class.
3277          *  @param sym        The symbol representing the identifier.
3278          *  @param env        The current environment.
3279          *  @param resultInfo    The expected result
3280          */
3281         Type checkId(JCTree tree,
3282                      Type site,
3283                      Symbol sym,
3284                      Env<AttrContext> env,
3285                      ResultInfo resultInfo) {
3286             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3287                     checkMethodId(tree, site, sym, env, resultInfo) :
3288                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3289         }
3290 
3291         Type checkMethodId(JCTree tree,
3292                      Type site,
3293                      Symbol sym,
3294                      Env<AttrContext> env,
3295                      ResultInfo resultInfo) {
3296             boolean isPolymorhicSignature =
3297                 sym.kind == MTH && ((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types);
3298             return isPolymorhicSignature ?
3299                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3300                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
3301         }
3302 
3303         Type checkSigPolyMethodId(JCTree tree,
3304                      Type site,
3305                      Symbol sym,
3306                      Env<AttrContext> env,
3307                      ResultInfo resultInfo) {
3308             //recover original symbol for signature polymorphic methods
3309             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3310             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3311             return sym.type;
3312         }
3313 
3314         Type checkMethodIdInternal(JCTree tree,
3315                      Type site,
3316                      Symbol sym,
3317                      Env<AttrContext> env,
3318                      ResultInfo resultInfo) {
3319             Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3320             Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3321             resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3322             return owntype;
3323         }
3324 
3325         Type checkIdInternal(JCTree tree,
3326                      Type site,
3327                      Symbol sym,
3328                      Type pt,
3329                      Env<AttrContext> env,
3330                      ResultInfo resultInfo) {
3331             if (pt.isErroneous()) {
3332                 return types.createErrorType(site);
3333             }
3334             Type owntype; // The computed type of this identifier occurrence.
3335             switch (sym.kind) {
3336             case TYP:
3337                 // For types, the computed type equals the symbol's type,
3338                 // except for two situations:
3339                 owntype = sym.type;
3340                 if (owntype.hasTag(CLASS)) {
3341                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3342                     Type ownOuter = owntype.getEnclosingType();
3343 
3344                     // (a) If the symbol's type is parameterized, erase it
3345                     // because no type parameters were given.
3346                     // We recover generic outer type later in visitTypeApply.
3347                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3348                         owntype = types.erasure(owntype);
3349                     }
3350 
3351                     // (b) If the symbol's type is an inner class, then
3352                     // we have to interpret its outer type as a superclass
3353                     // of the site type. Example:
3354                     //
3355                     // class Tree<A> { class Visitor { ... } }
3356                     // class PointTree extends Tree<Point> { ... }
3357                     // ...PointTree.Visitor...
3358                     //
3359                     // Then the type of the last expression above is
3360                     // Tree<Point>.Visitor.
3361                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3362                         Type normOuter = site;
3363                         if (normOuter.hasTag(CLASS)) {
3364                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3365                             if (site.getKind() == TypeKind.ANNOTATED) {
3366                                 // Propagate any type annotations.
3367                                 // TODO: should asEnclosingSuper do this?
3368                                 // Note that the type annotations in site will be updated
3369                                 // by annotateType. Therefore, modify site instead
3370                                 // of creating a new AnnotatedType.
3371                                 ((AnnotatedType)site).underlyingType = normOuter;
3372                                 normOuter = site;
3373                             }
3374                         }
3375                         if (normOuter == null) // perhaps from an import
3376                             normOuter = types.erasure(ownOuter);
3377                         if (normOuter != ownOuter)
3378                             owntype = new ClassType(
3379                                 normOuter, List.<Type>nil(), owntype.tsym);
3380                     }
3381                 }
3382                 break;
3383             case VAR:
3384                 VarSymbol v = (VarSymbol)sym;
3385                 // Test (4): if symbol is an instance field of a raw type,
3386                 // which is being assigned to, issue an unchecked warning if
3387                 // its type changes under erasure.
3388                 if (allowGenerics &&
3389                     resultInfo.pkind == VAR &&
3390                     v.owner.kind == TYP &&
3391                     (v.flags() & STATIC) == 0 &&
3392                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3393                     Type s = types.asOuterSuper(site, v.owner);
3394                     if (s != null &&
3395                         s.isRaw() &&
3396                         !types.isSameType(v.type, v.erasure(types))) {
3397                         chk.warnUnchecked(tree.pos(),
3398                                           "unchecked.assign.to.var",
3399                                           v, s);
3400                     }
3401                 }
3402                 // The computed type of a variable is the type of the
3403                 // variable symbol, taken as a member of the site type.
3404                 owntype = (sym.owner.kind == TYP &&
3405                            sym.name != names._this && sym.name != names._super)
3406                     ? types.memberType(site, sym)
3407                     : sym.type;
3408 
3409                 // If the variable is a constant, record constant value in
3410                 // computed type.
3411                 if (v.getConstValue() != null && isStaticReference(tree))
3412                     owntype = owntype.constType(v.getConstValue());
3413 
3414                 if (resultInfo.pkind == VAL) {
3415                     owntype = capture(owntype); // capture "names as expressions"
3416                 }
3417                 break;
3418             case MTH: {
3419                 owntype = checkMethod(site, sym,
3420                         new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3421                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3422                         resultInfo.pt.getTypeArguments());
3423                 break;
3424             }
3425             case PCK: case ERR:
3426                 owntype = sym.type;
3427                 break;
3428             default:
3429                 throw new AssertionError("unexpected kind: " + sym.kind +
3430                                          " in tree " + tree);
3431             }
3432 
3433             // Test (1): emit a `deprecation' warning if symbol is deprecated.
3434             // (for constructors, the error was given when the constructor was
3435             // resolved)
3436 
3437             if (sym.name != names.init) {
3438                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3439                 chk.checkSunAPI(tree.pos(), sym);
3440                 chk.checkProfile(tree.pos(), sym);
3441             }
3442 
3443             // Test (3): if symbol is a variable, check that its type and
3444             // kind are compatible with the prototype and protokind.
3445             return check(tree, owntype, sym.kind, resultInfo);
3446         }
3447 
3448         /** Check that variable is initialized and evaluate the variable's
3449          *  initializer, if not yet done. Also check that variable is not
3450          *  referenced before it is defined.
3451          *  @param tree    The tree making up the variable reference.
3452          *  @param env     The current environment.
3453          *  @param v       The variable's symbol.
3454          */
3455         private void checkInit(JCTree tree,
3456                                Env<AttrContext> env,
3457                                VarSymbol v,
3458                                boolean onlyWarning) {
3459 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3460 //                             tree.pos + " " + v.pos + " " +
3461 //                             Resolve.isStatic(env));//DEBUG
3462 
3463             // A forward reference is diagnosed if the declaration position
3464             // of the variable is greater than the current tree position
3465             // and the tree and variable definition occur in the same class
3466             // definition.  Note that writes don't count as references.
3467             // This check applies only to class and instance
3468             // variables.  Local variables follow different scope rules,
3469             // and are subject to definite assignment checking.
3470             if ((env.info.enclVar == v || v.pos > tree.pos) &&
3471                 v.owner.kind == TYP &&
3472                 canOwnInitializer(owner(env)) &&
3473                 v.owner == env.info.scope.owner.enclClass() &&
3474                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3475                 (!env.tree.hasTag(ASSIGN) ||
3476                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3477                 String suffix = (env.info.enclVar == v) ?
3478                                 "self.ref" : "forward.ref";
3479                 if (!onlyWarning || isStaticEnumField(v)) {
3480                     log.error(tree.pos(), "illegal." + suffix);
3481                 } else if (useBeforeDeclarationWarning) {
3482                     log.warning(tree.pos(), suffix, v);
3483                 }
3484             }
3485 
3486             v.getConstValue(); // ensure initializer is evaluated
3487 
3488             checkEnumInitializer(tree, env, v);
3489         }
3490 
3491         /**
3492          * Check for illegal references to static members of enum.  In
3493          * an enum type, constructors and initializers may not
3494          * reference its static members unless they are constant.
3495          *
3496          * @param tree    The tree making up the variable reference.
3497          * @param env     The current environment.
3498          * @param v       The variable's symbol.
3499          * @jls  section 8.9 Enums
3500          */
3501         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3502             // JLS:
3503             //
3504             // "It is a compile-time error to reference a static field
3505             // of an enum type that is not a compile-time constant
3506             // (15.28) from constructors, instance initializer blocks,
3507             // or instance variable initializer expressions of that
3508             // type. It is a compile-time error for the constructors,
3509             // instance initializer blocks, or instance variable
3510             // initializer expressions of an enum constant e to refer
3511             // to itself or to an enum constant of the same type that
3512             // is declared to the right of e."
3513             if (isStaticEnumField(v)) {
3514                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
3515 
3516                 if (enclClass == null || enclClass.owner == null)
3517                     return;
3518 
3519                 // See if the enclosing class is the enum (or a
3520                 // subclass thereof) declaring v.  If not, this
3521                 // reference is OK.
3522                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3523                     return;
3524 
3525                 // If the reference isn't from an initializer, then
3526                 // the reference is OK.
3527                 if (!Resolve.isInitializer(env))
3528                     return;
3529 
3530                 log.error(tree.pos(), "illegal.enum.static.ref");
3531             }
3532         }
3533 
3534         /** Is the given symbol a static, non-constant field of an Enum?
3535          *  Note: enum literals should not be regarded as such
3536          */
3537         private boolean isStaticEnumField(VarSymbol v) {
3538             return Flags.isEnum(v.owner) &&
3539                    Flags.isStatic(v) &&
3540                    !Flags.isConstant(v) &&
3541                    v.name != names._class;
3542         }
3543 
3544         /** Can the given symbol be the owner of code which forms part
3545          *  if class initialization? This is the case if the symbol is
3546          *  a type or field, or if the symbol is the synthetic method.
3547          *  owning a block.
3548          */
3549         private boolean canOwnInitializer(Symbol sym) {
3550             return
3551                 (sym.kind & (VAR | TYP)) != 0 ||
3552                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
3553         }
3554 
3555     Warner noteWarner = new Warner();
3556 
3557     /**
3558      * Check that method arguments conform to its instantiation.
3559      **/
3560     public Type checkMethod(Type site,
3561                             Symbol sym,
3562                             ResultInfo resultInfo,
3563                             Env<AttrContext> env,
3564                             final List<JCExpression> argtrees,
3565                             List<Type> argtypes,
3566                             List<Type> typeargtypes) {
3567         // Test (5): if symbol is an instance method of a raw type, issue
3568         // an unchecked warning if its argument types change under erasure.
3569         if (allowGenerics &&
3570             (sym.flags() & STATIC) == 0 &&
3571             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3572             Type s = types.asOuterSuper(site, sym.owner);
3573             if (s != null && s.isRaw() &&
3574                 !types.isSameTypes(sym.type.getParameterTypes(),
3575                                    sym.erasure(types).getParameterTypes())) {
3576                 chk.warnUnchecked(env.tree.pos(),
3577                                   "unchecked.call.mbr.of.raw.type",
3578                                   sym, s);
3579             }
3580         }
3581 
3582         if (env.info.defaultSuperCallSite != null) {
3583             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3584                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3585                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3586                 List<MethodSymbol> icand_sup =
3587                         types.interfaceCandidates(sup, (MethodSymbol)sym);
3588                 if (icand_sup.nonEmpty() &&
3589                         icand_sup.head != sym &&
3590                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3591                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3592                         diags.fragment("overridden.default", sym, sup));
3593                     break;
3594                 }
3595             }
3596             env.info.defaultSuperCallSite = null;
3597         }
3598 
3599         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3600             JCMethodInvocation app = (JCMethodInvocation)env.tree;
3601             if (app.meth.hasTag(SELECT) &&
3602                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3603                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3604             }
3605         }
3606 
3607         // Compute the identifier's instantiated type.
3608         // For methods, we need to compute the instance type by
3609         // Resolve.instantiate from the symbol's type as well as
3610         // any type arguments and value arguments.
3611         noteWarner.clear();
3612         try {
3613             Type owntype = rs.checkMethod(
3614                     env,
3615                     site,
3616                     sym,
3617                     resultInfo,
3618                     argtypes,
3619                     typeargtypes,
3620                     noteWarner);
3621 
3622             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3623                     noteWarner.hasNonSilentLint(LintCategory.UNCHECKED));
3624         } catch (Infer.InferenceException ex) {
3625             //invalid target type - propagate exception outwards or report error
3626             //depending on the current check context
3627             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3628             return types.createErrorType(site);
3629         } catch (Resolve.InapplicableMethodException ex) {
3630             Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault()));
3631             return null;
3632         }
3633     }
3634 
3635     public void visitLiteral(JCLiteral tree) {
3636         result = check(
3637             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
3638     }
3639     //where
3640     /** Return the type of a literal with given type tag.
3641      */
3642     Type litType(TypeTag tag) {
3643         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3644     }
3645 
3646     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3647         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
3648     }
3649 
3650     public void visitTypeArray(JCArrayTypeTree tree) {
3651         Type etype = attribType(tree.elemtype, env);
3652         Type type = new ArrayType(etype, syms.arrayClass);
3653         result = check(tree, type, TYP, resultInfo);
3654     }
3655 
3656     /** Visitor method for parameterized types.
3657      *  Bound checking is left until later, since types are attributed
3658      *  before supertype structure is completely known
3659      */
3660     public void visitTypeApply(JCTypeApply tree) {
3661         Type owntype = types.createErrorType(tree.type);
3662 
3663         // Attribute functor part of application and make sure it's a class.
3664         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3665 
3666         // Attribute type parameters
3667         List<Type> actuals = attribTypes(tree.arguments, env);
3668 
3669         if (clazztype.hasTag(CLASS)) {
3670             List<Type> formals = clazztype.tsym.type.getTypeArguments();
3671             if (actuals.isEmpty()) //diamond
3672                 actuals = formals;
3673 
3674             if (actuals.length() == formals.length()) {
3675                 List<Type> a = actuals;
3676                 List<Type> f = formals;
3677                 while (a.nonEmpty()) {
3678                     a.head = a.head.withTypeVar(f.head);
3679                     a = a.tail;
3680                     f = f.tail;
3681                 }
3682                 // Compute the proper generic outer
3683                 Type clazzOuter = clazztype.getEnclosingType();
3684                 if (clazzOuter.hasTag(CLASS)) {
3685                     Type site;
3686                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3687                     if (clazz.hasTag(IDENT)) {
3688                         site = env.enclClass.sym.type;
3689                     } else if (clazz.hasTag(SELECT)) {
3690                         site = ((JCFieldAccess) clazz).selected.type;
3691                     } else throw new AssertionError(""+tree);
3692                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3693                         if (site.hasTag(CLASS))
3694                             site = types.asOuterSuper(site, clazzOuter.tsym);
3695                         if (site == null)
3696                             site = types.erasure(clazzOuter);
3697                         clazzOuter = site;
3698                     }
3699                 }
3700                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
3701             } else {
3702                 if (formals.length() != 0) {
3703                     log.error(tree.pos(), "wrong.number.type.args",
3704                               Integer.toString(formals.length()));
3705                 } else {
3706                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3707                 }
3708                 owntype = types.createErrorType(tree.type);
3709             }
3710         }
3711         result = check(tree, owntype, TYP, resultInfo);
3712     }
3713 
3714     public void visitTypeUnion(JCTypeUnion tree) {
3715         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
3716         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3717         for (JCExpression typeTree : tree.alternatives) {
3718             Type ctype = attribType(typeTree, env);
3719             ctype = chk.checkType(typeTree.pos(),
3720                           chk.checkClassType(typeTree.pos(), ctype),
3721                           syms.throwableType);
3722             if (!ctype.isErroneous()) {
3723                 //check that alternatives of a union type are pairwise
3724                 //unrelated w.r.t. subtyping
3725                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
3726                     for (Type t : multicatchTypes) {
3727                         boolean sub = types.isSubtype(ctype, t);
3728                         boolean sup = types.isSubtype(t, ctype);
3729                         if (sub || sup) {
3730                             //assume 'a' <: 'b'
3731                             Type a = sub ? ctype : t;
3732                             Type b = sub ? t : ctype;
3733                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3734                         }
3735                     }
3736                 }
3737                 multicatchTypes.append(ctype);
3738                 if (all_multicatchTypes != null)
3739                     all_multicatchTypes.append(ctype);
3740             } else {
3741                 if (all_multicatchTypes == null) {
3742                     all_multicatchTypes = ListBuffer.lb();
3743                     all_multicatchTypes.appendList(multicatchTypes);
3744                 }
3745                 all_multicatchTypes.append(ctype);
3746             }
3747         }
3748         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
3749         if (t.hasTag(CLASS)) {
3750             List<Type> alternatives =
3751                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3752             t = new UnionClassType((ClassType) t, alternatives);
3753         }
3754         tree.type = result = t;
3755     }
3756 
3757     public void visitTypeIntersection(JCTypeIntersection tree) {
3758         attribTypes(tree.bounds, env);
3759         tree.type = result = checkIntersection(tree, tree.bounds);
3760     }
3761 
3762     public void visitTypeParameter(JCTypeParameter tree) {
3763         TypeVar typeVar = (TypeVar) tree.type;
3764 
3765         if (tree.annotations != null && tree.annotations.nonEmpty()) {
3766             AnnotatedType antype = new AnnotatedType(typeVar);
3767             annotateType(antype, tree.annotations);
3768             tree.type = antype;
3769         }
3770 
3771         if (!typeVar.bound.isErroneous()) {
3772             //fixup type-parameter bound computed in 'attribTypeVariables'
3773             typeVar.bound = checkIntersection(tree, tree.bounds);
3774         }
3775     }
3776 
3777     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
3778         Set<Type> boundSet = new HashSet<Type>();
3779         if (bounds.nonEmpty()) {
3780             // accept class or interface or typevar as first bound.
3781             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
3782             boundSet.add(types.erasure(bounds.head.type));
3783             if (bounds.head.type.isErroneous()) {
3784                 return bounds.head.type;
3785             }
3786             else if (bounds.head.type.hasTag(TYPEVAR)) {
3787                 // if first bound was a typevar, do not accept further bounds.
3788                 if (bounds.tail.nonEmpty()) {
3789                     log.error(bounds.tail.head.pos(),
3790                               "type.var.may.not.be.followed.by.other.bounds");
3791                     return bounds.head.type;
3792                 }
3793             } else {
3794                 // if first bound was a class or interface, accept only interfaces
3795                 // as further bounds.
3796                 for (JCExpression bound : bounds.tail) {
3797                     bound.type = checkBase(bound.type, bound, env, false, true, false);
3798                     if (bound.type.isErroneous()) {
3799                         bounds = List.of(bound);
3800                     }
3801                     else if (bound.type.hasTag(CLASS)) {
3802                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
3803                     }
3804                 }
3805             }
3806         }
3807 
3808         if (bounds.length() == 0) {
3809             return syms.objectType;
3810         } else if (bounds.length() == 1) {
3811             return bounds.head.type;
3812         } else {
3813             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
3814             if (tree.hasTag(TYPEINTERSECTION)) {
3815                 ((IntersectionClassType)owntype).intersectionKind =
3816                         IntersectionClassType.IntersectionKind.EXPLICIT;
3817             }
3818             // ... the variable's bound is a class type flagged COMPOUND
3819             // (see comment for TypeVar.bound).
3820             // In this case, generate a class tree that represents the
3821             // bound class, ...
3822             JCExpression extending;
3823             List<JCExpression> implementing;
3824             if (!bounds.head.type.isInterface()) {
3825                 extending = bounds.head;
3826                 implementing = bounds.tail;
3827             } else {
3828                 extending = null;
3829                 implementing = bounds;
3830             }
3831             JCClassDecl cd = make.at(tree).ClassDef(
3832                 make.Modifiers(PUBLIC | ABSTRACT),
3833                 names.empty, List.<JCTypeParameter>nil(),
3834                 extending, implementing, List.<JCTree>nil());
3835 
3836             ClassSymbol c = (ClassSymbol)owntype.tsym;
3837             Assert.check((c.flags() & COMPOUND) != 0);
3838             cd.sym = c;
3839             c.sourcefile = env.toplevel.sourcefile;
3840 
3841             // ... and attribute the bound class
3842             c.flags_field |= UNATTRIBUTED;
3843             Env<AttrContext> cenv = enter.classEnv(cd, env);
3844             enter.typeEnvs.put(c, cenv);
3845             attribClass(c);
3846             return owntype;
3847         }
3848     }
3849 
3850     public void visitWildcard(JCWildcard tree) {
3851         //- System.err.println("visitWildcard("+tree+");");//DEBUG
3852         Type type = (tree.kind.kind == BoundKind.UNBOUND)
3853             ? syms.objectType
3854             : attribType(tree.inner, env);
3855         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
3856                                               tree.kind.kind,
3857                                               syms.boundClass),
3858                        TYP, resultInfo);
3859     }
3860 
3861     public void visitAnnotation(JCAnnotation tree) {
3862         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
3863         result = tree.type = syms.errType;
3864     }
3865 
3866     public void visitAnnotatedType(JCAnnotatedType tree) {
3867         Type underlyingType = attribType(tree.getUnderlyingType(), env);
3868         this.attribAnnotationTypes(tree.annotations, env);
3869         AnnotatedType antype = new AnnotatedType(underlyingType);
3870         annotateType(antype, tree.annotations);
3871         result = tree.type = antype;
3872     }
3873 
3874     /**
3875      * Apply the annotations to the particular type.
3876      */
3877     public void annotateType(final AnnotatedType type, final List<JCAnnotation> annotations) {
3878         if (annotations.isEmpty())
3879             return;
3880         annotate.typeAnnotation(new Annotate.Annotator() {
3881             @Override
3882             public String toString() {
3883                 return "annotate " + annotations + " onto " + type;
3884             }
3885             @Override
3886             public void enterAnnotation() {
3887                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
3888                 type.typeAnnotations = compounds;
3889             }
3890         });
3891     }
3892 
3893     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
3894         if (annotations.isEmpty())
3895             return List.nil();
3896 
3897         ListBuffer<Attribute.TypeCompound> buf = ListBuffer.lb();
3898         for (JCAnnotation anno : annotations) {
3899             buf.append((Attribute.TypeCompound) anno.attribute);
3900         }
3901         return buf.toList();
3902     }
3903 
3904     public void visitErroneous(JCErroneous tree) {
3905         if (tree.errs != null)
3906             for (JCTree err : tree.errs)
3907                 attribTree(err, env, new ResultInfo(ERR, pt()));
3908         result = tree.type = syms.errType;
3909     }
3910 
3911     /** Default visitor method for all other trees.
3912      */
3913     public void visitTree(JCTree tree) {
3914         throw new AssertionError();
3915     }
3916 
3917     /**
3918      * Attribute an env for either a top level tree or class declaration.
3919      */
3920     public void attrib(Env<AttrContext> env) {
3921         if (env.tree.hasTag(TOPLEVEL))
3922             attribTopLevel(env);
3923         else
3924             attribClass(env.tree.pos(), env.enclClass.sym);
3925     }
3926 
3927     /**
3928      * Attribute a top level tree. These trees are encountered when the
3929      * package declaration has annotations.
3930      */
3931     public void attribTopLevel(Env<AttrContext> env) {
3932         JCCompilationUnit toplevel = env.toplevel;
3933         try {
3934             annotate.flush();
3935             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
3936         } catch (CompletionFailure ex) {
3937             chk.completionError(toplevel.pos(), ex);
3938         }
3939     }
3940 
3941     /** Main method: attribute class definition associated with given class symbol.
3942      *  reporting completion failures at the given position.
3943      *  @param pos The source position at which completion errors are to be
3944      *             reported.
3945      *  @param c   The class symbol whose definition will be attributed.
3946      */
3947     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
3948         try {
3949             annotate.flush();
3950             attribClass(c);
3951         } catch (CompletionFailure ex) {
3952             chk.completionError(pos, ex);
3953         }
3954     }
3955 
3956     /** Attribute class definition associated with given class symbol.
3957      *  @param c   The class symbol whose definition will be attributed.
3958      */
3959     void attribClass(ClassSymbol c) throws CompletionFailure {
3960         if (c.type.hasTag(ERROR)) return;
3961 
3962         // Check for cycles in the inheritance graph, which can arise from
3963         // ill-formed class files.
3964         chk.checkNonCyclic(null, c.type);
3965 
3966         Type st = types.supertype(c.type);
3967         if ((c.flags_field & Flags.COMPOUND) == 0) {
3968             // First, attribute superclass.
3969             if (st.hasTag(CLASS))
3970                 attribClass((ClassSymbol)st.tsym);
3971 
3972             // Next attribute owner, if it is a class.
3973             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
3974                 attribClass((ClassSymbol)c.owner);
3975         }
3976 
3977         // The previous operations might have attributed the current class
3978         // if there was a cycle. So we test first whether the class is still
3979         // UNATTRIBUTED.
3980         if ((c.flags_field & UNATTRIBUTED) != 0) {
3981             c.flags_field &= ~UNATTRIBUTED;
3982 
3983             // Get environment current at the point of class definition.
3984             Env<AttrContext> env = enter.typeEnvs.get(c);
3985 
3986             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
3987             // because the annotations were not available at the time the env was created. Therefore,
3988             // we look up the environment chain for the first enclosing environment for which the
3989             // lint value is set. Typically, this is the parent env, but might be further if there
3990             // are any envs created as a result of TypeParameter nodes.
3991             Env<AttrContext> lintEnv = env;
3992             while (lintEnv.info.lint == null)
3993                 lintEnv = lintEnv.next;
3994 
3995             // Having found the enclosing lint value, we can initialize the lint value for this class
3996             env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags());
3997 
3998             Lint prevLint = chk.setLint(env.info.lint);
3999             JavaFileObject prev = log.useSource(c.sourcefile);
4000             ResultInfo prevReturnRes = env.info.returnResult;
4001 
4002             try {
4003                 env.info.returnResult = null;
4004                 // java.lang.Enum may not be subclassed by a non-enum
4005                 if (st.tsym == syms.enumSym &&
4006                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4007                     log.error(env.tree.pos(), "enum.no.subclassing");
4008 
4009                 // Enums may not be extended by source-level classes
4010                 if (st.tsym != null &&
4011                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4012                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4013                     log.error(env.tree.pos(), "enum.types.not.extensible");
4014                 }
4015                 attribClassBody(env, c);
4016 
4017                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4018                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4019             } finally {
4020                 env.info.returnResult = prevReturnRes;
4021                 log.useSource(prev);
4022                 chk.setLint(prevLint);
4023             }
4024 
4025         }
4026     }
4027 
4028     public void visitImport(JCImport tree) {
4029         // nothing to do
4030     }
4031 
4032     /** Finish the attribution of a class. */
4033     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4034         JCClassDecl tree = (JCClassDecl)env.tree;
4035         Assert.check(c == tree.sym);
4036 
4037         // Validate annotations
4038         chk.validateAnnotations(tree.mods.annotations, c);
4039 
4040         // Validate type parameters, supertype and interfaces.
4041         attribStats(tree.typarams, env);
4042         if (!c.isAnonymous()) {
4043             //already checked if anonymous
4044             chk.validate(tree.typarams, env);
4045             chk.validate(tree.extending, env);
4046             chk.validate(tree.implementing, env);
4047         }
4048 
4049         // If this is a non-abstract class, check that it has no abstract
4050         // methods or unimplemented methods of an implemented interface.
4051         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4052             if (!relax)
4053                 chk.checkAllDefined(tree.pos(), c);
4054         }
4055 
4056         if ((c.flags() & ANNOTATION) != 0) {
4057             if (tree.implementing.nonEmpty())
4058                 log.error(tree.implementing.head.pos(),
4059                           "cant.extend.intf.annotation");
4060             if (tree.typarams.nonEmpty())
4061                 log.error(tree.typarams.head.pos(),
4062                           "intf.annotation.cant.have.type.params");
4063 
4064             // If this annotation has a @Repeatable, validate
4065             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
4066             if (repeatable != null) {
4067                 // get diagnostic position for error reporting
4068                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4069                 Assert.checkNonNull(cbPos);
4070 
4071                 chk.validateRepeatable(c, repeatable, cbPos);
4072             }
4073         } else {
4074             // Check that all extended classes and interfaces
4075             // are compatible (i.e. no two define methods with same arguments
4076             // yet different return types).  (JLS 8.4.6.3)
4077             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4078             if (allowDefaultMethods) {
4079                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4080             }
4081         }
4082 
4083         // Check that class does not import the same parameterized interface
4084         // with two different argument lists.
4085         chk.checkClassBounds(tree.pos(), c.type);
4086 
4087         tree.type = c.type;
4088 
4089         for (List<JCTypeParameter> l = tree.typarams;
4090              l.nonEmpty(); l = l.tail) {
4091              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
4092         }
4093 
4094         // Check that a generic class doesn't extend Throwable
4095         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4096             log.error(tree.extending.pos(), "generic.throwable");
4097 
4098         // Check that all methods which implement some
4099         // method conform to the method they implement.
4100         chk.checkImplementations(tree);
4101 
4102         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4103         checkAutoCloseable(tree.pos(), env, c.type);
4104 
4105         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4106             // Attribute declaration
4107             attribStat(l.head, env);
4108             // Check that declarations in inner classes are not static (JLS 8.1.2)
4109             // Make an exception for static constants.
4110             if (c.owner.kind != PCK &&
4111                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4112                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4113                 Symbol sym = null;
4114                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4115                 if (sym == null ||
4116                     sym.kind != VAR ||
4117                     ((VarSymbol) sym).getConstValue() == null)
4118                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4119             }
4120         }
4121 
4122         // Check for cycles among non-initial constructors.
4123         chk.checkCyclicConstructors(tree);
4124 
4125         // Check for cycles among annotation elements.
4126         chk.checkNonCyclicElements(tree);
4127 
4128         // Check for proper use of serialVersionUID
4129         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4130             isSerializable(c) &&
4131             (c.flags() & Flags.ENUM) == 0 &&
4132             (c.flags() & ABSTRACT) == 0) {
4133             checkSerialVersionUID(tree, c);
4134         }
4135 
4136         // Correctly organize the postions of the type annotations
4137         TypeAnnotations.organizeTypeAnnotationsBodies(this.syms, this.names, this.log, tree);
4138 
4139         // Check type annotations applicability rules
4140         validateTypeAnnotations(tree);
4141     }
4142         // where
4143         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4144         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4145             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4146                 if (types.isSameType(al.head.annotationType.type, t))
4147                     return al.head.pos();
4148             }
4149 
4150             return null;
4151         }
4152 
4153         /** check if a class is a subtype of Serializable, if that is available. */
4154         private boolean isSerializable(ClassSymbol c) {
4155             try {
4156                 syms.serializableType.complete();
4157             }
4158             catch (CompletionFailure e) {
4159                 return false;
4160             }
4161             return types.isSubtype(c.type, syms.serializableType);
4162         }
4163 
4164         /** Check that an appropriate serialVersionUID member is defined. */
4165         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4166 
4167             // check for presence of serialVersionUID
4168             Scope.Entry e = c.members().lookup(names.serialVersionUID);
4169             while (e.scope != null && e.sym.kind != VAR) e = e.next();
4170             if (e.scope == null) {
4171                 log.warning(LintCategory.SERIAL,
4172                         tree.pos(), "missing.SVUID", c);
4173                 return;
4174             }
4175 
4176             // check that it is static final
4177             VarSymbol svuid = (VarSymbol)e.sym;
4178             if ((svuid.flags() & (STATIC | FINAL)) !=
4179                 (STATIC | FINAL))
4180                 log.warning(LintCategory.SERIAL,
4181                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4182 
4183             // check that it is long
4184             else if (!svuid.type.hasTag(LONG))
4185                 log.warning(LintCategory.SERIAL,
4186                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4187 
4188             // check constant
4189             else if (svuid.getConstValue() == null)
4190                 log.warning(LintCategory.SERIAL,
4191                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4192         }
4193 
4194     private Type capture(Type type) {
4195         //do not capture free types
4196         return resultInfo.checkContext.inferenceContext().free(type) ?
4197                 type : types.capture(type);
4198     }
4199 
4200     private void validateTypeAnnotations(JCTree tree) {
4201         tree.accept(typeAnnotationsValidator);
4202     }
4203     //where
4204     private final JCTree.Visitor typeAnnotationsValidator =
4205         new TreeScanner() {
4206         public void visitAnnotation(JCAnnotation tree) {
4207             if (tree.hasTag(TYPE_ANNOTATION)) {
4208                 // TODO: It seems to WMD as if the annotation in
4209                 // parameters, in particular also the recvparam, are never
4210                 // of type JCTypeAnnotation and therefore never checked!
4211                 // Luckily this check doesn't really do anything that isn't
4212                 // also done elsewhere.
4213                 chk.validateTypeAnnotation(tree, false);
4214             }
4215             super.visitAnnotation(tree);
4216         }
4217         public void visitTypeParameter(JCTypeParameter tree) {
4218             chk.validateTypeAnnotations(tree.annotations, true);
4219             scan(tree.bounds);
4220             // Don't call super.
4221             // This is needed because above we call validateTypeAnnotation with
4222             // false, which would forbid annotations on type parameters.
4223             // super.visitTypeParameter(tree);
4224         }
4225         public void visitMethodDef(JCMethodDecl tree) {
4226             // Static methods cannot have receiver type annotations.
4227             // In test case FailOver15.java, the nested method getString has
4228             // a null sym, because an unknown class is instantiated.
4229             // I would say it's safe to skip.
4230             if (tree.sym != null && (tree.sym.flags() & Flags.STATIC) != 0) {
4231                 if (tree.recvparam != null) {
4232                     // TODO: better error message. Is the pos good?
4233                     log.error(tree.recvparam.pos(), "annotation.type.not.applicable");
4234                 }
4235             }
4236             if (tree.restype != null && tree.restype.type != null) {
4237                 validateAnnotatedType(tree.restype, tree.restype.type);
4238             }
4239             super.visitMethodDef(tree);
4240         }
4241         public void visitVarDef(final JCVariableDecl tree) {
4242             if (tree.sym != null && tree.sym.type != null)
4243                 validateAnnotatedType(tree, tree.sym.type);
4244             super.visitVarDef(tree);
4245         }
4246         public void visitTypeCast(JCTypeCast tree) {
4247             if (tree.clazz != null && tree.clazz.type != null)
4248                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4249             super.visitTypeCast(tree);
4250         }
4251         public void visitTypeTest(JCInstanceOf tree) {
4252             if (tree.clazz != null && tree.clazz.type != null)
4253                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4254             super.visitTypeTest(tree);
4255         }
4256         // TODO: what else do we need?
4257         // public void visitNewClass(JCNewClass tree) {
4258         // public void visitNewArray(JCNewArray tree) {
4259 
4260         /* I would want to model this after
4261          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4262          * and override visitSelect and visitTypeApply.
4263          * However, we only set the annotated type in the top-level type
4264          * of the symbol.
4265          * Therefore, we need to override each individual location where a type
4266          * can occur.
4267          */
4268         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4269             if (type.getEnclosingType() != null &&
4270                     type != type.getEnclosingType()) {
4271                 validateEnclosingAnnotatedType(errtree, type.getEnclosingType());
4272             }
4273             for (Type targ : type.getTypeArguments()) {
4274                 validateAnnotatedType(errtree, targ);
4275             }
4276         }
4277         private void validateEnclosingAnnotatedType(final JCTree errtree, final Type type) {
4278             validateAnnotatedType(errtree, type);
4279             if (type.tsym != null &&
4280                     type.tsym.isStatic() &&
4281                     type.getAnnotations().nonEmpty()) {
4282                     // Enclosing static classes cannot have type annotations.
4283                 log.error(errtree.pos(), "cant.annotate.static.class");
4284             }
4285         }
4286     };
4287 
4288     // <editor-fold desc="post-attribution visitor">
4289 
4290     /**
4291      * Handle missing types/symbols in an AST. This routine is useful when
4292      * the compiler has encountered some errors (which might have ended up
4293      * terminating attribution abruptly); if the compiler is used in fail-over
4294      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4295      * prevents NPE to be progagated during subsequent compilation steps.
4296      */
4297     public void postAttr(JCTree tree) {
4298         new PostAttrAnalyzer().scan(tree);
4299     }
4300 
4301     class PostAttrAnalyzer extends TreeScanner {
4302 
4303         private void initTypeIfNeeded(JCTree that) {
4304             if (that.type == null) {
4305                 that.type = syms.unknownType;
4306             }
4307         }
4308 
4309         @Override
4310         public void scan(JCTree tree) {
4311             if (tree == null) return;
4312             if (tree instanceof JCExpression) {
4313                 initTypeIfNeeded(tree);
4314             }
4315             super.scan(tree);
4316         }
4317 
4318         @Override
4319         public void visitIdent(JCIdent that) {
4320             if (that.sym == null) {
4321                 that.sym = syms.unknownSymbol;
4322             }
4323         }
4324 
4325         @Override
4326         public void visitSelect(JCFieldAccess that) {
4327             if (that.sym == null) {
4328                 that.sym = syms.unknownSymbol;
4329             }
4330             super.visitSelect(that);
4331         }
4332 
4333         @Override
4334         public void visitClassDef(JCClassDecl that) {
4335             initTypeIfNeeded(that);
4336             if (that.sym == null) {
4337                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4338             }
4339             super.visitClassDef(that);
4340         }
4341 
4342         @Override
4343         public void visitMethodDef(JCMethodDecl that) {
4344             initTypeIfNeeded(that);
4345             if (that.sym == null) {
4346                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4347             }
4348             super.visitMethodDef(that);
4349         }
4350 
4351         @Override
4352         public void visitVarDef(JCVariableDecl that) {
4353             initTypeIfNeeded(that);
4354             if (that.sym == null) {
4355                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4356                 that.sym.adr = 0;
4357             }
4358             super.visitVarDef(that);
4359         }
4360 
4361         @Override
4362         public void visitNewClass(JCNewClass that) {
4363             if (that.constructor == null) {
4364                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
4365             }
4366             if (that.constructorType == null) {
4367                 that.constructorType = syms.unknownType;
4368             }
4369             super.visitNewClass(that);
4370         }
4371 
4372         @Override
4373         public void visitAssignop(JCAssignOp that) {
4374             if (that.operator == null)
4375                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4376             super.visitAssignop(that);
4377         }
4378 
4379         @Override
4380         public void visitBinary(JCBinary that) {
4381             if (that.operator == null)
4382                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4383             super.visitBinary(that);
4384         }
4385 
4386         @Override
4387         public void visitUnary(JCUnary that) {
4388             if (that.operator == null)
4389                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4390             super.visitUnary(that);
4391         }
4392 
4393         @Override
4394         public void visitLambda(JCLambda that) {
4395             super.visitLambda(that);
4396             if (that.descriptorType == null) {
4397                 that.descriptorType = syms.unknownType;
4398             }
4399             if (that.targets == null) {
4400                 that.targets = List.nil();
4401             }
4402         }
4403 
4404         @Override
4405         public void visitReference(JCMemberReference that) {
4406             super.visitReference(that);
4407             if (that.sym == null) {
4408                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
4409             }
4410             if (that.descriptorType == null) {
4411                 that.descriptorType = syms.unknownType;
4412             }
4413             if (that.targets == null) {
4414                 that.targets = List.nil();
4415             }
4416         }
4417     }
4418     // </editor-fold>
4419 }