1 /*
   2  * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.font;
  27 
  28 import java.lang.ref.SoftReference;
  29 import java.lang.ref.WeakReference;
  30 import java.awt.Font;
  31 import java.awt.GraphicsEnvironment;
  32 import java.awt.Rectangle;
  33 import java.awt.geom.AffineTransform;
  34 import java.awt.geom.GeneralPath;
  35 import java.awt.geom.NoninvertibleTransformException;
  36 import java.awt.geom.Point2D;
  37 import java.awt.geom.Rectangle2D;
  38 import java.util.concurrent.ConcurrentHashMap;
  39 import static sun.awt.SunHints.*;
  40 
  41 
  42 public class FileFontStrike extends PhysicalStrike {
  43 
  44     /* fffe and ffff are values we specially interpret as meaning
  45      * invisible glyphs.
  46      */
  47     static final int INVISIBLE_GLYPHS = 0x0fffe;
  48 
  49     private FileFont fileFont;
  50 
  51     /* REMIND: replace this scheme with one that installs a cache
  52      * instance of the appropriate type. It will require changes in
  53      * FontStrikeDisposer and NativeStrike etc.
  54      */
  55     private static final int UNINITIALISED = 0;
  56     private static final int INTARRAY      = 1;
  57     private static final int LONGARRAY     = 2;
  58     private static final int SEGINTARRAY   = 3;
  59     private static final int SEGLONGARRAY  = 4;
  60 
  61     private volatile int glyphCacheFormat = UNINITIALISED;
  62 
  63     /* segmented arrays are blocks of 32 */
  64     private static final int SEGSHIFT = 5;
  65     private static final int SEGSIZE  = 1 << SEGSHIFT;
  66 
  67     private boolean segmentedCache;
  68     private int[][] segIntGlyphImages;
  69     private long[][] segLongGlyphImages;
  70 
  71     /* The "metrics" information requested by clients is usually nothing
  72      * more than the horizontal advance of the character.
  73      * In most cases this advance and other metrics information is stored
  74      * in the glyph image cache.
  75      * But in some cases we do not automatically retrieve the glyph
  76      * image when the advance is requested. In those cases we want to
  77      * cache the advances since this has been shown to be important for
  78      * performance.
  79      * The segmented cache is used in cases when the single array
  80      * would be too large.
  81      */
  82     private float[] horizontalAdvances;
  83     private float[][] segHorizontalAdvances;
  84 
  85     /* Outline bounds are used when printing and when drawing outlines
  86      * to the screen. On balance the relative rarity of these cases
  87      * and the fact that getting this requires generating a path at
  88      * the scaler level means that its probably OK to store these
  89      * in a Java-level hashmap as the trade-off between time and space.
  90      * Later can revisit whether to cache these at all, or elsewhere.
  91      * Should also profile whether subsequent to getting the bounds, the
  92      * outline itself is also requested. The 1.4 implementation doesn't
  93      * cache outlines so you could generate the path twice - once to get
  94      * the bounds and again to return the outline to the client.
  95      * If the two uses are coincident then also look into caching outlines.
  96      * One simple optimisation is that we could store the last single
  97      * outline retrieved. This assumes that bounds then outline will always
  98      * be retrieved for a glyph rather than retrieving bounds for all glyphs
  99      * then outlines for all glyphs.
 100      */
 101     ConcurrentHashMap<Integer, Rectangle2D.Float> boundsMap;
 102     SoftReference<ConcurrentHashMap<Integer, Point2D.Float>>
 103         glyphMetricsMapRef;
 104 
 105     AffineTransform invertDevTx;
 106 
 107     boolean useNatives;
 108     NativeStrike[] nativeStrikes;
 109 
 110     /* Used only for communication to native layer */
 111     private int intPtSize;
 112 
 113     /* Perform global initialisation needed for Windows native rasterizer */
 114     private static native boolean initNative();
 115     private static boolean isXPorLater = false;
 116     static {
 117         if (FontUtilities.isWindows && !FontUtilities.useT2K &&
 118             !GraphicsEnvironment.isHeadless()) {
 119             isXPorLater = initNative();
 120         }
 121     }
 122 
 123     FileFontStrike(FileFont fileFont, FontStrikeDesc desc) {
 124         super(fileFont, desc);
 125         this.fileFont = fileFont;
 126 
 127         if (desc.style != fileFont.style) {
 128           /* If using algorithmic styling, the base values are
 129            * boldness = 1.0, italic = 0.0. The superclass constructor
 130            * initialises these.
 131            */
 132             if ((desc.style & Font.ITALIC) == Font.ITALIC &&
 133                 (fileFont.style & Font.ITALIC) == 0) {
 134                 algoStyle = true;
 135                 italic = 0.7f;
 136             }
 137             if ((desc.style & Font.BOLD) == Font.BOLD &&
 138                 ((fileFont.style & Font.BOLD) == 0)) {
 139                 algoStyle = true;
 140                 boldness = 1.33f;
 141             }
 142         }
 143         double[] matrix = new double[4];
 144         AffineTransform at = desc.glyphTx;
 145         at.getMatrix(matrix);
 146         if (!desc.devTx.isIdentity() &&
 147             desc.devTx.getType() != AffineTransform.TYPE_TRANSLATION) {
 148             try {
 149                 invertDevTx = desc.devTx.createInverse();
 150             } catch (NoninvertibleTransformException e) {
 151             }
 152         }
 153 
 154         /* Amble fonts are better rendered unhinted although there's the
 155          * inevitable fuzziness that accompanies this due to no longer
 156          * snapping stems to the pixel grid. The exception is that in B&W
 157          * mode they are worse without hinting. The down side to that is that
 158          * B&W metrics will differ which normally isn't the case, although
 159          * since AA mode is part of the measuring context that should be OK.
 160          * We don't expect Amble to be installed in the Windows fonts folder.
 161          * If we were to, then we'd also might want to disable using the
 162          * native rasteriser path which is used for LCD mode for platform
 163          * fonts. since we have no way to disable hinting by GDI.
 164          * In the case of Amble, since its 'gasp' table says to disable
 165          * hinting, I'd expect GDI to follow that, so likely it should
 166          * all be consistent even if GDI used.
 167          */
 168         boolean disableHinting = desc.aaHint != INTVAL_TEXT_ANTIALIAS_OFF &&
 169                                  fileFont.familyName.startsWith("Amble");
 170 
 171         /* If any of the values is NaN then substitute the null scaler context.
 172          * This will return null images, zero advance, and empty outlines
 173          * as no rendering need take place in this case.
 174          * We pass in the null scaler as the singleton null context
 175          * requires it. However
 176          */
 177         if (Double.isNaN(matrix[0]) || Double.isNaN(matrix[1]) ||
 178             Double.isNaN(matrix[2]) || Double.isNaN(matrix[3]) ||
 179             fileFont.getScaler() == null) {
 180             pScalerContext = NullFontScaler.getNullScalerContext();
 181         } else {
 182             pScalerContext = fileFont.getScaler().createScalerContext(matrix,
 183                                     desc.aaHint, desc.fmHint,
 184                                     boldness, italic, disableHinting);
 185         }
 186 
 187         mapper = fileFont.getMapper();
 188         int numGlyphs = mapper.getNumGlyphs();
 189 
 190         /* Always segment for fonts with > 256 glyphs, but also for smaller
 191          * fonts with non-typical sizes and transforms.
 192          * Segmenting for all non-typical pt sizes helps to minimize memory
 193          * usage when very many distinct strikes are created.
 194          * The size range of 0->5 and 37->INF for segmenting is arbitrary
 195          * but the intention is that typical GUI integer point sizes (6->36)
 196          * should not segment unless there's another reason to do so.
 197          */
 198         float ptSize = (float)matrix[3]; // interpreted only when meaningful.
 199         int iSize = intPtSize = (int)ptSize;
 200         boolean isSimpleTx = (at.getType() & complexTX) == 0;
 201         segmentedCache =
 202             (numGlyphs > SEGSIZE << 3) ||
 203             ((numGlyphs > SEGSIZE << 1) &&
 204              (!isSimpleTx || ptSize != iSize || iSize < 6 || iSize > 36));
 205 
 206         /* This can only happen if we failed to allocate memory for context.
 207          * NB: in such case we may still have some memory in java heap
 208          *     but subsequent attempt to allocate null scaler context
 209          *     may fail too (cause it is allocate in the native heap).
 210          *     It is not clear how to make this more robust but on the
 211          *     other hand getting NULL here seems to be extremely unlikely.
 212          */
 213         if (pScalerContext == 0L) {
 214             /* REMIND: when the code is updated to install cache objects
 215              * rather than using a switch this will be more efficient.
 216              */
 217             this.disposer = new FontStrikeDisposer(fileFont, desc);
 218             initGlyphCache();
 219             pScalerContext = NullFontScaler.getNullScalerContext();
 220             SunFontManager.getInstance().deRegisterBadFont(fileFont);
 221             return;
 222         }
 223         /* First, see if native code should be used to create the glyph.
 224          * GDI will return the integer metrics, not fractional metrics, which
 225          * may be requested for this strike, so we would require here that :
 226          * desc.fmHint != INTVAL_FRACTIONALMETRICS_ON
 227          * except that the advance returned by GDI is always overwritten by
 228          * the JDK rasteriser supplied one (see getGlyphImageFromWindows()).
 229          */
 230         if (FontUtilities.isWindows && isXPorLater &&
 231             !FontUtilities.useT2K &&
 232             !GraphicsEnvironment.isHeadless() &&
 233             !fileFont.useJavaRasterizer &&
 234             (desc.aaHint == INTVAL_TEXT_ANTIALIAS_LCD_HRGB ||
 235              desc.aaHint == INTVAL_TEXT_ANTIALIAS_LCD_HBGR) &&
 236             (matrix[1] == 0.0 && matrix[2] == 0.0 &&
 237              matrix[0] == matrix[3] &&
 238              matrix[0] >= 3.0 && matrix[0] <= 100.0) &&
 239             !((TrueTypeFont)fileFont).useEmbeddedBitmapsForSize(intPtSize)) {
 240             useNatives = true;
 241         }
 242         else if (fileFont.checkUseNatives() && desc.aaHint==0 && !algoStyle) {
 243             /* Check its a simple scale of a pt size in the range
 244              * where native bitmaps typically exist (6-36 pts) */
 245             if (matrix[1] == 0.0 && matrix[2] == 0.0 &&
 246                 matrix[0] >= 6.0 && matrix[0] <= 36.0 &&
 247                 matrix[0] == matrix[3]) {
 248                 useNatives = true;
 249                 int numNatives = fileFont.nativeFonts.length;
 250                 nativeStrikes = new NativeStrike[numNatives];
 251                 /* Maybe initialise these strikes lazily?. But we
 252                  * know we need at least one
 253                  */
 254                 for (int i=0; i<numNatives; i++) {
 255                     nativeStrikes[i] =
 256                         new NativeStrike(fileFont.nativeFonts[i], desc, false);
 257                 }
 258             }
 259         }
 260         if (FontUtilities.isLogging() && FontUtilities.isWindows) {
 261             FontUtilities.getLogger().info
 262                 ("Strike for " + fileFont + " at size = " + intPtSize +
 263                  " use natives = " + useNatives +
 264                  " useJavaRasteriser = " + fileFont.useJavaRasterizer +
 265                  " AAHint = " + desc.aaHint +
 266                  " Has Embedded bitmaps = " +
 267                  ((TrueTypeFont)fileFont).
 268                  useEmbeddedBitmapsForSize(intPtSize));
 269         }
 270         this.disposer = new FontStrikeDisposer(fileFont, desc, pScalerContext);
 271 
 272         /* Always get the image and the advance together for smaller sizes
 273          * that are likely to be important to rendering performance.
 274          * The pixel size of 48.0 can be thought of as
 275          * "maximumSizeForGetImageWithAdvance".
 276          * This should be no greater than OutlineTextRender.THRESHOLD.
 277          */
 278         double maxSz = 48.0;
 279         getImageWithAdvance =
 280             Math.abs(at.getScaleX()) <= maxSz &&
 281             Math.abs(at.getScaleY()) <= maxSz &&
 282             Math.abs(at.getShearX()) <= maxSz &&
 283             Math.abs(at.getShearY()) <= maxSz;
 284 
 285         /* Some applications request advance frequently during layout.
 286          * If we are not getting and caching the image with the advance,
 287          * there is a potentially significant performance penalty if the
 288          * advance is repeatedly requested before requesting the image.
 289          * We should at least cache the horizontal advance.
 290          * REMIND: could use info in the font, eg hmtx, to retrieve some
 291          * advances. But still want to cache it here.
 292          */
 293 
 294         if (!getImageWithAdvance) {
 295             if (!segmentedCache) {
 296                 horizontalAdvances = new float[numGlyphs];
 297                 /* use max float as uninitialised advance */
 298                 for (int i=0; i<numGlyphs; i++) {
 299                     horizontalAdvances[i] = Float.MAX_VALUE;
 300                 }
 301             } else {
 302                 int numSegments = (numGlyphs + SEGSIZE-1)/SEGSIZE;
 303                 segHorizontalAdvances = new float[numSegments][];
 304             }
 305         }
 306     }
 307 
 308     /* A number of methods are delegated by the strike to the scaler
 309      * context which is a shared resource on a physical font.
 310      */
 311 
 312     public int getNumGlyphs() {
 313         return fileFont.getNumGlyphs();
 314     }
 315 
 316     long getGlyphImageFromNative(int glyphCode) {
 317         if (FontUtilities.isWindows) {
 318             return getGlyphImageFromWindows(glyphCode);
 319         } else {
 320             return getGlyphImageFromX11(glyphCode);
 321         }
 322     }
 323 
 324     /* There's no global state conflicts, so this method is not
 325      * presently synchronized.
 326      */
 327     private native long _getGlyphImageFromWindows(String family,
 328                                                   int style,
 329                                                   int size,
 330                                                   int glyphCode,
 331                                                   boolean fracMetrics);
 332 
 333     long getGlyphImageFromWindows(int glyphCode) {
 334         String family = fileFont.getFamilyName(null);
 335         int style = desc.style & Font.BOLD | desc.style & Font.ITALIC
 336             | fileFont.getStyle();
 337         int size = intPtSize;
 338         long ptr = _getGlyphImageFromWindows
 339             (family, style, size, glyphCode,
 340              desc.fmHint == INTVAL_FRACTIONALMETRICS_ON);
 341         if (ptr != 0) {
 342             /* Get the advance from the JDK rasterizer. This is mostly
 343              * necessary for the fractional metrics case, but there are
 344              * also some very small number (<0.25%) of marginal cases where
 345              * there is some rounding difference between windows and JDK.
 346              * After these are resolved, we can restrict this extra
 347              * work to the FM case.
 348              */
 349             float advance = getGlyphAdvance(glyphCode, false);
 350             StrikeCache.unsafe.putFloat(ptr + StrikeCache.xAdvanceOffset,
 351                                         advance);
 352             return ptr;
 353         } else {
 354             return fileFont.getGlyphImage(pScalerContext, glyphCode);
 355         }
 356     }
 357 
 358     /* Try the native strikes first, then try the fileFont strike */
 359     long getGlyphImageFromX11(int glyphCode) {
 360         long glyphPtr;
 361         char charCode = fileFont.glyphToCharMap[glyphCode];
 362         for (int i=0;i<nativeStrikes.length;i++) {
 363             CharToGlyphMapper mapper = fileFont.nativeFonts[i].getMapper();
 364             int gc = mapper.charToGlyph(charCode)&0xffff;
 365             if (gc != mapper.getMissingGlyphCode()) {
 366                 glyphPtr = nativeStrikes[i].getGlyphImagePtrNoCache(gc);
 367                 if (glyphPtr != 0L) {
 368                     return glyphPtr;
 369                 }
 370             }
 371         }
 372         return fileFont.getGlyphImage(pScalerContext, glyphCode);
 373     }
 374 
 375     long getGlyphImagePtr(int glyphCode) {
 376         if (glyphCode >= INVISIBLE_GLYPHS) {
 377             return StrikeCache.invisibleGlyphPtr;
 378         }
 379         long glyphPtr = 0L;
 380         if ((glyphPtr = getCachedGlyphPtr(glyphCode)) != 0L) {
 381             return glyphPtr;
 382         } else {
 383             if (useNatives) {
 384                 glyphPtr = getGlyphImageFromNative(glyphCode);
 385                 if (glyphPtr == 0L && FontUtilities.isLogging()) {
 386                     FontUtilities.getLogger().info
 387                         ("Strike for " + fileFont +
 388                          " at size = " + intPtSize +
 389                          " couldn't get native glyph for code = " + glyphCode);
 390                  }
 391             } if (glyphPtr == 0L) {
 392                 glyphPtr = fileFont.getGlyphImage(pScalerContext,
 393                                                   glyphCode);
 394             }
 395             return setCachedGlyphPtr(glyphCode, glyphPtr);
 396         }
 397     }
 398 
 399     void getGlyphImagePtrs(int[] glyphCodes, long[] images, int  len) {
 400 
 401         for (int i=0; i<len; i++) {
 402             int glyphCode = glyphCodes[i];
 403             if (glyphCode >= INVISIBLE_GLYPHS) {
 404                 images[i] = StrikeCache.invisibleGlyphPtr;
 405                 continue;
 406             } else if ((images[i] = getCachedGlyphPtr(glyphCode)) != 0L) {
 407                 continue;
 408             } else {
 409                 long glyphPtr = 0L;
 410                 if (useNatives) {
 411                     glyphPtr = getGlyphImageFromNative(glyphCode);
 412                 } if (glyphPtr == 0L) {
 413                     glyphPtr = fileFont.getGlyphImage(pScalerContext,
 414                                                       glyphCode);
 415                 }
 416                 images[i] = setCachedGlyphPtr(glyphCode, glyphPtr);
 417             }
 418         }
 419     }
 420 
 421     /* The following method is called from CompositeStrike as a special case.
 422      */
 423     private static final int SLOTZEROMAX = 0xffffff;
 424     int getSlot0GlyphImagePtrs(int[] glyphCodes, long[] images, int len) {
 425 
 426         int convertedCnt = 0;
 427 
 428         for (int i=0; i<len; i++) {
 429             int glyphCode = glyphCodes[i];
 430             if (glyphCode >= SLOTZEROMAX) {
 431                 return convertedCnt;
 432             } else {
 433                 convertedCnt++;
 434             }
 435             if (glyphCode >= INVISIBLE_GLYPHS) {
 436                 images[i] = StrikeCache.invisibleGlyphPtr;
 437                 continue;
 438             } else if ((images[i] = getCachedGlyphPtr(glyphCode)) != 0L) {
 439                 continue;
 440             } else {
 441                 long glyphPtr = 0L;
 442                 if (useNatives) {
 443                     glyphPtr = getGlyphImageFromNative(glyphCode);
 444                 }
 445                 if (glyphPtr == 0L) {
 446                     glyphPtr = fileFont.getGlyphImage(pScalerContext,
 447                                                       glyphCode);
 448                 }
 449                 images[i] = setCachedGlyphPtr(glyphCode, glyphPtr);
 450             }
 451         }
 452         return convertedCnt;
 453     }
 454 
 455     /* Only look in the cache */
 456     long getCachedGlyphPtr(int glyphCode) {
 457         switch (glyphCacheFormat) {
 458             case INTARRAY:
 459                 return intGlyphImages[glyphCode] & INTMASK;
 460             case SEGINTARRAY:
 461                 int segIndex = glyphCode >> SEGSHIFT;
 462                 if (segIntGlyphImages[segIndex] != null) {
 463                     int subIndex = glyphCode % SEGSIZE;
 464                     return segIntGlyphImages[segIndex][subIndex] & INTMASK;
 465                 } else {
 466                     return 0L;
 467                 }
 468             case LONGARRAY:
 469                 return longGlyphImages[glyphCode];
 470             case SEGLONGARRAY:
 471                 segIndex = glyphCode >> SEGSHIFT;
 472                 if (segLongGlyphImages[segIndex] != null) {
 473                     int subIndex = glyphCode % SEGSIZE;
 474                     return segLongGlyphImages[segIndex][subIndex];
 475                 } else {
 476                     return 0L;
 477                 }
 478         }
 479         /* If reach here cache is UNINITIALISED. */
 480         return 0L;
 481     }
 482 
 483     private synchronized long setCachedGlyphPtr(int glyphCode, long glyphPtr) {
 484         switch (glyphCacheFormat) {
 485             case INTARRAY:
 486                 if (intGlyphImages[glyphCode] == 0) {
 487                     intGlyphImages[glyphCode] = (int)glyphPtr;
 488                     return glyphPtr;
 489                 } else {
 490                     StrikeCache.freeIntPointer((int)glyphPtr);
 491                     return intGlyphImages[glyphCode] & INTMASK;
 492                 }
 493 
 494             case SEGINTARRAY:
 495                 int segIndex = glyphCode >> SEGSHIFT;
 496                 int subIndex = glyphCode % SEGSIZE;
 497                 if (segIntGlyphImages[segIndex] == null) {
 498                     segIntGlyphImages[segIndex] = new int[SEGSIZE];
 499                 }
 500                 if (segIntGlyphImages[segIndex][subIndex] == 0) {
 501                     segIntGlyphImages[segIndex][subIndex] = (int)glyphPtr;
 502                     return glyphPtr;
 503                 } else {
 504                     StrikeCache.freeIntPointer((int)glyphPtr);
 505                     return segIntGlyphImages[segIndex][subIndex] & INTMASK;
 506                 }
 507 
 508             case LONGARRAY:
 509                 if (longGlyphImages[glyphCode] == 0L) {
 510                     longGlyphImages[glyphCode] = glyphPtr;
 511                     return glyphPtr;
 512                 } else {
 513                     StrikeCache.freeLongPointer(glyphPtr);
 514                     return longGlyphImages[glyphCode];
 515                 }
 516 
 517            case SEGLONGARRAY:
 518                 segIndex = glyphCode >> SEGSHIFT;
 519                 subIndex = glyphCode % SEGSIZE;
 520                 if (segLongGlyphImages[segIndex] == null) {
 521                     segLongGlyphImages[segIndex] = new long[SEGSIZE];
 522                 }
 523                 if (segLongGlyphImages[segIndex][subIndex] == 0L) {
 524                     segLongGlyphImages[segIndex][subIndex] = glyphPtr;
 525                     return glyphPtr;
 526                 } else {
 527                     StrikeCache.freeLongPointer(glyphPtr);
 528                     return segLongGlyphImages[segIndex][subIndex];
 529                 }
 530         }
 531 
 532         /* Reach here only when the cache is not initialised which is only
 533          * for the first glyph to be initialised in the strike.
 534          * Initialise it and recurse. Note that we are already synchronized.
 535          */
 536         initGlyphCache();
 537         return setCachedGlyphPtr(glyphCode, glyphPtr);
 538     }
 539 
 540     /* Called only from synchronized code or constructor */
 541     private synchronized void initGlyphCache() {
 542 
 543         int numGlyphs = mapper.getNumGlyphs();
 544         int tmpFormat = UNINITIALISED;
 545         if (segmentedCache) {
 546             int numSegments = (numGlyphs + SEGSIZE-1)/SEGSIZE;
 547             if (longAddresses) {
 548                 tmpFormat = SEGLONGARRAY;
 549                 segLongGlyphImages = new long[numSegments][];
 550                 this.disposer.segLongGlyphImages = segLongGlyphImages;
 551              } else {
 552                  tmpFormat = SEGINTARRAY;
 553                  segIntGlyphImages = new int[numSegments][];
 554                  this.disposer.segIntGlyphImages = segIntGlyphImages;
 555              }
 556         } else {
 557             if (longAddresses) {
 558                 tmpFormat = LONGARRAY;
 559                 longGlyphImages = new long[numGlyphs];
 560                 this.disposer.longGlyphImages = longGlyphImages;
 561             } else {
 562                 tmpFormat = INTARRAY;
 563                 intGlyphImages = new int[numGlyphs];
 564                 this.disposer.intGlyphImages = intGlyphImages;
 565             }
 566         }
 567         glyphCacheFormat = tmpFormat;
 568     }
 569 
 570     float getGlyphAdvance(int glyphCode) {
 571         return getGlyphAdvance(glyphCode, true);
 572     }
 573 
 574     /* Metrics info is always retrieved. If the GlyphInfo address is non-zero
 575      * then metrics info there is valid and can just be copied.
 576      * This is in user space coordinates unless getUserAdv == false.
 577      * Device space advance should not be propagated out of this class.
 578      */
 579     private float getGlyphAdvance(int glyphCode, boolean getUserAdv) {
 580         float advance;
 581 
 582         if (glyphCode >= INVISIBLE_GLYPHS) {
 583             return 0f;
 584         }
 585 
 586         /* Notes on the (getUserAdv == false) case.
 587          *
 588          * Setting getUserAdv == false is internal to this class.
 589          * If there's no graphics transform we can let
 590          * getGlyphAdvance take its course, and potentially caching in
 591          * advances arrays, except for signalling that
 592          * getUserAdv == false means there is no need to create an image.
 593          * It is possible that code already calculated the user advance,
 594          * and it is desirable to take advantage of that work.
 595          * But, if there's a transform and we want device advance, we
 596          * can't use any values cached in the advances arrays - unless
 597          * first re-transform them into device space using 'desc.devTx'.
 598          * invertDevTx is null if the graphics transform is identity,
 599          * a translate, or non-invertible. The latter case should
 600          * not ever occur in the getUserAdv == false path.
 601          * In other words its either null, or the inversion of a
 602          * simple uniform scale. If its null, we can populate and
 603          * use the advance caches as normal.
 604          *
 605          * If we don't find a cached value, obtain the device advance and
 606          * return it. This will get stashed on the image by the caller and any
 607          * subsequent metrics calls will be able to use it as is the case
 608          * whenever an image is what is initially requested.
 609          *
 610          * Don't query if there's a value cached on the image, since this
 611          * getUserAdv==false code path is entered solely when none exists.
 612          */
 613         if (horizontalAdvances != null) {
 614             advance = horizontalAdvances[glyphCode];
 615             if (advance != Float.MAX_VALUE) {
 616                 if (!getUserAdv && invertDevTx != null) {
 617                     Point2D.Float metrics = new Point2D.Float(advance, 0f);
 618                     desc.devTx.deltaTransform(metrics, metrics);
 619                     return metrics.x;
 620                 } else {
 621                     return advance;
 622                 }
 623             }
 624         } else if (segmentedCache && segHorizontalAdvances != null) {
 625             int segIndex = glyphCode >> SEGSHIFT;
 626             float[] subArray = segHorizontalAdvances[segIndex];
 627             if (subArray != null) {
 628                 advance = subArray[glyphCode % SEGSIZE];
 629                 if (advance != Float.MAX_VALUE) {
 630                     if (!getUserAdv && invertDevTx != null) {
 631                         Point2D.Float metrics = new Point2D.Float(advance, 0f);
 632                         desc.devTx.deltaTransform(metrics, metrics);
 633                         return metrics.x;
 634                     } else {
 635                         return advance;
 636                     }
 637                 }
 638             }
 639         }
 640 
 641         if (!getUserAdv && invertDevTx != null) {
 642             Point2D.Float metrics = new Point2D.Float();
 643             fileFont.getGlyphMetrics(pScalerContext, glyphCode, metrics);
 644             return metrics.x;
 645         }
 646 
 647         if (invertDevTx != null || !getUserAdv) {
 648             /* If there is a device transform need x & y advance to
 649              * transform back into user space.
 650              */
 651             advance = getGlyphMetrics(glyphCode, getUserAdv).x;
 652         } else {
 653             long glyphPtr;
 654             if (getImageWithAdvance) {
 655                 /* A heuristic optimisation says that for most cases its
 656                  * worthwhile retrieving the image at the same time as the
 657                  * advance. So here we get the image data even if its not
 658                  * already cached.
 659                  */
 660                 glyphPtr = getGlyphImagePtr(glyphCode);
 661             } else {
 662                 glyphPtr = getCachedGlyphPtr(glyphCode);
 663             }
 664             if (glyphPtr != 0L) {
 665                 advance = StrikeCache.unsafe.getFloat
 666                     (glyphPtr + StrikeCache.xAdvanceOffset);
 667 
 668             } else {
 669                 advance = fileFont.getGlyphAdvance(pScalerContext, glyphCode);
 670             }
 671         }
 672 
 673         if (horizontalAdvances != null) {
 674             horizontalAdvances[glyphCode] = advance;
 675         } else if (segmentedCache && segHorizontalAdvances != null) {
 676             int segIndex = glyphCode >> SEGSHIFT;
 677             int subIndex = glyphCode % SEGSIZE;
 678             if (segHorizontalAdvances[segIndex] == null) {
 679                 segHorizontalAdvances[segIndex] = new float[SEGSIZE];
 680                 for (int i=0; i<SEGSIZE; i++) {
 681                      segHorizontalAdvances[segIndex][i] = Float.MAX_VALUE;
 682                 }
 683             }
 684             segHorizontalAdvances[segIndex][subIndex] = advance;
 685         }
 686         return advance;
 687     }
 688 
 689     float getCodePointAdvance(int cp) {
 690         return getGlyphAdvance(mapper.charToGlyph(cp));
 691     }
 692 
 693     /**
 694      * Result and pt are both in device space.
 695      */
 696     void getGlyphImageBounds(int glyphCode, Point2D.Float pt,
 697                              Rectangle result) {
 698 
 699         long ptr = getGlyphImagePtr(glyphCode);
 700         float topLeftX, topLeftY;
 701 
 702         /* With our current design NULL ptr is not possible
 703            but if we eventually allow scalers to return NULL pointers
 704            this check might be actually useful. */
 705         if (ptr == 0L) {
 706             result.x = (int) Math.floor(pt.x);
 707             result.y = (int) Math.floor(pt.y);
 708             result.width = result.height = 0;
 709             return;
 710         }
 711 
 712         topLeftX = StrikeCache.unsafe.getFloat(ptr+StrikeCache.topLeftXOffset);
 713         topLeftY = StrikeCache.unsafe.getFloat(ptr+StrikeCache.topLeftYOffset);
 714 
 715         result.x = (int)Math.floor(pt.x + topLeftX);
 716         result.y = (int)Math.floor(pt.y + topLeftY);
 717         result.width =
 718             StrikeCache.unsafe.getShort(ptr+StrikeCache.widthOffset)  &0x0ffff;
 719         result.height =
 720             StrikeCache.unsafe.getShort(ptr+StrikeCache.heightOffset) &0x0ffff;
 721 
 722         /* HRGB LCD text may have padding that is empty. This is almost always
 723          * going to be when topLeftX is -2 or less.
 724          * Try to return a tighter bounding box in that case.
 725          * If the first three bytes of every row are all zero, then
 726          * add 1 to "x" and reduce "width" by 1.
 727          */
 728         if ((desc.aaHint == INTVAL_TEXT_ANTIALIAS_LCD_HRGB ||
 729              desc.aaHint == INTVAL_TEXT_ANTIALIAS_LCD_HBGR)
 730             && topLeftX <= -2.0f) {
 731             int minx = getGlyphImageMinX(ptr, result.x);
 732             if (minx > result.x) {
 733                 result.x += 1;
 734                 result.width -=1;
 735             }
 736         }
 737     }
 738 
 739     private int getGlyphImageMinX(long ptr, int origMinX) {
 740 
 741         int width = StrikeCache.unsafe.getChar(ptr+StrikeCache.widthOffset);
 742         int height = StrikeCache.unsafe.getChar(ptr+StrikeCache.heightOffset);
 743         int rowBytes =
 744             StrikeCache.unsafe.getChar(ptr+StrikeCache.rowBytesOffset);
 745 
 746         if (rowBytes == width) {
 747             return origMinX;
 748         }
 749 
 750         long pixelData =
 751             StrikeCache.unsafe.getAddress(ptr + StrikeCache.pixelDataOffset);
 752 
 753         if (pixelData == 0L) {
 754             return origMinX;
 755         }
 756 
 757         for (int y=0;y<height;y++) {
 758             for (int x=0;x<3;x++) {
 759                 if (StrikeCache.unsafe.getByte(pixelData+y*rowBytes+x) != 0) {
 760                     return origMinX;
 761                 }
 762             }
 763         }
 764         return origMinX+1;
 765     }
 766 
 767     /* These 3 metrics methods below should be implemented to return
 768      * values in user space.
 769      */
 770     StrikeMetrics getFontMetrics() {
 771         if (strikeMetrics == null) {
 772             strikeMetrics =
 773                 fileFont.getFontMetrics(pScalerContext);
 774             if (invertDevTx != null) {
 775                 strikeMetrics.convertToUserSpace(invertDevTx);
 776             }
 777         }
 778         return strikeMetrics;
 779     }
 780 
 781     Point2D.Float getGlyphMetrics(int glyphCode) {
 782         return getGlyphMetrics(glyphCode, true);
 783     }
 784 
 785     private Point2D.Float getGlyphMetrics(int glyphCode, boolean getImage) {
 786         Point2D.Float metrics = new Point2D.Float();
 787 
 788         // !!! or do we force sgv user glyphs?
 789         if (glyphCode >= INVISIBLE_GLYPHS) {
 790             return metrics;
 791         }
 792         long glyphPtr;
 793         if (getImageWithAdvance && getImage) {
 794             /* A heuristic optimisation says that for most cases its
 795              * worthwhile retrieving the image at the same time as the
 796              * metrics. So here we get the image data even if its not
 797              * already cached.
 798              */
 799             glyphPtr = getGlyphImagePtr(glyphCode);
 800         } else {
 801              glyphPtr = getCachedGlyphPtr(glyphCode);
 802         }
 803         if (glyphPtr != 0L) {
 804             metrics = new Point2D.Float();
 805             metrics.x = StrikeCache.unsafe.getFloat
 806                 (glyphPtr + StrikeCache.xAdvanceOffset);
 807             metrics.y = StrikeCache.unsafe.getFloat
 808                 (glyphPtr + StrikeCache.yAdvanceOffset);
 809             /* advance is currently in device space, need to convert back
 810              * into user space.
 811              * This must not include the translation component. */
 812             if (invertDevTx != null) {
 813                 invertDevTx.deltaTransform(metrics, metrics);
 814             }
 815         } else {
 816             /* We sometimes cache these metrics as they are expensive to
 817              * generate for large glyphs.
 818              * We never reach this path if we obtain images with advances.
 819              * But if we do not obtain images with advances its possible that
 820              * we first obtain this information, then the image, and never
 821              * will access this value again.
 822              */
 823             Integer key = Integer.valueOf(glyphCode);
 824             Point2D.Float value = null;
 825             ConcurrentHashMap<Integer, Point2D.Float> glyphMetricsMap = null;
 826             if (glyphMetricsMapRef != null) {
 827                 glyphMetricsMap = glyphMetricsMapRef.get();
 828             }
 829             if (glyphMetricsMap != null) {
 830                 value = glyphMetricsMap.get(key);
 831                 if (value != null) {
 832                     metrics.x = value.x;
 833                     metrics.y = value.y;
 834                     /* already in user space */
 835                     return metrics;
 836                 }
 837             }
 838             if (value == null) {
 839                 fileFont.getGlyphMetrics(pScalerContext, glyphCode, metrics);
 840                 /* advance is currently in device space, need to convert back
 841                  * into user space.
 842                  */
 843                 if (invertDevTx != null) {
 844                     invertDevTx.deltaTransform(metrics, metrics);
 845                 }
 846                 value = new Point2D.Float(metrics.x, metrics.y);
 847                 /* We aren't synchronizing here so it is possible to
 848                  * overwrite the map with another one but this is harmless.
 849                  */
 850                 if (glyphMetricsMap == null) {
 851                     glyphMetricsMap =
 852                         new ConcurrentHashMap<Integer, Point2D.Float>();
 853                     glyphMetricsMapRef =
 854                         new SoftReference<ConcurrentHashMap<Integer,
 855                         Point2D.Float>>(glyphMetricsMap);
 856                 }
 857                 glyphMetricsMap.put(key, value);
 858             }
 859         }
 860         return metrics;
 861     }
 862 
 863     Point2D.Float getCharMetrics(char ch) {
 864         return getGlyphMetrics(mapper.charToGlyph(ch));
 865     }
 866 
 867     /* The caller of this can be trusted to return a copy of this
 868      * return value rectangle to public API. In fact frequently it
 869      * can't use use this return value directly anyway.
 870      * This returns bounds in device space. Currently the only
 871      * caller is SGV and it converts back to user space.
 872      * We could change things so that this code does the conversion so
 873      * that all coords coming out of the font system are converted back
 874      * into user space even if they were measured in device space.
 875      * The same applies to the other methods that return outlines (below)
 876      * But it may make particular sense for this method that caches its
 877      * results.
 878      * There'd be plenty of exceptions, to this too, eg getGlyphPoint needs
 879      * device coords as its called from native layout and getGlyphImageBounds
 880      * is used by GlyphVector.getGlyphPixelBounds which is specified to
 881      * return device coordinates, the image pointers aren't really used
 882      * up in Java code either.
 883      */
 884     Rectangle2D.Float getGlyphOutlineBounds(int glyphCode) {
 885 
 886         if (boundsMap == null) {
 887             boundsMap = new ConcurrentHashMap<Integer, Rectangle2D.Float>();
 888         }
 889 
 890         Integer key = Integer.valueOf(glyphCode);
 891         Rectangle2D.Float bounds = boundsMap.get(key);
 892 
 893         if (bounds == null) {
 894             bounds = fileFont.getGlyphOutlineBounds(pScalerContext, glyphCode);
 895             boundsMap.put(key, bounds);
 896         }
 897         return bounds;
 898     }
 899 
 900     public Rectangle2D getOutlineBounds(int glyphCode) {
 901         return fileFont.getGlyphOutlineBounds(pScalerContext, glyphCode);
 902     }
 903 
 904     private
 905         WeakReference<ConcurrentHashMap<Integer,GeneralPath>> outlineMapRef;
 906 
 907     GeneralPath getGlyphOutline(int glyphCode, float x, float y) {
 908 
 909         GeneralPath gp = null;
 910         ConcurrentHashMap<Integer, GeneralPath> outlineMap = null;
 911 
 912         if (outlineMapRef != null) {
 913             outlineMap = outlineMapRef.get();
 914             if (outlineMap != null) {
 915                 gp = outlineMap.get(glyphCode);
 916             }
 917         }
 918 
 919         if (gp == null) {
 920             gp = fileFont.getGlyphOutline(pScalerContext, glyphCode, 0, 0);
 921             if (outlineMap == null) {
 922                 outlineMap = new ConcurrentHashMap<Integer, GeneralPath>();
 923                 outlineMapRef =
 924                    new WeakReference
 925                        <ConcurrentHashMap<Integer,GeneralPath>>(outlineMap);
 926             }
 927             outlineMap.put(glyphCode, gp);
 928         }
 929         gp = (GeneralPath)gp.clone(); // mutable!
 930         if (x != 0f || y != 0f) {
 931             gp.transform(AffineTransform.getTranslateInstance(x, y));
 932         }
 933         return gp;
 934     }
 935 
 936     GeneralPath getGlyphVectorOutline(int[] glyphs, float x, float y) {
 937         return fileFont.getGlyphVectorOutline(pScalerContext,
 938                                               glyphs, glyphs.length, x, y);
 939     }
 940 
 941     protected void adjustPoint(Point2D.Float pt) {
 942         if (invertDevTx != null) {
 943             invertDevTx.deltaTransform(pt, pt);
 944         }
 945     }
 946 }