1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.util.stream;
  26 
  27 import java.util.AbstractMap;
  28 import java.util.AbstractSet;
  29 import java.util.ArrayList;
  30 import java.util.Arrays;
  31 import java.util.Collection;
  32 import java.util.Collections;
  33 import java.util.Comparator;
  34 import java.util.DoubleSummaryStatistics;
  35 import java.util.EnumSet;
  36 import java.util.HashMap;
  37 import java.util.HashSet;
  38 import java.util.IntSummaryStatistics;
  39 import java.util.Iterator;
  40 import java.util.List;
  41 import java.util.LongSummaryStatistics;
  42 import java.util.Map;
  43 import java.util.Objects;
  44 import java.util.Optional;
  45 import java.util.Set;
  46 import java.util.StringJoiner;
  47 import java.util.concurrent.ConcurrentHashMap;
  48 import java.util.concurrent.ConcurrentMap;
  49 import java.util.function.BiConsumer;
  50 import java.util.function.BiFunction;
  51 import java.util.function.BinaryOperator;
  52 import java.util.function.Consumer;
  53 import java.util.function.Function;
  54 import java.util.function.Predicate;
  55 import java.util.function.Supplier;
  56 import java.util.function.ToDoubleFunction;
  57 import java.util.function.ToIntFunction;
  58 import java.util.function.ToLongFunction;
  59 
  60 /**
  61  * Implementations of {@link Collector} that implement various useful reduction
  62  * operations, such as accumulating elements into collections, summarizing
  63  * elements according to various criteria, etc.
  64  *
  65  * <p>The following are examples of using the predefined collectors to perform
  66  * common mutable reduction tasks:
  67  *
  68  * <pre>{@code
  69  *     // Accumulate names into a List
  70  *     List<String> list = people.stream().map(Person::getName).collect(Collectors.toList());
  71  *
  72  *     // Accumulate names into a TreeSet
  73  *     Set<String> set = people.stream().map(Person::getName).collect(Collectors.toCollection(TreeSet::new));
  74  *
  75  *     // Convert elements to strings and concatenate them, separated by commas
  76  *     String joined = things.stream()
  77  *                           .map(Object::toString)
  78  *                           .collect(Collectors.joining(", "));
  79  *
  80  *     // Compute sum of salaries of employee
  81  *     int total = employees.stream()
  82  *                          .collect(Collectors.summingInt(Employee::getSalary)));
  83  *
  84  *     // Group employees by department
  85  *     Map<Department, List<Employee>> byDept
  86  *         = employees.stream()
  87  *                    .collect(Collectors.groupingBy(Employee::getDepartment));
  88  *
  89  *     // Compute sum of salaries by department
  90  *     Map<Department, Integer> totalByDept
  91  *         = employees.stream()
  92  *                    .collect(Collectors.groupingBy(Employee::getDepartment,
  93  *                                                   Collectors.summingInt(Employee::getSalary)));
  94  *
  95  *     // Partition students into passing and failing
  96  *     Map<Boolean, List<Student>> passingFailing =
  97  *         students.stream()
  98  *                 .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD));
  99  *
 100  * }</pre>
 101  *
 102  * @since 1.8
 103  */
 104 public final class Collectors {
 105 
 106     static final Set<Collector.Characteristics> CH_CONCURRENT_ID
 107             = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT,
 108                                                      Collector.Characteristics.UNORDERED,
 109                                                      Collector.Characteristics.IDENTITY_FINISH));
 110     static final Set<Collector.Characteristics> CH_CONCURRENT_NOID
 111             = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT,
 112                                                      Collector.Characteristics.UNORDERED));
 113     static final Set<Collector.Characteristics> CH_ID
 114             = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH));
 115     static final Set<Collector.Characteristics> CH_UNORDERED_ID
 116             = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.UNORDERED,
 117                                                      Collector.Characteristics.IDENTITY_FINISH));
 118     static final Set<Collector.Characteristics> CH_NOID = Collections.emptySet();
 119 
 120     private Collectors() { }
 121 
 122     /**
 123      * Returns a merge function, suitable for use in
 124      * {@link Map#merge(Object, Object, BiFunction) Map.merge()} or
 125      * {@link #toMap(Function, Function, BinaryOperator) toMap()}, which always
 126      * throws {@code IllegalStateException}.  This can be used to enforce the
 127      * assumption that the elements being collected are distinct.
 128      *
 129      * @param <T> the type of input arguments to the merge function
 130      * @return a merge function which always throw {@code IllegalStateException}
 131      */
 132     private static <T> BinaryOperator<T> throwingMerger() {
 133         return (u,v) -> { throw new IllegalStateException(String.format("Duplicate key %s", u)); };
 134     }
 135 
 136     @SuppressWarnings("unchecked")
 137     private static <I, R> Function<I, R> castingIdentity() {
 138         return i -> (R) i;
 139     }
 140 
 141     /**
 142      * Simple implementation class for {@code Collector}.
 143      *
 144      * @param <T> the type of elements to be collected
 145      * @param <R> the type of the result
 146      */
 147     static class CollectorImpl<T, A, R> implements Collector<T, A, R> {
 148         private final Supplier<A> supplier;
 149         private final BiConsumer<A, T> accumulator;
 150         private final BinaryOperator<A> combiner;
 151         private final Function<A, R> finisher;
 152         private final Set<Characteristics> characteristics;
 153 
 154         CollectorImpl(Supplier<A> supplier,
 155                       BiConsumer<A, T> accumulator,
 156                       BinaryOperator<A> combiner,
 157                       Function<A,R> finisher,
 158                       Set<Characteristics> characteristics) {
 159             this.supplier = supplier;
 160             this.accumulator = accumulator;
 161             this.combiner = combiner;
 162             this.finisher = finisher;
 163             this.characteristics = characteristics;
 164         }
 165 
 166         CollectorImpl(Supplier<A> supplier,
 167                       BiConsumer<A, T> accumulator,
 168                       BinaryOperator<A> combiner,
 169                       Set<Characteristics> characteristics) {
 170             this(supplier, accumulator, combiner, castingIdentity(), characteristics);
 171         }
 172 
 173         @Override
 174         public BiConsumer<A, T> accumulator() {
 175             return accumulator;
 176         }
 177 
 178         @Override
 179         public Supplier<A> supplier() {
 180             return supplier;
 181         }
 182 
 183         @Override
 184         public BinaryOperator<A> combiner() {
 185             return combiner;
 186         }
 187 
 188         @Override
 189         public Function<A, R> finisher() {
 190             return finisher;
 191         }
 192 
 193         @Override
 194         public Set<Characteristics> characteristics() {
 195             return characteristics;
 196         }
 197     }
 198 
 199     /**
 200      * Returns a {@code Collector} that accumulates the input elements into a
 201      * new {@code Collection}, in encounter order.  The {@code Collection} is
 202      * created by the provided factory.
 203      *
 204      * @param <T> the type of the input elements
 205      * @param <C> the type of the resulting {@code Collection}
 206      * @param collectionFactory a {@code Supplier} which returns a new, empty
 207      * {@code Collection} of the appropriate type
 208      * @return a {@code Collector} which collects all the input elements into a
 209      * {@code Collection}, in encounter order
 210      */
 211     public static <T, C extends Collection<T>>
 212     Collector<T, ?, C> toCollection(Supplier<C> collectionFactory) {
 213         return new CollectorImpl<>(collectionFactory, Collection<T>::add,
 214                                    (r1, r2) -> { r1.addAll(r2); return r1; },
 215                                    CH_ID);
 216     }
 217 
 218     /**
 219      * Returns a {@code Collector} that accumulates the input elements into a
 220      * new {@code List}. There are no guarantees on the type, mutability,
 221      * serializability, or thread-safety of the {@code List} returned; if more
 222      * control over the returned {@code List} is required, use {@link #toCollection(Supplier)}.
 223      *
 224      * @param <T> the type of the input elements
 225      * @return a {@code Collector} which collects all the input elements into a
 226      * {@code List}, in encounter order
 227      */
 228     public static <T>
 229     Collector<T, ?, List<T>> toList() {
 230         return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add,
 231                                    (left, right) -> { left.addAll(right); return left; },
 232                                    CH_ID);
 233     }
 234 
 235     /**
 236      * Returns a {@code Collector} that accumulates the input elements into a
 237      * new {@code Set}. There are no guarantees on the type, mutability,
 238      * serializability, or thread-safety of the {@code Set} returned; if more
 239      * control over the returned {@code Set} is required, use
 240      * {@link #toCollection(Supplier)}.
 241      *
 242      * <p>This is an {@link Collector.Characteristics#UNORDERED unordered}
 243      * Collector.
 244      *
 245      * @param <T> the type of the input elements
 246      * @return a {@code Collector} which collects all the input elements into a
 247      * {@code Set}
 248      */
 249     public static <T>
 250     Collector<T, ?, Set<T>> toSet() {
 251         return new CollectorImpl<>((Supplier<Set<T>>) HashSet::new, Set::add,
 252                                    (left, right) -> { left.addAll(right); return left; },
 253                                    CH_UNORDERED_ID);
 254     }
 255 
 256     /**
 257      * Returns a {@code Collector} that concatenates the input elements into a
 258      * {@code String}, in encounter order.
 259      *
 260      * @return a {@code Collector} that concatenates the input elements into a
 261      * {@code String}, in encounter order
 262      */
 263     public static Collector<CharSequence, ?, String> joining() {
 264         return new CollectorImpl<CharSequence, StringBuilder, String>(
 265                 StringBuilder::new, StringBuilder::append,
 266                 (r1, r2) -> { r1.append(r2); return r1; },
 267                 StringBuilder::toString, CH_NOID);
 268     }
 269 
 270     /**
 271      * Returns a {@code Collector} that concatenates the input elements,
 272      * separated by the specified delimiter, in encounter order.
 273      *
 274      * @param delimiter the delimiter to be used between each element
 275      * @return A {@code Collector} which concatenates CharSequence elements,
 276      * separated by the specified delimiter, in encounter order
 277      */
 278     public static Collector<CharSequence, ?, String> joining(CharSequence delimiter) {
 279         return joining(delimiter, "", "");
 280     }
 281 
 282     /**
 283      * Returns a {@code Collector} that concatenates the input elements,
 284      * separated by the specified delimiter, with the specified prefix and
 285      * suffix, in encounter order.
 286      *
 287      * @param delimiter the delimiter to be used between each element
 288      * @param  prefix the sequence of characters to be used at the beginning
 289      *                of the joined result
 290      * @param  suffix the sequence of characters to be used at the end
 291      *                of the joined result
 292      * @return A {@code Collector} which concatenates CharSequence elements,
 293      * separated by the specified delimiter, in encounter order
 294      */
 295     public static Collector<CharSequence, ?, String> joining(CharSequence delimiter,
 296                                                              CharSequence prefix,
 297                                                              CharSequence suffix) {
 298         return new CollectorImpl<>(
 299                 () -> new StringJoiner(delimiter, prefix, suffix),
 300                 StringJoiner::add, StringJoiner::merge,
 301                 StringJoiner::toString, CH_NOID);
 302     }
 303 
 304     /**
 305      * {@code BinaryOperator<Map>} that merges the contents of its right
 306      * argument into its left argument, using the provided merge function to
 307      * handle duplicate keys.
 308      *
 309      * @param <K> type of the map keys
 310      * @param <V> type of the map values
 311      * @param <M> type of the map
 312      * @param mergeFunction A merge function suitable for
 313      * {@link Map#merge(Object, Object, BiFunction) Map.merge()}
 314      * @return a merge function for two maps
 315      */
 316     private static <K, V, M extends Map<K,V>>
 317     BinaryOperator<M> mapMerger(BinaryOperator<V> mergeFunction) {
 318         return (m1, m2) -> {
 319             for (Map.Entry<K,V> e : m2.entrySet())
 320                 m1.merge(e.getKey(), e.getValue(), mergeFunction);
 321             return m1;
 322         };
 323     }
 324 
 325     /**
 326      * Adapts a {@code Collector} accepting elements of type {@code U} to one
 327      * accepting elements of type {@code T} by applying a mapping function to
 328      * each input element before accumulation.
 329      *
 330      * @apiNote
 331      * The {@code mapping()} collectors are most useful when used in a
 332      * multi-level reduction, such as downstream of a {@code groupingBy} or
 333      * {@code partitioningBy}.  For example, given a stream of
 334      * {@code Person}, to accumulate the set of last names in each city:
 335      * <pre>{@code
 336      *     Map<City, Set<String>> lastNamesByCity
 337      *         = people.stream().collect(groupingBy(Person::getCity,
 338      *                                              mapping(Person::getLastName, toSet())));
 339      * }</pre>
 340      *
 341      * @param <T> the type of the input elements
 342      * @param <U> type of elements accepted by downstream collector
 343      * @param <A> intermediate accumulation type of the downstream collector
 344      * @param <R> result type of collector
 345      * @param mapper a function to be applied to the input elements
 346      * @param downstream a collector which will accept mapped values
 347      * @return a collector which applies the mapping function to the input
 348      * elements and provides the mapped results to the downstream collector
 349      */
 350     public static <T, U, A, R>
 351     Collector<T, ?, R> mapping(Function<? super T, ? extends U> mapper,
 352                                Collector<? super U, A, R> downstream) {
 353         BiConsumer<A, ? super U> downstreamAccumulator = downstream.accumulator();
 354         return new CollectorImpl<>(downstream.supplier(),
 355                                    (r, t) -> downstreamAccumulator.accept(r, mapper.apply(t)),
 356                                    downstream.combiner(), downstream.finisher(),
 357                                    downstream.characteristics());
 358     }
 359 
 360     /**
 361      * Adapts a {@code Collector} to perform an additional finishing
 362      * transformation.  For example, one could adapt the {@link #toList()}
 363      * collector to always produce an immutable list with:
 364      * <pre>{@code
 365      *     List<String> people
 366      *         = people.stream().collect(collectingAndThen(toList(), Collections::unmodifiableList));
 367      * }</pre>
 368      *
 369      * @param <T> the type of the input elements
 370      * @param <A> intermediate accumulation type of the downstream collector
 371      * @param <R> result type of the downstream collector
 372      * @param <RR> result type of the resulting collector
 373      * @param downstream a collector
 374      * @param finisher a function to be applied to the final result of the downstream collector
 375      * @return a collector which performs the action of the downstream collector,
 376      * followed by an additional finishing step
 377      */
 378     public static<T,A,R,RR> Collector<T,A,RR> collectingAndThen(Collector<T,A,R> downstream,
 379                                                                 Function<R,RR> finisher) {
 380         Set<Collector.Characteristics> characteristics = downstream.characteristics();
 381         if (characteristics.contains(Collector.Characteristics.IDENTITY_FINISH)) {
 382             if (characteristics.size() == 1)
 383                 characteristics = Collectors.CH_NOID;
 384             else {
 385                 characteristics = EnumSet.copyOf(characteristics);
 386                 characteristics.remove(Collector.Characteristics.IDENTITY_FINISH);
 387                 characteristics = Collections.unmodifiableSet(characteristics);
 388             }
 389         }
 390         return new CollectorImpl<>(downstream.supplier(),
 391                                    downstream.accumulator(),
 392                                    downstream.combiner(),
 393                                    downstream.finisher().andThen(finisher),
 394                                    characteristics);
 395     }
 396 
 397     /**
 398      * Returns a {@code Collector} accepting elements of type {@code T} that
 399      * counts the number of input elements.  If no elements are present, the
 400      * result is 0.
 401      *
 402      * @implSpec
 403      * This produces a result equivalent to:
 404      * <pre>{@code
 405      *     reducing(0L, e -> 1L, Long::sum)
 406      * }</pre>
 407      *
 408      * @param <T> the type of the input elements
 409      * @return a {@code Collector} that counts the input elements
 410      */
 411     public static <T> Collector<T, ?, Long>
 412     counting() {
 413         return reducing(0L, e -> 1L, Long::sum);
 414     }
 415 
 416     /**
 417      * Returns a {@code Collector} that produces the minimal element according
 418      * to a given {@code Comparator}, described as an {@code Optional<T>}.
 419      *
 420      * @implSpec
 421      * This produces a result equivalent to:
 422      * <pre>{@code
 423      *     reducing(BinaryOperator.minBy(comparator))
 424      * }</pre>
 425      *
 426      * @param <T> the type of the input elements
 427      * @param comparator a {@code Comparator} for comparing elements
 428      * @return a {@code Collector} that produces the minimal value
 429      */
 430     public static <T> Collector<T, ?, Optional<T>>
 431     minBy(Comparator<? super T> comparator) {
 432         return reducing(BinaryOperator.minBy(comparator));
 433     }
 434 
 435     /**
 436      * Returns a {@code Collector} that produces the maximal element according
 437      * to a given {@code Comparator}, described as an {@code Optional<T>}.
 438      *
 439      * @implSpec
 440      * This produces a result equivalent to:
 441      * <pre>{@code
 442      *     reducing(BinaryOperator.maxBy(comparator))
 443      * }</pre>
 444      *
 445      * @param <T> the type of the input elements
 446      * @param comparator a {@code Comparator} for comparing elements
 447      * @return a {@code Collector} that produces the maximal value
 448      */
 449     public static <T> Collector<T, ?, Optional<T>>
 450     maxBy(Comparator<? super T> comparator) {
 451         return reducing(BinaryOperator.maxBy(comparator));
 452     }
 453 
 454     /**
 455      * Returns a {@code Collector} that produces the sum of a integer-valued
 456      * function applied to the input elements.  If no elements are present,
 457      * the result is 0.
 458      *
 459      * @param <T> the type of the input elements
 460      * @param mapper a function extracting the property to be summed
 461      * @return a {@code Collector} that produces the sum of a derived property
 462      */
 463     public static <T> Collector<T, ?, Integer>
 464     summingInt(ToIntFunction<? super T> mapper) {
 465         return new CollectorImpl<>(
 466                 () -> new int[1],
 467                 (a, t) -> { a[0] += mapper.applyAsInt(t); },
 468                 (a, b) -> { a[0] += b[0]; return a; },
 469                 a -> a[0], CH_NOID);
 470     }
 471 
 472     /**
 473      * Returns a {@code Collector} that produces the sum of a long-valued
 474      * function applied to the input elements.  If no elements are present,
 475      * the result is 0.
 476      *
 477      * @param <T> the type of the input elements
 478      * @param mapper a function extracting the property to be summed
 479      * @return a {@code Collector} that produces the sum of a derived property
 480      */
 481     public static <T> Collector<T, ?, Long>
 482     summingLong(ToLongFunction<? super T> mapper) {
 483         return new CollectorImpl<>(
 484                 () -> new long[1],
 485                 (a, t) -> { a[0] += mapper.applyAsLong(t); },
 486                 (a, b) -> { a[0] += b[0]; return a; },
 487                 a -> a[0], CH_NOID);
 488     }
 489 
 490     /**
 491      * Returns a {@code Collector} that produces the sum of a double-valued
 492      * function applied to the input elements.  If no elements are present,
 493      * the result is 0.
 494      *
 495      * <p>The sum returned can vary depending upon the order in which
 496      * values are recorded, due to accumulated rounding error in
 497      * addition of values of differing magnitudes. Values sorted by increasing
 498      * absolute magnitude tend to yield more accurate results.  If any recorded
 499      * value is a {@code NaN} or the sum is at any point a {@code NaN} then the
 500      * sum will be {@code NaN}.
 501      *
 502      * @param <T> the type of the input elements
 503      * @param mapper a function extracting the property to be summed
 504      * @return a {@code Collector} that produces the sum of a derived property
 505      */
 506     public static <T> Collector<T, ?, Double>
 507     summingDouble(ToDoubleFunction<? super T> mapper) {
 508         /*
 509          * In the arrays allocated for the collect operation, index 0
 510          * holds the high-order bits of the running sum and index 1
 511          * holds the low-order bits of the sum computed via
 512          * compensated summation.
 513          */
 514         return new CollectorImpl<>(
 515                 () -> new double[2],
 516                 (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); },
 517                 (a, b) -> { sumWithCompensation(a, b[0]); return sumWithCompensation(a, b[1]); },
 518                 // Better error bounds to add both terms as the final sum
 519                 a -> a[0] + a[1],
 520                 CH_NOID);
 521     }
 522 
 523     /**
 524      * Incorporate a new double value using Kahan summation /
 525      * compensation summation.
 526      *
 527      * High-order bits of the sum are in intermediateSum[0], low-order
 528      * bits of the sum are in intermediateSum[1], any additional
 529      * elements are application-specific.
 530      *
 531      * @param intermediateSum the high-order and low-order words of the intermediate sum
 532      * @param value the name value to be included in the running sum
 533      */
 534     static double[] sumWithCompensation(double[] intermediateSum, double value) {
 535         double tmp = value - intermediateSum[1];
 536         double sum = intermediateSum[0];
 537         double velvel = sum + tmp; // Little wolf of rounding error
 538         intermediateSum[1] = (velvel - sum) - tmp;
 539         intermediateSum[0] = velvel;
 540         return intermediateSum;
 541     }
 542 
 543 
 544     /**
 545      * Returns a {@code Collector} that produces the arithmetic mean of an integer-valued
 546      * function applied to the input elements.  If no elements are present,
 547      * the result is 0.
 548      *
 549      * @param <T> the type of the input elements
 550      * @param mapper a function extracting the property to be summed
 551      * @return a {@code Collector} that produces the sum of a derived property
 552      */
 553     public static <T> Collector<T, ?, Double>
 554     averagingInt(ToIntFunction<? super T> mapper) {
 555         return new CollectorImpl<>(
 556                 () -> new long[2],
 557                 (a, t) -> { a[0] += mapper.applyAsInt(t); a[1]++; },
 558                 (a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; },
 559                 a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID);
 560     }
 561 
 562     /**
 563      * Returns a {@code Collector} that produces the arithmetic mean of a long-valued
 564      * function applied to the input elements.  If no elements are present,
 565      * the result is 0.
 566      *
 567      * @param <T> the type of the input elements
 568      * @param mapper a function extracting the property to be summed
 569      * @return a {@code Collector} that produces the sum of a derived property
 570      */
 571     public static <T> Collector<T, ?, Double>
 572     averagingLong(ToLongFunction<? super T> mapper) {
 573         return new CollectorImpl<>(
 574                 () -> new long[2],
 575                 (a, t) -> { a[0] += mapper.applyAsLong(t); a[1]++; },
 576                 (a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; },
 577                 a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID);
 578     }
 579 
 580     /**
 581      * Returns a {@code Collector} that produces the arithmetic mean of a double-valued
 582      * function applied to the input elements.  If no elements are present,
 583      * the result is 0.
 584      *
 585      * <p>The average returned can vary depending upon the order in which
 586      * values are recorded, due to accumulated rounding error in
 587      * addition of values of differing magnitudes. Values sorted by increasing
 588      * absolute magnitude tend to yield more accurate results.  If any recorded
 589      * value is a {@code NaN} or the sum is at any point a {@code NaN} then the
 590      * average will be {@code NaN}.
 591      *
 592      * @implNote The {@code double} format can represent all
 593      * consecutive integers in the range -2<sup>53</sup> to
 594      * 2<sup>53</sup>. If the pipeline has more than 2<sup>53</sup>
 595      * values, the divisor in the average computation will saturate at
 596      * 2<sup>53</sup>, leading to additional numerical errors.
 597      *
 598      * @param <T> the type of the input elements
 599      * @param mapper a function extracting the property to be summed
 600      * @return a {@code Collector} that produces the sum of a derived property
 601      */
 602     public static <T> Collector<T, ?, Double>
 603     averagingDouble(ToDoubleFunction<? super T> mapper) {
 604         /*
 605          * In the arrays allocated for the collect operation, index 0
 606          * holds the high-order bits of the running sum, index 1 holds
 607          * the low-order bits of the sum computed via compensated
 608          * summation, and index 2 holds the number of values seen.
 609          */
 610         return new CollectorImpl<>(
 611                 () -> new double[3],
 612                 (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); a[2]++; },
 613                 (a, b) -> { sumWithCompensation(a, b[0]); sumWithCompensation(a, b[1]); a[2] += b[2]; return a; },
 614                 // Better error bounds to add both terms as the final sum to compute average
 615                 a -> (a[2] == 0) ? 0.0d : ((a[0] + a[1]) / a[2]),
 616                 CH_NOID);
 617     }
 618 
 619     /**
 620      * Returns a {@code Collector} which performs a reduction of its
 621      * input elements under a specified {@code BinaryOperator} using the
 622      * provided identity.
 623      *
 624      * @apiNote
 625      * The {@code reducing()} collectors are most useful when used in a
 626      * multi-level reduction, downstream of {@code groupingBy} or
 627      * {@code partitioningBy}.  To perform a simple reduction on a stream,
 628      * use {@link Stream#reduce(Object, BinaryOperator)}} instead.
 629      *
 630      * @param <T> element type for the input and output of the reduction
 631      * @param identity the identity value for the reduction (also, the value
 632      *                 that is returned when there are no input elements)
 633      * @param op a {@code BinaryOperator<T>} used to reduce the input elements
 634      * @return a {@code Collector} which implements the reduction operation
 635      *
 636      * @see #reducing(BinaryOperator)
 637      * @see #reducing(Object, Function, BinaryOperator)
 638      */
 639     public static <T> Collector<T, ?, T>
 640     reducing(T identity, BinaryOperator<T> op) {
 641         return new CollectorImpl<>(
 642                 boxSupplier(identity),
 643                 (a, t) -> { a[0] = op.apply(a[0], t); },
 644                 (a, b) -> { a[0] = op.apply(a[0], b[0]); return a; },
 645                 a -> a[0],
 646                 CH_NOID);
 647     }
 648 
 649     @SuppressWarnings("unchecked")
 650     private static <T> Supplier<T[]> boxSupplier(T identity) {
 651         return () -> (T[]) new Object[] { identity };
 652     }
 653 
 654     /**
 655      * Returns a {@code Collector} which performs a reduction of its
 656      * input elements under a specified {@code BinaryOperator}.  The result
 657      * is described as an {@code Optional<T>}.
 658      *
 659      * @apiNote
 660      * The {@code reducing()} collectors are most useful when used in a
 661      * multi-level reduction, downstream of {@code groupingBy} or
 662      * {@code partitioningBy}.  To perform a simple reduction on a stream,
 663      * use {@link Stream#reduce(BinaryOperator)} instead.
 664      *
 665      * <p>For example, given a stream of {@code Person}, to calculate tallest
 666      * person in each city:
 667      * <pre>{@code
 668      *     Comparator<Person> byHeight = Comparator.comparing(Person::getHeight);
 669      *     Map<City, Person> tallestByCity
 670      *         = people.stream().collect(groupingBy(Person::getCity, reducing(BinaryOperator.maxBy(byHeight))));
 671      * }</pre>
 672      *
 673      * @param <T> element type for the input and output of the reduction
 674      * @param op a {@code BinaryOperator<T>} used to reduce the input elements
 675      * @return a {@code Collector} which implements the reduction operation
 676      *
 677      * @see #reducing(Object, BinaryOperator)
 678      * @see #reducing(Object, Function, BinaryOperator)
 679      */
 680     public static <T> Collector<T, ?, Optional<T>>
 681     reducing(BinaryOperator<T> op) {
 682         class OptionalBox implements Consumer<T> {
 683             T value = null;
 684             boolean present = false;
 685 
 686             @Override
 687             public void accept(T t) {
 688                 if (present) {
 689                     value = op.apply(value, t);
 690                 }
 691                 else {
 692                     value = t;
 693                     present = true;
 694                 }
 695             }
 696         }
 697 
 698         return new CollectorImpl<T, OptionalBox, Optional<T>>(
 699                 OptionalBox::new, OptionalBox::accept,
 700                 (a, b) -> { if (b.present) a.accept(b.value); return a; },
 701                 a -> Optional.ofNullable(a.value), CH_NOID);
 702     }
 703 
 704     /**
 705      * Returns a {@code Collector} which performs a reduction of its
 706      * input elements under a specified mapping function and
 707      * {@code BinaryOperator}. This is a generalization of
 708      * {@link #reducing(Object, BinaryOperator)} which allows a transformation
 709      * of the elements before reduction.
 710      *
 711      * @apiNote
 712      * The {@code reducing()} collectors are most useful when used in a
 713      * multi-level reduction, downstream of {@code groupingBy} or
 714      * {@code partitioningBy}.  To perform a simple map-reduce on a stream,
 715      * use {@link Stream#map(Function)} and {@link Stream#reduce(Object, BinaryOperator)}
 716      * instead.
 717      *
 718      * <p>For example, given a stream of {@code Person}, to calculate the longest
 719      * last name of residents in each city:
 720      * <pre>{@code
 721      *     Comparator<String> byLength = Comparator.comparing(String::length);
 722      *     Map<City, String> longestLastNameByCity
 723      *         = people.stream().collect(groupingBy(Person::getCity,
 724      *                                              reducing(Person::getLastName, BinaryOperator.maxBy(byLength))));
 725      * }</pre>
 726      *
 727      * @param <T> the type of the input elements
 728      * @param <U> the type of the mapped values
 729      * @param identity the identity value for the reduction (also, the value
 730      *                 that is returned when there are no input elements)
 731      * @param mapper a mapping function to apply to each input value
 732      * @param op a {@code BinaryOperator<U>} used to reduce the mapped values
 733      * @return a {@code Collector} implementing the map-reduce operation
 734      *
 735      * @see #reducing(Object, BinaryOperator)
 736      * @see #reducing(BinaryOperator)
 737      */
 738     public static <T, U>
 739     Collector<T, ?, U> reducing(U identity,
 740                                 Function<? super T, ? extends U> mapper,
 741                                 BinaryOperator<U> op) {
 742         return new CollectorImpl<>(
 743                 boxSupplier(identity),
 744                 (a, t) -> { a[0] = op.apply(a[0], mapper.apply(t)); },
 745                 (a, b) -> { a[0] = op.apply(a[0], b[0]); return a; },
 746                 a -> a[0], CH_NOID);
 747     }
 748 
 749     /**
 750      * Returns a {@code Collector} implementing a "group by" operation on
 751      * input elements of type {@code T}, grouping elements according to a
 752      * classification function, and returning the results in a {@code Map}.
 753      *
 754      * <p>The classification function maps elements to some key type {@code K}.
 755      * The collector produces a {@code Map<K, List<T>>} whose keys are the
 756      * values resulting from applying the classification function to the input
 757      * elements, and whose corresponding values are {@code List}s containing the
 758      * input elements which map to the associated key under the classification
 759      * function.
 760      *
 761      * <p>There are no guarantees on the type, mutability, serializability, or
 762      * thread-safety of the {@code Map} or {@code List} objects returned.
 763      * @implSpec
 764      * This produces a result similar to:
 765      * <pre>{@code
 766      *     groupingBy(classifier, toList());
 767      * }</pre>
 768      *
 769      * @implNote
 770      * The returned {@code Collector} is not concurrent.  For parallel stream
 771      * pipelines, the {@code combiner} function operates by merging the keys
 772      * from one map into another, which can be an expensive operation.  If
 773      * preservation of the order in which elements appear in the resulting {@code Map}
 774      * collector is not required, using {@link #groupingByConcurrent(Function)}
 775      * may offer better parallel performance.
 776      *
 777      * @param <T> the type of the input elements
 778      * @param <K> the type of the keys
 779      * @param classifier the classifier function mapping input elements to keys
 780      * @return a {@code Collector} implementing the group-by operation
 781      *
 782      * @see #groupingBy(Function, Collector)
 783      * @see #groupingBy(Function, Supplier, Collector)
 784      * @see #groupingByConcurrent(Function)
 785      */
 786     public static <T, K> Collector<T, ?, Map<K, List<T>>>
 787     groupingBy(Function<? super T, ? extends K> classifier) {
 788         return groupingBy(classifier, toList());
 789     }
 790 
 791     /**
 792      * Returns a {@code Collector} implementing a cascaded "group by" operation
 793      * on input elements of type {@code T}, grouping elements according to a
 794      * classification function, and then performing a reduction operation on
 795      * the values associated with a given key using the specified downstream
 796      * {@code Collector}.
 797      *
 798      * <p>The classification function maps elements to some key type {@code K}.
 799      * The downstream collector operates on elements of type {@code T} and
 800      * produces a result of type {@code D}. The resulting collector produces a
 801      * {@code Map<K, D>}.
 802      *
 803      * <p>There are no guarantees on the type, mutability,
 804      * serializability, or thread-safety of the {@code Map} returned.
 805      *
 806      * <p>For example, to compute the set of last names of people in each city:
 807      * <pre>{@code
 808      *     Map<City, Set<String>> namesByCity
 809      *         = people.stream().collect(groupingBy(Person::getCity,
 810      *                                              mapping(Person::getLastName, toSet())));
 811      * }</pre>
 812      *
 813      * @implNote
 814      * The returned {@code Collector} is not concurrent.  For parallel stream
 815      * pipelines, the {@code combiner} function operates by merging the keys
 816      * from one map into another, which can be an expensive operation.  If
 817      * preservation of the order in which elements are presented to the downstream
 818      * collector is not required, using {@link #groupingByConcurrent(Function, Collector)}
 819      * may offer better parallel performance.
 820      *
 821      * @param <T> the type of the input elements
 822      * @param <K> the type of the keys
 823      * @param <A> the intermediate accumulation type of the downstream collector
 824      * @param <D> the result type of the downstream reduction
 825      * @param classifier a classifier function mapping input elements to keys
 826      * @param downstream a {@code Collector} implementing the downstream reduction
 827      * @return a {@code Collector} implementing the cascaded group-by operation
 828      * @see #groupingBy(Function)
 829      *
 830      * @see #groupingBy(Function, Supplier, Collector)
 831      * @see #groupingByConcurrent(Function, Collector)
 832      */
 833     public static <T, K, A, D>
 834     Collector<T, ?, Map<K, D>> groupingBy(Function<? super T, ? extends K> classifier,
 835                                           Collector<? super T, A, D> downstream) {
 836         return groupingBy(classifier, HashMap::new, downstream);
 837     }
 838 
 839     /**
 840      * Returns a {@code Collector} implementing a cascaded "group by" operation
 841      * on input elements of type {@code T}, grouping elements according to a
 842      * classification function, and then performing a reduction operation on
 843      * the values associated with a given key using the specified downstream
 844      * {@code Collector}.  The {@code Map} produced by the Collector is created
 845      * with the supplied factory function.
 846      *
 847      * <p>The classification function maps elements to some key type {@code K}.
 848      * The downstream collector operates on elements of type {@code T} and
 849      * produces a result of type {@code D}. The resulting collector produces a
 850      * {@code Map<K, D>}.
 851      *
 852      * <p>For example, to compute the set of last names of people in each city,
 853      * where the city names are sorted:
 854      * <pre>{@code
 855      *     Map<City, Set<String>> namesByCity
 856      *         = people.stream().collect(groupingBy(Person::getCity, TreeMap::new,
 857      *                                              mapping(Person::getLastName, toSet())));
 858      * }</pre>
 859      *
 860      * @implNote
 861      * The returned {@code Collector} is not concurrent.  For parallel stream
 862      * pipelines, the {@code combiner} function operates by merging the keys
 863      * from one map into another, which can be an expensive operation.  If
 864      * preservation of the order in which elements are presented to the downstream
 865      * collector is not required, using {@link #groupingByConcurrent(Function, Supplier, Collector)}
 866      * may offer better parallel performance.
 867      *
 868      * @param <T> the type of the input elements
 869      * @param <K> the type of the keys
 870      * @param <A> the intermediate accumulation type of the downstream collector
 871      * @param <D> the result type of the downstream reduction
 872      * @param <M> the type of the resulting {@code Map}
 873      * @param classifier a classifier function mapping input elements to keys
 874      * @param downstream a {@code Collector} implementing the downstream reduction
 875      * @param mapFactory a function which, when called, produces a new empty
 876      *                   {@code Map} of the desired type
 877      * @return a {@code Collector} implementing the cascaded group-by operation
 878      *
 879      * @see #groupingBy(Function, Collector)
 880      * @see #groupingBy(Function)
 881      * @see #groupingByConcurrent(Function, Supplier, Collector)
 882      */
 883     public static <T, K, D, A, M extends Map<K, D>>
 884     Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier,
 885                                   Supplier<M> mapFactory,
 886                                   Collector<? super T, A, D> downstream) {
 887         Supplier<A> downstreamSupplier = downstream.supplier();
 888         BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator();
 889         BiConsumer<Map<K, A>, T> accumulator = (m, t) -> {
 890             K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key");
 891             A container = m.computeIfAbsent(key, k -> downstreamSupplier.get());
 892             downstreamAccumulator.accept(container, t);
 893         };
 894         BinaryOperator<Map<K, A>> merger = Collectors.<K, A, Map<K, A>>mapMerger(downstream.combiner());
 895         @SuppressWarnings("unchecked")
 896         Supplier<Map<K, A>> mangledFactory = (Supplier<Map<K, A>>) mapFactory;
 897 
 898         if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) {
 899             return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_ID);
 900         }
 901         else {
 902             @SuppressWarnings("unchecked")
 903             Function<A, A> downstreamFinisher = (Function<A, A>) downstream.finisher();
 904             Function<Map<K, A>, M> finisher = intermediate -> {
 905                 intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v));
 906                 @SuppressWarnings("unchecked")
 907                 M castResult = (M) intermediate;
 908                 return castResult;
 909             };
 910             return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_NOID);
 911         }
 912     }
 913 
 914     /**
 915      * Returns a concurrent {@code Collector} implementing a "group by"
 916      * operation on input elements of type {@code T}, grouping elements
 917      * according to a classification function.
 918      *
 919      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
 920      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
 921      *
 922      * <p>The classification function maps elements to some key type {@code K}.
 923      * The collector produces a {@code ConcurrentMap<K, List<T>>} whose keys are the
 924      * values resulting from applying the classification function to the input
 925      * elements, and whose corresponding values are {@code List}s containing the
 926      * input elements which map to the associated key under the classification
 927      * function.
 928      *
 929      * <p>There are no guarantees on the type, mutability, or serializability
 930      * of the {@code Map} or {@code List} objects returned, or of the
 931      * thread-safety of the {@code List} objects returned.
 932      * @implSpec
 933      * This produces a result similar to:
 934      * <pre>{@code
 935      *     groupingByConcurrent(classifier, toList());
 936      * }</pre>
 937      *
 938      * @param <T> the type of the input elements
 939      * @param <K> the type of the keys
 940      * @param classifier a classifier function mapping input elements to keys
 941      * @return a concurrent, unordered {@code Collector} implementing the group-by operation
 942      *
 943      * @see #groupingBy(Function)
 944      * @see #groupingByConcurrent(Function, Collector)
 945      * @see #groupingByConcurrent(Function, Supplier, Collector)
 946      */
 947     public static <T, K>
 948     Collector<T, ?, ConcurrentMap<K, List<T>>>
 949     groupingByConcurrent(Function<? super T, ? extends K> classifier) {
 950         return groupingByConcurrent(classifier, ConcurrentHashMap::new, toList());
 951     }
 952 
 953     /**
 954      * Returns a concurrent {@code Collector} implementing a cascaded "group by"
 955      * operation on input elements of type {@code T}, grouping elements
 956      * according to a classification function, and then performing a reduction
 957      * operation on the values associated with a given key using the specified
 958      * downstream {@code Collector}.
 959      *
 960      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
 961      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
 962      *
 963      * <p>The classification function maps elements to some key type {@code K}.
 964      * The downstream collector operates on elements of type {@code T} and
 965      * produces a result of type {@code D}. The resulting collector produces a
 966      * {@code Map<K, D>}.
 967      *
 968      * <p>For example, to compute the set of last names of people in each city,
 969      * where the city names are sorted:
 970      * <pre>{@code
 971      *     ConcurrentMap<City, Set<String>> namesByCity
 972      *         = people.stream().collect(groupingByConcurrent(Person::getCity,
 973      *                                                        mapping(Person::getLastName, toSet())));
 974      * }</pre>
 975      *
 976      * @param <T> the type of the input elements
 977      * @param <K> the type of the keys
 978      * @param <A> the intermediate accumulation type of the downstream collector
 979      * @param <D> the result type of the downstream reduction
 980      * @param classifier a classifier function mapping input elements to keys
 981      * @param downstream a {@code Collector} implementing the downstream reduction
 982      * @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation
 983      *
 984      * @see #groupingBy(Function, Collector)
 985      * @see #groupingByConcurrent(Function)
 986      * @see #groupingByConcurrent(Function, Supplier, Collector)
 987      */
 988     public static <T, K, A, D>
 989     Collector<T, ?, ConcurrentMap<K, D>> groupingByConcurrent(Function<? super T, ? extends K> classifier,
 990                                                               Collector<? super T, A, D> downstream) {
 991         return groupingByConcurrent(classifier, ConcurrentHashMap::new, downstream);
 992     }
 993 
 994     /**
 995      * Returns a concurrent {@code Collector} implementing a cascaded "group by"
 996      * operation on input elements of type {@code T}, grouping elements
 997      * according to a classification function, and then performing a reduction
 998      * operation on the values associated with a given key using the specified
 999      * downstream {@code Collector}.  The {@code ConcurrentMap} produced by the
1000      * Collector is created with the supplied factory function.
1001      *
1002      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
1003      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
1004      *
1005      * <p>The classification function maps elements to some key type {@code K}.
1006      * The downstream collector operates on elements of type {@code T} and
1007      * produces a result of type {@code D}. The resulting collector produces a
1008      * {@code Map<K, D>}.
1009      *
1010      * <p>For example, to compute the set of last names of people in each city,
1011      * where the city names are sorted:
1012      * <pre>{@code
1013      *     ConcurrentMap<City, Set<String>> namesByCity
1014      *         = people.stream().collect(groupingBy(Person::getCity, ConcurrentSkipListMap::new,
1015      *                                              mapping(Person::getLastName, toSet())));
1016      * }</pre>
1017      *
1018      *
1019      * @param <T> the type of the input elements
1020      * @param <K> the type of the keys
1021      * @param <A> the intermediate accumulation type of the downstream collector
1022      * @param <D> the result type of the downstream reduction
1023      * @param <M> the type of the resulting {@code ConcurrentMap}
1024      * @param classifier a classifier function mapping input elements to keys
1025      * @param downstream a {@code Collector} implementing the downstream reduction
1026      * @param mapFactory a function which, when called, produces a new empty
1027      *                   {@code ConcurrentMap} of the desired type
1028      * @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation
1029      *
1030      * @see #groupingByConcurrent(Function)
1031      * @see #groupingByConcurrent(Function, Collector)
1032      * @see #groupingBy(Function, Supplier, Collector)
1033      */
1034     public static <T, K, A, D, M extends ConcurrentMap<K, D>>
1035     Collector<T, ?, M> groupingByConcurrent(Function<? super T, ? extends K> classifier,
1036                                             Supplier<M> mapFactory,
1037                                             Collector<? super T, A, D> downstream) {
1038         Supplier<A> downstreamSupplier = downstream.supplier();
1039         BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator();
1040         BinaryOperator<ConcurrentMap<K, A>> merger = Collectors.<K, A, ConcurrentMap<K, A>>mapMerger(downstream.combiner());
1041         @SuppressWarnings("unchecked")
1042         Supplier<ConcurrentMap<K, A>> mangledFactory = (Supplier<ConcurrentMap<K, A>>) mapFactory;
1043         BiConsumer<ConcurrentMap<K, A>, T> accumulator;
1044         if (downstream.characteristics().contains(Collector.Characteristics.CONCURRENT)) {
1045             accumulator = (m, t) -> {
1046                 K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key");
1047                 A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get());
1048                 downstreamAccumulator.accept(resultContainer, t);
1049             };
1050         }
1051         else {
1052             accumulator = (m, t) -> {
1053                 K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key");
1054                 A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get());
1055                 synchronized (resultContainer) {
1056                     downstreamAccumulator.accept(resultContainer, t);
1057                 }
1058             };
1059         }
1060 
1061         if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) {
1062             return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_CONCURRENT_ID);
1063         }
1064         else {
1065             @SuppressWarnings("unchecked")
1066             Function<A, A> downstreamFinisher = (Function<A, A>) downstream.finisher();
1067             Function<ConcurrentMap<K, A>, M> finisher = intermediate -> {
1068                 intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v));
1069                 @SuppressWarnings("unchecked")
1070                 M castResult = (M) intermediate;
1071                 return castResult;
1072             };
1073             return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_CONCURRENT_NOID);
1074         }
1075     }
1076 
1077     /**
1078      * Returns a {@code Collector} which partitions the input elements according
1079      * to a {@code Predicate}, and organizes them into a
1080      * {@code Map<Boolean, List<T>>}.
1081      *
1082      * There are no guarantees on the type, mutability,
1083      * serializability, or thread-safety of the {@code Map} returned.
1084      *
1085      * @param <T> the type of the input elements
1086      * @param predicate a predicate used for classifying input elements
1087      * @return a {@code Collector} implementing the partitioning operation
1088      *
1089      * @see #partitioningBy(Predicate, Collector)
1090      */
1091     public static <T>
1092     Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(Predicate<? super T> predicate) {
1093         return partitioningBy(predicate, toList());
1094     }
1095 
1096     /**
1097      * Returns a {@code Collector} which partitions the input elements according
1098      * to a {@code Predicate}, reduces the values in each partition according to
1099      * another {@code Collector}, and organizes them into a
1100      * {@code Map<Boolean, D>} whose values are the result of the downstream
1101      * reduction.
1102      *
1103      * <p>There are no guarantees on the type, mutability,
1104      * serializability, or thread-safety of the {@code Map} returned.
1105      *
1106      * @param <T> the type of the input elements
1107      * @param <A> the intermediate accumulation type of the downstream collector
1108      * @param <D> the result type of the downstream reduction
1109      * @param predicate a predicate used for classifying input elements
1110      * @param downstream a {@code Collector} implementing the downstream
1111      *                   reduction
1112      * @return a {@code Collector} implementing the cascaded partitioning
1113      *         operation
1114      *
1115      * @see #partitioningBy(Predicate)
1116      */
1117     public static <T, D, A>
1118     Collector<T, ?, Map<Boolean, D>> partitioningBy(Predicate<? super T> predicate,
1119                                                     Collector<? super T, A, D> downstream) {
1120         BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator();
1121         BiConsumer<Partition<A>, T> accumulator = (result, t) ->
1122                 downstreamAccumulator.accept(predicate.test(t) ? result.forTrue : result.forFalse, t);
1123         BinaryOperator<A> op = downstream.combiner();
1124         BinaryOperator<Partition<A>> merger = (left, right) ->
1125                 new Partition<>(op.apply(left.forTrue, right.forTrue),
1126                                 op.apply(left.forFalse, right.forFalse));
1127         Supplier<Partition<A>> supplier = () ->
1128                 new Partition<>(downstream.supplier().get(),
1129                                 downstream.supplier().get());
1130         if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) {
1131             return new CollectorImpl<>(supplier, accumulator, merger, CH_ID);
1132         }
1133         else {
1134             Function<Partition<A>, Map<Boolean, D>> finisher = par ->
1135                     new Partition<>(downstream.finisher().apply(par.forTrue),
1136                                     downstream.finisher().apply(par.forFalse));
1137             return new CollectorImpl<>(supplier, accumulator, merger, finisher, CH_NOID);
1138         }
1139     }
1140 
1141     /**
1142      * Returns a {@code Collector} that accumulates elements into a
1143      * {@code Map} whose keys and values are the result of applying the provided
1144      * mapping functions to the input elements.
1145      *
1146      * <p>If the mapped keys contains duplicates (according to
1147      * {@link Object#equals(Object)}), an {@code IllegalStateException} is
1148      * thrown when the collection operation is performed.  If the mapped keys
1149      * may have duplicates, use {@link #toMap(Function, Function, BinaryOperator)}
1150      * instead.
1151      *
1152      * @apiNote
1153      * It is common for either the key or the value to be the input elements.
1154      * In this case, the utility method
1155      * {@link java.util.function.Function#identity()} may be helpful.
1156      * For example, the following produces a {@code Map} mapping
1157      * students to their grade point average:
1158      * <pre>{@code
1159      *     Map<Student, Double> studentToGPA
1160      *         students.stream().collect(toMap(Functions.identity(),
1161      *                                         student -> computeGPA(student)));
1162      * }</pre>
1163      * And the following produces a {@code Map} mapping a unique identifier to
1164      * students:
1165      * <pre>{@code
1166      *     Map<String, Student> studentIdToStudent
1167      *         students.stream().collect(toMap(Student::getId,
1168      *                                         Functions.identity());
1169      * }</pre>
1170      *
1171      * @implNote
1172      * The returned {@code Collector} is not concurrent.  For parallel stream
1173      * pipelines, the {@code combiner} function operates by merging the keys
1174      * from one map into another, which can be an expensive operation.  If it is
1175      * not required that results are inserted into the {@code Map} in encounter
1176      * order, using {@link #toConcurrentMap(Function, Function)}
1177      * may offer better parallel performance.
1178      *
1179      * @param <T> the type of the input elements
1180      * @param <K> the output type of the key mapping function
1181      * @param <U> the output type of the value mapping function
1182      * @param keyMapper a mapping function to produce keys
1183      * @param valueMapper a mapping function to produce values
1184      * @return a {@code Collector} which collects elements into a {@code Map}
1185      * whose keys and values are the result of applying mapping functions to
1186      * the input elements
1187      *
1188      * @see #toMap(Function, Function, BinaryOperator)
1189      * @see #toMap(Function, Function, BinaryOperator, Supplier)
1190      * @see #toConcurrentMap(Function, Function)
1191      */
1192     public static <T, K, U>
1193     Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper,
1194                                     Function<? super T, ? extends U> valueMapper) {
1195         return toMap(keyMapper, valueMapper, throwingMerger(), HashMap::new);
1196     }
1197 
1198     /**
1199      * Returns a {@code Collector} that accumulates elements into a
1200      * {@code Map} whose keys and values are the result of applying the provided
1201      * mapping functions to the input elements.
1202      *
1203      * <p>If the mapped
1204      * keys contains duplicates (according to {@link Object#equals(Object)}),
1205      * the value mapping function is applied to each equal element, and the
1206      * results are merged using the provided merging function.
1207      *
1208      * @apiNote
1209      * There are multiple ways to deal with collisions between multiple elements
1210      * mapping to the same key.  The other forms of {@code toMap} simply use
1211      * a merge function that throws unconditionally, but you can easily write
1212      * more flexible merge policies.  For example, if you have a stream
1213      * of {@code Person}, and you want to produce a "phone book" mapping name to
1214      * address, but it is possible that two persons have the same name, you can
1215      * do as follows to gracefully deals with these collisions, and produce a
1216      * {@code Map} mapping names to a concatenated list of addresses:
1217      * <pre>{@code
1218      *     Map<String, String> phoneBook
1219      *         people.stream().collect(toMap(Person::getName,
1220      *                                       Person::getAddress,
1221      *                                       (s, a) -> s + ", " + a));
1222      * }</pre>
1223      *
1224      * @implNote
1225      * The returned {@code Collector} is not concurrent.  For parallel stream
1226      * pipelines, the {@code combiner} function operates by merging the keys
1227      * from one map into another, which can be an expensive operation.  If it is
1228      * not required that results are merged into the {@code Map} in encounter
1229      * order, using {@link #toConcurrentMap(Function, Function, BinaryOperator)}
1230      * may offer better parallel performance.
1231      *
1232      * @param <T> the type of the input elements
1233      * @param <K> the output type of the key mapping function
1234      * @param <U> the output type of the value mapping function
1235      * @param keyMapper a mapping function to produce keys
1236      * @param valueMapper a mapping function to produce values
1237      * @param mergeFunction a merge function, used to resolve collisions between
1238      *                      values associated with the same key, as supplied
1239      *                      to {@link Map#merge(Object, Object, BiFunction)}
1240      * @return a {@code Collector} which collects elements into a {@code Map}
1241      * whose keys are the result of applying a key mapping function to the input
1242      * elements, and whose values are the result of applying a value mapping
1243      * function to all input elements equal to the key and combining them
1244      * using the merge function
1245      *
1246      * @see #toMap(Function, Function)
1247      * @see #toMap(Function, Function, BinaryOperator, Supplier)
1248      * @see #toConcurrentMap(Function, Function, BinaryOperator)
1249      */
1250     public static <T, K, U>
1251     Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper,
1252                                     Function<? super T, ? extends U> valueMapper,
1253                                     BinaryOperator<U> mergeFunction) {
1254         return toMap(keyMapper, valueMapper, mergeFunction, HashMap::new);
1255     }
1256 
1257     /**
1258      * Returns a {@code Collector} that accumulates elements into a
1259      * {@code Map} whose keys and values are the result of applying the provided
1260      * mapping functions to the input elements.
1261      *
1262      * <p>If the mapped
1263      * keys contains duplicates (according to {@link Object#equals(Object)}),
1264      * the value mapping function is applied to each equal element, and the
1265      * results are merged using the provided merging function.  The {@code Map}
1266      * is created by a provided supplier function.
1267      *
1268      * @implNote
1269      * The returned {@code Collector} is not concurrent.  For parallel stream
1270      * pipelines, the {@code combiner} function operates by merging the keys
1271      * from one map into another, which can be an expensive operation.  If it is
1272      * not required that results are merged into the {@code Map} in encounter
1273      * order, using {@link #toConcurrentMap(Function, Function, BinaryOperator, Supplier)}
1274      * may offer better parallel performance.
1275      *
1276      * @param <T> the type of the input elements
1277      * @param <K> the output type of the key mapping function
1278      * @param <U> the output type of the value mapping function
1279      * @param <M> the type of the resulting {@code Map}
1280      * @param keyMapper a mapping function to produce keys
1281      * @param valueMapper a mapping function to produce values
1282      * @param mergeFunction a merge function, used to resolve collisions between
1283      *                      values associated with the same key, as supplied
1284      *                      to {@link Map#merge(Object, Object, BiFunction)}
1285      * @param mapSupplier a function which returns a new, empty {@code Map} into
1286      *                    which the results will be inserted
1287      * @return a {@code Collector} which collects elements into a {@code Map}
1288      * whose keys are the result of applying a key mapping function to the input
1289      * elements, and whose values are the result of applying a value mapping
1290      * function to all input elements equal to the key and combining them
1291      * using the merge function
1292      *
1293      * @see #toMap(Function, Function)
1294      * @see #toMap(Function, Function, BinaryOperator)
1295      * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier)
1296      */
1297     public static <T, K, U, M extends Map<K, U>>
1298     Collector<T, ?, M> toMap(Function<? super T, ? extends K> keyMapper,
1299                                 Function<? super T, ? extends U> valueMapper,
1300                                 BinaryOperator<U> mergeFunction,
1301                                 Supplier<M> mapSupplier) {
1302         BiConsumer<M, T> accumulator
1303                 = (map, element) -> map.merge(keyMapper.apply(element),
1304                                               valueMapper.apply(element), mergeFunction);
1305         return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_ID);
1306     }
1307 
1308     /**
1309      * Returns a concurrent {@code Collector} that accumulates elements into a
1310      * {@code ConcurrentMap} whose keys and values are the result of applying
1311      * the provided mapping functions to the input elements.
1312      *
1313      * <p>If the mapped keys contains duplicates (according to
1314      * {@link Object#equals(Object)}), an {@code IllegalStateException} is
1315      * thrown when the collection operation is performed.  If the mapped keys
1316      * may have duplicates, use
1317      * {@link #toConcurrentMap(Function, Function, BinaryOperator)} instead.
1318      *
1319      * @apiNote
1320      * It is common for either the key or the value to be the input elements.
1321      * In this case, the utility method
1322      * {@link java.util.function.Function#identity()} may be helpful.
1323      * For example, the following produces a {@code Map} mapping
1324      * students to their grade point average:
1325      * <pre>{@code
1326      *     Map<Student, Double> studentToGPA
1327      *         students.stream().collect(toMap(Functions.identity(),
1328      *                                         student -> computeGPA(student)));
1329      * }</pre>
1330      * And the following produces a {@code Map} mapping a unique identifier to
1331      * students:
1332      * <pre>{@code
1333      *     Map<String, Student> studentIdToStudent
1334      *         students.stream().collect(toConcurrentMap(Student::getId,
1335      *                                                   Functions.identity());
1336      * }</pre>
1337      *
1338      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
1339      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
1340      *
1341      * @param <T> the type of the input elements
1342      * @param <K> the output type of the key mapping function
1343      * @param <U> the output type of the value mapping function
1344      * @param keyMapper the mapping function to produce keys
1345      * @param valueMapper the mapping function to produce values
1346      * @return a concurrent, unordered {@code Collector} which collects elements into a
1347      * {@code ConcurrentMap} whose keys are the result of applying a key mapping
1348      * function to the input elements, and whose values are the result of
1349      * applying a value mapping function to the input elements
1350      *
1351      * @see #toMap(Function, Function)
1352      * @see #toConcurrentMap(Function, Function, BinaryOperator)
1353      * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier)
1354      */
1355     public static <T, K, U>
1356     Collector<T, ?, ConcurrentMap<K,U>> toConcurrentMap(Function<? super T, ? extends K> keyMapper,
1357                                                         Function<? super T, ? extends U> valueMapper) {
1358         return toConcurrentMap(keyMapper, valueMapper, throwingMerger(), ConcurrentHashMap::new);
1359     }
1360 
1361     /**
1362      * Returns a concurrent {@code Collector} that accumulates elements into a
1363      * {@code ConcurrentMap} whose keys and values are the result of applying
1364      * the provided mapping functions to the input elements.
1365      *
1366      * <p>If the mapped keys contains duplicates (according to {@link Object#equals(Object)}),
1367      * the value mapping function is applied to each equal element, and the
1368      * results are merged using the provided merging function.
1369      *
1370      * @apiNote
1371      * There are multiple ways to deal with collisions between multiple elements
1372      * mapping to the same key.  The other forms of {@code toConcurrentMap} simply use
1373      * a merge function that throws unconditionally, but you can easily write
1374      * more flexible merge policies.  For example, if you have a stream
1375      * of {@code Person}, and you want to produce a "phone book" mapping name to
1376      * address, but it is possible that two persons have the same name, you can
1377      * do as follows to gracefully deals with these collisions, and produce a
1378      * {@code Map} mapping names to a concatenated list of addresses:
1379      * <pre>{@code
1380      *     Map<String, String> phoneBook
1381      *         people.stream().collect(toConcurrentMap(Person::getName,
1382      *                                                 Person::getAddress,
1383      *                                                 (s, a) -> s + ", " + a));
1384      * }</pre>
1385      *
1386      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
1387      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
1388      *
1389      * @param <T> the type of the input elements
1390      * @param <K> the output type of the key mapping function
1391      * @param <U> the output type of the value mapping function
1392      * @param keyMapper a mapping function to produce keys
1393      * @param valueMapper a mapping function to produce values
1394      * @param mergeFunction a merge function, used to resolve collisions between
1395      *                      values associated with the same key, as supplied
1396      *                      to {@link Map#merge(Object, Object, BiFunction)}
1397      * @return a concurrent, unordered {@code Collector} which collects elements into a
1398      * {@code ConcurrentMap} whose keys are the result of applying a key mapping
1399      * function to the input elements, and whose values are the result of
1400      * applying a value mapping function to all input elements equal to the key
1401      * and combining them using the merge function
1402      *
1403      * @see #toConcurrentMap(Function, Function)
1404      * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier)
1405      * @see #toMap(Function, Function, BinaryOperator)
1406      */
1407     public static <T, K, U>
1408     Collector<T, ?, ConcurrentMap<K,U>>
1409     toConcurrentMap(Function<? super T, ? extends K> keyMapper,
1410                     Function<? super T, ? extends U> valueMapper,
1411                     BinaryOperator<U> mergeFunction) {
1412         return toConcurrentMap(keyMapper, valueMapper, mergeFunction, ConcurrentHashMap::new);
1413     }
1414 
1415     /**
1416      * Returns a concurrent {@code Collector} that accumulates elements into a
1417      * {@code ConcurrentMap} whose keys and values are the result of applying
1418      * the provided mapping functions to the input elements.
1419      *
1420      * <p>If the mapped keys contains duplicates (according to {@link Object#equals(Object)}),
1421      * the value mapping function is applied to each equal element, and the
1422      * results are merged using the provided merging function.  The
1423      * {@code ConcurrentMap} is created by a provided supplier function.
1424      *
1425      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
1426      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
1427      *
1428      * @param <T> the type of the input elements
1429      * @param <K> the output type of the key mapping function
1430      * @param <U> the output type of the value mapping function
1431      * @param <M> the type of the resulting {@code ConcurrentMap}
1432      * @param keyMapper a mapping function to produce keys
1433      * @param valueMapper a mapping function to produce values
1434      * @param mergeFunction a merge function, used to resolve collisions between
1435      *                      values associated with the same key, as supplied
1436      *                      to {@link Map#merge(Object, Object, BiFunction)}
1437      * @param mapSupplier a function which returns a new, empty {@code Map} into
1438      *                    which the results will be inserted
1439      * @return a concurrent, unordered {@code Collector} which collects elements into a
1440      * {@code ConcurrentMap} whose keys are the result of applying a key mapping
1441      * function to the input elements, and whose values are the result of
1442      * applying a value mapping function to all input elements equal to the key
1443      * and combining them using the merge function
1444      *
1445      * @see #toConcurrentMap(Function, Function)
1446      * @see #toConcurrentMap(Function, Function, BinaryOperator)
1447      * @see #toMap(Function, Function, BinaryOperator, Supplier)
1448      */
1449     public static <T, K, U, M extends ConcurrentMap<K, U>>
1450     Collector<T, ?, M> toConcurrentMap(Function<? super T, ? extends K> keyMapper,
1451                                        Function<? super T, ? extends U> valueMapper,
1452                                        BinaryOperator<U> mergeFunction,
1453                                        Supplier<M> mapSupplier) {
1454         BiConsumer<M, T> accumulator
1455                 = (map, element) -> map.merge(keyMapper.apply(element),
1456                                               valueMapper.apply(element), mergeFunction);
1457         return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_CONCURRENT_ID);
1458     }
1459 
1460     /**
1461      * Returns a {@code Collector} which applies an {@code int}-producing
1462      * mapping function to each input element, and returns summary statistics
1463      * for the resulting values.
1464      *
1465      * @param <T> the type of the input elements
1466      * @param mapper a mapping function to apply to each element
1467      * @return a {@code Collector} implementing the summary-statistics reduction
1468      *
1469      * @see #summarizingDouble(ToDoubleFunction)
1470      * @see #summarizingLong(ToLongFunction)
1471      */
1472     public static <T>
1473     Collector<T, ?, IntSummaryStatistics> summarizingInt(ToIntFunction<? super T> mapper) {
1474         return new CollectorImpl<T, IntSummaryStatistics, IntSummaryStatistics>(
1475                 IntSummaryStatistics::new,
1476                 (r, t) -> r.accept(mapper.applyAsInt(t)),
1477                 (l, r) -> { l.combine(r); return l; }, CH_ID);
1478     }
1479 
1480     /**
1481      * Returns a {@code Collector} which applies an {@code long}-producing
1482      * mapping function to each input element, and returns summary statistics
1483      * for the resulting values.
1484      *
1485      * @param <T> the type of the input elements
1486      * @param mapper the mapping function to apply to each element
1487      * @return a {@code Collector} implementing the summary-statistics reduction
1488      *
1489      * @see #summarizingDouble(ToDoubleFunction)
1490      * @see #summarizingInt(ToIntFunction)
1491      */
1492     public static <T>
1493     Collector<T, ?, LongSummaryStatistics> summarizingLong(ToLongFunction<? super T> mapper) {
1494         return new CollectorImpl<T, LongSummaryStatistics, LongSummaryStatistics>(
1495                 LongSummaryStatistics::new,
1496                 (r, t) -> r.accept(mapper.applyAsLong(t)),
1497                 (l, r) -> { l.combine(r); return l; }, CH_ID);
1498     }
1499 
1500     /**
1501      * Returns a {@code Collector} which applies an {@code double}-producing
1502      * mapping function to each input element, and returns summary statistics
1503      * for the resulting values.
1504      *
1505      * @param <T> the type of the input elements
1506      * @param mapper a mapping function to apply to each element
1507      * @return a {@code Collector} implementing the summary-statistics reduction
1508      *
1509      * @see #summarizingLong(ToLongFunction)
1510      * @see #summarizingInt(ToIntFunction)
1511      */
1512     public static <T>
1513     Collector<T, ?, DoubleSummaryStatistics> summarizingDouble(ToDoubleFunction<? super T> mapper) {
1514         return new CollectorImpl<T, DoubleSummaryStatistics, DoubleSummaryStatistics>(
1515                 DoubleSummaryStatistics::new,
1516                 (r, t) -> r.accept(mapper.applyAsDouble(t)),
1517                 (l, r) -> { l.combine(r); return l; }, CH_ID);
1518     }
1519 
1520     /**
1521      * Implementation class used by partitioningBy.
1522      */
1523     private static final class Partition<T>
1524             extends AbstractMap<Boolean, T>
1525             implements Map<Boolean, T> {
1526         final T forTrue;
1527         final T forFalse;
1528 
1529         Partition(T forTrue, T forFalse) {
1530             this.forTrue = forTrue;
1531             this.forFalse = forFalse;
1532         }
1533 
1534         @Override
1535         public Set<Map.Entry<Boolean, T>> entrySet() {
1536             return new AbstractSet<Map.Entry<Boolean, T>>() {
1537                 @Override
1538                 public Iterator<Map.Entry<Boolean, T>> iterator() {
1539                     Map.Entry<Boolean, T> falseEntry = new SimpleImmutableEntry<>(false, forFalse);
1540                     Map.Entry<Boolean, T> trueEntry = new SimpleImmutableEntry<>(true, forTrue);
1541                     return Arrays.asList(falseEntry, trueEntry).iterator();
1542                 }
1543 
1544                 @Override
1545                 public int size() {
1546                     return 2;
1547                 }
1548             };
1549         }
1550     }
1551 }